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Summary

Exotic mesons are mesons that cannot be described as a quark-antiquark pair. The

number of exotic mesons has been growing every year in the charm sector and the theo-

retical understanding of them is often conflicted amongst the community. Some possible

explanations include hybrid mesons where the quark-antiquark pair is coupled to a glu-

onic excitation, compact tetraquarks where four quarks are bound into a localised state

and molecules which consists of pairs of extended mesons. To study exotic mesons from

first principles, lattice QCD provides the framework to perform spectroscopy calcula-

tions numerically. I will give a review and describe the relevant techniques used in this

thesis.

After doing so, I will calculate masses of charmonium with angular momentum up to

four. The results show QCD permits states with exotic quantum numbers that are not

accessible by a quark-antiquark pair. I will identify states that are consistent with the

quark-antiquark picture and then show that the remaining states in the extracted spectra

can be interpreted to be the lightest and first excited hybrid meson supermultiplet.

Whilst the mass is one quantity that can be computed, hadron spectroscopy is also

concerned with the calculation of the unstable properties of resonances which can decay

into meson-meson states. These meson-meson states have four quarks and could also

mix with tetraquarks. I will describe how to correctly extract the energies of four quark

states within lattice QCD by reviewing operators resembling meson-mesons and then

constructing a general class of operators resembling tetraquarks. I will then calculate a

variety of spectra in the isospin-1 hidden charm sector and the doubly charmed sector.

No evidence of a bound state or narrow resonance is found in these channels.
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vi Summary

Having described how to include multi-meson states in lattice QCD, I will describe

how to relate the lattice QCD spectrum to the scattering amplitudes and perform a cal-

culation of elastic DK scattering amplitudes which is relevant for the exotic Ds0(2317).

By analytically continuing the scattering amplitudes into the complex plane, I find a

bound state pole near threshold which is in good agreement with what is found experi-

mentally.
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Chapter 1

Introduction

In an attempt to describe all hadrons, Gell-Man [7] and Zweig [8] proposed in 1964

that hadrons are composite particles where the fundamental particles are fermions with

fractional electrical charge called quarks. The field theory description of quarks, with

the strong interaction mediated through gluons, is given by quantum chromodynamics

(QCD) which has highly non-trivial behaviour across different energy scales. In the high-

energy regime, QCD exhibits asymptotic freedom and the quarks interact weakly [9, 10].

On the other end of the spectrum, the quarks are confined, impossible to isolate freely,

and form the hadrons that we observe at low-energies. Even today, this mechanism, for

confinement in QCD and the crossover between scales, is not yet fully understood.

Motivated by QCD and phenomenology, a simpler model of mesons can be made

within a constituent quark model where mesons consist of a constituent quark and an-

tiquark bound by some interacting potential. It is important to distinguish between

the quark fields that enter in the QCD Lagrangian, and constituent quarks which are

quasiparticles and enter as the effective degrees of freedom. The constituent quarks can

be thought of to arise from the dressing of the quark fields by the sea of gluons, quarks

and antiquarks: their properties and interactions are determined phenomologically. The

potential between the two constituent quarks is dominated by a spin-independent term,

that is approximately Coulombic at short distances and linearly confining at large dis-

tances, to reproduce the properties of QCD. Other terms can be included in the potential

such as a spin-spin or spin-orbit term. The spins of the quark and antiquark couple to

give the total spin S which then couples to the relative orbital angular momentum L be-

tween the quark-antiquark to give total angular momentum J . Energies of the states are

obtained from solutions to the Schrödinger equation which are labelled by n2S+1LJ where

1



2 Chapter 1. Introduction

n is the radial quantum number. The parity of a state is given by P = (−1)L+1 and the

charge conjugation symmetry is C = (−1)L+S. From this, the L = 0 multiplet contains

states JPC = 0−+, 1−−; the L = 1 multiplet contains states JPC = 1+−, 0++, 1++, 2++;

the L = 2 multiplet contains states JPC = 2−+, 1−−, 2−−, 3−− and so on. A good ex-

ample of a constituent quark model is the Godfrey-Isgur model [11] and its indubitable

success in explaining the experimental spectrum of mesons when it was first conceived

in 1985 is summarised in the abstract by the authors: “We show that mesons – from

the π to the Υ – can be described in a unified quark model with chromodynamics.”

Despite the success of the quark model in 1985, are these effective models sufficiently

able to describe the entire meson spectrum as we know it today? Whilst the quark

model explains the features of many of the experimental states, there is a plethora

of experimentally observed mesons that do not agree with the quark model picture.

A meson with properties that does not fit the pattern of constituent quark models

is deemed to be exotic. A clear example of an exotic meson is a state with JPC =

0−−, 0+−, 1−+, . . . that has exotic JPC quantum numbers not accessible by a quark-

antiquark pair and if such a state is confirmed experimentally, it would be undeniably

exotic. There is evidence of such a meson with JPC = 1−+ in the light sector [12, 13]

which demands an explanation beyond quark models. Whilst there are other examples of

exoticness in the light sector and the issue is interesting in its own right, I will focus this

thesis on charm mesons which contain at least one charm quark. The charm sector is a

particularly attractive area because in general, the experimental signals for these states

are cleaner and they are described better by effective models due to being reasonably

non-relativistic from the heaviness of the charm quark.

In the hidden-charm sector, the charmonium (cc̄) spectrum is rife with exotic mesons

as shown in Figure 1.1. The green lines show the observed states that are identified

with conventional quark model states and the black lines show the mass of the predicted

Godfrey-Isgur state that has not yet been identified experimentally [14]. The red and

purple lines show the majority of observed charmonium whose properties do not align
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Figure 1.1: The charmonium spectrum shown by the solid lines labelled by JPC . Black

lines give the predicted mass of the conventional cc̄ state in the Godfrey-Isgur model

that has not yet been observed [14]. Green lines show the states observed experimentally

and identified with conventional cc̄ states. Red lines give some of the observed XY Z

states that are considered exotic and purple lines show the charged Z states [15]. The

dotted lines represent the DD̄ and DD̄∗ kinematic thresholds.

with the patterns predicted by quark models, known as the XY Z states, listed by the

Particle Data Group [15], and many of them are still not fully understood. Whilst

the charmonium states below kinematic threshold are well studied and interpreted to

be quark model states, it is above threshold when the spectrum becomes particularly

intriguing. Taking the most historic example, X(3872) [16] was the first experimental

state to be considered as an exotic charmonium. It has sparked interest due to its

significantly large isospin-violating decay to J/ψππ that makes it difficult to identify

as a conventional cc̄ state which must have isospin-0. Other examples of exoticness in

this sector are the charged Z states which cannot be pure cc̄ states due to their non-
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zero electric charge. Another striking example of exoticness is in the vector channel

where all the quark model states below 4500 MeV have been identified and therefore,

any additional states within that region must have some origin beyond the quark model.

Most recently, the exotics, X(4500) and X(4700), were discovered by LHCb in 2017 [17].

Currently, there is no experimental charmonium state with exotic JPC quantum numbers

since this quantum number is difficult to access experimentally but QCD suggests they

exist as shown later in this work and there is promising experimental work to probe this

channel in times to come. Looking towards the future, there is excitement surrounding

upcoming studies to further understand the properties of the XY Z states and possible

new discoveries are expected to be made with current experiments such as Belle II, BES

III, LHCb and the planned experiment PANDA.

In addition to the hidden-charm sector, the open-charm sector immediately shows

prominent examples of exoticness in the low-lying spectrum. Quark model predictions

in the charm-strange sector expect a scalar and axial vector above the respective DK

and D∗K threshold [11] but the experimental states D∗s0(2317) and Ds1(2460) are found

to lie below threshold [15]. This is puzzling when comparing to the corresponding charm-

light sector where the experimental states D∗0(2400) and D1(2420) are found to be in

agreement with quark model predictions above the analogous Dπ and D∗π threshold,

and decay as broad resonances. It is even more peculiar how light the experimental

charm-strange states are compared to their charm-light counterparts and there is clearly

a contradiction in identifying D∗s0(2317) as a conventional cs̄ state since this state should

be heavier than the cl̄ state, D∗0(2400), given that the strange quark is heavier than the

light quarks. Due to difficulties in assigning D∗s0(2317) and Ds1(2460) as conventional

quark model states, they have been considered exotic in this sense.

The previous discussions demonstrate that there is an abundance of exotic mesons in

the charm sector that require a description beyond the quark model picture. Numerous

models have been constructed in an attempt to explain the exotic mesons and I will

give a brief summary but this list is in no means exhaustive; see Refs. [18, 19] and
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further references in this paragraph for a more comprehensive review. If QCD can

give rise to constituent quarks, it seems reasonable to consider QCD also giving rise

to constituent gluons. A meson consisting entirely of constituent gluons is known as a

glueball [20] whilst one consisting of gluons and quarks is known as a hybrid meson [21].

Another way to extend the quark model of mesons is to increase the number of quarks

and antiquarks from two to four and the four quarks could possibly arrange themselves

as a spatially compact tetraquark bound by gluons or an extended molecule of two

conventional mesons [22, 23, 24]. Alternatively, some of these exotic mesons may not be

dynamical objects but arise due to kinematical effects from the opening of thresholds

that produces an enhancement in the cross section [25].

I have given a brief taste of some of the models used to attempt to describe the

experimental exotic states but nevertheless, there is no unanimous agreement within the

phenomological community on the correct intepretation of the majority of these exotics.

Whilst these models are useful for our understanding of the exotics, the underlying

properties of every meson should be described and encompassed by the fundamental

theory of the strong interactions, QCD. Necessarily, a complete understanding of mesons

from first principles can only be made within the confines of QCD. Additionally, it

would be interesting to study how QCD could realise these phenomological models.

Ultimately, the validity of a phenomological model is made by testing its predictions

with the outcomes of QCD and experiment. As a strongly coupled field theory at

hadronic energies, performing QCD calculations is a challenging and daunting task.

A non-perturbative method, known as lattice QCD, originating from Wilson [26] is to

regulate the theory using a discretised and finite spacetime with the quark fields living on

the lattice sites and the gauge fields linking the sites together. This formulation provides

a means to study QCD that is ab-initio and systematically improvable, unlike those from

effective models. The lattice spacing introduces an ultraviolet cutoff rendering the theory

well defined such that physical observables can be computed numerically using Monte

Carlo techniques. Hadron spectroscopy calculations in lattice QCD have progressed to
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the point where determinations of masses of hadrons, stable under the strong interaction,

have entered the precision era [27, 28, 29, 30, 31, 32, 33] with calculations having full

control over all systematic uncertainties at the few percent level [34] and a state-of-the-

art calculation measuring the mass difference of the neutron-proton [35].

Besides obtaining the masses of hadrons, spectroscopy is also concerned with the

unstable properties of hadrons above thresholds that decay through the strong interac-

tion. It is important to be able to measure these observables since the majority of the

mesons we have observed are resonances that are not stable under the strong interac-

tion and exotic mesons are generally found above or in close proximity to thresholds.

Experimentalists observe resonances through cross sections of scattering hadrons and

the theoretical quantities that describe them are the scattering amplitudes. Resonances

and bound states are rigorously identified as poles in the scattering amplitudes which

are analytically continued into the complex plane. Computing the scattering ampli-

tudes within lattice QCD is a novel field as these quantities are notoriously difficult to

calculate within lattice field theory for reasons which will be discussed later. A gen-

eral formalism, known as the Lüscher method [36, 37, 38, 39], to determine two-body

scattering amplitudes from the finite-volume spectrum of lattice QCD has been devel-

oped and extensions to include three or more particles are underway [40, 41, 42, 43].

The last decade has seen a huge number of such scattering amplitude calculations using

the Lüscher method by many different groups but there have only been a handful of

studies in the charm sector [44, 45, 46, 47, 48], necessitating further studies. Besides

strong decays, it is also possible to determine the electroweak transitions of mesons and

the hadronic transition matrix elements can be calculated non-perturbatively in lattice

QCD, for example in Refs. [49, 50]. Obtaining the transition rates from a first principles

calculation is extremely important for understanding exotic mesons in terms of phe-

nomology, whilst comparing with experiment, as the corresponding predictions within

separate models are usually very different.

In an attempt to further understand exotic mesons from a first principles approach,
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this thesis is concerned with spectroscopy of exotic charm mesons using lattice QCD.

It should be emphasised that the goal is to carry out exploratory computations and

demonstrate novel techniques as proof of principle with less emphasis on precision cal-

culations, which are computationally demanding but desirable for future studies. To

give an outline of the thesis, the next chapter gives an introduction to lattice QCD

and the framework to calculate the finite-volume spectrum of lattice QCD. Chapter 3

contains a demonstration of the framework and presents a calculation of charmonium

spectra across a large range of quantum numbers and energies. In the spectra, states

that are consistent with quark model patterns are found but in addition, a number of

states are identified to belong in the lightest and first excited hybrid meson supermul-

tiplet. To pave the way for scattering amplitude calculations, Chapter 4 introduces the

necessary technology to study four-quark states that could arrange themselves as com-

pact tetraquarks or extended meson-mesons. Finite-volume spectra, in channels with

flavour quantum numbers not accessible by quark model states, are calculated in the

isospin-1 hidden charm sector and doubly charmed sector, and it is concluded that there

are no indications for compact tetraquark states in the spectra. In addition, the spectra

did not qualitatively show the signs of a narrow resonance which could be identified

with the charged Z states. Chapter 5 discusses the problems with calculating scattering

amplitudes in lattice QCD and reviews the Lüscher method to overcome these compli-

cations. An explicit application of this method, in combination with the computational

framework developed in this thesis, is used to calculate isospin-0 DK scattering ampli-

tudes which are relevant for the exotic D∗s0(2317) state. The amplitudes are found to

contain a shallow bound state near threshold which is consistent with the experimental

findings. A brief summary and outlook is given in Chapter 6.
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Chapter 2

Lattice QCD

Due to the strongly coupled nature of QCD at hadronic energies, a non-perturbative

method is required to perform calculations which can be provided by lattice QCD. In this

chapter, I will introduce and review the important aspects of the framework required to

calculate physical observables, i.e. the finite-volume spectrum of lattice QCD. For more

details on lattice QCD, see Refs. [51, 52, 53].

2.1 Continuum QCD

The action for continuum QCD in Euclidean space is given by

S = Sfermion[q, q̄, A] + Sgauge[A]. (2.1)

The reasons for working in Euclidean space by Wick rotating the time coordinate will

be clear later. In the fermion sector,

Sfermion[q, q̄, A] =

∫
d4x

∑
f

q̄f (x)(γµDµ[A] +mf )qf (x) (2.2)

where f labels the flavour of the quark field, q, and Dµ is the gauge-covariant derivative.

The gauge action is described by

Sgauge[A] =

∫
d4x

1

4
FµνF

µν . (2.3)

In the path integral formulation, the continuum partition function is given by

Z =

∫
D[q, q̄] D[A] e−Sfermion[q,q̄,A]−Sgauge[A]. (2.4)

9
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From a mathematical perspective, the path integral is infinite-dimensional and is not

rigorously well-defined. Nevertheless, this formulation has been employed with great

success in calculating the observables of a quantum theory. For theories with a small

coupling, perturbation theory can be used to calculate quantities to some order of the

coupling. Unfortunately, perturbation theory cannot be applied to QCD at the hadronic

scale due to its strong coupling and therefore, whatever method used must necessarily

be non-perturbative. Regulating QCD on a discrete lattice is one possibility such that

the path integral is finite-dimensional and can be computed numerically.

2.2 Discretisation of gauge fields

To begin the discretisation of QCD, consider a four-dimensional spacetime lattice

Λ ≡ {x = (x1, x2, x3, x4) : xi = (0, 1, . . . , N − 1) · a} (2.5)

with N points in each direction separated by lattice spacing, a, such that the volume of

the lattice is L4 = (aN)4 and periodic or anti-periodic boundary conditions are chosen

at the boundary. The fields take values only at the lattice points and the continuous

derivative and integral are replaced by discretised versions

∂µq(x)→ 1

2a
[q(x+ aµ̂)− q(x− aµ̂)] ,

∫
d4x→ a4

∑
x∈Λ

. (2.6)

To discretise the gauge action, it is more convenient to consider the link variables

Uµ(x) = exp [iagAµ(x)] (2.7)

in terms of the gauge field Aµ. This link variable has the property of a parallel trans-

porter such that under a gauge transformation, q(x)→ G(x)q(x),

Uµ(x)→ U ′µ(x) = G(x)Uµ(x)G(x+ aµ̂)† (2.8)

which is not gauge invariant but this shows that gauge invariant quantities can be

constructed from the trace of closed loops of link variables. The link variable can also
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be defined in the other direction as U−µ(x) = Uµ(x − aµ̂)†. The simplest closed loop

that can be constructed is the plaquette,

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x) (2.9)

and a discretised action for gauge fields in terms of these plaquettes is given by

Sgauge[U ] =
2

g2

∑
x∈Λ

∑
µ<ν

ΩUµν (x) (2.10)

where ΩUµν = Re[tr(1−Uµν)]. This gauge action can be expanded using Equation (2.7)

giving

Sgauge =
a4

4

∑
x∈Λ

∑
µ,ν

F 2
µν(x) +O(a2) (2.11)

which shows that the correct continuum limit is recovered when a→ 0. However, since

numerical calculations cannot be performed at this limit, results for physical observables

will always be contaminated by lattice artefacts. It will be shown later how to modify

this discretised action to reduce unwanted discretisation effects arising from the O(a2)

corrections such that the simulations for a given lattice spacing have a better resemblance

to its desired continuum limit.

2.3 Discretisation of fermions

Having discretised the gluons, I discuss the discretisation of the quark action. The link

variables are used to construct a discretised version of the symmetrised gauge-covariant

derivative operator

∇µq(x) =
1

2a
[Uµ(x)q(x+ aµ̂)− U−µ(x)q(x− aµ̂)] . (2.12)

A discretised version of the fermion action is given by

Sfermion[q, q̄, U ] = a4
∑
x∈Λ

∑
f

q̄f (x) Df qf (x) (2.13)

where the discretised Dirac operator, Df , is given by Df = mf + γµ∇µ. Note that this

operator acts on colour space but the colour indices have been suppressed for brevity.
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This naive discretisation of fermions suffers from a highly non-trivial problem known

as fermion doubling. To illustrate this problem, consider the propagator in momentum

space in the absence of gauge fields,[
Df
]−1

(p) =
−iγµ sin(apµ)/a+mf∑

µ sin2(apµ)/a2 +m2
f

. (2.14)

This propagator has the correct continuum limit and in the massless case, it contains

a pole at p = (0, 0, 0, 0). However, there are additional unphysical poles whenever the

momentum components are pµ = π/a. One possible solution to remove these unwanted

poles is to add an irrelevant term, referred to as the Wilson term, to the action such that

the mass of the doublers is O(π/a) and they decouple from the theory in the continuum

limit. The Dirac operator with the Wilson term is given by

Df
W = mf + γµWµ (2.15)

where Wµ = ∇µ − a
2
γµ∆µ,1 and

∆µq(n) =
1

a2
[Uµ(n)q(n+ µ̂) + U−µ(n)q(n− µ̂)− 2q(n)] (2.16)

is the discretised version of the symmetrised second-order gauge covariant derivative.

This Wilson fermion action also has the correct continuum limit and has leading order

discretisation effects at O(a) from the addition of the Wilson term. In a similar manner

to the gauge fields, it is desirable to minimise contamination from lattice artefacts.

The details on reducing leading order discretisation effects will be given in the next

section. Whilst there are other strategies to remove the fermion doublers, I will not

discuss them here as I will use the Wilson prescription in this work due its relatively

low computational cost compared to other methods.

2.4 Anisotropic and improved actions

Before discussing the reduction of discretisation effects in the lattice action, I will need

to introduce the anisotropic lattice, where the temporal lattice spacing, at, is smaller

1There is no sum over indices here
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than the spatial lattice spacing, as, on a lattice of size (L/as)
3 × (T/at). Ideally, both

lattice spacings should be as small as possible but it will be shown later that spectrum

is extracted from exponential functions in time, e−Et. Therefore, it is more desirable to

reduce the temporal lattice spacing, at a reasonable cost, than the spatial lattice spacing

to obtain better resolution in calculating the energies of excited states. To implement

an anisotropic lattice, the temporal and spatial components of the terms in the action

are separated out and weighted differently with an anisotropy parameter. This does

introduce a new parameter into the theory that requires tuning to reproduce the desired

ratio between the temporal and spatial lattice spacings. The lattices used in this work

will be anisotropic and with this topic covered, I will now discuss the discretised QCD

action used in this work that has reduced leading order discretisation effects.

In a practical application, one would use the lattice QCD action given above that

has the correct continuum limit and compute observables that will contain systematic

errors arising from discretisation effects. In principle, the discretisation effects can be

accounted for by calculating quantities at various lattice spacings and extrapolating to

the continuum but this procedure comes with a large computational cost having to per-

form calculations for multiple lattices. As the main focus of this work is on exploratory

calculations, to understand the physics from a qualitative point of view, and to demon-

strate the feasibility of some of the techniques, I will use a single lattice spacing but it

would be interesting for future work to study the dependence on the lattice spacing. One

would want to maximise the efficiency of the calculation, at a given lattice spacing, by

minimising the systematic effects arising from lattice artefacts. One approach, known

as Symanzik improvement, provides an efficient method to reduce discretisation effects

for a lattice with fixed lattice spacing. In this approach, the discretisation effects are

systematically removed by directly adding irrelevant terms of higher dimensions to the

action. This does not add new parameters to the theory since the coefficients of the

terms in the improved action are determined by demanding that the terms reproduce

the correct continuum action to some given accuracy.
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Before giving the improved action, it is necessary to discuss tadpole improvement to

remove large divergences arising from tadpoles. These tadpoles arise from the expansion

of the link variables,

Uµ(x) = 1 + iagAµ(x)− a2g2

2
A2
µ(x) + . . . . (2.17)

When this quantity is contracted, one naively expects the quadratic term to be sup-

pressed by a2 but the contraction of the gauge fields cancels this factor so it is propor-

tional to g2 which can become large. These tadpole divergences arise from the UV and

can be removed from the link variables by tadpole-improvement where the link variables

are divided out by the mean field value u0 of the link variable [54]. This improvement

relies on the assumption that the gauge fields can be split into infrared and ultraviolet

parts and the ultraviolet part can integrated out,

Uµ = eiagAµ = eiag(A
IR
µ +AUV

µ ) = u0Ũµ (2.18)

such that the divergences arising from tadpole contributions can be removed. A common

choice for u0 is to take the fourth root of the expectation value of the plaquette.

With all of this in mind, I will give explicitly the lattice QCD action used throughout

this thesis. For the gauge action, there are no five-dimensional irrelevant terms due

to gauge invariance so the gauge action is automatically O(a) improved. The on-shell

O(a2) improvement was done by Lüscher and Weisz and they found, at tree-level, that

the rectangular six-link loop is the only six-dimensional operator needed to improve

the gauge action. The Symanzik improved gauge action described by the anisotropic

Lüscher-Weisz action [55, 56] with tree-level tadpole-improved coefficients is given by

Sgauge =
2

γgg2

(∑
x,s 6=s′

[
5

6u4
s

ΩUss′
− 1

12u6
s

ΩRss′

]
+
∑
x,s

γ2
g

[
4

3u2
su

2
t

ΩUst −
1

12u4
su

2
t

ΩRst

])
(2.19)

where us and ut are the spatial and temporal tadpole factors, Rµν is the 2×1 rectangular

Wilson loop, s and s′ run over spatial indices, and the parameter γg is the bare gauge

anisotropy. This gauge action has leading discretisation error at O(a4
s, a

2
t , g

2a2
s).
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For the fermion action, it can be shown using the equations of motion that only one

five-dimensional operator is needed to improve the action at leading order. The on-

shell O(a) improvement of the Wilson fermion action is described by the anisotropic

Sheikholeslami-Wohlert fermion action [57, 58],

Sfermion =
∑
x

¯̂qf (x)Df
C q̂f (x) (2.20)

where

Df
C =

1

ũt

{
ũtm̂f + γtŴt +

1

γf
γsŴs −

1

2

[
ctσtsF̂ts +

cs
γg
σss′F̂ss′

]}
. (2.21)

Hats denote dimensionless variables: quark fields q̂f = a
3/2
s qf , bare quark masses m̂f =

atmf , dimensionless Wilson operator Ŵµ = ∇µ − 1
2
γµ∆µ,2 and gauge field strength F̂µν =

aµaνFµν . Fµν is represented by Wilson lines that resemble a four-leaf clover and is given

explicitly in Ref. [57]. Whilst it is possible to calculate the Clover coefficients non-

perturbatively [59], this is quite a daunting task so an estimate is made by setting them

to the classical tadpole-improved values [58]

ct =
1

2

(
γg
γf

+
1

ξR

)
1

ũtũ2
s

, cs =
γg
γf

1

ũ3
s

. (2.22)

The link variables in the fermion action are chosen to be three-dimensionally stout

smeared [60] to reduce mixing with high frequency modes so that ũs and ũt are used

to denote the corresponding spatial and temporal tadpole factors for smeared gauge

links. γt,s are Dirac gamma matrices. γf is the bare fermion anisotropy and ξR = as/at

is the desired renormalised anisotropy. I will utilise the ensembles generated by the

Hadron Spectrum Collaboration (HadSpec) where β = 6/g2 = 1.5 and the tuning of

the coefficients/parameters can be found in Refs [61, 62] that gives the explicit values.

Further details of the lattices that I use will be given in Section 2.9. As mentioned

earlier, an anisotropic lattice introduces extra bare anisotropy parameters that require

tuning to obtain the desired anisotropy. The renormalised gauge anisotropy is obtained

2There is no sum over indices here.
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from the static quark potential by measuring ratios of Wilson loops in the temporal

direction and spatial direction. The renormalised fermion anisotropy is determined

from the continuum relativistic dispersion relation E2 = m2 + ~p 2/ξ2
f . It is important to

say that once the parameters here have been set, the theory is completely predictive.

2.5 Numerical calculation of observables in lattice

QCD

With QCD discretised appropriately, the theory can be quantised using the path integral

formulation and the partition function is given by

Z =

∫ ∏
x∈Λ

∏
f

dqf (x) dq̄f (x)
∏
µ

dUµ(x) e−Sfermion[q,q̄,U ]−Sgauge[U ] (2.23)

where the colour and spin components have been suppressed. The most important detail

is that this integral is finite-dimensional and well-defined compared to the continuum

case. Computing this integral by hand is practically impossible due to the enormous

number of degrees of freedom, even for a modestly sized lattice, and therefore, the so-

lution is to turn to numerical integration. Due to the large number of dimensions, a

suitable approach is to use Monte Carlo methods by sampling over a finite number of

configurations and the accuracy is improved with larger sample sizes. This method cru-

cially relies on the Wick rotation to Euclidean space as the exponentials in this integral

behave as a Boltzmann weight which exponentially suppresses field configurations far

away from the classical solution. In contrast, if this integral was in Minkowski space, the

exponentials would contain an imaginary factor and oscillate so wildly that the Monte

Carlo method would not work.

To be able to numerically integrate the partition function, the quark fields can be

integrated out to give

Z =

∫ ∏
x∈Λ

∏
µ

dUµ(x) e−Sgauge[U ]
∏
f

det(Df
C [U ]). (2.24)
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It was a common practice to employ the quenched approximation where the determinants

are set to one to reduce computation time but modern calculations are now able to

include the fermionic determinant. The calculations in this work will use unquenched

light and strange quarks and quenched charm quarks. The up and down quarks are

degenerate so that isospin is a good symmetry as isospin breaking effects are expected

to be negligible and mostly unimportant for this work unless mentioned explicitly. The

quenching of the charm quark introduces a systematic uncertainty but it is expected that

the effects are fairly small due to the heaviness of the charm quark and it is empirically

found to be the case in calculations such as Ref. [33, 63].

This partition function allows for the calculation of correlation functions

〈O〉 =
1

Z

∫ ∏
x∈Λ

∏
µ

dUµ(x) e−Sgauge[U ]
∏
f

det(Df
C [U ]) O[(Df

C)−1[U ], U ] (2.25)

for some operator O. Using Monte Carlo integration, this quantity can be estimated

numerically and is given by an average over N configurations,

〈O〉 ≈ 1

N

N∑
n=1

O
[
(Df

C)−1
n [Un], Un

]
(2.26)

where for the n’th configuration, the gauge configurations, Un, are importance sampled

from the distribution

e−Sgauge[U ]
∏
f

det(Df
C [U ]) (2.27)

and (Df
C)−1 is the quark propagator. The gauge configurations that I use have been gen-

erated by HadSpec with rational hybrid Monte Carlo algorithms described in Refs. [61,

62] where the configurations are evolved by numerically integrating the equations of

motion of a pseudo-Hamiltonian. The generation of propagators will be described later.

As the configurations are generated from a Markov chain process that relies on the

previous configurations, they are statistically correlated and this requires consideration

to reliably obtain an estimate of the statistical uncertainty. One rudimentary prescrip-

tion to handle this is to use bootstrap techniques to create subsets of configurations

from the original sample. In particular, I will calculate the statistical uncertainty using
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jackknife resampling where an observable Ô is calculated from a sample of N configu-

rations and the quantity Ôn is calculated for N data sets with N − 1 configurations by

removing the n’th configuration of the original set with n = 1, . . . , N . The estimator of

the statistical uncertainty is given by

σÔ =

√√√√N − 1

N

N∑
n=1

(
Ôn − Ô

)2

. (2.28)

One of the major advantages of lattice QCD compared to other methods is its systematic

improvability. The statistical uncertainty can be decreased by sampling over a larger

set of configurations and in principle, all systematic uncertainties can be controlled and

reduced at the cost of computational expenditure.

2.6 Extracting finite-volume spectrum

Having discussed how to numerically compute correlation functions, I will describe how

to extract the finite-volume spectrum of lattice QCD from them. To obtain the spec-

trum, I will calculate two-point correlation functions for some interpolating operator,

O†(t). The correlators can be re-expressed by inserting a complete set of eigenstates,

|n〉, of the QCD Hamiltonian,

C(t) ≡ 〈O(t)O†(0)〉 =
∑
n

1

2En

|〈0|O|n〉|2e−Ent. (2.29)

It is important to point out that this sum over the eigenstates is completely discrete

due to the finite-volume. Writing in Euclidean energy space,

C̃(E) =

∫
dt eiEtC(t) =

∑
n

|〈0|O|n〉|2 1

E2
n + E2

(2.30)

assuming that the lattice used has a large temporal extent such that e−ET corrections

are exponentially suppressed. Therefore, En give the location of the poles that appear

in the finite-volume two-point correlation functions in Minkowski space. It is sufficient

to extract the spectrum, En, from the exponential fall-off of the correlation functions
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in time to obtain the spectrum without having to analytically continue the correlation

functions in Euclidean space to Minkowski space. The matrix elements 〈0|O|n〉 are also

interesting quantities to extract but they will require renormalisation to obtain their

physical values. The situation becomes more complicated for unstable resonances, that

decay into multi-particle final states with a continuous range of energy above threshold,

and resonances can be identified as poles in the complex plane. Since the correlation

functions in lattice QCD can only be numerically calculated at discrete points in energy

with finite precision, analytically continuing to Minkowski space is practically impossi-

ble. The Lüscher method that overcome this obstacle will be discussed in later chapters

but nevertheless, this method will require knowledge of the finite-volume spectrum to

determine the scattering amplitudes in infinite volume.

To extract the spectrum from the two-point correlation functions, it is straightforward

to obtain the ground state energy by taking the large time limit,

E0 = lim
t�1

ln [C(t)/C(t+ 1)] , (2.31)

such that the excited states are exponentially suppressed and only the ground state

dominates. To further extract the energies of excited states, it is advantageous to have

large temporal resolution in the exponentials and this is the main reason for utilising an

anisotropic lattice with a finer lattice spacing in the temporal direction. In principle, it

is possible to fit multiple exponentials to the correlation functions in order to obtain the

excited state energies. In practice, this is often difficult given that excited energy levels

may be nearly degenerate, the statistical precision is limited and there is no clear criteria

on how many exponentials to include. A more sophisticated method to reliably extract

the spectrum makes use of a variational method [64, 65, 66] where a matrix of two-point

correlation functions Cij(t) = 〈Oi(t)Oj(0)†〉 is calculated for a basis of operators {Oi}.

The correlation matrix can be expressed as a spectral decomposition

Cij(t) =
∑
n

1

2En

Zn∗
i Z

n
j e
−Ent (2.32)

where Zn
i = 〈n|O†i |0〉 are the operator-state matrix elements referred to as overlaps. A



20 Chapter 2. Lattice QCD

generalised eigenvalue equation for the correlation matrix is solved,

C(t)vn(t) = λn(t)C(t0)vn(t) (2.33)

where t0 is some choice in time, λn are the eigenvalues referred to as principal correla-

tors related to the energy by λn(t) ∼ e−En(t−t0), and vn are the eigenvectors related to

the overlaps by Zn
i =
√

2Ene
Ent0/2vn∗j Cji(t0). The eigenvectors are also useful later for

constructing an optimised operator, Ω†n ∼
∑

i v
n
iO
†
i , which is the optimal linear combi-

nation of operators that interpolates state n [67]. Using the implementation described

in Refs. [68, 69], the energy levels are extracted from the principal correlators by fitting

them to the function

λn(t) = (1− An)e
−En(t−t0) + Ane

−E′n(t−t0) (2.34)

where the fit parameters are En, E
′
n and An. The second exponential is used to account

for possible contamination in the principal correlator due to excited states. The choice

of t0 needs to be high enough to reduce excited state contamination but low enough such

that the signal-to-noise ratio is adequate. This choice can introduce a systematic error

in how one chooses to fit the spectrum but the error is generally found to be negligible

for low-lying spectrum. An example of a systematic test of varying t0 can be found in

Ref. [69] where it was found that spectrum was reasonably stable under changes in t0

partly due to the use of the second exponential that absorbs effects from other unwanted

states.

As the two-point correlation functions contain the entire finite-volume spectrum of

QCD, it should be possible to completely extract the energy levels from them but in

practice, the ability to extract spectrum can depend on the operator basis used. If the

basis is not sufficiently diverse such that the overlap for a state onto all the operators

is small, it can be difficult to reliably extract the energy of that state due to limited

statistical precision. Therefore, it is desirable to construct a basis of operators with

substantial overlap onto the lowest-lying states to ensure a robust and correct extraction

of the spectrum. A general construction of operators with structures resembling single-

mesons, meson-mesons and tetraquarks will be given later in the next chapters. One
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method to increase the overlap onto lower-lying states is to smear the quark fields that

appear in operators and this will be described in Section 2.8. The smearing method used

here offers a framework to compute propagators and calculate correlation functions in an

efficient manner. Another method is to construct operators that transform in irreducible

representations of the symmetries of the lattice ensuring that only states with the same

quantum numbers as the operators will have non-zero overlap.

2.7 Symmetries of the lattice

From Equation (2.29), the two-point correlation function contains a summation over

all possible energy eigenstates of the theory and this sum can be drastically truncated

by constructing operators that transform definitely under the symmetries of the the-

ory. If a theory is invariant under a symmetry, then the symmetry commutes with the

Hamiltonian and a basis of simultaneous eigenstates of the symmetry and energy can

be chosen. By constructing the interpolating operators to transform irreducibly under

the symmetries, only the eigenstates with the same quantum numbers as the operators

will have non-zero operator-state overlap.

In the continuum and infinite volume, the operators can be projected to definite mo-

mentum and constructed to transform irreducibly in angular momentum representation

J (row m) of the rotational group. At rest, the rows of the representation are labelled by

the z-component of spin, m = Jz, but this is generally not a good quantum number for

non-zero momentum. For states at non-zero momentum, the rotational group is broken

to the group of rotations that leaves the momentum invariant and the rows, m = λ, are

labelled by the helicity λ which is the angular momentum projected along the direction

of momentum. A detailed construction of a basis of helicity states with appropriate

conventions can be found in Ref. [70]. To be completely clear, I use the letter m as a

general symbol to denote the rows of the continuum irrep which is given by Jz when at

rest and the helicity λ when at non-zero momentum.

On the cubic lattice, the rotational group is broken such that angular momentum
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J Λ

0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

Table 2.1: Subduction of continuum spin J into lattice irreps Λ of O for J ≤ 4 [71].

is not a good quantum number. The remnant symmetry group on the cubic lattice is

the octahedral group, Oh, at rest. At non-zero momentum ~P , the symmetry is reduced

further to the little group, LG(~P ), that leaves the momentum invariant and a noticeable

distinction between the continuum is that the little group depends on ~P . Operators can

be projected to definite momentum by O(~P , t) =
∑

~x e
i ~P ·~xO(~x, t). In a finite-volume,

the momentum is quantised due to the periodic boundary conditions, ~P = 2π
L
~n where

~n = (nx, ny, nz) is a triplet of integers. I will use the shorthand notation where the

intergers [nxnynz] are understood to denote ~P .

Operators are constructed to transform irreducibly under the symmetries of the lat-

tice by first constructing continuum operators transforming in J (row m) and then dis-

tributing the rows into the irreducible representations Λ (row µ) of the relevant lattice

symmetry group. This distribution will be referred to as subduction and the subduction

coefficients, SJ,mΛ,µ , are defined by

SJ,mΛ,µ = 〈J,m|Λ, µ〉 (2.35)

that subduces a continuum state |J,m〉 into lattice state |Λ, µ〉 by |Λ, µ〉 =
∑

m S
J,m
Λ,µ |J,m〉.

The subduction of J into Λ at rest is given in Table 2.1 [71]. It can be seen in the ta-

ble that the problems with the breaking of rotational symmetry by the lattice become

apparent with angular momentum not being conserved. For example, how does one

identify the spin of a state in the Λ = T1 irrep which can have J = 1, 3, . . . ? This
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issue will be addressed in the next chapter. To obtain the subduction coefficients at

rest, it can be seen that the trivial representation J = 0 subduces purely into the trivial

representation Λ = A1 of O and therefore, the subduction coefficients are trivially given

by S0,0
A1,1

= 1. Furthermore, the fundamental representation, J = 1, subduces purely

into Λ = T1 so that m = 1, 0,−1 is in one-to-one correspondence with µ = 1, 2, 3 and

it is straightforward to take S1,m
T1,µ

= δµ,2−m. From this, the simplest way to calculate

subduction coefficients for zero momentum is iteratively, using the formula from the

definition of the subduction coefficients,

SJ,mΛ,µ =N
∑
µ1,µ2

∑
m1,m2

〈J,m|J1,m1; J2,m2〉〈J1,m1; J2,m2|Λ1, λ1; Λ2, λ2〉〈Λ1, λ1; Λ2, λ2|Λ, µ〉

=N
∑
µ1,µ2

∑
m1,m2

〈J,m|J1,m1; J2,m2〉SJ1,m1

Λ1,µ1
SJ2,m2

Λ2,µ2
〈Λ1, λ1; Λ2, λ2|Λ, µ〉 (2.36)

where N is a normalisation factor that ensures the subduction coefficients are orthonor-

mal,
∑

m S
J,m
Λ,µS

J,m∗
Λ′,µ′ = δΛ,Λ′δµ,µ′ . 〈Λ1, λ1; Λ2, λ2|Λ, µ〉 are octahedral group Clebsch-

Gordan coefficients for Λ1 ⊗ Λ2 → Λ [72] and 〈J,m|J1,m1; J2,m2〉 are SO(3) Clebsch-

Gordan coefficients for J1 ⊗ J2 → J . I use the octahedral group subduction coefficients

given in Ref. [69].

For non-zero momentum, the subduction differs from the rest case as the group is

broken down to the little group such that Jz and parity are no longer good quantum

numbers. Following the conventions of Ref. [70], a helicity state where the spin compo-

nent is measured along the direction of momentum (helicity λ) is given by

|~P ; J, λ〉 = RLz(P )|J, λ〉 =
∑
Jz

DJJzλ(R)L(~P )|J, Jz〉 (2.37)

where DJJzλ(R) are Wigner-D matrices, R is a rotation that rotates the z-axis to the

direction of ~P , Lz(P ) is the Lorentz boost along the z-axis with magnitude P and

L(~P ) = RLz(P )R−1 is the Lorentz boost in the direction of ~P with magnitude P . This

helicity state has the property that rotations leave the helicity invariant, R̃|~P ; J, λ〉 =

|R̃ ~P ; J, λ〉. The distribution of the continuum irrep into the lattice irreps is governed by

the helicity and can be found by the action of the relevant little group on the helicity



24 Chapter 2. Lattice QCD

Λ

λ Dic4([n00]) Dic2([nn0]) Dic3([nnn])

0+ A1 A1 A1

0− A2 A2 A2

1 E2 B1 ⊕B2 E2

2 B1 ⊕B2 A1 ⊕ A2 E2

3 E2 B1 ⊕B2 A1 ⊕ A2

Table 2.2: Subduction of helicity λ into lattice irreps Λ for various LG(~P ) with λ ≤

3 [73]. ~P is given in units of 2π
L

and n is an integer. The symmetry associated with a

reflection in the plane containing the momentum direction is preserved for λ = 0 and

the superscript denotes the eigenvalue of this symmetry. This is given by P (−1)J where

P is the parity of the state at rest.

state. This distribution into the irreps of the little group up to ~P = [nnn] is given

in Table 2.2 [73]. The problem mentioned earlier with angular momentum no longer

being conserved is even more severe here as the mixing of angular momentum is more

pronounced. For example, the irrep Λ = E2 for ~P = [n00] contains all states with

J ≥ 1 making it substantially harder to identify the continuum spin. The subduction

coefficients that I will use can be found in Ref. [70]. In summary, with the subduction

coefficients obtained, an operator that originally transforms in continuum irrep J is

subduced to transform in lattice irrep by OΛ,µ(~P , t) =
∑

m S
J,m
Λ,µOJ,m(~P , t).

In addition to these symmetries, there are also the standard discrete symmetries. For

states at rest, there is parity P but this is generally not a good quantum number for non-

zero momentum. Depending on the flavour of the quarks in the interpolating operator,

there may also be charge-conjugation symmetry C. In the case that the up and down

quarks are degenerate, there is a generalisation when isospin is a good symmetry known

as G-parity and can be defined as Ĝ = ĈeiπI2 i.e. a rotation by π around the second
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axis of isospin space followed by charge-conjugation. In general, the G-parity is given

by G = C(−1)I where I is the isospin.

2.8 Calculation of correlation functions using distil-

lation

Another method to improve the extraction of spectrum, besides the use of symmetry,

is to smear the quark fields in the interpolating operators as mentioned previously.

The correlation functions will be calculated within the distillation framework [74] which

firstly provides a smearing of the quark fields to increase overlap onto lower-lying states

and more importantly, allows for an efficient means to calculate correlation functions

through a convenient factorisation. To motivate the distillation framework, I will discuss

the difficulties in computing correlation functions by considering, as an example, the

two-point correlation function for an operator resembling a single-meson projected to

zero momentum, O(t) =
∑

~x q̄(~x, t)Γq(~x, t),

〈O(t)O†(0)〉 =
∑
~x,~y

[
− tr

(
D−1
C (~x, t; ~y, 0)ΓD−1

C (~y, 0; ~x, t)Γ
)

+ tr
(
D−1
C (~x, t; ~x, t)Γ

)
tr
(
D−1
C (~y, 0; ~y, 0)Γ

) ]
(2.38)

where the quark fields have been evaluated under the path integral. It can be seen that

the numerical evaluation of the two-point correlation function requires the propagator

which can be calculated by inverting the Dirac operator for each gauge configuration.

The second term, known as a disconnected contribution, is highly problematic in com-

putation as it requires knowledge of the propagator on the entire spacetime lattice.

Computationally storing and manipulating these propagators is not practically feasible

due to their huge size.

One method to circumvent this problem is to smear the quark fields using distilla-

tion [74]. The distillation operator on timeslice t acting in 3-space (~x and ~y) and colour
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space (a and b) is defined as

�(~x, a; ~y, b; t) =
Nvecs∑
n=1

ξn(~x, a; t)ξ†n(~y, b; t) (2.39)

where ξn are the lowest Nvecs eigenvectors of the gauge-covariant Laplacian, ∇2. The

quark fields are smeared by the distillation operator, q → �q, in the interpolating op-

erators to reduce overlap onto high-frequency modes. For the rest of this thesis, any

mention of quark fields is implied to be smeared with the distillation operator. This

operator is a truncated eigenvector representation of a smearing function, exp(σ∇2(t)),

where σ is the smearing width as the exponential suppresses all the modes of the Lapla-

cian except for those with the lowest eigenvalues.

The same two-point correlation function in terms of this smeared quark field is

〈O(t)O†(0)〉 =− tr [τ(t, 0)Φ(t)τ(0, t)Φ(0)] + tr [τ(t, t)Φ(t)] tr [τ(0, 0)Φ(0)] (2.40)

where the perambulators,

τnm(t, 0) =
∑
~x,a;~y,b

ξ†n(~x, a; t)D−1
C (~x, a; t; ~y, b; 0)ξm(~y, b; 0), (2.41)

and the elementals,

Φnm(t) =
∑
~x,a;~y,b

ξ†n(~x, a; t)Γ~x,a;~y,b(t)ξm(~y, b; t), (2.42)

are square matrices of dimension (4Nvecs)
2 in distillation space and the Dirac indices

have been suppressed. Nvecs can be suitably chosen such that distillation space is far

smaller compared to the full colour-coordinate space of the propagators. This means that

perambulators and elementals can be generated and stored on disk in an efficient manner

to remedy the problem described above involving disconnected contributions. The cost

of performing the contraction of perambulators and elementals is far smaller than the

contraction in the full colour-coordinate space. This framework offers a convenient way

of factorising the correlation functions to solely describe the propagation of quarks by

the perambulators, and the momentum and spin structure of the operators is entirely
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encoded in the elementals. The elementals will be extended later to generally describe

operators with various structures projected onto definite momentum.

In addition, the computational cost of calculating propagators in this framework is

drastically reduced since perambulators belong to a smaller distillation space. The

perambulators can be obtained by numerically inverting the Clover operator on the

sources ξm, i.e. a numerical solver is used to find y = D−1
C ξm and this quantity is

then left-multiplied by ξ†n. The software codes Chroma [1], QUDA [2, 3], QPhiX [4], and

QOPQDP [5, 6] were used to compute the propagators required for this project. The

lattices that the perambulators were computed on will be discussed in the next section.

2.9 Lattice details

This work was performed using the improved action on anisotropic lattices of size

(L/as)
3 × (T/at) where at is smaller than the spatial lattice spacing, as ≈ 0.12 fm,

with an anisotropy ξ = 3.5. The details of each lattice are summarised in Table 2.3 with

the main differences being the size (L/as)
3 × (T/at) and the corresponding pion mass

Mπ; future references to these lattices will make use of these labels. There are Nf = 2+1

flavours of dynamical quarks where the two degenerate light quarks are tuned to give a

corresponding pion mass, Mπ = 236 MeV for the 323 lattice [75], and Mπ = 391 MeV

for the 163 and 243 lattices [61, 62]. The remaining quark is tuned to approximate the

physical strange quark. The charm quark is described by the same relativistic action

but is quenched and tuned to reproduce the physical ηc mass [76, 77]. The systematic

effect from quenching the charm quark was discussed in Section 2.5 and expected to be

small. Discretisation effects from the charm quark action will be described later.

To give results in physical units, the scale is set using the mass of the Ω baryon mea-

sured from lattice calculations and the experimental value [78] via a−1
t = Mphys

Ω /(atMΩ).

On the Mπ = 391 MeV ensemble, atM
latt.
Ω = 0.2951(22) [79] giving a−1

t =
Mexp.

Ω

atM latt.
Ω

= 5667.

For the Mπ = 236 MeV ensemble, atMΩ = 0.2789(16) [75] leading to a−1
t = 5997 MeV.

The uncertainty arising from the ambiguity in scale setting can be estimated by using
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Lattice Size Mπ (MeV) Ncfgs Ntsrcs Nvecs

163 × 128 391 478 1 64

243 × 128 391 553 32 162

323 × 256 236 484 1 384

Table 2.3: The lattice gauge field ensembles used. The size is given as (L/as)
3× (T/at)

where L and T are respectively the spatial and temporal extents of the lattice. The

number of gauge field configurations used, Ncfgs, and number of perambulator time-

sources used per configuration, Ntsrcs, is shown along with the number of eigenvectors

used in the distillation framework, Nvecs.

other observables to set the scale. For example, for the Mπ = 236 MeV ensemble, setting

the scale using the hc − ηc mass splitting gives a−1
t = 5960 MeV which is 0.6% lower

than from using the Ω baryon. Another example would be to use the ηc(2S) − ηc(1S)

mass splitting which gives a−1
t = 5787 MeV, 4% lower than the first value.

Another source of uncertainty comes from the unphysically heavy light quark mass.

As the bare mass parameter of the light quark is decreased, the fermion matrix becomes

increasingly singular and difficult to numerically invert. This is one reason why lattice

QCD calculations are typically performed using unphysically heavy quarks and this work

is no exception. Although advances in algorithms and computing power have allowed for

calculations at physical point to be possible, rigorous scattering amplitude calculations

in lattice QCD are limited by the Lüscher formalism which can only describe two-body

thresholds at the moment. A large pion mass gives a larger energy region to com-

pute spectrum before encountering three-or-more-body thresholds. Whilst calculating

at heavier light quark masses may seem like a disadvantage at first, these computations

provide a window to explore how the physics differs as the light quark mass parameter

is varied. This is particularly important for validating models, as for example, it may be

easy to tune the parameters of an effective molecular or tetraquark model to reproduce
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the experimental results but varying the quark masses in these different models could

lead to drastically different physics which can be compared with lattice QCD calcula-

tions. It is also interesting for scattering calculations to study how thresholds move and

how the stability of resonances changes as the pion mass is varied. These points will be

discussed in more detail in the chapter on scattering.

Related to this are finite-volume corrections for stable particles which scale with the

pion mass as e−MπL [37] so lattice QCD calculations typically require large volumes.

The lattices here will have at least MπL & 3.5 such that finite-volume corrections are

expected to be negligible for all of the work in this thesis. In addition, MπT is large

such that e−MπT temporal corrections are also expected to be small.
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Chapter 3

Excited and Exotic Charmonium

Using the techniques in the previous chapter, I describe the calculation of charmonium

spectra, across a wide range of channels and energies, for the 323 lattice with Mπ = 236

MeV described in Section 2.9. This sector is where the exotic XY Z mesons are found

and it would be interesting to compare the computed spectra with the experimental

results. To obtain spectra, two-point correlation function matrices are computed for

operators resembling charmonium including those with a hybrid meson structure and

spectra are extracted from them using the variational method. As mentioned previously,

angular momentum is no longer a good quantum number on the lattice so I will describe

the method used to identify the continuum spin of a state. The extracted spectra are

interpreted phenomologically using expectations of quark models and hybrid meson

models. This work was published in Ref. [77].

In addition, I will compare the results I have with previous HadSpec results [76] ob-

tained with the same framework on the 243 lattice with Mπ = 391 MeV. That work was

noteable for the identification of the lightest and first-excited hybrid meson supermulti-

plet, due to the technology allowing for a reliable identification of spin and an extraction

of spectra across many channels and different energies. The work here will gauge the

systematic effects arising from the unphysical light quarks by studying how the spectra

behave at these two different light quark masses.

The charm quark is described by the same relativistic action as the other quarks

except it is quenched when generating gauge configurations. This does introduce a

systematic effect but as discussed in Section 2.5, it is expected to be fairly small. The

lattice spacings are fine enough, giving atmc � 1 and asmc < 1, such that the action

is suitable to describe the charm quark and discretisation effects should be relatively

31
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small. To assess the quality of tuning of the parameters of the charm quark action on

the 323 lattice, Figure 3.1 shows a successful fit, χ2/Nd.o.f = 1.08, of the momentum

dependence of the ηc energy to the relativistic dispersion relation

(atE)2 = (atM)2 +

(
2π

ξL/as

)2

n2 (3.1)

giving ξηc = 3.456(4) which is consistent with the anisotropy for the light mesons mea-

sured using the pion dispersion relation, ξπ = 3.453(6) [75]. In addition, the fit gives

the mass of the ηc to be 2945(17) MeV compared to the experimental value 2983.6(6)

MeV [78] and so the systematic uncertainty arising from the tuning of the charm quark

mass is of the percent level. To reduce the systematic uncertainty from tuning the charm

quark, the final results will show the energy levels in the spectra with the mass Mηc sub-

tracted. The figure also shows the momentum dependence of the D meson energy which

gives ξD = 3.443(7), in reasonable agreement with the previous values. Further fits, to

a dispersion relation with a higher order term (asP )4 and a lattice dispersion relation

cosh(atE) = cosh(atM) + 2 sin2(asPµ/2), were found to be consistent with the relativis-

tic dispersion relation and had larger χ2/Nd.o.f. suggesting that discretisation effects are

small. Overall, the agreement of the energy levels with the relativistic dispersion relation

suggests that the discretisation effects from the charm quark action are manageable, at

least up to these values of momentum. A similar conclusion was made in Ref. [76] for

the 243 lattice which also gave a rough estimate of the uncertainty arising from dis-

cretisation effects. To estimate this, the authors note that the Clover coefficients in the

O(a)-improved action are set to the tree-level tadpole-improved values but their values

are expected to be larger if determined non-perturbatively [59]. A rough estimate of

the uncertainty was found to be approximately 40 MeV [76] by manually increasing the

Clover coefficients in an ad hoc manner.
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Figure 3.1: The dependence of the ηc (left panel) and D (right panel) energy on momen-

tum shown by the points; error bars show the one sigma statistical uncertainty on either

side of the mean. Lines are fits to the relativistic dispersion relation in Equation (3.1),

giving ξηc = 3.456(4) (χ2/Nd.o.f = 1.08) and ξD = 3.443(7) (χ2/Nd.o.f = 0.38).

3.1 Single-meson operators

In order to calculate two-point correlation functions and extract spectra for charmonium,

the simplest interpolating operators that can be constructed are colour-singlet fermion

bilinears of the form
∑

~x e
i ~P ·~xq̄(~x, t)Γq(~x, t) where Γ is a Dirac gamma matrix. For

general purposes later, the quarks in these operators could be of different flavours but

here, I will take them to be charm quarks so the operators have a structure that resembles

charmonium. In this case, charge conjugation C is a good quantum number and for

the work here, I will take ~P = 0 such that parity, P , is a good quantum number.

As a reminder, the quark fields are smeared with the distillation operator to improve

overlap onto low-lying states. The naming convention here for Γ is given in Table 3.1

along with the corresponding JPC of the operator with this Γ. The set of operators

constructed in this way is limited as only a small number of JPC can be accessed. To

access higher spins and exotic JPC quantum numbers forbidden by quark-antiquark

pairs, the fermion bilinears can be extended by including a number of gauge-covariant
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derivatives,
←→
D ≡

←−
D −

−→
D , following the methods in Ref. [69], as

OJ,m(~P , t) =
∑
~x

ei
~P ·~xq̄(~x, t)(Γ

←→
D
←→
D . . . )J,mq(~x, t) (3.2)

where (Γ
←→
D
←→
D . . . )J,m denotes that Γ and the gauge-covariant derivatives are coupled

using SO(3) Clebsch-Gordan coefficients to transform in continuum irrep J,m. This

class of operators will be referred to as single-meson operators as they have structure

resembling single-mesons. The gamma matrices and gauge-covariant derivatives are

chosen to be in a circular basis such that they transform like spin-1 and couple in a

straightforward manner. I will use the notation (Γ × D[N ]
JD

)J to denote a single-meson

operator with gamma matrix Γ and N derivatives coupled to spin JD, overall coupled

to spin J . For a single derivative, coupling a gamma matrix and one derivative to either

J = 0, 1, 2 is given by

(Γ×D[1]
JD=1)J,m ∼

∑
m1,m2

〈J1,m1; 1,m2|J,m〉Γm1

←→
D m2 . (3.3)

It is straightforward to include more gauge-covariant derivatives but then there is some

freedom in how to couple the spins together. The convention for coupling up to three

derivatives will follow the one given in Ref. [69] to ensure that charge-conjugation sym-

metry is preserved. For two derivatives, the derivatives are coupled together first and

then coupled to the gamma matrix as

(Γ×D[2]
JD

)J,m ∼
∑
〈J3,m3; JD,mD|J,m〉〈1,m1; 1,m2|JD,mD〉Γm3

←→
D m1

←→
D m2 (3.4)

and for three derivatives, the spins of the outermost derivatives are coupled together

first followed by the middle derivative and then the gamma matrix as

(Γ×D[3]
J13,JD

)J,m ∼
∑
〈J4,m4; JD,mD|J,m〉〈1,m2; J13,m13|JD,mD〉

〈1,m1; 1,m3|J13,m13〉Γm4

←→
D m1

←→
D m2

←→
D m3 . (3.5)

This procedure can be generalised to include as many derivatives as desired but for

this work, the single-meson operators are constructed with up to three derivatives giving
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1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi [γi, γj]

Γ a0 π π2 b0 ρ ρ2 a1 b1

JPC 0++ 0−+ 0−+ 0++ 1−− 1−− 1++ 1+−

Table 3.1: The naming convention for the Dirac gamma matrices and their corresponding

JPC within a fermion bilinear.

access to spins up to J = 4. To obtain an operator that transforms in lattice irrep Λ, the

operators are subduced by OΛ[J ],µ(~P , t) =
∑

m S
J,m
Λ,µOJ,m(~P , t). To repeat, the spectra

will be calculated here at rest so ~P = 0.

It is worthwhile to note that some operator constructions give access to exotic JPC

numbers that are forbidden by quark models. There are also some single-meson oper-

ators where two or more derivatives appear and couple to give the commutator of two

derivatives, [
←→
D ,
←→
D ], which is the gluonic field-strength tensor by definition for a non-

abelian gauge theory. In other words, there are some operators proportional to q̄Fµνq

and these operators have a structure resembling hybrid mesons – quark-antiquark pairs

coupled to a gluonic excitation. The importance of these hybrid meson operators will

become apparent once the final spin-identified spectrum is shown and I will give further

comments on them later.

To calculate correlation functions involving single-meson operators in the distillation

framework, the single-meson elemental is given by

Φαβ
nm(~P , t) = Γαβ

∑
~x,a;~y,b

ξ†n(~x, a; t)ei
~P ·~x[
←→
D . . . ]~x,a;~y,b(t)ξm(~y, b; t) (3.6)

where α, β label the Dirac spin indices. When computing the correlation functions,

disconnected contributions due to annihilation between the charm and anticharm quark

are neglected as they are expected to be small due to OZI suppression and this is found to

be the case empirically in lattice calculations [80]. An effect from excluding annihilation

effects is that this forbids charmonium from mixing with the light isoscalar states. This

is a significant advantage as if this was not the case, the different mass scales of the light
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Λ Λ−+ Λ−− Λ++ Λ+−

A1 12 6 13 5

A2 4 6 5 5

T1 18 26 22 22

T2 18 18 22 14

E 14 12 17 9

Table 3.2: The number of single-meson operators, including up to three-derivatives, used

to calculate the two-point correlation function matrix in each lattice irrep, ΛPC .

and charm quarks would make extracting charmonium states amongst the light states

practically infeasible.

3.2 Identifying the spin of a state

The number of single-meson operators (at rest and up to three derivatives) for each

channel, ΛPC , is shown in Table 3.2. Having calculated the two-point correlation func-

tion matrices, I obtain charmonium spectra using the variational method and show the

extracted energy levels labelled by lattice irrep ΛPC in lattice units in Figure 3.2. Each

box in the figure gives the extracted energy level with the vertical size of the box rep-

resenting the one-sigma statistical uncertainty on either side of the mean. The boxes

are colour coded by their identified continuum spin using the spin identification method

described in this section. Figure 3.3 shows a sample selection of extracted principal

correlators from correlation functions in the T−−1 irrep and the leading time depen-

dence, e−Mn(t−t0), has been divided out to exhibit a plateau when a single exponential

dominates. Each fit of the principal correlators to Equation (2.34) was successful with

χ2/Nd.o.f ∼ 1.

To connect the results with physical states, it is necessary to identify the continuum

spin of these states. One rudimentary way to identify the lowest-lying J = 0 and 1 states
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Figure 3.2: Finite-volume spectrum of charmonium at rest in lattice units labelled by

lattice irrep ΛPC . Each box gives the extracted energy level with the vertical extent of

the box representing the one-sigma statistical uncertainty on either side of the mean.

The colour coding gives the spin of the state identified by the method described in the

text: J = 0 (black), 1 (red), 2 (green), 3 (blue), 4 (orange).



38 Chapter 3. Excited and Exotic Charmonium

0.9

0.95

1

1.05

1.1

1.15

0 5 10 15 20 25 30 35

0.9

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30
0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

0 5 10 15 20 25

t/at t/att/at t/at t/at

atM = 0.50561(9)

atM = 0.729(2)

atM = 0.729(4)atM = 0.6415(9)

atM    = 0.50561(9) = 0.6415(9) = 0.729(4) = 0.729(2)atM    atM    atM    

J=1
(Hybrid)J=1

J=3
J=3

J=4
(Hybrid)

Figure 3.3: Top row shows the principal correlators for a selection of low-lying states in

the T−−1 irrep. The data (points) and fits (curves) for t0 = 11 are plotted as λneMn(t−t0)

showing the central values and one sigma statistical uncertainties. The corresponding

operator-state overlaps, Zn
i , for each operator are shown below. The overlaps are nor-

malised so that the largest value for an operator across all states is equal to unity. The

legend gives the colour coding for the continuum spin J of the operator before sub-

duction and the operators labelled hybrid are proportional to the gluonic field-strength

tensor.

would be to notice that they subduce purely into Λ = A1 and T1 respectively. With

this in mind, one could identify the lowest-lying states in ΛPC = A−+
1 and T−−1 to be

pseudoscalar and vector states respectively. However, this method cannot be generally

applied for excited states, especially the regions near atM ≈ 0.75, where a huge number

of states is found across irreps. For example, there is no way to identify the excited

states using only the energies in T−−1 which could possibly be J = 1, 3, 4, . . . . Since
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there are a finite number of lattice irreps compared to the infinite number of continuum

spins, it is not possible to identify the spin of a given state in a one-to-one procedure

without any extra information. In principle, one could determine the spin by repeating

the calculation in every irrep for various lattice spacings, and find degeneracies across

irreps appear according to the expected pattern of subductions as the lattice spacing

is reduced. However, this method becomes costly having to simulate at finer lattice

spacings and with limited statistical precision, it is practically impossible to disentangle

degeneracies across lattice irreps amongst a densely populated spectrum.

To solve this problem, I will use the spin-identification method using the operator-

state overlaps described in Ref. [69] that does not necessarily require calculations at

multiple lattice spacings. This technique relies on the subduced single-meson operator,

OΛ[J ],µ, that was originally constructed with continuum spin to carry a ‘memory’ of the

spin. One expects that for a large volume and small lattice spacing where rotational

symmetry is restored to a reasonable extent, states with continuum spin J would only

overlap strongly onto smeared operators subduced from the same J and be suppressed

for operators subduced from other J [81]. As an example, Figure 3.3 shows the operator-

state overlaps of every operator for a selection of states in ΛPC = T−−1 . The overlap

values are normalised so that the maximum value for an operator across all states is

equal to one. The operators were originally subduced from continuum spin J : red bars

correspond to J = 1, blue to J = 3 and yellow to J = 4. It can clearly be seen that

every state has a dominant overlap only onto operators with common J and the first

and fourth state can be identified to be J = 1, the second state is J = 3 and the third

state is J = 4.

However, this procedure only identifies the spin of a state within its lattice irrep but

does not tell us anything more about how the states across lattice irreps are related. A

single continuum state with spin J has its spin components subduced amongst multiple

lattice irreps and the next problem is to figure out whether or not the extracted states

across lattice irreps correspond to the same continuum state. It is shown in Ref. [69]
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Figure 3.4: Overlaps, Z, for states in the irreps labelled by the legend that are suspected

of being the same continuum J = 3 state. The error bars are smaller than the points

shown. The operators are as follows: (a) (ρ×D[2]
JD=2)J=3, (b) (ρ2 ×D[2]

JD=2)J=3,

(c) (b1 ×D[3]
J13=1,JD=2)J=3, (d) (a1 ×D[3]

J13=2,JD=2)J=3, (e) (a1 ×D[3]
J13=2,JD=3)J=3,

(f) (a0 ×D[3]
J13=2,JD=3)J=3.

that the overlaps of a state onto a given operator of spin J are independent of the

lattice irrep it is subduced to, up to discretisation effects. Therefore, a continuum state

can be identified by comparing all the operator overlaps amongst each lattice irrep.

For example, a J = 3 state will have the same operator-state overlap value in each

of the A2, T1, T2 irreps. To illustrate, Figure 3.4 shows some overlaps for states in the

A2, T1, T2 irreps that are believed to be the same continuum J = 3 state. It can be

seen that the operator-state overlaps for each J = 3 operator are practically identical

amongst the irreps and therefore, I conclude that these lattice states correspond to

the same continuum state. This example is representative of all the other states in

the spectrum and the identification of spin was done this way. After repeating this
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procedure for each lattice state and identifying the continuum states, there is ambiguity

in choosing how to quote the final energy of a state. The energies corresponding to

the same continuum state may differ between irreps due to discretisation effects and

other systematic uncertainties from the fitting procedure. The simplest way would be

to extract energies from the principal correlators in each irrep and quote the average

value. Instead, to minimise the fluctuations caused by the fitting, a simultaneous fit to

Equation (2.34) of all the principal correlators in each irrep will be taken with a common

fit parameter En and irrep-specific parameters {E ′Λn }, {AΛ
n }.

3.3 Spin-identified spectrum

The charmonium spectra in physical units after spin identification are shown in Fig-

ure 3.5 where each box gives the energy level and the vertical size of the box represents

the one-sigma statistical uncertainty on either side of the mean. The masses are quoted

with the ηc mass subtracted to reduce the systematic uncertainty arising from tuning of

the charm quark mass parameter. Dashed lines indicate the location of some relevant

thresholds for strong decay given that the charm quark does not annihilate. A wide

range of excited states across a large number of channels up to J = 4 were extracted

demonstrating the formidability of the computational techniques described up to now.

There have been a variety of charmonium spectrum calculations in lattice QCD such as

Ref. [30, 82, 83]. In these studies, a robust extraction of states across a large span of

channels and energies is difficult and the identification of continuum spin is an obstacle

since none of these studies use as extensive an operator basis like the one in this study.

An immediate highlight of the results here is the presence of states with exotic JPC =

1−+, 0+−, 2+− quantum numbers forbidden by quark models which suggests that QCD

supports exotic states beyond quark models. This result would not have been obtained

without a reliable spin identification technique, as for example in ΛPC = T−+
1 , one needs

to be able to robustly distinguish states of JPC = 1−+ which is an exotic quantum

number and JPC = 4−+ which is not. For a better understanding of these exotic states
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Figure 3.5: Charmonium spectrum up to around 4.5 GeV labelled by JPC . Green, red

and blue boxes show the energy levels that I computed whilst black boxes are experi-

mental values taken from the PDG summary tables [78]. As discussed in the text, the

calculated (experimental) energy levels are quoted with the calculated (experimental)

ηc mass subtracted. The vertical size of the boxes represents the one-sigma statistical

(experimental) uncertainty on either side of the mean. Red and blue boxes correspond

to states identified as hybrid mesons grouped respectively into the lightest and first-

excited supermultiplet as described in the text. Coarse green (fine grey) dashed lines

show the location of some of the relevant thresholds for strong decay using computed

(experimental) masses.
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from a phenomological perspective, a model-depedent interpretation is given in the next

section.

3.4 Interpretation of spectrum

Many of the states that I extracted appear to follow the usual n2S+1LJ pattern predicted

by quark models [11]. The ground state S-wave set [0−+, 1−−] is observed along with

its first radial excitation at ≈ 800 MeV and a second radial excitation at ≈ 1200 MeV.

In the same parity sector, the D-wave states [(1, 2, 3)−−, 2−+] are found at ≈ 900 MeV

along with the radial excitation at ≈ 1500 MeV. Below the DD̄ threshold, there is a

P -wave supermultiplet [(0, 1, 2)++, 1+−] and its first radial excitation and part of the

second radial excitation are found at ≈ 1000, 1500 MeV respectively. Finally, the F -

wave supermultiplet [(2, 3, 4)++, 3+−] is found at ≈ 1200 MeV and some G-wave states

are found at ≈ 1500 MeV. Extracting the remaining G-wave J = 5 state reliably would

require four or more derivative single-meson operators in the calculation.

This quark model identification is further guided using the expected behaviour of

overlaps in terms of a non-relativistic quark model [84, 85] by comparing operator-state

overlaps for different states within a supermultiplet. For example, consider the operators

(πNR ×D[1]
JD=1)J=1 with JPC = 1+− and (ρNR ×D[1]

JD=1)J=1 with JPC = (0, 1, 2)++, where

πNR = 1
2
γ5(1 − γ0) and ρNR = 1

2
γi(1 − γ0). In this model, these operators have the

structure of a quark-antiquark pair in a gauge-covariant version of a P -wave with S =

0 (πNR) or S = 1 (ρNR). It is expected that the overlap values for each of these operators

will be similar for all the states within a given supermultiplet. I found that the states

within the proposed P -wave supermultiplet do indeed have large overlaps onto these

operators1 and their overlaps are found to be of similar value as shown in Figure 3.6

which provides further evidence that they belong to the same supermultiplet. Similar

patterns were observed for the other supermultiplets. It is also interesting to measure the

1Technically, the operator is subduced but recall that the overlaps of a state onto a given operator

of spin J are independent of the lattice irrep it is subduced to.
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Figure 3.6: Operator-state overlaps, Z, of states suspected of belonging in the P -wave

supermultiplet onto one of the operators (ρNR×D[1]
J=1)J=0,1,2 or (πNR×D[1]

J=1)J=1. Error

bars are smaller than the points.

overlap onto operators with 1
2
γ5(1 + γ0) and 1

2
γi(1 + γ0) which are expected to be zero

in the non-relativistic limit. These overlap values were indeed found to be relatively

small which suggests that charmonium is fairly non-relativistic. Further quantitative

conclusions cannot be made since the matrix elements require renormalisation.

After identifying the conventional quark model states, there are a plethora of remain-

ing states around 1500 MeV, coloured in red and blue, in Figure 3.5. As mentioned

earlier, some of these states have exotic JPC quantum numbers and therefore, cannot

solely be explained as a quark-antiquark pair. The near degeneracy of these energies

gives a hint that they may have the same structure and belong to some supermulti-

plet of states. It is found that all of these states have a dominant overlap onto the

hybrid meson operators that are proportional to the gluonic field-strength tensor, for

example see the fourth state in Figure 3.3. In addition, the energy levels either have

worse statistical precision or are not completely extracted at all if the hybrid meson

operators are not included in the basis of interpolating operators. The four states with

JPC = [(0, 1, 2)−+, 1−−], coloured red in the figure, are consistent with the pattern of

states predicted to form the lightest hybrid supermultiplet in the bag model [86, 87] and

the P -wave quasiparticle gluon approach [88] and furthermore, this is not the pattern
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Figure 3.7: Operator-state overlaps, Z, of states suspected of belonging in the lightest

hybrid supermultiplet onto one of the operators (ρNR×D[2]
J=1)J=0,1,2 or (πNR×D[2]

J=1)J=1.

expected in the flux-tube model [89]. In more general terms, the pattern is consistent

with a model where a quark-antiquark pair is coupled to a 1+− gluonic excitation. In

addition, the positive parity states with JPC = [0+−, (1+−)3, (2+−)2, 3+−, (0, 1, 2)++],

coloured in blue, are consistent with the number of states in the first excited hybrid

supermultiplet where the quark-antiquark pair is in P -wave relative to the gluonic exci-

tation. Whilst hybrid charmonia with exotic JPC quantum numbers have been observed

in lattice QCD calculations as early as 1997 [90], this calculation provides a much more

comprehensive extraction of the charmonium spectrum with a reliable spin identification

method such that the supermultiplets have been identified, placing strong constraints

on the allowed hybrid meson models.

Further evidence of this hybrid meson model identification can be made by investi-

gating the expected operator-overlaps onto the states [85] in greater detail as with the

conventional quark model states. Consider for example, the operators (ρNR×D[2]
J=1)J=0,1,2

with JPC = (0, 1, 2)−+ and (πNR ×D[2]
J=1)J=1 with JPC = 1−− which have the structure

of a colour-octet quark-antiquark pair in S-wave with S = 1 (ρNR) or S = 0 (πNR)

coupled to a gluonic excitation with JPC = 1+−. The expectations within the model

are that the states in a supermultiplet should have a similar overlap value onto the

relevant operator. Figure 3.7 shows the operator-state overlaps of the red states onto
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these operators and they are indeed found to be similar which supports the identification

of the states to belong in the lightest hybrid supermultiplet where a quark-antiquark

pair in S-wave is coupled to a 1+− gluonic excitation. Similar observations are made

for the blue states to identify them as the first-excited hybrid supermultiplet with the

quark-antiquark pair in P -wave relative to the 1+− gluonic excitation. These results

also suggest that a gluonic excitation has a mass of O(1500) MeV. Finally, the overall

pattern and energy scale of the gluonic excitation is found to be consistent with other

lattice QCD results found previously in the light meson sector [69, 91], light baryon

sector [92], hidden-charm sector [76] and open-charm sector [93].

3.5 Systematic uncertainties and comparison with

experimental results

With a phenomological understanding of these states in the spectrum, I now draw some

comparisons with experimental results. Figure 3.5 shows the computed spectrum with

the experimental states given by the black boxes. Note that the extracted levels only

show the statistical uncertainty. For the low-lying states below 600 MeV which are stable

and below the kinematic thresholds, there are some quantitative discrepancies between

the experimental and extracted states, especially the S-wave hyperfine splitting which

is underestimated. One of the largest systematic effects could possibly come from the

discretisation of QCD as discussed in Ref. [76]. Other systematic uncertainties could

arise from finite-volume effects although these are expected to be exponentially small

due to MηcL ∼ 50, and scale setting and quenching of the charm quark which were

discussed in the previous chapter. Another error could stem from the unphysically

heavy light quarks – one of the main purposes of this study is to explore this effect

and further discussion will be postponed to the next section. Despite all these possible

systematic effects and a full precision calculation being beyond the scope of the study,

the qualitative pattern of states below threshold is found to be in good agreement with
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the experimental observations. Above threshold for strong decay, the unstable nature

is not accounted for in these calculations without including interpolating operators of

multi-meson structure. This gives rise to a systematic uncertainty that is difficult to

estimate and the next chapters will outline the strategy to address this issue. For now,

a conservative approach is to consider the uncertainty to be of the order of the width of

a given state [69].

Moving up to the excited spectrum in JPC = 1−−, this channel is interesting because

there is clearly an excess number of states found experimentally compared to the quark

model. The ψ(2S) and ψ(3770) could possibly be identified with the computed 3S1 and

3D1 state. The hybrid meson that was extracted in this channel could be a suitable

candidate for the exotic states X(4260) or X(4360). However, it is important to men-

tion again that these energy levels are above the kinematic threshold and the unstable

nature is not properly taken into account. To draw stronger conclusions, a calculation

involving the extraction of multi-meson states would be required to obtain the scatter-

ing information. Another route would be to calculate the radiative transitions between

states from lattice QCD which can be measured experimentally but this will require

techniques beyond the scope of this study.

A significant discrepancy is seen in the 1++ channel where the X(3872) resides near the

DD̄∗ threshold and the lattice result significantly overshoots this energy. However, the

close proximity of the X(3872) to the DD̄∗ threshold suggests that the relevant multi-

meson interpolating operators are required to reliably extract this state. Once again,

the technology to tackle this problem will be discussed in future chapters. Another

consideration is that the light quarks are degenerate in this lattice calculation which

should have negligible effects on the majority of the results but X(3872) has significant

isospin-violating decays so that the light quarks may need to be non-degenerate to

suitably probe this exotic state.
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3.6 Comparison of spectra at two light quark masses

This work is compared with previous charmonium results that were calculated on the

243 lattice with a light quark mass corresponding to Mπ = 391 MeV [76] described in

Section 2.9. The comparison of spectra is shown in Figure 3.8 where for each JPC ,

the Mπ = 236 MeV results are shown by the darker box in the left column and the

Mπ = 391 MeV results are shown by the lighter box in the right column. The light

quark dependence has an effect through the sea quark content in the dynamical gauge

field configurations. In general, only a mild light quark mass dependence is observed

throughout the spectra with no change in the overall pattern of states. The low-lying

states are generally consistent between the two ensembles within statistical uncertainities

except for the hyperfine splitting, MJ/ψ−Mηc , where a small but statistically significant

increase of about 8 MeV is found as the light quark mass is decreased. Looking at

the excited states in the spectra, the energy levels are found to be generally higher at

the smaller light quark mass, especially for the hybrids. However, it is important to

note that the unstable nature of states above threshold is not taken into account which

may have a significant impact. Despite this, the overall pattern of the quark model

and hybrid meson supermultiplets is unaffected by decreasing the light quark mass.

In summary, the decrease in light quark mass does not affect the overall qualitatives

features or pattern of the spectrum.

One other observation to emphasise is that the spectrum here was calculated on a

lattice with spatial extent L ≈ 3.8 fm whilst the Mπ = 391 MeV spectrum used a lattice

with L ≈ 2.9 fm. This drastic difference in volumes would have a huge effect on the

energies of multi-meson states. To illustrate this, consider the energy of two mesons

overall at rest assuming they do not interact,

E =

√
M2

1 + ~P 2 +

√
M2

2 + ~P 2 (3.7)

where the momentum is quantised, ~P = 2π
L
~n, when imposing periodic boundary con-

ditions. For a given non-zero momentum, the energy decreases with increasing volume
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Figure 3.8: Charmonium spectra, labelled by JPC , with Mπ = 236 MeV (left column

of darker boxes for each JPC) compared to the spectrum with Mπ = 391 MeV from

Ref. [76] (right column of lighter boxes for each JPC). As in earlier figures, red and

blue boxes denote states identified as part of the lighest and first-excited supermultiplet

of hybrid mesons. Dashed lines show some of the relevant thresholds using computed

masses for Mπ = 236 MeV (coarse dashing) and Mπ = 391 MeV (fine dashing): green

gives ηcππ, red is DD̄ and blue gives DD̄∗.

and there is no clear sign of this between the two spectra in Figure 3.8. Therefore, there

are no obvious indications that I have extracted the complete spectrum that includes

multiquark states. In fact, there are clear examples [69, 94, 75] which show that the

construction of operators resembling multi-meson states is required to reliably extract

the energies of such states which leads me to the next chapter on how to tackle this

problem.
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Chapter 4

Exotic Flavour States

In the previous chapter, one major caveat of the calculation was that the unstable nature

of states above multi-meson thresholds was not taken into account and meson-meson

levels were not extracted. Correlation functions of single-meson operators contain every

possible state in the spectrum but if the overlap of a given meson-meson state is small

onto all the single-meson operators, it may not be possible to reliably extract the energy

of that state in a practical calculation. It is well known now that a reliable calculation

of the finite-volume spectra requires a sufficiently diverse basis of operators that can

suitably interpolate all the states in the energy region of interest [94, 75]. To overcome

this limitation, I will give a review of one possible construction of a class of operators with

structures resembling a pair of mesons to interpolate the meson-meson states. These

meson-meson operators have proven very succesful in computations by HadSpec of finite-

volume spectra which are then used to determine hadronic scattering amplitudes [67,

94, 95, 96, 75, 97, 98, 47, 99, 100] using the Lüscher method. The next chapter will

introduce the Lüscher method that relates the finite-volume spectra from lattice QCD

to the scattering amplitudes in infinite volume. For this chapter, I will concentrate

on the reliable extraction of finite-volume spectra by using a sufficiently diverse set of

operators and in particular, I will calculate spectra in exotic flavour channels, i.e. flavour

quantum numbers that are not accessible by a quark-antiquark. The complete and

reliable extraction of the finite-volume spectra is absolutely crucial to determine the

correct scattering amplitudes. For example, see the systematic tests in studies of isospin-

1 ππ scattering such as Ref. [94, 75] which attempt to compute scattering amplitudes,

using spectra extracted with a operator basis consisting only of single-meson operators,

and do not reproduce the resonance properties of the ρ.

51
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Up until this work, scattering calculations by HadSpec have involved extraction of

finite-volume (pseudo)scalar-(pseudo)scalar energy levels which are the simplest meson-

meson type. The situation becomes more complicated when the mesons in the meson-

meson levels have intrinsic spin and it will be explained in more detail later in the

next section how this can lead to there being multiple finite-volume energy levels in the

spectrum associated with a meson-meson. I will discuss how these multiple energy levels

arise and how a sufficiently diverse set of meson-meson operators is needed to extract

all these levels in the energy region of interest. This work is the first time that such

multiple meson-meson levels were extracted by including all the relevant meson-meson

operators. An example of where this would be interesting is to describe DD̄∗ scattering

which is relevant for the X(3872) and therefore, it is important to be able to employ

the right technology to extract and disentangle all the energy levels correctly in order

to subsequently calculate the scattering amplitudes.

In addition to the meson-meson operators that I will review, I will construct a general

class of four-quark operators resembling compact tetraquarks which have a spatially-

local structure compared to the meson-meson operators. These operators can share

the same quantum numbers as the meson-meson operators but so far, they have been

omitted in scattering amplitude calculations from lattice QCD. Once again to emphasise,

not including a sufficiently diverse set of relevant operators in the calculation could lead

to an unreliable extraction of the finite-volume spectra and in turn, incorrect scattering

amplitudes. Hence, it is desirable to consider such operators resembling tetraquarks,

with the relevant colour-flavour-spin structures, and investigate whether their inclusion

has any impact on the extracted spectra. In the previous chapter, the reliable extraction

of energy levels of hybrid mesons required operators with a hybrid meson structure. In

the same way, it may be expected that operators resembling tetraquarks will be required

to reliably interpolate states of tetraquark nature. Operators resembling tetraquarks in

the charm sector have been constructed and used to calculate spectra in other studies

such as Refs. [101, 102, 103] but those studies have mostly been limited to one channel. A
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comparison of these studies with the results here will be made later. It would be desirable

to have a completely general construction of lattice operators resembling tetraquarks for

lattice calculations in the same vein as the general class of single-meson operators in the

previous chapter.

In this chapter, I will give a review of a construction of meson-meson operators in

Section 4.1. Section 4.2 will present a construction of a general class of operators

resembling compact tetraquarks which transform irreducibly under the symmetries of

the lattice, have a range of colour-flavour-spin structures and respect other relevant

discrete symmetries. I will discuss the strategy to perform calculations involving these

tetraquark operators within the distillation framework in Section 4.3 and then give

the specific calculational details in Section 4.4. As a demonstration of the tetraquark

operators in conjunction with the meson-meson operators, I compute exotic flavour

spectra in the isospin-1 hidden charm sector in Section 4.5 which is where the charged

Z states reside, and the doubly-charmed sector in Section 4.6. These channels are

particularly interesting experimentally and phenomologically as tetraquark states are

expected and some of these channels have never been computed before in a lattice QCD

calculation. Some discussion of systematic effects and stability of the extracted spectra

will be given in Section 4.7. Section 4.8 will conclude this chapter with a discussion and

interpretation of the results whilst comparing with experimental and theoretical studies.

The work presented here was published in Ref. [104].

4.1 Meson-meson operators

I begin by reviewing the construction of meson-meson operators that have a structure

resembling two mesons, M1 and M2. Following Refs. [67, 94], the meson-meson operator

is constructed from products of two single-meson operators with overall momentum ~P ,

OΛ,µ(~P , t) =
∑
µ1,µ2

∑
~ki∈{~ki}∗
~k1+~k2=~P

C(~P ,Λ, µ;~k1,Λ1, µ1;~k2,Λ2, µ2) ΩM1
Λ1,µ1

(~k1, t)Ω
M2
Λ2,µ2

(~k2, t) (4.1)
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where ΩMi
Λi,µi

is an optimised operator consisting of a linear combination of single-meson

operators for interpolating stable meson Mi transforming in lattice irrep Λi (row µi) as

described in Section 2.6. The implementation of optimised operators removes contami-

nation from excited states and gives an early plateau onto the desired ground state me-

son. C are generalised Clebsch-Gordan coefficients that couple Λ1(~k1)⊗Λ2(~k2)→ Λ(~P ).

The set of all momenta related to ~ki by an allowed lattice rotation is given by the star

of ~ki, {~ki}∗, and the sum runs over this star with ~k1 + ~k2 = ~P . Clebsch-Gordan coef-

ficients are tabulated in Ref. [67] where a more detailed discussion on their derivation

including conventions can be found. As mentioned already, the momentum is quantised

to ~P = 2π
L

(nx, ny, nz) where (nx, ny, nz) is a triplet of integers and [nxnynz] is used as a

shorthand notation to denote the momentum type. For the rest of this chapter, I will

consider ~P = 0 and in this case, parity is a good quantum number.

In the ideal scenario, one should use a large number of meson-meson operators that

share the same quantum numbers, with the individual single-meson operators combined

in many different momentum and lattice irrep combinations, to calculate the correlation

functions. In practice, the computational cost increases with each additional operator

in the operator basis so some consideration as to which operators are most relevant is

important. The operator basis is chosen here by considering the non-interacting meson-

meson energy levels, with all possible meson pairs that give the desired flavour and

other quantum numbers, in the energy region of interest. Once these levels are mapped

out within an energy region, the corresponding meson-meson operators to these non-

interacting levels are included in the basis as a minimum requirement. These levels are

calculated from the relativistic dispersion relation

atE =

√
(atM1)2 +

(
2π

ξL/as

)2

~n 2
1 +

√
(atM2)2 +

(
2π

ξL/as

)2

~n 2
2 (4.2)

for stable single-mesons.

In cases when a meson has non-zero intrinsic spin, there can be multiple ways to couple

the orbital and spin angular momenta together in a meson-meson to obtain a given JP .

Taking an example in the continuum and infinite-volume, a pseudoscalar and vector
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couple to JP = 1+ in S-wave and to JP = (1, 2, 3)+ in D-wave giving two ways to access

JP = 1+. For scattering, this leads to these partial waves being dynamically coupled

and even though there is only one threshold, the two partial waves should be considered

as coupled channels. It is important to emphasise that this coupling of partial waves is

physical and should not be confused with the unphysical mixing of angular momentum

due to the breaking of rotational symmetry.

To see the effect of this on the spectrum in the finite-volume, consider the pseudoscalar

with ~k1 = [100] and the vector with ~k2 = [−100] where the pseudoscalar-vector is overall

at rest in the lattice irrep ΛP = T+
1 . The single-mesons transform in the irreps of the

little group Dic4 as given in Table 2.2: the pseudoscalar subduces into the A2 irrep

while the helicity-0 and helicity-1 components of the vector subduce into the A1 and

E2 irreps respectively. This gives two distinct energy levels in ΛP = T+
1 from the

linearly independent irrep combinations, A2 ⊗ A1 and A2 ⊗ E2 [105], and these two

pseudoscalar-vector levels would be degenerate in the non-interacting limit. A reliable

extraction, in lattice QCD calculations, of the finite-volume energy levels associated with

these two non-interacting levels requires the two corresponding linearly-independent

operators transforming in T+
1 , obtained separately from the irrep combinations A2⊗A1

and A2 ⊗ E2. A full demonstration of this will be shown later.

As another example, consider the non-interacting pseudoscalar-vector level when the

mesons have momentum ~k1 = −~k2 = [110], where the relevant little group is Dic2.

From Table 2.2, the pseudoscalar transforms in the A2 irrep and the helicities of the

vector subduce into A1, B1 and B2. There are a total of three linearly-independent

combinations to obtain T+
1 from coupling A2 ⊗ A1, A2 ⊗ B1, A2 ⊗ B2 and therefore,

there are three energy levels associated with this pseudoscalar-vector level. The three

corresponding linearly-independent operators need to be included in the operator basis

to reliably extract these levels.

In general, it is necessary to include a sufficient number of relevant meson-meson

operators that are capable of extracting and disentangling these multiple energy levels
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and this work is the first time that this was ever done in a lattice QCD calculation. I will

show a systematic test later where not all the relevant meson-meson operators within

an energy region are used and the complete finite-volume spectrum is not extracted.

The importance of extracting these multiple energy levels should be emphasised since

the scattering amplitudes are obtained from the finite-volume spectra.

4.2 Tetraquark operators

In the previous section, I reviewed the construction of operators resembling a pair of

mesons. In this section, I will construct a general class of interpolating operators with the

same quark content resembling a compact tetraquark by combining a diquark operator

with an anti-diquark operator. The diquark operator is built from two quark fields

coupled together to obtain appropriate colour, flavour and spin quantum numbers and

analogously, the anti-diquark operator is built from two antiquarks. The diquark and

anti-diquark are then combined into a colour singlet with the desired flavour and spin.

These constructions provide, with no loss of generality, a convenient way to build a

diverse class of tetraquark operators which have the required quantum numbers and

respect appropriate symmetries. As with the single-meson operators, these operators

are first constructed in the continuum and then subduced to transform definitely in

some lattice irrep.

To construct the diquark operator, two quark fields are coupled together to definite

colour, flavour and continuum spin irreps. In colour space, the quarks belong in the

fundamental representation of SU(3)C and so the diquark belongs in either the anti-

symmetric 3̄ representation or the symmetric 6 representation. In flavour space, I use

SU(3)F constructions to form a convenient basis of operators as any arbitrary flavour

combination can be constructed from a linear combination of these operators. Note that

this does not require or imply any assumption of SU(3)F symmetry in the theory and

this is just a choice of convenience. The up, down and strange quark (u, d, s) quark

belong in the fundamental representation of SU(3)F and the charm (c) quark is placed
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in a flavour singlet. The quarks are coupled together to obtain the desired flavour irrep

with the possible irrep combinations being 1, 3, 3̄ or 6. For example, when coupling two

u, d, s quarks as 3⊗ 3→ 3̄, this irrep contains a component with flavour quantum num-

bers (isospin, strangeness) = (0,0) with flavour structure 1√
2
(ud− du), and a (1/2,−1)

multiplet with 1√
2
(us − su) and 1√

2
(ds − sd). Another example would be coupling a c

quark with a u, d, s quark as 1⊗ 3→ 3 which contains a (0,-1) component with flavour

structure cs, and a (1/2, 0) multiplet with flavour structure cu and cd.

Explicitly, the diquark operator in colour irrep R (row r), flavour irrep F (row f) and

continuum spin J (Jz component m) is given by

δ
J [Γ]
RF ;rfm(~x, t) =

∑
ra,rb

〈3, ra; 3, rb|R, r〉
∑
fa,fb

〈Fa, fa;Fb, fb|F, f〉 qTFa;rafa(~x, t)CΓmqFb;rbfb(~x, t)

(4.3)

where spinor indices have been suppressed and 〈Da, da;Db, db|D, d〉 are Clebsch-Gordan

coefficients that couple Da ⊗ Da → D with da, db and d denoting the irrep rows.

SU(3) Clebsch-Gordan coefficients can be calculated from products of SU(2) Clebsch-

Gordan coefficients and isoscalar factors taken from Refs. [106, 107]. C is the charge

conjugation matrix such that γ0 = CγT0 C. Γ is a Dirac gamma matrix which determines

the properties of the diquark operator, such as its spin J (row m), and the full details are

summarised in Table 4.1. Under proper Lorentz transformations, the diquark operator

transforms in the same way as the analogous fermion bilinear with the same Γ and this

is summarised in the table. Under a parity transformation, the operator transforms

to Pδ(~x, t)P−1 = ηP q
T (−~x, t)CΓq(−~x, t) where ηP = ±1 which later determines the

parity of the tetraquark operator (see the table for values). Choosing Γ gives access to

spins up to J = 1 – higher spins or excitations can be obtained by including gauge-

covariant derivatives in a similar way to the single-meson operator constructions. I will

not describe them here since this study is mainly concerned with the low-lying spectrum

as a first demonstration of these operators.

Analogously, the anti-diquark operator consists of antiquarks which belong in the

anti-fundamental representation of SU(3)C and therefore couple to colour irrep 3 or 6̄.
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1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi [γi, γj]

Γ a0 π π2 b0 ρ ρ2 a1 b1

J 0 0 0 0 1 1 1 1

ηP − + + − + + − −

hΓ + − + + + − + −

sΓ − − − + + + − +

Table 4.1: For different Dirac gamma matrices, the table gives the notation Γ used to

denote the gamma matrix, the continuum spin J , the parity factor ηP , the hermiticity

factor hΓ and the spin coupling symmetry sΓ.

The up, down and strange antiquarks belong in the 3̄ irrep of SU(3)F and the charm

antiquark is in the singlet giving access to the flavour representations 1, 3, 3̄, 6̄. The

anti-diquark operator is defined as

δ̄
J [Γ]
RF ;rfm(~x, t) =

∑
ra,rb

〈3̄, ra; 3̄, rb|R, r〉
∑
fa,fb

〈Fa, fa;Fb, fb|F, f〉 q̄Fa;rafa(~x, t)ΓmCq̄
T
Fb;rbfb

(~x, t)

(4.4)

where compared to the diquark operator, the charge conjugation matrix enters after the

Dirac gamma matrix so that under the charge conjugation operator, C δ̄J [Γ]
RF C−1 = δ

J [Γ]

R̄F̄
.

This provides a convenient definition of tetraquark operators with definite G-parity to

be discussed later.

To obtain creation operators, the Hermitian conjugate is taken, δ†(~x, t) = hΓsCsF δ̄(~x, t),

where the conjugation factor coming from the Dirac gamma matrix, hΓ = ±1, is given

in Table 4.1. s = ξ1ξ3 are SU(3) symmetry factors arising from the exchange symmetry

of the colour (sC) and flavour (sF ) Clebsch-Gordan coefficients. The symmetry factor

ξ1 = ±1 arises from reversing the order of the SU(3) irreps,

〈D1, d1;D2, d2|D, d〉 = ξ1〈D2, d2;D1, d1|D, d〉, (4.5)
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and the symmetry factor ξ3 = ±1 arises from complex conjugating the irreps,

〈D1, d1;D2, d2|D, d〉 = ξ3〈D̄1, d̄1; D̄2, d̄2|D̄, d̄〉. (4.6)

In this work, I will use the phase conventions given in Refs. [106, 107].

Due to Fermi symmetry, when the flavour irreps of the (anti)quarks are identical in the

(anti-)diquark operator, the overall colour-flavour-spin coupling must be antisymmetric.

The advantages of using this diquark formulation to construct a tetraquark operator is

that the Fermi symmetry is manifestly apparent and this provides a constraint on the

allowed diquark configurations. The symmetry of exchanging the quarks arising from

spin (CΓ)αβ = sΓ(CΓ)βα is given in Table 4.1.

Tetraquark operators are formed by coupling a diquark operator and anti-diquark

operator to a colour singlet with definite flavour and spin. The only possible diquark

and anti-diquark colour combinations which give a colour singlet are 3̄ ⊗ 3 and 6 ⊗ 6̄

restricting the number of possible diquark–anti-diquark configurations. The flavour

quantum numbers of the tetraquark operator are obtained by coupling the appropriate

flavour irreps of the diquark and anti-diquark and then choosing the desired row. The

tetraquark operator, projected onto momentum ~P is,

T J [Γ1,Γ2]
[R1,R2]F [F1,F2];fm(~P , t) =

∑
~x

ei
~P ·~x

∑
m1,m2

〈J1,m1; J2,m2|J,m〉
∑
r1,r2

〈R1, r1;R2, r2|1〉

×
∑
f1,f2

〈F1, f1;F2, f2|F, f〉 δJ1[Γ1]
R1F1;r1f1m1

(~x, t) δ̄
J2[Γ2]
R2F2;r2f2m2

(~x, t) .

(4.7)

In this chapter, only ~P = 0 is considered and so this operator has definite parity P

which is given by the product of the parity factors, ηP , from the gamma matrices Γ1 and

Γ2. It is important to emphasise the differences between the tetraquark operators which

contains one summation over the volume and the meson-meson operators in Equation 4.1

which contains two summations over the volume. In this sense to gain some intuition, the

two operators have a different spatial structure where the tetraquark operators resemble

the single-meson operators which also contain one summation whilst the meson-meson
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operators can be thought of as extended objects. This point will be discussed in more

detail in Section 4.7 in relation to the results later.

In channels where G-parity is a good quantum number, a tetraquark operator with

definite G-parity is given by,

T J [Γ1,Γ2],PG
[R1,R2]F [F1,F2];fm(~P = ~0, t) = T J [Γ1,Γ2]

[R1,R2]F [F1,F2];fm(~0, t) + G̃ T J [Γ2,Γ1]

[R̄2,R̄1]F [F̄2,F̄1];fm
(~0, t) , (4.8)

where G̃ = ±1. This operator, under G-parity, has eigenvalue given by G = G̃ξJξ1ξ3

where the symmetry factors arise from the Clebsch-Gordan coefficients in Equation (4.7).

ξ1, ξ3 are the symmetry factors from SU(3)F Clebsch-Gordan coefficients discussed ear-

lier in Equations (4.5) and (4.6), and the symmetry factor ξJ = (−1)J−J1−J2 comes from

reversing the order of the SU(2) Clebsch-Gordan coefficients. There is no symmetry fac-

tor arising from the SU(3)C Clebsch-Gordan coefficients since they are always symmetric

for a colour singlet.

Finally, the tetraquark operator is subduced to transform irreducibly under the sym-

metries of the lattice in the same manner as the single-meson operators and is given

by

T Λ[J [Γ1,Γ2]],P (G)
[R1,R2]F [F1,F2];fµ(~P = ~0, t) =

∑
m

SJ,mΛ,µ T
J [Γ1,Γ2],P (G)

[R1,R2]F [F1,F2];fm(~P = ~0, t) , (4.9)

where S are the subduction coefficients. It is straightforward to generalise this to ~P 6= 0

by constructing helicity operators and subducing to the little group of ~P as in the

single-meson case.

4.3 Computing correlation functions with tetraquark

operators

To calculate correlation functions involving tetraquark operators in the distillation

framework, the tetraquark elementals are given by

Ψαβγδ
n1n2n3n4

(~P = ~0, t) = (CΓ1)αβ(Γ2C)γδ
∑

~wp,~xq,~yr,~zs

Cpqrs ξ
†
n3

(~wp; t)ξ†n4
(~xq; t)ξn1(~yr; t)ξn2(~zs; t) ,

(4.10)
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where ni index distillation vectors, Greek letters label the Dirac spinor indices and

Cpqrs are combinations of SU(3)C Clebsch-Gordan coefficients that couple the colour

representations 3̄⊗ 3̄⊗ 3⊗ 3→ 1. Comparing with single-meson operators, the single-

meson elementals in Equation (3.6) are matrices with (4Nvecs)
2 components whilst the

tetraquark elementals are rank-4 with (4Nvecs)
4 independent components. Calculations

using tetraquark operators, involving contractions over elementals and perambulators,

are far more costly than with using the other operators described previously. There-

fore, if the calculation including tetraquark operators is to be feasible, the number of

distillation eigenvectors must not be too large. On the other hand, if the number of

eigenvectors is too small, the tetraquark operator may be too smeared such that it does

not sufficiently interpolate the states of interest and have poor resemblance to a compact

tetraquark. To reach a compromise, the cost of contractions is kept reasonable by using

a relatively small number of eigenvectors for tetraquark operators whilst maintaining a

larger number of eigenvectors for the other operators by introducing a second distillation

operator,

�̃(~xr, ~ys; t) =
Ñvecs∑
ñ=1

ξñ(~xr; t)ξ†ñ(~ys; t) (4.11)

composed of the lowest Ñvecs eigenvectors of the gauge-covariant Laplacian where Ñvecs <

Nvecs. Quark and antiquark fields in tetraquark operators are smeared with �̃ whereas

those in other operators are smeared with �. To see how this reduces the compu-

tational cost, consider a meson-meson operator of the form O ∼ (c̄�Γ�u)(d̄�Γ�c)

smeared with the original distillation operator and a tetraquark operator of the form

T ∼
(
(�̃c)TCΓ(�̃u)

) (
(c̄�̃)ΓC(d̄�̃)T

)
smeared with the smaller operator. The con-

nected contribution to the two-point correlation function between these two operators

is, schematically,

〈O(t)T (0)†〉 ∼ Φn1n2(t)Φn3n4(t)τñ3n1(0, t)τñ4n3(0, t)τn4ñ1(t, 0)τn2ñ2(t, 0)Ψñ1ñ2ñ3ñ4(0) ,

(4.12)

where ni = 1, . . . , Nvecs, ñi = 1, . . . , Ñvecs, and spinor indices are suppressed. Here, the

perambulators τ(t, 0) are 4Nvecs × 4Ñvecs rectangular matrices, Φ(t) are 4Nvecs × 4Nvecs



62 Chapter 4. Exotic Flavour States

square matrices and Ψ(0) is of rank-4 with (4Ñvecs)
4 components. The number of con-

tractions to compute this quantity is clearly smaller than the case when the tetraquark

operator is also smeared with �. The viability of having a lower number of distillation

vectors for tetraquark operators and some tests of varying the number of vectors is

discussed later in Section 4.7.

Another technique to further reduce the computation time involving tetraquark op-

erators is to only calculate one half of the off-diagonal elements involving tetraquark

operators in the two-point correlation function matrix and obtain the other half using

the Hermiticity of the matrix. I performed some viability tests of this method with only

single-meson operators by comparing the extracted spectrum from the full matrix and

the triangular matrix. I generally found a marginal decrease in the statistical resolution

with the triangular matrix but the central values were consistent which indicates this

technique is feasible.

As in the previous chapter, contributions to the correlation functions where a charm

quark and antiquark annihilate are neglected as they are expected to be small due to

OZI suppression. As tests of these general constructions of tetraquark operators, I will

study the isospin-1 hidden-charm sector and the isospin-0 doubly-charmed sector. The

doubly-charmed sector is manifestly exotic as its flavour content cannot be accessed

by a single-meson and due to the exclusion of charm quark annihilation, the isospin-1

hidden-charm sector is effectively exotic in flavour which means there are no single-meson

operators in this channel. Therefore, only meson-meson and tetraquark operators will

be used to calculate the matrix of two-point correlation functions in order to obtain

the spectrum. A schematic representation of the types of Wick contractions required is

shown in Figure 4.1.

Ideally, all of the possible tetraquark operators that can be constructed using this

procedure should be included in the operator basis but the computational cost can

become too high for the calculations to be practical. In some cases, I was able to include

all the tetraquark operator constructions allowed by Fermi symmetry but in the majority
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Ψ(0)Ψ(t)

Φ(0)Φ(t)Φ(0)Φ(t)

Φ(t)Φ(t) Ψ(0) Ψ(0)

Tetraquark

Meson-MesonS
o
u

rc
e

Sink

Operators Tetraquark Meson-Meson

-
Figure 4.1: A schematic representation of the types of Wick contractions required to

compute the two-point correlation function matrices involving tetraquark and meson-

meson operators in this work. Φ (grey) is used to depict the single-meson elementals

and Ψ (red) is used to depict the tetraquark elementals. Lines joining them denote

perambulators.

of channels, the number of available operators is too large so I use a subset of tetraquark

operators that are expected from phenomological models to overlap most strongly onto

low-lying states. Some diquark model considerations are given in Appendix A and to

summarise, it can be seen that tetraquark operators containing a diquark (anti-diquark)

with a γ5 or γ0γ5 gamma matrix and in colour irrep 3̄ (3) are expected to overlap most

efficiently onto a ground-state tetraquark and at the very least, the operator basis should

include such operators. However I found that the operators with γ5 and γ0γ5 structures

were not sufficiently distinct (i.e. the correlation function matrix contains approximately

linearly-dependent rows/columns). Therefore, instead of having redundant operators in

the basis, a selection of other operators were included to diversify the basis. The full list
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of meson-meson and tetraquark operators for each channel that I investigated is found

in the tables in Appendix B.

4.4 Calculational details

The calculations are performed on an anisotropic lattice with pion mass Mπ = 391 MeV

and size (L/as)
3×(T/at) = 163×128 as a first demonstration where the computations are

relatively affordable. Further details of the lattice can be found in Section 2.9. I will use

Nvecs = 64 for meson-meson operators, which is adequate for scattering calculations on

this volume [94], and Ñvecs = 24 for tetraquark operators. Systematic tests of varying the

number of eigenvectors will be presented in Section 4.7. Using several lattice volumes,

the anisotropy was measured to be ξπ = 3.444(6) from the dispersion relation of the pion

[67] and ξD = 3.454(6) from the D [93]. I found, ξηc = 3.484(2), the anisotropy from the

dispersion relation of the ηc on only the 163 volume. Since the anisotropy is only used

in this chapter to compute the location of non-interacting meson-meson energy levels,

which are mostly used as guides, I will use the value ξπ for subsequent calculations.

For stable mesons, the non-interacting meson-meson energy levels are given by the

relativistic dispersion relation in Equation 4.2. The masses of the relevant stable mesons

on this lattice ensemble are given in Table 4.2 and when constructing meson-meson op-

erators, the variationally-optimised operators for these mesons, ΩM
Λµ, are constructed

from linear combinations of single-meson operators. An exception to this is the ρ meson

which was found to be unstable on this lattice, with the mass above the ππ thresh-

old [94]. For this case, the ‘non-interacting M − ρ energy levels’ are considered, where

the energy of M is computed from the relativistic dispersion relation and the ρ ener-

gies are directly obtained from the energy levels on this ensemble as given in Table 4.2,

i.e. E =
√
m2
M + ~p 2

M + ρ ~pΛ. For the corresponding M − ρ operators, the variationally

optimised ρ operators, Ω ρ
Λµ, are given by linear combinations of meson-meson and single-

meson operators [94] since single-meson operators alone do not reliably interpolate the

ρ. It is important to point out that the only uses of the non-interacting energy levels are
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Meson Mass (MeV)

π 391.4(7)

D 1885.1(4)

D∗ 2008.9(6)

Ds 1950.9(3)

D∗s 2071.2(5)

ηc 2964.4(2)

J/ψ 3044.7(2)

χc0 3426.3(6)

ρ ~pΛ Energy (MeV)

ρ
[000]
T1

890(5)

ρ
[100]
A1

1027(4)

ρ
[100]
E2

1089(5)

Table 4.2: Ground state masses of stable mesons (left), and the energy of the lowest-

lying finite-volume energy level for lattice irrep Λ and momentum ~p relevant for the ρ

meson denoted by ρ ~pΛ (right) as measured on this ensemble [67, 94, 76, 93]. Only the

statistical uncertainty is quoted.

to show their location on finite-volume spectrum plots and indicate which meson-meson

operators should be included in the operator basis. I now present computed spectra for

a range of channels, beginning with a detailed discussion of the ΛPG = T++
1 irrep in the

isospin-1 hidden charm sector.

4.5 Isospin-1 hidden charm spectra

To begin, I discuss some of the features of the spectrum computed in the ΛPG = T++
1

irrep of the isospin-1 hidden-charm sector (with flavour content cc̄ll̄ where the light quark

and antiquark are coupled to isospin-1) before discussing other irreps in this sector. The

lowest spin that subduces in this irrep is JPG = 1++. This JPG is interesting because

the charged Zc(3900) state is found in this channel in J/ψπ scattering [108]. The irreps

will be labelled by G-parity which is a good quantum number in isospin-1 whilst charge

conjugation is not a good symmetry. Note that C = −G in isospin-1 for the neutral
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Figure 4.2: Cii(t)e
(mJ/ψ+mπ)t in arbitrary units for the tetraquark operators given in the

legend in the ΛPG = T++
1 isospin-1 hidden-charm channel. Error bars are smaller than

the points.

component. The meson-meson and tetraquark operators used in the calculation are

given in Table B.1 of Appendix B.

The diagonal elements of the matrix of correlators for the three tetraquark operators

in the ΛPG = T++
1 channel are shown in Figure 4.2. The elements are shown with the

exponential time dependence of the J/ψ and the π divided and this shows a plateau

in time. The computed signals are seen to be clean, precise and statistically non-zero.

Effective masses extracted from these correlation functions are found to be in good

agreement with the ground state energy extracted using the variational method later.

Figure 4.3 shows the two-point correlator matrix on timeslice 3. This shows that some of

the off-diagonal elements between tetraquark and meson-meson operators are non-zero.

After solving the generalised eigenvalue problem of the two-point correlation matrix,

the resulting principal correlators for the lowest six energy levels are shown by the points

in the leftmost plots in Figure 4.4. The solid curves give the fit to Equation (2.34), with

χ2/Nd.o.f. ∼ 1, and the resulting energy levels are shown by the boxes in the central plot
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Figure 4.3: Normalised magnitude of elements in the matrix of two-point correlation

functions, |Cij|/
√
CiiCjj, on timeslice 3 in the ΛPG = T++

1 isospin-1 hidden-charm

channel. The first three operators are tetraquark operators and the remaining are meson-

meson operators ordered as in Table B.1.

with the vertical size of the box representing the one-sigma statistical uncertainty on

either side of the mean. The non-interacting meson-meson energy levels are given by the

horizontal lines with an adjacent number indicating the degeneracy if it is larger than

one. As explained earlier in Section 4.1, these degeneracies can arise when the mesons

have non-zero spin. It is observed that the number of energy levels in the extracted

spectrum is equal to the number of non-interacting meson-meson levels in the energy

region considered and all the computed levels lie close to the non-interacting levels.

An important feature to point out is that the higher non-interacting J/ψπ level has

multiplicity two and I was able to extract the correct number of energy levels associated
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with this level since the operator basis contained the relevant meson-meson operators.

Normalised operator-state overlaps are also shown at the bottom of the figure and

it can be seen that every energy level has a dominant overlap onto one meson-meson

operator type. The energy levels have been coloured by their dominant overlap although

it should be emphasised that this is merely a visual aid to compare with the non-

interacting levels. It is interesting to see that the third and fourth levels have dominant

overlap onto the two linearly-independent J/ψπ operators which is not surprising since

two degenerate non-interacting levels are expected in this energy region. It is not possible

to draw quantitative conclusions about the tetraquark operator overlaps because the

absolute normalisations are somewhat arbitrary and renormalisation factors would be

needed to relate the overlaps to physical quantities. The only observation that can be

made is that most states have some overlap onto one or more tetraquark operators.

To assess the effects of including the tetraquark operators in the operator basis, Fig-

ure 4.5 (left panel) shows the ΛPG = T++
1 spectrum calculated with the full basis of

meson-meson and tetraquark operators, with only meson-meson operators and with

only tetraquark operators respectively. No significant deviations are observed between

the spectrum computed using the full basis and that computed using the basis of only

meson-meson operators which suggests that tetraquark operators are not required to

reliably compute the spectrum in this energy region. If only tetraquark operators are

used, some poorly determined energy levels are found but it can be seen that the full

spectrum is not reliably extracted and this suggests that although the tetraquark oper-

ators have some overlap onto the states, they alone do not constitute a sufficient basis

of operators.

The spectrum suggests that there are only weak hadron-hadron interactions as the

energy levels lie close to the non-interacting levels. From previous studies [94], when

a narrow resonance or bound state is present in elastic scattering, an ‘extra’ finite-

volume energy level is observed in that energy region but no evidence for such an extra

level is seen in this spectrum, and the number of levels is equal to the number of non-
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Figure 4.4: The central plot shows the spectrum in the hidden-charm isospin-1 ΛPG =

T++
1 channel using the basis of meson-meson and tetraquark operators in Table B.1.

Boxes give the energies with the vertical extent representing the one-sigma statistical

uncertainty on either side of the mean and, as a visual aid, are coloured according to

their dominant meson-meson operator overlap. Horizontal lines denote non-interacting

meson-meson energies with an adjacent number indicating the degeneracy if it is larger

than one. The corresponding principal correlators are shown on the left ordered by

increasing energy from bottom to top: data (points) and fits (curves) for t0 = 9 are

plotted as λn(t, t0)eEn(t−t0) showing the central values and one sigma statistical uncer-

tainties. Histograms on the right show operator-state overlaps for each energy level.

The operators are given in the legend and the overlaps are normalised as in Figure 3.3.



70 Chapter 4. Exotic Flavour States

ηcπ

DD

J/ψ

D*D

J/ψπ

ηcρ

DD*

D*D*

A

DD

ηcπ
J/ψπ

1
+-

T1
+-

T1
++

E
n
e
rg

y
 (

M
e
V

)

2

2

2

ρ

*

DD*

J/ψρ

χc0π

DD*

J/ψρ

J/ψρ

3300

3400

3500

3600

3700

3800

3900

4000

3400

3500

3600

3700

3800

3900

4000

3850

3900

3950

4000

4050

4100

4150

4200

4250

Figure 4.5: As in the spectrum plot of Figure 4.4 but showing the spectra for the isospin-

1 hidden-charm sector with ΛPG = T++
1 , A+−

1 , T+−
1 . Within each plot, the left, middle

and right column shows the spectrum determined using the full basis of meson-meson

and tetraquark operators, only meson-meson operators and only tetraquark operators

respectively.

interacting energy levels. Overall, this gives no indications for a bound state or narrow

resonance in this channel. However, this discussion is not directly applicable when

considering coupled-channel scattering or broad resonances, for example in Refs. [97, 98].

To draw stronger conclusions and determine if there are bound states or resonances, a

Lüscher analysis is necessary to obtain the scattering amplitudes from the finite-volume

spectrum. This would require calculations at non-zero momentum and/or different

volumes which is beyond the scope of this study. An important conclusion is that the

addition of a class of operators resembling compact tetraquarks has little consequence

on the finite-volume spectrum and, in turn, the scattering amplitudes.
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Moving to other channels in the isospin-1 hidden charm sector, extracted spectra for

the ΛPG = A+−
1 and T+−

1 irreps are shown in Figure 4.5 in the middle and right panels

respectively. The lowest spin in each of these irreps is respectively JPG = 0+− and 1+−.

In general, a similar pattern of features is seen as was found for ΛPG = T++
1 : there

are no significant deviations between the spectra calculated using the full basis and

only meson-meson operators, the spectrum is not reliably determined if only tetraquark

operators are used, and for the full basis, the number of energy levels is equal to the

expected number of non-interacting meson-meson levels and they lie close to the non-

interacting levels. Furthermore, the operator-state overlaps are found to follow the same

qualitative pattern as shown in Figure 4.4. From this, similar conclusions can be made

in these channels that the meson-meson interactions are weak and that there are no

clear signs of a bound state or narrow resonance.

4.6 Doubly-charmed spectra

Turning to the doubly-charmed sector, Figure 4.6 shows spectra with quark content

ccl̄l̄ in the ΛP = T+
1 , E

+ and T+
2 isospin-0 channels where the lowest spin JP = 1+

appears in T+
1 and the lowest spin JP = 2+ subduces in E+ and T+

2 . Figure 4.7 shows

spectra with quark content ccl̄s̄ with isospin-1/2 in the irreps ΛP = A+
1 and T+

1 . The

operators used to compute the spectra are given in Table B.2 of Appendix B. Similar

conclusions can be made as the ones in the hidden charm sector: there are no significant

deviations between the spectra including and excluding tetraquark operators, and the

spectra can not be reliably extracted using only tetraquark operators. Using the full

basis of operators, the number of energy levels in each spectrum is equal to the number

of expected non-interacting meson-meson energy levels in the relevant energy region.

For most of the energy levels, they lie close to the non-interacting meson-meson energy

levels. Because the basis of operators used was sufficiently diverse, I am able to extract

many nearly-degenerate energy levels when the meson-meson levels have multiplicity

greater than one. Each energy level is found to have a dominant meson-meson operator
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overlap. Another conclusion is that the addition of a class of operators resembling

compact tetraquarks does not significantly alter the extracted finite-volume spectra

As the flavour of this sector is manifestly exotic and must contain at least four quarks,

there are no quark-antiquark states in these channels which makes it particularly suitable

to search for compact tetraquark states. In the isospin-0 JP = 0+, 2+ channels, the

DD and D∗D∗ levels are forbidden in S-wave due to Bose symmetry since the flavour

wavefunction is antisymmetric in isospin-0 whilst the spin and spatial wavefunctions are

symmetric giving an overall antisymmetric wavefunction. These channels are appealing

to look for a tetraquark since the low-lying meson-meson states are forbidden. If a low-

lying state is found far below the allowed non-interacting meson-meson energy levels,

there would be little doubt on it having a compact tetraquark structure. A JP = 0+

tetraquark would appear in the ΛP = A+
1 irrep and, although a plot is not shown, I

calculated the spectrum in this channel with the operators given in Table B.2 and did not

find any energy levels below the first allowed non-interacting meson-meson energy level,

DD(2S), where D(2S) is the first radial excitation of the pseudoscalar in the charm-light

sector and MD(2S) ≈ 2600 MeV [93]. For a JP = 2+ state, the breaking of rotational

symmetry can be exploited here, with the JP = 2+ irrep subducing into the two lattice

irreps ΛP = E+, T+
2 , by noticing that a meson-meson state subduces differently into

the lattice irreps depending on the momentum and lattice irrep combinations of the

meson-mesons. This can be seen in Figure 4.7 where the E+ and T+
2 irreps contain

different non-interacting meson-meson levels. On the other hand, a compact JP = 2+

state would subduce into both of the irreps ΛP = E+, T+
2 and the energy levels would

appear in both channels. Unfortunately, no such energy levels appearing in both irreps

are seen in the figure.

One difference from the hidden charm sector is seen in the ΛP = T+
1 channels in

Figures 4.6 and 4.7. In the isospin-0 channel, the non-interacting DD∗ and D∗D∗

levels can have have degeneracy two. I have reliably extracted two energy levels (the

third and fourth) that are found to have dominant overlap onto the two relevant DD∗
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Figure 4.6: As Figure 4.5 but for the isospin-0 doubly-charmed sector with quark flavour

ccl̄l̄. Dashed lines indicate kinematic thresholds where a non-interacting level is not

expected. Dotted lines indicate non-interacting meson-meson levels where the corre-

sponding operators have not been included in the operator basis. Ellipses indicate that

additional energy levels have been extracted in/above these regions but they are not

plotted as the relevant meson-meson operators have not been included in these energy

regions.

operators, and two energy levels (fifth and sixth) that have dominant overlap onto the

two corresponding D∗D∗ operators. It can be seen that each pair of energy levels is

non-degenerate and shifted away from the non-interacting levels. The presence of an

energy level below the non-interacting level suggests that there could be an attractive

interaction. In order to rigorously quantify this statement, a scattering analysis is

needed to relate the finite-volume spectrum to the scattering amplitudes via the Lüscher

formalism. As seen in the later chapters, a robust constraint of the scattering amplitudes
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Figure 4.7: As Figure 4.6 but for the isospin-1
2

doubly-charmed sector with quark flavour

ccl̄s̄.

is made from a large number of energy levels which can possibly be obtained in different

volumes and overall non-zero momentum. There are not enough energy levels obtained

in this calculation to reliably utilise the Lüscher formalism and further finite-volume

spectrum calculations are beyond the scope of the study but it would be desirable to

calculate this in the future. It is important to stress though that a reliable determination

of the coupled S and D-wave scattering amplitudes can only be performed when all

these multiple energy levels are robustly extracted. For the isospin-1/2 channel, similar

conclusions can be made.
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4.7 Systematics and stability of the extracted spec-

tra

Before discussing and interpreting the results further, I consider some systematic effects

on the finite-volume spectra and present some tests of varying the operator basis and

the number of distillation vectors.

4.7.1 Systematic uncertainties on the spectra

As a first application of these tetraquark operator constructions, the calculations were

performed on a relatively small lattice volume, L ∼ 2 fm, and there is a possibility

that this is too small to distinguish the spatial structures of the extended meson-meson

and compact tetraquark. To illustrate this statement more concretely, the tetraquark

operator can be Fierz rearranged as a product of meson-meson operators. Consider a

simple tetraquark operator in the continuum in finite volume V ,

T (x) = nT (δbdδce ∓ δbeδcd)
[
cbα(x)Pαβqcβ(x)

] [
c̄dγ(x)Qγδ q̄eδ(x)

]
, (4.13)

where Latin indices are for colour and Greek indices denote spin. The Kronecker deltas

give the combined SU(3)C Clebsch-Gordan coefficients for (3⊗3)⊗(3̄⊗ 3̄)→ 1 via either

3̄⊗3 (minus) or 6⊗ 6̄ (plus). nT is a normalisation constant that is either 1/
√

12 (minus)

or 1/
√

24 (plus). P and Q are shorthand for the products of the charge conjugation

matrix and Dirac gamma matrix within the diquark and antidiquark. Expanding out

the colour coupling gives

T (x) = nTP
αβQγδ

[
−(c̄γcα)(q̄δqβ)∓ (c̄γqβ)(q̄δcα)

]
, (4.14)

where the colour and spatial indices are now suppressed. A Fierz rearrangement of

the spin indices can be applied to rewrite PαβQγδ = RγαSδβ or UγβV δα where these

new matrices are given by a linear combination of a basis of Dirac gamma matrices

ΓI , i.e. R =
∑

I RIΓI , S =
∑

I SIΓI , etc. Therefore, this tetraquark operator can be
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rewritten as

T (x) = nT [−(c̄Rc)(q̄Sq)∓ (c̄Uq)(q̄V c)] , (4.15)

where spin indices have been suppressed. Combining the matrices into one Fierz co-

efficient gives, PαβQγδ =
∑
RIΓ

γα
I SJΓδβJ =

∑
FIJΓγαI ΓδβJ . The Fierz coefficients, FIJ ,

can be projected out with the orthogonality relation Tr(ΓIΓJ) = 4δIJ to give FIJ =

1
16

Tr(ΓIQΓTJP
T ). A similar arrangement can be made for the UV term. From this ex-

ample, it is straightforward to see that any tetraquark operator can generally be written

in terms of a basis of two-meson operators for some Fierz coefficients, FIJ , as

T (x) = nT
∑
I,J

FIJMI(x)MJ(x). (4.16)

Projecting the tetraquark operator onto definite momentum p,

T (p) = nT
∑
I,J

FIJ

∫
d3x eipxMI(x)MJ(x), (4.17)

and writing the mesons in momentum space gives

T (p) = nT
∑
I,J

FIJ

∫
d3x eipx

1

V

∑
k

e−ikxMI(k)
1

V

∑
l

e−ilxMJ(l). (4.18)

As a reminder, this operator is considered in finite volume V and the continuum. Per-

forming the integral gives a Kronecker delta and after the summation,

T (p) =
1

V
nT
∑
I,J

FIJ
∑
k

MI(k)MJ(p− k). (4.19)

Suppose then that a meson-meson operator with the form

O(p) =
∑
k

M1(k)M2(p− k). (4.20)

has overlap value, Z, onto a meson-meson state |M1(k)M2(p−k)〉. In the non-interacting

limit, the overlap of a tetraquark operator onto this meson-meson state is nTF12Z/V

which is mainly suppressed by the volume. This suggests that if the volume is not big

enough, there is no way to distinguish the two different structures and the operators
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are not completely linearly independent and sufficiently diverse. Figure 4.3 does show

the off-diagonal element between the tetraquark and meson-meson operators is non-

zero which could give an indication that there is not a large volume suppression. This

discussion shows the importance on the volume dependence and further calculations

would be required to give some better indication on how the results vary with the

volume but this is beyond the scope of the study.

Another systematic effect could arise from calculating with unphysically heavy light

quarks, corresponding to Mπ = 391 MeV, and the presence of tetraquarks or molecules

could depend on this. It was concluded from the results in this study that there may not

be a bound state or narrow resonance in the scattering amplitudes but it is interesting to

ask how varying the light quark mass could change this conclusion. If a pole does exist

in the scattering amplitudes, changing the quark mass parameter continuously would

merely change the position of the pole within the complex plane. Such movement of

poles in the complex plane as the light quark mass is reduced has been observed in other

lattice QCD calculations [75, 98]. Ultimately, calculations with light-quark masses close

to their physical values are necessary to compare with experiment and from another

perspective, studying how the spectra change as the quark masses are varied would give

insight into the relevant QCD interactions and could be compared with expectations in

different models.

Other systematic effects have been discussed in previous sections such as finite L/T

and discretisation effects but these are expected to be small.

4.7.2 Varying the operator basis

There have already been some tests of varying the operator basis in this chapter. Com-

parisons were made between the spectra using the full basis of meson-meson operators

and tetraquark operators and using only meson-meson operators, and it was found that

there were no significant changes between the two. Additionally, the full finite-volume

spectra could not be extracted if only tetraquark operators were used.
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Figure 4.8: As Figure 4.6 but for the ΛP = T+
1 isospin-0 ccl̄l̄ channel with different

bases of operators: A uses the full basis of meson-meson and tetraquark operators, B

uses only meson-meson operators, C uses only meson-meson operators minus one DD∗

operator as described in the text, and D uses the operators as in C supplemented with

the tetraquark operators.

To illustrate what could happen if a sufficiently diverse set of meson-meson opera-

tors is not used, Figure 4.8 shows spectra in the isospin-0 doubly-charmed ΛP = T+
1

channel computed with different operators bases. The meson-meson energy levels can

have degeneracies in the non-interacting limit as explained earlier due to the multiple

partial waves. Column A shows the previous spectrum computed using the full basis

of meson-meson and tetraquark operators and the number of energy levels is equal to
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the number of expected non-interacting meson-meson energy levels in the energy re-

gion of interest. In column B, only meson-meson operators are used to calculate the

spectrum and the same conclusion can be made. Column C shows the spectrum using

only meson-meson operators without the D
[100]
A2

D∗
[100]
E2

operator which is relevant for the

non-interacting DD∗ level near 4100 MeV. It can be seen that there is one less energy

level and the second DD∗ level moves somewhere in between which is a behaviour that

can occur when there are not enough linearly-dependent operators in the operator basis

to reliably extract the complete spectrum [94]. This test shows the clear necessity to

ensure the operator basis is sufficiently diverse to extract the spectrum and it is obvious

that an attempt to determine the scattering amplitudes from the incomplete spectrum

would incorrect. Another reason for requiring an appropriate operator basis can be seen

in column D which shows the spectrum calculated with the operators as in column C

with the tetraquark operators included – an additional energy level is found compared

to column C in the energy region considered. This demonstrates the necessity of ac-

counting for all the relevant meson-meson energy levels in the energy region of interest

as otherwise, there is a danger that this level could be mistakenly interpreted as a signal

for the presence of a compact tetraquark state.

4.7.3 Varying the number of distillation eigenvectors

If the number of distillation eigenvectors used for the tetraquark operators is too small,

the operator may not be able to efficiently interpolate states of interest as it may be too

smeared and no longer resemble a compact tetraquark. However, since the computa-

tional cost involving tetraquark operators scales much more strongly than meson-meson

operators with the number of distillation eigenvectors, this number can not be too large

if the calculations are to be practically feasible. I present a systematic test of varying

the number of distillation eigenvectors.

The spectrum in the isospin-0 doubly-charmed ΛP = T+
1 channel is shown in Figure 4.9

using different numbers of distillation vectors for tetraquark operators, Ñvecs = 16, 24, 32,
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Figure 4.9: As Figure 4.6 but showing the ΛP = T+
1 isospin-0 ccl̄l̄ spectrum calculated us-

ing tetraquark operators with different numbers of distillation vectors, Ñvecs = 16, 24, 32.

The leftmost columns use the full basis of meson-meson and tetraquark operators, and

the rightmost columns use only tetraquark operators.

with the full basis of meson-meson and tetraquark operators, and only tetraquark opera-

tors. It can be seen that the results are not highly sensitive to the number of distillation

eigenvectors. In addition to this test, I also computed the spectra from all the pre-

vious channels using a smaller number of eigenvectors for the meson-meson operators,

i.e. Nvecs = Ñvecs = 24. The results were found to be consistent with the spectra shown

in the previous sections. Overall, these tests suggest that the results are not highly

dependent on the number of distillation eigenvectors. It has been shown in Ref. [109]

that a small number of distillation vectors is sufficient to extract finite-volume spectra

provided one does not consider higher momenta, higher spin, or highly excited states.
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Because the channels are at zero momentum and the study is focused on relatively

low-lying states, this further supports the conclusions made here.

4.8 Discussion and comparisons with other studies

I will now discuss the results in the context of expectations from phenomological models

and observations from experiment, and compare with previous lattice calculations. In

Appendix A, I describe a simple one-gluon exchange model of a diquark where the

two quarks interact via a colour-colour spin-spin interaction and show that the most

attractive diquark and anti-diquark configurations have (colour irrep,spin) = (3̄, 0) and

(3, 0) respectively. Therefore, the most favourable tetraquark that can form has JP = 0+

and on the lattice, this state would subduce into ΛP = A+
1 . Additionally, the spin-

spin interaction is suppressed by the quark mass and so, some models expect spin-

1 diquark configurations with heavy quarks to form and, combining with the spin-

0 diquarks, produce a tetraquark multiplet [110]. The lightest multiplet in S-wave

contains tetraquarks with JP = (0, 1, 2)+ with JP = 1+ subducing into ΛP = T+
1

and JP = 2+ subducing into the E+, T+
2 irreps. Besides the mass of the quarks, this

one-gluon exchange model interaction does not depend on the flavours of the quarks.

However, when the flavour irreps of the two quarks (antiquarks) are identical, Fermi

symmetry requires the overall diquark (anti-diquark) configurations to be antisymmetric

and this restricts the allowed combinations.

In the isospin-1 hidden charm sector, the flavour irreps of the individual quarks (anti-

quarks) in the diquarks (anti-diquarks) are distinct and therefore, no extra constraints

from Fermi symmetry are imposed on the allowed configurations. Diquark–anti-diquark

models [110, 111], that attempt to explain the X(3872) and the charged Z states, sug-

gest that the lightest tetraquark multiplet has JPG = 0+−, 1++, 1+−, 2+− and I have

performed a thorough investigation in all these channels except for JPG = 2+−. In the

ΛPG = A+−
1 channel which contains JPG = 0+−, expected to be the most attractive,

and the ΛPG = T++
1 and T+−

1 channels, which contain JPG = 1++ and 1+− respectively,
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there are no hints of a bound state or narrow resonance in the extracted spectra, let

alone significantly attractive meson-meson interactions.

Comparing with experiment, there is currently no state with JPG = 0+−, nor is there

any charged charmonium-like candidate with undetermined JPG that is light enough

to be identified as the lowest-lying JPG = 0+− tetraquark. The charged Zc(3900) has

been observed with JPG = 1++ [15] and is a suitable candidate for a tetraquark but

I do not see signs of such a narrow resonance in the computed ΛPG = T++
1 spectrum.

One plausible way to reconcile this is to explain Zc(3900) as a threshold cusp where

it does not originate dynamically from QCD as a pole in the scattering amplitude but

instead, the cross section is enhanced due to kinematic effects from the opening of

thresholds [25]. Further investigation on this conclusion is beyond the scope of the

study but it is interesting to note that a candidate Zc(3900) has also not been seen

in similar lattice QCD calculations which also extracted the finite-volume spectrum

with meson-meson and tetraquark operators [101] and other finite-volume spectrum

calculations with meson-meson operators [112, 113, 114] although none of these have

included all the relevant meson-meson operators like the work here. There is currently

no experimental candidate confirmed to have JPG = 1+− but the analogous isospin-1

partner of the X(3872) would appear in this channel. No signals for such a tetraquark

state was found in the ΛPG = T+−
1 channel and this agrees with a previous lattice QCD

calculation [103]. However, not all of the energy levels in this study were extracted due

to not using a sufficiently diverse set of operators. However, as isospin breaking may be

important for the X(3872), simulations with Nf = 1+1+1 flavours and electrodynamics

would be necessary but these calculations are difficult.

Moving to the doubly-charmed sector, possible diquark configurations are further

constrained by Fermi symmetry compared to the hidden charm sector. The (3̄, 0) and

(6, 1) cc diquarks are forbidden as they are symmetric under the interchange of quarks

and only the (3̄, 1) and (6, 0) diquarks are allowed. In the one-gluon exchange model,

the interaction is repulsive for these allowed cc configurations and is least repulsive for
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(3̄, 1) However, the repulsion is suppressed by the mass of the charm quark such that

doubly-charmed tetraquarks may be allowed. The most attractive (3, 0) q̄q̄ anti-diquark

configurations are required to be antisymmetric in flavour belonging in F = 3 and have

isospin I = 0. Therefore, combining the (3̄, 1) cc diquark with the (3, 0) q̄q̄ anti-diquark

gives the most favourable tetraquark with quantum numbers (I)JP = (0)1+. Other

attractive configurations include (I)JP = (0)0+, (0)2+ containing a (6̄, 1) anti-diquark,

and (I)JP = (1
2
)0+, (1

2
)1+ from picking the I = 1

2
components of the (3, 0) anti-diquark.

However, no signs of these tetraquarks are seen in any of the computed spectra in

the wide range of doubly-charmed channels. The lack of significant deviations found

between the spectra including and excluding tetraquark operators is consistent with

the results presented in Ref. [102] which computed the spectrum in the (I)JP = (0)1+

channel. That study used meson-meson and tetraquark operators but, because the

operator basis was more restricted than the one in this chapter, they were unable to

extract all of the multiple levels which correspond to degenerate meson-meson levels

in the non-interacting limit. Computations presented in Ref. [115] find an attractive

interaction in the (I)JP = (0)1+ channel using a less direct approach in which lattice

QCD computations are used to extract a potential which is then used to determine

scattering amplitudes. They do not find a bound state or resonance for a range of light

quark masses corresponding to Mπ = 410− 700 MeV and conclude that this attractive

interaction gets stronger with decreasing pion mass, motivating studies of how the results

vary as the light quark mass decreases towards the physical point.

In one-gluon exchange models, the colour-colour spin-spin interaction is always repul-

sive for the cc diquark, but the repulsion is suppressed by the quark mass which sug-

gests that doubly-bottomed tetraquarks may be more favourable than doubly-charmed

tetraquarks. This is supported by lattice QCD calculations of finite volume-spectra

using bases of meson-meson and tetraquark-like operators which suggest the existence

of a (I)JP = (0)1+ doubly-bottomed tetraquark [116]. Further support comes from

lattice calculations of the potential between two static bottom quarks in the presence



84 Chapter 4. Exotic Flavour States

of two light antiquarks [117, 118, 119, 120, 121]. This potential is found to lead to a

bound state with (I)JP = (0)1+. My computed doubly-charmed (I)ΛP = (0)T+
1 spec-

trum is not inconsistent with there being an attractive interaction although there were

no obvious signs of a bound state in this channel. This is also consistent with recent

phenomological studies [122, 123, 124] which suggest the doubly-bottom tetraquark is

bound and the doubly-charmed tetraquark is unbound. Further calculations using bot-

tom quarks and a Lüscher analysis would highly be of interest. Computations involving

the bottom quark with the Clover fermion action used here are not straightforward since

atmb is not small leading to large discretisation effects. One possibility is to calculate

bottom quark perambulators in future studies with alternative fermion actions such as

Non-Relativistic QCD [125] or the Fermilab approach [126].

Overall, this study has improved on previous lattice QCD investigations of tetraquarks

in two ways. The first is that a diverse set of tetraquark and meson-meson operators are

used to calculate the finite-volume spectrum such that a large number of energy levels

could be extracted reliably. For the first time in a lattice QCD calculation, the multiple

energy levels associated with meson-meson energy levels which would be degenerate

in the non-interacting limit were robustly extracted. The second way is that spectra

across a wide range of channels were able to be studied due to the construction of a

very general class of tetraquark operators that can be applied to any channel. A generic

feature of tetraquark models is that they predict the formation of a large multiplet of

states across many different quantum numbers and some of the channels that I studied

have never been calculated before. One important conclusion of this work was that the

tetraquark operators did not have a significant effect on extracting the finite-volume

spectrum. This suggests that a basis of meson-meson operators is reliable to extract

spectrum with multiquark states. With this in mind, I will describe in the next chapter

an explicit calculation of finite-volume spectrum using single-meson and meson-meson

operators in the open-charm sector and use it to determine the scattering amplitudes

using the Lüscher method.
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DK Scattering

I will now spend the remainder of this thesis discussing scattering calculations, using

the Lüscher formalism to relate the finite-volume spectrum to the scattering amplitudes,

having established the necessary techniques to extract finite-volume spectrum. One par-

ticularly interesting amplitude is the isospin-0 DK → DK amplitude which is relevant

for the experimental D∗s0(2317) [127] in the isospin-0 charm-strange JP = 0+ sector.

This channel is interesting because quark model predictions [11, 14] expect a broad res-

onance above the isospin-0 DK threshold but experiment finds this state to be narrow

and below the threshold. It is even more puzzling given that this state is expected to

be heavier than the corresponding charm-light state, D∗0(2400) [128], since the strange

quark is heavier than the light quarks. In contrast, the D∗0(2400) is in agreement with

quark model expectations as it is found to be a broad resonance above the analogous

Dπ threshold. These peculiarities have led to D∗s0(2317) being considered as a candi-

date for an exotic meson that does not align with the quark-antiquark picture. Some

examples of the interpretations are to explain D∗s0(2317) as a DK molecule, a compact

tetraquark, or a conventional quark-antiquark state with coupled channel effects; see

Ref. [19] for a comprehensive review. It is interesting also to point out that this is part

of a bigger puzzle since similar discrepancies are seen in the JP = 1+ channel with the

observation of the Ds1(2460) [129] below the D∗K threshold in disagreement with quark

model expectations.

Due to the proximity of the D∗s0(2317) to the DK threshold at roughly 40 MeV

away, it is clear that a thorough lattice QCD investigation involving this state should

include effects from this threshold. Some recent dynamical lattice QCD calculations of

85
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spectrum in this channel have not included the relevant DK operators to account for

this threshold and the mass is generally overestimated in the results [130, 30, 93, 83, 77]

whilst calculations to include the effects of the DK threshold find results more in line

with experiment [44, 45, 48]. Refs. [44, 45] have limitations from using small volumes

and a low number of energy levels to constrain the amplitudes. Ref. [48] is calculated

with Nf = 2 dynamical quarks and quenched strange quarks and this may have a large

systematic effect given that DK contains a strange quark. A more detailed comparison

of the results here with these other studies will be presented later. In this chapter, I

will improve the studies in this area by calculating numerous energy levels of the finite-

volume spectra on a sufficiently big lattice with Nf = 2 + 1 dynamical quarks. Using a

substantially large basis of operators, many energy levels are obtained at rest and non-

rest frames. From this spectra, I constrain elastic isospin-0 DK scattering amplitudes

across a large energy region and determine the singularity structure of the scattering

amplitudes. Before showing the results, I will give a review on the Lüscher method and

the particular implementation that I use to obtain the scattering amplitudes from the

finite-volume spectra.

5.1 Scattering theory

To begin the discussion on scattering amplitudes and set conventions, I will give a basic

review of scattering theory here for elastic two-body scattering where there is only one

channel. Consider the kinematics of two spinless particles with masses m1,m2. The

energy in the centre-of-momentum (cm) frame where the total 3-momentum of the

system is zero is related to the Mandelstam s = (k1 + k2)2 by

√
s = Ecm =

√
m2

1 + ~k2 +

√
m2

2 + ~k2 (5.1)

where ~k is the cm momentum. Solving this equation for the magnitude of ~k gives

k =

[
1

4s

(
s− (m1 +m2)2

) (
s− (m1 −m2)2

)]1/2

. (5.2)
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Counting the degrees of freedom of this two-body system in the cm frame, there are

eight momentum components but p2
i = m2

i and momentum conservation results in only

two degrees of freedom to describe the particles. Usual choices are either Ecm and the

scattering angle θ of ~k in the plane of scattering or the Lorentz invariant Mandelstam

variables s and t.

Scattering is described by the scattering matrix (S-matrix) and can be separated into

a trivial part and the Lorentz invariant t-matrix as

S = 1 + 2iρt (5.3)

where ρ = 2k/Ecm is the phase space. The t-matrix is related to the invariant two-

body scattering amplitude by M = 16πt. Above threshold, unitarity of the S-matrix

(SS† = 1) from conservation of probability imposes

t− t† = 2iρtt† (5.4)

which implies Im t = ρtt† and Im t−1 = −ρ. Since unitarity constrains the imaginary

part of the t-matrix, it is sufficient to describe the real part by rearranging the unitarity

relation leading to

(t−1 + iρ)† = (t−1 + iρ) ≡ K (5.5)

which gives a Hermitian matrix K. As the S-matrix is invariant under time-reversal

symmetry, the K-matrix must be a symmetric matrix and is therefore real. This K-

matrix will be one convenient way to describe the scattering amplitudes later.

It is convenient to do a partial wave decomposition of the t-matrix, tl, in partial wave

l,

t(Ecm, θ) =
∑
l

(2l + 1)Pl(cos θ)tl(Ecm). (5.6)

Unitarity allows for tl to be described in terms of a single real phase shift, δl(Ecm), in

partial wave l that depends on the energy,

tl(Ecm) =
1

ρ
eiδl sin δl(Ecm). (5.7)
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An alternative way to write tl in terms of the phase shift is to invert this expression

and take the real part to obtain Re t−1
l = ρ cot δl. The unitarity relation constrains the

imaginary part to give

tl =
1

ρ cot δl − iρ
. (5.8)

To obtain observables from the amplitudes, the cross section for partial wave l is given

by

σl =
4π

k2
(2l + 1)ρ2|tl|2 =

4π

k2
(2l + 1) sin2 δl. (5.9)

A naive definition of resonances is to identify them as ‘bumps’ that appear as a standard

Breit-Wigner shape in the cross section. For the elastic case, a peak occurs when

δl(M) = π/2 and M is the mass of the resonance. However, this is not so straightforward

for coupled channels or broad resonances which do not appear as simple bumps in the

cross section [131]. A more rigorous definition is to identify resonances and bound states

as the singularity content of the scattering amplitudes in the complex s plane. The

square-root in Equation (5.2) means there is a branch cut beginning at s = (m1 +m2)2

that can be chosen to extend to positive infinity which leads to two Riemann sheets.

The first sheet has Im(k) > 0 and is known as the physical sheet as it contains the real

energy axis where physical scattering occurs, s+ iε with ε approaching zero for positive

values. The second sheet has Im(k) < 0 and is known as the unphysical sheet. Close to

a pole, the t-matrix has the form

tl(s) ∼
g2

s0 − s
(5.10)

where g can be interpreted as the coupling of the pole to the amplitude. Poles above

threshold on the real axis are forbidden by the unitarity relation Im t = ρ|t|2. On

the physical sheet, causality forbids poles off the real energy axis [132] and therefore,

the only poles that are allowed are located on the real axis below threshold and these

are identified to be bound states with mass
√
s0. Poles far below threshold should not

significantly affect physical scattering but shallow bound states may be observable in

the cross section. On the unphysical sheet, poles off the real axis can appear as complex
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conjugate pairs and are identified as resonances with mass and width given respectively

by the real and imaginary parts,
√
s0 = m ± i1

2
Γ. The pole with negative imaginary

part has the larger effect on physical scattering as it lies closer to the real energy axis

whereas the other pole has to do a full loop around the unphysical sheet to influence

the real axis. It is also easy to see that the width of the resonance determines how far it

is from the real axis and narrow resonances will give rise to a larger bump in the cross

section around its mass whereas broad resonances further away may not have this simple

bump-like structure. This interpretation of bound states and resonances as poles in the

scattering amplitudes suggests that they should not be thought of as completely distinct

as the only difference is where the position of the pole lies on the two Riemann sheets.

In fact, it has been seen in lattice QCD calculations that the pole associated with the ρ

meson in isospin-1 P -wave ππ scattering transitions from a bound state to a resonance

as the mass of the light quarks is decreased to their physical values [69, 94, 75].

5.2 Scattering in a finite-volume

The desired quantities to calculate are hadronic scattering amplitudes but these cannot

be calculated directly in lattice QCD for the following reasons. Firstly, there is no clear

definition of an asymptotically free state to construct the S-matrix in a finite-volume.

The particles cannot be separated infinitely far apart due to the periodic boundary

conditions. Furthermore, the correlation functions calculated in finite-volume give a

discrete set of poles along the real energy axis and there is no two sheet structure.

This can be seen explicitly in Equation (2.30) when the two-point correlation functions

are expressed in energy space and rotated back to Minkowski space. Compare this

to the infinite-volume correlation functions in the standard Källén-Lehmann spectral

representation which contain a continuous spectrum of multiparticle states beginning

at threshold, and any bound states appear as poles below threshold. It is clear that

resonances which appear above threshold as poles in the complex plane are not described

by the finite-volume correlation functions but on the other hand, this difficulty does
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not apply to bound states. The main conclusion from these considerations is that

scattering cannot be done in a finite-volume. As lattice QCD is necessarily calculated

using finite-volumes, it seems like there is no hope to directly calculate the hadronic

scattering amplitudes. The solution to this problem is to find some mapping between

the finite-volume physics and the infinite-volume physics in which scattering is well-

defined and this mapping will be referred to here as the Lüscher quantisation condition

after Lüscher’s pioneering work on this topic [36, 37, 38, 39].

An illustration of this relation can be made for a simple non-relativistic system where

two identical spinless bosons, separated by distance |x|, scatter in one-dimension. In

the infinite-volume, suppose the interaction is described by a potential V (|x|) with a

finite range. Far away from the potential, the outgoing wavefunction asymptotically

approaches that of a free two-boson system, ψ(|x|) ∼ cos(p|x|+ δ(p)) where δ(p) is the

usual scattering phase-shift that describes the scattering. Computing the phase-shift for

a given interaction potential is a textbook exercise by obtaining the wavefunction within

the interaction and matching the two wavefunctions at the boundary of the interaction.

Suppose now that this system is placed in a finite-volume of size L which is much larger

than the range of the interaction. Applying periodic boundary conditions by matching

the asymptotic wavefunction and its derivative at x = ±L/2 gives the quantisation

condition

p =
2π

L
n− 2

L
δ(p) (5.11)

where n is an integer. This quantisation condition gives the relationship between the

finite-volume spectrum in a box of size L, determined by p, and the infinite-volume

scattering information δ(p). Since n can only take integer values, the finite-volume

spectrum here is discrete due to the periodic boundary conditions. If there is no inter-

action, δ(p) = 0 and the quantisation condition recovers the quantisation of momentum

in a finite-volume. It can be seen that a non-zero interaction leads to deviations from the

free-particle spectrum. This simple example illustrates that scattering information can

be inferred by measuring the differences between the computed finite-volume spectrum
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and the energy levels for when there are no interactions.

This is the general idea to find a correspondence between the finite-volume and

infinite-volume physics. A Lüscher quantisation condition has been generalised to 3+1

dimensions in a relativistic field theory framework to describe two-particle scattering

processes for non-rest frames, any number of channels, and any two scattering particles

of arbitrary spin [133, 134, 135, 136, 137, 138]. I will give a brief summary following

Ref. [134] since the derivation is quite involved. In the field theory framework, it can be

shown that the difference between the finite-volume two-point correlation functions and

the infinite-volume two-point correlation functions is given by some volume-dependent

on-shell quantities plus some off-shell contributions that are exponentially suppressed

by e−miL where mi are the scattering particle massses [37]. As explained above, the

finite-volume correlation functions contain a discrete set of poles along the real en-

ergy axis. These poles are volume-dependent and therefore, must originate from the

volume-dependent on-shell quantities since the infinite-volume correlation function has

no volume-dependence. The on-shell quantities are functions of energy and will diverge

to give a finite-volume pole when they satisfy the quantisation condition,

det[F−1(Ecm, ~P , L) +M(Ecm)] = 0. (5.12)

This condition links the matrix of infinite-volume scattering amplitudes M and F−1

which is a matrix of known energy-dependent functions [138] that depends on box length

L in a frame with total momentum ~P . For some specified scattering amplitudes, the

discrete spectrum in a L3 volume is the set of energies for when this determinant con-

dition is satisfied. The exact form of these two matrices depends on the number of

channels and the spin of the scattering particles, but as mentioned earlier, I will con-

centrate this study on elastic pseudoscalar-pseudoscalar scattering. In this case, the

two quantities are matrices in angular momentum space, l. M = 16πt is the matrix of

elastic scattering amplitudes decomposed in terms of partial waves, Ml = 16πtl, and it

is diagonal in angular momentum since it is an infinite-volume quantity. On the other

hand, F−1 is a finite-volume quantity and is not diagonal in angular momentum space
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~P LG(~P ) Λ(P ) lN

[000] OD
h

A+
1 01, 41

T−1 11, 31

[n00] Dic4

A1 01, 11, 21, 31, 42

E2 11, 21, 32, 42

[nn0] Dic2

A1 01, 11, 22, 32, 43

B1 11, 21, 32, 42

B2 11, 21, 32, 42

[nnn] Dic3

A1 01, 11, 21, 32, 42

E2 11, 22, 32, 43

Table 5.1: The pattern of subductions of pseudoscalar-pseudoscalar partial waves, l ≤ 4,

into some lattice irreps, Λ, where N is the number of embeddings of this l in this irrep.

~P is given in units of 2π
L

and n is an integer.

due to the breaking of rotational symmetry. As discussed later, F−1 can be subduced to

a particular lattice irrep, Λ, such that it is block diagonal with non-zero elements only

when l subduces into Λ. The pattern of subductions of l ≤ 4 into the lattice irreps that

I will consider is given in Table 5.1.

The determinant condition is exact up to the off-shell e−miL corrections, where m−1
i

governs the range of the interaction, which is analogous to the condition in the one-

dimensional case discussed earlier that the volume has to be much larger than the range

of the interaction. This quantisation condition is only valid for two-body scattering.

Progress to extend the quantisation condition to account for scattering with three or

more particles is an active area of research. Currently, a quantisation condition for three

identical spinless particles has been formally derived [40, 41, 42, 43] but a practical

implementation in lattice QCD calculations has not yet been made. Because of this

restriction, scattering calculations cannot rigorously be performed above three-body

thresholds. This restriction is one reason why scattering amplitude calculations in lattice
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QCD are typically performed with unphysically heavy light quarks because the three-

body thresholds are further up in the spectrum and offer a larger energy window to

determine the two-body scattering amplitudes.

5.3 Solving the quantisation condition

To make use of the quantisation condition in practice, it is convenient to recast it in a

different form by replacing M = 16πt and F = i
16π
ρ(1 + iF) where F(Ecm, ~P , L) is a

known real function.1 The most general form of F can be read off from Equation (23)

of Ref. [138] which can be reduced to the spinless single-channel case for the purposes

of these subsequent calculations. The quantisation condition now reads

det[1 + iρt(l)(1 + iF)] = 0. (5.13)

The matrices are of infinite dimension with the rows and columns labelled by the partial

waves l. To be able to calculate the determinant on a computer, the matrices are

truncated up to some number of l. This truncation is justified since contributions from

higher partial waves are suppressed at low energies with δl(k) ∼ k2l+1.

Since the energy levels I extract in lattice calculations are obtained within a lattice

irrep Λ at momentum ~P , this quantisation condition can calculated to obtain the energy

levels within a given irrep by projecting F ,

F ~P ,Λ
ln;l′n′δΛΛ′δµµ′ = Sl,mΛ,µ,nF

~P
lm;l′m′S

l′,m′

Λ′,µ′,n′ (5.14)

where n labels the n’th embedding of l subducing into the lattice irrep Λ. Writing out

fully now the quantisation condition,

det
[
δll′δnn′ + iρt(l)

(
δll′δnn′ + iF ~P ,Λ

ln;l′n′

)]
= 0 (5.15)

where t(l) is diagonal in l since it is an infinite-volume quantity and F ~P ,Λ is block

diagonal with non-zero elements only when l subduces into Λ as tabulated in Table 5.1.

1Beware of some references that label F by M which should not be confused with the scattering

amplitude.



94 Chapter 5. DK Scattering

Given specified scattering amplitudes up to some l, the energy levels within a finite-

volume for lattice irrep Λ at momentum ~P can be calculated by finding the energies

that satisfy this determinant equation. However, this is the opposite of what is wanted

as lattice QCD calculates the energy levels from which the scattering amplitudes need to

be determined. The next section will describe how to calculate the scattering amplitudes

from the finite-volume energy levels using the quantisation condition.

5.4 Determining scattering amplitudes

In the simplest of cases, scattering is dominated by the lowest partial wave when consid-

ering low-energy scattering since contributions from all the higher partial waves follow

a hierarchy, δl ∼ k2l+1, and can be neglected. Then the matrices, t(l) and F , are 1× 1

matrices and the quantisation condition reads

cot δl(Ecm) = − cotφΛ
l (E, ~P , L) (5.16)

where δl is the lowest contributing phase shift and cotφΛ
l is a known function that is

determined from F . Computing the scattering amplitude simply requires inserting an

extracted energy level of the finite-volume spectra into this equation to get a single value

of δl at that energy. By extracting many energy levels in many volumes and at different

momenta, many phase shift points can be mapped out across an energy region.

This method quickly fails once more than one partial wave is considered as the quan-

tisation condition becomes one equation containing multiple unknown δl(Ecm), and is

underconstrained. An alternative method is to assume that the scattering amplitudes

are smooth functions of energy and parametrise the energy dependence of the scattering

amplitudes in terms of some number of parameters, {ai}. The Lüscher quantisation

condition can be solved to obtain the finite-volume spectrum {Epar
cm } for the set of

parameters which are fit to reproduce the extracted spectrum {Ecm}. Following the
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implementation of Refs. [67, 95], a χ2 function is minimised

χ2({ai}) =
∑
~PΛn
~P ′Λ′n′

[Ecm(~PΛn)−Epar
cm (~PΛn; {ai})]C−1(~PΛn; ~P ′Λ′n′)[Ecm(~P ′Λ′n′)−Epar

cm (~P ′Λ′n′; {ai})]

(5.17)

where Epar
cm (~P ′Λ′n′; {ai}) is the n’th solution of the quantisation condition for a t-matrix

parametrised with parameters {ai} and C is the correlation matrix between extracted

energy levels from lattice calculations, Ecm(~PΛn).

The parametrisation of the scattering amplitudes should ensure that unitarity is sat-

isfied and analytical continuation into the complex s plane is possible. For low-energy

scattering, the scattering amplitudes are well described by the effective range expansion

k2l+1 cot δl =
1

al
+

1

2
rlk

2 +O(k4) (5.18)

where the parameters al and rl are known as the scattering length and effective range.

This parametrisation is flexible as it can describe repulsive scattering or attractive scat-

tering and can give rise to a pole in the scattering amplitudes.

A more general approach of parametrising the t-matrix is to use the K-matrix de-

scription, in a slightly different form compared to Equation (5.5),

t−1
l (s) =

1

(2k)l
K−1
l (s)

1

(2k)l
+ I(s) (5.19)

where the (2k)−l factors ensure the correct behaviour at kinematic thresholds [139] and

I(s) is a function which must have Im[I(s)] = −ρ(s) above threshold and Im[I(s)] = 0

below threshold to satisfy unitarity. There is some remaining freedom in its choice and

this will be discussed in the next paragraph. The advantage of utilising the K-matrix

formulation is that Kl(s) is a real from unitarity and is parametrised in terms of some

real parameters whilst I(s) is constrained by unitarity above threshold. Although not

seen in this work, the formulation is particularly useful for coupled-channel scattering

but in this case, Kl(s) is a 1 × 1 matrix. The energy dependence of the K-matrix can

be parametrised by a pole term and a sum of polynomials

Kl(s) =

(
Ng∑
n=0

g
(n)
l sn

)2

1

m2
l − s

+

Nγ∑
n=0

γ
(n)
l sn (5.20)
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(m1+m2)
2 s

Figure 5.1: A sketch of the complex plane with branch point at s = (m1 + m2)2 and

branch cut running to positive infinity. The closed contour is continuously deformed

around the branch cut and does not cross any singularities.

whereml, {g(n)
l }, {γ

(n)
l } are real parameters. To reduce the reliance on a single parametri-

sation in this work, many parametrisations, with all combinations up to Ng = Nγ = 1,

will be used to attempt to reproduce the finite-volume spectrum.

As mentioned earlier, I(s) must have Im[I(s)] = −ρ(s) above threshold and Im[I(s)] =

0 with some remaining freedom in choosing I(s). One of the simplest choices is to pick

Re[I(s)] = 0 above threshold. A more sophisticated approach relying on analyticity

and unitarity is the Chew-Mandelstam prescription [140] that analytically continues the

phase space below threshold, through a dispersion relation relating the real part to the

imaginary part. Recall Cauchy’s integral formula around some closed contour,

I(s) =
1

2πi

∮
ds′

I(s′)

s′ − s
. (5.21)

If there is a branch point at sthr = (m1 + m2)2 with a cut running to positive infinity,

the closed contour can be continuously deformed around the branch cut to run along
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the real axis without crossing singularities to give the integral

I(s) =
1

2πi

∫ ∞
sthr

ds′
I(s′ + iε)− I(s′ − iε)

s′ − s
(5.22)

plus an integral around a circular path that approaches zero as the contour is pushed

towards infinity. A sketch of this contour is given in Figure 5.1. Using the Schwartz

reflection principle, I(s) = I(s∗)∗, gives I(s+ iε)− I(s− iε) = 2iIm[I(s)] but unitarity

gives the imaginary part of I(s) so

I(s) = − 1

π

∫ ∞
sthr

ds′
ρ(s′)

s′ − s
. (5.23)

This integral is divergent but it can be regulated through a subtraction to give

I(s) = I(sthr)−
s− sthr

π

∫ ∞
sthr

ds′
ρ(s′)

(s′ − s)(s′ − sthr)
. (5.24)

This integral can be solved and the solution is given in Ref. [96]. An extra freedom

remains in the subtraction point: a convenient choice used here is to choose I(sthr)

such that Re[I(s = m2
l )] = 0 at the position of the pole, m2

l , of the Kl-matrix. At the

end of the day, the choice of I(s) is arbitrary but the Chew-Mandelstam prescription is

numerically tractable since it provides a smoother transition across the threshold. For

this reason, I will use the Chew-Mandelstam prescription with the subraction at the

pole of the K-matrix in all parametrisations.

5.5 Finite-volume spectrum

Having reviewed the methods to obtain the scattering amplitudes from the finite-volume

spectra, the objective now is to determine the isospin-0 DK scattering amplitudes. I will

now present the relevant finite-volume spectra in the isospin-0 charm-strange channel

that I obtained from lattice QCD calculations. These computations are performed on the

Mπ = 236 MeV and 323 ensemble described in Section 2.9 with Nvecs = 256. Since the

calculation of correlation functions contains disconnected contributions, the distillation

framework is particularly suitable for handling these contributions. As discussed at the
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start of Chapter 3, the anisotropy was calculated from the relativistic dispersion relation

for a stable meson to be ξπ = 3.453(6) from the pion, ξK = 3.449(4) from the kaon,

and ξD = 3.443(7) from the D. These numbers are statistically consistent with each

other. A conservative approach to incorporate an estimate of systematic uncertainties,

that encompasses all of these anisotropies, is to take ξ = 3.453(17) in the subsequent

calculations. One important check is that the product of the lightest scattering particle

mass and the length of the box, MKL > 9, is sufficiently large to ensure that finite-

volume corrections are exponentially suppressed and the Lüscher quantisation condition

is valid.

The energy levels in the extracted finite-volume spectrum will be calculated at rest

and in frames with momentum ~P = 2π
L
~N . The finite-volume spectrum in the cm frame

is obtained by boosting the extracted energy, atE, to the rest frame

(atEcm)2 = (atE)2 −
(

2π

ξL/as

)2

~N2. (5.25)

The positions of the non-interacting meson-meson energy levels are given by Equa-

tion (4.2) and are boosted back to the cm frame as above. The energies of the relevant

stable mesons and thresholds are given in Table 5.2. The σ meson was found to be a

broad resonance on this ensemble [98], and so in order to extract energy levels related

to the σ meson, the Dsππ and D∗sππ levels will be interpolated by ‘Dsσ’ and ‘D∗sσ’

operators where the σ operator is variationally optimised and contains a linear combi-

nation of single-meson and meson-meson operators in a similar manner to how the ρ

was treated in Section 4.3. Operators for other channels will be used to disentangle the

energy levels and ensure the correct finite-volume spectrum is reliably extracted. The

scattering amplitudes will be constrained in the elastic DK region which is far below

the three-body thresholds.

The extracted finite-volume spectra are shown in Figures 5.2 and 5.3 labelled by

overall momentum and lattice irrep, [~P ]Λ(P ), calculated using a large basis of single-

meson and meson-meson operators in Table B.3 and B.4 of Appendix B. The points

show the extracted finite-volume energy levels in the cm frame in lattice units (atEcm);
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Meson Mass Threshold Energy

π 0.03928(18) DK 0.39266(14)

η 0.09299(56) Dsη 0.4165(6)

K 0.08344(7) D∗K 0.4134(2)

D 0.30922(12) D∗sη 0.4374(5)

D∗ 0.3304(2) Dsππ 0.4020(3)

Ds 0.32344(15) D∗sππ 0.4230(3)

D∗s 0.34442(17)

Table 5.2: Left table gives relevant stable meson masses on this lattic ensemble [75, 77]

and right table shows the relevant kinematic thresholds measured in lattice units. Only

the statistical uncertainty is shown.

black points in the elastic region are used in the subsequent scattering analysis whilst

grey points are not. The dashed lines give the kinematic multi-meson thresholds and

the curves give the non-interacting energy levels.

Before performing a scattering analysis, some brief comments can be made on the

qualitative features of the spectra. Figure 5.2 shows the spectra which have l = 0 as

the lowest partial wave contribution. As a reminder, the subduction of partial waves is

shown in Table 5.1. The presence of an ‘extra’ energy level compared to the number of

non-interacting energy levels in the energy region atEcm = 0.38 − 0.41 and shifts away

from the non-interacting energy levels suggest that there is a significant interaction.

These features could possibly arise from a bound state or resonance in the scattering

amplitudes in JP = 0+. In the non-rest frames which contain l = 1 contributions, there

is an energy level at atEcm ≈ 0.34 far below the kinematic thresholds. This low-lying

energy level is not seen in the rest frame ΛP = A+
1 which does not contain l = 1 partial

contributions so this suggests that there is a deepy bound state in JP = 1+. Further

evidence for this deeply bound state can be seen by the presence of a similar energy

level in the irreps in Figure 5.3 which have l = 1 as the lowest partial wave contribution.
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Figure 5.2: Finite-volume spectra, expressed in lattice units in the cm frame, in the

[~P ]Λ(P ) = [000]A+
1 , [100]A1, [110]A1, [111]A1, [200]A1 irreps. Points show the energy lev-

els with error bars giving the one-sigma statistical uncertainty on either side of the mean;

black points within the elastic region indicate they are used in the subsequent scattering

analysis whilst grey points are not. The dashed lines give the DK (blue), Dsη (green),

D∗K (yellow) thresholds and the solid curves give the corresponding non-interacting

meson-meson energies. These irreps have l = 0 as the lowest partial wave contribution.

It is also interesting to note the presence of an extra energy level below the D∗K

threshold in the non-rest frames at atEcm ≈ 0.41 in Figure 5.3 but it is not seen in the

rest frame. These energy levels could arise from a bound state in the D∗K scattering

amplitudes in JP = 1+ which would contribute to the non-rest frames whilst being

forbidden by parity in ΛP = T−1 . This bound state would possibly be related to the

experimental Ds1(2460) state but no further conclusions can be made without deter-

mining the D∗K amplitudes. An extended coupled channel analysis would be desirable

for future studies but this is beyond the scope of this current work.
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Figure 5.3: As Figure 5.2 but for the [~P ]Λ(P ) =

[000]T−1 , [100]E2, [110]B1, [110]B2, [111]E2 irreps and the black dashed line gives

the Dsππ threshold. These irreps have l = 1 as the lowest partial wave contribution.

5.6 DK scattering amplitudes

In the simplest case where partial wave contributions from l ≥ 1 are assumed to be

suppressed and neglected, the Lüscher quantisation condition reduces to Equation (5.16)

and the S-wave phase shift can be solved directly to obtain a single point for each energy

level. Taking the one energy level above threshold in the [000]A+
1 irrep in Figure 5.2,

the corresponding phase shift point is shown by the black point in Figure 5.5. To

obtain more phase shift points from the non-rest frame irreps, it is assumed that the

lowest-lying energy level comes entirely from the l = 1 contribution as explained in

the previous section and they should be excluded. The remaining energy levels in the

elastic region are then assumed to only receive partial wave contributions from l = 0.

The corresponding phase shift points that are mapped out by these energy levels are

shown by the grey points in Figure 5.5. It can be seen that the phase shift points appear
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Figure 5.4: The black (grey) points give the S-wave phase shift obtained from the energy

levels in the rest (non-rest) frames in Figure 5.2 directly from Equation (5.16) (assuming

that l ≥ 1 partial wave contributions are negligible). The open circle at atEcm =

0.3926 gives the location of the DK threshold and the next circle indicates the opening

of the Dsη threshold. For the sample parametrisation described in Equation (5.26),

the red (orange) inner band gives the resulting S-wave (P -wave) phase shift with the

size of the band representing the one-sigma statistical uncertainty on either side of

the mean, and the outer band represents the systematic uncertainty associated with

varying the anisotropy and scattering meson masses within their uncertainties. The

black circles above the energy axis show the position of the finite-volume energy levels

used to constrain the scattering amplitudes within the energy region shown and the

orange circles show the energy levels obtained from the sample parametrisation with

the error bars showing only the statistical uncertainty.
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to lie on the same curve. The rapid dip in the phase shift at the opening of the DK

threshold could result from the presence of a nearby pole in the scattering amplitudes.

To proceed further, I will include partial wave contributions from l = 0, 1 and assume

l ≥ 2 contributions are negligible. Taking the 23 finite-volume energy levels from the

spectra in Figures 5.2 and 5.3, I show a sample fit of a K-matrix parametrisation con-

taining a pole term and a constant for l = 0 and a pole term for l = 1 that described

the extracted spectra well,

m0 = (0.659± 0.008± 0.09) · a−1
t



1 0.53 −0.10 0.01 −0.02

1 −0.89 −0.05 −0.14

1 0.03 0.12

1 0.09

1


g

(0)
0 = 1.25± 0.03± 0.2

γ
(0)
0 = −2.7± 0.2± 0.2

m1 = (0.34445± 0.00011± 0.00010) · a−1
t

g1 = 2.1± 0.3± 0.1

χ2/Ndof = 26.70
23−5

= 1.48. (5.26)

The first uncertainty gives the statistical uncertainty whilst the second uncertainty arises

from systematically varying the anisotropy and scattering hadron masses within their

uncertainties. The matrix shows the correlation between each parameter. Figure 5.4

shows the resulting phase shift from this parametrisation for l = 0 (l = 1) given by the

red (orange) inner band with the size of the band representing the one-sigma statisti-

cal uncertainty on either side of the mean. The outer band represents the systematic

uncertainty from varying the anisotropy and scattering hadron masses. The phase shift

curve obtained from this parametrisation agrees with the phase shift points obtained

previously. The finite-volume spectrum reproduced by this parametrisation from the

Lüscher quantisation condition is given by the orange points and is consistent with the

extracted finite-volume spectrum shown by the black circles above the energy axis. It

is also important to note that the extracted finite-volume spectrum is spread across

a large energy region giving good constraints of the scattering amplitudes across this

energy region.
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Figure 5.5: As Figure 5.4 but each red (orange) solid curve shows the S-wave (P -

wave) phase shift obtained from all the scattering amplitude parametrisations listed in

Appendix C.

Another good description of the extracted spectra is given by an effective range ex-

pansion for l = 0 and a K-matrix parametrisation containing a pole term for l = 1,

a0 = (−44.9± 1.1± 0.3) · at


1 −0.34 −0.35

1 0.10

1

m1 = (0.34445± 0.00012± 0.00008) · a−1
t

g1 = 2.2± 0.3± 0.1

χ2/Ndof = 26.77
23−3

= 1.34 . (5.27)

In physical units, the scattering length is found to be a0 = −1.47(4)(1) fm. A seperate

fit that included the effective range term did not improve the χ2/Ndof and r0 was found

to be statistically consistent with zero.
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Many different parametrisations of the scattering amplitudes were used in an attempt

to describe the data. In the end, eight parametrisations successfully reproduced the

finite-volume spectrum with χ2/Ndof < 1.6 and parameters that were not statistically

consistent with zero, and the full details are listed in Appendix C. The P -wave ampli-

tudes used the same K-matrix parametrised with a pole term in all cases as introducing

new parametrisations did not improve the fit or gave parameters that were consistent

with zero. The resulting phase shifts for l = 0 (l = 1) are shown by the solid red (orange)

lines for each parametrisation in Figure 5.5 and it is found that there is practically no

difference from varying the scattering amplitude parametrisations.

Another method to depict scattering amplitudes is to plot the quantities k2l+1 cot δl

– these are shown in Figure 5.6 for S and P -wave. The points in S-wave obtained from

solving the Lüscher condition directly are in agreement with the curves obtained from

the parametrisations. It can be seen by eye, k cot δ0 ≈ −0.02 is constant in this energy

region, giving the scattering length to be a0 ≈ −50 · at and the effective range is zero

which is consistent with the earlier results in Equation (5.27). From Equation (5.8), a

bound state pole in the scattering amplitude arises when k2l+1 cot δl = ik2l+1 and the

intersection gives the position of the pole on the real axis of the physical sheet below

threshold. The quantity, ik2l+1, is plotted by the dashed curves in the figure and this

intersection is seen which provides further evidence that there is a bound state in the

scattering amplitudes.

Figure 5.7 shows the quantity ρ2|t2l | which is proportional to the DK → DK cross

section. The lack of enhancement in P -wave is consistent with there being a deeply

bound state far below threshold which is not expected to have a large impact on phys-

ical scattering. A sharp rise is observed in S-wave which is indicative of a pole in

the scattering amplitude. However, it is interesting to note that this feature does not

have the standard Breit-Wigner shape. An understanding of how this enhancement in

the cross section originates can be made by studying the singularity structure of the

scattering amplitudes.
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Figure 5.6: As Figure 5.5 but for the quantities k cot δ0 (top panel) and k3 cot δ1 (bottom

panel). The dashed curves show ik2l+1.

5.7 Singularity structure of scattering amplitudes

To rigorously determine the bound state and resonance content, the scattering ampli-

tudes are analytically continued into the complex s plane. Poles are found numerically

by performing an integral around a closed contour which would be zero if there are no

poles within the contour by the residue theorem.

In P -wave, a bound state pole is found on the real axis of the physical sheet far

below the threshold. Due to how deeply bound this state is, it is not expected to
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Figure 5.7: As Figure 5.5 but for the quantity ρ2|tl|2.

strongly influence physical scattering above threshold and this is consistent with what

was shown in the previous section. Averaging over the eight parametrisations gives the

mass in physical units of the bound state to be 2066(1) MeV with the error encompassing

the uncertainty from all the parametrisations. I identify this bound state, with JP = 1−,

to be the experimental vector D∗s(2112) state [15].

For the more interesting S-wave case, I find a bound state pole on the real axis of

the physical sheet close to the DK threshold and the position of the pole in physical

units is plotted in Figure 5.8 for the eight parametrisations. The mass of the bound

state is consistent for each parametrisation and averaging gives 2331(3) MeV with the

uncertainty encompassing the total uncertainties from the individual parametrisations.

The binding energy of the bound state is found to be ε = 21(3) MeV and the proximity

of the pole to the threshold should have a significant effect on physical scattering which
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Figure 5.8: The position of the pole on the real axis of the physical sheet extracted from

various parametrisations of the S-wave amplitudes identified by the number as listed in

Appendix C. The inner error bars show the one-sigma statistical uncertainty and the

outer bars give the uncertainty arising from the uncertainty of the scattering meson

masses and the anisotropy. The open circle on the axis gives the position of the DK

threshold and the blue band represents the statistical uncertainty.

is observed by the enhancement in the cross section in Figure 5.7. The coupling of the

pole is plotted in Figure 5.9 – there is no parametrisation dependence and averaging

finds g = 1375(24) MeV with the uncertainty encompassing the uncertainty from each

parametrisation. No further poles were found on either sheet in the energy region of

constraint.

5.8 Pole interpretation

Comparing with experiment, the bound state in S-wave can be identified with the

experimental D∗s0(2317) with mass 2317.7(6) [15] which is found to lie slightly below the
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Figure 5.9: As Figure 5.8 but for the coupling of the pole in S-wave.

DK threshold with a binding energy of roughly 40 MeV. Since a complete error budget

for the lattice QCD calculation arising from discretisation effects, tuning of parameters,

scale setting, etc. has not been computed, it is not surprising to see that there are

some mild quantitative differences. For example, a rough estimate of the systematic

uncertainty from discretisation effects was found to be approximately 20 MeV [93] which

brings these results in agreement with the experimental results. For future studies, a

precision calculation with control over all systematic uncertainties would be desirable. In

spite of this, the qualitative features of the experimental state and the extracted bound

state in S-wave are in good agreement. The experimental state has been observed to

decay to Dsπ which is highly suppressed and arises via π0 − η mixing due to isospin

breaking. Since the light quarks used in the lattice QCD calculation are degenerate,

this isospin violating decay is not allowed and the corresponding scattering amplitudes

would need to calculated on a lattice with non-degenerate light quarks. The state

has also been measured to decay to D∗sγ and the necessary hadronic matrix elements, to

calculate the transition rate, can be obtained within lattice QCD. It would be interesting

to compute this relevant quantity for future studies although this would require a set of
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new techniques not introduced in this work.

Since the experimental D∗s0(2317) is not well described by quark models, this suggests

it is not a purely compact cs̄ state and its proximity to the DK threshold has led to it

being considered as a bound DK molecule. One possible way to test this statement is

to measure the compositeness of the computed bound state i.e. measure the probability

to find the bound state, |b〉, in an elementary compact state, |d〉, Z =
∑

d |〈d|b〉|2. The

bound state is purely compact if Z = 1 and on the other hand, it is purely composite if

Z = 0.

Weinberg derived a relation to determine the compositeness of a state that is valid

for the following criteria [141]: the state is bound, the state couples to a two-particle

threshold with a small binding energy, and this two-body channel has zero orbital an-

gular momentum. Since all of these conditions are reasonably satisfied for this S-wave

shallow bound state, the relation can be used and is given by

a0 = −2
1− Z
2− Z

1√
2µε

+O (1/β) , r0 = − Z

1− Z
1√
2µε

+O(1/β) (5.28)

that relates the scattering length and effective range to Z where µ is the reduced mass

of the two-body DK channel, ε is the binding energy of the bound state, and β is the

range of the interaction. 1√
2µε
� 1/β is ensured when the state is loosely bound with

small binding energy which was found to be ε = 21(3) MeV from the previous section.

Suppose the bound state is purely composite i.e. Z = 0 which predicts a0 = −1.50(11)

fm and r0 is zero. This is consistent with the effective range parameters computed

in Equation (5.27) where the scattering length in physical units is found to be a0 =

−1.47(4)(1) fm. This supports Z ≈ 0 and suggests that the bound state is mostly a

composite state.

Alternatively, Z can be computed directly by solving for Z and putting in the value

a0 obtained from the effective range parametrisation in Equation (5.27). This gives

Z = 2 ± 33% to be a compact state. Overall, assuming that the Weinberg criteria is

reasonably satisfied, the conclusion is that this relation suggests that the bound state is

comprised of mostly a composite DK state.
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5.9 Comparison with other lattice QCD studies

It is interesting to compare this result with a similar lattice QCD calculation of the Dπ

scattering amplitudes [47]. That calculation was performed on the 163 and 243 lattice

with Mπ = 391 MeV as described in Section 2.9 and an additional 203 lattice. In S-wave,

a bound state was found on the real axis of the physical sheet roughly 1 MeV below

the Dπ threshold. One can think of that bound state pole as a ‘lighter’ version of the

bound state pole extracted here in the DK amplitudes where MK = 500 MeV and the

mass parameters of the quarks have been varied. In other words, the flavour content

of the two scattering particles looks like (cq̄1)(q1q̄2) where q1 = q2 are light quarks in

the Dπ case and for the DK case, q1 is a light quark and q2 is a strange quark. It is

intriguing to see that the position of the pole moves closer towards the threshold as the

mass parameter of the quarks is changed. This suggests that for quark masses closer

to the physical point, the pole in Dπ scattering could transition from a bound state to

a resonance once the relevant threshold becomes light enough for the decay to happen.

This could possibly explain the difference in stability of the D∗s0(2317), which is narrow,

and the D∗0(2400), which is broad, may be due to the heaviness of the strange quark

compared to the light quarks.

Comparing with other lattice QCD calculations that determined the DK scattering

amplitudes, Lang et. al [44, 45] find a bound state 37(17) MeV below the DK threshold

and the effective range parameters were found to be a0 = −1.33(20) fm and r0 = 0.27(17)

fm. A reliable constraint of the scattering amplitudes requires multiple energy levels

across a wide energy region but that study is limited in this way since only three energy

levels are extracted. Bali et al. [48] find a bound state with mass 2348(4)(+6) MeV

and a binding energy of 26(4)(-3) MeV. The scattering length and effective range were

found to be a0 = −1.49(0.13)(−0.30) fm and r0 = 0.20(0.09)(+0.31). Although they

obtain multiple energy levels from different lattices, they do not extract energy levels in

non-rest frames. A more worrying concern is that the strange quark is quenched in their
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calculations and there is no rigorous justification that this does not have a significant

effect on the results, especially when considering that DK scattering contains a valence

strange quark. To give some support to this statement, it has been shown that lattice

QCD results of the ρ resonance in ππ scattering are highly sensitive to the quenching

of the strange quark [142]. The results I present here overcome the issues with these

other studies by calculating on a large lattice with Nf = 2 + 1 dynamical quarks. By

constructing a large basis of operators of diverse structures, many energy levels were

obtained in the rest frame and non-rest frames to give a good constraint of the scattering

amplitudes across a large energy region. Overall, the results that I have obtained are in

reasonable agreement with the other studies.
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Conclusions and Outlook

At the start of this thesis, I stated that the goal is to further understand exotic mesons

from a first principles approach in lattice QCD. Here, an account of how this goal was

achieved will be given. To summarise Chapter 3, I calculated extensive spectra in the

charmonium sector across a wide range of channels and energies. The use of anisotropic

lattices, distillation and the variational method with a large basis of properly constructed

operators allows for a reliable extraction of excited state energies. With a reliable spin

identification method, the energies of states up to J = 4 were computed including states

with exotic JPC quantum numbers showing that QCD realises exotic states beyond

quark models. Most of the states in the spectra were found to be consistent with the

n2S+1LJ pattern predicted by quark models. In addition, a number of states, including

those with exotic JPC quantum numbers, were identified to belong in the lightest and

first excited hybrid meson supermultiplet. The spectra were compared at two different

light quark masses and it was found that there were no qualitative differences between

the two spectra. Some of the identified hybrids could possibly be candidates for the

experimental states, such as X(4260) or X(4360), but a further understanding of these

extracted states can be made in future studies by studying their unstable properties or

determining the radiative transitions between states. The radiative transition requires

the transition matrix elements, 〈f |Jµ|i〉, which can be obtained from lattice QCD by

calculating three-point correlation functions. Such calculations have been made under

the quenched approximation e.g. [49, 50] and it would be desirable for future studies to

perform a dynamical computation of these matrix elements.

One limitation with the spectra calculations in Chapter 3 was that the unstable na-

ture of the states above threshold was not taken into account. To begin tackling this

113
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problem, I gave a review on how to construct meson-meson operators in Chapter 4 and

then presented a general construction of operators resembling compact tetraquarks that

transformed irreducibly under the symmetries of the lattice, have a range of colour-

flavour-spin structures and respected other discrete symmetries. As a demonstration,

these two types of operators were used to calculate spectra in exotic flavour sectors

where the flavour quantum numbers are not accessible by quark models. In the isospin-

1 hidden charm and doubly charmed sector, it was found that the tetraquark operators

did not have any significant effect on extracting the spectra. For the first time ever, the

spectra was reliably extracted by using a sufficiently diverse basis of operators to ex-

tract all the relevant meson-meson states when the mesons have spin. The calculations

of these channels were performed on a small lattice to maximise efficiency as a demon-

stration of the feasibility of these operators and it would be interesting to calculate with

bigger volumes. Another avenue would be to perform similar calculations in the bottom

sector. Finally, the spectra did not show qualitative signs of a bound state or narrow

resonance being present in these channels. This presents a puzzle for the exotic charged

Z states such as Zc(3900). One possible explanation for this is that Zc(3900) can be

identified as a threshold cusp which does not originate dynamically from a pole in the

scattering amplitudes. To strengthen these conclusions, the scattering amplitudes could

be reliably determined in future studies by obtaining more energy levels on different

volumes and non-rest frames.

In Chapter 5, a review was given of the Lüscher method that relates the finite-volume

spectrum of lattice QCD to the scattering amplitudes in infinite-volume. Utilising the

techniques described in the thesis, I computed the finite-volume spectra relevant for

isospin-0 DK scattering and obtained the elastic DK scattering amplitudes from the

Lüscher formalism. By investigating the singularity structure in the scattering ampli-

tudes, a bound state pole was found in S-wave near threshold. The qualitative features

of this pole were found to be consistent with the experimental D∗s0(2317) and it was

found that this bound state is mostly a composite DK state, from the Weinberg com-
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positeness relation, which is interesting phenomologically. Further understanding of this

state could be made in future lattice QCD studies by calculating its radiative transition

to D∗sγ which has been measured experimentally and can also be compared with different

phenomological models. Another interesting quantity to compute is the charge radius of

the state which can be obtained from the relevant matrix elements. This quantity could

shed further insight on the compositeness and size of the bound state. In summary, the

results here show that lattice QCD is a promising method to further understand exotic

mesons from a first principles approach.
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Appendix A

Diquark Models

A.1 One-gluon exchange model

The first model to consider is a simple one-gluon exchange model of a diquark where

the two quarks interact via a colour-colour spin-spin interaction term [143]

H = −αsA12(λ1 · λ2)(~S1 · ~S2) (A.1)

where A12 is a model-dependent term that behaves like 1/m1m2 in the heavy quark

limit, λ are the Gell-Mann matrices that span the Lie algebra of SU(3)C and ~S is the

spin of the quark. The relative factors that arise for the different colour irrep R and

spin S combinations are given in Table A.1. From this, it can be seen that the most

attractive diquark is the (R, S) = (3̄, 0) configuration and similarly, the most attractive

anti-diquark is the (R, S) = (3, 0) configuration. Hence, a scalar JP = 0+ tetraquark

built from this diquark–anti-diquark combination is expected to be the most favourable

formation. Whilst other configurations are less favourable, this one-gluon exchange

interaction is suppressed by the masses of the quarks such that in the heavy quark limit,

a rich multiplet of tetraquark states in S-wave with JP = 0+, 1+, 2+ is expected to be

observed in models such as Ref. [110]. In the case when the flavour irreps of the quarks

within the diquark are identical, Fermi symmetry constrains the number of possible

configurations. If the flavour irrep is antisymmetric, then the only allowed diquarks

are the attractive configurations, (3̄, 0) and (6, 1). Conversely, when the flavour irrep is

symmetric, the only allowed diquarks are the repulsive configurations, (3̄, 1) and (6, 0).

One consequence of this is that the doubly-charmed cc diquark is always repulsive with

the least repulsive diquark being (3̄, 1). However, the repulsive interaction is suppressed
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by the charm quark mass and so it is possible that such doubly-charmed tetraquarks

may exist in the heavy quark limit.

S

0 1

R
3̄ 1

2
−1

6

6 −1
4

1
12

Table A.1: The relative factors of the colour-colour spin-spin interaction within the

diquark in equation (A.1) for various colour irreps and spin.

A.2 Non-relativistic diquark model

Another model to consider is a non-relativistic quark model where a diquark state at

rest with orbital angular momentum L and spin angular momentum S in total angular

momentum J is constructed as

∣∣δJ,mLS 〉 =
∑
mL,mS

〈L,mL;S,mS|J,m〉
∑
α,β

〈
1
2
, α; 1

2
, β
∣∣S,mS

〉 ∫ d3q

(2π)3
Y mL
L (q̂)fnL(|~q|)b†α(~q)b†β(−~q)|0〉 ,

(A.2)

where b†α(~q) is a creation operator for a quark of momentum ~q and Jz component α,

and fnL(|~q|) is a model-dependent wavefunction that is determined by some interaction

potential and is specified by L and the principal quantum number n. Annihilating this

state with the field expansion of some diquark operator gives

〈
0
∣∣δJ [Γ]

∣∣δJ,mLS 〉 =
∑
mL,mS

〈L,mL;S,mS|J,m〉
∑
α,β

〈
1
2
, α; 1

2
, β
∣∣S,mS

〉
×
∫

d3q

(2π)3
Y mL
L (q̂)fnL(|~q|)uT(α)(~q)CΓu(β)(−~q) ,

(A.3)
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where u is a Dirac spinor. For Γ = γ5, expanding u in the non-relativistic limit where

|~q| is much smaller than the mass of the quark gives up to leading order〈
0
∣∣δJ [γ5]

∣∣δJ,mLS 〉 =
∑
mL,mS

〈L,mL;S,mS|J,m〉

×
(〈

1
2
,−1

2
; 1

2
, 1

2

∣∣S,mS

〉
−
〈

1
2
, 1

2
; 1

2
,−1

2

∣∣S,mS

〉)︸ ︷︷ ︸
∼δS0δmS0

∫
d3q

(2π)3
Y mL
L (q̂)︸ ︷︷ ︸

∼δL0δmL0

fnL(|~q|) .

(A.4)

Hence, the operator δJ [γ5] overlaps with the qq(2S+1LJ = 1S0) diquark construction.

Similar results for other Γ are shown in Table A.2. Since the energy is expected to

increase with orbital angular momentum, the S-wave operators should have largest

overlap onto the lowest-lying states.

1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi [γi, γj]

qq(2S+1LJ) 3P0
1S0

1S0 - 3S1
3S1

3P1
1P1

Table A.2: The non-relativistic overlap of the diquark operator δJ [Γ] onto the diquark

state qq(2S+1LJ).
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Appendix B

Operator Lists

The interpolating operators used to calculate the spectra in Figures 4.5, 4.6 and 4.7 in

Chapter 4 are listed in Table B.1 for the isospin-1 hidden-charm sector and Table B.2

for the doubly-charmed sector.

The interpolating operators used to calculate the spectra in Figures 5.2 and 5.3 in

Chapter 5 are listed in Tables B.3 and B.4.
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T++
1 A+−

1 T+−
1

δb0
3̄,3
δ̄b1

3,3̄
δa0

3̄,3
δ̄a0

3,3̄
δa0

3̄,3
δ̄a1

3,3̄

δρ
3̄,3
δ̄π3,3̄ δπ3̄,3δ̄

π
3,3̄ δρ

3̄,3
δ̄π3,3̄

δρ
3̄,3
δ̄ρ

3,3̄
δρ6,3δ̄

ρ
6̄,3̄

δρ
3̄,3
δ̄ρ2

3,3̄

D
[000]
A1

D̄∗
[000]
T1

D
[000]
A1

D̄
[000]
A1

D
[000]
A1

D̄∗
[000]
T1

D∗
[000]
T1

D̄∗
[000]
T1

D
[100]
A2

D̄
[100]
A2

D
[100]
A2

D̄∗
[100]
A1

ηc
[000]
A1

ρ
[000]
T1

D∗
[000]
T1

D̄∗
[000]
T1

D
[100]
A2

D̄∗
[100]
E2

J/ψ
[000]
T1

π
[000]
A1

ηc
[000]
A1

π
[000]
A1

J/ψ
[000]
T1

ρ
[000]
T1

J/ψ
[100]
A1

π
[100]
A2

ηc
[100]
A2

π
[100]
A2

J/ψ
[100]
A1

ρ
[100]
E2

J/ψ
[100]
E2

π
[100]
A2

J/ψ
[000]
T1

ρ
[000]
T1

J/ψ
[100]
E2

ρ
[100]
A1

J/ψ
[100]
E2

ρ
[100]
E2

χc0
[100]
A1

π
[100]
A2

Table B.1: The interpolating operators used to calculate the spectra in the isospin-1

hidden-charm sector overall at rest for irrep ΛP (G) in Chapter 4. For the tetraquark

operators, I use the notation δΓ1
R1,F1

δ̄Γ2
R2,F2

where R1(R2) is the colour irrep, Γ1(Γ2) is the

gamma matrix and F1(F2) is the flavour irrep of the diquark (anti-diquark) operator.

For meson-meson operators, the optimised single-meson operators used are denoted

by M
[n1n2n3]
Λ , where M indicates the meson, Λ is the lattice irrep and [n1n2n3] is the

momentum in units of 2π
L

. Note that all momenta related to [n1n2n3] by an allowed

lattice rotation are summed over as shown in Equation (4.1).
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I = 0 I = 1
2

A+
1 T+

1 E+ T+
2 A+

1 T+
1

δa0
6,1δ̄

b0
6̄,3

δb1
3̄,1
δ̄a0

3,3 δa1
6,1δ̄

b1
6̄,3

δa1
6,1δ̄

b1
6̄,3

δb0
3̄,1
δ̄b0

3,6̄
δa1

6,1δ̄
b0
6̄,3

δa1
6,1δ̄

b1
6̄,3

δρ2

3̄,1
δ̄π2

3,3 δb1
3̄,1
δ̄a1

3,3 δb1
3̄,1
δ̄a1

3,3 δb1
3̄,1
δ̄a1

3,3 δb1
3̄,1
δ̄a0

3,3

δb0
3̄,1
δ̄a0

3,3 δρ
3̄,1
δ̄π2

3,3 D
[110]
A2

D∗
[110]
B2

D
[100]
A2

D∗
[100]
E2

δπ6,1δ̄
π
6̄,6̄ δρ

3̄,1
δ̄π3,3

δb1
3̄,1
δ̄a1

3,3 δρ
3̄,1
δ̄π3,3 D

[110]
A2

D∗
[110]
A1

δρ
3̄,1
δ̄ρ

3,6̄
δρ

3̄,1
δ̄ρ

3,6̄

D
[000]
A1

D(2S)
[000]
A1

D
[000]
A1

D∗
[000]
T1

D
[110]
A2

D∗
[110]
B1

D
[000]
A1

Ds
[000]
A1

D
[000]
A1

D∗s
[000]
T1

D
[100]
A2

D∗
[100]
A1

D∗
[100]
A1

D∗
[100]
E2

D
[100]
A2

Ds
[100]
A2

D∗
[000]
T1

Ds
[000]
A1

D
[100]
A2

D∗
[100]
E2

D
[110]
A2

Ds
[110]
A2

D
[100]
A2

D∗s
[100]
A1

D∗
[000]
T1

D∗
[000]
T1

D∗
[000]
T1

D∗s
[000]
T1

D
[100]
A2

D∗s
[100]
E2

D∗
[100]
A1

D∗
[100]
E2

D∗
[100]
A1

D∗s
[100]
A1

D∗
[100]
A1

Ds
[100]
A2

D∗
[100]
E2

D∗
[100]
E2

D∗
[100]
E2

D∗s
[100]
E2

D∗
[100]
E2

Ds
[100]
A2

D∗
[000]
T1

D∗s
[000]
T1

D∗
[100]
A1

D∗s
[100]
E2

D∗
[100]
E2

D∗s
[100]
A1

D∗
[100]
E2

D∗s
[100]
E2

Table B.2: As Table B.1 but for the doubly-charmed sector with isospin-0 (left columns)

and isospin-1
2

(right columns).
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[000]A+
1 [100]A1 [110]A1 [111]A1 [200]A1

D
[000]
A1

K
[000]
A1

D
[100]
A2

K
[000]
A1

D
[110]
A2

K
[000]
A1

D
[111]
A2

K
[000]
A1

D
[200]
A2

K
[000]
A1

D
[100]
A2

K
[100]
A2

D
[000]
A1

K
[100]
A2

D
[100]
A2

K
[100]
A2

D
[110]
A2

K
[100]
A2

D
[100]
A2

K
[100]
A2

D
[110]
A2

K
[110]
A2

D
[110]
A2

K
[100]
A2

D
[000]
A1

K
[110]
A2

D
[100]
A2

K
[110]
A2

D
[210]
A2

K
[100]
A2

D
[111]
A2

K
[111]
A2

D
[200]
A2

K
[100]
A2

D
[111]
A2

K
[100]
A2

D
[000]
A2

K
[111]
A2

D
[110]
A2

K
[110]
A2

Ds
[000]
A1

η
[000]
A1

D
[100]
A2

K
[110]
A2

D
[210]
A2

K
[100]
A2

D
[211]
A2

K
[100]
A2

D
[000]
A1

K
[200]
A2

Ds
[100]
A2

η
[100]
A2

Ds
[100]
A2

η
[000]
A1

D
[110]
A2

K
[110]
A2

Ds
[111]
A2

η
[000]
A1

D
[111]
A2

K
[111]
A2

Ds
[110]
A2

η
[110]
A2

Ds
[000]
A1

η
[100]
A2

D
[100]
A2

K
[111]
A2

Ds
[110]
A2

η
[100]
A2

Ds
[200]
A2

η
[000]
A1

D∗s
[100]
A1

σ
[000]
A1

Ds
[110]
A2

η
[000]
A1

D∗
[110]
B1

K
[100]
A2

Ds
[100]
A2

η
[100]
A2

Ds
[100]
A2

η
[100]
A2

D∗s
[111]
A1

σ
[000]
A1

D∗s
[200]
A1

σ
[000]
A1

D∗s
[110]
A1

σ
[000]
A1

D∗s
[100]
A1

σ
[100]
A1

D∗
[100]
E2

K
[100]
A2

(ψ̄ΓΓΓψ)× 18 (ψ̄ΓΓΓψ)× 32 (ψ̄ΓΓΓψ)× 52 (ψ̄ΓΓΓψ)× 36 (ψ̄ΓΓΓψ)× 32

Table B.3: As Table B.1 but for the isospin-0 charm-strange sector in Chapter 5. The

momentum and irreps are labelled by ~PΛ(P ). The number of single-meson operators used

is indicated by (ψ̄ΓΓΓψ) where ΓΓΓ represents all combinations of Dirac gamma matrices and

up to three (two) gauge covariant derivatives at rest (non-zero momentum).
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[000]T−1 [100]E2 [110]B1 [110]B2 [111]E2

D
[100]
A2

K
[100]
A2

D
[110]
A2

K
[100]
A2

D
[100]
A2

K
[100]
A2

D
[111]
A2

K
[100]
A2

D
[110]
A2

K
[100]
A2

D
[110]
A2

K
[110]
A2

D
[100]
A2

K
[110]
A2

D
[210]
A2

K
[100]
A2

D
[110]
A2

K
[110]
A2

D
[100]
A2

K
[110]
A2

D∗
[100]
E2 K

[100]
A2

D∗
[000]
T1

K
[100]
A2

D
[110]
A2

K
[110]
A2

D∗
[110]
B1

K
[000]
A1

D∗
[111]
E2

K
[000]
A1

Ds
[100]
A2

η
[100]
A2

D∗
[100]
E2

K
[000]
A1

D∗
[110]
B2

K
[000]
A1

D∗
[100]
A1

K
[100]
A2

Ds
[110]
A2

σ
[100]
A1

D∗s [000]T1
σ

[000]
A1

D∗s
[100]
E2 σ

[000]
A1

D∗s
[110]
B1

σ
[000]
A1

D∗
[100]
E2

K
[100]
A2

Ds
[110]
A2

σ
[100]
A1

Ds
[111]
A2

σ
[100]
A1

D∗s
[110]
B2

σ
[000]
A1

(ψ̄ΓΓΓψ)× 17 (ψ̄ΓΓΓψ)× 52 (ψ̄ΓΓΓψ)× 52 (ψ̄ΓΓΓψ)× 52 (ψ̄ΓΓΓψ)× 68

Table B.4: As Table B.3 but all single-meson operators run up to two derivatives.
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Appendix C

List of Parametrisations

The eight parametrisations that successfully reproduced the finite-volume spectrum,

that gave χ2/Ndof < 1.6 and no parameters were statistically consistent with zero,

of the DK scattering amplitudes in Chapter 5 are listed here. All parametrisations

of the P -wave amplitudes contain only one pole term so the parametrisations will be

described by the S-wave parametrisations. All K-matrix parametrisations will use the

Chew-Mandelstam prescription with subtraction at the pole of the K-matrix.

Besides these parametrisations, other forms with all combinations up to Ng = Nγ = 1

were attempted but it was found that they did not improve the fit or gave parameters

statistically consistent with zero. These are not listed here.

C.1 Parametrisation one

The S-wave amplitude is parametrised by an effective range expansion, k cot δ0 = 1/a0,

where the a0 is the scattering length. The parameters are given in Equation (5.27). The

effective range term was found to be statistically consistent with zero and not included.

C.2 Parametrisation two

The K-matrix in S-wave has the form K(s) = (g(0))2

m2−s +γ(0), and the parameters are given

in Equation (5.26).
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C.3 Parametrisation three

The K-matrix has the form K = g(0)

m2−s + γ(1)s, and the parameters are

g
(0)
0 = 0.667± 0.034± 0.011



1 −0.86 −0.31 −0.03 −0.02

1 −0.74 0.22 0.07

1 −0.43 −0.14

1 0.15

1


γ

(1)
0 = 6.6± 0.8± 0.3

m0 = (0.82± 0.09± 0.06)

g1 = 2.1± 0.3± 0.1

m1 = (0.34445± 0.00011± 0.00006) · a−1
t

χ2/Ndof = 26.74
23−5

= 1.49.
(C.1)

C.4 Parametrisation four

The K-matrix has the form K = (g(0))2

m2−s + γ(0) + γ(1)s and the parameters are

g
(0)
0 = 1.33± 0.03± 0.01



1 −0.72 −0.70 0.39 0.01 0.00

1 0.17 −0.04 0.04 0.00

1 −0.03 −0.09 −0.04

1 0.02 0.03

1 0.10

1



γ
(0)
0 = −2.49± 0.11± 0.2

γ
(1)
0 = 1.7± 0.8± 0.8

m0 = (0.82± 0.09± 0.06)

g1 = 2.1± 0.3± 0.1

m1 = (0.34445± 0.00011± 0.00006) · a−1
t

χ2/Ndof = 26.68
23−6

= 1.57.
(C.2)
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C.5 Parametrisation five

The K-matrix has the form K = (g(0)+g(1)s)2

m2−s and the parameters are

g
(0)
0 = 0.76± 0.03± 0.36



1 −0.85 0.55 0.18 0.05

1 −0.04 −0.26 −0.09

1 −0.01 0.01

1 0.12

1


g

(1)
0 = 1.3± 0.2± 2.2

m0 = (0.76± 0.03± 0.24)

g1 = 2.1± 0.3± 0.1

m1 = (0.34445± 0.00011± 0.00006) · a−1
t

χ2/Ndof = 26.65
23−5

= 1.48.
(C.3)

C.6 Parametrisation six

The K-matrix has the form K = (g(0)+g(1)s)2

m2−s + γ(0) and the parameters are

g
(0)
0 = 1.12± 0.03± 4.8



1 −0.65 −0.62 0.30 0.03 0.01

1 0.03 0.06 −0.19 −0.07

1 0.19 0.08 0.02

1 −0.02 0.01

1 0.10

1



g
(1)
0 = 0.3± 0.2± 24.5

γ
(0)
0 = −2.1± 0.2± 4.8

m0 = (0.643± 0.011± 0.033)

g1 = 2.1± 0.3± 1.1

m1 = (0.34445± 0.00011± 0.00006) · a−1
t

χ2/Ndof = 26.71
23−6

= 1.57.
(C.4)
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C.7 Parametrisation seven

The K-matrix has the form K = (g(0)+g(1)s)2

m2−s + γ(1)s and the parameters are

g
(0)
0 = 0.53± 0.04± 0.76



1 −0.58 −0.56 0.27 −0.04 −0.02

1 0.00 −0.47 0.06 0.01

1 −0.64 0.32 0.10

1 −0.46 −0.15

1 0.16

1



g
(1)
0 = 1.3± 0.3± 2.9

γ
(1)
0 = 6.8± 1.6± 34.5

m0 = (0.66± 0.09± 0.22)

g1 = 2.1± 0.3± 0.2

m1 = (0.34445± 0.00012± 0.00006) · a−1
t

χ2/Ndof = 26.75
23−6

= 1.57. (C.5)

C.8 Parametrisation eight

The K-matrix has the form K = (g(1)s)2

m2−s + γ(1)s and the parameters are

g
(0)
0 = 3.1± 0.6± 0.2



1 0.18 −0.77 0.04 0.00

1 −0.75 0.31 0.09

1 −0.25 −0.08

1 0.12

1


γ

(1)
0 = 19± 2± 2

m0 = (0.59± 0.03± 0.01)

g1 = 2.1± 0.3± 0.2

m1 = (0.34445± 0.00012± 0.00007) · a−1
t

χ2/Ndof = 26.83
23−5

= 1.49. (C.6)
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