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proportion of correlated variants is high, joint modelling
can obtain modest improvements asymptotically.  Conclu-

sions:  The small gains observed to date from joint modelling 
can be explained by sample size. As studies become larger, 
joint modelling will be useful for traits affected by many cor-
related variants, but the improvements may remain small. 
Pruning remains a useful heuristic for current studies. 
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 Introduction 

 The discovery of thousands of genetic markers for 
complex traits and the revelation that many more remain 
to be found have created an emerging discipline of poly-
genic epidemiology in which the genetic basis of a trait is 
treated as a single entity  [1] . A commonly used, simple 
yet effective model for this genetic basis is an additive 
score constructed for each individual as the weighted 
sum of trait-increasing alleles, with the weights estimated 
from training data to reflect the relative effect of each 
marker on the trait  [2] . Here, we call this sum a ‘gene 
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 Abstract 

  Objective:  Gene scores are often used to model the com-
bined effects of genetic variants. When variants are in link-
age disequilibrium, it is common to prune all variants except 
the most strongly associated. This avoids duplicating infor-
mation but discards information when variants have inde-
pendent effects. However, joint modelling of correlated vari-
ants increases the sampling error in the gene score. In recent 
applications, joint modelling has offered only small improve-
ments in accuracy over pruning. We aimed to quantify the 
relationship between pruning and joint modelling in rela-
tion to sample size.  Methods:  We derived the coefficient of 
determination  R  2  for a gene score constructed from pruned 
markers, and for one constructed from correlated markers 
with jointly estimated effects.  Results:  Pruned scores tend to 
have slightly lower  R  2  than jointly modelled scores, but the 
differences are small at sample sizes up to 100,000. If the

 Published online: September 1, 2016 

 Frank Dudbridge 
 Department of Non-Communicable Disease Epidemiology 
 London School of Hygiene and Tropical Medicine 
 Keppel Street, London WC1E 7HT (UK) 
 E-Mail frank.dudbridge   @   lshtm.ac.uk 

 © 2016 The Author(s)
Published by S. Karger AG, Basel
0001–5652/16/0804–0177$39.50/0 

 www.karger.com/hhe Th is article is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (CC BY-
NC-ND) (http://www.karger.com/Services/OpenAccessLicense). 
Usage and distribution for commercial purposes as well as any dis-
tribution of modifi ed material requires written permission.

D
ow

nl
oa

de
d 

by
: 

94
.1

3.
20

0.
92

 -
 1

1/
14

/2
01

6 
12

:1
2:

14
 A

M



 Linkage Disequilibrium Pruning  Hum Hered 2015;80:178–186 
DOI: 10.1159/000446581

179

score’, though various other terms are in use including 
allele score, genetic risk score, polygenic risk score, or 
genomic profile score: those terms are perhaps more spe-
cific to applications. A gene score may be constructed 
from a few consistently associated markers, from all 
nominally significant markers, or from nearly all geno-
typed markers. For example, to demonstrate that a com-
plex trait has a polygenic basis  [3] , or to estimate the trait 
variation explained by a polygenic score  [4] , it is often 
optimal to include most of the markers in the score  [5] . 
For Mendelian randomisation, in which it is important 
that all markers act through the same pathway, it may be 
preferable to limit the score to individually associated 
markers  [6] . In all cases however, the usual approach is 
to combine alleles in an additive model that does not al-
low for dominance within loci or statistical interaction 
between loci.

  Associated markers are often in linkage disequilibri-
um (LD) with numerous other markers, all of which may 
show a nominal association. If one marker can account 
for all the association within a region, perhaps because it 
is the sole causal variant, then it makes sense to include 
only that marker in a gene score. On the other hand, if 
there are several causal variants in mutual LD, then it
may be preferable to include all those variants – but only 
those – in the score. Identifying the casual variants with-
in a region of LD is an important problem when de-
scribing aetiology, and there is an extensive literature
of statistical methods for this purpose  [7–10] . For epide-
miological applications such as risk prediction or patient 
stratification, however, the aim is often to derive a parsi-
monious but accurate model that is not necessarily aetio-
logical. In this case, a common practice is to discard 
( prune ) from the score all those markers whose LD with 
the most strongly associated marker is above some thresh-
old, perhaps after some initial model selection. A popular 
algorithm, implemented in the PLINK software, is as fol-
lows: identify the most strongly associated marker from 
univariate analysis; remove all markers whose LD (mea-
sured by the squared correlation of coded genotypes,  r  2 ) 
with this marker is above a threshold; among the remain-
ing markers, identify the most strongly associated mark-
er, and remove all markers in LD with it; repeat until no 
markers remain. The result of this ‘clumping’ procedure 
is a gene score constructed from a considerably reduced 
number of markers. Since a single marker is used to cap-
ture the effect of each LD ‘clump’, univariate weights can 
be used, which are often freely available as summary sta-
tistics from consortium studies.

  An additive score with pruned markers is easily criti-
cised. Some accuracy must be lost by omitting dominance 
or interaction terms that might exist in truth or by dis-
carding markers with independent effects. Therefore, 
some efforts have been made to avoid pruning by ac-
counting for LD, when estimating weights for all markers 
simultaneously  [11] , or by combining the marker selec-
tion with the weight estimation steps  [12, 13] . Surpris-
ingly, however, these more advanced methods often 
achieve no more than a small improvement in accuracy 
over the basic gene score. The cases in which advanced 
methods do achieve substantial improvement tend to be 
in HLA-associated diseases, in which there are multiple 
strong associations in high LD. Such examples arguably 
depart from the classical polygenic model of infinitesimal 
effects, and it is in cases closer to that model that the basic 
gene score, despite its obvious shortcomings, tends to 
perform surprisingly well.

  One reason that a pruned gene score could have com-
parable accuracy to an unpruned score is that when train-
ing the score from finite data, a score containing fewer 
markers will have less sampling error than one containing 
more markers, simply because there are fewer parameters 
to estimate. Furthermore, the univariate effects in a 
pruned score are in fact marginal effects that include, to 
some extent, the effects of correlated markers that have 
been discarded. The loss of information from pruning de-
pends on the degree of LD with the discarded markers 
and the effect sizes of those markers, but is offset by the 
reduced sampling error in the pruned score. It is, there-
fore, not a given that, with finite training data, an un-
pruned score with adjustment for LD will have greater 
accuracy than a pruned score.

  Here, we give an analytical description of the effect of 
pruning, under a simple model in which a proportion of 
markers with effects on a trait are each in LD with a sec-
ondary marker with an independent effect on the trait. 
We compare a pruning approach, in which only the more 
strongly associated marker is retained with its marginal 
weight, to an unpruned approach, in which both markers 
are retained with their weights as their conditional effects. 
Our analysis sheds light on the competitive performance 
of the pruned gene score in polygenic traits and shows 
that criticisms of additive models as inadequate are not 
quite accurate, because marginal effects include some of 
the non-additive signal. By considering the sample size of 
the training data, we offer new interpretations of recent 
methods accounting for LD, and we suggest the order of 
sample size under which advanced methods can be ex-
pected to provide more substantial gains.
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  Methods 

 We consider the accuracy of a gene score  S  in terms of its coef-
ficient of determination on a trait  Y . When no other predictors of 
 Y  are modelled, the coefficient of determination is simply the 
squared correlation

S Y
R

S Y

2
2 cov ,

.
var var

 

  Most other measures of accuracy can be expressed in terms of  R  2 , 
and it can be readily converted into several alternative quantities 
when  Y  is binary  [14] . 

 Let the gene score be a sum of contributions from a large num-
ber  m  of independent genomic regions, with each region contain-
ing a number of correlated markers

m

ij ij
i j

S X
1

,  

  where  X  ij  is a numerical code for the genotype of marker  j  in region 
 i , and  β  ij  is a scalar effect. We assume that the  β  ij s are independent 
and identically distributed, and for simplicity (but without loss of 
generality) that the  Y s and  X  ij s are all standardised. We consider 
the linear model 

  E ( Y   ∣   S ) =  S .

  Consider a region in which there is one marker with an effect 
on  Y . Suppressing index  i , the covariance between  Y  and the fitted 
values from the single marker model is 

  cov( β  1  X  1 ,  Y ) = cov( β  1  X  1 ,  β  1  X  1 ) = var( β  1  X  1 ) =  β  1  2 . (1)

  Now suppose there is a second marker in the region,  X  2 , which also 
has an effect on  Y  

  E ( Y   ∣   X  1 ,  X  2 ) =  β  1  X  1  +  β  2  X  2 .

  The marginal effect of  X  1  is now a function of the two SNP effects 

  β  1  m  = cov( X  1 ,  Y ) =  β  1  +  rβ  2 ,

  where  r  is the (signed) correlation between  X  1  and  X  2 . The covari-
ance between  Y  and the fitted values from the marginal single 
marker model is now 

  cov( β  1  m   X  1 ,  Y ) = var( β  1  m   X  1 ) =  β  1  2  + 2 rβ  1  β  2  +  r  2     β  2  2 . (2)

  Now, we construct a gene score  S  marg  by including only one ef-
fect from each of the  m  regions. Suppose a proportion of regions, 
 π  2 , contains two markers with independent effects on  Y , a propor-
tion,  π  1 , contains one marker affecting  Y , and the remainder,  π  0 , 
contains no markers affecting  Y . In regions containing two inde-
pendent effects, marker  X  1  is chosen when  ∣   β  1  m   ∣   ≥   ∣   β  2  m   ∣ , with  X  2  
chosen otherwise. In regions containing one effect, the corre-
sponding marker is chosen, and in regions containing no effects, a 
random marker is chosen with  β  1  m  = 0. (In practice, the marker 
selection will depend on estimated effects; for convenience, we ig-
nore sampling variation and selection bias here.) Consider  β  1  and 
 β  2  as random effects, drawn independently from a common distri-
bution  F  with variance  σ  2 . Using equations 1 and 2, the covariance 
between  Y  and the gene score  S  marg  composed of marginal effects is

margS Y

m r r dF dF1

1

2 2 2 2
2 1 1 2 2 2 1 1

cov ,

2 2 ,

  the factor of 2 in the first term reflecting symmetry in contribu-
tions from  ∣   β  1  m   ∣   ≥   ∣   β  2  m   ∣  and  ∣   β  2  m   ∣  >  ∣   β  1  m   ∣ . Since  β  1  and  β  2  are as-
sumed independent, 

 
margS Y

m r dF dF1 2 2 2 2
2 1 2 2 1 10 0

cov ,

8 .

 

(3)

  Suppose the effects  β  have been estimated from a sample of size 
 n . Then, the estimated gene score has variance

   var( S  ̂   marg ) = var( S  marg  +  ε  marg ) = var( S  marg ) + var( ε  marg ) 
  = cov( S  marg ,  Y ) + var( ε  marg ),

  where var( ε  marg ) denotes the sampling variance of the estimated 
gene score. Since the gene score includes one marker per indepen-
dent region, the sampling variance is equal to the residual variance 
divided by  n , and we have 

 
marg marg

marg

marg

Ŝ S Y

mn r dF dF

S Y

mn r dF dF

S Y mn mn

1

1

1 2 2 2

2

2 1 2 2 1

1 0

0 0

1 2 2 2 2
2 1 2 2 1 10 0

1 1

var cov ,

1 8

1

cov ,

1 8

cov , 1 .

  Using equations 3 and 4, the coefficient of determination for 
the marginal model is

marg marg
marg

margmarg

Ŝ Y S Y
R ˆ S Y mn mnS

2 2

2
1 1

cov , cov ,
.

cov , 1var
 

  For comparison, we also consider the case in which one ran-
dom marker is chosen from each correlated pair. Denoting this 
gene score by  S  rand , along the same lines as above, we have

rand

rand rand

rand
rand

rand

S Y m r

Ŝ S Y mn r

S Y
R

Ŝ

2 2 2
2 1

1 2 2

2

2

1 0

2
2

cov , 1

var cov , 1 1

1

cov ,
.

var

  Now, consider a gene score  S  joint , in which both effects are in-
cluded from regions with two independent effects, with other re-
gions treated identically to  S  marg . For a region with two effects, the 
covariance between  Y  and the fitted values from a joint model is

   cov( β  1  X  1  +  β  2  X  2 ,  Y ) = var( β  1  X  1  +  β  2  X  2 ) =  β  1  2  + 2 rβ  1  β  2  +  β  2  2 . (5)

  Recalling that  β  1  and  β  2  are assumed independent, the covariance 
between  Y  and  S  joint  from the joint model easily follows as 

 cov( S  joint ,  Y ) = var( S  joint ) =  m (2 π  2  +  π  1 )  σ  2 .

  Standard linear regression theory gives the variance-covari-
ance matrix of ( β  ̂   1 ,  β  ̂   2 )′ as the residual variance times ( X ′ X ) –1 , 

(4)
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where  X  is the design matrix. Using equation 5, and recalling that 
all variables are standardised, we write this as

r
r n

r

r
r n r

r

1
12 2

1 1 2 2

112 2 2
1 1 2 2

1
1 2

1

1
1 2 1

1

 

  from which the sampling variance of  β  ̂   1  X  1  +  β  ̂   2  X  2  is 

 2 (1 –  β  1  2  – 2 rβ  1  β  2  –  β  2  2 )  n  –1 .  
  Summing this sampling variance over the  mπ  2  regions with

two effects, we obtain the variance of the estimated gene score as

   var( S  ̂   joint ) = cov( S  joint ,  Y ) +  mn  –1  [2 π  2  (1 – 2 σ  2 ) 
+  π  1  (1 –  σ  2 ) +  π  0 ].

  The coefficient of determination for the joint model is 
 

jo int

m
R

n

2 4
2 12

12 2 2
2 1 2 1 0

2
.

2 2 1 2 1

  From the above it is clear that the relative accuracy of pruned 
gene scores, constructed from marginal models, and unpruned 
gene scores, constructed from joint models, depends upon several 
parameters: the sample size  n , total number of regions  m , propor-
tions of regions containing two ( π  2 ) and one ( π  1 ) marker in the 
joint models, squared correlation  r  2  between genotypes in regions 
containing two markers, and distribution  F  of genetic effects.

  We explored the accuracy of pruned and unpruned gene scores 
under parameters typical of current studies. The sample size was 
varied between 10 4  and 10 6 . The number of regions was fixed at 
10 5 , of which  π  0  = 0.95 contained no marker affecting the trait  [4, 
15] . Of the remainder, we varied the odds  π  2 : π  1  to reflect different 
proportions of regions with one or two independent effects. For 
the correlation, we considered  r  2  = 0.1 and  r  2  = 0.2, values com-

monly used when pruning markers  [3, 4, 15] , and  r  2  = 0.95, a value 
sometimes used to prune markers before a joint analysis in order 
to reduce collinearity  [9] . Finally, for the distribution of genetic 
effects, we followed several authors in assuming a normal distribu-
tion on the standardised genotype scale  [5, 9, 11, 16, 17]  with mean 
zero and total genetic variance 0.5. This was distributed equally 
across all markers with effects, so

   m  (2 π  2  +  π  1 )  σ  2  = 0.5
   σ  2  = (2 m  (2 π  2  +  π  1 )) –1 .

  In addition, we considered scenarios with more than two markers 
with effects in regions of LD. We assumed again that the proportion 
of regions  π  0  = 0.95 had no markers with effects and  π  1   =  0.1 × (1 – 
 π  0 ) had one marker with an effect. Among the remaining proportion 
 π  2   =  0.9 × (1 –  π  0 ), we considered scenarios where all those regions 
had  k  markers with effects, for  k  = 3, 4, 5. We assumed that  r  2  = 0.1 
between each pair of markers with effects. We considered just the 
asymptotic case  n   →   ∞ , so we may ignore the sampling variation in 
the estimated gene score. Under these assumptions, equation 4 for 
the marginal gene score  S  marg  easily generalises to  k  > 2; we evaluated 
the integral by Monte Carlo quadrature with 10 6  draws for each vari-
able. For the joint gene score,  R  2joint    tends to the total genetic variance, 
here 0.5, for large  n . The random effects variance becomes

   m  ( kπ  2  +  π  1 )  σ  2  = 0.5
   σ  2  = (2 m  ( kπ  2  +  π  1 )) –1 .  

  Results 

 For within region correlation  r  2  = 0.1,  figure 1  and  ta-
ble 1  show the coefficients of determination for random, 
marginal and joint gene scores when 10, 50 and 90% of 
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  Fig. 1.   R  2  for the prediction of trait  Y  using gene scores estimated 
from samples of size  n . Of 10 5  independent genomic regions, a 
proportion  π  2  contains two markers affecting  Y , with correlation 
 r  2  = 0.1 between each pair, a proportion  π  1  contains one marker 
affecting  Y , and a proportion  π  0  = 0.95 contains no markers affect-

ing  Y .  a   π  2 : π  1  = 1:   9;  b   π  2 : π  1  = 1:   1;  c   π  2 : π  1  = 9:   1. Dark bars = One 
random marker per correlated pair  R  2rand   . Grey bars = Marker with 
the strongest absolute effect per pair  R2  marg   . Light bars = Both mark-
ers per pair  R  2joint   . 
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the regions with effects harbour two independent effects 
that may warrant joint modelling. When few regions have 
two independent effects, the marginal gene score is al-
most as accurate as the joint gene score, as we might ex-
pect; although  R  2joint    is always greater than  R  2marg   , the dif-
ference is always within 2%. When half of the regions 
have two independent effects, the differences remain 
small, <3% up to  n  = 10 5  and just over 5% at  n  = 10 7 . More 
substantial differences occur when most of the regions 
have two independent effects: in the large sample limit, 
the difference in  R  2  is about 8%, although clear differ-
ences only emerge with samples of order  n  = 10 5 , when  R  2  
exceeds 10% in absolute value. Comparing the random to 
the marginal gene score, there is a clear benefit in select-

ing the marker with the strongest effect when two effects 
are present.

  For  r  2  = 0.2, the results are qualitatively similar ( ta-
ble 2 ). These results suggest that under the common strat-
egy of retaining the strongest effect in a region and prun-
ing markers with  r  2  < 0.2, little predictive accuracy is lost 
unless a high proportion of regions has multiple indepen-
dent effects. Even then, the loss of information from 
pruning is small at sample sizes less than about 100,000.

  The results for  r  2  = 0.95 are shown in  figure 2 . For all 
proportions of regions with two independent effects,  
 R  2marg    was within 1% of  R  2joint   , and in fact slightly exceeded 
it. These results suggest, as might be expected, that there 
is little loss (in fact, in finite samples a possible gain) of 

 Table 1.  R2 for the prediction of trait Y using gene scores estimated from samples of size n

π2:π1 n 1 × 104 5 × 104 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107

1:9 R2
rand 0.020 0.085 0.144 0.319 0.377 0.440 0.449

R2
marg 0.023 0.095 0.159 0.344 0.403 0.467 0.476

R2
joint 0.024 0.100 0.166 0.357 0.416 0.481 0.490

1:1 R2
rand 0.012 0.051 0.087 0.221 0.271 0.331 0.340

R2
marg 0.019 0.082 0.139 0.310 0.367 0.429 0.439

R2
joint 0.023 0.098 0.164 0.355 0.415 0.480 0.490

9:1 R2
rand 0.008 0.035 0.062 0.164 0.210 0.267 0.277

R2
marg 0.018 0.076 0.128 0.291 0.346 0.408 0.418

R2
joint 0.023 0.097 0.162 0.353 0.414 0.480 0.490

 Of 105 independent genomic regions, a proportion π2 contains two markers affecting Y, with correlation r2 = 
0.1 between each pair, a proportion π1 contains one marker affecting Y, and a proportion π0 = 0.95 contains no 
markers affecting Y.

 Table 2.  R2 for the prediction of trait Y using gene scores estimated from samples of size n

π2:π1 n 1 × 104 5 × 104 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107

1:9 R2
rand 0.020 0.087 0.146 0.323 0.281 0.444 0.454

R2
marg 0.023 0.096 0.160 0.346 0.405 0.468 0.478

R2
joint 0.024 0.100 0.166 0.357 0.416 0.481 0.490

1:1 R2
rand 0.013 0.056 0.097 0.235 0.287 0.347 0.357

R2
marg 0.020 0.084 0.142 0.316 0.373 0.436 0.445

R2
joint 0.023 0.098 0.164 0.354 0.415 0.480 0.490

9:1 R2
rand 0.009 0.040 0.071 0.186 0.232 0.291 0.300

R2
marg 0.018 0.078 0.133 0.299 0.355 0.417 0.426

R2
joint 0.023 0.097 0.162 0.352 0.414 0.480 0.490

 Within regions with two markers affecting Y, the correlation is r2 = 0.2 between each pair. Other details as in 
table 1.
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information when pruning markers with high  r  2  to re-
duce collinearity in fitting a joint model.

  In  figure 3  and  table 3 , we show the results for  r  2  = 0.1 
under the classical polygenic model in which all markers 
have effects,  π  0  = 0. Compared to  π  0  = 0.95 ( fig. 1 ,  table 1 ), 
the joint model has less accuracy at all sample sizes, be-
cause the effect size for each marker is smaller in relation 
to the sampling error. Consequently, the marginal model 
has greater accuracy than the joint model at some sample 

sizes. Although higher values of  π  0  are more consistent 
with recent data  [4, 15, 17] , this result shows that the mar-
ginal and joint models can have similar accuracy for more 
highly polygenic traits.

  Considering greater numbers of markers with effects 
in regions of LD, the asymptotic  R  2marg    was approximately 
0.42 for  k  = 2 markers in each such region, 0.37 for  k  = 3, 
0.33 for  k  = 4, and 0.30 for  k  = 5.
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  Fig. 2.   R  2  for the prediction of trait  Y  using gene scores estimated from samples of size  n . Within regions with 
two markers affecting  Y , the correlation is  r  2  = 0.95 between each pair.  a   π  2 : π  1  = 1:   9;  b   π  2 : π  1  = 1:   1;  c   π  2 : π  1  = 9:   1. 
Dark bars = One random marker per correlated pair  R  2rand   . Grey bars = Marker with the strongest absolute effect 
per pair  R  2marg   . Light bars = Both markers per pair  R  2joint   . Other details as in figure 1. 
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  Fig. 3.   R  2  for the prediction of trait  Y  using gene scores estimated from samples of size  n . All regions contain 
markers affecting  Y ,  π        0  = 0.        a   π  2 : π  1  = 1:   9;  b   π  2 : π  1  = 1:   1;  c         π  2 :           π  1  = 9:   1. Dark bars = One random marker per cor-
related pair  R  2rand   . Grey bars = Marker with the strongest absolute effect per pair  R  2marg   . Light bars = Both markers 
per pair  R  2joint   . Other details as in figure 1. 
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  Discussion 

 Pruning markers according to LD is a common prac-
tice when constructing gene scores either from a limited 
number of associated regions or from the whole genome. 
It is particularly convenient when using summary statis-
tics from consortium studies to obtain the marker weights. 
The intention is to avoid duplication of information with-
in the score, but the attendant concern is that informative 
markers may be discarded. Although methods are avail-
able to dissect regions of LD into independent signals, 
their power is lower than the univariate analysis, and it 
may not be easy to automate their application across ge-
nome-wide datasets. Here, we note that the marginal ef-
fect of a marker includes some of the effect of pruned 
markers in LD, and demonstrate the trade-off between 
the pruning and the sampling error. Although asymptot-
ically it is always preferable to include all markers and 
adjust for LD, at finite sample size it may be preferable to 
prune markers, discarding information but reducing the 
sampling error. As a rule of thumb, under current models 
of polygenic traits, in which about 5% of all markers have 
effects, the marginal score has similar accuracy to the 
joint score for sample sizes up to 100,000, unless a large 
number of regions have two or more independent effects.

  Our results shed light on some recent findings. Esti-
mates of disease liability explained by genome-wide 
markers are similar between methods that use pruned 
markers  [4, 15]  and those that use all markers  [18, 19] , 
though the latter tend to be slightly higher. The predic-
tion accuracy of a gene score accounting for LD across the 
genome is not much higher than that of one based on 
pruned markers  [11] . As the sample sizes in these studies 

are of order 10 4 , these findings are consistent with our 
results. The exceptions are in diseases with a strong HLA 
component, such as type 1 diabetes, rheumatoid arthritis, 
and multiple sclerosis. In these cases, there are likely to be 
multiple risk loci with relatively strong effects within ex-
tended regions of LD. These genetic models depart from 
the polygenic model considered here, which assumes a 
normal distribution of effects and independence of effects 
within regions of LD. There is a stronger case for account-
ing for LD within the HLA region when such effects exist, 
but at current sample sizes, standard pruning approaches 
appear adequate. However, as sample sizes approach or-
der 10 6 , it will become more important to allow for LD to 
fully exploit the available information.

  The marginal model selecting the strongest effect in 
each region performs remarkably well. Indeed, for the sit-
uation in which  r  2  = 0.1 and  π  2 : π  1  is 9:   1, nearly half of the 
genetic effects are discarded, and the marginal effects of 
the retained markers are at most (1+ √ 0.1) = 1.32 times 
their conditional effects. Yet the marginal model has as-
ymptotic  R  2  at 85% of the joint model ( table 1 , bottom two 
rows). Under a liability threshold model, this corresponds 
to an area under the receiver-operator characteristic 
curve (AUC) of 85 and 87% for the marginal and joint 
models, respectively, for a disease with prevalence 10% 
 [5] , or of 92 and 94% for a disease with prevalence 1%. 
This surprising result occurs because the selection of the 
strongest effect requires inspection of both effects, which 
then both contribute to the marginal effect. This ap-
proach is, thus, implicitly performing a bivariate analysis, 
whose accuracy is closer to the explicit bivariate analysis 
than might be intuitively expected.

 Table 3.  R2 for the prediction of trait Y using gene scores estimated from samples of size n

π2:π1 n 1 × 104 5 × 104 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107

1:9 R2
rand 0.018 0.079 0.135 0.310 0.370 0.438 0.448

R2
marg 0.023 0.096 0.160 0.346 0.405 0.469 0.479

R2
joint 0.022 0.093 0.156 0.347 0.410 0.479 0.489

1:1 R2
rand 0.008 0.037 0.066 0.188 0.245 0.322 0.336

R2
marg 0.020 0.086 0.144 0.320 0.378 0.440 0.450

R2
joint 0.016 0.071 0.125 0.313 0.385 0.472 0.485

9:1 R2
rand 0.004 0.020 0.038 0.123 0.173 0.253 0.269

R2
marg 0.019 0.081 0.137 0.307 0.363 0.426 0.435

R2
joint 0.013 0.058 0.104 0.284 0.362 0.465 0.482

 All regions contain markers affecting Y, π0 = 0. Other details as in table 1.
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  When there were more markers with effects in each 
region of LD, the marginal model became less accurate 
compared to the joint model. However, our model was 
designed to represent a scenario close to the worst case: 
90% of the regions contained multiple effects, and the  r  2  
between each pair of markers with effects was low at 0.1. 
In reality, the number of effects in each region would 
vary, as would the  r  2  between pairs of markers with ef-
fects. Under the worst case we considered, with 5 markers 
with effects in 90% of the regions, the asymptotic  R  2  of the 
marginal model was about 60% of that of the joint model, 
corresponding to an AUC of 80% for a disease with prev-
alence 10%, or 87% for a disease with prevalence 1%. In 
practice, therefore, we might not expect very large in-
creases in the AUC when moving from pruned to jointly 
modelled gene scores.

  We note some limitations of our model. The genome 
does not consist of independent regions, in which, if two 
markers affect the trait, the correlation between their ge-
notypes is constant. However, comparing  table 1  and  2 , 
we see that when increasing  r  2  between retained and 
pruned markers, the accuracy of the pruned scores in-
creases. Therefore, fixing  r  2  in each table provides a lower 
bound on what would be observed if we allowed  r  2  to be 
at least the value fixed. In this sense, our results are con-
servative. We also assume that the marginal analysis al-
ways selects the marker with the greater true effect, and 
also that the joint analysis always selects the two markers 
with effects when there are two such markers, and the one 
marker with an effect when there is just one. In practice, 
these selections will be affected by sampling variation, 
and some form of model comparison may be required in 
the joint model. The  R  2  values will be lower for all mod-
els, but there may be less difference in performance be-
tween them. However, the asymptotic results will be the 
same, and we expect our qualitative conclusions to be
unchanged. We further ignore selection bias (‘winner’s 

curse’) in the estimated effects of the selected markers, 
assume that effects are independent within regions, and 
do not consider selecting markers by a p value threshold.

  However, our aim is to demonstrate analytically the 
information loss by pruning and its relationship to sam-
ple size. Our idealised model explains the surprisingly 
good current performance of pruning, while projecting 
the gains from adjusting for LD in future larger studies. 
Simulations based on real genotypes have obtained simi-
lar results  [11] , though for a more limited range of sample 
sizes and without controlling the number of effects with-
in a region of LD. We show that when the results from 
joint modelling are observed to be similar to those using 
pruning, it could be explained by a low average number 
of effects in each region of LD, by a low sample size, or by 
a highly polygenic model. Conversely, strong differences 
in performance between pruned and jointly modelled 
gene scores are suggestive of many regions of LD contain-
ing multiple markers with independent effects.

  Many fine-mapping studies have identified indepen-
dent effects within regions of LD  [20, 21] , with the pro-
portion of such regions being reported as high as one-
third  [22] . Given the limited power to detect multiple in-
dependent effects, the true proportion may be higher. 
Our results suggest that pruning remains an effective 
strategy for current studies and will continue to capture a 
high proportion of heritability in future studies. Howev-
er, to fully exploit the data, it will become increasingly 
important to jointly model the effects of correlated mark-
ers as sample sizes approach the millions. Light pruning, 
say to  r  2  = 0.95, can alleviate problems of collinearity and 
reduce the size of the model space with minimal loss of 
information.
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