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There is currently no established methodology for the generation of synthetic stochastic internal load profiles for input into
building energy simulation. In this paper, a Functional Data Analysis approach is used to propose a new data-centric bottom-
up model of plug loads based on hourly data monitored at a high spatial resolution and by space-use type for a case-study
building. The model comprises a set of fundamental Principal Components (PCs) that describe the structure of all data
samples in terms of amplitude and phase. Scores (or weightings) for each daily demand profile express the contribution of
each PC to the demand. Together the principal components and the scores constitute a structure-based model potentially
applicable beyond the building considered. The results show good agreement between samples generated using the model
and monitored data for key parameters of interest including the timing of the daily peak demand.

Keywords: Functional Data Analysis; Principal Components; plug loads; stochastic

1. Introduction
No building energy simulation is complete without a
specification of internal loads including electricity con-
sumption due to plug loads and lighting and the thermal
contribution of the building occupants. These are incon-
trovertibly interlinked as occupants actively operate lights
and equipment which in turn generate heat impacting on
heating, ventilation and air-conditioning requirements to
maintain comfortable conditions. On an individual level,
occupant actions may occur in response to certain stim-
uli – a need to open a window in response to feeling too
warm, for example – but as occupant numbers grow the
combined actions of many occupants result in an aggre-
gate observed behaviour which appears stochastic. Yet
schedules of occupancy and internal loads for both domes-
tic and non-domestic buildings are usually specified as a
deterministic diversity and peak load; this yields predic-
tions of demand which may be significantly different from
reality and contain no information about the uncertainty
associated with the prediction (de Wilde 2014).

More realistic energy demand of individual buildings
and building clusters requires a stochastic representation of
the internal loads but as yet there is no established method-
ology for generating stochastic internal load profiles. This
paper seeks to address this issue. The primary drivers of
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the stochasticity are weather and occupant actions, with the
latter having a particular impact on electricity consump-
tion when plug loads and lighting are considered separately
from cooling loads. Indeed, Wang et al. (2016) demon-
strated that occupant ‘action’ in terms of lighting and
appliance usage had a more significant impact on energy
demand than occupant presence alone. A considerable
body of research has been performed under the auspices
of IEA Annex 66 in order to understand patterns of occu-
pant actions, exploring the relationship between occupant
presence and plug loads and inferring plug loads as a
function of occupant presence. Gunay et al. (2016) model
detailed occupancy and plug load data for office spaces,
generating stochastic plug load forecasts from predicted
occupancy and learned plug load patterns. In addition, the
study by Mahdavi, Tahmasebi, and Kayalar (2016) high-
lights the need for better models of plug loads for building
performance simulation and explores detailed monitored
occupancy and plug load data for a selected office. They
demonstrate that while simple models may be adequate for
predictions of aggregate demand, probabilistic methods are
better at capturing the time dynamics.

In this paper, we focus on three issues that are impor-
tant for correct specification of stochastic internal load
profiles, particularly for non-domestic buildings. The first
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is the influence of spatial resolution within a building; in
addition to the time dynamics, this is an important factor.
The study by Gilani, O’Brien, and Gunay (2018) explores
the applicability of individual occupant models at different
spatial scales and concludes that, for lighting, the impact
of individual occupants diminishes as the building size
increases. However, for large buildings, it is not so much
the nature of occupants but the nature of the function of
the space that influences demand. For example, previous
studies have shown that different types of functions in a
university building exhibit different types of behaviours –
notably later arrival and departure times for students when
compared against administrative staff (Ward et al. 2016a).
Accordingly, for large non-domestic buildings it is useful
to simulate power demand according to space-use type.

The second issue is the availability and building-
specific nature of monitored data. Most non-domestic
buildings do monitor energy consumption in some form.
This may be simply as utility bills, but increasingly, non-
domestic buildings are being monitored at higher spatial
and temporal resolutions for energy consumption, and
by end-use. For existing buildings, top-down data-driven
models may thus be used to infer realistic synthetic load
profiles (O’Brien, Abdelalim, and Gunay 2018; Wang
et al. 2016), but cannot as yet be used to attribute energy
consumption to particular devices or areas of buildings, or
to identify the sources and timing of large and/or ineffi-
cient energy consumers (Ward et al. 2016b). Furthermore,
data derived from in-depth empirical occupancy monitor-
ing studies are inextricably linked to the building from
which the monitored data derives. It is therefore difficult
to apply them beyond the building under consideration.
Finally, high-resolution energy data from buildings are
not typically available or straightforward to obtain in the
modelling domain.

The third important factor for model development is
usability. In a typical building energy simulation, inter-
nal loads are characterized by user-defined energy use
intensity and diversity profiles per end-use (e.g. lighting,
plug loads, large appliances) and per space-use type; this
bottom-up approach is straightforward to implement and
interpret and is accepted practice within the simulation
community.

A stochastic model, even if far more accurate, will
not be acceptable within modelling practice unless it can
be interpreted in a straightforward manner and imple-
mented seamlessly with current energy simulation tools.
The National Calculation Methodology (NCM) used in
the UK for calculations of compliance to Building Reg-
ulations (Building Research Establishment 2015) is one
class of bottom-up model based on space-use type.
Other bottom-up models focus on individual device types
(Menezes 2013; Rysanek and Choudhary 2015) or individ-
ual occupant behaviours (Tanimoto et al. 2013). For non-
domestic buildings as considered here, evidence suggests

that the action of an individual occupant or individual
device has less impact on the energy demand than the
nature of the space use and hence a bottom-up model akin
to the NCM approach would be the most suitable approach
(Gilani, O’Brien, and Gunay 2018; Ward et al. 2016a).

So what insights can be gained from existing energy
data from buildings and how can they be used to inform a
stochastic model of energy demand?

In this study, we are concentrating on a specific form of
energy demand, namely plug loads from an office building;
the form of the data for plug loads in an office space may
vary considerably from day to day and between use types
as illustrated in Figure 1(a) where four actual daily demand
profiles are shown. By comparison, plug loads are con-
ventionally modelled as a six-parameter (a, b, t1, t2, t3, t4),
five-section linear piecewise parametric model as shown
in Figure 1(b) (O’Brien, Abdelalim, and Gunay 2018). It
is clear that the real data exhibits features which are not
represented in this model, such as the magnitude or timing
of daily peaks. These may be as important if, for example,
real-time energy pricing is a consideration.

The aim of this paper is to identify the fundamental
structure of the plug loads data and to describe the signif-
icant features mathematically in a way which can be used
to identify differences in space-use type and quantify their
variation in timing and magnitude of demand, with quan-
tification of uncertainties. To this end, plug loads in the
form of metered electricity consumption from a case-study
building sub-metered according to space-use type have
been analysed using a Functional Data Analysis (FDA)
approach in order to derive a bottom-up data-centric model
of plug loads for different types of space use. FDA has
been used previously for short-term forecasting of energy
demand based on previous monitored data (Vilar, Cao, and
Aneiros 2012). The novelty of the approach used here is
that rather than using the functional description of the data
to forecast short-term demand it is being used to uncover
the fundamental structure of the data and the way in which
different space-use types may be described mathemati-
cally. The analysis by space-use type is consistent with the
approach used in the UK National Calculation Method-
ology (Building Research Establishment 2015), in which
distinct spaces within a building are characterized by the
activities of the occupants. The benefits of the methodol-
ogy used here are that the model facilitates simulation of
the inherent stochasticity and hence the uncertainties in the
occupant-related loads. In addition, it is not just applicable
to the case-study building but, as shown later in this paper,
it is straightforward to calibrate for other similar spaces and
buildings.

In the following section of this paper, the methodol-
ogy is described. The building and the plug loads data
used to develop the model are also detailed and a brief
outline of the mathematical framework for the analysis is
provided. Subsequent sections show the application of the
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Figure 1. Plug load profiles (a) monitored demand and (b) typical profile assumed for simulation (O’Brien, Abdelalim, and Gunay 2018).

methodology to the data of interest and the results in terms
of sample plug load profiles. The model has been assessed
against its ability to predict four Key Performance Indica-
tors (KPIs), namely the base and peak loads, the timing of
the daily peak demand and the daily total electricity con-
sumption due to plug loads. The summary, discussion and
conclusions provide a critique of the approach and assess
the benefits of this model over models currently in use.

2. Methodology
A Functional Data Analysis (FDA) approach has been used
for analysis of the data. FDA is a powerful set of techniques
for analysing data that present as continuous functions
rather than a set of discrete data points. By identifying
the functions that best represent the data it is possible to
gain insights into the data that are masked if the continu-
ous properties are not considered. Examples of the use of
this approach in fields as diverse as handwriting analysis,
children’s growth measurements and Canadian tempera-
ture data are given in the seminal work by Ramsay and
Silverman (2005) and the techniques have been applied
widely in research in fields such as linguistic pitch analysis
(Hadjipantelis, Aston, and Evans 2012; Aston, Chiou, and
Evans 2010), analysis of SONAR data (Tucker, Wu, and
Srivastava 2013) and population forecasting (Hyndman
and Booth 2008) amongst others.

In our analysis, we consider each day of data per space-
use type to be a data sample, in the form of 24 hourly
values of electricity consumption attributable to plug loads,
and a function is fitted to each data sample. A particularly
useful aspect of FDA is functional Principal Component
Analysis (fPCA). Similar to principal component analysis
of discrete data, fPCA serves to identify the fundamental
principal components of the data – in this case themselves
functions – which can be used to generate the original
data from the mean function together with a weighted

sum of those components. A function φ(t), constructed
from a mean μ(t) and i principal components νi(t) with
weightings αi, is simply represented using the equation:

φ(t) = μ(t)+�iαiνi(t). (1)

In this approach, the mean and principal component func-
tions are the same across all the data samples. The only
parameters that change from one sample to another are the
weightings, or scores, αi. This means that if we can find
a set of principal components that govern the behaviour
across all space-use types, the difference between the
space-use types lies in the distribution of the scores for
each principal component.

2.1. Phase and amplitude separation
The features identified in Figure 1 are related to the magni-
tude, or amplitude, of the demand, and also to the timing, or
phase. In cases such as this, where the phase is an impor-
tant part of the overall variation of the data, it has been
found to be useful to analyse the amplitude and phase rela-
tionships separately (Tucker, Wu, and Srivastava 2013).
In this case, it is necessary to first separate the phase and
amplitude relationships for each data sample. This results
in a set of aligned amplitude functions that are the relative
magnitude variations of the data over the 24-hour period,
and a set of phase functions that relate the original data
samples to their aligned amplitude functions. These are
termed warping functions. This is illustrated in Figure 2;
the warping functions shown in Figure 2(b) vary from 0 to
1 and relate function time to clock time, i.e. they govern
whether the function is ahead of clock time, lying below
the diagonal in Figure 2, implying features in the data are
occurring earlier than the mean profile (shown in black on
Figure 2c) or vice versa. By applying the warping func-
tions to the corresponding amplitude functions, the original
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Figure 2. Sample demand profiles (a) may be generated from the action of a warping function (b) on an aligned amplitude function (c).

data are recovered. This is pertinent to our study; taking
an example, if the red and blue curves equated to demand
from different occupants of a space, say administrative staff
and students, the warping function in red clearly indicates
that the administrative staff demand is ahead of the mean
demand i.e. they arrive and leave earlier. Conversely, the
warping function for the blue curve lying above the diag-
onal in Figure 2(b) indicates that the student demand is
behind the mean demand in time i.e. they arrive and leave
later.

So how is the separation of the functional data into
phase and amplitude performed? In itself, this is an exten-
sive topic of research, but good results have been achieved
using an ‘elastic shape analysis’ approach, as detailed
in Srivastava and Klassen (2016). Elastic shape analysis
of the functional data f(t) relies on the calculation of the
Square Root Slope Function, or SRSF, q(t), defined by

q(t) = sign(ḟ (t))
√
(|ḟ (t)|). (2)

The aim is to extract warping functions, γ (t) that map a
set of aligned functions fn(t) to the original data functions
f (t). However, if we consider two such data functions, f1
and f2 and a warping function γ (omitting the domain for
clarity), in general it is the case that,

‖ f1 − f2 ‖ �= ‖ (f1 ◦ γ )− (f2 ◦ γ ) ‖ , (3)

i.e. the distance between two warped functions (repre-
sented by f ◦ γ ) is not the same as the distance between
amplitude functions. The problem with this is that the opti-
mal alignment of the two functions will differ according

to the direction of alignment. This may not be an issue if
the warping functions themselves are not of interest i.e.
if registration of the curves is the only aim. However,
if the analysis of the warping functions is of interest, as
here, it is necessary to find a symmetric approach. Using
Equation (2) and calculating the SRSF values, q1, q2 of
f1, f2, it transpires that

‖ (q1, γ )− (q2, γ ) ‖=‖ q1 − q2 ‖ , (4)

where (q, γ ) = (q ◦ γ )√γ̇ is the SRSF of f ◦ γ . This
isometry property means that it is possible to align the
SRSF values by minimizing the distance between the
aligned SRSFs and a mathematical mean using a Dynamic
Programming algorithm, and then to map the aligned SRSF
values back to the function space to retrieve the aligned
functions, fn(t).

This approach delivers a set of aligned amplitude func-
tions, fn(t) and a set of warping functions γ (t). So each
data sample, fa(t) equates to an aligned amplitude function
fna(t) acted on by a warping function, γa(t).

Functional principal component analysis (fPCA) of
both sets of functions is then performed. The fPCA results
in a parameterization of the data in terms of a mean profile
μ(t) and i principal components, PCYi(t), for the amplitude
functions and another set of principal components for the
aligned warping functions, PCXi(t), together with scores,
αi and βi for the amplitude and warping functions respec-
tively. Separate linear equations similar to Equation (1) are
thus used for the two elements. i.e. for a data sample fa(t),
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the equation for the aligned amplitude function is

fna(t) = μ(t)+�iαaiPCYi(t) (5)

and the equation for the warping function is

γa(t) = �iβaiPCXi(t). (6)

The scores are specific to each data sample. The principal
components however are independent of the data sample
and hold for all of the data analysed, so each data sam-
ple may be characterized simply by the sets of principal
component scores for that sample.

The advantages of this approach are fourfold; first,
the principal components retain the temporal correlation
across the 24-hour period. This is important as it can reflect
behaviours such as the tendency for certain classes of occu-
pants to arrive and leave earlier or later than the mean,
e.g. the difference between administrative staff and stu-
dents, and is not included in models that relate performance
in 1 hour to the previous hour, such as Markov Chain
approaches (Rysanek and Choudhary 2015). Second, the
principal components can be interpreted intuitively as rep-
resenting particular physical realities of the demand – the
relationships between start and end of day for example,
or the change in demand at lunchtime. Third, the scores
contain all the information needed to differentiate between
different types of space use. So for two different spatial
zones, a difference in the magnitude of the score related
to a principal component describing the change in demand
at lunchtime indicates that the occupants of those spaces
have different demand profiles at lunchtime. It also means
that generating a stochastic sample of data for use in build-
ing energy simulation reduces to sampling from the scores
alone. And a final benefit is that new data for similar build-
ing zones can be mapped to the original set of principal
components, generating scores for the new data that can
be compared directly against the original data set. This
means that it is straightforward to calibrate the model as
new operational data become available.

The full mathematical details of the approach are com-
plex and are detailed in Srivastava and Klassen (2016). It is
important to note that the fPCA cannot be performed in the
original function space for either of the elements; for the
amplitude functions, the fPCA must be performed on the
SRSF values. For the warping functions, the set of all warp-
ing functions is an infinite-dimensional nonlinear manifold
which does not lend itself easily to statistical analysis. In
order to proceed, the square root of the derivative of the
warping function, ψ = √

γ̇ , is calculated; the set of all ψ
values is a Hilbert sphere, i.e. a unit sphere in Hilbert space,
for which the distance between two ψ values is the arc
length on the surface of the sphere. This facilitates calcula-
tion of a mean warping function, but principal component
analysis still cannot be performed directly on the ψ val-
ues; instead the mappings of ψ into the tangent space to

Figure 3. William Gates Building, Western side.

Figure 4. William Gates building, floor plan.

the mean ψ value – the so-called ‘shooting vectors’ – are
used (Tucker, Wu, and Srivastava 2013).

Implementations of the approach for R and MATLAB
are available from Tucker (2015).

2.2. Case study
In this paper, metered electricity consumption due to plug
loads from the Cambridge University Computing Labora-
tory1, i.e. the William Gates building in Cambridge, UK,
have been used as a basis for the model. This modern build-
ing, shown in Figure 3 from the West side, was constructed
on three storeys, each with a similar layout as indicated in
Figure 4.

Within the building, spatial zones are identified accord-
ing to the building orientation as indicated in Figure 4
(Rice, Hay, and Ryder-Cook 2010), and individual zones
are identified throughout this paper using direction and
floor level abbreviations, e.g. South-West First Floor is
denoted SW1. The spatial zones are also typically occu-
pied by different types of user as indicated in Table 1. For
this case study, therefore, each spatial zone equates to a
separate space-use type and the terms ‘zone’ and ‘space-
use type’ are used interchangeably hereafter. Mixed-use
in this instance implies single or double occupancy stu-
dent and academic staff cellular offices. With the exception
of the SW1 zone, all of these spatial zones are metered
separately at hourly intervals for plug loads and light-
ing using Autometers’ IC995 submeters (Rice, Hay, and
Ryder-Cook 2010). The plug loads data for a 12-month
period from October 2013 to September 2014 for the 15
zones excepting SW1 were used to develop the model,
with 10 zones specified as a training data set, and 5 zones
retained to be used as a test data set (indicated in italics
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Table 1. William Gates building, spatial zone use types.

Floor
Direction Ground First Second

East Admin Studenta Student
South-East Mixed-use Mixed-use Mixed-use
South-West Canteen Classroomb Classroom
West Lecture Theatre – –
North-West Admin Meeting Space Classroom
North-East Library IT Lab IT Lab

a Items in italics indicate the tests dataset.
bSW1 data not used in this analysis as combined plug loads and
lighting.

in the table). The total daily demand varies according to
the zone, but are of a similar order of magnitude as the
benchmark values for installed capacity given in CIBSE
Guide F (Table 12.2) for office equipment demand i.e.
112–144 Wh/m2 for an 8-hour day (Chartered Institution
of Building Services Engineers 2012).

The data for each zone are illustrated in Figure 6.
Shown in addition to the data samples are shaded zones
which represent the 5–95% confidence limits for weekdays
(red) and weekends (blue). Immediately apparent from the
plots are a number of differences between zones or use
types, for example:

• base load – the IT Lab shows a much higher base
load than the other zones,

• peak load – both in terms of magnitude and timing,
for example the Admin zone has a higher probability
of a peak at around noon,

• load range – the Canteen shows the greatest load
range from base load to peak demand,

• profile shape – the Lecture Theatre and Classroom
show much more variable profiles over a 24-hour
period than the Student and Mixed Use zones,

• daily variability – the Lecture Theatre and Class-
room also show much more variability day to day
than the other zones,

• weekday and weekend behaviour – for the majority
of zones there is a clear difference between weekday
and weekend profiles, although this is less clear for
the Meeting Room.

2.3. Principal components
Using the approach described above, principal components
(PCs) for amplitude and phase have been extracted from
the data for the 10 test zones treated as a single dataset.
These are shown in Figures 7 and 8.

To interpret the PCs, it helps to consider the impact of
each PC on the mean profile individually. The plots show
the mean profile,μ(t) across all data in black, together with
the impact of adding each PC individually multiplied by a

+ ve or − ve score equal in magnitude to 2 standard devi-
ations of the score values (denoted by 2σ(α) for amplitude
and 2σ(β) for phase). The PCs multiplied by a positive
score are shown by the dashed line, and multiplied by a
negative score by the dotted line. So for the first amplitude
PC (Figure 7 Amplitude PCY 1) a strongly positive score
leads to a higher base load and range, whereas a strongly
negative score loads to a lower base load and fairly flat pro-
file compared against the mean profile. The second PCY
has some impact on the base load, in particular the differ-
ence between the demand at the start and the end of the day,
but primarily affects the relative amplitude at the start of
the day, i.e. the rate of the rise. The third PCY also affects
the base load and the propensity for the peak to occur in
the morning or afternoon. The fourth PCY also affects the
difference in demand between the start and end of the day,
while the fifth PCY is similar but opposite to the third PCY.

Similar plots are given for the phase PCs in Figure 8.
The first phase PC (PCX 1) can be seen to shift the entire
profile in time, with a strongly positive score resulting in
a much earlier start and end of day and a strongly neg-
ative score resulting in the opposite. A positive score on
the second PCX stretches the timing at the start of the day
with respect to the timing at the end of the day, and PCX 3
affects the peakiness of the profile. PCXs 4 and 5 have more
subtle impacts, with PCX 4 primarily having an effect at the
start of the day, and PCX 5 giving a shift in time similar but
less extreme than PCX 1.

The PCs ordered in this way account for decreasing
amounts of variability in the data – Figure 9 shows scree
plots for the phase and amplitude PCs. The first ampli-
tude PC accounts for approximately 30%, with the first 5
PCYs accounting for 68% of the variability in the data.
The variability attributable to the phase PCs are similar,
with the first phase PC accounting for 26% and the first
5 PCXs accounting for 73% of the variability in the data.
This variability is across all the data but for specific zones
different PCs may be significant. For example, PCY8 only
accounts for less than 5% variability in the data overall,
yet is directly related to the base load and hence may be
more significant for zones in which the base load is highly
variable.

Conventional principal component analysis of discrete
data is often performed in order to reduce the dimension-
ality of the data; significant PCs only are retained, with
the significance determined according to the purpose of the
analysis. So the question of how many PCs are significant
for explanation of the data and how many are effectively
noise terms is of interest.

One alternative is to only consider PCs which account
for significant variability in the data, yet as described
above considering variability across the entire dataset
may lead to PCs which are significant for specific zones
being incorrectly labelled as insignificant. Figure 9 also
shows so-called ‘Broken-Stick’ curves for the data. This
curve is the distribution that would be expected for



626 R. M. Ward et al.

Figure 5. Impact of increasing the number of PCs included in the summation on the re-generation of the original data; with 1–5 PCs the
base load is too low, but by 18 PCs the agreement is good.

Figure 6. Daily monitored plug loads for 1 year for 10 different spatial zones showing the 90% confidence limits of demand for weekdays
(red) and weekends (blue) (note variable scale on y-axis).

Figure 7. Amplitude principal components PCY 1–5, showing the impact of adding each PCY to the mean function (shown in black)
using a positive (dashed) or negative (dotted) score.
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Figure 8. Phase principal components PCX 1–5, showing the impact of adding each PCX to the mean function (shown in black) using
a positive (dashed) or negative (dotted) score.

Figure 9. Scree plots showing the proportion of variability in the data accounted for by each PC for phase and amplitude.

random data following a broken stick distribution (Bro and
Smilde 2014), the point being that if looking to reduce the
dimensionality of the data it makes sense to retain only
those PCs that account for greater variability in the data
than would be obtained from random data. This approach
would suggest that approximately 10 PCs are significant
for both phase and amplitude, accounting for 94% of the
phase variability and 88% of the variation in amplitude
across all samples. To explore whether this is the case,
consider Figure 5. This shows the impact of progressively
adding more PCY terms to reconstitute a single example
amplitude function, using scores derived from the data for
that day. The scores used are given in Table 2. Adding just
a single PCY to the mean gives approximately the correct
range, with too low a base load. Adding the second PCY
has little impact and even with 5 PCYs the base load is
still too low. PCY 8 primarily affects base load and for this
example has a significant impact on the profile shape for
this sample day, even though PCY 8 accounts for less than
5% variability in the data overall. PCYs 9–13 have little
impact, but with the addition of PCY 14, the agreement
becomes quite good, and with PCYs 15–18 included the
agreement is almost exact. So although the higher number
PCYs are less significant, it appears to be still necessary to
include them if it is important to match all features of the

Table 2. PCY scores used for reconstitution of sample
illustrated in Figure 5.

PC Score PC Score

1 0.37 10 − 0.18
2 − 0.15 11 − 0.08
3 0.23 12 0.09
4 − 0.42 13 0.14
5 0.22 14 − 0.25
6 0.25 15 0.05
7 − 0.19 16 0.03
8 − 0.29 17 − 0.04
9 − 0.07 18 0.04

data. In general there is little to be gained by reducing the
dimensionality and hence all the PCs have been retained
for this analysis.

2.4. Scores
The role of the PCs is to define the fundamental structure
of the data; the score distributions are important for dis-
tinction between zones and quantification of the potential
variability of the data for each zone. Having extracted the
PCs, a set of scores for amplitude and phase is calculated
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Figure 10. Scores for PCY 1 for 365 days’ demand for each of 10 spatial zones; each point is the score for one day’s data.

Figure 11. Scores for PCX 1 for 365 days’ demand for each of 10 spatial zones; each point is the score for one day’s data.

for each data sample as described previously. Figure 10
shows the scores for the first amplitude PC (PCY 1) for
each zone for all data samples, i.e. 365 days for each zone,
from October 2013 to September 2014, and Figure 11 sim-
ilarly shows the scores for the first phase PC. There are
three points of particular interest:

• Each zone, and hence each use type, has a distinct
score distribution and similar zones (e.g. zones SEG
and SE2, both Mixed Use zones, have similar dis-
tributions). This supports the key hypothesis of this
model, namely that there is potential for the scores
to be used to differentiate between use types.

• The absolute magnitude of the score for each PC is a
direct reflection of the impact of that PC on the data
sample. So considering Figure 10, the Canteen, zone
SWG, has a main cluster of scores for amplitude with
a high value around + 1, indicating that this PC is a
significant factor in the composition of the demand
for this zone. And indeed the load range for the Can-
teen, governed by amplitude PCY 1, is significantly
higher than the mean. By comparison, in Figure 11,
the majority of the scores are close to zero for this
zone. So, the first phase PC is not significant for

this zone, indicating that there is no significant shift
in the timing of the energy demand when compared
with the mean profile. Compare this with the scores
for the Student zone E2 in Figure 11 which are nega-
tive indicating that the timing of the demand is later
than the mean demand, i.e. the students tend to arrive
and leave later.

• The majority of the zones show two clusters of
scores in Figure 10, for example zone EG has a clus-
ter around a value of −0.5 and another cluster around
a value of + 0.5. This indicates two different types
of behaviour – referring to the plot for amplitude
PCY 1 in Figure 7, the positive value will give a
higher range, whereas the negative value will give a
much flatter profile. This clustering is not as obvious
for the phase PCs, although the zones that exhibit
this tight clustering for amplitude do show a cluster
of scores for phase with a tailing off in the positive
direction.

The appearance of distinct clusters of scores, implying
different types of profile, is explored further. Figures 12
and 13 show the scores for each zone plotted as a function
of the day of the week and coloured according to the time
of year. Some interesting features are visible; looking at
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Figure 12. Amplitude scores (PCY 1) from Figure 10 re-plotted by day of the week; weekend scores are noticeably lower for the
majority of zones.

Figure 13. Phase scores (PCX 1) from Figure 11 re-plotted by day of the week; weekend scores show a wider spread for the majority of
zones.

the scores for PCY 1 in Figure 12 for the Student zone, E2,
the two clusters of scores can be seen to be generated from
different behaviour on weekdays and at the weekend. This
pattern is visible for the other zones that exhibit distinct
clusters in Figure 10, whereas the Lecture Theatre (WG)
and Classroom (SW2) show much more variable demand
on weekdays and this is reflected in the score distribution.
Several of the zones have negative scores for a group of
weekdays in December, similar to weekend values; not sur-
prisingly, these are the scores for days over the Christmas
holiday period. Little seasonal variation is visible, although
comparing Figures 10 and 12, the library zone NEG has
weekday scores which start low in October 2013, then rise
through the middle of the academic year and fall again in
July–August 2014. There is then an unexpected increase in
the scores in September 2014. It transpires that at this time
there was a change of use in this zone as it was partially
converted to student offices, and hence a marked difference
in the scores.

The scores for the first phase PC in Figure 13 exhibit
a much wider variation at the weekends than on week-
days for the majority of the zones. This reflects a much
greater variation in timing of the demand at weekends than
on weekdays when occupant working patterns tend to be
more similar.

As highlighted above, different zones have different dis-
tributions of scores and this is not just the case for the first
PC. For example Figure 14 shows scores for two ampli-
tude PCs, with scores for PCYs 1 and 8 plotted on the x
and y axes respectively for Term 1 weekdays only for clar-
ity. PCYs 1 and 8 have been selected as PCY 1 directly
affects the load range and PCY 8 is one of the PCs which
makes a significant contribution to the base load; increas-
ingly positive scores for PCY 1 imply an increase to the
load range, while increasingly negative scores for PCY 8
imply an increase to the base load. It is clear that demand
data from different zones give rise to scores in different
areas of the score space. This is very illuminating as it
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Figure 14. Scores for weekday (term 1) amplitude PCYs 1, pri-
marily affecting load range, and 8, primarily affecting base load;
an increase in score value in PCY 1 gives rise to an increas-
ing load range, whereas a decrease in value in PCY 8 gives an
increase in base load.

reveals fundamental correlations that distinguish between
use types. For example, the IT lab, NE1 has a relatively
high negative score for PCY 8 and a small positive score
for PCY 1, implying a high base load and a slightly higher
than average load range. In contrast, the canteen, SWG,
scores highly for PCY 1 and hence range, but typically the
score for PCY 8 is close to zero. In addition, the differ-
ent zones exhibit different levels of variability in the score;
scores for the office-type zones, including the students, E2,
admin, EG, mixed-use, SEG and SE2, and the IT Lab, NE1,
are all quite tightly distributed, whereas the classroom,
SW2 and lecture theatre, WG, are widely spread indicating
a high level of variability in the demand data. This reflects
the actual use of these zones which are occupied intermit-
tently by students according to the timetable of lectures and
classes. The meeting space, NW1, has scores in the low
range and the low base load quadrant; this zone is simply a
meeting room used for ad hoc meetings and containing just
a projector and sockets for individual laptops.

2.5. Generation of stochastic demand profiles
Using the scores and PCs extracted from the data, it is
possible to recreate the original data as demonstrated in
Figure 5. However, stochastic demand profiles are not just
a re-creation of past reality, but instead are a projection
of what future demand could look like based on previous
demand. As detailed in the previous section, the distribu-
tion of scores is the key characteristic of a zone’s energy
demand. Therefore, it suffices to sample from the score dis-
tributions for each zone to generate a stochastic sample of
demand on a zone-by-zone basis. The sample scores are
then combined with the PCs for phase and amplitude in
order to generate sample amplitude and warping functions
and hence generate stochastic daily demand profiles.

There are certain practical considerations to be taken
into account in sampling from the set of scores. When the
entire dataset is considered, correlations between scores
for different PCs are not detectable. However, significant
correlations can exist which may only be observed once
subsets of the data are explored, for example subsets cor-
responding to sets of scores for individual zones. It is
important to take this into account by sampling from a
multi-variate distribution fitted to the scores. However,
in addition to being correlated, the scores are typically
not normally distributed, so use of a multivariate normal
distribution is not strictly applicable in this case.

Instead a multi-dimensional copula has been used.
In simple terms, a copula is a function that describes
the dependence structure between two or more one-
dimensional probability distributions, which importantly,
are not required to have the same form of distribution
(Nelsen 2007). The mathematical formulation relies on
Sklar’s theorem which states that any multivariate joint dis-
tribution can be written in terms of univariate marginal
distribution functions and a copula which describes the
dependence structure between the variables. This allows
specification of the univariate distributions separately from
the multivariate dependence, which greatly improves the
flexibility in fitting a model to the data (Patton 2012).

Given the clustering of scores for weekdays and week-
ends for many of the zones, the scores have been grouped
by type of day – weekday or weekend – and also by term-
time and holiday. Sample scores for each group of scores
for each zone, for amplitude and phase, are then generated
by fitting a Gaussian copula to the score set using MAT-
LAB (Mathworks Inc 2018). This procedure involves the
following steps:

• for each set of scores, apply a transformation in order
to represent each set as a uniform distribution on a
unit scale,

• fit a copula to the uniform distributions using the
MATLAB function copulafit – a separate copula is
generated for each zone,

• generate sample scores from each copula,
• transform the sample scores back to the original

scale of the data.

The transformation required in this instance is based on
a kernel estimator of the cumulative distribution function
for each score set. In this way, the univariate distribution of
each set of scores derived from the data is embedded in the
transformation, and by transforming back to the original
scale, the distribution is retained.

To illustrate this, Figure 15 shows the distribution of
scores for amplitude PCYs 1 and 2 for the Canteen zone,
SWG, for term-time weekdays, 127 days in total, with a
scatter plot showing the scores and histograms illustrat-
ing the distribution in each dimension. There are two main
clusters of scores separated in PCY 2 with one cluster
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Figure 15. Scores for Zone SWG for amplitude PCs PCY 1/2,
illustrating the non-normal scores distribution.

Figure 16. Sample scores for Zone SWG for amplitude PCs
PCY 1/2, illustrating the fit achieved by using a Gaussian copula.

around a score value of 1, and a second cluster around zero.
Considering this set of scores as a whole the distribution is
clearly non-normal in both dimensions.

Figure 16 shows a similar plot for a set of 1000 scores
generated from a Gaussian copula fitted to the data, illus-
trating that the main features of the distribution i.e. number
of peaks and skew, are being replicated well.

3. Results of the illustrative study
Using the sampling approach detailed in the previous
section, 1000 sets of sample scores have been generated
for each zone for term-time weekdays. These scores are
then used in conjunction with the PCs to calculate sample
amplitude and warping functions, which are then combined
to give sample daily demand profiles. Figure 17 provides a
visual comparison of the generated daily profiles against
the monitored training data, with the 5–95% quantiles

coloured red for the monitored data and blue for the gener-
ated sample, with the overlap presented as purple. Noting
that the intention here is not to recreate previous reality, but
to project what may happen in the future, it is interesting
to note that overall the comparison is close, with the gener-
ated samples enveloping the data; the samples are closest
to the monitored data for those zones that demonstrate less
variability in the scores, zone E2 for example. In a cou-
ple of instances, red coloured areas are visible, indicating
that features of the monitored data are not being predicted;
for example, the sharp peak in the Admin zone, EG, is
under-predicted by the model. This suggests that events of
this magnitude have not occurred frequently enough in the
monitored data to appear in the stochastic samples. The sig-
nificance of this depends on whether it has an impact on the
key parameters of interest (KPIs).

Figures 18 and 19 illustrate the comparison for each
zone for 2 KPIs, namely base load and daily total.
Figure 18 shows for each zone the distribution of base load
from the simulation compared against the data for term-
time weekdays. The simulation is in good agreement with
the data across all the zones, being in closest agreement for
the zones which show more regular behaviour, for exam-
ple the student zone, E2 and the two mixed use zones, SEG
and SE2. For all of the zones the simulation predicts a
wider spread in the results and a greater number of out-
lying points as would be expected from a stochastic model.
Similarly, considering the daily total demand in Figure 19,
for the Lecture theatre, WG, the inter-quartile range of the
simulation results is significantly wider than the data; from
Figure 17 this is due to the spread in base load predicted
at the end of the day and is a consequence of the highly
variable demand in this zone which is harder to predict.

Simulation of peak demand requires both the magni-
tude of the peak and the time at which the peak occurs,
which as described previously is typically not simulated
in deterministic schedules, yet may be an important KPI.
As these two parameters are inextricably linked they are
displayed jointly in Figure 20, in which peak demand is
plotted as a function of the timing of the peak and the
probability distributions for both parameters are shown for
each zone. As for the base load and total daily demand the
magnitude and timing of peak demand show a similar pat-
tern with a closer match for the zones with less variable
demand. The majority of the zones tend to have a peak
in mid-afternoon and this is also predicted by the simula-
tion for the zones which exhibit relatively consistent daily
demand. The Admin zone, EG has a relatively early daily
peak and this is matched well by the simulation.

3.1. Application to new zones
The beauty of this fPCA approach is that it is not nec-
essary to perform the full mathematical analysis and
extract new PCs for newly available monitored data. Once
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Figure 17. Sample profiles, term-time weekday; 90% confidence limits for 1000 samples generated by sampling from a Gaussian copula
fitted to the score distributions (blue), compared against the training data (red) for 10 spatial zones.

Figure 18. Base load for 1000 stochastic samples (Sim) compared against the training data for 10 spatial zones (term-time weekday).

Figure 19. Daily total demand for 1000 stochastic samples (Sim) compared against the training data for 10 spatial zones (term-time
weekday).
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Figure 20. Peak load and timing of the peak for 1000 stochastic samples (Simulation) compared against the term-time weekday training
data for 10 spatial zones (Data).

monitored data are available, the daily demand profiles can
be projected onto the PCs previously calculated. This is the
case not only for the zones already included in the analysis
but also for new zones.

First it is necessary to align the new data to the mean
function calculated for the original data set; this provides
a new set of warping and amplitude functions for the new
data. Then, the aligned amplitude functions and the warp-
ing functions are mapped to the PCs for amplitude and
phase, giving a set of scores for the new data.

As outlined in Section 2 data from five zones were
excluded from the dataset used to generate the PCs in order
to test this approach. Each of the five test zones has a
space-use type similar to one or more of the training zones.
Analysis of the scores so derived for the new data can
shed light on the similarities and differences between the
test zones and the training zones selected from the original
data set. Figure 21 shows this comparison for the ampli-
tude PCs primarily affecting load range and the base load,
i.e. PCYs 1 and 8 for the five test zones, with the scores
for the training zones in colour and the test zones in black.
Considering the new Student zone, E1, it is clear that com-
pared against the original zone, E2, the scores are typically
lower for the first amplitude PC (shown on the x-axis) and
less negative for PCY 8 ( y-axis), giving rise to a lower
range and base load than observed for zone E2. The data

are illustrated in Figure 22 and the correlation between the
scores and the observed data can be clearly observed. Sim-
ilar results are observed for the new Mixed-Use and Admin
zones, SE1 and NWG. For the new IT Lab zone, NE1, the
new scores are higher for PCY1 indicating a greater range,
and although not as clear from Figure 21, the mean score
for PCY 8 is 24% more negative for the new zone data,
indicative of the higher base load observed in Figure 22.
The scores for both classrooms are very similar, although
the mean score for PCY 1 is lower for the new class, NW2,
corresponding to the lower observed load range.

One potential use for this model is to generate data for
zones for which data are not readily available, either as
they are not built – the design case – or because the data
are monitored in an aggregate fashion and there is need to
understand the disaggregated performance. An important
question is whether for the design case it is appropriate to
use sample profiles generated for zones with similar space-
use type? In this example, using sample profiles generated
purely based on data from the training zones would lead
to an over-estimation of the daily total demand for three of
the five zones, whereas for the IT Lab, NE2, using the sam-
ple profiles would lead to a significant under-estimation of
the daily total demand. This directly reflects the physical
differences between the test zones and the training zones,
e.g. while zone NWG is nominally an admin zone, it
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Figure 21. Comparison of amplitude scores for PCY1 and PCY8 generated for new spatial zones by mapping monitored data to the set
of PCs derived from the training data, compared against scores for training zones with similar space-use type.

Figure 22. Comparison of monitored data for new spatial zones (grey) against monitored data for training zones with similar space-use
type (90% confidence limit shown).

houses store rooms and hence doesn’t present the same
level of demand as zone EG which is the offices for the
administrative staff. The classroom zone, NW2 appears
quite similar to the comparable zone SW2, although the
timing of the peak appears a bit different with peaks occur-
ring later in the day for the new zone; this is because classes
are held in zone SW2, and students typically then move to
zone NW2 for independent study after the class.

However, in a design situation it is common to have
estimates of base load, load range and daily total demand
in mind. Given those estimates in conjunction with the
stochastic profiles for zones of similar use type, it would
be feasible to generate stochastic demand profiles for the
design case by modifying the scores to reflect the design
data.

4. Discussion and conclusion
This paper describes the development of a bottom-up data-
centric model for plug loads for different types of space
use in non-domestic buildings. A Functional Data Analysis
approach has been used for analysis of metered electric-
ity consumption due to plug loads for the William Gates
building in Cambridge, UK, which is sub-metered at a high
spatial resolution, with each zone hosting a different space-
use type. The analysis approach starts with alignment of
the data to a common mean function, which results in two
functions for each day of data, namely:

• an amplitude function which describes how the mag-
nitude for the demand for that day varies compared
against the mean demand profile, and

• a warping function which describes how the tim-
ing of the day’s profile compares against the mean
demand.

An fPCA is then performed for both the amplitude
and warping functions, permitting the extraction of a fun-
damental structure for the plug loads data that retains
temporal correlations across the 24-hour period. This struc-
ture comprises a mean profile, a set of functional principal
components for amplitude and phase which are the same
across all the data samples, and score sets that express the
combination of PCs for each data sample. Random samples
are then taken from the sets of scores in order to gener-
ate synthetic stochastic demand profiles for use in building
energy simulation.

This bottom-up data centric model reveals a fundamen-
tal structure not immediately obvious from the raw data.
By fundamental structure, we mean that the PCs are the
same across all data samples so they are fundamental to
the structure of the data analysed. By describing the data
structure in this way, each data sample, i.e. each day of data
per space-use type, or zone in this case study, is reduced to
a unique set of PC scores. As illustrated in Figure 10, the
scores occupy different regions of the score space accord-
ing to the type of space use and reflect the predilection for
certain behaviours; students working late into the evening,
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or the canteen operating at hours to service the occupant
schedule, for example. This is a significant result as it
means that simulation of different types of use is reduced
to estimation of the distribution of scores for each use type.

One benefit of this model, therefore, is that potentially
it is not just applicable to the building data from which
it has been derived. As the PCs describe the fundamental
structure of the data these PCs could be applicable to plug
loads for any building, provided the structure of the data is
similar. This has been demonstrated using test zones from
the same building, but could be applied to any such dataset.
The scores derived from the data describe the type of use so
may be applied beyond the building considered to spaces
of similar use type. The model is particularly straightfor-
ward to calibrate for operational data as it is only necessary
to map observed demand data to the PCs and extract the
scores, as opposed to other bottom-up models which are
based on numerous different types of data. Indeed, map-
ping new data to an existing set of PCs need not just be for
zones from the same building, data for different space-use
types and different buildings may be mapped to the same
set of PCs and may then be compared directly against the
known space-use types.

Equally, the PCs and scores can potentially be used
as a design tool, with score distributions assigned accord-
ing to knowledge from similar buildings supplemented by
design parameters. For example, if the design value for the
base load for a certain space is known, it is reasonable
to propose that the scores for the PCs that have a signif-
icant impact on base load could be modified accordingly
to ensure that representative profiles are generated. So this
model has the potential to developed for use both at the
design stage and post operation; it could also potentially
be used for fault finding as scores located remote from
their typical value indicate a behaviour outwith the usual
behaviour for that zone.

This combination of fundamental and use-specific
parameters lends itself very nicely to the specification of
a model for plug loads based on space-use type or activ-
ity, similar to the UK National Calculation Methodology
(Building Research Establishment 2015) in which differ-
ent spaces within a building are assigned different activ-
ity types. But the approach developed here is potentially
even more useful as it can encompass differences between
parameters not well-represented by a deterministic model
such as the timing of the daily peak. Also, by generating
stochastic samples of plug loads, the uncertainty in demand
can be quantified, useful for risk calculations and supply
optimization investigations.

For the model developed here to be widely applicable
beyond the building studied, what is needed is a set of
fundamental PCs applicable to all buildings together with
archetypal scores for each activity type. While the PCs
extracted could be used as a fundamental set for similar
buildings to the case-study, it is not clear whether they are

the optimal set, or how applicable they would be to other
types of non-domestic building. Equally, the score distri-
butions derived here may be sufficiently archetypal, but
further studies are needed to demonstrate the applicabil-
ity to other spaces with similar use type. Nevertheless, the
model presented here is capable of generating stochastic
demand profiles, may be calibrated with post-occupancy
demand data and has the capacity to be developed for use
as a design tool.

There is significant potential for this model to be devel-
oped for use as a simulation tool for use in industry.
Although the derivation of the model is mathematically
complex, implementation as a design tool need not be, as
all that is needed is a method for estimation of the distri-
bution of scores for each use type or activity. This could
be based on archetypal distributions, mapped from exist-
ing data or a combination. The model could very easily
supplement the NCM approach with a means to provide a
stochastic sample of demand profiles.
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