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Abstract

There is widespread interest in the relationship between the neurobiological systems sup-

porting human cognition and emerging computational systems capable of emulating these

capacities. Human speech comprehension, poorly understood as a neurobiological process,

is an important case in point. Automatic Speech Recognition (ASR) systems with near-

human levels of performance are now available, which provide a computationally explicit

solution for the recognition of words in continuous speech. This research aims to bridge the

gap between speech recognition processes in humans and machines, using novel multivari-

ate techniques to compare incremental ‘machine states’, generated as the ASR analysis

progresses over time, to the incremental ‘brain states’, measured using combined electro-

and magneto-encephalography (EMEG), generated as the same inputs are heard by

human listeners. This direct comparison of dynamic human and machine internal states, as

they respond to the same incrementally delivered sensory input, revealed a significant cor-

respondence between neural response patterns in human superior temporal cortex and the

structural properties of ASR-derived phonetic models. Spatially coherent patches in human

temporal cortex responded selectively to individual phonetic features defined on the basis of

machine-extracted regularities in the speech to lexicon mapping process. These results

demonstrate the feasibility of relating human and ASR solutions to the problem of speech

recognition, and suggest the potential for further studies relating complex neural computa-

tions in human speech comprehension to the rapidly evolving ASR systems that address

the same problem domain.
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Author summary

The ability to understand spoken language is a defining human capacity. But despite

decades of research, there is still no well-specified account of how sound entering the ear

is neurally interpreted as a sequence of meaningful words. At the same time, modern

computer-based Automatic Speech Recognition (ASR) systems are capable of near-

human levels of performance, especially where word-identification is concerned. In this

research we aim to bridge the gap between human and machine solutions to speech recog-

nition. We use a novel combination of neuroimaging and statistical methods to relate

human and machine internal states that are dynamically generated as spoken words are

heard by human listeners and analysed by ASR systems. We find that the stable regulari-

ties discovered by the ASR process, linking speech input to phonetic labels, can be signifi-

cantly related to the regularities extracted in the human brain. Both systems may have in

common a representation of these regularities in terms of articulatory phonetic features,

consistent with an analysis process which recovers the articulatory gestures that generated

the speech. These results suggest a possible partnership between human- and machine-

based research which may deliver both a better understanding of how the human brain

provides such a robust solution to speech understanding, and generate insights that

enhance the performance of future ASR systems.

Introduction

A fundamental concern in the human sciences is to relate the study of the neurobiological sys-

tems supporting complex human cognitive functions to the development of computational

systems capable of emulating or even surpassing these capacities. Spoken language compre-

hension is a salient domain that depends on the capacity to recognise fluent speech, decoding

word identities and their meanings from a stream of rapidly varying auditory input.

In humans, these capacities depend on a highly dynamic set of electrophysiological pro-

cesses in speech- and language-related brain areas. These processes extract salient phonetic

cues which are mapped onto abstract word identities as a basis for linguistic interpretation.

But the exact nature of these processes, their computational content, and the organisation of

the neural systems that support them, are far from being understood. The rapid, parallel devel-

opment of Automatic Speech Recognition (ASR) systems, with near-human levels of perfor-

mance, means that computationally specific solutions to the speech recognition problem are

now emerging, built primarily for the goal of optimising accuracy, with little reference to

potential neurobiological constraints.

In the research described here we ask whether the properties of such a machine solution, in

terms of the input-output relations it encodes, can be used to probe the properties of the

human solution, both to develop new insights into the properties of human speech analysis

and to suggest new constraints on the analysis strategies of future ASR systems. We do not

seek to invoke the specific properties of the computational architectures of machine systems

and of human systems, but rather to ask, in this initial study, whether the regularities that suc-

cessful ASR systems find between information in the speech input and word-level phonetic

labelling can be related to the regularities extracted by the human system as it processes and

identifies parallel sets of words.

A critical issue in doing so is to capture the incremental and temporally distributed nature

of the speech input and its interpretation, where partial cues to phonetic and lexical interpreta-

tion build up gradually over periods of potentially hundreds of milliseconds (in contrast to
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visual perception of static objects), so that processes at all levels of description are continuously

modified and overlaid as new sensory constraints emerge over time. For this study, therefore,

we need to define incremental ‘machine states’, capturing the multi-level labelling assigned to

a given speech input as the ASR analysis progresses over time, and relate these to incremental

‘brain states’ generated by human listeners as the same inputs are heard and perceived.

Multivariate methods for probing real-time brain states

The possibility of engaging on this enterprise depends on new methods for non-invasively

investigating the real-time electrophysiological activity of the human brain. We build here on

earlier work [1] which used a novel multivariate pattern analysis method, called spatiotempo-

ral searchlight representational similarity analysis (ssRSA, [2]), to decode information about

frequency preference and selectivity directly from the dynamic neural activity of the brain as

reconstructed in combined MEG and EEG (EMEG) source space. This method is an extension

of fMRI-based RSA [3, 4] to time-resolved imaging modalities.

As laid out in [1], the key procedure underpinning ssRSA is the construction of similarity

structures that capture the dynamic spatiotemporal patterns of neural activation in EMEG

source space. These similarity structures are encoded in a representational dissimilarity matrix
(RDM), where each entry in the RDM denotes the computed dissimilarity between the source-

space neural responses to pairs of experimental conditions (for example, pairs of different

spoken words). These brain data RDMs capture the pattern of brain activity at each point of

interest in neural space and time, as sampled by ssRSA searchlight parameters [2, 3, 5]. These

brain-based dissimilarity matrices are then related to parallel, theoretically defined similarity

structures, known as model RDMs. These RDMs express contrasting theoretical claims about

the properties of the neural responses at issue. In our previous study [1], focusing on frequency

preferences and selectivity in human auditory processing regions in temporal cortex, the

model RDMs encoded hypothesised similarities between stimulus pairs at each frequency

band, as derived from a computational model of auditory processing [6]. Critically, the ssRSA

technique made it possible to relate neural-level patterns of activation directly to abstract func-

tional theories about how auditory cortex is organised.

In the current research we use ssRSA to compute representations of the similarity structure

of the brain states generated incrementally as human listeners perceive and interpret spoken

words. These brain data RDMs can then be related to time-varying model RDMs which cap-

ture the similarity structure of the machine states extracted during an ASR analysis of the same

sets of spoken words. Critically, since these comparisons were conducted in terms of the

abstract geometric configuration [7] of the mappings captured in the data RDMs and the

model RDMs, this allows us to compare the properties of machine solutions and human solu-

tions to the recognition problem without assuming any correspondence between the specific

format of the state information in the ASR system, and the expression of information repre-

sented in the human system—or, indeed, between the functional architectures of the two

systems.

Shared representational frameworks: Phones and features

The historically dominant approach to speech recognition, whether in human or machine con-

texts, assumes that the mapping from speech input to linguistic interpretation is mediated

through stored form representations of the words in the language, and that access to these rep-

resentations is in terms of a phonetic labelling of the speech input (though see [8]). This label-

ling is generated as the speech input is incrementally analysed over time. This potentially

provides the basis for a shared representational framework for relating the content of machine
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solutions on the one hand to assumed human solutions on the other. As the ASR system com-

putes a probability distribution over a number of discrete phonetic labels for the speech input,

this can form the basis for RSA model RDMs which in turn can be related to human brain

data RDMs, where these are thought to reflect the computation of similar types of regularity in

the speech stream.

This leaves open, however, the question of what is the most appropriate form for this shared

representational framework. Here we proceed on the assumption that the human solution is

best captured in terms of articulatory phonetic features rather than in terms of classic phonetic

or phonemic labels. These features seek to capture the underlying articulatory gestures by

which the human speech output is generated, and represent a neurobiologically plausible,

‘low-dimensional’ solution to the speech analysis problem. Such feature sets have a long his-

tory in linguistics and in the speech sciences, while substantial behavioural evidence supports

their role in the incremental speech analysis process (e.g., [9, 10]). In particular, feature-based

accounts allow more natural treatment of the partial acoustic-phonetic information that

becomes available as overlapping articulatory gestures incrementally generate the speech out-

put. This is also a point that has been long made by some ASR researchers (e.g. [11]).

There is also substantial evidence from neuroimaging studies that the neural substrates for

speech processing can be characterised in featural terms. Several studies by Obleser and col-

leagues [12–14], for example, using both fMRI and MEG, show that neural responses distrib-

uted across auditory cortices in superior temporal regions reliably differentiate between

phonetic features associated with both vowels and consonants (see also [15]). Stronger claims

for the role of articulatory features have come from studies in the “motor theory” tradition,

arguing that the perception of speech is directly structured by the recovery of the articulatory

gestures that generate the speech output being heard (e.g., [16–18]. Alternative views (e.g.,

[19]) suggest that while articulatory constraints may modulate speech perceptual processes in

temporal cortex, these processes do not directly involve the neural mechanisms of speech pro-

duction (for confirmatory evidence see [20]).

Most directly relevant, however, in the neurophysiological context and the anatomical

focus of the current project, is the recent research using electrocorticographic (ECoG) tech-

niques where intracranial electrodes are used to record directly from bilateral speech process-

ing areas in human superior temporal cortex [21]. This work shows that the patterns of neural

response to spoken sentences correspond well to an analysis in terms of articulatory features.

Taking individual ECoG electrode responses as feature vectors for each phone, Mesgarani

et al. [21] showed that the phones cluster together in a manner well-described by a set of artic-

ulatory features. While this research is not able to definitively pull apart phone-based from fea-

ture-based approaches, it supports the viability of featural decomposition as a means of

characterising earlier stages of speech analysis in the human brain. In doing so, no commit-

ment is made to a “motor theory” account of speech analysis.

Here we use a standard set of articulatory features, based on those used by Mesgarani et al.

[21], but adapted for British rather than American English [22, 23]. Most ASR systems, in con-

trast, have chosen phones (the inventory of distinct speech sounds in a given language) rather

than features as their intermediate representational unit. This means that, analogous to the pro-

cedure used by Mesgarani et al. [21], we can use the ASR system to generate incremental

streams of probabilistic phonetic labels, and then assess these as evidence for the presence of the

corresponding underlying articulatory features. The hidden Markov model toolkit (HTK) Ver-

sion 3.4 [24], the ASR system we use here, is based on a successful GMM–HMM architecture

(with word-level accuracy of around 91.6%). It uses a Gaussian mixture model (GMM) to anno-

tate each successive 10 ms frame of a recorded speech stream with the estimated likelihood of

each phonetic label and each triphone label, while a hidden Markov model (HMM) captures
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statistical regularities in the language and its sequential structure. The triphones capture the

phonetic context of each frame, enabling the ASR system to take into account important co-

articulatory variation in the phonetic form of a given phone, and comprise a triplet indicating

the current phone, as well as a preceding and future phone. For example, [p-I+n] is a [I] as pro-

nounced with the preceding context of a [p] and the following context of a [n]. As we describe

below in Computing model RDMs from incremental machine states, the triphone likelihoods

generated at each 10 ms time-step (over a 60 ms time-window) for each speech stimulus can be

used to generate RSA model RDMs for each phone in the language. The resulting 40 phonetic

model RDMs are then tested against the corresponding brain data RDMs in a searchlight proce-

dure across relevant brain areas. The resulting distributions of phonetic model fits at each test-

ing point are then used to derive an account in terms of phonetic features.

Spatiotemporal foci of the analyses

The brain data used in this study come from simultaneously recorded EEG and MEG (EMEG)

measurements of the neural activity generated by each of 400 spoken words heard by the lis-

teners. Critically, we use these EMEG data, as in the earlier Su et al. [1] study, to generate a

‘source space’ reconstruction that localises at the cortical surface (specifically, the white mat-

ter/grey matter boundary) the electrophysiological activity that gives rise to the EMEG mea-

surements recorded at sensors external to the skull. The combination of MEG and EEG

delivers better source localisation than either of these modalities alone [25], using well estab-

lished minimum norm estimation (MNE) techniques guided by neuroanatomical constraints

from structural MR for each participant [26, 27].

These source space representations allow us to track, with millisecond temporal resolution

and potentially sub-centimetre spatial resolution, the real-time spatiotemporal patterns of

electrophysiological activity generated by the brain as it performs complex operations such as

speech interpretation. This means that we can focus our explorations of this neural activity on

those regions of cortex which are known to play a key role in supporting the operations of

interest—rather than, for example, working with the pattern of MEG data measured in ‘sensor

space’ (e.g. as in [28], where sources are not localised). In the current exploration, therefore, of

the potential relationship between the incremental brain states derived from the source-

localised EMEG data and the incremental machine states derived from ASR responses to the

same 400 spoken words, we restrict the scope of these analyses to the spatiotemporal locations

in the brain data where such a relationship is most likely to be found.

In terms of spatial locations, as demonstrated in recent ECoG studies, (e.g. [21, 29]), as well

as in a host of neuroimaging experiments using fMRI techniques, the superior temporal corti-

ces bilaterally, including Heschl’s gyrus, are the key areas supporting acoustic-phonetic analy-

sis and the earlier stages of speech interpretation (e.g. [30, 31]). Accordingly, we restrict the

analyses reported here to a speech area mask covering superior temporal cortex (STC)

bilaterally.

The second critical dimension concerns the timing of the processing lag (in milliseconds)

between the arrival of information in the speech input and the acoustic-phonetic neural inter-

pretation of this information in superior temporal cortex. This lag reflects both neural trans-

mission time (from cochlea to cortex), and the processing time necessary to compute the

phonetic distinctions reflected in the human cortical response. Neither of these sources of

delay apply to the representations computed by the ASR system. This means that a compensa-

tory lag must be introduced into the matching between the ASR-based model RDMs for a

given time-window of speech input and the data RDMs representing the human listeners’ cor-

tical response to this same stretch of input.
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Evidence for the timing of such a lag has become available from recent research relating

speech input to higher-order cortical interpretation. In a study using EMEG word data similar

to the speech materials used here, Thwaites et al. [32] found that the cortical computation of

the fundamental frequency function F0 was most strongly expressed in EMEG brain responses

in bilateral STC at a lag of 90 ms. Related evidence from ECoG studies looking at phonetic

discriminability in neural responses to speech suggest similar delays. Mesgarani et al. ([21], Fig

S4A) show a lag of around 125 ms for neural discrimination of phonetic categories relative to

the acoustic information in the speech signal, while Chang et al. ([29], Fig 2a) find a similar

peak at around 110 ms. Accordingly in our analyses here we use a fixed lag of 100 ms, so that

each time-window of ASR-derived model RDM data is centred over the time-window of brain

data RDMs recorded (from locations in STC) 100 ms later. In later studies we hope to be able

to test at a wider range of lags.

Overview

Our primary goals in this project are to investigate the basic technical and conceptual feasibil-

ity of relating dynamic brain states to dynamic machine states, in the incremental processing

environment imposed by the speech input, and to determine whether substantive correspon-

dences can indeed be found between human and ASR solutions to the speech recognition

problems. In so doing, we will ask whether a potential account of these commonalities in

terms of articulatory phonetic features proves to be viable. In the following sections of the

paper we describe the sets of procedures and analyses required to achieve these goals.

InMaterials and methods we describe the EMEG experimental setup, and provide an over-

view of the RSA approach in the EMEG context. We cover the RSA method for computing the

ASR phone model RDMs from the incremental output of HTK and report a novel subsidiary

analysis, conducted to evaluate the applicability of a specific articulatory feature set to the

resulting 40 phone-specific dynamic model RDMs. We then turn to the procedures for com-

puting data RDMs from incremental brain states, source reconstruction and the RSA search-

light process. We lay out the core multivariate RSA process of (a) fitting the machine model

RDMs to the brain data RDMs, conducted in superior temporal cortex at the chosen 100 ms

lag, and (b) converting these phone model data to an account in terms of articulatory features.

In Results we present the outcome of the RSA analyses that relate computational models of

speech analysis extracted from ASR machine states to the neural speech analysis processes

non-invasively detectable in human superior temporal cortex.

Materials and methods

Representational similarity analysis for EMEG

RSA was originally developed for fMRI [5], but one of its strengths is its agnosticism toward

modality. In particular, RSA has more recently been applied to EEG and MEG data [1, 33].

Methodological considerations for EMEG are detailed in Su et al.’s work [2], but we will give a

brief overview here.

RSA involves the comparison of the similarity (or dissimilarity) structures found in the

responses of neural systems to differing experimental conditions, and the modelling of those

similarity structures by categorical or computational models. A basic component of the RSA

analysis strategy is the construction of representational dissimilarity matrices (RDMs) based

on the pairwise dissimilarity of all items or conditions entered into the analysis process [1, 5].

Typically, the data RDM or set of data RDMs is computed from a neuroimaging data source,

and the model RDM(s) from a specified model of the stimuli. A generic description of this
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process is provided here and illustrated schematically in Fig 1, while the specific choices and

parameters used in this analysis are explained later.

For EMEG data, field strength is measured at each of the sensor sites in the MEG helmet

and at the EEG scalp electrodes as the participant is presented with an experimental trial, such

as an auditory stimulus (Fig 1a and 1b). The dissimilarities between the responses to each pair

of stimuli are computed using some distance measure, often Pearson’s correlation distance

between the vectors of measured response. These distances are entered into the data RDM

(Fig 1c). Data RDMs are computed for each subject of the experiment, and may be averaged

between subjects [5].

The model RDM is an analogous matrix of predicted dissimilarities between experimental

conditions (Fig 1d). It may be produced in several ways, such as a pairwise comparison of

model variables for each stimuli, or by directly modelling the dissimilarity values themselves.

Because the rows and columns of the data RDM and model RDM are both indexed by the

experimental conditions, they can be directly compared (Fig 1e). This comparison often takes

the form of a correlation of their upper-triangular vectors, yielding a correlation value describ-

ing how well the dissimilarities expressed in the model RDM explain the dissimilarities in the

data RDM. A rank correlation such as Spearman’s may be used rather than a linear correlation

Fig 1. Representational similarity analysis. (a) A set of experimental conditions or stimuli are presented to

participants. In this example, recordings of English words are presented aurally. (b) For each experimental

condition, EMEG data is collected from participants’ regions of interest for a specified epoch. (c) Dissimilarities

between each pair of responses are computed and stored in a representational dissimilarity matrix. Potential

dissimilarity measures include Pearson’s correlation distance or Euclidean distance between response vectors.

Rows and columns of the matrix are indexed by the condition labels, making the matrix symmetric with diagonal

entries all 0 by definition. In this example there are four conditions in total, and the responses to the condition pair

(bulb, tribe) is compared, with the value stored in the indicated matrix entry, and its diagonally-symmetric

counterpart. (d) A model of the experimental conditions or stimuli is used to compute a model RDM. The model

RDM can be computed in several ways, e.g. by comparing representations of the stimuli under the model; or by

modelling the dissimilarities directly. (e) Data and model RDMs are statistically compared, e.g. by computing

Spearman’s rank correlation of their upper-triangular vectors.

https://doi.org/10.1371/journal.pcbi.1005617.g001
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such as Pearson’s, so that a strictly linear relationship between modelled and actual dissimilari-

ties is not predicted.

Computing model RDMs from incremental machine states

For this study, model RDMs were computed based on dissimilarities between modelled repre-

sentations of stimuli, rather than directly modelling the dissimilarities themselves. The models

were constrained to the set of English words for which we had suitable EMEG brain data.

These were 400 English verbs and nouns (e.g., talk, claim) some of which had past tense inflec-

tions (e.g., arrived, jumped). These materials (also used in [1]) were prepared for another

experiment [34], and we assume (a) that their linguistic properties were independent of the

basic acoustic-phonetic parameters being examined here and (b) that they provide a reason-

able preliminary sample of naturally occurring phonetic variants in human speech. The stimu-

lus words were recorded onto a DAT recorder in a sound-attenuated room by a female native

speaker of British English, digitized at 16-bit with a sampling rate of 22 kHz, and stored as sep-

arate files using Adobe Audition (Adobe Inc., San Jose, CA). They averaged 593 ms in length,

with the shortest word being 270 ms in length. To keep the speech samples and analyses fully

aligned we restricted all the analyses to the first 270 ms of each word.

A hidden Markov model (HMM) based automatic speech recognition (ASR) system with

Gaussian mixture model (GMM) observation density function was built using HTK [24]. The

acoustic training corpus used to build the ASR system was the 15 hours Wall Street Journal

corpus with British accents recorded at Cambridge University (WSJ-CAM0). There are overall

44 phones defined in the corpus, which can result in a maximum number of 85,184 triphone

units. Following a well-established strategy [24], each HMM used 3 hidden states to model a

single triphone unit. To have sufficient data for a more reliable estimate of all HMM model

parameters and to model the triphone units that did not occur in the training set, the standard

decision tree based tying approach was adopted to cluster the hidden states with the same cen-

tre phone unit according to phonetic knowledge and a maximum log-likelihood criterion [35].

After building the ASR system, the 400 recorded stimulus words were recognized with the

GMM–HMM models, with a modified version of the HTK recognizer that output the triphone

likelihoods that it generated as it processed the stimuli (in addition to the target word identi-

ties). We used this information about HMM states to compute model RDMs for each of 40

British English phones in a procedure illustrated schematically in Fig 2. In order to account for

the differences in recording characteristics and speaking styles between the training data used

to build the ASR models and the stimulus words, a speaker adaptation method based on maxi-

mum a posteriori (MAP) criterion was used to adapt the mean values of the GMMs [36] and

this resulted in a word accuracy of 91.6%.

For performance reasons, the recorded stimuli were encoded into mel-frequency cepstral

coefficients (MFCCs) [37] and represented each frame as a vector comprising 12 MFCCs plus

the energy, together with their first and second derivatives, to give overall a 39-dimensional

real acoustic feature vector per frame [24]. Mel-frequency spectrogram transforms are similar

to neurophysiologically motivated frequency transforms, such as Gammatone filterbank

cochleagrams [6, 37, 38]. For each 10 ms frame, the GMM-based HMMs compute estimated

log likelihoods that this frame was generated by particular hidden state sequence. A sketch of

this process is shown in Fig 2a where the GMM–HMM triphone log likelihoods are used to

compute model RDMs for each of our phones.

Specifically, for each phone ϕ present in the stimulus words, and since triphones corre-

spond to contextual variations in pronunciation of phones, we grouped triphone log likelihood

estimates by their triphone’s central phone, further concatenating the six 10 ms frames falling
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within each 60 ms sliding window. For each sliding window position and each phone ϕ, this

gave us a vector of triphone log likelihood values with length equal to six times number of tri-

phones containing ϕ in the central position. We used these values to build incremental RDMs

modelling the information relevant to the representation or recognition of each phone ϕ, treat-

ing the vector of triphone log likelihood values as the ϕmodel’s representation of the word for

that 60 ms interval of time. We defined the distance between word pairs as the correlation dis-

tance (1 − Pearson’s correlation) between the triphone log likelihood vectors (Fig 2b), repeat-

ing this procedure at each 10 ms time-step up to the end of the 270 ms epoch to which these

Fig 2. Mapping from GMM–HMM triphone log likelihoods to phone model RDMs. (a) Each 10 ms frame of audio is transformed into

MFCC vectors. From these, a GMM estimates triphone log likelihoods, which are used in the phonetic HMMs. (b) We used the log

likelihood estimates for each triphone variation of each phone, concatenated over a 60 ms sliding window, to model dissimilarities between

input words. Dissimilarities modelled by correlation distances between triphone likelihood vectors were collected as entries in phonetic

model RDMs. (c) These phone-specific model RDMs were computed through time for each sliding window position, yielding 40 time-

varying model RDMs.

https://doi.org/10.1371/journal.pcbi.1005617.g002
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analyses were restricted. These procedures were repeated for each of 40 phones which were

most commonly found in our 400 stimulus words, yielding 40 collections of phone model

RDMs (Fig 2c), each indexed by the 21 positions of the sliding window, totalling 840

400 × 400-sized model RDM frames overall.

We describe these time-indexed collections of model RDMs as dynamic RDMs (dRDMs).

We use the whole time-course of a dRDM to model the corresponding time-course of dRDMs

computed from brain data.

Mapping phones to features

The use of phone labels in ASR systems corresponds to the usual target of converting speech to

text, as well as the standard phonetic characterisation of speech sounds. However, phones

themselves can be characterised by articulatory phonetic features, which correspond to the

place and manner of articulation with which the phones are spoken. Given the evidence from

earlier research discussed earlier, a plausible candidate for the low-dimensional speech analysis

solution adopted by the human system is a featural analysis of this type. A standard set of

phone–feature correspondences, as used here, is summarised in Fig 3. By orienting the analysis

in terms of features, we also reduce the dimensionality of our models, and simplify the inter-

pretation by not requiring that very similar phones (e.g. [I] and [i]) be distinctly represented.

This is especially relevant given that the GMM component of the ASR system, which produces

triphone likelihoods, is not subject to any top-down processes which could guide identification

Fig 3. The mapping between articulatory features and phonetic labels. Columns describe phones and rows describe features, with a filled-in

cell indicating that a phone exhibits a given feature. The features are grouped into descriptive categories, from top to bottom: Broad phonetic

categories, place-of-articulation features for consonants, manner-of-articulation features for consonants, vowel frontness, vowel closeness, and

vowel roundedness.

https://doi.org/10.1371/journal.pcbi.1005617.g003
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of specific phones in a context wider than its input window. This also alleviates significant

problems that emerged with the GLM mapping method we used when this was conducted on

a strictly phonetic rather than featural basis (see Fitting model dRDMs to data dRDMs).
Since the choice of articulatory features rather than, for example, a more perceptually based

feature set, is still open to discussion, and before committing ourselves to a re-analysis of the

phone-based RDM data in these specific featural terms, we first evaluated the degree to which

the chosen articulatory feature set was able to explain the second-order similarity structure of

the set of phone model RDMs—i.e., the arrangement of each of the model RDMs in the same

pairwise comparison space, described by the correlational structure of the model RDMs them-

selves [4, 5].

To conduct this novel analysis, we computed the pairwise Spearman correlation distances

between the 79,800-length upper-triangular vectors of each pair of model RDMs at each time-

frame, resulting in a 40 × 40-sized second-order model similarity matrix (Fig 4). The degree to

which articulatory features explained the between-model similarity structure was evaluated by

computing both Davies–Bouldin indices for the classification of models by each phonetic fea-

ture (Fig 5a), and η2 values representing the dissimilarity variance explained by the presence of

each feature (Fig 5b). The Davies–Bouldin index is a standard way to evaluate the clustering of

points in a high-dimensional space [39]. However, Davies–Bouldin index values cannot be

judged in isolation, but only compared between different clusterings applied to the same data.

An alternative is η2, values of which can be compared against fixed benchmarks [40].

We found that the arrangement of the phone models given by their similarity structure

could be described in terms of the phonetic features possessed by the phones. As an example,

we visualise this using a multidimensional scaling (MDS) plot [41] computed from the data at

one particular timepoint. In this visualisation, each phone model is represented as a point in

the plane (Fig 5c). The phone models appear to fall into two distinct classes, which are almost

perfectly described by the presence of the sonorant feature. The relative distances between the

models in the MDS plot are distorted from their true values by compression into the two

dimensions of the plane, so that such a figure is useful for illustrative purposes only. However

in this case the distortion is minimal (distance–dissimilarity correlation of 0.94). The majority

of the articulatory features give large η2 values, and their Davies–Bouldin indices are mostly

comparable, showing that each feature contributes to the explanation of the models’ arrange-

ment, and that no particular feature dominates the others (although sonorance and vowel

place/position features tended to explain better than consonant manner features).

From this, it can be seen that the HTK GMM–HMM-derived model RDMs’ configuration

are well explained by all phonetic features we used, providing statistically robust validation for

the feature set adopted here.

Computing data dRDMs from incremental brain states

The second critical component of the RSA procedure is the computation of data RDMs (in

this case brain data RDMs), whose similarity to the representational geometry of the model

RDMs can then be determined. As the basis for these computations we used the existing

EMEG source space data already collected for the 400 words entered into the GMM–HMM

analysis described in Computing model RDMs from incremental machine states. Sixteen right-

handed native speakers of British English (six males, mean age 25 years, age range 19–35, self-

reported normal hearing) were used from the original study. Recordings of 400 English words,

as spoken by a female native British English speaker, were presented binaurally to participants.

Each word was repeated once. The study was approved by the Peterborough and Fenland Ethi-

cal Committee (UK). For further details on data collection, see [34] and [1].
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Source reconstruction. We estimated the location of cortical sources using the anatomi-

cally constrained minimum norm estimate (MNE) [26], again with identical parameters to

those used in [1, 34]. MR structural images for each participant were obtained using a

GRAPPA 3D MPRAGE sequence (TR = 2250 ms; TE = 2.99 ms; flip-angle = 9deg; acceleration

factor = 2) on a 3 T Trio (Siemens, Erlangen, Germany) with 1 mm isotropic voxels. From the

MRI data, a representation of each participant’s cerebral cortex was constructed using FreeSur-

fer software (http://surfer.nmr.mgh.harvard.edu/). The forward model was calculated with a

three-layer Boundary Element Model (BEM) using the outer surface of the scalp as well as the

outer and inner surfaces of the skull identified in the anatomical MRI. This combination of

MRI, MEG, and EEG data provides better source localization than MEG or EEG alone. The

constructed cortical surface was decimated to yield approximately 12,000 vertices that were

Fig 4. Second-order similarity structure of phone models. Entries in the matrix are Spearman’s rank correlations between

model RDMs. The second-order similarity structure of the phone models for a representative time window centred over 90 ms after

word onset, given by a correlation matrix between phone model RDMs.

https://doi.org/10.1371/journal.pcbi.1005617.g004
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Fig 5. Similarities between model RDMs and phonetic features. (a) Davies–Bouldin indices for each feature. Error bars indicate

one standard deviation of values over the epoch. (b) η2 values for each feature assignment. Rule-of-thumb guides for small, medium

and large effect sizes are indicated by horizontal lines. Error bars indicate one standard deviation of values over the epoch. (c) The

arrangement of phone models plotted using MDS (distance–dissimilarity correlation 0.94). Points are labelled according to the presence

or absence of the sonorant feature. Models with the sonorant feature are represented with red circles, and models without the sonorant

feature are represented with green triangles. The MDS arrangement of points as displayed was independent of the feature labelling.

https://doi.org/10.1371/journal.pcbi.1005617.g005
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used as the locations of the dipoles. This was further restricted to the bilateral superior tempo-

ral mask as discussed previously. After applying the bilateral STC mask, 661 vertices remained

in the left hemisphere and 613 in the right. To perform group analysis, the cortical surfaces of

individual subjects were inflated and aligned using a spherical morphing technique imple-

mented by MNE [27]. Sensitivity to neural sources was improved by calculating a noise covari-

ance matrix based on the 100 ms pre-stimulus period. The activations at each location of the

cortical surface were estimated over 1 ms windows.

Spatiotemporal searchlight RSA. The source-reconstructed representation of the

electrophysiological activity of the brain was computed for participants’ responses to each of

the target set of 400 words, and this was used to compute word-by-word RDMs in the follow-

ing way: In ssRSA, we calculate RDMs from the EMEG data contained within a regular spatio-

temporal searchlight patch of radius 20 mm and a 60 ms fixed-width sliding temporal window

(see schematic diagram in Fig 6). This patch is moved to centre on each vertex in the source

mesh, while the sliding window is moved throughout the epoch in fixed time-steps of 10 ms.

From within each searchlight patch, we extracted the response pattern from each subject’s

EMEG data from vertices within the patch and for time-points within the sliding window

(Fig 6a). For each position of the sliding window, we computed a word-by-word RDM from

these response patterns using the Pearson’s correlation distance measure of the resulting vec-

tors (Fig 6b). We collected these into word-by-word dRDMs over the epoch. These dRDMs

were averaged across subjects, resulting in one data RDM frame for each within-mask vertex

and each sliding window position. This is repeated for the responses from each pair of experi-

mental stimuli to produce a total set of 26,754 data RDMs, each associated with a specific ver-

tex at a specific time-point.

Fitting model dRDMs to data dRDMs

To complete the RSA analysis process, each brain data RDM was compared to the 40 ASR-

derived phone model RDMs computed for the relevant matching time-window, taking into

account the 100 ms processing time-lag selected for these analyses (note that this displaces the

neural analysis epoch to run from 100 to 370 ms from acoustic onset). Following the method

of [1], multiple model RDMs can simultaneously be tested against data RDMs in the spatio-

temporal searchlight using a generalized linear model (GLM). For a given data RDM D and

corresponding 40 model RDMsM[a], . . .,M[z] for each phone, the GLM optimises coefficients

β1, β[a], . . ., β[z] so as to minimise the sum-squared error E in the equation

D ¼ b1M1 þ b½a�M½a� þ � � � þ b½z�M½z� þ E ð1Þ

The βϕ coefficients then describe the contribution of each phone modelMϕ to explaining

the data, with β1 the coefficient for constant predictorM1 (Fig 7a). As the searchlight moved

throughout time, we chose corresponding frames from the model dRDMs to use as predictors.

In the second stage of the analysis procedure we convert phone model coefficients in each

searchlight location GLM into their corresponding feature values (see Fig 7b and 7c). To do so

we define the fit of a feature f at each spatiotemporal location to be the weighted sum

fit f ¼
X

�

wf ð�Þ � b� ð2Þ

where χf(ϕ) is 1 when phone ϕ has feature f and 0 otherwise (rows of feature matrix in Fig 3).

Using this definition, we converted the phone coefficients βϕ into fitf values describing the

degree to which each feature f contributes to explaining the data (Fig 7b). These fitf values can

be mapped back into the centre of the searchlight patch from where the data RDM was
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calculated giving a spatiotemporal map of fit for each feature f (Figs 6d and 7c). As well as

being theoretically motivated (seeMapping phones to features), the aggregation of βϕ values

over features was also preferred for practical reasons. HTK GMM–HMM models tended to

assign similar log likelihoods to acoustically similar phones (e.g. [e] and [e e]), and as such the

βϕ coefficients found in the GLM were affected by the presence of similar ‘competitor’ phones.

Other phones which have no similar competitors (e.g. [k]) did not suffer from this. This source

of systematic failure of the GLM analysis process meant that we were not able to compute suc-

cessful incremental interpretations of the RSA model fitting process in phone-based terms. In

contrast, by aggregating the βϕ coefficients according to features, we were able to link together

the contributions of phone models with similar model dRDMs (Fig 5), and thereby provide a

Fig 6. ssRSA for EMEG data. (a) Each stimulus’s evoked EMEG response is captured within a fixed time window and regular searchlight patch,

which moves continuously in space inside the searchlight mask. (b) The dissimilarity between a pair of conditions is taken to be the correlation

distance (1 − Pearson’s correlation) between the vectors of activation within the spatiotemporal searchlight. (c) The modelled dissimilarities

between pairs of conditions are collated into a model RDM (see Fig 2). (d) Model RDMs are compared to the data RDM, with the resulting statistic

mapped back into the central vertex of the searchlight. This is repeated for each spatiotemporal position of the searchlight.

https://doi.org/10.1371/journal.pcbi.1005617.g006
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potentially more accurate account of the acoustic-phonetic information present in the signal.

This advantage of a feature-based approach is consistent with suggestions in the behavioural

and ASR literatures [10, 11, 42], pointing to the flexibility of such an approach in allowing par-

tial acoustic-phonetic cues to be identified and exploited as they become incrementally avail-

able—contrasting with decisions about phone or speech sound identity, which may only

become secure (if at all) when all of the relevant acoustic input as become available.

Statistical mapping. We computed statistical maps using a permutation method. Under

the null hypothesisH0, there is no difference in the phonetic information between each word

which would be represented in the brain responses, and thus we may randomly permute the

condition labels for each of the words in our data RDMs, and would expect no difference in

any fit of any model [1, 4, 43].

A null distribution of βϕ values was therefore simulated by randomly permuting the rows

and columns of the data RDM [4], and re-computing the βϕ coefficients, and fitf value. These

were collected into separate null distributions of feature fits for each feature f, pooling the val-

ues over the vertices within the searchlight mask. Separate null distributions were pooled for

Fig 7. Relating brain data dRDMs to phone model dRDMs and converting to feature fits. (a) At each vertex and time point, all phone model

RDMs are computed (Fig 6) and fitted against the data RDM in a GLM, yielding coefficients βϕ. (b) The rows of the phone-feature matrix of Fig 3

describe for each feature f the phones ϕ exhibiting f, providing a labelling function χf. The example given here is for the feature sonorant, the top row of

the feature matrix in Fig 3. (c) The coefficients βϕwere aggregated by sum over each feature f to produce a map of fit for each feature, which was

mapped back to the central location of the spatiotemporal searchlight.

https://doi.org/10.1371/journal.pcbi.1005617.g007
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each feature as different numbers of phones contribute to each feature. This provides a permu-

tation-derived simulated null distributions of more than 10,000 samples for each feature.

By taking a certain quantile (e.g. 0.95) for each of these null fitf distributions, we obtain a con-

fidence threshold θf for each feature f. We use θf to threshold each fitf-map. For the purposes of

providing a summary of the whole time epoch, we averaged the βϕ values over the 100–370 ms

epoch before fitting features in both the individual maps and the calculation of the θf thresholds.

Results

RSA evaluation of ASR models in neural source space

Fig 8a shows each of the thresholded feature maps in ensemble. Where a feature showed signif-

icant fit for any vertex, the most conservative possible standard p-threshold (p< 0.05, 0.01 or

0.001) was chosen for which the cluster remained. This gave the fullest picture of the results.

The maps are somewhat different between hemispheres, though clusters appear over bilateral

Heschl’s gyri, particularly concentrated in primary auditory regions such as A1. Both hemi-

spheres show a wide regions of fit, parcellated into partially overlapping patches for different

features. Most of the features we tested showed significant fit. The exceptions were the features

affricate, fricative and approximant, for which no vertices within the searchlight mask showed

significant fit.

Features describing broad phonetic category distinctions (sonorant, voiced and obstruent)

all showed greater fit within the right hemisphere. Feature fits in the left hemisphere tended to

be more focussed than in the right and more significant (indicated by asterisks on the figure).

Features which showed fits in both hemispheres were those providing finer within-category

distinctions, such as central and nasal. To visualise this further, we fixed a threshold at

p< 0.01 for both hemispheres and all feature maps (see Fig 8b). This left intact some broad

category matches in right STG, and suggested a greater coverage in left STG, STS and HG for

within-category feature distinctions—place and manner of articulation features for conso-

nants, and closeness, frontness and roundedness dimensions for vowels.

Discussion

Interpretation of results

In this study we have used a functional model of machine speech recognition to investigate

early representations of speech in human superior temporal cortex (STC). By using RSA, we

have been able to directly compare representations of speech in the machine system with rep-

resentations found in EMEG activations measured from human participants. We mapped the

space of phones used by the ASR to a smaller space of articulatory features, after verifying that

these features acceptably describe the similarity structure of the ASR representations. We

tested feature fits systematically throughout the STC regions of each of our participants, using

a spatiotemporal searchlight technique, and looked at vertices showing consistent fit across

our participants. A vertex shown to be significant in our results (Fig 8) indicates the location of

spatially local patterns of activation for each of our stimulus words which is explained by infor-

mation relevant to a particular feature, as modelled by the ASR system’s representation. We

found distributed patches of sensitivity to each articulatory feature throughout bilateral STC.

The distribution exhibited some left–right asymmetry, with broad category features (e.g.

sonorant) fitting best in the left hemisphere, and more fine-grained within-category features

fitting better on the right. Overall, fit in the left hemisphere was more significant.

These results confirm the feasibility of combining ssRSA with source space EMEG to relate

dynamic brain states to dynamic machine states in the incremental speech input environment.
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In doing so, we see significant correspondences between human and ASR solutions to the

speech recognition problems, captured here in terms of a low-dimensional representational

framework related to articulatory phonetic features. We discuss below the empirical status of

these findings, followed by a more general analysis of the meaning of potential brain-machine

correspondences in the speech recognition environment.

Phonetic feature sensitivity in human temporal cortex

The critical result in this study is that phonetic model RDMs, extracted from the ASR labelling

of the phonetic content of incremental 60 ms speech input time windows, could be signifi-

cantly related to brain data RDMs capturing the human neural response in superior temporal

Fig 8. Maps of fit for each feature. (a) Thresholded maps of fit for each feature for which at least one vertex showed significant fit between 100 ms

and 370 ms. We report p < 0.05 using *, p < 0.01 using **, and p < 0.001 using ***. Light and dark greys represent gyri and sulci respectively. The

miniature figures show the location of the larger diagrams. Anatomical landmarks are superior temporal gyrus (STG), superior temporal sulcus (STS)

and Heschl’s gyrus (HG). The dotted white lines indicate the outline of HG. (b) With a fixed threshold of p < 0.01 for both hemispheres, only broad-

category features remain on the right, and within-category distinctive features are dominant on the left.

https://doi.org/10.1371/journal.pcbi.1005617.g008
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cortex to the same incremental time windows. These relationships took the form of spatially

coherent patches in STC whose responses showed significant fit to a variety of different articu-

latory phonetic features. Is there independent empirical evidence that bears on the credibility

of this finding of distributed patches of featural sensitivity in STC?

The overall result—supporting an account of localised acoustic phonetic processing in STG

in terms of features—is compatible with many strands of evidence favouring such an approach

to the neural representation of speech in human temporal cortex. Most directly, it is consistent

with the Mesgarani et al. [21] results, showing that ECoG electrode responses in STC can be

well characterised in terms of specific phonetic features, as well as with more recent ECoG

studies [44] showing local feature-oriented processes operating in the broader context of a

global posterior-anterior distinction between electrodes with “onset”-selective response pro-

files and those responding preferentially to “sustained” non-transient inputs. Given the iso-

morphism, however, between featural and non-featural phonetic representations, it is

important to be clear that neither the ECoG results nor our own EMEG/ASR analyses can by

themselves exclude accounts of neural coding in STC based on a classic phone-based

approach. Equally, it should be clear that the current results, while consistent with a featural

decomposition of ASR representations of regularities in the speech-to-phone mapping in STC,

cannot exclude a variety of other accounts, including those built entirely from acoustically

defined regularities.

The second salient aspect of the results is the computational geography that they reveal,

with different cortical patches showing a preference for specific features, and where these

patches are scattered in partially overlapping fashion in auditory cortex and in surrounding

posterior STG and STS. Although there is currently no neurocomputationally or neuroanato-

mically explicit account of how STC supports acoustic-phonetic analysis, the geography of

these results is broadly consistent with existing data from other neuroimaging studies. The

regions of superior temporal and Heschl’s gyri which showed significant fit for at least one

phonetic feature in our results are consistent with areas which have shown speech selectivity in

other studies [12–15, 21, 45, 46]. In addition, the spatial locations of these featural patches

overlap with regions found to have frequency-selective responses to both high and low fre-

quencies, and both wide and narrow frequency tuning curves [1, 46–49]. Turning to more spe-

cific studies of the neural representations of phonological features during speech perception,

the Arsenault and Buchsbaum fMRI study [50] shows bilateral regions of superior temporal

cortex supporting discrimination between articulatory feature categories. Closest to our cur-

rent results, the fMRI study by Correia et al. [51], using a searchlight MVPA technique, not

only showed that brain responses to syllables differing in their voicing, place or manner of

articulation could be distinguished in STC, but also that they have somewhat patchy areas of

distribution. Finally, the older study by Obleser et al. [14], using MVPA techniques on an

fMRI data set, provides similar evidence for a distribution of vowel and consonant feature-sen-

sitive patches across human STC.

While these resemblances between studies are not sufficient to validate the specific feature-

sensitive regions found in the present study, they do suggest that the computational geography

that our results indicate is compatible with current independent findings of regions in STC

sensitive to specific featural dimensions of the speech input. They are also compatible with evi-

dence from other domains that the style of computation found for complex species-specific

processes can have similar patch-like properties. Research by Grimaldi et al. [52], for example,

reveals a network of different face patches in the macaque (as well as in humans), which are

densely interconnected in both feedforward and feedback directions to constitute a highly spe-

cialised processing network. Given the evolutionary significance of human speech recognition,
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similar networks may underpin the even more specialised and species-specific process of

recovering the articulatory gestures underlying a given speech input.

Relating machine states to brain states: Vision and speech

On the assumption that there is empirical support for the outcomes reported here, we now

turn to the question of what it might mean to find correspondences between machine-based

solutions to a complex mapping and the ‘natural’ neural solutions found in the brains of

humans or other species. It is important to distinguish here between the visual and the speech

domains. There is a sizeable and rapidly growing body of work which relates computational

models in the domains of visual object classification and visual scene analysis to the properties

of the corresponding neural processes in humans and other primates (e.g. [28, 53–56]). This is

not the case for the speech domain.

The work on vision differs from speech and language research in several major respects.

The first is that the neural processing machinery that supports visual perceptual processing is

essentially the same, in its major respects, in humans and in other primates. There is extensive

evidence (e.g. [53, 57–60]) for similarities both in the basic architecture of the system—the pri-

mate dorsal and ventral visual processing streams—and in the computational properties of the

analyses carried out, based on a complex multi-level hierarchical cortical organisation. This

means that, unlike speech comprehension, there are detailed models of the sequence of pro-

cesses that map from early visual cortex to higher-order perceptual and conceptual representa-

tions in more anterior brain regions.

Second, and closely related to the first, there is a strong tradition of computational imple-

mentations of models of visual perceptual processing that reflect the theories of hierarchical

cortical organisation proposed for different aspects of these processes, and where these design

assumptions (such as localised convolution and pooling) are also reflected in machine vision

implementations. These relationships have been greatly strengthened by the recent emergence

of deep neural network (DNN) systems as the machine learning systems of choice, and where

several studies suggest parallels between the representations computed in the successive layers

of such DNNs and the successive levels hypothesized for the human system [53, 56]. Impor-

tantly, this means that the internal structures of machine vision systems are potentially infor-

mative and relevant to our understanding of the neurocomputational architecture of the

natural system (and vice versa), and not just whether they generate equivalent outputs (for

example in object classification tasks).

None of these factors currently hold true for speech comprehension, either by humans or

by machines. While the human auditory processing system does have close parallels with the

general primate system [31], no non-human primate supports anything like the human system

of speech communication, where intricately modulated sequences of speech sounds, uttered

by members of the same species, map onto tens of thousands of learned linguistic elements

(words and morphemes), each with its own combination of acoustic-phonetic identifiers.

There is simply no primate model of how these mappings are achieved (cf. [61]). No doubt

partly because of this, but also reflecting the complexities of the real-time analyses the human

brain carries out on an incremental and dynamically varying sensory input, there are no com-

putationally explicit neurocognitive models of how humans solve the spoken word-recogni-

tion problem.

Consistent with this, and following design strategies long established in the speech engi-

neering domain (cf. [62]), ASR systems have been driven (with considerable success) solely by

computational engineering considerations, such as statistical learning efficiency, with little or

no reference to the properties of the human system. It was not a goal in the design and
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implementation of such systems that they should correspond to the supposed architecture of

the human system, nor have there been any compelling demonstrations that performance

would benefit if such considerations were taken into account. This holds true not only for the

kind of GMM–HMM architecture used here, but also for the DNN-based systems that have

recently emerged [63, 64].

In the current research, therefore, the focus has been (as noted earlier) on the input-output

relations exhibited by the two types of system—human superior temporal cortex and auto-

matic speech recogniser—with ssRSA allowing us to abstract away from the very different

implementational characteristics of the systems in question. Strikingly, as documented in this

paper, we have been able to show that the regularities that successful ASR systems encode in

the mapping between speech input and word-level phonetic labelling can indeed be related to

the regularities extracted by the human system as it processes and identifies parallel sets of

words. What are implications of this result?

Implications and conclusions

The finding of significant machine-brain correspondences suggests, first, that there are under-

lying commonalities in the solutions of human and machine systems to the speech recognition

problem. In particular, the combination of ssRSA and EMEG data sets, as implemented here,

suggests that the analysis of the potential relationship between such systems can be informed

and guided by direct inspection and comparison of dynamic machine states and dynamic

EMEG-derived brain states, adding a novel empirical dimension to such comparisons.

Second, the finding that the commonalities between human and machine systems can be

characterised in terms of a biologically plausible low-dimensional analysis, based on articula-

tory phonetic features, argues for an increased focus on the neurobiological and computational

substrate for such an analysis strategy. In ASR research, the development of systems based

around the extraction of articulatory features has a long history (e.g., [11]) and some recent

exemplars (e.g., [65]), but is not central to most current work. It would significantly strengthen

future investigations of potential links between proposed human feature-based analysis pro-

cesses and the representational strategies in machine recognition systems if ASR systems

trained to extract featural representations could be tested against human brain data in the

same way as the phone-based system tested here. In the human domain, the evidence for spe-

cific phonetic feature representations in superior temporal cortex raises several further ques-

tions about the nature of the fine-grained neural representations within these patches, and

how these might relate to the neural reconstruction of underlying featural representations.

Third, and finally, the successful matching of the correlational structure of input-output

solutions in human and machine systems may help to motivate the development of more bio-

logically informed approaches to ASR. Such approaches are now commonplace, for example,

in machine vision systems as discussed previously, and may prove equally valuable in future

ASR systems. This will prove an equally positive development for the study of the human sys-

tem, which stills lacks explicit neurocomputational “end-to-end” models of the process of

understanding speech.
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