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Abstract. We develop a scattering theory for the linear wave equation
�gψ = 0 on the interior of Reissner–Nordström black holes, connect-
ing the fixed frequency picture to the physical space picture. Our main
result gives the existence, uniqueness and asymptotic completeness of
finite energy scattering states. The past and future scattering states are
represented as suitable traces of the solution ψ on the bifurcate event
and Cauchy horizons. The heart of the proof is to show that after sep-
aration of variables one has uniform boundedness of the reflection and
transmission coefficients of the resulting radial o.d.e. over all frequencies
ω and `. This is non-trivial because the natural T conservation law is
sign-indefinite in the black hole interior. In the physical space picture,
our results imply that the Cauchy evolution from the event horizon to
the Cauchy horizon is a Hilbert space isomorphism, where the past (resp.
future) Hilbert space is defined by the finiteness of the degenerate T en-
ergy fluxes on both components of the event (resp. Cauchy) horizon.
Finally, we prove that, in contrast to the above, for a generic set of cos-
mological constants Λ, there is no analogous finite T energy scattering
theory for either the linear wave equation or the Klein–Gordon equa-
tion with conformal mass on the (anti-) de Sitter–Reissner–Nordström
interior.
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1. Introduction
One of the most stunning predictions of general relativity is the formation of
black holes, defined by the property that information cannot propagate from
their interior region to outside far-away observers. Fortunately, we can count
ourselves among the latter; nevertheless, if a group of physicists were so coura-
geous as to cross the event horizon and enter a black hole, they could still very
well perform experiments and compare the outcomes amongst themselves. In-
deed, the problem of determining the fate of these black hole explorers (and
their laboratories) has led to some of the most central conceptual puzzles in
gravitational physics.

In view of the above, there has been a lot of recent activity analyzing
the Cauchy problem on black hole interiors, e.g. [17, 18, 47, 32, 16]. However,
for certain physical processes it is more natural to consider the scattering
problem (see [19] for scattering on the exterior of black holes). With this
paper, we initiate the mathematical study of the finite energy scattering
problem on black hole interiors. Specifically, we will consider solutions of
the wave equation on what can be viewed as the most elementary interior,
that of Reissner–Nordström. The Reissner–Nordström metrics constitute a
family of spacetimes, parametrized by mass M and charge Q, which satisfy
the Einstein–Maxwell system in spherical symmetry [45, 41] and admit an
additional Killing vector field T . For vanishing charge Q = 0, the family
reduces to Schwarzschild. We shall moreover restrict in the following to the
subextremal case where 0 < |Q| < M . In addition to the bifurcate event
horizon, these black hole interiors then admit an additional bifurcate inner
horizon, the so-called Cauchy horizon. Our past and future scattering states
will be defined as suitable traces of the solution on the bifurcate event horizon
and bifurcate Cauchy horizon, respectively, restricted to have finite T energy
flux on each component of the horizons.

In the rest of the introduction we will state our main results for the
scattering problem on the interior of Reissner–Nordström (Theorems 1 – 5),
relate them to existing literature in fixed frequency scattering, and draw links
to various recent results in the interior and exterior of black holes. Finally, we
will see that the existence of a bounded scattering map for the wave equation
on Reissner–Nordström turns out to be a very fragile property; we shall show
that there does not exist an analogous scattering theory in the presence of a
cosmological constant (Theorem 6) or Klein–Gordon mass (Theorem 7).

The scattering problem on Reissner–Nordström interior. In this paper,
we will establish a scattering theory for finite energy solutions of the linear
wave equation,

�gψ = 0, (1.1)

on the interior of a Reissner–Nordström black hole, from the bifurcate event
horizon H = HA ∪ HB ∪ B− to the bifurcate Cauchy horizon CH = CHA ∪
CHB ∪ B+, as depicted in Fig. 1. The first main result of our paper is The-
orem 1 (see Section 3.1) in which we will show existence, uniqueness and
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Figure 1. Penrose diagram of the interior of the Reissner–
Nordström black hole and visualization of the scattering
map.

asymptotic completeness of finite energy scattering states. In this context,
existence and uniqueness mean that for given finite energy data ψ0 on the
event horizon H, there exist unique finite energy data on the Cauchy horizon
CH arising from ψ0 as the evolution of (1.1). With asymptotic completeness
we denote the property that all finite energy data on the Cauchy horizon
CH can indeed be achieved from finite energy data on the event horizon H.
This provides a way to construct solutions with desired asymptotic properties
which is a necessary first step to properly understand quantum theories in
the interior of a Reissner–Nordström black hole (cf. [51, 24, 15]). The energy
spaces on the event and Cauchy horizon are associated to the Killing field and
generator of the time translation T . Indeed, T is null on the horizons and,
in particular, is the generator of the event and Cauchy horizon H and CH.
Because of the sign-indefiniteness of the energy flux of the vector field T on
the bifurcate event (resp. Cauchy) horizon (see already (1.4)), we define our
energy space by requiring the finiteness of the T energy on both components
separately of the event (resp. Cauchy) horizon. These define Hilbert spaces
with respect to which the scattering map is proven to be bounded.

Finally, it is instructive to draw a comparison between the interior of
Reissner–Nordström and the interior of Schwarzschild (Q = 0). As opposed to
Reissner–Nordström discussed above, the Schwarzschild interior terminates
at a singular boundary at which solutions to (1.1) generically blow-up (see
[16]). In contrast, the non-singular and, moreover, Killing, Cauchy horizons
(see Fig. 1) of Reissner–Nordström immediately yield natural Hilbert spaces
of finite energy data to consider. In view of this, Reissner–Nordström with
Q 6= 0 can be considered the most elementary interior on which to study the
scattering problem. Furthermore, in view of the recent work [7], we have that
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the causal structure of Reissner–Nordström is stable in a weak sense (see the
discussion below about related works in the interior).

Fixed frequency scattering. It is well known that the wave equation
(1.1) on Reissner–Nordström spacetime allows separation of variables which
reduces it to the radial o.d.e.

u′′ − V`u+ ω2u = 0, (1.2)

with potential V` (see already (2.37)), where ω ∈ R is the time frequency
and ` ∈ N0 is the angular parameter. Indeed, most of the existing litera-
ture concerning scattering of waves in the interior of Reissner–Nordström
mainly considers fixed frequency solutions, e.g. [35, 36, 5, 22, 34, 23, 52]. For
a purely incoming (i.e. supported only on HA) fixed frequency solution with
parameters (ω, `), we can associate transmission and reflection coefficients
T(ω, `) and R(ω, `). The transmission coefficient T(ω, `) measures what pro-
portion of the incoming wave is transmitted to CHB , whereas the reflection
coefficient specifies the proportion reflected to CHA. An essential step to go
from fixed frequency scattering to physical space scattering is to prove uni-
form boundedness of T(ω, `) and R(ω, `). This is non-trivial in view of the
discussion of the energy identity (1.4) below. In this paper, we indeed ob-
tain this uniform bound in Theorem 2 (see Section 3.2). In particular, the
regime ω → 0, `→∞ is the most involved frequency range to prove uniform
boundedness. As we shall see, the proof relies on an explicit computation
at ω = 0 (see [22]) together with a careful analysis of special functions and
perturbations thereof.

The uniform boundedness of the scattering coefficients is the main ingre-
dient to prove the boundedness of the scattering map in Theorem 1. Moreover,
it allows us to connect the separated picture to the physical space picture by
means of a Fourier representation formula. This is stated as Theorem 3 (see
Section 3.3). A somewhat surprising, direct consequence of the Fourier repre-
sentation of the scattered data on the Cauchy horizon is that purely incoming
compactly supported data lead to a solution which vanishes at the future bi-
furcation sphere B+. This is moreover shown to be a necessary condition for
the existence of a bounded scattering map (Corollary 3.1).

Comparison to scattering on the exterior of black holes. On the exterior
of black holes, the scattering problem has been studied more extensively; see
the pioneering works [11, 13, 12, 2, 3], the book [19] and related results
on conformal scattering in [33, 40, 38, 49]. Note that for the exterior of a
Schwarzschild or Reissner–Nordström black hole, the uniform boundedness of
the scattering coefficients or equivalently, the boundedness of the scattering
map, can be viewed a posteriori1 as a consequence of the global T energy

1Note that proving (1.3) requires first establishing some form of qualitative decay towards
i+ and i−.
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identity ∫
H−
|Tψ|2 +

∫
I−
|Tψ|2 =

∫
H+

|Tψ|2 +

∫
I+

|Tψ|2. (1.3)

Considering only incoming radiation from I−, this statement translates into
|R|2 + |T|2 = 1 for the reflection coefficient R and transmission coefficients
T. In the interior, however, due to the different orientations of the T vector
field on the horizons (cf. Fig. 2), boundedness of the scattering map is not
at all manifest. In particular, the global T energy identity on the interior of
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Figure 2. Interior of Reissner–Nordström (left) and exte-
rior of Schwarzschild or Reissner–Nordström (right).
In both diagrams the arrows denote the direction of the T
Killing vector field. Note that we have the identifications
HA = H+ and B− = B.

a Reissner–Nordström black hole reads∫
HA
|Tψ|2 −

∫
HB
|Tψ|2 =

∫
CHB
|Tψ|2 −

∫
CHA
|Tψ|2 (1.4)

from which we cannot deduce boundedness of the scattering map even a
posteriori. (Indeed, identity (1.4) corresponds only to the “pseudo-unitarity”
statement of Theorem 1.) Again, considering only ingoing radiation from HA,
this translates to

|T(ω, `)|2 − |R(ω, `)|2 = 1 (1.5)

for the reflection coefficient R and the transmission coefficient T. Hence,
while for fixed |ω| > 0 and `, it is straightforward to show that T and R are
finite, there is no a priori obvious obstruction from (1.5) for these scattering
coefficients to blow up in the limits ω → 0,±∞ and `→∞.
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Moreover, note that in the exterior, the Killing field T is timelike, so
the radial o.d.e. (1.2) should be considered as an equation for a fixed time
frequency wave on a constant time slice. In the interior, however, the Killing
field T is spacelike so the radial o.d.e. (1.2) is rather an evolution equation
for a constant spatial frequency.

The Schwarzschild family can be viewed as a special case (a = 0) of
the two parameter Kerr family, describing rotating black holes with mass
parameter M and rotation parameter a [27].2 On the exterior of Kerr many
other difficulties arise: superradiance, intricate trapping, presence of ergore-
gion, etc. [8]. Nevertheless, using the decay results in [8], a definitive physical
space scattering theory for Kerr black holes has been established in [9] (see
also the earlier [20]). The proof on the exterior of Kerr involved first estab-
lishing a scattering map from past null infinity I− to a constant time slice Σ
and then concatenating that map with a second scattering map from Σ to the
future event horizon H+ and future null infinity I+. In the interior, however,
we will directly show the existence of a “global” scattering map from the event
horizon H to the Cauchy horizon CH. Indeed, due to blue-shift instabilities
(see [10]), we do not expect that the analogous concatenation of scattering
maps (event horizon H to spacelike hypersurface Σ and then from Σ to the
Cauchy horizon CH) as in the Kerr exterior, to be bounded in the interior of
Reissner–Nordström.

Injectivity of the reflection map and blue-shift instabilities. We can also
conclude from our work that there is always non-vanishing reflection to the
Cauchy horizon CHA arising from non-vanishing purely ingoing radiation at
HA. This follows from the fact that in the separated picture and for fixed
`, the reflection coefficient R(ω, `) can be analytically continued to the strip
| Im(ω)| < κ+ and hence, only vanishes on a discrete set of points on the real
axis. This is shown in Theorem 4 (see Section 3.4).

We will also deduce from the Fourier representation of the scattered
data on the Cauchy horizon CH, and a suitable meromorphic continuation
of the transmission coefficient, that there exist purely incoming compactly
supported data on the event horizon H leading to solutions which fail to be
C1 on the Cauchy horizon CH. This C1-blow-up of linear waves puts on a
completely rigorous footing the pioneering work of Chandrasekhar and Hartle
[5]. We state this as Theorem 5 (see Section 3.5).

For generic solutions arising from localized data on an asymptotically
flat hypersurface, one expects a stronger instability, namely, non-degenerate
energy blow-up at the Cauchy horizon CH. Such non-degenerate energy blow-
up was proven in [28] for generic compactly supported data on an asymp-
totically flat Cauchy hypersurface. Later, for the more difficult Kerr interior,
non-degenerate energy blow-up was proven in [32] assuming certain polyno-
mial lower bounds on the tail of incoming data on the event horizon H and

2Both Kerr and Reissner–Nordström can be viewed as special cases of the Kerr–Newman
spacetime. For decay results on Kerr–Newman see [6].
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in [10] for solutions arising from generic initial data along past null infinity
I− with polynomial tails.

Finally, we mention the forthcoming work [31] which studies the problem
of non-degenerate energy blow-up from a scattering theory perspective and
also uses the non-triviality of reflection to establish results related to mass
inflation for the spherically symmetric Einstein–Maxwell–scalar field system
(cf. [29, 30]).

Related results on the interior. There has been a lot of recent progress
studying the interior of black holes. In particular, new insights were gained
concerning the stability of the Cauchy horizon and the strong cosmic censor-
ship conjecture.

For the Cauchy problem for (1.1) on the interior of both a fixed Kerr
and a Reissner–Nordström black hole, the works [18, 17, 25] establish uni-
form boundedness (in L∞) and continuity up to and including the Cauchy
horizon for solutions arising from smooth and compactly supported data on
an asymptotically flat spacelike hypersurface. Such data in particular give
rise to solutions with polynomial decay along the event horizon.

In contrast, for the scattering problem considered in the present paper,
we are required to work with spaces which are symmetric with respect to the
event and Cauchy horizons. This naturally leads to the rougher class of finite
T energy data in the statement of Theorem 1. Note that for such data on
the Cauchy horizon, continuity or boundedness (in L∞) does not necessarily
hold true.

Turning finally to the full nonlinear dynamics of the Einstein equations,
it is shown in [7] that the Kerr Cauchy horizon is C0-stable. Thus, the exis-
tence of a Cauchy horizon, a very natural setting parameterizing scattering
data in the interior, is not a pure artifact of symmetry but rather a stable
property at least in a weak sense. On the other hand, in [29, 30, 50] it is
proven that for a suitable Einstein–matter system under spherical symmetry,
the Cauchy horizon, while C0-stable, is generically C2-unstable. Finally, we
mention that for the Schwarzschild black hole (Q = 0), which does not admit
a Cauchy horizon, it is shown in [16] that solutions to (1.1) generically blow
up at the spacelike singularity {r = 0}.

Breakdown of T energy scattering for Λ 6= 0 or µ 6= 0. If a cosmo-
logical constant Λ ∈ R is added to the Einstein–Maxwell system, we can
consider the analogous (anti-) de Sitter–Reissner–Nordström family of solu-
tions whose interiors have the same Penrose diagram as depicted in Fig. 1.
For very slowly rotating Kerr–de Sitter and Reissner–Nordström–de Sitter
spacetimes, boundedness, continuity, and regularity up to and including the
Cauchy horizon has been shown for solutions to (1.1) arising from smooth and
compactly supported data on a Cauchy hypersurface [26]. However, remark-
ably, there is no analogous T energy scattering theory for either the linear
wave equation (1.1) or the Klein–Gordon equation with conformal mass. This
is the statement of Theorem 6 (see Section 3.6). The reason for this failure is
the unboundedness of the transmission coefficient T and reflection coefficients
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R in the vanishing frequency limit ω → 0. To be more precise, we will prove
that there does not exist a T energy scattering theory of the wave or Klein–
Gordon equation in the interior of a (anti-) de Sitter–Reissner–Nordström
black hole for generic subextremal black hole parameters (M,Q,Λ). In par-
ticular, for fixed 0 < |Q| < M , there is an ε > 0 such that there does not
exist a T energy scattering theory for all 0 6= |Λ| < ε.

Similarly, we prove in Theorem 7 (see Section 3.7) that there does not
exist a T energy scattering theory for the Klein–Gordon equation �gψ−µψ =
0 on the Reissner–Nordström interior for a generic set of masses µ. This is in
contrast to the exterior, where T energy scattering theories were established
for massive fields in [3, 37].

It remains an open problem to formulate an appropriate scattering the-
ory in the cosmological setting and for the Klein–Gordon equation as well as
for the interior of Kerr.

Outline. This paper is organized as follows. In Section 2, we shall set
up the spacetime, introduce the relevant energy spaces, and define the scat-
tering coefficients in the separated picture. In Section 3 we state the main
results of this paper, Theorems 1 – 7. Section 4 is devoted to the proof of
Theorem 2. Then, the statement of Theorem 2 allows us to prove Theorem 1
in Section 5. Finally, in the last two sections are show our non-existence re-
sults: In Section 6, we prove Theorem 6 and in Section 7, we give the proof
of Theorem 7.

Acknowledgement. The authors would like express their gratitude to
Mihalis Dafermos for many valuable discussions and helpful remarks. The
authors also thank Igor Rodnianski, Jonathan Luk, and Sung-Jin Oh for
useful conversations. CK acknowledges support from the EPSRC and thanks
Princeton University for hosting him as a VSRC. YS acknowledges support
from the NSF Postdoctoral Research Fellowship under award no. 1502569.

2. Preliminaries

In this section we will define the background differentiable structure and
metric for the Reissner–Nordström spacetime and introduce some convenient
coordinate systems.

2.1. Interior of the subextremal Reissner–Nordström black hole
The global geometry of Reissner–Nordström was first described in [21]. For
completeness, we will explicitly construct in this section the coordinates for
the region considered. We start, in Section 2.1.1, by defining a Lorentzian
manifold corresponding to the interior of the Reissner–Nordström black hole
without the horizons. Then, in Section 2.1.2, we will attach the boundaries
which will correspond to the event horizon and Cauchy horizon.
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2.1.1. The interior without boundary. We will now give an explicit descrip-
tion of the differential structure and metric. The Reissner–Nordström solu-
tions [45, 41] are a two-parameter family of spherically symmetric spacetimes
with mass parameter M ∈ R and electric charge parameter Q ∈ R solving
the Einstein–Maxwell system

Ricµν −
1

2
gµνR = 8πTµν := 8π

(
1

4π

(
F λ
µ Fλν −

1

4
gµνFλρF

λρ

))
, (2.1)

∇µFµν = 0,∇[µFνλ] = 0.

In this paper, we consider the subextremal family of black holes with param-
eter range 0 < |Q| < M . Define the manifoldM by

M = R× (r−, r+)× S2, (2.2)

where r± = M ±
√
M2 −Q2 > 0. The manifold is parametrized by the

standard coordinates t ∈ R, r ∈ (r−, r+), and a choice of spherical coordinates
(θ, φ) on the sphere S2. We denote the global coordinate vector field ∂t by T :

T :=
∂

∂t
. (2.3)

Using the above coordinates, we equipM with the Lorentzian metric

gQ,M = −
(

1− 2M

r
+
Q2

r2

)
dt⊗ dt+

(
1− 2M

r
+
Q2

r2

)−1

dr ⊗ dr + r2
/gS2 ,

(2.4)

where /gS2 is the round metric on the 2-sphere. We also define the quantities

∆ := r2 − 2Mr +Q2 = (r − r+)(r − r−) and h :=
∆

r2
. (2.5)

Furthermore, define r∗ by

dr∗ :=
r2

∆
dr, (2.6)

where we choose r∗(
r++r−

2 ) = 0 for definiteness. Thus,

r∗(r) = r +
1

2κ+
log |r − r+|+

1

2κ−
log |r − r−|+ C (2.7)

for a constant C only depending on the black hole parameters and

κ± =
r± − r∓

2r2
±

. (2.8)

We also introduce null coordinates

v = r∗ + t and u = r∗ − t (2.9)

onM. The Penrose diagram ofM is depicted in Fig. 3.
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HA
=
{u

=
−∞
}

H
B

=
{v

=
−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

Figure 3. Penrose diagram ofM; formally we have denoted
the boundary (not part of the manifold) by H = HA ∪ HB
and CH = CHA ∪ CHB .

2.1.2. Attaching the event and Cauchy horizon. Now, we will attach the
Cauchy and event horizon to the manifold. The Cauchy horizon characterizes
the future boundary up to which the spacetime is uniquely determined as a
solution to the Einstein–Maxwell system arising from data on the event hori-
zon. Although the metric is smoothly extendible beyond the Cauchy horizon,
any such extension fails to be uniquely determined from initial data, leading
to a severe failure of determinism.

Attaching the event and Cauchy horizon gives rise to a manifold with
corners. To do so, we first define the following two pairs of null coordinates.

Let UH : R → (0,∞) and VH : R → (0,∞) be smooth and strictly in-
creasing functions such that
• UH(u) = u for u ≥ 1, VH(v) = v for v ≥ 1,
• UH(u)→ 0 as u→ −∞ , VH(v)→ 0 as v → −∞,
• there exists a u+ ≤ 1 such that dUH

du = exp(κ+u) for u ≤ u+,
• there exists a v+ ≤ 1 such that dVH

dv = exp(κ+v) for v ≤ v+.
This defines – in mild abuse of notation – the null coordinates UH : M →
(0,∞) via UH(u) and VH : M → (0,∞) via VH(v), where u, v are the null
coordinates defined in (2.9).

Similarly, let UCH : R → (−∞, 0) and VCH : R → (−∞, 0) be smooth
and strictly increasing functions such that
• UCH(u) = u for u ≤ −1, VCH(v) = v for v ≤ −1,
• UCH(u)→ 0 as u→∞ , VCH(v)→ 0 as v →∞,
• there exists a u+ ≥ −1 such that dUCH

du = exp(κ−u) for u ≥ u+,
• there exists a v+ ≥ −1 such that dVCH

dv = exp(κ−v) for v ≥ v+.
As above, this defines null coordinates UCH : M → (0,∞) via UCH(u) and
VCH : M→ (0,∞) via VCH(v), where u, v are the null coordinates defined in
(2.9).
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To define the event horizon, we consider the coordinate chart (UH, VH, θ, φ).
We now define the event horizon without the bifurcation sphere as the union

H0 := HA ∪HB , (2.10)

where

HA := {UH = 0} × (0,∞)× S2 and HB := (0,∞)× {VH = 0} × S2. (2.11)

Analogously, we also define the Cauchy horizon without the bifurcation sphere
in the coordinate chart (UCH, VCH, θ, φ) as the union

CH0 := CHA ∪ CHB , (2.12)

where

CHA := (0,∞)× {VCH = 0} × S2 and CHB := {UCH = 0} × (0,∞)× S2.
(2.13)

Then, we define the interior of the Reissner–Nordström spacetime with-
out the bifurcation sphere as the manifold with boundary

M̃ :=M∪H∪ CH. (2.14)

The Lorentzian metric on M extends smoothly to M̃. In particular, the
boundary of M̃ consists of four disconnected null hypersurfaces. In Fig. 4 we
have depicted its Penrose diagram. In mild abuse of notation we shall also

HA
=
{u

=
−∞
}H

B
=
{v

=
−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

Figure 4. Penrose diagram of M̃.

use the coordinate systems

(UH, v, θ, φ) onM∪HA, (2.15)
(u, VH, θ, φ) onM∪HB , (2.16)
(u, VCH, θ, φ) onM∪ CHA, (2.17)
(UCH, v, θ, φ) onM∪ CHB . (2.18)
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In particular, we can write

HA = {UH = 0} × {v ∈ R} × S2, (2.19)

HB = {u ∈ R} × {VH = 0} × S2, (2.20)

CHA = {u ∈ R} × {VCH = 0} × S2, (2.21)

CHB = {UCH = 0} × {v ∈ R} × S2. (2.22)

Note also that the vector field T , initially defined onM in (2.3), extends
to a smooth vector field on M̃ with

T �HA=
∂

∂v
�HA , (2.23)

where ∂
∂v is the coordinate derivative with respect to local chart defined in

(2.15). Similarly, we have

T �HB= − ∂

∂u
�HB w.r.t. to the local chart (2.16), (2.24)

T �CHA= − ∂

∂u
�CHA w.r.t. to the local chart (2.17), (2.25)

T �CHB=
∂

∂v
�CHB w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA,
and CHB . Recall also that ∇TT �CH= κ−T �CH and ∇TT �H= κ+T �H,
where κ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to ex-
tend M̃ smoothly to a Lorentzian manifold with corners. To be more precise,
we attach the past bifurcation sphere B− toH0 as the point (UH, VH) = (0, 0).
Then, define H := H0 ∪ B−. Similarly, we can attach the future bifurcation
sphere B+ to the Cauchy horizon which will be denoted by CH. We call the
resulting manifoldMRN. Further details are not given since the precise con-
struction is straightforward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B− and vanishes there. Its Penrose
diagram is depicted in Fig. 5.
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HA
=
{u

=
−∞
}

H
B

=
{v

=
−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

B+

B−

Figure 5. Penrose diagram ofMRN which includes the bi-
furcate spheres B+ and B−.

Further details about the coordinate systems can be found in [42]. From
a dynamical point of view, we can also consider the spacetimes (MRN, gM,Q)
as being contained in the Cauchy development of a spacelike hypersurface
with two asymptotically flat ends solving the Einstein–Maxwell system in
spherical symmetry.

2.2. The characteristic initial value problem for the wave equation
In the context of scattering theory we will be interested in solutions to the
wave equation (1.1) arising from suitable characteristic initial data. Recall
the following well-posedness result for (1.1) with characteristic initial data.

Proposition 2.1. Let Ψ ∈ C∞c (H) be smooth compactly supported data on the
event horizon H. Then, there exists a unique smooth solution ψ to (1.1) on
MRN \ CH such that ψ �H= Ψ.

The previous proposition is well known, see [39, 46]. Analogously, we
have the following for the backward evolution.

Proposition 2.2. Let Ψ ∈ C∞c (CH) be smooth compactly supported data on
the Cauchy horizon CH. Then, there exists a unique smooth solution ψ to
(1.1) onMRN \ H such that ψ �CH= Ψ.

2.3. Hilbert spaces of finite T energy on both horizon components
Now, we are in the position to define the Hilbert spaces on the event H =
HA ∪HB ∪ B− and Cauchy horizon CH = CHA ∪ CHB ∪ B+, respectively.

We will start with constructing the Hilbert space on the event horizon.
Roughly speaking, it will be defined by requiring finiteness of the T energy
flux on HA minus the T energy flux on HB . More precisely, let C∞c (H) be
the vector space of smooth compactly supported functions on H. Recall that
the Killing vector field T is also a null generator of H and vanishes at the



Scattering of linear waves on Reissner–Nordström interior 13

past bifurcation sphere B−. This allows us to define the norm ‖ · ‖2ETH on the
vector space C∞c (H) as

‖ψ‖2ETH :=

∫
HA

JTµ [ψ]nµHA dvolnHA −
∫
HB

JTµ [ψ]nµHB dvolnHB , (2.27)

where ψ ∈ C∞c (H), T[ψ] is the energy momentum tensor

T[ψ]µν := Re(∂µψ∂νψ)− 1

2
gµν∂αψ∂αψ, (2.28)

and JT [ψ] := T[ψ](T, ·). In (2.27), the fluxes are defined with respect to fu-
ture directed normal vector fields nHA and nHB onHA andHB , respectively.3
Moreover, recall from Fig. 2 that T is future (resp. past) directed onHA (resp.
HB). Thus, the terms arising in (2.27) satisfy

∫
HA J

T
µ [ψ]nµHA dvol ≥ 0 and

−
∫
HB J

T
µ [ψ]nµHB dvol ≥ 0. Again, in view of the fact that on the component

HB the normal vector field T is past directed, we can choose nHA := T �HA
and nHB := −T �HB as the future directed normal vector fields on HA and
HB , respectively, such that we can realize the norm (2.27) as (using the
coordinate charts (2.15) and (2.16))

‖ψ‖2ETH =

∫
R×S2

|∂vψ �HA |2dv sin θdθdϕ+

∫
R×S2

|∂uψ �HB |2du sin θdθdϕ.

(2.29)

The norm (2.27) defines an inner product, hence its completion is a Hilbert
space.

Definition 2.1. We define the Hilbert space of finite T energy ETH on both
components of the event horizon as the completion of smooth and compactly
supported functions C∞c (H) on the event horizon H = HA ∪ HB ∪ B− with
respect to the norm (2.27).

Analogously, we can consider the vector space C∞c (CH) and define the
norm ‖·‖2ETCH as the T energy flux on the component CHB minus the T energy
flux on the component CHA:

‖ψ‖2ETCH :=

∫
CHB

JTµ [ψ]nµCHB dvolnCHB −
∫
CHA

JTµ [ψ]nµCHA dvolnCHA . (2.30)

Again, in view of the orientation of the T vector field (cf. Fig. 2), this norm
can be represented as (using the coordinate charts (2.17) and (2.18))

‖ψ‖2ETCH =

∫
R×S2

|∂vψ �CHB |2dv sin θdθdϕ+

∫
R×S2

|∂uψ �CHA |2du sin θdθdϕ.

(2.31)

3A choice of such normal vectors fixes the volume form. Also note that this is the natural
setup for energy estimates.
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Definition 2.2. We define the Hilbert space of finite T energy ETCH on both
components of the Cauchy horizon as the completion of smooth and compactly
supported functions C∞c (CH) the Cauchy horizon CH = CHA ∪ CHB ∪ B+

with respect to the norm (2.30).

2.4. Separation of variables
In this section we show how the radial o.d.e. (1.2) arises from decomposing a
general solution in spherical harmonics and Fourier modes. For concreteness,
let ψ be a smooth solution to �gψ = 0 such that on each {r = const.} slice,
ψ is compactly supported in the t variable.4 Then, we can define its Fourier
transform in the t variable and also decompose ψ in spherical harmonics to
end up with

ψ̂m`(r, ω) :=

∫
R×S2

e−iωtYm`(θ, φ)ψ(t, r, θ, φ) sin θdθdφ
dt√
2π
. (2.32)

Due to the compact support on constant r slices, the wave equation �gψ = 0
implies that

ψ̂m`(r, ω) =: R
(ω)
m` (r) =: R(r) (2.33)

satisfies the radial o.d.e.

∆
d

dr

(
∆

d

dr
R

)
−∆`(`+ 1)R+ r4ω2R = 0. (2.34)

In Section 4 we will analyze solutions to (2.34) and denote a solution thereof
with R(r). Moreover, it is useful to introduce the function u defined as

u(r) := rR(r) (2.35)

and consider u = u(r(r∗)) as a function of r∗, which is defined in (2.7). Using
the r∗ variable, the o.d.e. (2.34) finally reduces to

u′′ + (ω2 − V`)u = 0 (2.36)

on the real line with potential

V = V` = ∆

(
r(r+ + r−)− 2r+r−

r3
+
`(`+ 1)

r4

)
. (2.37)

In Lemma A.3 in the appendix it is proven that, as a function of r∗, the
potential V` decays exponentially as r∗ → ±∞. In particular, this indicates
that we have asymptotic free waves (asymptotic states) near the event and
Cauchy horizon of the form e±iωr∗ as |r∗| → ∞. In order to construct these
solutions we use the following proposition for Volterra integral equations (see
Lemma 2.4 of [48]).

Proposition 2.3. Let x0 ∈ R ∪ {+∞} and g ∈ L∞(−∞, x0). Suppose the
integral kernel K satisfies

α :=

∫ x0

−∞
sup

{x:y<x<x0}
|K(x, y)|dy <∞. (2.38)

4Note that we will prove later that such solutions arise from data which are dense in ETH.
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Then, the Volterra integral equation

f(x) = g(x) +

∫ x

−∞
K(x, y)f(y)dy (2.39)

has a unique solution f satisfying

‖f‖L∞(−∞,x0) ≤ eα‖g‖L∞(−∞,x0). (2.40)

If in addition K is smooth in both variables and∫ x0

−∞
sup

{x:y<x<x0}
|∂kxK(x, y)|dy <∞ (2.41)

for all k ∈ N, then the solution f is smooth on (−∞, x0) and the derivatives
can be computed by formal differentiation of (2.39).

Remark 2.1. Analogous results as in Proposition 2.3 also hold true for Volterra
integral equations on intervals of the form (x0, x1) or (x0,+∞).

This allows us to define the following fundamental pairs of solutions
to the o.d.e. (2.36). In view of the exponential decay of the potential, it is
straightforward to check that the assumptions of Proposition 2.3 are satisfied.

Definition 2.3. Let ω ∈ R and ` ∈ N0 be fixed. Define asymptotic state so-
lutions u1 and u2 of the radial o.d.e. (2.36) as the unique solutions to the
Volterra integral equations

u1(ω, r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(ω, y)dy, (2.42)

u2(ω, r∗) = e−iωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u2(ω, y)dy. (2.43)

Analogously, define v1 and v2 as the unique solutions to the Volterra integral
equations

v1(ω, r∗) = eiωr∗ −
∫ ∞
r∗

sin(ω(r∗ − y))

ω
V (y)v1(ω, y)dy, (2.44)

v2(ω, r∗) = e−iωr∗ −
∫ ∞
r∗

sin(ω(r∗ − y))

ω
V (y)v2(ω, y)dy. (2.45)

For ω = 0, we set sin(ω(r∗−y))
ω �ω=0= r∗ − y in the integral kernel in

which case u1 and u2 coincide. We define

ũ1(r∗) := u1(0, r∗) = u2(0, r∗) (2.46)

and similarly,

ṽ1(r∗) := v1(0, r∗) = v2(0, r∗). (2.47)

Since u1(0, r∗) = u2(0, r∗) for ω = 0, there exists another linearly independent
fundamental solution ũ2 solving the Volterra integral equation

ũ2(r∗) = r∗ +

∫ r∗

−∞
(r∗ − y)V (y)ũ2(y)dy. (2.48)
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Similarly, we also have another fundamental solution, which is linearly inde-
pendent from ṽ1, solving

ṽ2(r∗) = r∗ −
∫ ∞
r∗

(r∗ − y)V (y)ṽ2(y)dy. (2.49)

Since r∗ is not uniformly bounded, we cannot apply Proposition 2.3 to con-
struct ũ2 and ṽ2. Nevertheless, after switching to coordinates which are reg-
ular at H or CH, the existence of the desired solutions follows immediately
from the usual local theory of regular singularities (see [44]).

Remark 2.2. Due to the exponential decay of the potential V` (see Lemma A.3
in the appendix), it follows from standard theory that the solutions u1(ω, r∗),
u2(ω, r∗), v1(ω, r∗) and v2(ω, r∗) can be continued to holomorphic functions
of ω in the strip | Im(ω)| < κ+ for fixed r∗ ∈ R. Indeed, in [5] it is shown that
u1(ω, r∗) is analytic in C\{imκ+ : m ∈ N} with possible poles at {imκ+ : m ∈
N} and similarly for u2, v1, and v2. See also the proof of Proposition A.2 in
the appendix.

This allows us now to define the reflection and transmission coefficients
R and T.

Definition 2.4. Let ω 6= 0. Then we define the transmission coefficient T(ω, `)
and reflection coefficient R(ω, `) as the unique coefficients such that

u1 = Tv1 + Rv2. (2.50)

Using the fact that the Wronskian

W(f, g) := fg′ − f ′g (2.51)

of two solutions f and g is independent of r∗, we can equivalently define the
scattering coefficients as

T :=
W(u1, v2)

W(v1, v2)
=

W(u1, v2)

−2iω
(2.52)

and

R :=
W(u1, v1)

W(v2, v1)
=

W(u1, v1)

2iω
. (2.53)

The transmission and reflection coefficients satisfy a pseudo-unitarity
property proven in the following.

Proposition 2.4 (Pseudo-unitarity in the separated picture). The transmis-
sion and reflection coefficients satisfy

1 = |T|2 − |R|2. (2.54)

Proof. First, note that any solution to the o.d.e. (2.36) satisfies the identity

Im(ūu′) = const. (2.55)

Applying this to the solution u1 = Tv1 + Rv2 shows the claim. �

In the following we shall see that the reflection and transmission coeffi-
cients are regular at ω = 0.
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Proposition 2.5. Let ` ∈ N0 be fixed. Then the scattering coefficients R(ω, `)
and T(ω, `) are analytic functions of ω in the strip {ω ∈ C : | Im(ω)| < κ+}
with values for ω = 0 given by

R(0, `) =
(−1)`

2

(
r−
r+
− r+

r−

)
, (2.56)

T(0, `) =
(−1)`

2

(
r−
r+

+
r+

r−

)
. (2.57)

In particular, the reflection coefficient R(ω, `) only vanishes on a discrete set
of points ω.

Moreover, the reflection and transmission coefficients R(ω, `) and T(ω, `)
are analytic functions on C \ P with possible poles at P = {imκ+ : m ∈
N} ∪ {ikκ− : k ∈ Z \ {0}}.

Proof. From the analyticity of u1, u2, v1, and v2 in the strip | Im(ω)| < κ+

(cf. Remark 2.2), we conclude that T and R are holomorphic in {ω 6= 0 ∈ C :
| Im(ω)| < κ+} with a possible pole at ω = 0. In the following we shall show
that {ω = 0} is a removable singularity. Indeed, we will compute the explicit
value of the reflection and transmission coefficient at ω = 0 and deduce
that for fixed ` ∈ N0, the transmission coefficient T(ω, `) and the reflection
coefficient R(ω, `) are analytic functions on the strip {ω ∈ C : Im(ω)| < κ+}
(cf. unpublished work of McNamara cited in [22]). To do so, note that from
Proposition 4.2 in Section 4.1.3 we conclude the pointwise limits

u1(ω, r∗)→ ũ1(r∗), (2.58)

v1(ω, r∗)→ ṽ1(r∗) = (−1)`
r+

r−
ũ1(r∗), (2.59)

v2(ω, r∗)→ ṽ1(r∗) = (−1)`
r+

r−
ũ1(r∗) (2.60)

as |ω| → 0. Using the definition in (2.50) of T(ω, `),R(ω, `), and the condition
1+|R|2 = |T|2 (cf. Proposition 2.4), we deduce that the limits limω→0 R(ω, `)
and limω→0 T(ω, `) exist and moreover can be computed to be (2.56) and
(2.57). Note that (2.56) and (2.57) have been established in [23]. Also note
that in view of the analyticity properties of u1, v1, and v2, the R(ω, `) and
T(ω, `) are analytic functions on C\P with possible poles at P = {imκ+ : m ∈
N} ∪ {ikκ− : k ∈ Z \ {0}}. �

2.5. Conventions
Let X be a point set with a limit point c (e.g. X = R, [a, b],C). Throughout
this paper we will use the symbols . and &, where the implicit constants
might depend on the black hole parameters M and Q. In particular, for
functions (or constants) a(x), b(x) > 0 the notation a . b means that there
is a constant C = C(M,Q) > 0 such that a(x) ≤ Cb(x) for all x ∈ X. We
will also make use of the notation .` or &` which means that the constant
may additionally also depend on `. We also write a ∼ b if there are constants
C(M,Q), C̃(M,Q) > 0 such that Ca(x) ≤ b(x) ≤ C̃a(x) for all x ∈ X.



18 Christoph Kehle and Yakov Shlapentokh-Rothman

We shall also make use of the standard Landau notation O and o [14,
44]. To be more precise, as x→ c in X

f(x) = O(g(x)) means
∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ C(M,Q) (2.61)

and

f(x) = o(g(x)) means
f(x)

g(x)
→ 0. (2.62)

We will also use the notation O` if the constant C in (2.61) may additionally
depend on `.

3. Main theorems

In this section we will formulate our main theorems.
Theorem 1, which we state in Section 3.1, establishes the existence of a

scattering map ST of the form

ST : ETH → ETCH, (3.1)

which is a Hilbert space isomorphism, i.e. a bounded and invertible map with
bounded inverse. Theorem 1 will be proven in Section 5. In the separated
picture, the boundedness of ST corresponds to the uniform boundedness of
the transmission and reflection coefficients which is stated as Theorem 2 in
Section 3.2. Theorem 2 will be proven in Section 4 (and later used in the
proof of Theorem 1).

Section 3.3 is then devoted to Theorem 3, which connects our physical
space scattering theory to the fixed frequency scattering theory. (We will infer
Theorem 3 as a consequence of Theorem 1.) In Section 3.4, this connection
allows us to prove that the reflection map is injective, which is the content
of Theorem 4. In Theorem 5, which is stated and proven in Section 3.5, we
construct data which are incoming and compactly supported but nevertheless,
lead to a solution which fails to be in C1 on the Cauchy horizon.

We end this section with the statement of our two non-existence results.
In Section 3.6 we formulate Theorem 6, the non-existence of the T energy
scattering theory for the Klein–Gordon equation with conformal mass on
the interior of (anti-) de Sitter–Reissner–Nordström black holes. The proof
of Theorem 6 is given in Section 6. Finally, in Theorem 7, stated in Sec-
tion 3.7, we show the non-existence of the T energy scattering map for the
Klein–Gordon equation on the interior of Reissner–Nordström. The proof of
Theorem 7 is given in Section 7.

3.1. Existence and boundedness of the T energy scattering map
First, we define the forward (resp. backward) evolution on a dense domain.
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Definition 3.1. The domains of the forward and backward evolution are de-
fined as

DTH := {ψ ∈ C∞c (H) ⊂ ETH s.t. the Cauchy evolution of ψ has
compact support on constant r = const. hypersurfaces} (3.2)

and

DTCH := {ψ ∈ C∞c (CH) ⊂ ETCH s.t. the backward evolution of ψ has
compact support on constant r = const. hypersurfaces}, (3.3)

respectively. Here, we consider r− < r < r+ and note that if ψ is compactly
supported on one {r = const.} slice, then, as a direct consequence of the
domain of dependence, its evolution will be compactly supported on all other
{r = const.} hypersurfaces for r− < r < r+.

We will prove in Lemma 5.1 in Section 5 that DTH ⊂ ETH and DTCH ⊂ ETCH
are dense domains.

These definitions of the domains are motivated by the following obser-
vation.

Remark 3.1. Suppose we are given data in DTH on the event horizon H. Con-
sider now the unique Cauchy development (cf. Proposition 2.1) and observe
that its restriction to the Cauchy horizon CH will lie in DTCH. This holds
true since we can first smoothly extend the metric beyond the Cauchy hori-
zon CH and then use the compact support on a constant r∗ hypersurface to
solve an equivalent Cauchy problem in an appropriate region which extends
the Cauchy horizon CH, includes the support of the solution, but does not
include i+. The smoothness of the solution up to and including the Cauchy
horizon CH follows now from Cauchy stability.

In view of Remark 3.1 we can define the forward and backward map on
the domains DTH and DTCH, respectively.

Definition 3.2. Define the forward map ST0 : DTH ⊂ ETH → DTCH ⊂ ETCH as
the unique forward evolution from data on the event horizon to data on the
Cauchy horizon. More precisely, let ψ be the solution to (1.1) arising from
initial data Ψ ∈ DTH ⊂ ETH. Then, define ST0 (Ψ) as the restriction of ψ to the
Cauchy horizon, i.e. ST0 (Ψ) := ψ �CH∈ DTCH.

Similarly, let φ be the unique backward evolution of (1.1) arising from
Φ ∈ DTCH. Then, define the backward map by BT0 (Φ) := φ �H∈ DTH.

Remark 3.2. Note that by the uniqueness of the Cauchy evolution we have that
ST0 and BT0 are inverses of each other, i.e. BT0 ◦ST0 = IdDTH , S

T
0 ◦BT0 = IdDTCH .

Now, we are in the position to state our main theorem.

Theorem 1. The map ST0 : DTH ⊂ ETH → DTCH ⊂ ETCH is bounded and uniquely
extends to

ST : ETH → ETCH, (3.4)
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called the “scattering map”. The scattering map ST is a Hilbert space iso-
morphism, i.e. a bounded and invertible linear map with bounded inverse
BT : ETCH → ETH satisfying

BT ◦ ST = IdETH , S
T ◦BT = IdETCH . (3.5)

Here, BT : ETCH → ETH is the “backward map”, which is the unique bounded
extension of BT0 .

In addition, the scattering map ST is pseudo-unitary, meaning that for
ψ ∈ ETH, we have∫

HA
|Tψ|2 −

∫
HB
|Tψ|2 =

∫
CHB
|TSTψ|2 −

∫
CHA
|TSTψ|2. (3.6)

In more traditional language, Theorem 1 yields existence, uniqueness,
and asymptotic completeness of scattering states.

The proof of Theorem 1 is given in Section 5. Let us note already that
Theorem 1 is a posteriori the physical space equivalent of the uniform bound-
edness of the scattering coefficients proven in Theorem 2 (see Section 3.2).
This equivalence is made precise in Theorem 3 (see Section 3.3).

Remark 3.3. Note that in general, neither initial data nor scattered data
have to be bounded in L∞ or continuous. Indeed, we have that ΦA(u, θ, ϕ) =
log(u)χu≥1 ∈ ETCHA , where χu≥1 is a smooth cutoff. Thus, there exist initial
data BT (ΦA) ∈ ETH such that its image under the scattering map is not in L∞
and not continuous. We emphasize the contrast with the estimates from [18]
for which more regularity and decay along the event horizon H are necessary.

3.2. Uniform boundedness of the transmission and reflection coefficients
On the level of the o.d.e. (2.36) in the separated picture, the problem of
boundedness of the scattering map reduces to proving that the transmission
coefficient T and the reflection coefficient R are uniformly bounded over all
parameter ranges of ω ∈ R and ` ∈ N0. This is stated as Theorem 2 below.

Theorem 2. The reflection and transmission coefficients R(ω, `) and T(ω, `)
are uniformly bounded, i.e. they satisfy

sup
ω∈R,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (3.7)

Theorem 2 is proved in Section 4. As discussed in the introduction,
the proof relies on an explicit calculation for ω = 0 together with a careful
analysis of the radial o.d.e. (2.36), involving properties of special functions
and perturbations thereof.

Let us note that, given Theorem 1, we could infer Theorem 2 as a
corollary (using the theory to be described in Section 3.3). We emphasize,
however, that in the present paper we use Theorem 2 to prove Theorem 1 in
Section 5.
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3.3. Connection between the separated and the physical space picture
In this section, we will make the connection of the separated and physical
space picture precise.

First, let us note that we have natural Hilbert space decompositions
ETH ∼= ETHA ⊕ E

T
HB and ETCH ∼= ETCHB ⊕ E

T
CHA .

Proposition 3.1. The Hilbert spaces ETH and ETCH of finite T energy on the
event horizon H and on the Cauchy horizon CH admit the orthogonal decom-
position

ETH ∼= ETHA ⊕ E
T
HB and ETCH ∼= ETCHA ⊕ E

T
CHB . (3.8)

Proof. Clearly, the embedding i : ETHA ⊕ E
T
HB ↪→ ETH is well-defined and iso-

metric. It remains to show that i is surjective. Let ψ ∈ C∞c (H). First, we
show that we can approximate (in T -energy) ψ �HA on HA with functions
ψε ∈ C∞c (HA) which are supported away from the past bifurcation sphere.
On HA choose non-degenerate coordinates (V, θ, ϕ) := (VH, θ, ϕ) as in Sec-
tion 2.1.2 and recall that the past bifurcation sphere is {V = 0}. Then, for
small ε > 0, set

ψε(V, θ, ϕ) := ψ(U = 0, V, θ, ϕ)χ(−ε log(V )), (3.9)

where χ : R→ [0, 1] is smooth and such that supp(χ) ⊆ (−∞, 2] and χ �(−∞,1]=
1. Then, it is straightforward to check that ψε ∈ C∞c (HA) and∫

HA
JT [ψ − ψε]µnµdvol .

∫
S2

∫ ∞
0

V (∂V (ψ − ψε))2dV sin θdθdϕ→ 0

(3.10)

as ε → 0. Analogously, we can do this for HB from which the claim follows.
�

We will use this identification to represent the scattering map also in
the Fourier picture and show how these pictures connect. To do so we define
the following.

Definition 3.3. For (ΨA,ΨB) ∈ ETHA ⊕E
T
HB note that ∂vΨA(v, θ, φ) ∈ L2(R×

S2;C) and analogously for ΨB. Hence, in mild abuse of notation, we can de-
fine the Fourier and spherical harmonics coefficients FHA(ΨA) and FHB (ΨB)
as

iωFHA(ΨA)(ω,m, `) := r+

∫
R

∫
S2

∂vΨA(v, θ, ϕ)e−iωvY`m(θ, ϕ) sin θdθdϕ
dv√
2π

(3.11)

and

−iωFHB (ΨB)(ω,m, `) := r+

∫
R

∫
S2

∂uΨB(u, θ, ϕ)eiωuY`m(θ, ϕ) sin θdθdϕ
du√
2π
.

(3.12)
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Similarly, for (ΦA,ΦB) ∈ ETCHA ⊕ E
T
CHB set

−iωFCHA(ΦA)(ω,m, `) := r−

∫
R

∫
S2

∂uΦA(u, θ, ϕ)eiωuY`m(θ, ϕ) sin θdθdϕ
du√
2π

(3.13)

and

iωFCHB (ΦB)(ω,m, `) := r−

∫
R

∫
S2

∂vΦB(v, θ, ϕ)e−iωvY`m(θ, ϕ) sin θdθdϕ
dv√
2π
.

(3.14)

Also, recall the Hilbert space decomposition ETH ∼= ETHA ⊕ E
T
HB and

ETCH ∼= ETCHB ⊕E
T
CHA . Thus, the scattering matrix can be also decomposed as

ST =

(
STBA STBB
STAA STAB

)
, (3.15)

where

STij : ETHj → E
T
CHi (3.16)

is a bounded linear map for i, j ∈ {A,B}.5

Definition 3.4. Define the Hilbert spaces

ÊTHA := `2(Z;L2(r−2
+ ω2dω)), ÊTHB := `2(Z;L2(r−2

+ ω2dω)),

ÊTCHA := `2(Z;L2(r−2
− ω2dω)), ÊTCHB := `2(Z;L2(r−2

− ω2dω)),

where Z = {(m, `) ∈ Z× N0 : |m| ≤ `}.

The Hilbert spaces defined in Definition 3.4 are unitary isomorphic to
their corresponding physical energy spaces. This is captured in

Proposition 3.2. The linear maps defined in (3.11)–(3.14)

FHA ⊕FHB : ETHA ⊕ E
T
HB → Ê

T
HA ⊕ Ê

T
HB (3.17)

FCHB ⊕FCHA : ETCHB ⊕ E
T
CHA → Ê

T
CHB ⊕ Ê

T
CHA (3.18)

are unitary.

Proof. This follows from the fact that the Fourier transform and the decom-
position into spherical harmonics are unitary maps. �

Now, we will define the scattering map in the separated picture and
show that it is bounded.

Proposition 3.3. The scattering map in the separated picture

ŜT : ÊTHA ⊕ Ê
T
HB → Ê

T
CHB ⊕ Ê

T
CHA , (3.19)

5Note that T does not denote the transpose but the fact that it is the scattering map
associated with the T vector field.
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defined as the multiplication operator

ŜT =

(
ˆSTBA

ˆSTBB
ˆSTAA

ˆSTAB

)
:=

(
T(ω, `) R̄(ω, `)
R(ω, `) T̄(ω, `)

)
, (3.20)

is bounded. Moreover, the map ŜT is invertible with bounded inverse given by

ŜT
−1

=

(
T̄(ω, `) −R̄(ω, `)
−R(ω, `) T(ω, `)

)
. (3.21)

Proof. Indeed, ŜT is bounded in view of the uniform boundedness of the
transmission and reflection coefficients T and R (cf. Theorem 2). Also note
that |T|2 = 1 + |R|2 implies that

det
(
ŜT
)

= 1 (3.22)

which shows (3.21). The boundedness of ŜT
−1

is again immediate since the
scattering coefficients are uniformly bounded. �

Using the previous definitions, we obtain the following connection for
the scattering map between the physical space and the separated picture.

Theorem 3. The following diagram commutes and each arrow is a Hilbert
space isomorphism:

ETHA ⊕ E
T
HB ETCHB ⊕ E

T
CHA

ÊTHA ⊕ Ê
T
HB ÊTCHB ⊕ Ê

T
CHA .

ST

FHA⊕FHB FCHB⊕FCHA

ŜT

Moreover, the maps ST and ŜT are pseudo-unitary satisfying (3.6) and (2.54),
respectively. More concretely, for (ΨA,ΨB) ∈ ETHA ⊕ E

T
HB , we can write(

ΦB
ΦA

)
= ST

(
ΨA

ΨB

)
, (3.23)

where ∂uΦA ∈ L2(CHA) and ∂vΦB ∈ L2(CHB) can be represented by

∂uΦA(u, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤`

−iωR(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)e−iωudω

+
1√

2πr−

∫
R

∑
|m|≤`

−iωT̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)e−iωudω

(3.24)
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and

∂vΦB(v, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤`

iωT(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)eiωvdω

+
1√

2πr−

∫
R

∑
|m|≤`

iωR̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)eiωvdω

(3.25)

as well as ΦA ∈ ETCHA ∼= Ḣ1(R;L2(S2)),ΦB ∈ ETCHB ∼= Ḣ1(R;L2(S2)) can be
represented by regular distributions as

ΦA(u, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤`

R(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)e−iωudω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤`

T̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)e−iωudω

(3.26)

and

ΦB(v, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤`

T(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)eiωvdω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤`

R̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)eiωvdω.

(3.27)

Proof. This is a direct consequence of Theorem 1, Theorem 2 and (5.30),
(5.31) in the proof of Proposition 5.1. �

From the previous representation of the scattered solution we can draw
a link between the boundedness of the scattering map and the fact that
compactly supported incoming data will lead to solutions which vanish on
the future bifurcation sphere B+. This is the content of the following

Corollary 3.1. Let Ψ = (ΨA, 0) ∈ ETHA⊕E
T
HB be purely incoming smooth data.

Assume further that ΨA is supported away from the past bifurcation sphere
B− and future timelike infinity i+.

Then, the Cauchy evolution ψ arising from ΨA vanishes at the future
bifurcation sphere B+.

On the other hand, if Ψ, as above, led to a solution which does not vanish
at the future bifurcation sphere B+, then the scattering map ST : ETH → ETCH
could not be bounded.

Proof. The first claim is a direct consequence of (3.27) in Theorem 3.
For the second statement let ΨA be compactly supported data on the

event horizon and assume that its Cauchy evolution ψ does not vanish at
the future bifurcation sphere B+. Now take data Ψ̃A which is supported
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away from the past bifurcation sphere B− and satisfies T Ψ̃A = ΨA. Then,
Ψ̃A ∈ ET but its Cauchy evolution ψ̃ satisfies ψ̃ �CH /∈ ETCH since

‖ψ̃ �CHB ‖2ETCHB
=

∫
R×S2

|ψ �CHB (v, θ, ϕ)|2dv sin θdθdϕ =∞, (3.28)

as ψ �CHB= T ψ̃ �CHB does not vanish at the future bifurcation sphere B+.
By cutting off smoothly, one can construct normalized (in ETH-norm) smooth
compactly supported initial data on ETH such that its Cauchy evolution has
arbitrary large norm ETCH-norm at the Cauchy horizon. �

Remark 3.4. For convenience we have stated the second statement of Corol-
lary 3.1 only for the interior of Reissner–Nordström. However, note that
it holds true for more general black hole interiors (e.g. subextremal (anti-
) de Sitter–Reissner–Nordström) with Penrose diagram as depicted in Fig. 5.

3.4. Injectivity of the reflection map
In this section, we define the reflection operator of purely incoming radiation
(cf. Fig. 6) and prove that it is has trivial kernel as an operator from ETHA →
ETCHA .

HA
H
B

CH
A

CH
B

i+i+

B+

B−

R

Figure 6. Reflection R of purely incoming radiation.

Definition 3.5 (Reflection operator). For purely incoming radiation (ΨA, 0) ∈
ETHA ⊕ E

T
HB , define the reflection operator

R : ETHA → E
T
CHA (3.29)

as

R(ΨA) = ΦA := prA

(
ST
(

ΨA

0

))
, (3.30)

where prA : ETCHB ⊕ E
T
CHA → E

T
CHA is the orthogonal projection.
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Theorem 4. The reflection operator R defined in Definition 3.5 has trivial
kernel.

Proof. Assume R(ΨA) = 0 for some ΨA ∈ ETHA . Then, in view of Theorem 3,

R(ω, `)FHA(ΨA)(ω,m, `) = 0 (3.31)

for allm, `, and a.e. ω ∈ R. Moreover, sinceR(ω, `) only vanishes on a discrete
set (cf. Proposition 2.5), we obtain that FHA(ΨA)(ω,m, `) = 0 for all m, `,
and a.e. ω ∈ R. Again, in view of Theorem 3, we conclude ΨA = 0 as an
element of ETHA . �

3.5. C1-blow-up on the Cauchy horizon

In this section, we shall revisit and discuss the seminal work [5] of Chan-
drasekhar and Hartle. The Fourier representation of the scattered data on
the Cauchy horizon in Theorem 3 serves as a good framework to provide
a completely rigorous framework for the C1-blow-up at the Cauchy horizon
studied in [5].

Theorem 5 (C1-blow-up on the Cauchy horizon [5]). There exist smooth,
compactly supported and purely incoming data ΨA on the event horizon HA
for which the Cauchy evolution of (1.1) fails to be C1 at the Cauchy horizon
CH. More precisely, the solution ψ arising from ΨA fails to be C1 at every
point on the Cauchy horizon CHA∪B+. Moreover, the incoming radiation can
be chosen to be only supported on any angular parameter `0 which satisfies
`0(`0 + 1) 6= r2

+(r+ − 3r−).

Proof. Let `0 be fixed and satisfy `0(`0 + 1) 6= r2
+(r+ − 3r−). Define purely

incoming smooth data ΨA(v, θ, ϕ) = f(v)Y`00(θ, ϕ) on HA, where f(v) is
smooth and compactly supported. Moreover, assume that the entire function
f̂ satisfies f̂(iκ+) 6= 0. In view of the representation formula (3.27) from
Theorem 3, the degenerate derivative of its Cauchy evolution ΦB on the
Cauchy horizon CHB reads

∂vΦB(v, θ, ϕ) =
r+√
2πr−

∫
R
iωT(ω, `0)f̂(ω)eiωvdωY`00(θ, ϕ). (3.32)

Since T(ω, `) has a simple pole at ω = iκ+ (cf. Proposition A.2 in the ap-
pendix), we pick up the residue at iκ+ when we deform the contour of in-
tegration in (3.32) from the real line to the line Im(ω) = κ+ + δ for some
κ+ > δ > 0. Here we use that the compact support of f(v) implies the
bound |f̂(ω)| ≤ e| Im(ω)| sup | supp(f)|f̂(Re(ω)) and that, in addition, by Propo-
sition A.2, the transmission coefficient T remains bounded as |Re(ω)| → ∞.
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This ensures that the deformation of the integration contour is valid. Hence,

∂vΦB(v, θ, ϕ) =
ir+√
2πr−

2πi(iκ+)f̂(iκ+)e−κ+vY`00(θ, ϕ) Res(T(ω, `0), iκ+)

+ i
r+e
−(κ++δ)v

√
2πr−

∫
R

[
(ωR + i(κ+ + δ))T(ωR + i(κ+ + δ))

f̂(ωR + i(κ+ + δ))eiωRvY`00(θ, ϕ)
]
dωR

= Ce−κ+vY`00(θ, ϕ) + o
(
e−(κ++δ)v

)
(3.33)

as v →∞, where

C = −iκ+
r+

r−

√
2πf̂(iκ+) Res(T(ω, `0), ω = iκ+) 6= 0 (3.34)

by construction. Thus, ΦB is not in C1 at the future bifurcation sphere as
the non-degenerate derivative diverges as v →∞:

∂

∂VCH
ΦB = e−κ−v∂vΨB(v, θ, ϕ) = Ce−(κ++κ−)v(1 + o(1)), (3.35)

where we recall that κ− < −κ+ < 0. Finally, propagation of regularity gives
that the solution is not in C1 at each point on the Cauchy horizon CHA.
More precisely, expressing (1.1) is (u, v) coordinates gives

∂u∂vψ =
−∆

2r3
(∂vψ + ∂uψ) +

∆

4r4
`0(`0 + 1)ψ, (3.36)

where ∆ is as in (2.5) and where we have used that ∆S2ψ = −`0(`0 + 1)ψ.
Now, note that |ψ|, |∂uψ| and |∂vψ| are uniformly bounded in the interior by
a higher order norm of ΨA. This follows from [18], commuting with T and
angular momentum operators as well as elliptic estimates. Finally, integrating
(3.36) in u, using the estimate |∆| . eκ−(u+v) for r∗ ≥ 0 (see (A.7)) and using
the non-degenerate coordinate VCH gives the C1 blow-up also everywhere on
CHA. �

3.6. Breakdown of T energy scattering for cosmological constants Λ 6= 0

Interestingly, the analogous result to Theorem 1 on the interior of a subex-
tremal (anti-) de Sitter–Reissner–Nordström black hole does not hold for al-
most all cosmological constants Λ. In the presence of a cosmological constant
it is also natural to consider the Klein–Gordon equation with conformal mass
µ = 3

2Λ. We will consider in fact a general mass term of the form µ = νΛ,
where ν ∈ R. Note that ν = 3

2 corresponds to the conformal invariant Klein–
Gordon equation. To be more precise, we prove that for generic subextremal
black hole parameters (M,Q,Λ), there exists a normalized (in ETH-norm) se-
quence of Schwartz initial data on the event horizon for which the ETCH-norm
of the evolution restricted to the Cauchy horizon blows up.

We define a black hole parameter triple (M,Q,Λ) to be subextremal if

(M,Q,Λ) ∈ Pse := PΛ=0
se ∪ PΛ>0

se ∪ PΛ<0
se , (3.37)
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where

PΛ=0
se := {(M,Q,Λ) ∈ R+ × R× {0} : ∆(r) := r2 − 2Mr +Q2

has two positive simple roots satisfying 0 < r− < r+.}, (3.38)

PΛ>0
se := {(M,Q,Λ) ∈ R+ × R× R+ : ∆(r) := r2 − 2Mr − 1

3
Λr4 +Q2

has three positive simple roots satisfying 0 < r− < r+ < rc},
(3.39)

PΛ<0
se := {(M,Q,Λ) ∈ R+ × R× R− : ∆(r) := r2 − 2Mr − 1

3
Λr4 +Q2

has two positive roots satisfying 0 < r− < r+}. (3.40)

Theorem 6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particu-
lar, we may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for
the wave equation (1.1).) Consider the interior of a subextremal (anti-) de
Sitter–Reissner–Nordström black hole with generic parameters (M,Q,Λ) ∈
Pse \D(ν). (Here, D(ν) ⊂ Pse is a set with measure zero defined in Propo-
sition 6.1 (see Section 6). Moreover D(ν) satisfies PΛ=0

se ⊂ D(ν) and U ∩
D(ν) = PΛ=0

se for some open set U ⊂ Pse.)
Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly

supported data on HA with

‖Ψn‖ETH = 1 for all n (3.41)

such that the solution ψn to the Klein–Gordon equation with mass µ = νΛ

�gM,Q,Λψ − µψ = 0 (3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (3.43)

Proof. See Section 6. �

Remark 3.5. Note that from Theorem 6 it also follows that for fixed 0 <
|Q| < M , the T energy scattering breaks down (in sense of Theorem 6) for
all cosmological constants 0 < |Λ| < ε, where ε = ε(M,Q) > 0 is small
enough.

3.7. Breakdown of T energy scattering for the Klein–Gordon equation
Finally, we will also prove that the T energy scattering theory does not hold
for the Klein–Gordon equation for a generic set of masses µ, even in the case
of vanishing cosmological constant Λ = 0.

Theorem 7. Consider the interior of a subextremal Reissner–Nordström black
hole. There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the
following holds true. For any µ ∈ R \ D̃ there exists a sequence (Ψn)n∈N of
purely ingoing and compactly supported data on HA with

‖Ψn‖ETH = 1 for all n (3.44)
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such that the solution ψn to the Klein–Gordon equation with mass µ

�gM,Q,Λψ − µψ = 0 (3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (3.46)

Proof. See Section 7. �

The above Theorem 6 and Theorem 7 show that the existence of a
T energy scattering theory for the wave equation (1.1) on the interior of
Reissner–Nordström is in retrospect a surprising property. Implications of
the non-existence of a T energy scattering map and in particular, the un-
boundedness of the scattering map in the cosmological setting Λ 6= 0, are yet
to be understood.

4. Proof of Theorem 2: Uniform boundedness of the
transmission and reflection coefficients

This section is doteevoted to the proof of Theorem 2. We will analyze solu-
tions to the o.d.e. (recall from (2.34))

∆
d

dr

(
∆

d

dr
R

)
−∆`(`+ 1)R+ r4ω2R = 0.

This o.d.e. can be written equivalently (recall from (2.36)) as

u′′ + (ω2 − V`)u = 0,

in the r∗ variable, where u = rR.
For the convenience of the reader we recall the statement of Theorem 2.

Theorem 2. The reflection and transmission coefficients R(ω, `) and T(ω, `)
are uniformly bounded, i.e. they satisfy

sup
ω∈R,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (3.7)

The proof of Theorem 2 will involve different arguments for different
regimes of parameters. Also, note that in view of (2.56) and (2.57) it is
enough to assume ω 6= 0.

The first regime for bounded frequencies (|ω| ≤ ω0, ` arbitrary) requires
the most work. One of its main difficulties is to obtain estimates which are
uniform in the limit ` → ∞. We shall use that the o.d.e. (2.36) with ω = 0,
which reads

u′′ − V`u = 0, (4.1)

can be solved explicitly in terms of Legendre polynomials and Legendre func-
tions of second kind. The specific algebraic structure of the Legendre o.d.e.
leads to the feature that solutions which are bounded at r∗ = −∞ are also
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bounded at r∗ = +∞. For generic perturbations of the potential this prop-
erty fails to hold. Nevertheless, for perturbations of the form as in (2.36) for
ω 6= 0 and |ω| ≤ |ω0|, this behavior survives and most importantly, can be
quantified. To prove this we will essentially divide the real line R 3 r∗ into
three regions.

The first region will be near the event horizon (r∗ = −∞), where we
will consider the potential V` as a perturbation. The second region will be
the intermediate region, where we will consider the term involving ω as a
perturbation. Finally, in the third region near the Cauchy horizon (r∗ =
+∞), we consider the potential V` as a perturbation again. This eventually
allows us to prove the uniform boundedness of the reflection and transmission
coefficients R and T in the bounded frequency regime |ω| < ω0.

The second regime will be bounded angular momenta and ω-frequencies
bounded from below (|ω| ≥ ω0, ` ≤ `0). For this parameter range we will
consider V` as a perturbation of the o.d.e. since V` might only grow with
`, which is, however, bounded in that range. Again, this allows us to show
uniform boundedness for the transmission and reflection coefficients T and
R.

The third regime will be angular momenta and frequencies both bounded
from below (|ω| ≥ ω0, ` ≥ `0). To prove boundedness of reflection and trans-
mission coefficients R and T, we will consider 1

` as a small parameter to
perform a WKB-approximation.

4.1. Low frequencies (|ω| ≤ ω0)
We first analyze the o.d.e. for the special case of vanishing frequency. Then,
we will summarize properties of special functions, which we will need to finally
prove the boundedness of reflection and transmission coefficients in the low
frequency regime. Let

0 < ω0 ≤
1

2
(4.2)

be a fixed constant.

4.1.1. Explicit solution for vanishing frequency (ω = 0). For ω = 0 we can
explicitly solve the o.d.e. with special functions. In that case the o.d.e. reads

d

dr

(
∆

dR

dr

)
− `(`+ 1)R = 0. (4.3)

We define the coordinate x(r) as

x(r) := − 2r

r+ − r−
+
r+ + r−
r+ − r−

(4.4)

or equivalently,

r(x) = −r+ − r−
2

x+
r+ + r−

2
. (4.5)
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Then, we can write

∆(x) =

(
r+ − r−

2

)2

(x+ 1)(x− 1) =

(
r+ − r−

2

)2

(x2 − 1). (4.6)

Hence, Eq. (4.3) reduces to the Legendre o.d.e.

d

dx

(
(1− x2)

dR

dx

)
+ `(`+ 1)R = 0. (4.7)

We will denote by P`(x) and Q`(x) the two independent solutions, the Le-
gendre polynomials and the Legendre functions of second kind, respectively
[44, 14]. We will prove later in Proposition 4.2 that ũ1 and ũ2 from Defini-
tion 2.3 satisfy

ũ1(r∗) = w1(r∗) := (−1)`
r(r∗)

r+
P`(x(r∗)), (4.8)

ũ2(r∗) = w2(r∗) := (−1)`
r(r∗)

k+r+
Q`(x(r∗)). (4.9)

These are a fundamental pair of solutions for the o.d.e. in the case ω = 0.
We will perturb these explicit solutions for the regime of low frequencies
(|ω| ≤ ω0). To do so, we will need properties about special functions which
will be considered first.

In view of the fact that ω0 is fixed, constants appearing in . and & may
also depend on ω0. Before we begin, we shall summarize the special functions
we will use and list their relevant properties in the case |ω| ≤ ω0.

4.1.2. Special functions. Good references for the following discussion are [1,
44, 14]. First, we shall recall the definition of the Gamma and Digamma
function.

Definition 4.1. For z ∈ C with Re(z) > 0 we denote the Gamma function
with Γ(z) and will also make use of the Digamma function z(z) defined as

z(z) :=

∫ ∞
0

(
e−x

x
− e−zx

1− e−x

)
dx. (4.10)

Note that

z(z + 1)−z(z) =
1

z
(4.11)

and

z(n) =

n−1∑
k=1

1

k
− γ = log(n) +O(n−1), (4.12)

where γ is the Euler–Mascheroni constant.

As we mentioned above, we shall use the Legendre polynomials and
the Legendre functions of second kind. We will express them in terms of the
hypergeometric function F(a, b; c;x) for x ∈ (−1, 1), a, b, c ∈ R as defined in
[44, Equation (9.3)].
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Definition 4.2 (Legendre functions of first and second kind). We use the
standard conventions which are used in [44, 14].

For x ∈ (−1, 1), we define the associated Legendre polynomials by

Pm` (x) =

(
1 + x

1− x

)m
2

F

(
`+ 1,−`; 1−m;

1− x
2

)
(4.13)

and the associated Legendre functions of second kind by

Qm` (x) = −1

2
π sin

(
1

2
π(`+m)

)
w1(`, x) +

1

2
π cos

(
1

2
(`+m)π

)
w2(`, x).

(4.14)

Here,

w1(`, x) =
2mΓ( `+m+1

2 )

Γ(1 + `
2 )

(1− x2)−
m
2 F

(
−`+m

2
,

1 + `−m
2

;
1

2
;x2

)
, (4.15)

w2(`, x) =
2mΓ(1 + `+m

2 )

Γ( `−m+1
2 )

x(1− x2)−
m
2 F

(
1− `−m

2
, 1 +

`−m
2

;
3

2
;x2

)
.

(4.16)

We shall also use the convention P` = P 0
` and Qm` = Q0

` . Also, recall
the symmetry

P`(x) = (−1)`P`(−x), (4.17)

Q`(x) = (−1)`+1Q`(−x). (4.18)

In the asymptotic expansion in the parameter ` for the Legendre polynomials
and functions we will make use of Bessel functions which we define in the
following.

Definition 4.3 (Bessel functions of first and second kind). Recall the Bessel
functions of first kind

J0(x) :=

∞∑
k=0

x2k

(−4)kk!2
, (4.19)

J1(x) :=
x

2

∞∑
k=0

x2k

(−4)kk!(k + 1)!
, (4.20)

and the Bessel functions of second kind

Y0(x) :=
2

π
J0(x)

(
log
(x

2

)
+ γ
)
− 2

π

∞∑
k=1

Hk
x2k

(−4)k(k!)2
, (4.21)

Y1(x) :=− 1

2πx
+

2

π
log
(x

2

)
J1(x)

− x

2π

∞∑
k=0

(z(k + 1) + z(k + 2))
x2k

(−4)kk!(k + 1)!
, (4.22)



Scattering of linear waves on Reissner–Nordström interior 33

where Hk =
∑k
n=1 n

−1 is the k-the harmonic number. We have the asymptotic
expansions

J0(x) = 1 +O(x2), (4.23)

J1(x) =
x

2
+O(x3), (4.24)

Y0(x) =
2

π
log
(x

2

)
+O(1), (4.25)

Y1(x) = − 1

2πx
+ o(1) as x→ 0. (4.26)

Note that bounds deduced from (4.23) – (4.26) hold uniformly on any interval
(0, a] of finite length. We shall also use the bounds

|J0(x)| ≤ 1, |Y0(x)| . 1 + | log(x)| (4.27)

for 0 < x ≤ 1 and

|J0(x)| . 1√
x
, |Y0(x)| . 1√

x
(4.28)

for x ≥ 1 [1, p. 360, p. 364].

In the proof we will also use the following asymptotic formulae for P`
and Q` for large ` in terms of Bessel functions.

Lemma 4.1. [14, §14.15(iii)] We have

P`(cos θ) =

(
θ

sin θ

) 1
2
(
J0

(
θ(2`+ 1)

2

)
+ e1,`(θ)

)
, (4.29)

Q`(cos θ) = −π
2

(
θ

sin θ

) 1
2
(
Y0

(
θ(2`+ 1)

2

)
+ e2,`(θ)

)
, (4.30)

Q1
`(cos θ) = − π

2`

(
θ

sin θ

) 1
2
(
Y1

(
θ(2`+ 1)

2

)
+ e3,`(θ)

)
, (4.31)

where the error terms can be estimated by

|e1,`(θ)|, |e2,`(θ)| .
1

1 + `

[∣∣∣∣J0

(
θ(2`+ 1)

2

)∣∣∣∣+

∣∣∣∣Y0

(
θ(2`+ 1)

2

)∣∣∣∣] , (4.32)

|e3,`(θ)| .
1

1 + `

[∣∣∣∣J1

(
θ(2`+ 1)

2

)∣∣∣∣+

∣∣∣∣Y1

(
θ(2`+ 1)

2

)∣∣∣∣] (4.33)

for θ ∈ (0, π − δ) and for any fixed δ > 0. In particular, this holds uniformly
as θ → 0.

We shall use the following asymptotic formulae for the Legendre func-
tions at the singular endpoints.

Lemma 4.2. [14, §14.8] For 0 < x < 1 we have

P`(x) = 1 + f1(x), (4.34)

Q`(x) =
1

2
(log(2)− log(1− x))− γ −z(`+ 1) + f1(x), (4.35)
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where |f1(x)| .` (1−x). Moreover, analogous results hold true for −1 < x < 0
due to symmetry.

Now, we will estimate the derivatives of the Legendre polynomials and
Legendre functions of second kind.

Lemma 4.3. For x ∈ (−1, 1) we have

∣∣∣∣dP`dx

∣∣∣∣ ≤ `2. (4.36)

For xα,` := 1− α
1+`2 with 0 < α < 1 and ` ∈ N we have

(1− (±xα,`)2)

∣∣∣∣dQ`dx
(±xα,`)

∣∣∣∣ . 1. (4.37)

Proof. Inequality (4.36) is known as Markov’s inequality and is proven in [4,
Theorem 5.1.8]. We only have to prove (4.37) for x = +xα,` due to symmetry.
From the recursion relation [14, §14.10] we have

(`+ 1)−1(1− x2
α,`)

dQ`
dx

(xα,`) = xα,`Q`(xα,`)−Q`+1(xα,`)

= (xα,` − 1)Q`(xα,`) + (Q`(xα,`)−Q`+1(xα,`)). (4.38)

We will consider both summands separately.
Part 1: Summand (xα,` − 1)Q`(xα,`)

First, consider 1 − xα,` = α
1+`2 , where we implicitly define cos(θα,`) = xα,`.

Note that we have

θα,`(x) =
√

2(1− xα,`) +O((1− xα,`)
3
2 ) =

√
2α

1 + `2
+O

((
α

1 + `2

) 3
2

)

=

√
2α

1 + `2

(
1 +O

(
α

1 + `2

))
.

(4.39)

In particular, we have θα,`` . 1. This gives

−Q`(xα,`) = −Q`(cos θα,`) =
π

2

(
θα,`

sin θα,`

) 1
2
(
Y0

(
θα,`(2`+ 1)

2

)
+ e2,`(θα,`)

)
.

(4.40)
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Again, we will look at the two terms independently. First, note that

π

2

(
θα,`

sin θα,`

) 1
2
(
Y0

(
θα,`

(
`+

1

2

)))
=
π

2

(
θα,`

sin θα,`

) 1
2
(

2

π
log

(
θα,`(2`+ 1)

4

)
+O(1)

)
=
(
1 +O(θ2

α,`)
)(

log(θα,`) + log

(
`+

1

2

)
+O(1)

)
=

(
1 +O

(
α

1 + `2

))(
1

2
log

(
α

1 + `2

)
+ log

(
`+

1

2

)
+O(1)

)
=

(
1 +O

(
α

1 + `2

))(
1

2
log(α) +

1

2
log

(
1 +

`− 3
4

`2 + 1

)
+O(1)

)
=

1

2
log(α) +O(1). (4.41)

In order to estimate e2,`(θα,`) we shall recall inequality (4.32). It works anal-
ogously to the previous estimate up to a good term of 1

1+` . In particular, this
shows

|Q`(xα,`)| . | log(α)|+ 1 (4.42)

and

|(xα,` − 1)Q`(xα,`)| .
α

1 + `2
(| log(α)|+ 1) .

1

1 + `2
. (4.43)

Part 2: Summand (Q`(xα,`)−Q`+1(xα,`))

Using the recursion relation for the difference of two Legendre function [14,
§14.10], we have

(`+ 1)(Q`(xα,`)−Q`+1(xα,`) = −(1− x2
α,`)

1
2Q1

`(xα,`) + (1− xα,`)Q`(xα,`).
(4.44)

We estimate the term (1− xα,`)Q`(xα,`) by what we have done above as

|(1− xα,`)Q`(xα,`)| .
α

1 + `2
(| log(α)|+ 1) . 1. (4.45)

For the term −(1− x2
α,`)

1
2Q1

`(xα,`) we use (4.31) to get∣∣∣−(1− x2
α,`)

1
2Q1

`(xα,`)
∣∣∣

.

√
α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))(
Y1

((
`+

1

2

)
θα,`

)
+ e2,`(θα,`)

)
.

(4.46)
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As before, we shall start estimating the first term using (4.26) and (4.39) to
obtain√

α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))
Y1

((
`+

1

2

)
θα,`

)
=

√
α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))(
− 1

π(2`+ 1)θα,`
+O(1)

)
.

√
α

`2 + 1

1

1 + `

(
1√
α

+ 1

)
. 1. (4.47)

We estimate the second term using (4.33), (4.24), (4.26), and (4.39) to obtain∣∣∣∣√ α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))
e2,`(θα,`)

∣∣∣∣
.

√
α

`2 + 1

1

1 + `2

(
1√
α

+ 1

)
. 1. (4.48)

We have estimated that |Q`(xα,`)−Q`+1(xα,`)| . 1
1+` which proves the

claim in view of (4.38). �

Finally, we prove asymptotics for the derivatives of the Legendre of
functions of second kind near the singular points.

Lemma 4.4. For 0 < x < 1 and x→ 1 we have

(1− x2)
dQ`
dx

= 1 +O`((1− x) log(1− x)). (4.49)

By symmetry this also yields for −1 < x < 0 and x→ −1

(1− x2)
dQ`
dx

= (−1)` +O`((1 + x) log(1 + x)). (4.50)

Proof. From the recursion relation [14, §14.10] and (4.35) we obtain

(1− x2)
dQ`
dx

= (`+ 1)(xQ` −Q`+1)

= (`+ 1)(x− 1)Q` + (`+ 1)(Q` −Q`+1)

= (`+ 1)(Q` −Q`+1) +O`((1− x) log(1− x))

= (`+ 1)(z(`+ 2)−z(`+ 1)) +O`((1− x) log(1− x))

= 1 +O`((1− x) log(1− x)). (4.51)

�

Having reviewed the required facts about special functions, we shall now
proceed to prove the uniform boundedness of the reflection and transmission
coefficients.
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4.1.3. Boundedness of the reflection and transmission coefficients. As men-
tioned before, we will consider three different regions: a region near the event
horizon, an intermediate region, and a region near the Cauchy horizon. In r∗
coordinates we separate these regions at

R∗1(ω, `) :=
1

2κ+
log

(
ω2

1 + `2

)
(4.52)

and

R∗2(ω, `) :=
1

2κ−
log

(
ω2

1 + `2

)
(4.53)

for 0 < |ω| < ω0 and ` ∈ N0. Note that −∞ < R∗1(ω, `) < 0 < R∗2(ω, `) <∞.

Region near the event horizon.

Proposition 4.1. Let 0 < |ω| < ω0 and ` ∈ N0. Then, we have

‖u′1‖L∞(−∞,R∗1) . |ω|, (4.54)
‖u1‖L∞(−∞,R∗1) . 1. (4.55)

Proof. Recall the defining Volterra integral equation for u1 from Defini-
tion 2.3

u1(r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(y)dy. (4.56)

with integral kernel

K(r∗, y) :=
sin(ω(r∗ − y))

ω
V (y). (4.57)

From Lemma A.3 in the appendix, we obtain for r∗ ≤ R∗1
|V (r∗)| . e2k+r∗(1 + `2) (4.58)

and in particular,

|V (R∗1)| . e2k+R
∗
1 (1 + `2) = ω2. (4.59)

This implies for r∗ ≤ R∗1

|K(r∗, y)| ≤ 1

|ω|
|V (y)| . 1

|ω|
(1 + `2)e2k+y (4.60)

and thus, ∫ R∗1

−∞
sup

y<r∗<R∗1

|K(r∗, y)|dy . `2 + 1

|ω|
e2k+R

∗
1 . 1. (4.61)

The claim follows now from Proposition 2.3. �

Now, we would like to consider ω as a small parameter and perturb the
explicit solutions for the ω = 0 case in order to propagate the behavior of
the solution through the intermediate region, where V` is large compared to
ω. In particular, V` can be arbitrarily large since ` is not bounded above in
the considered parameter regime.
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Intermediate region. First, recall the following fundamental pair of so-
lutions which is based on the Legendre functions of first and second kind

w1(r∗) := (−1)`
r(r∗)

r+
P`(x(r∗)), (4.62)

w2(r∗) := (−1)`
r(r∗)

k+r+
Q`(x(r∗)), (4.63)

where P` and Q` are the Legendre polynomials and Legendre functions of
second kind, respectively. Our first claim is that we have constructed this
fundamental pair (w1, w2) to have unit Wronskian and moreover ũ1 = w1

and ũ2 = w2 holds true.

Proposition 4.2. We have w1 = ũ1 and w2 = ũ2 and the Wronskian of u1

and u2 satisfies

W(w1, w2) = W(ũ1, ũ2) = 1. (4.64)

Similarly, we also have ṽ1 = (−1)` r+r−w1 = (−1)` r+r− ũ1.

Proof. We first prove that W(w1, w2) = 1. Since the Wronskian is indepen-
dent of r∗, we will compute its value in the limit r∗ → −∞. In this proposition
` is fixed and we shall allow implicit constants in . to depend on `. Clearly,

w1(r∗)→ 1 as r∗ → −∞. (4.65)

Moreover, we have that for r∗ ≤ 0∣∣∣∣ d

dr∗
w1(r∗)

∣∣∣∣ . e2k+r∗ |P`(x(r∗))|+
∣∣∣∣dP`(x)

dx
(r∗)

dx

dr∗
(r∗)

∣∣∣∣ . e2k+r∗ , (4.66)

where we have used (4.36). This, in particular, also shows that w1 satisfies
the same boundary conditions (w1 → 1, w′1 → 0 as r∗ → −∞) as ũ1 defined
in Definition 2.3 and thus, w1 and ũ1 have to coincide. Similarly, we can
deduce ṽ1 = (−1)` r+r−w1.

For w2, we use (4.35) to obtain

|w2(r∗)− r∗| .
(
− r(r∗)
k+r+

(
1

2
log

(
2

1 + x(r∗)

)
− γ −z(`+ 1)

)
− r∗

)
+ e2k+r∗ .

(4.67)

For an intermediate step, we compute log(1+x(r∗)) from (4.4) near r∗ = −∞.
In particular, for the limit r∗ → −∞, we can assume that r∗ ≤ 0 and thus,
r − r− & r+ − r−. Hence,

log(1 + x(r∗)) = log

(
1 +

(r+ − r) + (r− − r)
r+ − r−

)
= log

(
1 +

f(r∗)

r+ − r−
e2k+r∗ +

r− − r
r+ − r−

)
= log

(
2f(r∗)

r+ − r−
e2k+r∗

)
= 2k+r∗ + log(2f(r∗)(r+ − r−)−1), (4.68)
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where f is defined in (A.11). Thus, this directly implies

|w2(r∗)− r∗| . r∗e2k+r∗ + 1 . 1. (4.69)

Finally, we claim that w′2 → 1 as r∗ → −∞. We shall use estimate (4.50)
near x(r∗) = −1 to obtain

|w′2(r∗)− 1| . e2k+r∗(|r∗|+ 1) +

∣∣∣∣(−1)`
r(r∗)

k+r+

dQ`(x)

dx

dx

dr∗
− 1

∣∣∣∣
. e2k+r∗ +

∣∣∣∣ r(r∗)k+r+
[1 +O ((1 + x(r∗)) log(1 + x(r∗)))]

1

1− x2(r∗)

dx

dr∗
− 1

∣∣∣∣ .
(4.70)

Now, in order to conclude that

|w′2(r∗)− 1| → 0 as r∗ → −∞, (4.71)

it suffices to check that
1

1− x2(r∗)

dx

dr∗
→ k+ as r∗ → −∞. (4.72)

But this holds true because
1

1− x2(r∗)

dx

dr∗
=

1

1− x2(r∗)

−2

r+ − r−
∆

r2
=
r+ − r−

2r2
→ k+ as r∗ → −∞.

(4.73)

Now, this implies that

W(w1, w2) = lim
r∗→−∞

(w1w
′
2 − w′1w2) = 1, (4.74)

and moreover, that w2 = ũ2 as they satisfy the same boundary conditions at
r∗ = −∞. �

Having proved the Wronskian condition we are in the position to define
the perturbations of ũ1 and ũ2 to non-zero frequencies.

Definition 4.4. Define perturbations ũ1,ω and ũ2,ω of ũ1 and ũ2 (cf. (4.8)
and (4.9)) in the intermediate region by the unique solutions to the Volterra
equations

ũ1,ω(r∗) = ũ1(r∗) + ω2

∫ r∗

R∗1

(ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)) ũ1,ω(y)dy (4.75)

and

ũ2,ω(r∗) = ũ2(r∗) + ω2

∫ r∗

R∗1

(ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)) ũ2,ω(y)dy. (4.76)

Proposition 4.3. Let 0 < |ω| < ω0 and ` ∈ N0, then we have for r∗ ∈ [R∗1, R
∗
2]

u1(ω, r∗) = A(ω, `)ũ1,ω(r∗) +B(ω, `)ωũ2,ω(r∗), (4.77)

where

|A(ω, `)|+ |B(ω, `)| . 1. (4.78)
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Proof. First, note that by construction in Definition 4.4 we have

ũ1,ω(R∗1) = ũ1(R∗1), (4.79)

ũ′1,ω(R∗1) = ũ′1(R∗1), (4.80)
ũ2,ω(R∗1) = ũ2(R∗1), (4.81)

ũ′2,ω(R∗1) = ũ′2(R∗1). (4.82)

Now, we want to estimate the previous terms. By construction, we directly
have that

|ũ1(R∗1)| ≤ 1. (4.83)

Then, note that

ω2

`2 + 1
. 1 + x(R∗1) .

ω2

`2 + 1
. (4.84)

Hence, from (4.35), we obtain

|ũ2(R∗1)| . 1 +

∣∣∣∣−1

2
log(1 + x(R∗1))−z(`+ 1)

∣∣∣∣ . 1 + | log(|ω|)| . log

(
1

|ω|

)
,

(4.85)

where we have used that for ` ≥ 1 we have z(` + 1) = log(`) + γ + O(`−1).
For ũ′2(R∗1) we have the estimate

|ũ′2(R∗1)| . |∆(R∗1)Q`(x(R∗1))|+
∣∣∣∣dQ`dx

(R∗1)
dx

dr∗
(R∗1)

∣∣∣∣ . 1, (4.86)

where we have used (4.37) and (4.84) as well as the fact that

dx

dr∗
(1− x(r∗)

2)−1 . 1. (4.87)

Now, we can express A via the Wronskian as

|A| =
∣∣∣∣ W(u1, ũ2,ω)

W(ũ1,ω, ũ2,ω)

∣∣∣∣ . (4.88)

By construction, we have W(ũ1,ω, ũ2,ω) = W(ũ1, ũ2) = 1. Hence, using
Proposition 4.1 we conclude

|A| ≤ |u1(R∗1)ũ′2,ω(R∗1)|+ |u′1(R∗1)ũ2,ω(R∗1)| . |ũ′2(R∗1)|+ |ωũ2(R∗1)|. (4.89)

Thus, we conclude

|A| . 1. (4.90)

Note that from (4.36), we have

|ũ′1(R∗1)| .
∣∣∣∣(1 +

dP`
dx

)
dx

dr∗

∣∣∣∣ . (1 + `2)
ω2

1 + `2
≤ ω2. (4.91)
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Hence, we can also estimate B by

|B| = 1

|ω|
|W(u1, ũ1,ω)| . 1

|ω|
(|ũ′1(R∗1)|+ |ωũ1(R∗1)|)

. 1 +
1

|ω|
|ũ′1(R∗1)| . 1, (4.92)

where we used Proposition 4.1 again. �

For the intermediate region we will need the following result in order to
get uniform bounds for the Volterra iteration.

Lemma 4.5. Let 0 < |ω| < ω0 and ` ∈ N0, then∫ R∗2

R∗1

|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
, (4.93)∫ R∗2

R∗1

|ũ2(r∗)|dr∗ . log2

(
1

|ω|

)
. (4.94)

Proof. We first prove (4.93). We shall split the integral in two regions. The
first region is from r∗ = R∗1 to r∗ = 0. In that region we define θ ∈ (0, π2 ] such
that cos(θ) = −x(r∗). Using also Lemma 4.1 we obtain

|ũ1(r∗)| . |P`(x(r∗))| = |P`(−x(r∗))| = |P`(cos θ)|

.

∣∣∣∣∣
(

θ

sin θ

) 1
2

J0((`+
1

2
)θ)

∣∣∣∣∣+ |e1,`(θ)|. (4.95)

The last term shall be treated as an error term. Thus,∫ 0

R∗1

|ũ1(r∗)|dr∗ .
∫ 0

x(R∗1)

|P`(x)| 1

1 + x
dx ≤

∫ 0

−1+C ω2

1+`2

|P`(−x)| 1

1 + x
dx

.
∫ π

2

arccos(1−C ω2

1+`2
)

|P`(cos θ)| 1

1− cos θ
sin θ dθ

≤
∫ π

2

C1
|ω|
1+`

|P`(cos θ)| sin θ

1− cos θ
dθ. (4.96)

Here, C and C1 are positive constants only depending on the black hole
parameters. We further estimate using equation (4.95)∫ 0

R∗1

|ũ1(r∗)|dr∗

.
∫ π

2

C1
ω

1+`

(
θ

sin θ

) 1
2
∣∣∣∣J0((`+

1

2
)θ)

∣∣∣∣ sin θ

1− cos θ
dθ + Error, (4.97)

where we will take care of the term

Error =

∫ π
2

C1
ω

1+`

|e1,`(θ)| (4.98)
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later. First, we look at the term∫ π
2

C1
ω

1+`

(
θ

sin θ

) 1
2
∣∣∣∣J0

((
`+

1

2

)
θ

)∣∣∣∣ sin θ

1− cos θ
dθ

.
∫ π

2

C1
ω

1+`

1

θ

∣∣∣∣J0

((
`+

1

2

)
θ

)∣∣∣∣dθ
.
∫ π

2 (`+1)

C1ω

1

θ

∣∣∣∣J0

(
`+ 1

2

`+ 1
θ

)∣∣∣∣ dθ
.
∫ 1

C1ω

∣∣∣J0

(
`+ 1

2

`+1 θ
)∣∣∣

θ
dθ +

∫ ∞
1

∣∣∣J0

(
`+ 1

2

`+1 θ
)∣∣∣

θ
dθ

.
∫ 1

C1ω

1

θ
dθ +

∫ ∞
1

1

θ
3
2

dθ . | log(|ω|)|, (4.99)

where we have used equation (4.27) and (4.28). Now, we are left with the
error term

Error ≤ 1

1 + `

∫ π
2

C1
ω
`+1

sin θ

1− cos θ
(|J0((`+

1

2
)θ)|+ |Y0((`+

1

2
)θ)|)dθ

.
1

1 + `

∫ π
2

C1
ω
`+1

sin θ

1− cos θ
(1 + | log(|ω|)|)dθ . | log(|ω|)|

1 + `

∫ π
2

C1
ω
`+1

1

θ
dθ

.
log2(|ω|) + log(1 + `)

1 + `
. log2

(
1

|ω|

)
. (4.100)

Thus, ∫ 0

R∗1

|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
. (4.101)

Completely analogously, we can compute

∫ R∗2

0

|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
. (4.102)

The proof of equation (4.93) is completely similar up to a term which involves∫ 1

C1ω

∣∣∣Y0

(
`+ 1

2

`+1 θ
)∣∣∣

θ
dθ . log2

(
1

|ω|

)
(4.103)

appearing in the estimate analogous to (4.99). �

With the help of the previous lemma we can now bound our solution u1

at R∗2. This results in

Proposition 4.4. Let 0 < |ω| < ω0 and ` ∈ N0, then

‖u1‖L∞(R∗1 ,R
∗
2) . 1 and |u′1|(R∗2) . |ω|. (4.104)



Scattering of linear waves on Reissner–Nordström interior 43

Proof. Recall that we have from Proposition 4.3 for r∗ ∈ [R∗1, R
∗
2]

u1(ω, r∗) = A(ω, `)ũ1,ω(r∗) + ωB(ω, `)ũ2,ω(r∗) (4.105)

for some uniformly bounded (in |ω| ≤ ω0 and `) constants A,B. In particular,
from Proposition 2.3 and Remark 2.1 we obtain the bound

‖ũ1,ω‖L∞(R∗1 ,R
∗
2) ≤ eα‖ũ1‖L∞(R∗1 ,R

∗
2) (4.106)

for

α = ω2

∫ R∗2

R∗1

sup
{r∗|y≤r∗≤R∗2}

|ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)|dy. (4.107)

First, we have the bound

‖ũ1‖L∞(R∗1 ,R
∗
2) ≤ 1. (4.108)

Secondly, for r∗ ∈ [R∗1, R
∗
2] we have

1− x(r∗) &
ω2

1 + `2
(4.109)

and

1 + x(r∗) &
ω2

1 + `2
. (4.110)

Consider the case x(r∗) ≥ 0 first and implicitly define θ(r∗) by cos θ(r∗) =

x(r∗). Then, in view of (4.30) and θ(x(r∗)) =
√

2− 2x(r∗)+O((1−x(r∗)
3
2 )),

we estimate

|ũ2(r∗)| . |Q`(cos(θ(r∗)))| .
∣∣∣∣Y0

(
θ(r∗)(2`+ 1)

2

)∣∣∣∣ . |Y0 (C|ω|)| (4.111)

for a C = C(M,Q) > 0. Analogously, this also holds for x(r∗) < 0 such that
(4.27) and (4.28) imply

‖ũ2‖L∞(R∗1 ,R
∗
2) . log

(
1

|ω|

)
. (4.112)

Together with Lemma 4.5 we obtain

α . 1. (4.113)

Hence,

‖ũ1,ω‖L∞(R∗1 ,R
∗
2) . 1 (4.114)

and similarly,

‖ũ2,ω‖L∞(R∗1 ,R
∗
2) . log

(
1

|ω|

)
. (4.115)

This shows ‖u1‖L∞(R∗1 ,R
∗
2) . 1 in view of (4.105).

Now, we are left with the derivative u′1(R∗2). To do so, we start by
estimating ũ′1(R∗2) and ũ′2(R∗2). Using the analogous estimate as we did for
R∗1 in (4.86) and (4.91), we obtain

|ũ′2(R∗2)| . 1 and |ũ′1(R∗2)| . ω2. (4.116)
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Note that

ũ′2,ω(R∗2) = ũ′2(R∗2) + ω2

∫ R∗2

R∗1

(ũ′1(R∗2)ũ2(y)− ũ1(y)ũ′2(R∗2)) ũ2,ω(y)dy

(4.117)

and thus in view of Lemma 4.5, (4.116), (4.115), (4.112), and (4.108) we
estimate

|ũ′2,ω(R∗2)| ≤ |ũ′2(R∗2)|+ ω2 log

(
1

|ω|

)∫ R∗2

R∗1

|ũ′1(R∗2)ũ2(y)|+ |ũ1(y)ũ′2(R∗2)|dy

. 1 + ω2 | log(|ω|)| (ω2 log2(|ω|) + log2(|ω|)) . 1. (4.118)

Similarly, we obtain

|ũ′1,ω(R∗2)| ≤ |ũ′1(R∗2)|+ ω2

∫ R∗2

R∗1

|ũ′1(R∗2)ũ2(y)|+ |ũ1(y)ũ′2(R∗2)|dy

. ω2 + ω2(ω2 log2(|ω|) + log2(|ω|)) . |ω| (4.119)

which concludes the proof in the light of (4.105). �

Region near the Cauchy horizon. Completely analogously to Proposi-
tion 4.1, we have

Proposition 4.5. Let 0 < |ω| < ω0 and ` ∈ N0. Then, we have

‖v′1‖L∞(R∗2 ,∞) . |ω|, ‖v1‖L∞(R∗2 ,∞) . 1 (4.120)

and

‖v′2‖L∞(R∗2 ,∞) . |ω|, ‖v2‖L∞(R∗2 ,∞) . 1. (4.121)

Boundedness of the scattering coefficients. Finally, we conclude that the
reflection and transmission coefficients are uniformly bounded for parameters
0 < |ω| < ω0 and ` ∈ N0.

Proposition 4.6. We have

sup
0<|ω|<ω0,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (4.122)

Proof. Let 0 < |ω| < ω0 and ` ∈ N0 and recall Definition 2.4. Then, Propo-
sition 4.4 and Proposition 4.5 imply

|T| . |W(u1, v2)|
|ω|

≤ |u1(R∗2)v′2(R∗2)|+ |u′1(R∗2)v2(R∗2)|
|ω|

. 1 (4.123)

and

|R| . |W(u1, v1)|
|ω|

≤ |u1(R∗2)v′1(R∗2)|+ |u′1(R∗2)v1(R∗2)|
|ω|

. 1. (4.124)

�
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4.2. Frequencies bounded from below and bounded angular momenta (|ω| ≥
ω0, ` ≤ `0)

Now, we will consider parameters of the form |ω| ≥ ω0 and ` ≤ `0, where ω0

is small and determined from Section 4.1. Also, the upper bound on the an-
gular momentum `0 will be determined from Section 4.3. As before, constants
appearing in . and & may depend on ω0.

Proposition 4.7. We have

sup
ω0≤|ω|,`≤`0

(|R(ω, `)|+ |T(ω, `)|) . 1. (4.125)

Proof. Recall the definition of u1 as the unique solution to

u1(ω, r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(ω, y)dy. (4.126)

Note that in the regime ` ≤ `0 we have a bound of the form

|V (r∗)| . e−2 min(k+,|k−|)|r∗| (4.127)

which implies the following bound on the integral kernel of the perturbation
in (4.126)

|K(r∗, y)| =
∣∣∣∣ sin(ω(r∗ − y))

ω
V (y)

∣∣∣∣ . |V (y)| (4.128)

in view of |ω| ≥ ω0. Thus,∫ ∞
−∞

sup
r∗∈R

|K(r∗, y)|dy .
∫ ∞
−∞
|V (y)|dy . 1. (4.129)

Hence, from Proposition 2.3 we deduce

‖u1‖L∞(R) . 1 (4.130)

and

‖u′1‖L∞(R) . |ω|. (4.131)

Note that we have obtained similar, indeed even stronger bounds for u1 as
in Proposition 4.4. An argument completely similar to Proposition 4.6 allows
us to conclude. �

4.3. Frequencies and angular momenta bounded from below (|ω| ≥ ω0, ` ≥
`0)

In this regime we assume ω ≥ ω0 and ` ≥ `0, where we choose `0 large
enough such that V` < 0 everywhere. Note that such an `0 can be chosen
only depending on the black hole parameters.

We write the o.d.e. as

u′′ = −(ω2 − V`)u (4.132)

and will represent the solution of the o.d.e. via a WKB approximation. For
concreteness we will use the following theorem which is a slight modification
of [43, Theorem 4].
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Lemma 4.6 (Theorem 4 of [43]). Let p ∈ C2(R) be a positive function such
that

F (x) =

∣∣∣∣∫ x

−∞
p−

1
4

∣∣∣∣ d2

dx2

(
p−

1
4

)∣∣∣∣dy∣∣∣∣ (4.133)

satisfies supx∈R F (x) <∞. Then, the differential equation

d2u(x)

dx2
= −p(x)u(x) (4.134)

has conjugate solutions u and ū such that

u(x) = p−
1
4

(
exp

(
i

∫ x

0

√
p(y)dy

)
+ ε

)
, (4.135)

u′(x) = ip
1
4

[
exp

(
i

∫ x

0

√
p(y)dy

)
− iη +

ip′

4p
3
2

(
exp

(
−i
∫ x

0

√
p(y)dy

)
+ ε

)]
,

(4.136)

where

|η(x)|, |ε(x)| ≤ exp (F (x))− 1. (4.137)

Proposition 4.8. Let ω0 ≤ |ω| and ` ≥ `0. Assume without loss of generality
that ω > 0. Then,

u1(ω, r∗) = Aω
1
2 (ω2 − V (r∗))

− 1
4

(
exp

(
i

∫ r∗

0

(ω2 − V`(y))
1
2 dy

)
+ ε(r∗)

)
,

(4.138)

u′1(ω, r∗) = Aω
1
2 i(ω2 − V (r∗))

1
4

[
exp

(
i

∫ r∗

0

(ω2 − V`(y))
1
2 dy

)
− iη(r∗)

− iV ′(r∗)

4(ω2 − V )
3
2 (r∗)

(
exp

(
i

∫ r∗

0

(ω2 − V`(y))
1
2 dy

)
+ ε(r∗)

)]
,

(4.139)

where

|A| = 1, sup
r∗∈R

(|ε|(r∗) + |η|(r∗)) . 1 (4.140)

and

lim
r∗→−∞

η(r∗) = lim
r∗→−∞

ε(r∗) = 0. (4.141)

In particular, this proves

lim sup
r∗→∞

|u(r∗)| . 1, (4.142)

lim sup
r∗→∞

|u′(r∗)| . |ω|, (4.143)

and uniform bounds on the reflection and transmission coefficients

sup
ω0≤|ω|,`≥`0

(|R(ω, `)|+ |T(ω, `)|) . 1. (4.144)
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Proof. We will apply Lemma 4.6. First, we set

p = (ω2 − V`) (4.145)

which is positive and smooth. Then, the o.d.e. reads

u′′ = −pu. (4.146)

Now we have to show that F is uniformly bounded on the real line. Note that
we have the following bounds on the potential and its derivatives

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . `2e2κ+r∗ and `2e2κ+r∗ . |V`(r∗)| for r∗ ≤ 0,
(4.147)

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . `2e2κ−r∗ and `2e2κ−r∗ . |V`(r∗)| for r∗ ≥ 0.
(4.148)

Here, we might have to choose `0(M,Q) even larger (r2
+(r+−3r−)+`(`+1) >

0, cf. (A.16)) in order to assure the lower bounds on the potential. Finally,
we can estimate F by

sup
r∗∈R

F (r∗) ≤
∣∣∣∣∫ ∞
−∞

p−
1
4

∣∣∣∣ d2

dx2

(
p−

1
4

∣∣∣)dy

∣∣∣∣
=

∫ ∞
−∞

p−
1
4

(
p−

9
4 p′

2
+ p−

5
4 |p′′|

)
dy

.
1

`

∫ ∞
0

(
e4κ−y

(`−2 + e2κ−y)
5
2

+
e2κ−y

(`−2 + e2κ−y)
3
2

)
dy

+
1

`

∫ 0

−∞

(
e4κ+y

(`−2 + e2κ+y)
5
2

+
e2κ+y

(`−2 + e2κ+y)
3
2

)
dy, (4.149)

where we have used the bounds from (4.147) and (4.148). We shall estimate
both terms independently. After a change of variables y 7→ 1

2κ−
log(y), we

can estimate the first term by

1

`

∫ ∞
0

(
e4κ−y

(`−2 + e2κ−y)
5
2

+
e2κ−y

(`−2 + e2κ−y)
3
2

)
dy

.
1

`

∫ 1

0

(
y

(`−2 + y)
5
2

+
1

(`−2 + y)
3
2

)
dy

. `2
∫ 1

0

`2y

(1 + `2y)
5
2

+
1

(1 + `2y)
3
2

dy

.
∫ ∞

0

y

(1 + y)
5
2

+
1

(1 + y)
3
2

dy . 1. (4.150)

Completely analogously, we get the bound for the second integral. In partic-
ular, this shows

sup
R
F . 1. (4.151)

This implies the bounds on η and ε in the statement of the theorem (cf.
(4.140)) using (4.137).
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The limits in equation (4.141) follow from the fact that F (r∗) → 0 as
r∗ → −∞ by construction.

The bound on the reflection and transmission coefficients follows now
from

|R| .
∣∣∣∣W(u1, v1)

ω

∣∣∣∣ ≤ 1

|ω|
lim sup
r∗→∞

(|u′1v1|+ |u1v
′
1|) . 1 (4.152)

and analogously for T.
Finally, A can be determined from the asymptotic behaviour u→ eiωr∗

as r∗ → −∞ and it is given by

A = lim
r∗→−∞

exp

(
iωr∗ − i

∫ r∗

0

(ω2 − V (y))
1
2 dy

)
= lim
r∗→−∞

exp

(
−i
∫ r∗

0

(
(ω2 − V (y))

1
2 − ω

)
dy

)
(4.153)

which converges since V tends to zero exponentially fast. In particular, this
also shows that |A| = 1. �

Finally, Theorem 2 is a consequence of Proposition 4.6, Proposition 4.7,
and Proposition 4.8.

5. Proof of Theorem 1: Existence and boundedness of the T
energy scattering map

Having performed the analysis of the radial o.d.e. and having in particular
proven uniform boundedness of the transmission coefficient T and the reflec-
tion coefficients R, we shall prove Theorem 1 in this section.

5.1. Density of the domains DTH and DTCH
We start by proving that the domains DTH and DTCH are dense.

Lemma 5.1. The domains of the forward and backward evolution DTH and
DTCH are dense in ETH and ETCH, respectively.

Proof. We will only prove that the domain of the forward evolution is dense
since the other claim is analogous.

Recall that by definition C∞c (H) is dense in ETH. Now, let Ψ ∈ C∞c (H)
be arbitrary and denote by ψ its forward evolution. We will show that we
can approximate Ψ with functions of DTH arbitrarily well. To do so, fix rred <
r0 < r+. Then, using the red-shift effect (see Lemma A.1 in the appendix)
the N energy of ψ �r=r0 will have exponential decay towards i+. Hence, it
can be approximated with smooth functions φn of compact support on the
hypersurface r = r0 w.r.t. the norm induced by the non-degenerate N energy
(see Remark A.1 in the appendix). More precisely, on Σr0 = {r = r0} define
a sequence φn ∈ C∞c (Σr0) by

φn(t, θ, φ) = ψ �r=r0 (t, θ, φ)χ(n−1t), (5.1)
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where (θ, φ) ∈ S2 and χ : R → [0, 1] is smooth with suppχ ⊆ [−2, 2],
χ �[−1,1]= 1. Then, we obtain that

∫
Σr0

JNµ [ψ − φn]nµΣr0
dvol→ 0 as n→∞.

By construction, the restriction to the event horizon of the backward evo-
lution, Φn of each φn will lie in DTH. Finally, we can conclude the proof by
applying Lemma A.2 from the appendix, which yields

‖Ψ− Φn‖2ETH =

∫
H
JTµ [Ψ− Φn]Tµdvol .

∫
r=r0

JNµ [ψ − φn]nµΣr0
dvol→ 0

(5.2)

as n→∞. �

5.2. Boundedness of the scattering and backward map on DTH and DTCH
In the following proposition we shall lift the boundedness of the transmission
and reflection coefficients (Theorem 2) to the physical space picture on the
dense domains DTH and DTCH.

Proposition 5.1. Let ψ be a smooth solution to (1.1) on MRN such that
ψ �H∈ DTH (or equivalently, ψ �CH∈ DTCH). Then,

‖ψ �CHA ‖2ETCHA
+ ‖ψ �CHB ‖2ETCHB

≤ B
(
‖ψ �HA ‖2ETHA

+ ‖ψ �HB ‖2ETHB

)
(5.3)

and

‖ψ �HA ‖2ETHA
+ ‖ψ �HB ‖2ETHB

≤ B̃
(
‖ψ �CHA ‖2ETCHA

+ ‖ψ �CHB ‖2ETCHB

)
(5.4)

for constants B and B̃ only depending on the black hole parameters.

Proof. Set φ := Tψ and note that φ �H∈ DTH and φ also solves (1.1). Since
ψ ∈ DTH ⊂ ETH, we have that φ �HA= Tψ �HA∈ L2(HA) with respect to
the unique volume form induced by the normal vector field T . Analogously,
we also have φ �HB= Tψ �HB∈ L2(HB). Thus, we can define the Fourier
transform on the event horizon with the charts (2.15) and (2.16) as

aHA(ω, θ, φ) :=
1√
2π

∫
R
φ �HA (v, θ, φ)e−iωvdv (5.5)

and

aHB (ω, θ, φ) :=
1√
2π

∫
R
φ �HB (u, θ, φ)eiωudu. (5.6)

We can further decompose the Fourier coefficients in spherical harmonics to
obtain

a`,mHA (ω) = 〈Y`m, aHA〉L2(S2) and a`,mHB (ω) = 〈Y`m, aHB 〉L2(S2). (5.7)
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From Plancherel’s theorem, we obtain

‖ψ �HA ‖2ETHA
=

∑
|m|≤`,`≥0

∫
R
|a`,mHA (ω)|2dω, (5.8)

‖ψ �HB ‖2ETHb
=

∑
|m|≤`,`≥0

∫
R
|a`,mHB (ω)|2dω. (5.9)

Similarly, since φ �CH∈ DTCH, we define

bCHA(ω, θ, φ) :=
1√
2π

∫
R
φ �CHA (v, θ, φ)e−iωvdv (5.10)

and

bCHB (ω, θ, φ) :=
1√
2π

∫
R
φ �CHB (u, θ, φ)eiωudu. (5.11)

We can further decompose the Fourier coefficients in spherical harmonics to
obtain

b`,mCHA(ω) = 〈Y`m, bCHA〉L2(S2) and b`,mCHB (ω) = 〈Y`m, bCHB 〉L2(S2). (5.12)

Again, in view of Plancherel’s theorem

‖ψ �CHA ‖2ETCHA
=

∑
|m|≤`,`≥0

∫
R
|b`,mCHA(ω)|2dω, (5.13)

‖ψ �CHB ‖2ETCHB
=

∑
|m|≤`,`≥0

∫
R
|b`,mCHB (ω)|2dω. (5.14)

and similarly for CHB . We shall also decompose φ on a constant r slice. Fix
r ∈ (r−, r+), then set

φ̂m`(ω, r) =
1√
2π

∫
R

∫
S2

Ym`(θ, φ)φ(t, r, θ, φ)e−iωt sin θdθdφdt (5.15)

such that

φ(t, r, θ, φ) =
1√
2π

∑
|m|≤`,`≥0

∫
R
φ̂m`(ω, r)Ym`(θ, φ)eiωtdω. (5.16)

This is well-defined since φ(t, r, θ, φ) is compactly supported on each r =
const. slice.

Since φ is smooth, we also know that φ̂m` satisfies the radial o.d.e. (2.34)
and can be expanded as

φ̂m`(ω, r(r∗)) = α`,mHA (ω)
r+

r
u1(ω, r∗) + α`,mHB (ω)

r+

r
u2(ω, r∗), (5.17)

where

|u1 − eiωr∗ | .` e2κ+r∗ ∼ (r+ − r), (5.18)

|u2 − e−iωr∗ | .` e2κ+r∗ ∼ (r+ − r) (5.19)
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for r∗ ≤ 0. Note that this holds uniformly in ω. We shall show in the following
that indeed α`,mHA = a`,mHA and α`,mHB = a`,mHB . To do so, note that for r(r∗) with
r∗ ≤ 0 we have for fixed (m, `) that

φ`,m(t, r) = 〈φ, Ym`〉L2(S2)

=

∫
R

(
α`,mHA (ω)

r+

r
u1(ω, r∗(r)) + α`,mHB (ω)

r+

r
u2(ω, r∗(r))

)
eiωt

dω√
2π
.

(5.20)

We want to interchange the limit r → r+ with the integral. In order to use
Lebesgue’s dominated convergence theorem we will estimate α`,mHA and α`,mHB .
Note that

|α`,mHA | =

∣∣∣∣∣W( r
r+
φ̂m`, u2)

W(u1, u2)

∣∣∣∣∣ =

∣∣∣∣∣W( r
r+

ˆTψm`, u2)

W(u1, u2)

∣∣∣∣∣
≤
|ωW( r

r+
ψ̂m`, u2)|

2|ω|
≤
∣∣∣∣W(

r

r+
ψ̂m`, u2

)∣∣∣∣ , (5.21)

which is independent of r(r∗) and integrable since ω 7→ ψ̂m`(ω, r∗) is a
Schwartz function. Now, we shall fix v = r∗ + t and let r → r+ such that
r∗ → −∞. Then, using Lebesgue’s dominated convergence theorem, we ob-
tain

φ`,m =

∫
R

(
α`,mHA (ω)eiωv + α`,mHB (ω)e−2iωr∗eiωv

) dω√
2π

+O(r+ − r)

as r → r+. Finally, for v fixed and letting r → r+ (or r∗ → −∞), we obtain

φ`,m �HA (v) =

∫
R
α`,mHA (ω)eiωv

dω√
2π

(5.22)

in view of the Riemann–Lebesgue lemma. Also, by definition of a`,mHA ,

φ �HA (v, θ, φ) =
∑

|m|≤`,`≥0

∫
R
a`,mHA (ω, θ, φ)eiωvY`m(θ, φ)

dv√
2π
. (5.23)

In view of the Fourier inversion theorem and the fact that the spherical
harmonics form a basis we conclude that

α`,mHA = a`,mHA and analogously, α`,mHB = a`,mHB . (5.24)

Similarly to (5.17), we can expand ψ̂m` in a fundamental pair of solutions
corresponding to both Cauchy horizons CHA and CHB . In particular, we can
write

φ̂m`(ω, r(r∗)) = β`,mCHA(ω)
r+

r
v1(ω, r∗) + β`,mCHA(ω)

r+

r
v2(ω, r∗), (5.25)

where

|v1 − e−iωr∗ | .` e2κ−r∗ ∼ (r − r−), (5.26)

|v2 − eiωr∗ | .` e2κ−r∗ ∼ (r − r−). (5.27)
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for r∗ ≥ 0. Similarly to (5.24), we can prove
r+

r−
β`,mCHA(ω) = b`,mCHA(ω) and

r+

r−
β`,mCHB (ω) = b`,mCHB (ω). (5.28)

Moreover, from the uniform boundedness of the reflection and transmission
coefficients (cf. Theorem 2) we have the estimate

|b`,mCHA(ω)|+ |b`,mCHB (ω)| = r+

r−
|β`,mCHA(ω)|+ r+

r−
|β`,mCHB (ω)|

=
r+

r−

(∣∣∣Rα`,mHA + T̄α`,mHB

∣∣∣+
∣∣∣R̄α`,mHB + Tα`,mHA

∣∣∣)
≤ C(|α`,mHA (ω)|+ |α`,mHB (ω)|) = C(|a`,mHA (ω)|+ |a`,mHB (ω)|)

(5.29)

for a constant C which only depends on the black hole parameters. Here, we
have used the fact that(

β`,mCHB
β`,mCHA

)
=

(
T R̄
R T̄

)(
α`,mHA
α`,mHB .

)
. (5.30)

In view of 1 = |T|2 − |R|2, we also have(
α`,mHA
α`,mHB

)
=

(
T̄ −R̄
−R T

)(
β`,mCHB
β`,mCHA

)
(5.31)

from which we deduce

|a`,mHA (ω)|+ |a`,mHB (ω)| . |b`,mCHA(ω)|+ |b`,mCHB (ω)|. (5.32)

Estimate (5.29) and (5.32) show the claim in view of (5.8), (5.9), (5.13),
and (5.14). Finally, in view of the Fourier inversion theorem, note that the
previous also justifies the Fourier representation of scattering map (3.20), and
the Fourier representations (3.24) and (3.25). �

5.3. Completing the proof
Having proven Lemma 5.1 and Proposition 5.1, we can finally show Theorem 1
in the following.

Proof of Theorem 1. Since DTH ⊂ ETH is dense (Lemma 5.1) and ST0 : DTH ⊂
ETH → DTCH ⊂ ETCH is a bounded injective map (Remark 3.2, Proposition 5.1),
we can uniquely extend ST0 to the bounded injective scattering map

ST : ETH → ETCH. (5.33)

Analogously, in view of Proposition 2.2, Remark 3.1, Remark 3.2, and
Proposition 5.1, we can uniquely extend the bounded injective mapBT0 : DTCH ⊂
ETCH → DTCH ⊂ ETH to the bounded injective backward map BT : ETCH → ETH
(Lemma 5.1).

Since BT0 ◦ST0 = IdDTH and ST0 ◦BT0 = IdDTCH on dense sets, it also extends
to ETH and ETCH from which (3.5) follows. Similarly, it suffices to check (3.6)
for ψ ∈ DTH. Indeed, (3.6) holds true for ψ ∈ DTH in view of the T energy
identity. �
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6. Proof of Theorem 6: Breakdown of T energy scattering for
cosmological constants Λ 6= 0

In the presence of a cosmological constant Λ, the situation regarding the
T energy scattering problem is changed radically. In this section we will
consider the subextremal (anti-) de Sitter–Reissner–Nordström black hole
interior (M(a)dSRN, gQ,M,Λ) which is completely analogous to (MRN, gQ,M ).
We will assume that (M,Q,Λ) ∈ Pse as defined in Section 3.6. Also, recall
that in the presence of a cosmological constant it is natural to look at the
Klein–Gordon equation

�gψ − µψ = 0 (6.1)

with mass µ = 3
2Λ for the conformal invariant equation or more general

µ = νΛ for fixed ν ∈ R.
This section is devoted to prove Theorem 6 which relies on the fact

that solutions of the corresponding radial o.d.e. in the vanishing frequency
limit ω = 0 generically map bounded solutions at r∗ = −∞ to unbounded
solutions at r∗ = +∞. More precisely, for Λ 6= 0 we obtain—after separation
of variables for (6.1) and setting dr∗ = h−1dr—the o.d.e.

−u′′ + V`,Λu = ω2u (6.2)

for u(r∗) = r(r∗)R(r∗), where

V`,Λ = h

(
hh′

r
+
`(`+ 1)

r2
− µ

)
= h

(
dh
dr

r
+
`(`+ 1)

r2
− µ

)
(6.3)

and

h =
∆

r2
= 1− 2M

r
− 1

3
Λr2 +

Q2

r2
. (6.4)

Here, consider r(r∗) as a function r∗ and recall that ′ denotes the derivative
with respect to r∗. The presence of the mass and the cosmological constant
leads to a modification of the potential V`,Λ.

Nevertheless, the potential V`,Λ still decays exponentially at ±∞ and
we can define asymptotic states u(Λ)

1 , u
(Λ)
2 , and v(Λ)

1 , v
(Λ)
2 for ω 6= 0 and ũ(Λ)

1 ,
ũ

(Λ)
2 , and ṽ

(Λ)
1 , ṽ

(Λ)
2 for ω = 0 just as in the case where Λ = µ = 0 in

Definition 2.3. In particular, ũ(Λ)
1 and ṽ(Λ)

1 remain bounded as r∗ → −∞ and
r∗ → +∞, respectively. In contrast to that, ũ(Λ)

2 and ṽ
(Λ)
2 grow linearly in

their respective limits. The next proposition states that in the presence of a
cosmological constant, solutions to (6.1) in the case ω = 0 which are bounded
at r∗ = −∞ do not need to be bounded at r∗ = +∞.

Proposition 6.1. Fix ν ∈ R (e.g. ν = 3
2 for the conformal invariant mass)

and fix subextremal black hole parameters (M,Q,Λ) ∈ Pse. Assume moreover
that (M,Q,Λ) /∈ D(ν), where D(ν) ⊂ Pse is defined in the proof and has
measure zero. Then, there exists an `0 = `0(ν) ∈ N0 such that we have

ũ
(Λ)
1 = A(`0,Λ,M,Q)ṽ

(Λ)
1 +B(`0,Λ,M,Q)ṽ

(Λ)
2 , (6.5)
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with B = B(`0,Λ,M,Q) 6= 0. Moreover, PΛ=0
se ⊂ D(ν) for all ν ∈ R and

there exists an open subset U with PΛ=0
se ⊂ U ⊂ Pse and Pse ∩ U = PΛ=0

se .

Proof. Let ν ∈ R be fixed. In the case Λ = 0 we can represent ũ1 with
Legendre polynomials and in particular we have that B(`,Λ = 0,M,Q) = 0
for all ` and 0 < |Q| < M . Note that we can write B as

B(Λ, `,M,Q) =
W(ṽ

(Λ)
2 , ũ

(Λ)
1 )

W(ṽ
(Λ)
1 , ṽ

(Λ)
2 )

= W(ṽ
(Λ)
2 , ũ

(Λ)
1 ) (6.6)

for all Λ such that (M,Q,Λ) ∈ Pse.

Step 1: Pse ⊂ R3 is open and has two connected components where
either Q > 0 or Q < 0. For the sake of completeness we will give a proof
of Step 1, although this seems a quite well-known fact. Note that Pse =
PΛ>0

se ∪ PΛ<0
se ∪ PΛ=0

se is open which can be inferred from its definition.
For the second statement, first note that {Q = 0}∩Pse = ∅. We will now

show that {Q > 0} ∩ Pse is connected. In Proposition A.3 in the appendix
we show that PΛ>0

se ∩ {Q > 0} and PΛ<0
se ∩ {Q > 0} are path-connected.

To conclude, note that for every (M0, Q0,Λ0 = 0) ∈ PΛ=0
se , there exist paths

from (M0, Q0,Λ0) to both (M0, Q0, ε) ∈ PΛ>0
se and (M0, Q0,−ε) ∈ PΛ<0

se for
some ε(M0, Q0) > 0. Together with the fact that PΛ=0

se ∩ {Q > 0} is path-
connected, this shows that {Q > 0} ∩ Pse is path-connected and similarly
that {Q < 0} ∩ Pse is path-connected which proves the claim.

Step 2: Pse 3 (M,Q,Λ) 7→ B(`,Λ,M,Q) is real analytic. To show Step 2
we first express (6.5) in r coordinates. Note that for (M,Q,Λ) ∈ Pse equation
(6.5) is equivalent to

r+

r−
(−1)`P

(Λ)
` (x(r)) = A(`,Λ)P̃

(Λ)
` (x(r)) +B(`,Λ)Q̃

(Λ)
` (x(r)), (6.7)

where r ∈ (r−, r+),

x(r) := − 2r

r+ − r−
+
r+ + r−
r+ − r−

, (6.8)

r(x) = −r+ − r−
2

x+
r+ + r−

2
(6.9)

and 0 < r− < r+. Now, note that Pse 3 (M,Q,Λ) 7→ r− and Pse 3
(M,Q,Λ) 7→ r+ are real analytic. Moreover, we can write ∆ = (r − r−)(r −
r+)p(r) for a second order polynomial p(r), where Pse 3 Λ 7→ p(r) is also real
analytic for fixed r. Now, P (Λ)

` , P̃ (Λ)
` and Q̃(Λ)

` appearing in (6.7) are defined
as the unique solutions of

d

dx

(
(1− x2)p(r(x))

dR

dx

)
+ `(`+ 1)R− r(x)2νΛR = 0 (6.10)
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satisfying

P
(Λ)
` = (−1)` +O`(1 + x) as x→ −1, (6.11)

dP
(Λ)
`

dx
= O`(1) as x→ −1, (6.12)

P̃
(Λ)
` = 1 +O`(1− x) as x→ 1, (6.13)

dP̃
(Λ)
`

dx
= O`(1) as x→ 1, (6.14)

Q̃
(Λ)
` = −1

2
log(1− x) +O`(1) as x→ 1, (6.15)

dQ̃
(Λ)
`

dx
=

1

2(1− x)
+O`((1− x) log(1− x)) as x→ 1. (6.16)

Note that (6.10) depends real analytically on (M,Q,Λ) ∈ Pse such that
P

(Λ)
` (x), P̃ (Λ)

` (x), Q̃(Λ)
` (x) are real analytic functions of (M,Q,Λ) ∈ Pse for

x ∈ (−1, 1). Hence, Pse 3 (M,Q,Λ) 7→ B(`,Λ,M,Q) is real analytic.

Step 3: B(`0(ν),Λ,M,Q) only vanishes on a set D(ν) ⊂ Pse of measure
zero. The claim follows from

∂B(`,Λ,M0, Q0)

∂Λ

∣∣∣∣
Λ=0

6= 0 (6.17)

for some 0 < |Q0| < M0. Throughout Step 2 we fix 0 < |Q0| < M0 and avoid
writing their explicit dependence. First note that that for Λ = 0 we obtain
the Legendre functions of first and second kind, i.e. P (0)

` = P̃
(0)
` = P` and

Q̃
(0)
` = Q` and B(0, `) = 0. Now, define coefficients Ã(`,Λ) and B̃(`,Λ) to

satisfy

P
(Λ)
` = Ã(`,Λ)P̃

(Λ)
` + B̃(`,Λ)Q̃

(Λ)
` , (6.18)

and note that (6.17) is equivalent (use that B(`, 0) = B̃(`, 0) = 0) to

∂B̃(`,Λ)

∂Λ

∣∣∣
Λ=0
6= 0. (6.19)

By construction, P (Λ)
` solves (6.10). Multiplying

d

dx

(
(1− x2)p(r(x))

dP
(Λ)
`

dx

)
+ `(`+ 1)P

(Λ)
` − r(x)2νΛP

(Λ)
` = 0 (6.20)

by P (0)
` and integrating from x = −1 to x = 1 yields

0 =

∫ 1

−1

P
(0)
`

(
d

dx

(
(1− x2)p(r(x))

dP
(Λ)
`

dx

)
+ `(`+ 1)P

(Λ)
` − r(x)2νΛP`(Λ)

)
dx.

(6.21)
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Using the expansion (6.18) and the properties (6.11) – (6.16) at the end points
x = −1 and x = 1 gives after an integration by parts

0 =

∫ 1

−1

P
(Λ)
`

(
d

dx

(
(1− x2)p(r(x))

dP
(0)
`

dx

)
+ `(`+ 1)P

(0)
` − r(x)2νΛP

(0)
`

)
dx

+ p(r(1))B̃(`,Λ). (6.22)

Now, taking ∂Λ

∣∣
Λ=0

and integrating by parts once again yields

p(r(1))∂Λ

∣∣
Λ=0

B̃(`,Λ) =

=

∫ 1

−1

∣∣∣∣∣dP (0)
`

dx

∣∣∣∣∣
2

(1− x2)∂Λ

∣∣
Λ=0

(p(r(x))) +
∣∣∣P (0)
`

∣∣∣2 ∂Λ

∣∣
Λ=0

(νr(x)2Λ)

dx

=

∫ 1

−1

∣∣∣∣∣dP (0)
`

dx

∣∣∣∣∣
2

(1− x2)∂Λ

∣∣
Λ=0

(p(r(x))) + ν
∣∣∣P (0)
`

∣∣∣2 r(x)2|Λ=0

dx.

(6.23)

Recall that we are in the subextremal range which guarantees that p(r(1)) 6=
0. We will now distinguish two cases, ν = 0 and ν 6= 0.

Part I: ν = 0. In the case ν = 0 we have

p(r(1))∂Λ|Λ=0B̃(`,Λ) = ∂Λ|Λ=0

∫ 1

−1

∣∣∣∣dP`dx

∣∣∣∣2 (1− x2)p(r(x))dx (6.24)

In the case ν = 0 we will choose ` = 1 such that

p(r(1))∂Λ|Λ=0B̃(1,Λ) =

=∂Λ|Λ=0

∫ 1

−1

(1− x2)p(r(x))dx

=∂Λ|Λ=0

∫ 1

−1

−∆(r(x))
4

(r+ − r−)2
dx

=∂Λ|Λ=0

(
−8

(r+ − r−)3

∫ r+

r−

∆(r)dr

)

=− 8 ∂Λ|Λ=0

 r3
+−r

3
−

3 −M0(r2
+ − r2

−) +Q2
0(r+ − r−)− 1

15Λ(r5
+ − r5

−)

(r+ − r−)3


=

8(r5
+ − r5

−)

15(r+ − r−)3

∣∣∣
Λ=0

+ 8

r3
+−r

3
−

3 −M0(r2
+ − r2

−) +Q2
0(r+ − r−)

(r+ − r−)5
(r4

+ + r4
−)
∣∣∣
Λ=0

− 8

3

r6
+ + r6

− − 2M0(r5
+ + r5

−) +Q2
0(r4

+ + r4
−)

(r+ − r−)4

∣∣∣
Λ=0
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=
−8

15

(
3r3

+ + 3r2
− + 4r+r−

) ∣∣∣
Λ=0

=
−8

15

(
6M2

0 −Q2
0

)
< −24M2

0 .

The last step is a long but direct computation using that ∆ = r2 − 2M0r +
Q2

0 − Λ
3 r

4 and r±|Λ=0 = M0 ±
√
M2

0 −Q2
0, i.e. Q

2
0 = r+r−|Λ=0 and 2M0 =

r+|Λ=0 + r−|Λ=0. Moreover, in view of the inverse function theorem we have

∂Λ|Λ=0r+ =
r4
+

3(r+ − r−)

∣∣∣
Λ=0

(6.25)

and

∂Λ|Λ=0r− = −
r4
−

3(r+ − r−)

∣∣∣
Λ=0

. (6.26)

Part II: ν 6= 0. In this case we choose ` = 0 such that P (0)
` = 1 and

dP
(0)
`

dx = 0. Hence,

p(r(1))∂Λ|Λ=0B̃(`,Λ) = ∂Λ|Λ=0

∫ 1

−1

r(x)2νΛdx

= ν∂Λ|Λ=0

∫ 1

−1

(
−r+ − r−

2
x+

r+ + r−
2

)2

Λdx

= ν

(
1

6
(r+ − r−)2 +

1

2
(r+ + r−)2

) ∣∣∣
Λ=0
6= 0. (6.27)

This shows that Pse 3 (M,Q,Λ) 7→ B(`0(ν),M,Q,Λ) is a non-trivial
real analytic function which zero set D(ν) has zero measure. The proof also
shows that PΛ=0

se ⊂ D(ν) and that there exists an open set U ⊂ Pse with
PΛ=0

se ⊂ U and D(ν) ∩ U = PΛ=0
se . �

Proposition 6.2. Let ν ∈ R be fixed. Let ω 6= 0, (M,Q,Λ) ∈ Pse, and ` ∈
N0. Then, define completely analogously to Definition 2.4 transmission and
reflection coefficients T(ω, `,Λ) and R(ω, `,Λ) as the unique coefficients such
that

u
(Λ)
1 = T(ω, `,Λ)v

(Λ)
1 + R(ω, `,Λ)v

(Λ)
2 (6.28)

holds.
Now, assume further that (M,Q,Λ) ∈ Pse \D(ν), where D(ν) is defined

in Proposition 6.1. Then, there exists an `0 = `0(ν) such that

lim
ω→0
|R(ω, `0)| = lim

ω→0
|T(ω, `0)| = +∞. (6.29)

This shows that T and R have a simple pole at ω = 0.

Proof. Fix `0 = `0(ν) from Proposition 6.1 and (M,Q,Λ) ∈ Pse such that
B(`0,Λ,M,Q) 6= 0. Now, note that the o.d.e. implies that d

dr∗
Im(ūu′) = 0

which shows that 1 = |T|2 − |R|2. In particular, either |T| and |R| are both
bounded or both unbounded as ω → 0. Also note that as ω → 0, we have
that u(Λ)

1 → ũ
(Λ)
1 pointwise.
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Now, assume for a contradiction that there exists a sequence ωn → 0
such that |T(ωn)| and |R(ωn)| remain bounded. Thus,

lim sup
ωn→0

‖u(Λ)
1 ‖L∞(R) ≤ lim sup

ωn→0
‖u(Λ)

1 ‖L∞((−∞,0))

+ lim sup
ωn→0

‖Rv(Λ)
1 + Tv

(Λ)
2 ‖L∞((0,∞)) ≤ C (6.30)

for some constant C > 0. Now, using that B(`0,Λ,M,Q) 6= 0 in Proposi-
tion 6.1, we can choose a r∗0 ∈ R such that |ũ(Λ)

1 (r∗0)| > C which contradicts
the fact that u(Λ)

1 → ũ
(Λ)
1 pointwise as ωn → 0. �

Finally, this allows us to prove Theorem 6 which we restate in the fol-
lowing for the convenience of the reader.

Theorem 6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particu-
lar, we may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for
the wave equation (1.1).) Consider the interior of a subextremal (anti-) de
Sitter–Reissner–Nordström black hole with generic parameters (M,Q,Λ) ∈
Pse \D(ν). (Here, D(ν) ⊂ Pse is a set with measure zero defined in Propo-
sition 6.1 (see Section 6). Moreover D(ν) satisfies PΛ=0

se ⊂ D(ν) and U ∩
D(ν) = PΛ=0

se for some open set U ⊂ Pse.)
Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly

supported data on HA with

‖Ψn‖ETH = 1 for all n (3.41)

such that the solution ψn to the Klein–Gordon equation with mass µ = νΛ

�gM,Q,Λψ − µψ = 0 (3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (3.43)

Proof. Fix `0 = `0(ν) from Proposition 6.2 such that the reflection and
transmission coefficients blow up as ω → 0. Define a sequence of compactly
supported functions Ψn on HA by Ψn(v, θ, ϕ) = fn(v)Y0`(θ, ϕ), such that
fn ∈ C∞c (R),∫

R
ω2|f̂n(ω)|2dω = 1 and

∫ 1
n

− 1
n

ω2|f̂n(ω)|2dω ≥ ε
∫
R
ω2|f̂n(ω)|2dω = ε

(6.31)

for some ε > 0.6 Imposing vanishing data on HB , this gives rise to a unique
smooth solutions ψn up to but excluding the Cauchy horizon. Arguments

6 Such a function can be constructed by setting fn(v) := c√
n
f( v

n
) for smooth f : R→ [0, 1]

with supp(f) ⊂ [−2, 2], f �[−1,1]= 1 and some normalization constant c > 0. Indeed,∫ 1
n

− 1
n

ω2|f̂n(ω)|2dω =

∫ 1
n

− 1
n

ω2|
√
nf̂(nω)|2dω =

∫ 1

−1
ω2|f̂(ω)|2 =: ε > 0 (6.32)

in view of f̂(0) =
∫
R f(v)dv > 0.
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completely analogous to those given in the proof of Proposition 5.1 show
that

‖ψn �CH ‖2ETCH =
r2
+

r2
−

∫
R
ω2(|R(ω, `)|2 + |T(ω, `)|2)|f̂n(ω)|2dω. (6.33)

Thus,

‖ψn �CH ‖2ETCH ≥
r2
+

r2
−

∫ 1
n

− 1
n

ω2(|R(ω, `)|2 + |T(ω, `)|2)|f̂n(ω)|2dω

≥ ε
r2
+

r2
−

inf
ω∈[− 1

n ,
1
n ]

(
|R|2 + |T|2

)
. (6.34)

Since |R|, |T| → ∞ as ω → 0, also infω∈[ 1
2n ,

1
n ] |R| → ∞ and infω∈[ 1

2n ,
1
n ] |T| →

∞ as n→∞. Thus, as n→∞, we have

‖ψn �CH ‖2ETCH →∞. (6.35)

�

7. Proof of Theorem 7: Breakdown of T energy scattering for
the Klein–Gordon equation

In this last section we will prove that for a generic set of Klein–Gordon
masses, there does not exist a T scattering theory on the interior of Reissner–
Nordström for the Klein–Gordon equation. For the convenience of the reader,
we have restated Theorem 7.

Theorem 7. Consider the interior of a subextremal Reissner–Nordström black
hole. There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the
following holds true. For any µ ∈ R \ D̃ there exists a sequence (Ψn)n∈N of
purely ingoing and compactly supported data on HA with

‖Ψn‖ETH = 1 for all n (3.44)

such that the solution ψn to the Klein–Gordon equation with mass µ

�gM,Q,Λψ − µψ = 0 (3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (3.46)

Proof. The proof of this statement is easier than and similar to the proof of
Theorem 6 and the proofs of the propositions leading up to it. More precisely,
similar to Section 6 we define asymptotic states ũ(µ)

1 , ṽ(µ)
1 and ṽ(µ)

2 and define
A(`, µ) and B(`, µ) by ũ

(µ)
1 = A(`, µ)ṽ

(µ)
1 + B(`, µ)ṽ

(µ)
2 . As in Section 6,

R 3 µ 7→ B(`, µ) is real analytic and from the o.d.e. −u′′ + V`,µu = 0 we
obtain

∂B(`, µ)

∂µ

∣∣∣∣
µ=0

=

∫ ∞
−∞

∂V`,µ
∂µ

∣∣∣∣
µ=0

ũ2
1dr∗, (7.1)
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where

V`,µ = h

(
hh′

r
+
`(`+ 1)

r2
− µ

)
= h

(
dh
dr

r
+
`(`+ 1)

r2
− µ

)
(7.2)

and

h = 1− 2M

r
+
Q2

r2
(7.3)

as in (2.5). Now, note that
∂V`,µ
∂µ

∣∣∣∣
µ=0

= −h > 0 (7.4)

which is manifestly positive from which we can infer, by analyticity, that
B(`, µ) 6= 0 for all µ ∈ R \ D̃, where D̃ = D̃(M,Q) ⊂ R is a discrete set. This
proves the analogous statements to Proposition 6.1 and Proposition 6.2. The
claim of Theorem 7 follows now as in the proof of Theorem 6. �

Appendix A. Additional lemmata
Energy estimates in the interior.

Lemma A.1. Let Ψ ∈ C∞c (H) and denote by ψ its evolution in the interior.
Then, the non-degenerate N energy of Ψ decays exponentially towards i+ on
every {r = r0} hypersurface for rred < r0 < r+. Here, rred only depends on
the black hole parameters.

Proof. This argument is very similar to [18, Proposition 4.2]. We only prove it
for the right component of i+ and clearly only have to look at a neighborhood
of i+. First, recall the existence of the celebrated redshift vector field N
satisfying KN [ψ] ≥ bJNµ [ψ]nµv for r+ ≥ r ≥ rred, where nv is the normal to a
v = const. hypersurface.7

We set

E(v0) =

∫
v=v0,rred≤r≤r+

JNµ n
µ
vdvol, (A.1)

and apply the energy identity with the redshift vector field N in the region
R = {r ∈ [rred, r+], v ∈ [v0, v1]}, where v0 is large enough such that v0 >
sup supp(Ψ). This gives in view of the coarea formula that

E(v1)− E(v0) + b̃

∫ v1

v0

E(v)dv ≤ 0 (A.2)

for every v1 ≥ v0 > sup supp(Ψ). Inequality (A.2), smoothness of v 7→ E(v)
and a further application of the energy identity in the region {v ≥ v0, r+ ≥
r ≥ rred} finally shows∫

v≥v0,r=rred

JNµ n
µ
rdvol ≤ C exp(−b̃v0), (A.3)

7The normal is fixed by making a choice of a volume form on the null hypersurface
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where C is a constant depending on Ψ. This concludes the proof. �

Remark A.1. By cutting off smoothly we can clearly approximate Ψ on a
{r = const.} hypersurface with compactly supported functions for any fixed
r ∈ (rred, r+).

Lemma A.2. Let ψ be a smooth solution of the wave equation onMRN such
that its restriction to the event horizon has compact support and let r0 ∈
(rred, r+). Then, ∫

H
JTµ n

µdvol .
∫
{r=r0}

JNµ n
µdvol. (A.4)

Proof. We shall use the vector field S = r−2∂r∗ . By potentially making rred
larger, we can assure that the bulk term KS := ∇µJSµ of the vector field
S has a fixed negative sign in r0 ∈ (rred, r+). This current is analogous to
the current introduced in [18, par. 4.1.3.2]. Moreover, applying the energy
identity in the region R = {r0 ≤ r ≤ r+} and noting that JN [ψ]µn

µ|r=r0 ∼
JS [ψ]µn

µ|r=r0 as well as JT [ψ]µn
µ|H ∼ JS [ψ]µn

µ|H yields∫
{r=r0}

JN [ψ]µn
µdvol +

∫
R
KSdvol &

∫
H
JTµ n

µdvol. (A.5)

This concludes the proof. �

Analytic properties of the potential and the scattering coefficients. In
the following we would like to summarize analytic properties of the potential
V`(r) and u1,u2, v1 and v2 as functions of ω. This is similar to parts of [5].

First, however we will show the the exponential decay of the potential
V` as r∗ → ±∞.

Lemma A.3. We have

|∆(r∗)| . e2k+r∗ for r∗ ≤ 0 (A.6)

and

|∆(r∗)| . e2k−r∗ for r∗ ≥ 0. (A.7)

Moreover, we have

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . (1 + `(`+ 1))e2k+r∗ for r∗ ≤ 0 (A.8)

and

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . (1 + `(`+ 1))e2k−r∗ for r∗ ≥ 0. (A.9)

Proof. Note that

r+ − r = C̃ (r − r−)
k−
k+ e−2k+re2k+r∗ (A.10)

for a constant C̃ only depending on the black hole parameters. Thus, for
r∗ ≤ 0, we have

r+ − r(r∗) = f(r∗)e
2k+r∗ (A.11)
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for a smooth function f(r∗), which is uniformly bounded below and above for
r∗ ≤ 0. Moreover, we have f ′(r∗), f ′′(r∗)→ 0 exponentially fast as r∗ → −∞.
The estimates (A.8) and (A.9) are now straightforward applications of the
chain rule and the fact that dr

dr∗
= ∆

r2 and ∆ = (r − r−)(r − r+). �

Proposition A.1. The potential V` can be expanded as

V`(r∗) =
∑
m∈N

Cme
2κ+mr∗ , (A.12)

where |Cm| .` e−σm for a σ > 0.

Proof. Define the variable

z(r) := e2κ+r∗(r) = Ce2κ+r(r+ − r)(r − r−)
κ+
κ− , (A.13)

where C > 0 is such that z( r++r−
2 ) = 1. From the inverse function theorem it

follows that V`(z) = V`(r(z)) can be analytically continued in a neighborhood
of z = 0 and thus, there exists a Taylor expansion around z = 0 such that

V`(z) =

∞∑
n=1

Cmz
m. (A.14)

Hence,

V`(r∗) =

∞∑
n=1

Cme
2κ+mr∗ , (A.15)

where

C1 =
dV`
dz

∣∣∣∣
z=0

=
dV`
dr

∣∣∣∣
r=r+

dr

dz

∣∣∣∣
z=0

=
r+ − r−
r4
+

(
r2
+(r+ − 3r−) + `(`+ 1)

)
. (A.16)

Note that the coefficients Cm decay exponentially fast in m. To see this,
remark that we can re-define r̃∗ := r∗ − ρ for some constant ρ > 0. Similarly
to (A.15), we expand V` as

V` =

∞∑
m=1

Dme
2κ+mr̃∗ (A.17)

which shows Cm = Dme
−2κ+mρ. By analyticity we have |Dm| ≤ |C̃|m+1 for

some C̃ > 0 and thus,

|Cm| .` e−σm (A.18)

for a fixed σ > 0. �

Proposition A.2. Let ` ∈ N be fixed. Then,

sup
{|Re(ω)|>1}

|R(ω, `)|+ |T(ω, `)| .` 1. (A.19)

Moreover, T(ω, `) has a pole of order one at ω = iκ+ given that `(` + 1) 6=
r2
+(r+ − 3r−).
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Proof. Recall, that u1 is the unique solution to

u1(r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(y)dy. (A.20)

In [5] it is shown that the Volterra iteration has the form

u1(r∗) = eiωr∗

(
1 +

∞∑
n=1

u
(n)
1 (r∗)

)
, (A.21)

where

u
(n)
1 (r∗) =

∑
mn...m1∈N
mn>···>m1

Cmn−mn−1Cmn−1−mn−2 . . . Cm1dmn . . . dm1e
2κ+mnr∗

(A.22)

with dm = −(4mκ+(mκ+ + iω))−1. Note that in view of the bound in (A.18)
one can check that the Volterra iteration for u1 converges on ω ∈ C\{imκ+ :
m ∈ N} and moreover,

sup
{|Re(ω)|>1}

|u1(r∗ = 0)| .` 1, (A.23)

sup
{|Re(ω)|>1}

|u′1(r∗ = 0)| .` |ω|. (A.24)

Analogously, we have that v1 is analytic on ω ∈ C \ {imκ− : m ∈ N} and v2

is analytic on ω ∈ C \ {−imκ− : m ∈ N}. Moreover,

sup
{|Re(ω)|>1}

|v1(r∗ = 0)| .` 1, (A.25)

sup
{|Re(ω)|>1}

|v′1(r∗ = 0)| .` |ω|. (A.26)

and

sup
{|Re(ω)|>1}

|v2(r∗ = 0)| .` 1, (A.27)

sup
{|Re(ω)|>1}

|v′2(r∗ = 0)| .` |ω|. (A.28)

This finally shows (A.19) in view of the definition of the transmission and
reflection coefficients T and R using Wronskians, cf. Definition 2.4.

Now, we prove that T(ω, `) has a pole of order one at ω = iκ+ assuming
that `(`+ 1) 6= r2

+(r+ − 3r−). First note that

u
(1)
1 (r∗) =

∑
m1∈N

Cm1
dm1

e2κ+m1r∗ (A.29)

has a pole of order one at ω = iκ+ since C1 6= 0, see (A.16). Since for n 6= 1
there is no term of the form e2κr∗ in (A.22) as mn ≥ n, the pole at ω = iκ+

cannot be canceled by the other terms and must occur in u1. Moreover, this
pole of u1 at ω = iκ+ is not of higher order that one since d1 does not occur
at higher powers than one in the Volterra iteration. This implies that T(ω, `)
has a pole of order one at ω = iκ+. �
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Connectedness of the subextremal parameter range.

Proposition A.3. Let the subextremal parameter space PΛ>0
se and PΛ<0

se be
defined as in (3.39) and (3.40), respectively. Then, PΛ>0

se ∩{Q > 0}, PΛ<0
se ∩

{Q > 0}, PΛ>0
se ∩ {Q < 0} and PΛ<0

se ∩ {Q < 0} are path-connected.

Proof. The claim follows for PΛ>0
se ∩ {Q > 0} and PΛ>0

se ∩ {Q > 0} from the
following continuous parametrizations

PΛ>0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R× R× R :

Λ = 3(r2
+ + r2

− + r2
c + r+rc + rcr− + r+r−)−1,

6M = Λ(r+ + r−)(r+ + rc)(r− + rc),

Q =

(
Λ

3
(r+ + r− + rc)(r−r+rc)

) 1
2

for 0 < r− < r+ < rc

}
(A.30)

and

PΛ<0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R× R× R :

Λ = 3

(
3

4
(r+ + r−)

2 − r+r− − ξi
)−1

,

6M = −Λ

(
1

4
(r+ + r−)

2
+ ξi − r+r−

)
(r+ + r−),

Q =

(
−Λ

3
r+r−

(
3

4
(r+ + r−)2 + ξi

)) 1
2

,

for 0 < r− < r+ and ξi >
(

3

4
(r+ + r−)2 − r+r−

) 1
2 }

(A.31)

in view of the fact that {0 < r− < r+ < rc} and {0 < r− < r+, ξi >

( 3
4 (r+ +r−)2−r+r−)

1
2 } are path-connected as subsets of R3. In the following

we will show (A.30) and (A.31).
First, in the case Λ > 0, note that (A.30) follows from comparing coef-

ficients of
−3

Λ
(r2 − 2Mr +Q2 − 1

3
Λr4) = (r − r−)(r − r+)(r − rc)(r − r0)

for r0 < 0 < r− < r+ < rc. Indeed, we obtain r0 = −(r− + r+ + rc) and
(A.30) can be deduced.

In the case Λ < 0, note that −3
Λ (r2 − 2Mr + Q2 − 1

3Λr4) only has two
real roots 0 < r− < r+ such that we compare coefficients of

−3

Λ
(r2 − 2Mr +Q2 − 1

3
Λr4) = (r − r−)(r − r+)(r − ξ)(r − ξ̄)

with ξ = ξr+iξi. We obtain 2ξr = −(r++r−) and ξi >
(

3
4 (r+ + r−)2 − r+r−

) 1
2

to guarantee Λ < 0. Now, a direct computation shows (A.31).
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Completely analogously we can show path-connectedness for PΛ>0
se ∩

{Q < 0} and PΛ<0
se ∩ {Q < 0}. �
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