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Reconsolidation and Extinction Are Dissociable and Mutually
Exclusive Processes: Behavioral and Molecular Evidence
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Memory persistence is critically influenced by retrieval. In rats, a single presentation of a conditioned fear stimulus induces memory
reconsolidation and fear memory persistence, while repeated fear cue presentations result in loss of fear through extinction. These two
opposite behavioral outcomes are operationally linked by the number of cue presentations at memory retrieval. However, the behavioral
properties and mechanistic determinants of the transition have not yet been explored; in particular, whether reconsolidation and
extinction processes coexist or are mutually exclusive, depending on the exposure to non-reinforced retrieval events. We characterized
both behaviorally and molecularly the transition from reconsolidation to extinction of conditioned fear and showed that an increase in
calcineurin (CaN) in the basolateral amygdala (BLA) supports the shift from fear maintenance to fear inhibition. Gradually increasing the
extent of retrieval induces a gradual decrease in freezing responses to the conditioned stimulus and a gradual increase in amygdala CaN
level. This newly synthesized CaN is required for the extinction, but not the reconsolidation, of conditioned fear. During the transition
from reconsolidation to extinction, we have revealed an insensitive state of the fear memory where NMDA-type glutamate receptor agonist and
antagonist drugs are unable either to modulate CaN levels in the BLA or alter the reconsolidation or extinction processes. Together, our data
indicate both that reconsolidation and extinction are mutually exclusive processes and also reveal the presence of a transitional, or “limbo,” state
of the original memory between these two alternative outcomes of fear memory retrieval, when neither process is engaged.
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Introduction
Persistence or inhibition of aversive and appetitive memories in
the brain is determined by retrieval conditions. Following fear
conditioning, in which an association forms between a condi-
tioned stimulus (CS) and a footshock [unconditioned stimulus
(US)], later presentations of the CS can elicit the conditioned fear
response of freezing (Blanchard and Blanchard, 1969). Fully con-
solidated fear memories, when reactivated by brief CS exposure,
return to a labile state that is sensitive to disruption by amnestic
agents such as protein synthesis inhibitors. From this labilized
state, the fear memory requires reconsolidation to persist in the
brain (Nader et al., 2000; Lee et al., 2006). However, if the non-
reinforced CS is presented repeatedly, the behavioral outcome is
fear memory extinction (Pavlov, 1927), which is characterized by
the inhibition of the freezing response to the CS and is also pro-
tein synthesis dependent (Vianna et al., 2001). After extinction,

the original fear memory is not erased, but is inhibited by the
newly acquired extinction memory (Bouton, 1991). These data
illustrate the paradox that persistence of fear through reconsoli-
dation and the loss of fear through extinction are both induced by
retrieval of the memory (Eisenberg et al., 2003; Pedreira and
Maldonado, 2003). To date, the majority of research has focused
on understanding the mechanisms responsible for the two ex-
treme outcomes of retrieval: reconsolidation and extinction (Su-
zuki et al., 2004; de la Fuente et al., 2011). But it is not known how
increasing numbers of CS presentations lead from the termina-
tion of reconsolidation (and protection of the original memory)
to extinction. The amygdala plays a critical role in the persistence
of conditioned fear (Dunn and Everitt, 1988; Campeau and Da-
vis, 1995; LeDoux, 2000). Rapid transitions between states of high
and low fear can be induced by a switch in the activation of two
distinct subpopulations of neurons in the basolateral amygdala
(BLA; Herry et al., 2008), which is therefore a key locus for the
transition between persistence and loss of fear.

While the activities of specific kinases exert a positive in-
fluence to increase synaptic efficacy (Sweatt, 2004), specific
phosphatases exert a negative influence either to reduce [during
long-term depression (LTD)] or constrain increases [during
long-term potentiation (LTP)] in synaptic efficacy (Mulkey et al.,
1994; Ikegami et al., 1996). As proposed for the formation of the
original memory (Malleret et al., 2001), the balance between ki-
nases and phosphatases could be pivotal in the establishment of
the dominant memory process engaged by different retrieval
events.
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The objective of the present study was to investigate the role of
the extracellular signal-regulated protein kinase (ERK) and the
Ca 2�- and calmodulin-dependent protein phosphatase, cal-
cineurin (CaN) in the BLA on the persistence or inhibition of
cued fear memory, and to define the mechanism by which the
gradual increase in non-reinforced presentations of the CS
shapes the behavioral and molecular transitions between recon-
solidation and extinction. We hypothesized that in the amygdala
there would be an NMDAR-dependent specific balance between
pERK1/2 and CaN levels related to each memory process that
underlies the transition from reconsolidation to extinction of fear
memory.

Materials and Methods
Animals. Adult male Lister hooded rats weighing 250 –300 g (Charles
River) were used. All animals were kept under a 12 h light/dark cycle
(lights off at 7:00 A.M.), and were provided with food and water ad
libitum. All animal procedures were conducted in accordance with the
UK Animals (Scientific Procedures) Act of 1986.

Surgeries. Rats were anesthetized with ketamine hydrochloride (100
mg/kg; Ketaset, Fort Dodge Animal Health) and xylazine (9 mg/kg; Rom-
pun, Bayer), and implanted with a 22 gauge stainless steel bilateral in-
dwelling guide cannula (Plastics One) aimed at the BLA. The coordinates
were 3.6 mm posterior to bregma, 4.5 mm lateral to the mid-line, and 3.6
mm ventral to dura mater. Stainless steel obturators were inserted to
maintain patency during recovery and in between infusions.

Intracranial microinfusions. Infusions were performed using a syringe
pump connected to injectors (28 gauge, projecting 4 mm beyond the
guide cannula) by polyethylene tubing. Before behavioral testing, ani-
mals were habituated to the infusion procedure by the administration of
0.5 �l of sterile saline solution per side (0.25 �l/min). Desalted and
phosphorothioate end-capped 18-mer sequence oligodeoxynucleotides
(ODNs; Sigma-Aldrich) were resuspended in sterile saline solution to a
concentration of 10 nmol/�l each sequence. The sequences of the anti-
sense oligos targeting the A subunits of calcineurin were obtained from
previous reports (Garver et al., 1999), as follows: calcineurin A1 anti-
sense, 5�-CTC GGA CAT CTC CAG TCA-3�; A2 antisense, 5�-CTC CGG
GGC GGC CAT GCT-3� (the italicized codons correspond to the trans-
lation initiation complementary site). ODNs with the same composition
of bases but in a scrambled (Scr) order were used, as follows: A1 scram-
bled, 5�-GTC GCA GAT CCT CCA ACT-3�; A2 scrambled, 5�-GCT CGT
TAG CCG GCG CGC-3�. Using a basic local alignment search tool
(BLAST; Altschul et al., 1997), the antisense ODN sequences showed a
significant full alignment only for the respective rat mRNA sequences,
while the Scr ODNs failed to fully align with any sequence in the database.
A total of 0.5 �l of ODN solution per side (0.25 �l/min) was infused 2.5 h
before the first CS of the reactivation or extinction session. The use of
short-length ODNs, with only three phosphorothioated bases per end
and more than one scrambled control sequence, significantly reduces the
possibility of both nontarget (other mRNA sequences) and off-target
effects (no Watson–Crick pairs).

Behavioral procedures. Animals were initially individually habituated
to the conditioning box (Paul Fray Limited) for 2 h. On the training day,
rats were placed in the box and after 25 min received an auditory CS
presentation (60 s clicker, 10 Hz, 80 dB) that was coterminous with the
presentation of a scrambled footshock (i.e., a US; 0.5 mA, 0.5 s) delivered
through the grid floor. The training session consisted of two CS–US
presentations with an intertrial interval (ITI) of 5 min. Twenty-four
hours later, the rats were returned to the box and presented with 1, 4, 7,
or 10 CS presentations (ITI � 1 min). Depending on the experiment, 24
or 96 h later animals were again returned to the conditioning box and
presented with one CS. All training, CS presentations, and test sessions
were video recorded for off-line behavioral analysis. The percentage of
time freezing (absence of movement except for breathing) during the 1
min before and during the 1 min CS was manually scored from the videos
by an observer blind to the treatment. Statistical analyses were performed
using one-way or repeated-measures ANOVA, and post hoc comparisons
were made using Tukey’s test.

Drug injection. NMDAR partial agonist D-cycloserine (DCS) and an-
tagonist MK-801 (Sigma-Aldrich) solutions were both freshly prepared
with sterile saline solution for intraperitoneal injection (1 ml/kg). The
doses of 15 mg/kg for DCS and 0.1 mg/kg for MK-801 were selected on
the basis of their facilitatory (DCS) and inhibitory (MK-801) effects on
reconsolidation and extinction of fear memory (Lee et al., 2006). The
injections of DCS, MK-801, or saline solution were given 30 min before
the CS presentation sessions. Intra-BLA infusions of DCS induce similar
effects on memory as the systemic administrations (Walker et al., 2002;
Lee et al., 2006; Mao et al., 2006), strongly suggesting that the BLA is one
of the main targets of the systemic manipulations of NMDAR used in
memory paradigms.

Protein extraction and Western blotting. After CS presentation sessions
or 24 h after training [control (Ctr) groups] rats were killed by carbon
dioxide inhalation followed by neck dislocation. The brains were rapidly
removed and snap frozen on dry ice before storage at �80°C. Samples
from the BLA were microdissected using a 0.99-mm-diameter punching
tool from 150-�m-thick brain sections. To obtain cytoplasmic protein
extracts, BLA tissue from each animal was individually disrupted with a
Dounce tissue grinder (loose pestle, Wheaton) in 100 �l of buffer (10 mM

HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT, 1 �g/ml Pepstatin
A, 10 �g/ml leupeptin, 0.5 mM PMSF, and 10 �g/ml aprotinin) and
centrifuged at 1000 � g for 15 min at 4°C. The supernatant (cytoplasmic
protein extract) was transferred to a clean tube and stored at �80°C. The
protein content was determined by Bradford assay. A total of 5–10 �g of
cytoplasmic proteins was separated using a 10% SDS-PAGE and was
electrotransferred into a nitrocellulose membrane. Blots were probed
with the following: mouse anti-calcineurin (1:2500; catalog #610260, BD
Biosciences); mouse anti-ERK1/2 (1:5000; catalog #610124, BD Biosci-
ences); rabbit anti-phospho-p44/42 MAPK (ERK1/2; Thr 202/Tyr 204;
D13.14.4E; 1:500; Cell Signaling Technology); mouse anti-�-actin (AC-15;
1:50,000, AbCam); goat anti-rabbit-HRP (1:10,000; Sigma); and rabbit
anti-mouse-HRP (1:25,000; Sigma) diluted in Tris-buffered saline solu-
tion containing 0.1% of Tween-20. A chemiluminescent signal was in-
duced using an enhanced chemiluminescent reagent (GE Healthcare),
and images were captured using a cooled CCD camera (ChemiDoc-It,
UVP). Signal analysis and quantification were performed using ImageJ
software (version 1.47a, National Institutes of Health). Each primary
antibody working concentration was adjusted to deliver a linear relation-
ship between the amounts of loaded protein in the blot and signal inten-
sity. The optical density (OD) of the bands of interest was measured, and
the intensity of the experimental conditions (relative OD) was calculated,
normalizing these values to the mean OD of the control group. To con-
trol for loading variations, the amount of �-actin for each sample was
used as a normalizing value. Data were analyzed using a one-way
ANOVA with Dunnett’s test for post hoc comparisons.

Results
pERK1/2 and calcineurin are differentially associated with the
reconsolidation and extinction of fear memory
According to our previous data (Lee et al., 2006), varying the
number of non-reinforced CS presentations in animals with fully
consolidated auditory fear memory results in the engagement of
either reconsolidation or extinction processes. In the first set of ex-
periments, we analyzed the effect of two protocols of unreinforced
CS presentation on the freezing response to the fear CS and on the
levels of two memory-related proteins, pERK1/2 and CaN.

Two groups of rats were fear conditioned by pairing two pre-
sentations of a clicker (CS) with a mild electric footshock (US). As
expected, during the training session the percentage of time spent
freezing to the CS significantly increased after the first pairing
(F(1,14) � 122.48, p � 0.001, � 2 � 0.89; Fig. 1A), with no differ-
ence between groups (F(1,14) � 1.01, p � 0.33). The following day,
each group of animals was presented either with 1 or 10 CS
(groups 1CS or 10CS; ITI � 1 min). Both groups showed fear
memory retention as indicated by a high percentage of time freez-
ing to the auditory CS (pre-CS vs CS1: F(1,14) � 299.91, p � 0.001,
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� 2 � 0.95), with no differences between groups (F � 1). In the
10CS group, freezing significantly decreased on presentation of
the CSs (F(9,63) � 10.52, p � 0.001, � 2 � 0.60). Twenty-four
hours later, a long-term memory test (LTM-TS) was conducted
to measure freezing to the CS in both groups. The 10CS group
showed a significant reduction in the percentage of time spent
freezing compared with the 1CS group (F(1,14) � 18.04, p � 0.001,
� 2 � 0.56). Given the well established finding that NMDAR an-
tagonism during fear memory reactivation induced by a single CS
presentation results in subsequent amnesia (Fig. 1B; Lee et al.,
2006), the present findings confirmed that following CS shock
fear conditioning, the presentation of one CS results in reconsoli-
dation and thereby maintenance of the fear response to the CS,
while 10 presentations of the CS results in extinction and inhibi-
tion of the fear response.

We then analyzed the effect of 1 or 10 presentations of the fear
CS on the levels of pERK1/2 and CaN in the BLA. Twenty-four
hours after fear conditioning, separate groups of rats were ex-
posed to 1 or 10 CSs as before, or remained in the home cage
(non-reactivated Ctr group), and were killed after 20 or 60 min
(Fig. 1C). BLA cytoplasmic proteins were prepared and analyzed
by Western blots. Other time points after the presentation of 1 or

10 CSs were analyzed, but there was no increase in either pERK1/2 or
CaN in BLA cytosolic or nuclear protein extracts (data not shown).
The Ctr group used here allowed us to define basal pERK1/2 or CaN
levels in BLA 24 h after training, but before any putative change
induced by CS presentations. While pERK1/2 levels were increased
after both 1 (p � 0.01) or 10 (p � 0.05; one-way ANOVA, F(2,21) �
5.06, p � 0.05, �2 � 0.33) CS presentations compared with the
control group (Fig. 1D), CaN levels increased only after the presen-
tation of 10 CSs (p � 0.01, vs Ctr; one-way ANOVA, F(2,21) � 4.77,
p � 0.05, �2 � 0.31; Fig. 1E).

Thus, while the increase in pERK1/2 in the BLA is a common
correlate of both reconsolidation and extinction of fear memory,
CaN levels are increased only when an extinction memory is
being consolidated. This lack of specific association of the
pERK1/2 signal with either reconsolidation or extinction indi-
cates that this particular signaling pathway is not a molecular
candidate subserving the transition between these memory pro-
cesses. By contrast, the increase in CaN levels in the BLA emerges
as a distinctive and specific characteristic of extinction memory
consolidation, and therefore may be required for the shift from
maintenance to loss of fear responses that follows increasing
numbers of presentations of the fear CS.
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Figure 1. BLA pERK1/2 is increased in reconsolidation and extinction, while CaN levels are only upregulated after extinction. A, At training, rats received two CS–US pairings. Twenty-four hours
later, the animals were re-exposed to 1 or 10 CSs to reactivate or extinguish the fear memory (n � 8 per group). The following day at the retention test, all the animals were presented with one CS.
B, Twenty-four hours after training, the animals were injected intraperitoneally with either saline solution (n � 4) or MK-801 (0.1 mg/kg, n � 8) 30 min before being re-exposed to one CS. During
the LTM-TS, fear memory was measured by presentation of one CS. During training, there was an effect of CS (F(1,10) � 73.01, p � 0.001, � 2 � 0.88), with no effect of group (F(1,10) � 2.57, p �
0.14). At reactivation, memory retention was evident since the animals froze significantly more to the fear CS (F(1,10) � 25.63, p � 0.001, � 2 � 0.72), with no effect of group (F(1,10) � 2.19, p �
0.17). At LTM-TS, the MK-801 group showed a freezing response that was significantly lower than that in the saline group (F(1,10) � 5.13, p � 0.05, � 2 � 0.34), indicating the amnesic effect of
MK-801 on memory reconsolidation. C, The same behavioral procedure as in A, but with the inclusion of a non-reactivated Ctr group that was trained identically to the 1CS and 10CS groups but during
the re-exposure session remained in the home cage. Twenty (pERK1/2) or 60 (CaN) minutes after re-exposure, or straight from the home cage (Ctr groups), animals were killed and the cytoplasmic
protein extracts from the BLA obtained (all groups, n � 8). D, E, Representative Western blot results and analysis showing the cytosolic levels of pERK1/2 (D) or CaN (E) after 1 or 10 CS presentations.
Data are presented as means � SEM. *p � 0.05, **p � 0.01.
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High calcineurin levels in the BLA induced by repeated CS
presentations are required for consolidation of fear extinction
memory
In the next set of experiments, we tested the hypothesis of a causal
relationship between the increase in CaN levels in the BLA in-
duced by 10 CS presentations and the establishment of a long-
lasting extinction memory. We hypothesized that the increase in
synthesis of CaN in the BLA is required for the consolidation of
the extinction memory, but is not required for reconsolidation of
the original fear memory. An antisense oligodeoxynucleotide
(ASO) was infused into the BLA to prevent the increase in CaN
levels induced by the presentation of 10 CSs in animals with a
fully consolidated fear memory. This enabled the evaluation of
the role of CaN in the consolidation of a fear extinction memory.
We also predicted that knockdown of CaN would have no impact
on the reconsolidation process.

BLA-cannulated rats were trained with the presentation of
two pairings of CS and footshock US, with all animals showing a
higher level of freezing to the second CS compared with the first
(F(1,34) � 216.08, p � 0.001, � 2 � 0.86; see Fig. 3A), and with no
differences between groups (F � 1). The following day, the rats
received an infusion into the BLA (Fig. 2) of either Scr ODNs or
CaN ASOs 2.5 h before the presentation of 1 or 10 CSs. Even
though the freezing levels were somewhat but equally reduced by
the administration of either the Scr or CaN ASO into the BLA
(Fig. 3A), all groups showed retention of fear memory, as indi-
cated by the high level of freezing to the first CS (F(1,34) � 25.86,
p � 0.001, � 2 � 0.43), with no differences between groups (F �
1). Within-session extinction by presentation of 10 CSs was iden-

tified in both ASO and Scr groups that
showed a significant decrease in freezing
(F(9,153) � 7.13, p � 0.001, � 2 � 0.30; Fig.
3A, Re-exposure), with no differences be-
tween groups (F � 1). To allow for the
complete clearance of the oligodeoxy-
nucleotide from the BLA, the LTM-TS
was conducted 4 d later. At LTM-TS, a
two-way ANOVA revealed a significant
effect of CS (F(1,34) � 9.65, p � 0.005, � 2

� 0.22) and no effect of drug (F(1,34) �
3.31, p � 0.078), but, importantly, there
was a significant interaction (CS � drug:
F(1,34) � 9.65, p � 0.005, � 2 � 0.22). Sim-
ple main-effects analysis revealed a signif-
icant differences between 10CS groups
treated with Scr ODNs and ASO (F(1,18) �
16.92, p � 0.005, � 2 � 0.48; Fig. 3A, LTM-
TS) but no differences between the 1CS
groups (F � 1; Fig. 3A, LTM-TS).

To confirm that the infusion of CaN
ASO into the BLA prevented the increase
in the level of phosphatase induced by the
extinction protocol, animals were trained
with 2 CS–US pairings (effect of CS–US:
F(1,7) � 25.86, p � 0.001, � 2 � 0.79; no
effect of group: F � 1) and 24 h later were
divided into two groups that received an
infusion into the BLA of either the ASO or
Scr ODN solutions, followed 2.5 h later by
the presentation of 10 CSs (Fig. 3B). As in
the previous experiment, even though the
freezing levels were partly reduced by the
administration of either the Scr ODN or

CaN ASO into the BLA, both groups nevertheless showed good
retention of the fear memory (F(1,7) � 15.89, p � 0.01, � 2 �
0.69), with no differences between Scr ODN and ASO groups
(F(1,7) � 1.87, p � 0.21) and a within-session decrease in freezing
(F(9,63) � 4.50, p � 0.001, � 2 � 0.39) that again did not differ
between groups (F � 1; Fig. 3B). One hour after the extinction
protocol, the animals were killed, and cytoplasmic protein ex-
tracts from the BLA were prepared. Western blot analysis re-
vealed a lower level of CaN in the ASO group compared with the
Scr group (p � 0.05; Fig. 3B, bar graph), confirming that the
microinfusion of the CaN ASO into the BLA prevented the syn-
thesis de novo of the phosphatase induced by the extinction pro-
tocol.

The use of ODN to knock down the expression of a particular
protein has the potential to produce nontarget effects. We there-
fore used an experimental design that also measured levels of an
unrelated protein (�-actin; Fig. 2B) following the infusion of
CaN ASO in the BLA to assess its selectivity for CaN and reduce
the likelihood of a nontarget effect. The results strongly support a
specific effect of the ASO on CaN levels and hence on memory
extinction.

Previous reports show that while BLA inactivation following
the infusion of the GABAA receptor agonist muscimol during
extinction training prevents fear expression and extinction learn-
ing (Laurent et al., 2008), the AMPA receptor antagonist
LY293558 infused into the BLA prevents the expression of fear,
but does not prevent labilization and restabilization of the fear
memory (Milton et al., 2013). Although ODN microinfusion into
the BLA before retrieval partially affected fear expression, the

10CS groups 
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-3.60 mm 

1CS groups 

Scr ASO 

Figure 2. Schematic representation of the brain showing the placement of the infusion sites in animals in experiments de-
scribed in Figure 3 (1CS and 10CS groups). All injections sites were within the BLA. Open circles, Scr ODN injections; closed circles,
CaN ASO injections. Coordinates are given as distance from bregma. This figure was modified, with permission, from Paxinos and
Watson (1998).
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effect of CaN knockdown on memory ex-
tinction cannot be attributed to general
BLA inactivation during CS presenta-
tions, since both the Scr and ASO groups
showed markedly and significantly differ-
ent levels of freezing at LTM-TS, with the
Scr group showing complete fear extinc-
tion. Together, these data indicate that spe-
cifically blocking the increase in CaN levels
in the BLA induced by the 10 CS extinction
protocol completely prevented the consoli-
dation of the fear extinction memory, as well
as showing that the increase in CaN could
not simply have reflected the mere presen-
tation of an auditory stimulus having no as-
sociation with the fearful US. Given the lack
of any drug or CS–drug interaction between
Scr ODN and ASO groups under the 10 CS
protocol, it can be concluded that CaN
knockdown into the BLA did not affect ex-
tinction acquisition. Furthermore, the re-
consolidation process induced by one CS
presentation was unaffected by CaN
knockdown.

Gradual increases in the number of fear
CS presentations result in a “dose-
dependent” transition from fear
maintenance to fear inhibition
To further specify the behavioral and mo-
lecular characteristics of the transition
from reconsolidation-inducing to extinction-
inducing conditions, we analyzed the ef-
fect of increasing the number of CS
presentations in animals with a fully con-
solidated fear memory on both condi-
tioned freezing and levels of CaN in the
BLA.

Two pairings of a clicker CS and shock
resulted, as before, in a significant in-
crease in freezing on subsequent presenta-
tions of the CS (F(1,28) � 324.11, p � 0.001, � 2 � 0.92), with no
differences between groups (F(3,28) � 1.84, p � 0.163; Fig. 4A).
On the following day, animals in each of the four groups were
presented with 1, 4, 7, or 10 CSs (ITI � 1 min). All groups showed
fear memory retention, with a high level of freezing to the first CS
(F(1,28) � 477.07, p � 0.001, � 2 � 0.95), with no differences
between groups (F � 1). There was a decrease in freezing to the
CS in the 4CS (F(3,21) � 7.43, p � 0.001, � 2 � 0.51), 7CS (F(6,42)

� 10.72, p � 0.001, � 2 � 0.61), and 10CS (F(9,63) � 15.00, p �
0.001, � 2 � 0.68) groups (Fig. 4A, Re-exposure). Twenty-four
hours later, freezing was measured following the presentation of 1
CS (LTM-TS). Freezing decreased proportionally in relation with
the degree of CS exposure (F(3,28) � 6.11, p � 0.005, � 2 � 0.39).
Thus, further post hoc analysis revealed that the level of freezing at
the LTM-TS in the 1CS group was similar to that in the 4CS group
(p � 0.32), but was significantly higher than in the 7 and 10 CS
groups (p � 0.05 and p � 0.005, respectively), while the level of
freezing of the 10CS group was not different from that in the 4CS
or 7CS groups (p � 0.1 and p � 0.52, respectively; Fig. 4A). A
positive correlation was observed between the level of freezing at
the last CS of the re-exposure session and the level of freezing at
LTM-TS (r � 0.710, p � 0.01; Fig. 4B).

To analyze the effect of the number of CS presentations at
retrieval on levels of CaN in the BLA, additional groups of fear-
conditioned animals were presented with 1, 4, 7, or 10 CSs and
were killed 1 h later (Fig. 4C). To control for the level of CaN in
the BLA as a consequence of the consolidation of the original fear
memory, the experiment included a control group that was also
conditioned, but remained in the home cage until killed 24 h
later. As expected, there was an effect of the number of CSs pre-
sented during training (F(1,50) � 357.98, p � 0.001, � 2 � 0.88),
with no differences between groups (F � 1). The following day, all
the CS-exposed groups showed fear memory retention (F(1,35) �
444.26, p � 0.001, �2 � 0.93), with no differences between groups
(F � 1, Fig. 4C, CS1). ANOVA revealed an effect of group on CaN
levels in the BLA (F(4,50) � 7.23, p � 0.001,
�2 � 0.37; Fig. 4C, bar graph). Post hoc analysis showed that CaN
levels were higher and significantly different from controls only in
the 10CS group (p � 0.001). A more detailed analysis at the individ-
ual level revealed a negative correlation between the level of freezing
at the last CS of the exposure session and the level of CaN in the BLA
(r � �0.325, p � 0.05; Fig. 4D).

These data revealed a monotonic relationship between the
number of CS presentations during the re-exposure session and
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the level of freezing during testing, suggesting a gradual behav-
ioral transition between reconsolidation-like and extinction-like
mechanisms induced by repeated non-reinforced CS presenta-
tions, which is negatively correlated with a progressive increase in
CaN levels in the BLA.

NMDAR activity manipulation both modulates calcineurin
levels in the BLA and alters the transition from
reconsolidation to extinction
In order to better understand the behavioral and molecular char-
acteristics of the memory states that are transitional between re-
consolidation and extinction, we took advantage of the
bidirectional effects on these memory processes of NMDAR ago-
nism and antagonism (Baker and Azorlosa, 1996; Walker et al.,
2002; Suzuki et al., 2004; Lee et al., 2006). Using systemic admin-
istration of the NMDAR partial agonist DCS, and the antagonist
MK-801, it was possible to reveal the dominant memory process
in operation as well as the engagement of CaN synthesis induced
by increasing the number of CS presentations at retrieval.

In accordance with our previous results (Lee et al., 2006), we
expected to find bidirectional modulation of the level of freezing
at the LTM-TS with the administration of the NMDAR partial
agonist DCS or the antagonist MK-801. We predicted that DCS
would enhance or maintain high levels of freezing if administered
in conjunction with a 1 CS (reconsolidation) protocol, while
MK-801 should have an amnestic effect, inducing a low level of

freezing during the test. By contrast, if administered in conjunc-
tion with a 10 CS (extinction) protocol, DCS should result in low
levels of freezing at LTM-TS by enhancing extinction, while MK-
801 should prevent extinction and result in a high level of freezing
at test. However, the main objective of this experiment was to
evaluate the impact of manipulating NMDAR activity at the mo-
lecular and behavioral levels on the transitional states between
reconsolidation and extinction (i.e., the 4 and 7CS groups) in
comparison with the expected effects of the treatments on 1 and
10CS groups.

Rats were fear conditioned as before with two CS–US pairings.
The following day, the animals received an intraperitoneal injec-
tion of saline, DCS (15 mg/kg), or MK-801 (0.1 mg/kg), and 30
min later were exposed to 1, 4, 7, or 10 CS protocols (Fig. 5A). As
predicted, the groups exposed to one CS showed a main effect of
the drug at LTM-TS (F(2,25) � 5.86, p � 0.01, � 2 � 0.32), with the
MK-801 group showing a lower level of freezing than the saline
solution group (p � 0.05; Fig. 5B, bar graph), while in the 10CS
groups there was a main effect of drug (F(2,24) � 18.41, p � 0.01,
� 2 � 0.61), with the MK-801 group showing a higher level of
freezing compared with the saline solution group (p � 0.01; Fig.
5E, bar graph). The 7CS groups showed a main effect of drug
(F(2,22) � 18.23, p � 0.01, � 2 � 0.62), with the MK-801 and DCS
groups presenting a higher (p � 0.05) and lower (p � 0.01) level
of freezing than the saline solution group, respectively (Fig. 5D,
bar graph). The 4CS groups showed no differences in the level of
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freezing at LTM-TS (F � 1; Fig. 5C, bar graph). Together, these
data both confirm the utility of this approach in revealing the
dominant memory process engaged by the different intermediate
retrieval conditions, and also highlight the remarkable insensitiv-
ity of the 4CS-induced memory state to bidirectional manipula-
tion of NMDAR activity.

To evaluate the effect of manipulating NMDAR activity on
CaN levels in the BLA induced by increasing presentations of the
fear CS (Fig. 4C), animals were trained as before, and the follow-
ing day they received an intraperitoneal injection of either DCS or
MK-801 30 min before the presentation of 1, 4, 7 or 10 CSs, or
were returned to the home cage (Ctr). One hour after the expo-
sure session, the animals were killed, and extracts of BLA cyto-
plasmic proteins were prepared. Western blots revealed that
treatment with MK-801 prevented the increase in CaN levels in
the BLA observed after increasing the number of CS presenta-
tions (F � 1; Fig. 6A, bar graph). Thus, systemic MK-801 admin-
istration prevented both memory extinction and CaN level
increase in the BLA induced by increasing the number of CS
presentations. On the contrary, Western blots revealed differ-
ences in CaN levels in DCS-treated groups (F(4,49) � 3.61, p �
0.05, � 2 � 0.24; Fig. 6B, bar graph). Post hoc analysis revealed that
in both the 7CS and 10CS groups there was a higher level of CaN
compared with the control group (p � 0.05 in both), showing
that the facilitatory effect of DCS on partial extinction induced by

seven CSs is associated with a specific enhancement of the syn-
thesis of CaN in the BLA.

Noninjected animals showed a significant increase in CaN
levels in the BLA only after 10 CS presentations when compared
with non-reactivated controls (Fig. 4). To analyze the effect of
NMDAR activity manipulations on the modulation of CaN levels
by increasing the number of CS presentations, we injected all
groups with the NMDAR partial agonist DCS or the antagonist
MK-801, and then compared the effect of CS presentations on
CaN levels in the BLA with respect to their non-reactivated, DCS
or MK-801 control group. This design thereby enabled us to
quantify the interaction between memory retrieval and bidirec-
tional NMDAR activity manipulations.

Therefore, NMDAR activity manipulation affected the 7CS-
induced transitional state in a way similar in molecular and behav-
ioral terms to the 10CS protocol, suggesting that 7 CS presentations
predominantly engage extinction-like mechanisms. In contrast,
NMDAR manipulations did not affect the molecular and behavioral
properties of the transitional state induced by the 4CS protocol,
strongly suggesting that neither reconsolidation- nor extinction-like
mechanisms are engaged. Together, these results show that increas-
ing or decreasing NMDAR activity modulates both the behavioral
transition of a fear memory from reconsolidation to extinction and
also the engagement of CaN synthesis in the BLA.
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Discussion
This study demonstrates that reconsolidation and extinction of a
fear CS memory are molecularly distinct and mutually exclusive
processes. While the level of CaN in the BLA was increased by the
non-reinforced presentation of 10 CSs (which resulted in fear
extinction), but not by reactivation of fear by a single CS presen-
tation (resulting in reconsolidation), pERK1/2 was increased in
the BLA in both conditions. Preventing the increase in CaN levels
in the BLA induced by 10 CS presentations by infusing a CaN
antisense oligodeoxynucleotide specifically prevented the con-
solidation of the extinction memory, which depends, therefore,
on the upregulation of cytosolic CaN. In contrast, CaN knock-
down in the BLA during 1 CS presentation had no effect on fear
memory reconsolidation. Moreover, repeated non-reinforced cue
presentations induce a gradual behavioral transition between the
maintenance and inhibition of fear that was negatively correlated
with a progressive increase in CaN in the BLA. Modulation of
NMDAR activity differentially affected the levels of CaN in the
BLA and concomitantly affected the transition between recon-
solidation and extinction induced by increasing the number of CS
presentations. The NMDAR antagonist MK-801 prevented extinc-
tion and also the increase in CaN in the BLA induced by the
strong extinction protocol (10 CSs), while the NMDAR partial

agonist DCS enhanced fear extinction and
induced a significant increase in CaN lev-
els by the presentation of the partial ex-
tinction protocol (7 CS presentations).
Thus, the increase in CaN synthesis in the
BLA mediated by increased NMDAR ac-
tivity is causally involved in the engage-
ment of extinction mechanisms that
result in the long-term loss of fear re-
sponding to the CS. At the behavioral
level, NMDAR activity bidirectional ma-
nipulations showed that some of the transi-
tional states between reconsolidation-
inducing and extinction-inducing retrieval
conditions do not engage a dominant
memory process. In the continuum of
possible retrieval conditions, reconsolida-
tion and extinction processes are mutually
exclusive, separated by an insensitive
phase where the amount of CS exposure
terminates the labilization of the original
memory, but is insufficient to trigger the
formation of the extinction memory.

Role of calcineurin in the persistence of
the extinction memory
Fully consolidated cued fear memories, if
not retrieved, can persist for up to the entire
life of an animal (Gale et al., 2004). If re-
trieved, reconsolidation or extinction of the
original memory may occur depending on
the degree of CS exposure (Eisenberg et al.,
2003; Pedreira and Maldonado, 2003).
There are partially overlapping molecular
mechanisms underlying fear memory con-
solidation, reconsolidation, and extinction.
For example, each process depends upon de
novo protein synthesis and NMDAR activa-
tion (Davis and Squire, 1984; Miserendino
et al., 1990; Nader et al., 2000; Vianna et al.,

2001; Lee et al., 2006). However, reconsolidation and consolidation
are also dissociable at the molecular level (Lee et al., 2004). Here we
have shown that ERK1/2 activation in the BLA occurs during both
reconsolidation and extinction, consistent with data showing that
ERK1/2 activity is required for both processes (Duvarci et al., 2005;
Herry et al., 2006). By contrast, CaN affects the consolidation of
both the original and the extinction memory in completely
opposite ways. Inhibiting or reducing the level of CaN during
training of the original memory facilitates fear memory con-
solidation (Ikegami and Inokuchi, 2000; Baumgärtel et al.,
2008), suggesting that CaN can modulate the establishment of
aversive memories. Here we show for the first time that knock-
ing down CaN during reconsolidation had no effect on the
original memory, suggesting that the updating process in-
duced by memory reactivation does not require CaN, which is
instead involved in establishing the fear memory (Ikegami and
Inokuchi, 2000). In contrast, CaN knockdown in the BLA
during extinction training specifically inhibited the consolida-
tion of extinction of the aversive memory without affecting
either the expression of fear or within-session extinction (Fig.
3A). It is of note that intra-BLA infusion of calcineurin activity
inhibitors FK-506 and cypermethrin before extinction have
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been shown to prevent the acquisition of an extinction mem-
ory (Lin et al., 2003).

Thus, the extinction protocol has a dual effect on CaN in the
BLA: an increase in activity is required either for acquisition of
the extinction memory or short-term extinction (Lin et al., 2003),
but increased synthesis of new CaN is specifically required for the
establishment of a persistent extinction memory (Figs. 1, 3). In
vitro studies have further shown that the inhibition of CaN facil-
itates LTP (Ikegami et al., 1996) but inhibits the establishment of
LTD (Mulkey et al., 1994). Together, these findings reveal dis-
tinctive molecular mechanisms underlying the formation and
maintenance of excitatory and inhibitory memory traces. In the
BLA, ERK1/2 activation may account for the maintenance of the
excitatory component at reconsolidation, but also the formation
of the new inhibitory trace during extinction, while CaN levels
may govern the transition from reconsolidation to extinction,
possibly by reducing the activation of the original memory trace
in response to the CS.

Discrete subpopulations of amygdala neurons have been shown
to encode either fear conditioning or extinction memories (Herry et
al., 2008). After training, a CS presentation induces the activa-
tion of fear neurons, while repeated CS presentations result
in the activation of extinction neurons and the inhibition of fear
neurons (Herry et al., 2008). Our findings show that while
reconsolidation induced by one CS is associated with
potentiation-like mechanisms (e.g., ERK1/2 activation), extinc-
tion involves both potentiation- and depotentiation-associated
mechanisms within the BLA. These data therefore emphasize the
central role of the BLA in the maintenance or inhibition of fear,
and the unique molecular landscapes associated with reconsoli-
dation and extinction processes.

Molecular and behavioral aspects of the transition from
reconsolidation to extinction
In the present study, we have revealed novel behavioral and mo-
lecular features of the transition between reconsolidation and
extinction. Operationally, the use of stepwise increments in the
number of discrete CS presentation events at retrieval provided a
method with which to explore the transitional states between
reconsolidation–induction and extinction–induction condi-
tions, allowing precise control over the number of times that the
prediction of the US by the CS failed. Gradually increasing the
number of CS presentations “dose dependently” resulted in a
decrease in the freezing response measured at testing. BLA CaN
level was negatively correlated with the percentage of time spent
freezing during the last CS presentation, with CaN levels being
significantly increased only in the 10CS group. Enhancing NMDAR
activity by systemic injection of DCS in animals receiving seven CS
presentations resulted in a behavioral (complete extinction) and
molecular (high BLA CaN level) pattern similar to that seen in the
10CS group, indicating that the dominant memory process induced
by the seven CS presentations is extinction. In marked contrast to the
1CS group, the 4CS group was, however, completely insensitive to
manipulations of the NMDAR, with MK-801- and DCS-injected
groups showing a very similar level of freezing to that in the saline
control group. This striking finding strongly suggests that the tran-
sitional state induced by four CSs engages neither reconsolidation
nor extinction. Remarkably, while MK-801 completely blocked the
increase in CaN by 10 CSs in the BLA and prevented the consolida-
tion of extinction memory, and DCS induced an increase in CaN
and enhanced extinction in the 7CS group, neither drug had any
behavioral or molecular effects in the 4CS group. These data provide
key evidence in support of the behavioral and molecular dissociation

between the transitional states induced by exposure to four and
seven CS presentations.

At least three alternative models can be used to describe the
NMDAR-dependent transition from reconsolidation to extinc-
tion, as follows: (1) a gradual transition model, with the transi-
tional states reflecting different degrees of engagement of one or
the other process (Fig. 7A); (2) a step function transition model,
with reconsolidation and extinction being mutually exclusive
(Fig. 7B); and (3) a three-phase transition model (Fig. 7C). While
the first two models fail to predict the lack of significant behav-
ioral or molecular effect of bidirectional manipulation of
NMDAR activity in the 4CS group, the experimental results favor
the three-phase transition model. Hence, a single or few CS pre-
sentations (fewer than four) will induce the labilization and sub-
sequent reconsolidation of the original fear memory; further
presentations of the CS (e.g., four presentations) cancels the la-
bility of the original memory and prevents reconsolidation, but
fails to engage extinction. Finally, a greater number of CS presen-
tations (7–10 CS presentations) gradually engages extinction.
Interestingly, it has been demonstrated that a second CS presen-
tation can nullify the protein synthesis inhibition sensitivity of a
fear memory induced 1 h earlier by the first CS presentation
(Jarome et al., 2012). The proposed molecular mechanisms re-
sponsible for apparently cancelling or nullifying the labilization
processes that are initiated by early presentation of the CS are
totally unknown. The presentation of a second, third, or fourth
CS (in our procedure) could trigger an interfering mechanism
that might terminate the ubiquitin–proteasome system (UPS)-
dependent labilization of the original memory induced by the
early CS presentation (Lee et al., 2008), perhaps by local activa-
tion of deubiquitinating enzymes (Hegde, 2010) that previously
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have been associated with UPS homeostasis regulation in synap-
tic terminals (Cartier et al., 2009). Together, these data strongly
suggest that reconsolidation and extinction of a CS fear memory
are mutually exclusive and that some transitional states induced
by increasing the numbers of non-reinforced CS presentations
engage neither mechanism, reflecting a transitional or “limbo”
state between updating, or reconsolidation, and inhibition
through extinction learning.

Our present results demonstrate that the increase in CaN lev-
els in the basolateral amygdala is uniquely and causally related to
extinction. We have shown that reconsolidation and extinction
of the cued fear memory are mutually exclusive, having distinct
molecular characteristics, and we have also revealed that there is a
novel insensitive, or limbo, state of the original memory that
separates these processes.
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