
Analysis of artifacts in shell-based image inpainting: why they
occur and how to eliminate them

L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Received: date / Accepted: date

Abstract In this paper we study a class of fast geo-

metric image inpainting methods based on the idea of

filling the inpainting domain in successive shells from

its boundary inwards. Image pixels are filled by assign-

ing them a color equal to a weighted average of their

already filled neighbors. However, there is flexibility in

terms of the order in which pixels are filled, the weights

used for averaging, and the neighborhood that is av-

eraged over. Varying these degrees of freedom leads to

different algorithms, and indeed the literature contains

several methods falling into this general class. All of

them are very fast, but at the same time all of them

leave undesirable artifacts such as “kinking” (bending)

CBS acknowledges support from the Leverhulme Trust
project ’Breaking the non-convexity barrier’, the EPSRC
grant ’EP/M00483X/1’, EPSRC centre ’EP/N014588/1’, the
Cantab Capital Institute for the Mathematics of Information,
the CHiPS (Horizon 2020 RISE project grant), the Global Al-
liance project ’Statistical and Mathematical Theory of Imag-
ing’ and the Alan Turing Institute. RH and TH acknowledge
support from the EPSRC Cambridge Centre for Analysis and
the Cambridge Trust.

Communicated by Hans Munthe-kaas

L. Robert Hocking
Department for Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge CB3 0WA, UK
Tel.: +44 1223 764284
E-mail: rob.l.hocking@gmail.com

Thomas Holding
Mathematics Institute, Zeeman Building, University of War-
wick, Coventry CV4 7AL
Tel.: +44 (0)24 765 73495
E-mail: t.holding@warwick.ac.uk

Carola-Bibiane Schönlieb
Department for Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge CB3 0WA, UK
Tel.: +44 1223 764251
E-mail: cbs31@cam.ac.uk

or blurring of extrapolated isophotes. Our objective in

this paper is to build a theoretical model in order to

understand why these artifacts occur and what, if any-

thing, can be done about them. Our model is based

on two distinct limits: a continuum limit in which the

pixel width h → 0 and an asymptotic limit in which

h > 0 but h � 1. The former will allow us to explain

“kinking” artifacts (and what to do about them) while

the latter will allow us to understand blur. Both lim-

its are derived based on a connection between the class

of algorithms under consideration and stopped random

walks. At the same time, we consider a semi-implicit

extension in which pixels in a given shell are solved for

simultaneously by solving a linear system. We prove

(within the continuum limit) that this extension is able

to completely eliminate kinking artifacts, which we also

prove must always be present in the direct method. Fi-

nally, we show that although our results are derived

in the context of inpainting, they are in fact abstract

results that apply more generally. As an example, we

show how our theory can also be applied to a problem

in numerical linear algebra.

Keywords image processing, image inpainting,

partial differential equations, stopped random walks,

numerical analysis

Mathematics Subject Classification (2010) 68U10,

65M12, 65M15, 65F10, 60G50, 60G40, 35F15, 60G42,

65M15, 35Q68

1 Introduction

Image inpainting refers to the filling in of a region in

an image where information is missing or needs to be

replaced (due to, for example, an occluding object), in

2 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

such a way that the result looks plausible to the hu-

man eye. The region to be filled is subsequently re-

ferred to as the inpainting domain. Since the seminal

work of Bertalmio et al. [6], image inpainting has be-

come increasingly important, with applications ranging

from removing an undesirable or occluding object from

a photograph, to painting out a wire in an action se-

quence, to 3D conversion of film [26], as well as 3D TV

and novel viewpoint construction [12,29,17] in more re-

cent years. See [20] for a recent survey of the field.

Image inpainting methods can loosely be catego-

rized as exemplar-based and geometric. Exemplar-based

methods generally operate by copying pieces of the un-

damaged portion of the image into the inpainting do-

main, in such a way as to make the result appear seam-

less. Examples include [16], [43], [3]. Exemplar-based

methods also operate behind the scenes in Photoshop’s

famous Content-Aware Fill tool. These methods ex-

cel at interpolating texture across large gaps, but may

produce artifacts in structure dominated images with

strong edges, or be needlessly expensive if the inpaint-

ing domain is thin.

Geometric inpainting methods attempt to smoothly

extend image structure into the inpainting domain, typ-

ically using partial differential equations (PDEs) or vari-

ational principles - see [34] for a comprehensive survey.

Examples based on PDEs include the seminal work of

Bertalmio et al. [6], methods based on anisotropic dif-

fusion such as [40], while examples based on variational

principles include TV, TV-H−1, Mumford-Shah, Cahn-

Hilliard inpainting [14,11], Euler’s Elastica [33,13], as

well as the joint interpolation of image values and a

guiding vector field in Ballester et al. [4]. These ap-
proaches are typically iterative and convergence is of-

ten slow (due to either the high order of the under-

lying PDE model or the difficult nature of the varia-

tional problem). On the other hand, Telea’s Algorithm

[38], coherence transport [7,31], and our previous work

Guidefill [26] are based on the simple idea of filling the

inpainting domain in successive shells from the bound-

ary inward, setting the color of pixels on the current

boundary equal to a weighted average of their already

filled neighbors - Figure 1 illustrates this process. In

general, “neighbors” may include “ghost pixels” lying

between pixel centers and defined using bilinear in-

terpolation - this concept was introduced in [26]. By

choosing the weights, fill order, and averaging neigh-

borhood carefully, image isophotes may be extrapolated

into the inpainting domain. Compared to their iterative

counterparts, these methods have the advantage of be-

ing very fast. However, at the same time all of them

create, to a greater or lesser degree, some potentially

disturbing visual artifacts. For example, extrapolated

(a) Original image. (b) After filling 7 shells.

(c) After filling 20 shells. (d) After filling 31 shells.

Fig. 1: Shell-based inpainting: Here we illustrate the

shell-based inpainting of an image including an unde-

sirable human to be removed. In (a), we see the original

image, including a human that is gradually eroded in

(b)-(d) as we fill more shells. In this case the inpainting

method is Guidefill [26], and the application is disoc-

clusion for 3D conversion, which means that the human

does not need to be removed entirely. See [26] or [34,

Chapter 9] for more details on this application.

isophotes may “kink” (change direction), blur, or end

abruptly. Although generally these problems have been

gradually reduced over time as newer and better al-

gorithms have been proposed, they are still present to

some degree even in the state of the art.

The present paper has two goals. Firstly, to analyze

these algorithms as a class in order to understand the

origins of these artifacts and what, if anything, can be

done about them. Secondly, to propose a simple exten-

sion in which the pixels in a given shell are solved si-

multaneously as a linear system, and to analyze its ben-

efits. We will refer to the original methods as “direct”

and the extended methods as “semi-implicit” - see Fig-

ure 2 for an illustration of the difference between them.

To our knowledge, this extension has never before been

proposed in the literature. We also propose a simple it-

erative method for solving the linear system arising in

the semi-implicit extension, show that it is equivalent

to damped-Jacobi or successive over-relaxation (SOR),

Analysis of Shell-Based image inpainting 3

(a) The direct method:
the color of a given pixel
(highlighted in red) on the
current inpainting domain
boundary (blue) is com-
puted as a weighted sum
of its already known neigh-
bors in the filled portion
of the image (pale yellow).
Pixels included in the sum
are highlighted in green.

(b) The semi-implicit
extension: the color of
a given pixel (highlighted
in red) on the current
inpainting domain bound-
ary (blue) is given implic-
itly as a weighted sum of
its already known neigh-
bors in the filled portion of
the image (pale yellow), as
well as unknown neighbor-
ing pixels on the current
boundary. Pixels included
in the sum are highlighted
in green.

Fig. 2: The direct method and its semi-implicit

extension: In this illustration, the filled portion of

the image is highlighted in pale yellow, and the current

inpainting domain is highlighted in both grey and blue,

with the former denoting pixels in the interior of the

inpainting domain and the latter pixels on its current

boundary. The boundary is the “shell” that is currently

being filled - note that the filled (known) portion of the

image consists not only of the original undamaged re-

gion, but also of previously filled shells. At this stage,

the grey and blue pixels are both unknown. In the direct

method (a), the color of a given pixel (highlighted in

red) is computed directly as a weighted average of pix-

els (in green) within a given neighboorhood (outlined

in white) that are already known. In the semi-implicit

extension, the sum also includes pixels on the current

boundary of the inpainting domain, but not pixels in its

interior. This results in linear system that needs to be

solved, but this can be done relatively cheaply (see Sec-

tion 6.2) and has benefits in terms of artifact reduction

(see Section 7.1).

and analyze its convergence rates when applied to the

linear system arising in semi-implicit Guidefill. Suc-

cessive over-relaxation is shown to converge extremely

quickly, provided unknowns are ordered appropriately.

Remark 1 The original motivation for this paper comes

from one of the author’s experiences working in indus-

try for the 3D conversion company Gener8 (see [26] or

[34, Chapter 9] for a description of 3D conversion). The

programmers there had implemented a series of shell-

based inpainting methods of the form discussed above

(all essentially variants of Telea’s algorithm [38], which

they were unaware of) in order to solve an inpainting

problem arising in their 3D conversion pipeline. This

type of algorithm was attractive to them because it is

fast and simple, while generally adequate for their ap-

plication (where inpainting domains are typically very

thin). However, they were puzzled by some of the arti-

facts they were seeing, most notably kinking artifacts.

After a literature review it became clear that the exist-

ing theory [7,31,32] was enough to explain some, but

not all, of what they observed. This paper is an attempt

to fill the gap.

1.1 Organization

The remainder of this paper is organized as follows.

First, in Section 2, we present the general form of the

class of inpainting methods under consideration, includ-

ing pseudocode for both the direct method and an im-

plementation of our proposed semi-implicit extension

(see Algorithm 1). We also cover in detail known arti-

facts created by the direct form of the method, how they

have been reduced over time, related work and our con-

tributions. Next, in Section 3 we review the main vari-

ants of Algorithm 1 present in the literature. Section

4 describes an equivalence principle between weighted

sums of ghost pixels and a sum over real pixels with dif-

ferent weights. This principle will be applied repeatedly

throughout our theoretical analysis. Section 5 describes

our semi-implicit extension of Algorithm 1, including

a description of an implementation of two alternatives

for solving the resulting linear system, namely damped

Jacobi and successive over-relaxation (SOR). Section 6

contains our core analysis, and is divided into a number

of subsections. The first of these, Section 6.1, describes

the simplifying assumptions that we make throughout.

Next, Section 6.2 presents a theoretical analysis of the

convergence rates of damped Jacobi and SOR for solv-

ing the linear system arising in semi-implicit Guidefill,

and compares with real experiments. In Section 6.3 we

define the continuum and asymptotic limits of Algo-

rithm 1. Section 6.4 describes the connection between

Algorithm 1 and stopped random walks, while Sections

6.5 and 6.7 use this connection to prove convergence

to the asymptotic and continuum limits previously de-

fined in Section 6.3. Next, In Section 7, we apply our

analysis to gain a theoretical understanding of kinking

and blur artifacts. In particular, Section 7.1 utilizes our

continuum limit to both explain kinking artifacts, and

to show how to overcome them. Section 7.3 utilizes the

4 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

asymptotic limit to make theoretical predictions quan-

tifying the extent to which a given method introduces

blur artifacts. Sections 7.1 and 7.3 also contain numer-

ous numerical experiments demonstrating the accuracy

of the predictions made by these limits. In Section 8

we show that our results - although derived in the con-

text of image inpainting - are abstract results that can

be applied to other problems. To demonstrate this, we

apply our asymptotic limit to a problem in numerical

linear algebra. Finally in Section 9 we draw some con-

clusions and sketch some directions for potential future

research. We also have a number of appendices giving

technical details of certain proofs.

1.2 Notation

– h = the width of one pixel.

– Z2
h := {(nh,mh) : (n,m) ∈ Z2}.

– Given v ∈ R2, we denote by Lv := {λv : λ ∈ R}
the line through the origin parallel to v.

– Given x ∈ R2, we denote by θ(x) ∈ [0, π) the counter-

clockwise angle Lx makes with the x-axis. θ(x) can

also be thought of as the counterclockwise angle x

makes with the x-axis, modulo π.

– Given v ∈ R2, we denote by v⊥ the counterclock-

wise rotation of v by 90◦.

– Ω = [a, b]×[c, d] and Ωh = Ω∩Z2
h are the continuous

and discrete image domains.

– Dh = D
(0)
h ⊂ Ωh is the (initial) discrete inpainting

domain.

– D
(k)
h ⊆ D

(0)
h is the discrete inpainting domain on

step k of the algorithm.

– D ⊂ Ω := {x ∈ Ω : ∃y ∈ Dh s.t. ‖y − x‖∞ < h} is
the continuous inpainting domain.

– D(k) is the continuous inpainting domain on step k

of the algorithm, defined in the same way as D.

– u0 : Ωh\Dh → Rd is the given (discrete) image. In

an abuse of notation, we also use u0 to denote an

assumed underlying continuous image u0 : Ω\D →
Rd.

– uh : Ωh → Rd is the inpainted completion of u0.

– g(x) is the guidance vector field used by coherence

transport and Guidefill.

– Bε(x) the solid ball of radius ε centered at x.

– Aε,h(x) ⊂ Bε(x) denotes a generic discrete (but not

necessarily lattice aligned) neighborhood of radius ε

surrounding the pixel x and used for inpainting.

– Supp(Aε,h(x)) ⊂ Z2
h denotes the set of real pixels

needed to define Aε,h(x) based on bilinear interpo-

lation.

– Bε,h(x) = {y ∈ Ωh : ‖x− y‖ ≤ ε}, the discrete ball

of radius ε centerd at x and the choice of Aε,h(x)

used by coherence transport.

– r = ε/h the radius of Bε,h(x) measured in pixels.

– B̃ε,h(x) = R(Bε,h(x)), where R is the rotation ma-

trix taking (0, 1) to g(x), the choice of Aε,h(x) used

by Guidefill.

– N (x) = {x + y : y ∈ {−h, 0, h} × {−h, 0, h}} is the

9-point neighborhood of x.

– Given Ah ⊂ Z2
h, we define the dilation of Ah by

Dh(Ah) = ∪x∈AhN (x).

If h = 1 we write D instead of D1.

– GivenAh ⊂ Z2
h, we define the discrete (inner) bound-

ary of Ah by

∂Ah := {x ∈ Ah : N (x) ∩ Z2
h\Ah 6= ∅}.

For convenience we typically drop the word “inner”

and refer to ∂Ah as just the boundary of Ah.

– O denotes the zero matrix.

– Given c ∈ R, we define {y ≤ c} := {(x, y) ∈ R2 :

y ≤ c}.
– Given L > 0, and 0 ≤ x, y < L we define the circular

distance between x and y by

dcircle
L (x, y) = min(x− y mod L, y − x mod L).

– Given σ, µ ∈ R we denote by Gσ,µ and gσ,µ the

Gaussians

Gσ,µ(x) :=
e−

(x−µ)2

2σ2

√
2πσ

gσ,µ(x) :=
e−

(x−µ)2

2σ2∑
n∈Z e

− (n−µ)2
2σ2

Similarly, given L > 0 and N ∈ N we denote by

G∗σ,µ,L and g∗σ,µ,N the periodic Gaussians

G∗σ,µ,L(x) :=
e−

dcircleL (x,µ)2

2σ2

√
2πσ

g∗σ,µ,N (x) :=
e−

dcircleN (x,µ)2

2σ2∑N−1
n=0 e

−
dcircle
N

(n,µ)2

2σ2

Note that Gσ,µ and gσ,µ are normalized with respect

to integration over R and summation over Z respec-

tively, while 1∫ L
0
G∗σ,µ,L(x)dx

· G∗σ,µ,L and g∗σ,µ,N are

normalized with respect to integration over [0, L)

and summation over {0, 1, . . . , N − 1} respectively.

2 Shell-based geometric inpainting

In this paper we are interested in a simple class of shell-

based geometric inpainting methods and their proposed

semi-implicit extension. These methods fill the inpaint-

ing domain in successive shells from the boundary in-

wards, as illustrated in Figure 1. In the direct form of

the method, the color of a given pixel x due to be filled

Analysis of Shell-Based image inpainting 5

Algorithm 1 Shell Based Geometric Inpainting

uh = damaged image, initialized to 0 on inpainting domain.
Ω = [a, b]× [c, d] = continuous image domain.
Ωh = Ω ∩ Z2

h = discrete image domain.

D
(0)
h = initial inpainting domain.

∂D
(0)
h = initial inpainting domain boundary.

semiImplicit = false, unless we use the semi implicit exten-
sion (Section 5).
for k = 0, . . . do

if D
(k)
h = ∅ then

break
end if
∂readyD

(k)
h = {x ∈ ∂D(k)

h : ready(x)}
uh = FillBoundary(uh, D

(k)
h , ∂readyD

(k)
h)

D
(k+1)
h = D

(k)
h \∂readyD

(k)
h

if semiImplicit then

u
(0)
h = uh

for n = 1, 2, . . . (until convergence) do

u
(n)
h = FillBoundary(u

(n−1)
h , D

(k+1)
h ,

∂readyD
(k)
h)

end for
end if

∂D
(k+1)
h = {x ∈ ∂D(k+1)

h : N (x)∩ (Ωh\D(k+1)
h) 6= ∅}.

end for

function uh = FillBoundary(uh, Dh, ∂Dh)
for x ∈ ∂Dh do

compute Aε,h(x) = neighborhood of x.
compute non-negative weights wε(x,y) ≥ 0 for

Aε,h(x).
if ready(x) then

uh(x) =

∑
y∈(Aε,h(x)\{x})∩(Ω\D) wε(x,y)uh(y)∑

y∈(Aε,h(x)\{x})∩(Ω\D) wε(x,y)
(1)

end if
end for

end function

See (8) for a definition of the ready function for Guide-
fill. Coherence transport and Guidefill use the neighborhoods
Aε,h(x) = Bε,h(x), Aε,h(x) = B̃ε,h(x) respectively - see Fig-
ure 10. They also both use the same weights (6). Blue text is
only relevant for the semi-implicit extension we introduce in
Section 5.

is computed as a weighted average of its already filled

neighbors within a discrete neighborhood Aε,h(x) ⊂
Bε(x). In the semi-implicit extension, this sum also in-

cludes unknown pixels within the current shell, result-

ing in a linear system (Figure 2). We will cover the

resulting linear system in detail in Section 5, where

we also propose an iterative method for its solution.

The direct method as well as this proposed iterative so-

lution to the semi-implicit extension are illustrated in

Algorithm 1 with pseudo code (the blue code indicates

the parts relevant to the semi-implicit extension). The

neighborhood Aε,h(x) need not be axis aligned and may

contain “ghost pixels” lying between pixel centers - see

Fig. 3: Illustration of a generic set Aε,h(x) con-

taining ghost pixels: In this illustration the over-

laid grid is the lattice Z2
h with pixel centers at its ver-

tices. The elements of a generic set Aε,h(x) are repre-

sented as red dots - they do not need to occupy pixel

centers, but they must all lie within distance ε of x.

Ghost pixels are defined based on bilinear interpolation

of their real pixel neighbors. Here we have highlighted

in green the squares whose vertices are the real pixels

needed to define Aε,h(x). We call this set of real pixels

Supp(Aε,h(x)). Note that while Aε,h(x) ⊂ Bε(x), this

inclusion is not in general true of Supp(Aε,h(x)).

Figure 3 for an illustration. Ghost pixels were intro-

duced in [26] (where they were shown to be beneficial

for reducing “kinking artifacts” - see Figure 6), and the

color of a given ghost pixel is defined as the bilinear

interpolation of its four real pixel neighbors, but is un-

defined if one or more of them has not yet been assigned

a color. We denote by Supp(Aε,h(x)) ⊂ Z2
h the set of

real pixels needed to define Aε,h(x) in this way. Here

h and ε denote respectively the width of one pixel and

the radius of the bounding disk Bε(x) ⊃ Aε,h(x). The

averaging weights wε are non-negative and are allowed

to depend on x, but must scale proportionally with the

size of the neighborhood Aε,h(x), like so:

wε(x,y) = ŵ

(
x,

y − x

ε

)
(2)

for some function ŵ(·, ·) : Ω × B1(0) → [0,∞]. Note

that we will sometimes write wr or w1 in place of wε -

in this case we mean (2) with ε replaced by r or 1 in the

denominator on the right hand side. As the algorithm

proceeds, the inpainting domain shrinks, generating a

sequence of inpainting domains

Dh = D
(0)
h ⊃ D

(1)
h ⊃ . . . ⊃ D

(K)
h = ∅.

6 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

We will assume the non-degeneracy condition∑
y∈Aε,h(x)∩(Ω\D(k))

wε(x,y) > 0 (3)

holds at all times, this ensures that the average (1) in

Algorithm 1 is always well defined. One trivial way of

ensuring this is by having strictly positive weights ŵ,

which all the methods considered do (see Section 3).

At iteration k, only pixels belonging to the current

boundary ∂D
(k)
h are filled, but moreover we fill only

a subset ∂readyD
(k)
h ⊆ ∂D

(k)
h of pixels deemed to be

“ready” (In Section 3 we will review the main methods

in the literature and give their “ready” functions). The

main inpainting methods in the literature of the gen-

eral form given by Algorithm 1 are (in chronological

order) Telea’s Algorithm [38], coherence transport [7],

coherence transport with adapted distance functions

[31], and our previous work Guidefill [26]. As we will

see, these methods essentially differ only in the choice

of weights (2), the choice of fill order as dictated by

the “ready” function, and the choice of neighborhood

Aε,h(x). We will review these methods in Section 3.

Remark 2 It is worth mentioning that this class of algo-

rithms is nearly exactly the same as the “generic single-

pass algorithm” first systematically studied by Borne-

mann and März in [7]. The two main differences are

1. They assume Aε,h(x) = Bε,h(x), while we allow for

greater flexibility.

2. They consider only the direct form of Algorithm 1,

not the semi-implicit extension.

Beyond this, they also phrase things in terms of a pre-

determined fill order, rather than a “ready” function,

but the former may easily be seen, mathematically at

least, to be a special case of the latter (Section 3).

2.1 Advantages of Algorithm 1

The main appeal of Algorithm 1 is its simplicity and

parallelizability, which enable it to run very fast. A sec-

ond advantage, first noted by Bornemann and März [7],

is the stability property

min
y∈B

u0(y) ≤ uh(x) ≤ max
y∈B

u0(y) for all x ∈ Dh,

(4)

(which holds channelwise) where u0 : Ωh\Dh → Rd is

the given image and B is the band of width ε pixels

surrounding ∂Dh. This property holds because we have

chosen non-negative weights summing to one.

Remark 3 Although we have presented Telea’s algorithm

[38] as an example of Algorithm 1, this is not strictly

true as its update formula (5) (see Section 3) contains

a gradient term that, after it has been approximated

with finite differences, effectively violates the rule of

non-negative weights summing to one. This means that

Telea’s algorithm does not satisfy the stability property

(4). See Figure 7.

2.2 Disadvantages and artifacts

The main disadvantage of Algorithm 1 is obviously loss

of texture, and in cases where texture is important,

these methods should not be used. However, beyond

loss of texture, inpainting methods of the general form

given in Algorithm 1 can also introduce a host of of

other artifacts, which we list below.

– “kinking” of isophotes where extrapolated isophotes

change direction at the boundary of the inpainting

domain - see Figure 6 and Figure 8.

– “blurring” of isophotes where edges that are sharp

in the undamaged region may blur when extended

into the inpainting domain - see Figure 6 and Figure

8.

– “cutting off” of isophotes where isophotes ex-

trapolated into the inpainting domain end abruptly

- see Figure 4.

– formation of shocks where sharp discontinuities

may form in the inpainting domain - see Figure 4.

– bright or dark spots that are only a problem if

the stability condition (4) is violated, as it is for

Telea’s algorithm. See Figure 7 and Figure 8.

2.3 Related work (artifact reduction)

Broadly speaking, there has been incremental progress

as follows: Telea’s algorithm [38], the earliest variant

to appear in the literature, suffers from strong artifacts

of every type. In particular, the weights make no at-

tempt to take into account the orientation of undam-

aged isophotes in Ωh\Dh, and the result shows strong

kinking artifacts (see Figure 6). Bornemann and März

identified and sought to address this problem with co-

herence transport [7], which proposed carefully chosen

weights that are proven (in a high resolution and van-

ishing viscosity limit) to extend isophotes in any de-

sired guidance direction g not parallel to the inpainting

domain boundary. This was combined with a method

aimed at robustly measuring the orientation of isophotes

at the boundary, so that a suitable g allowing for a

seamless transition could be found. The problem of

Analysis of Shell-Based image inpainting 7

(a) Coherence transport with default onion shell ordering.
Isophotes are cut off.

(b) Guidefill with smart pixel ordering is able to make a
successful connection (März’s adapted distance functions
[31] would also do the job).

(c) Guidefill’s smart pixel ordering is not able to prevent a
shock in this case because of incompatible boundary condi-
tions.

Fig. 4: Cut off isophotes and shocks: Because Al-

gorithm 1 fills the inpainting domain from many direc-

tions at once, “cut off isophotes” or shocks can some-

times be formed. In (a), this is due to the (superim-

posed) fill order, which is the default onion shell order-

ing and a bad choice in this case. In (b), we have a

chosen a new fill order better adapted to the image and

the problem is solved in this case. However, the shock in

(c) is due to incompatible boundary conditions and it is

unlikely any special fill order could solve the problem.

“kinking” ostensibly resolved, in a follow up work März

proposed coherence transport with adapted distance

functions [31] designed to minimize the problem of “cut

off” isophotes and shocks. This was accomplished by

recognizing that artifacts such as the incomplete line in

Figure 4(a) are often the byproduct of a suboptimal fill

order such as the one superimposed (in this case the de-

fault onion shell ordering). The situation can often be

corrected as in Figure 4(b), by using an ordering better

(a) Inpainting
problem with Dh
colored yellow
and outlined in
black.

(b) Superposition
of multiple in-
paintings of (a)
using coherence
transport with
guidance direction
g sweeping out
an arc from 1◦

up to 179◦. In
this case ε = 3px
and Bε,h(0) is
superimposed.

(c) Now Guidefill
is used instead
of coherence
transport, but
all parameters
including ε = 3px
and µ = 100
are kept the
same. This time
we superimpose
the dilated ball
Dh(Bε,h(0)).
New points are
shown in grey.

Fig. 5: Special directions: For a given guidance di-

rection g = (cos θ, sin θ), coherence transport [7,31] can

successfully extrapolate isophotes parallel to g only if

g = λv, for some v ∈ Bε,h(0). This is illustrated in

(b), where have solved the inpainting problem posed

in (a) multiple times using coherence transport with

ε = 3px with a sequence of guidance directions gk =

(cos θk, sin θk) (θk ∈ {k◦}179
k=1) and superimposed the

results together with with Bε,h(0) (the parameter µ in

(6) is µ = 100). Instead of a smoothly varying line

sweeping through the upper half plane and filling it

with red, we see a superposition of finitely many lines,

each passing through some v ∈ Bε,h(0). When we re-

peat the experiment in (c) using Guidefill [26], we see

that it is not free of problems either. In this case Guide-

fill can extrapolate along g = (cos θ, sin θ) so long as

0 < θc ≤ θ ≤ π−θc < π, where θc is a critical angle, and

we get a red cone bounded on either side by θc. Here we

have superimposed the dilated ball Dh(Bε,h(0)), and it

is evident that θc is in some way related to this dilation

- this will be explained in Section 7.1.1.

adapted to the image such as the one illustrated there.

Rather than filling pixels in an order proportional to

their distance from the boundary, i.e. having the ready

function in Algorithm 1 always return “true”, März pro-

posed a number of ways of generating improved order-

ings based on non-Euclidean distance from boundary

maps. At the same time, recognizing that the presence

of shocks was related to the “stopping set” [31] of the

distance map, März was able to exert some measure

of control over those as well, if not prevent them en-

tirely. Guidefill [26] brought the focus back to the re-

duction of kinking artifacts, by noting that coherence

8 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) Inpaint-
ing problem
with θ =
63◦.

(b) Telea’s
algorithm.

(c) co-
herence
transport.

(d) Guide-
fill.

(e) Inpaint-
ing problem
with θ =
73◦.

(f) Telea’s
algorithm.

(g) co-
herence
transport.

(h) Guide-
fill.

(i) Midpoint cross-sections
for θ = 63◦.

(j) Midpoint cross-sections
for θ = 73◦.

Fig. 6: A tale of two inpainting problems: In (a)-

(d), a line making an angle of θ = 63◦ with the hori-

zontol is inpainted using each of Telea’s algorithm [38],

coherence transport, [7,31], and Guidefill [26] (the in-

painting domain is shown in yellow). In this case the ra-

dius of Aε,h(x) is ε = 3px, and since 63◦ ≈ arctan(2) ≈
63.44◦ is close to one of the “special directions” in which

coherence transport can extend isophotes successfully

for this value of ε (see Figure 5), both coherence trans-

port and Guidefill make a successful connection. In (e)-

(h) we change the angle of the line slightly to θ = 73◦.

This isn’t one of coherence transport’s admissable di-

rections for ε = 3px, so it fails to make the connection,

while Guidefill continues to have no problems, at the ex-

pense of some blurring. Telea’s algorithm, on the other

hand, propagates in the direction of the normal to the

inpainting domain boundary regardless of the undam-

aged image content, and thus fails to make the con-

nection in both cases while also introducing significant

blur. In (i)-(j), we examine horizontal cross sections (of

the red channel) of all three methods at the midpoint of

the inpainting domain. Here, a disadvantage of Guide-

fill in terms of blur becomes more apparent - coherence

transport by contrast produces a much sharper result.

The reasons for this are explored in Section 7.3.

(a) Inpaint-
ing problem
(inpainting
domain in
yellow).

(b) In-
painting
with Telea’s
algorithm.

(c) Inpaint-
ing with
coherence
transport.

(d) Red channel cross-
section for Telea’s algo-
rithm.

(e) Red channel cross-
section for coherence
transport.

Fig. 7: Bright spots in Telea’s algorithm: In this

example we consider the inpainting problem shown in

(a) consisting of a line separating a region of dark blue

from a region of dark red. We inpaint both using Telea’s

algorithm (b) and coherence transport (c). Coherence

transport obeys the stability property (4) and hence the

brightness of the inpainted solution remains bounded

above by the brightness on the exterior of the inpaint-

ing domain. This is not true of Telea’s algorithm, which

exhibits bright spots outside the original color range.

These were not visible in Figure 6, because the bright-

ness of each color channel was already saturated, and

Telea’s algorithm uses clamping to prevent the solution

from going outside the admissible color range. This is

further illustrated in (d)-(e), where we plot horizontal

cross sections of the red channel of each inpainted so-

lution.

transport is actually only able to propagate along a

given guidance vector g if it points in one of a finite

set of special directions - see Figure 5(b). Whereas pre-

vious improvements to Algorithm 1 had focused first

on improving the choice of weights, then the fill or-

der (equivalently the choice of ready function), Guide-

fill proposed for the first time to change the averag-

ing neighborhood Aε,h(x), which until then had always

been the discrete ball Bε,h(x) (Figure 10(a)). Specif-

ically, it proposed to replace Aε,h(x) = Bε,h(x) with

Aε,h(x) = B̃ε,h(x), where B̃ε,h(x) is the rotated dis-

crete ball shown in Figure 10(b), aligned with the guid-

ance direction g. Since Aε,h(x) is in this case no longer

axis aligned, it contains what the authors called “ghost

pixels” lying between pixel centers, which they defined

Analysis of Shell-Based image inpainting 9

(a) Damaged im-
age with inpaint-
ing domain in red.

(b) The result of
Telea’s algorithm
[38].

(c) Closeup
of (b).
Note the
bright spots
and dis-
connected
isophotes.

(d) Further
closeup of (b),
with blurry,
disconnected
isophotes cir-
cled in red
and a bright
spot circled in
blue.

(e) The result
of coherence
transport [7].

(f) Closeup
of (d) -
note the
better re-
construction
of 金.

Fig. 8: Blurring, kinking, and bright spots with

Telea’s algorithm: Even for problems such as (a)

where the inpainting domain is very thin, Telea’s al-

gorithm (b)-(d) still creates strong blurring artifacts

and fails to connect isophotes effectively. Also, due to

the presence of the gradient term in (5), Telea’s algo-

rithm violates the stability condition (4) and as a re-

sult can “overshoot” when filling pixels close to edges in

the filled area, where the (numerical) gradient changes

rapidly. This leads to the bright spots near the recon-

structed 金 in (c)-(d). In this case coherence transport

(e)-(f) is a much better choice.

based on bilinear interpolation. This small change en-

abled Guidefill to propagate along most guidance di-

rections, but it too has problems when the angle be-

tween g and the boundary to the inpainting domain is

too shallow - see Figure 5(c). However, Guidefill pays a

price for its reduction in kinking artifacts in the form

of an increase in blur artifacts. See Figure 6, where

coherence transport produces a sharp extension of im-

age isophotes, albeit possibly in the wrong direction,

whereas Guidefill extrapolates in the right direction,

but the extrapolation suffers from blur. Guidefill also

proposed its own “smart order” computed on the fly

as an alternative to März’s adapted distance functions,

but this does not have any serious advantage in terms

of the quality of the results. Either approach will do for

preventing “cut off” isophotes.

2.4 Related theoretical work

The direct form of Algorithm 1 has been studied from a

theoretical point of view by proposing two distinct con-

tinuum limits. The first of these is the high-resolution

vanishing viscosity limit proposed by Bornemann and

März, in which h → 0 and then ε → 0 [7]. The second

is a fixed-ratio continuum limit proposed in our pre-

vious work [26] in which (h, ε) → (0, 0) along the line

ε = rh (with r ∈ N fixed). The non-negative integer

r is simply the radius of Aε,h(x) measured in pixels.

Although both are perfectly valid mathematically, nu-

merical experiments indicate that the high resolution

viscosity limit gives a good approximation of the be-

haviour of Algorithm 1 in practice only when r � 1,

whereas our fixed-ratio limit gives a good approxima-

tion even when r is a small integer, as it typically is in

practice (see Remark 4.3 in our previous work [26] for

an explanation of why this is). There has also been sig-

nificant work in studying the well-posedness of the high

resolution and vanishing viscosity limit of Algorithm 1,

both in [7] and especially in [32]. See Figure 9 for an

illustration of these two separate limits.

Motivation for ghost pixels. In Section 4 we will

prove that any weighted sum over a set Aε,h(x) of ghost

pixels is equivalent to a sum over the real pixels in

Supp(Aε,h(x)) with equivalent weights. While this makes

ghost pixels in some sense redundant, they are useful

concept. Specifically, in Theorem 6 we will prove that

the fixed-ratio continuum limit described above and il-

lustrated in Figure 9 is a transport equation with trans-

port direction that is a function of the weights wε and

the position vectors of the elements of Aε,h(x). Avoid-

ing “kinking” artifacts amounts to working backwards

from a desired transport direction g to the weights wε
and neighborhood Aε,h(x) that yield g. This is easier to

do when the elements of Aε,h(x) can move continuously

in R2, rather than being constrained to the lattice Z2
h.

2.5 Contributions

Our contributions are both theoretical and practical,

aimed at a deeper understanding of the mathematical

properties of both the direct and semi-implicit versions

of Algorithm 1, and through that understanding, a bet-

ter grasp of the underlying causes of the artifacts de-

scribed above and what, if anything, can be done about

them. Our main targets are “kinking” and “blurring”

10 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) ε = 1, h = 1
4

. (b) ε = 1, h = 1
8

. (c) ε = 1, h = 1
16

.

(d) ε = 1, h = 0. (e) ε = 1
2

, h = 0. (f) ε = 1
4

, h = 0.

(g) ε = 1, h = 1
4

. (h) ε = 1
2

, h = 1
8

. (i) ε = 1
4

, h = 1
16

.

Fig. 9: Two distinct continuum limits: Algorithm

1 has two distinct continuum limits, illustrated here

for Aε,h(x) = Bε,h(x). The first, illustrated in (a)-(f),

is the high-resolution vanishing viscosity double limit

proposed by Bornemann and März [7], in which h→ 0

(a)-(c) and then ε→ 0 (d)-(f). The second is the fixed-

ratio limit single limit (ε, h) → (0, 0) with r = ε
h fixed

proposed in our previous work [26], illustrated in (g)-

(i) for r = 4. While they are both valid limits of Al-

gorithm 1, they predict very different behaviour. In

particular, while the high-resolution vanishing viscos-

ity of Bornemann and März [7] is able to predict the

“kinking” behaviour of Telea’s Algorithm [38], it fails

to predict the kinking artifacts of their own method,

coherence transport. Our fixed-ratio continuum limit,

on the other hand, predicts both. See Theorem 6, as

well as Section 7.1.2.

artifacts, the others having already been thoroughly an-

alyzed in [7,32] and well understood. Broadly speaking,

we have three main contributions:

– We propose a semi-implicit variant of Algorithm 1,

propose an efficient method for solving the linear

system that arises in it, and derive analytical rates

of convergence.

– We propose two novel limits of Algorithm 1: a fixed-

ratio continuum limit where the pixel width h → 0

with r = ε/h fixed, and an asymptotic limit where

r = ε/h is again fixed but rather than taking h to

zero, we explore the asymptotic dependence of the

solution on h when it is very small.

– We use the above two limits to explain the origins

of kinking and blur artifacts in Algorithm 1, and

how to rectify them. Among other things, we prove

that any variant of the direct form of Algorithm 1

must exhibit kinking artifacts, whereas this is not

the case for our proposed semi-implicit extension

(Section 7.1.1).

While our present work focuses on inpainting, our re-

sults - in particular the asymptotic limit - are abstract

results that can be applied more generally. An example

of a situation where this comes up is the use of damped

Jacobi iteration for solving a linear system

Ax = b

when A is an M-matrix (that is, has a positive diagonal

and negative or zero off-diagonal elements). Section 8

demonstrates this by applying our asymptotic limit to

predict the evolution of the error in damped Jacobi ap-

plied to a 1-d convection-diffusion problem with Dirich-

let boundary conditions.

3 Review of main methods

Here we briefly review the main inpainting methods of

the general form sketched in Algorithm 1.

Telea’s algorithm. The earliest algorithm (to our knowl-

edge) appearing in the literature and of the form sketched

in Algorithm 1, Telea’s algorithm [38] is also the only

such algorithm to use a different formula for uh(x) than

the expression (1) appearing in Algorithm 1 (see Re-

mark 3). Instead of computing uh(x) a weighted aver-

age of uh(y) evaluated at nearby already filled pixels y,

it takes a weighted average of the predictions that each

of these pixels makes, based on linear extrapolation, for

uh(x). That is,

uh(x) =

∑
y∈Bε,h(x)∩(Ωh\D(k)

h)
wε(x,y)upredicted(x)∑

y∈Bε,h(x)∩(Ωh\D(k)
h)

wε(x,y)
,

(5)

where

upredicted(x) := uh(y) +∇huh(y) · (x− y)

and ∇huh(y) denotes the centered difference approxi-

mation to the gradient of uh at y, that is

∇huh(y) :=
1

2

(
uh(y + e1)

− uh(y − e1), uh(y + e2)− uh(y − e2)
)
.

Analysis of Shell-Based image inpainting 11

As we have already noted in Remark 3, this approach

has a disadvantage in that it results in the loss of the

stability property (4). Moreover, the predictions based

on linear extrapolation can become highly inaccurate

when y is on an edge in Ωh\D(k)
h , leading to significant

over or undershooting, visible as bright or dark spots

as in Figure 7 and Figure 8. Perhaps in recognition

of this, the gradient term was dropped from (5) in all

subsequent algorithms. The weights in this case are

wε(x,y) = dir(x,y) · dst(x,y) · lev(x,y),

where

dir(x,y) :=
x− y

‖x− y‖
·N(x),

dst(x,y) :=
d2

0

‖x− y‖2
,

lev(x,y) :=
T0

1 + |T (y)− T (x)|
,

and T (x) denotes the Euclidean distance from x to

the (original) boundary of the inpainting domain, and

N(x) = ∇hT (x) (estimated based on central differ-

ences). T is precomputed using the fast marching method.

Telea’s algorithm uses the default onion shell ordering,

that is “ready(x) ≡ true”.

Coherence transport. Coherence transport [7] im-

proves upon Telea’s algorithm by adapting the weights

in order to encourage extrapolation of isophotes in the

direction of their tangent. This is done by calculating

a “local coherence direction” g(x) in terms of a mod-

ified structure tensor. Coherence transport calculates

the color of a given pixel to be filled using the formula

(1) in Algorithm 1 with weights

wε(x,y) =
1

‖y − x‖
exp

(
− µ

2

2ε2
(g⊥(x) · (y − x))2

)
,

(6)

and with Aε,h(x) = Bε,h(x) - see Figure 10(a) and Fig-

ure 10(c). Like Telea’s algorithm, coherence transport

uses the default onion shell ordering, that is “ready(x) ≡
true”.

Coherence transport with adapted distance func-

tions. In a subsequent work [31], März made improve-

ments to coherence transport by replacing the default

onion shell ordering with one based on a variety of non-

Euclidean distance functions. One such distance func-

tion defines an “active boundary” Γh ⊆ ∂Dh defined

by

Γh := {∂Dh : 〈g(x),N(x)〉2 > γ}
where γ > 0 is a small constant. The non-Euclidean

distance to boundary T ∗h is then computed as the Eu-

clidean distance to the active boundary. The algorithm

(a) Aε,h(x) = Bε,h(x). (b) Aε,h(x) = B̃ε,h(x).

(c) Illustration of the (normalized)
weights (6) for µ = 10.

Fig. 10: Neighborhoods and weights for coher-

ence transport and Guidefill: Here we illustrate

the neighborhoods Aε,h(x) and weights (6) used by

coherence transport and Guidefill. In each case ε =

3px and g(x) = (cos 73◦, sin 73◦). Coherence trans-

port (a) uses the lattice-aligned discrete ball Aε,h(x) =

Bε,h(x), while Guidefill (b) uses the rotated discrete

ball Aε,h(x) = B̃ε,h(x). The ball B̃ε,h(x) is rotated so
that it is aligned with the line L (shown in red) passing

through x parallel to g(x). In general B̃ε,h(x) contains

“ghost pixels” lying between pixel centers, which are

defined using bilinear interpolation of their “real” pixel

neighbors. Both use the same weights (6) illustrated in

(c). The parameter µ controls the extent to which the

weights are biased in favor of points lying on or close

to the line L.

is modified so that at any given iteration, only a subset

of boundary pixels are filled - namely those minimizing

T ∗h . That is

ready(x) = true⇔ x ∈ argminy∈∂Dh T
∗
h (y).

This adaptation leads to improvements in the long range

extrapolation of isophotes, as in Figure 4.

Guidefill. Guidefill [26] is a recent inpainting algo-

rithm designed to address, among other things, the kink-

12 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

ing issues in Figure 5(b) and Figure 6. While coher-

ence transport is able to extrapolate along guidance

direction g(x) only if g(x) = λ(v − x) for some v ∈
Bε,h(x) (see Figure 5(b)), Guidefill replaces the lattice

aligned discrete ball Bε,h(x) with the rotated discrete

ball B̃ε,h(x) aligned with the local transport direction

g(x), so that g(x) = λ(v − x) for some v ∈ B̃ε,h(x) is

always true. The rotated ball B̃ε,h(x) contains “ghost

pixels” lying between pixel centers which are defined

using bilinear interpolation. See Section 4 for a deeper

discussion of ghost pixels, as well as Figure 10(a)-(b)

for an illustration of Bε,h(x) and B̃ε,h(x).

Guidefill uses the same weights (6) as coherence

transport (illustrated in Figure 10(c)) and similarly to

the latter’s extension [31], it has a way of automatically

determining a good fill order. Unlike coherence trans-

port which computes g(x) concurrently with inpaint-

ing, Guidefill computes a guide field g(x) : Dh → R2

prior to inpainting. The guide field is computed based

on splines which the user may adjust in order to influ-

ence the results. It is used to automatically compute a

good fill order by computing for each x ∈ ∂Dh a confi-

dence C(x) ∈ [0, 1] inspired by Criminisi et al. [16] and

given by

C(x) =

∑
y∈B̃ε,h(x)∩(Ω\D(k)) wε(x,y)∑

y∈B̃ε,h(x) wε(x,y)
, (7)

and then only filling those pixels for which C(x) > c,

where c ∈ (0, 1) is a small constant. That is

ready(x) = 1(C(x) > c) (8)

Guidefill was designed for use as part of a 3D conver-

sion pipeline, and as such makes use of a set Bh of

“bystander pixels” which are neither inpainted nor may

be used for inpainting. However, this is not relevant to

our current investigation and we will assume Bh = ∅
throughout. As shown in Figure 5(c) - Guidefill is able

to largely, but not completely, eliminate kinking arti-

facts. It was in the hope of overcoming this that we

designed the semi-implicit version of Algorithm 1 dis-

cussed in Section 5.

Remark 4 Note that we have deliberately excluded the

point x from the update formula (1) in Algorithm 1,

even if the set Aε,h(x) contains x. This is not done in

any of the methods [38,7,31,26] we have just discussed,

but it makes no difference to them or any other variant

of the direct form of Algorithm 1, because the subrou-

tine FillRow only involves sums taken over Aε,h(x) ∩
(Ω\D(k)), which never contains x. However, the semi-

implicit extension of Algorithm 1 expresses uh(x) as a

sum of uh(y) over a set of points that might include

x. This creates problems with weights such as (6) for

which wε(x,x) = ∞. See Appendix A for further de-

tails.

4 Ghost pixels and equivalent weights

Because ghost pixels are defined using bilinear interpo-

lation, any sum over a finite set of ghost pixels A(x)

can be converted into a sum over an equivalent set of

real pixels with equivalent weights1, that is∑
y∈A(x)

w(x,y)uh(y) =
∑

y∈Supp(A(x))

w̃(x,y)uh(y)

where Supp(A(x)) denotes the set of real pixels needed

to define uh(y) for each y ∈ A(x) and w̃ denotes a set

of equivalent weights. This works because each uh(y) is

itself a weighted sum of the form

uh(y) =
∑
z∈Z2

h

Λz,h(y)uh(z),

where {Λz,h}z∈Z2
h

denote the basis functions of bilinear

interpolation associated with the lattice Z2
h. This is il-

lustrated in Figure 11(a)-(b), where we show a heat map

of the weights (6) over the set B̃ε,h(x)\{x} for µ = 100

and ε = 3px, as well as a similar heat map of the mod-

ified weights over Supp(B̃ε,h(x)\{x}) ⊆ Dh(Bε,h(x)).

Note that even though B̃ε,h(x)\{x} does not contain

the point x, the support of this set does. This will be

important in Section 5. Here we briefly list some prop-

erties of equivalent weights, including an explicit for-

mula. Proofs are sketched, but details are deferred to

Appendix B.

Properties of equivalent weights Properties 1-3

deal with a general finite set A(x) and general weights

w(x,y), while properties 4-6 deal with the specific set

Aε,h(x) ⊂ Bε(x) and the specific weights wε(x,y) obey-

ing (3).

1. Explicit formula:

w̃(x, z) =
∑

y∈A(x)

Λy,h(z)w(x,y). (9)

2. Preservation of total mass:∑
y∈A(x)

w(x,y) =
∑

y∈Supp(A(x))

w̃(x,y). (10)

3. Preservation of center of mass (or first moment):∑
y∈A(x)

w(x,y)y =
∑

y∈Supp(A(x))

w̃(x,y)y. (11)

1 note that here we mean a general family of finite sets
A(x) ∈ R2 and general weights w(x,y). We do not mean the
specific family of sets Aε,h(x) or the specific weights wε(x,y),
which have special properties.

Analysis of Shell-Based image inpainting 13

(a) Heatmap of weights (6)
over B̃ε,h(x)\{x}.

(b) Heatmap of equiv-
alent weights over
Supp(B̃ε,h(x)\{x}).

(c) Heatmap of equivalent
weights over Dh(Bε,h(x)).

Fig. 11: Ghost pixels and equivalent weights: Be-

cause ghost pixels are defined using bilinear interpola-

tion, any weighted sum over a set of ghost pixels Aε,h(x)

is equivalent to a sum with equivalent weights over real

pixels in the set Supp(Aε,h(x)), defined as the set of real

pixels needed to define each ghost pixel y in Aε,h(x). We

illustrate this in (a)-(c) using Guidefill with ε = 3px,

g = (cos 77◦, sin 77◦), and µ = 100. In (a), the (nor-

malized) weights (6) are visualized as a heat map over
B̃ε,h(x)\{x}. In (b), we show the equivalent weights

over Supp(B̃ε,h(x)\{x}) ⊆ Dh(Bε,h(x)) (this contain-

ment comes from (14) in Remark 6). Note that even

though B̃ε,h(x)\{x} does not contain the point x, the

support of this set does. In (c), we visualize the equiva-

lent weights over the set Dh(Bε,h(x)), which is strictly

larger than Supp(B̃ε,h(x)\{x}). For reference, we in-

clude the line parallel to g in green.

4. Inheritance of non-negativity:

w̃ε(x, z) ≥ 0 for all z ∈ Supp(Aε,h(x)). (12)

5. Inheritance of non-degeneracy condition (3):∑
y∈Supp(Aε,h(x)∩(Ω\D(k)))

w̃ε(x,y) > 0. (13)

6. Universal support: For any n ∈ Z, we have

Supp(Aε,h(x) ∩ {y ≤ nh}) ⊆ Dh(Bε,h(x)) ∩ {y ≤ nh}
⊆ Bε+2h,h(x) ∩ {y ≤ nh}.

where {y ≤ nh} := {(x, y) ∈ R2 : y ≤ nh}, and

where Dh is the dilation operator defined in our sec-

tion on notation.

Proof Most of these properties are either obvious or

are derived based on a simple exercise in changing the

order of nested finite sums. Properties (10) and (11)

are slightly more interesting - they follow from the fact

that the bilinear interpolant of a polynomial of degree

at most one is just the polynomial again. Note that an

analogous formula for preservation of the second mo-

ment does not hold, because a quadratic function and

its bilinear interpolant are not the same thing. The last

identity is based on an explicit formula for the support

of a point. Details are provided in Appendix B. ut

Remark 5 Although we have explicit formula (9) for

the equivalent weights which will occasionally be useful,

most of the time it is more fruitful to think about them

in the following way: To compute w̃ε(x,y) for some real

pixel y, loop over the ghost pixels z such that y ∈
Supp(z). Then, each such z redistributes to w̃ε(x,y) a

fraction of its weight wε(x, z) equal to the proportion

of uh(y) that went into uh(z).

Remark 6 An obvious corollary of the universal sup-

port property (14) is that we also have the containment

Supp(Aε,h(x)) ⊆ Dh(Bε,h(x)) ⊆ Bε+2h,h(x). (14)

Figure 11 illustrates an example where this containment

is strict, and in fact it is not hard to show that this

holds in general. However, (14) is tight enough for our

purposes in this paper.

Remark 7 The main results of this paper, in particular

Theorems 2 and 6, remain applicable if ghost pixels are

defined using a different form of interpolation (rather

than bilinear interpolation as above) so long as that

interpolation scheme can also be expressed in terms of

non-negative basis functions with compact support and

also preserves polynomials of degree one. Moreover, the

fixed-ratio continuum limit (Theorem 6) is identical for

all such interpolation schemes. The asymptotic limit

(Theorem 2) however, is not. One example of an alter-

native interpolation scheme obeying these properties is

Barycentric triangle interpolation [10]. In the future, it

would be interesting the explore alternative interpola-

tion schemes for ghost pixels, however this is beyond

the scope of the current work.

14 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

5 Semi-implicit extension of Algorithm 1

Here we present the semi-implicit form of Algorithm

1, to our knowledge not previously proposed in the lit-

erature, in which instead of computing uh(x) for each

x ∈ ∂readyD
(k)
h independently, we solve for them si-

multaneously by solving a linear system. We call our

method semi-implicit in order to distinguish it from

fully implicit methods in which the entire inpainting

domain {uh(x) : x ∈ Dh} is solved simultaneously, as

is typically the case for most inpainting methods based

on PDEs or variational principles, e.g. [6,13,11]. Specif-

ically, we solve

Lu = f where u = {uh(x) : x ∈ ∂readyD
(k)
h }. (15)

and f is a vector of length |∂readyD
(k)
h |. The explicit en-

tries of L are written in terms of the equivalent weights

w̃ε introduced in Section 4. Defining

S
(k)
ε,h (x) := Supp(Aε,h(x)) ∩ ∂readyD

(k)
h ,

it follows that L couples each x ∈ ∂readyD
(k)
h to its

immediate neighbors in S
(k)
ε,h (x). In particular, we have

(Lu)(x) =

(
1− w̃ε(x,x)

W

)
uh(x)

−
∑

y∈S(k)
ε,h(x)\{x}

w̃ε(x,y)

W
uh(y),

where W is the total mass and can be computed in one

of two ways, using either the original weights wε or the

equivalent weights w̃ε, exploiting preservation of mass

(10):

W :=
∑

y∈S(k)
ε,h(x)∪

(
Supp(Aε,h(x))∩(Ωh\D(k)

h)
) w̃ε(x,y) (16)

=
∑

y∈(Aε,h(x)\{x})∩(Ω\D(k))

wε(x,y). (17)

Generally, (17) is more convenient to work with than

(16), but (16) combined with the inherited non-degeneracy

condition (13) tells us that

∑
y∈S(k)

ε,h(x)

w̃ε(x,y) < W,

because the non-degeneracy conditions implies that a

non-zero proportion of the total weight goes into the

known pixels in Supp(Aε,h(x))∩ (Ω\D(k)
h). From this it

immediately follows that L is strictly diagonally domi-

nant as

|Lx,x| −
∑

y∈∂readyD
(k)
h \{x}

|Lx,y|

=

(
1− w̃ε(x,x)

W

)
−

∑
y∈S(k)

ε,h(x)\{x}

w̃ε(x,y)

W

= 1−
∑

y∈S(k)
ε,h(x)

w̃ε(x,y)

W
> 0.

To compute f , we do not need the concept of equivalent

weights. We have

f(x) =
∑

y∈(Aε,h(x)\{x})∩(Ω\D(k))

wε(x,y)

W
uh(y). (18)

5.1 Solving the linear system

Designing maximally efficient methods for solving (15)

is beyond the scope of this paper - our main purpose

lies in understanding the effect of this extension on the

continuum limit that we will derive later. Therefore, in

this paper we consider only two very simple methods:

damped Jacobi and SOR (successive over-relaxation).

These are natural choices for a number of reasons. First,

since L is strictly diagonally dominant, these methods

are both guaranteed to converge [42, Theorem 3.10, pg.

79], at least in the case ω = 1, where they reduce to

Jacobi and Gauss-Seidel. Second, at least for the semi-

implicit extension of Guidefill, the performance of SOR

is already satisfactory, (see Section 6.2, Proposition 1).

Third, both methods can be implemented with mini-

mal changes to the direct form of Algorithm 1. In fact,

changing the variable “semiImplicit” from “false” to

“true” in Algorithm 1 and executing the “FillBound-

ary” subroutine in parallel is equivalent to solving (15)

using damped Jacobi, with underrelaxation parameter

ω∗ =

(
1− w̃ε(x,x)

W

)
≤ 1. (19)

Similarly, executing the “FillBoundary” subroutine se-

quentially results in SOR with the same underrelax-

ation parameter - see Proposition 3 in Appendix C for

a proof. Note that ω∗ is typically very close 1, so these

methods are very similar to plain Jacobi and Gauss-

Seidel.

Remark 8 The reason Algorithm 1 with “semiImplicit”

set to “true” results in damped Jacobi/SOR, rather

than plain Jacobi/Gauss-Seidel, is because even though

the update formula (1) for the nth iterate u
(n)
h (x) is ex-

pressed as a sum of the (n − 1)st iterate evaluated at

Analysis of Shell-Based image inpainting 15

(a) Original inpainting
problem, inpainting do-
main in yellow.

(b) Inpainting with Guide-
fill.

(c) Inpainting with semi-
implicit Guidefill, 5 SOR it-
erations per shell.

(d) Inpainting with semi-
implicit Guidefill, 50
damped Jacobi iterations
per shell.

Fig. 12: Semi-Implicit Guidefill and Shallow In-

painting Directions: In (a), a line makes a very shal-

low angle of just 2◦ with the inpainting domain, shown

in yellow. This line is then inpainted using first Guide-

fill (b) and then the semi-implicit extension thereof (c).

The latter uses 5 iterations of SOR per shell to solve

the linear system (15) arising in every shell (in this case,

the original image is 2000 × 2000px, so there are 1000
shells). Visually identical results can be obtained us-

ing damped Jacobi, but more than 100 iterations per

shell are required - see Proposition 1. Both methods

use relaxation parameter ω = ω∗ (19) and are given

g = (cos 2◦, sin 2◦), µ = 100, ε = 3px, and use the de-

fault onion shell ordering (smart-order is turned off).

Guidefill kinks while its extension does not. In (d), we

see the result of failing to solve the linear system (15)

to sufficient accuracy by applying too few iterations of

damped Jacobi. In this case only 50 iterations per shell

are used and the extrapolated line gradually fades away.

ghost pixels that do not include x, some of those ghost

pixels may indirectly depend on u
(n−1)
h (x) because they

are defined using bilinear interpolation. The result is

that the nth iterate u
(n)
h (x) depends on u

(n−1)
h (x), which

is true of damped Jacobi/SOR but not of Jacobi/Gauss-

Seidel.

6 Analysis

This section contains our core analysis, firstly of the

convergence properties of semi-implicit Guidefill, then

of the convergence of both Algorithm 1 and its semi-

implicit extension to an asymptotic limit where r = ε/h

is fixed and h > 0 but h � 1 as well as a continuum

limit where (h, ε) → (0, 0) along the ray ε = rh (with

r ∈ N fixed). Next, in Section 7, we will apply our re-

sults to explain some of the artifacts discussed in Sec-

tion 2. We begin with a discussion of some symmetry

assumptions that will hold from now on.

6.1 Symmetry assumptions

We will assume throughout that the inpainting domain

D is the unit square [0, 1) × (0, 1] while the image do-

main is Ω = [0, 1) × (−δ, 1] equipped with Dirichlet

or periodic boundary conditions at x = 0 and x = 1,

and no condition at y = 1. We denote the undamaged

portion of the image by

U := [0, 1)× (−δ, 0] and Uh := U ∩ Z2
h. (20)

We discretize D = [0, 1) × (0, 1] as an N × N array of

pixels Dh = D ∩ (h · Z2) with pixel width h := 1/N .

Specifically, we have

Dh = {(ih, jh) : 0 ≤ i < N, 1 ≤ j ≤ N}.

In order to ensure that the update formula (1) is well

defined, we need ε + 2h < δ, which we achieve by as-

suming h < δ
r+2 (this follows from the inclusion (14)

). We assume that the default onion shell ordering is

used, so that

∂D
(k)
h = {(jh, kh)}Nj=1.

We also assume that the sets Aε,h(x) are translations

of one another, and the weights wε(x,y) depend only

on y−x
ε , that is

wε(x,y) = ŵ

(
y − x

ε

)
For coherence transport and Guidefill this means that

the guidance direction g is a constant.

Remark 9 We make the above assumptions not because

we believe they are necessary, but because they enable

us to make our analysis as simple as possible while still

capturing the phenomena we would like to capture. In

particular, the above two assumptions on the weights

wε and neighborhood Aε,h(x) ensure that the matrix L
given by (15) is either Toeplitz or circulant (depend-

ing on the boundary conditions), and also ensures that

16 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

the random walk we connect Algorithm 1 to in Sec-

tion 6.3 has i.i.d. (independent identically distributed)

increments. Without these simplifications, our already

lengthy analysis would become even more technical.

Numerical experiments (omitted for brevity) suggest

that these assumptions can be weakened, but proving

this is beyond the scope of the present work.

These assumptions give us a high level of symmetry

with which we may rewrite the update formula (1) of

Algorithm 1 in the generic form

uh(x) =

∑
y∈a∗r

wr(0,y)uh(x + hy)∑
y∈a∗r

wr(0,y)
(21)

where

a∗r =

(
1

h
Aε,h(0)\{0}

)
∩ {y ≤ δ},

and δ = −1 for the direct method, while δ = 0 for

the semi-implicit extension. In particular, for coherence

transport we have a∗r = b−r for the direct method and

a∗r = b0r for the extension, where

b0r := {(n,m) ∈ Z2 : 0 < n2 +m2 ≤ r2,m ≤ 0}. (22)

b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2,m ≤ −1}. (23)

Similarly, for Guidefill, we have a∗r = b̃−r for the direct

method and a∗r = b̃0r for the semi-implicit extension,

where

b̃0r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, 0 < n2 +m2 ≤ r2,

nĝ · e2 +mĝ⊥ · e2 ≤ 0}
b̃−r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, n2 +m2 ≤ r2,

nĝ · e2 +mĝ⊥ · e2 ≤ −1},

and ĝ := g/‖g‖ (if g = 0 we set b̃−r = b−r). The sets b−r ,
b0r, b̃

−
r , b̃0r may be visualized by looking at the portion

of Figure 10(a)-(b) on or below the lines y = 0 and

y = −1 respectively. Also important are the dilated

sets b̄0r = D(b0r)∩ {y ≤ 0} and b̄−r = D(b−r)∩ {y ≤ −1}.
These sets are given explicitly by

b̄0r := {(n+∆n,m+∆m) : (n,m) ∈ b0r, (∆n,∆m)

∈ {−1, 0, 1} × {−1, 0, 1},m+∆m ≤ 0} (24)

b̄−r := {(n+∆n,m+∆m) : (n,m) ∈ b−r , (∆n,∆m)

∈ {−1, 0, 1} × {−1, 0, 1},m+∆m ≤ −1}. (25)

This is because the universal support property (14)

gives us the inclusion

Supp(a∗r) ⊆

{
b̄−r ⊆ b−r+2 direct form of Algorithm 1.

b̄0r ⊆ b0r+2 semi-implicit form.

(26)

which will be critical later. The sets b̄−r and b̄0r are il-

lustrated in Figure 13.

(a) Illustration of b̄−r for
r = 3.

(b) Illustration of b̄0r for r =
3.

Fig. 13: Visualization b̄−r and b̄0r: Here we illustrate

the sets

b̄−r := D(b−r) ∩ {y ≤ −1} and b̄0r := D(b0r) ∩ {y ≤ 0}
in the case r = 3. These sets are defined explicitly in

(23) and (24), and D is the dilation operator defined

in the notation section. These sets are important be-

cause depending on whether we use the direct form of

Algorithm 1 or its semi-implicit extension, Supp(a∗r) is

always contained in one or the other. See (26) in the

text.

Definition 1 We call the set a∗r and the weights {wr(0,y) :

y ∈ a∗r} the stencil and stencil weights of a method.

The center of mass of a∗r is defined in the following two

equivalent ways:

C.M. =

∑
y∈a∗r

wr(0,y)y∑
y∈a∗r

wr(0,y)
=

∑
y∈Supp(a∗r) w̃r(0,y)y∑
y∈Supp(a∗r) w̃r(0,y)

.

Here w̃r denote the equivalent weights from Section 4,

and the above identity follows from (10) and (11). The
center of mass of a∗r will play a critical role both in the

continuum limit of Algorithm 1 (where it is the trans-

port direction of the resulting transport PDE) and in

the connection to random walks (where, after multipli-

cation by h, it is the mean of the increments of the

walk).

Under these assumptions, the matrix L from (15) is

independent of k (that is, we solve the same linear sys-

tem for every shell), and moreover L becomes a Toeplitz

matrix (Dirichlet boundary conditions) or circulant ma-

trix (periodic boundary conditions). For a given pixel

x at least r+2 pixels away from the boundary at x = 0

and x = 1, that is x ∈ {(jh, kh) : r+2 ≤ j ≤ N−r−2},
it takes on the form

(Lu)(x) =

(
1− w̃r(0,0)

W

)
uh(x)

−
∑

y∈sr\{0}

w̃r(0,y)

W
uh(x + hy),

Analysis of Shell-Based image inpainting 17

where by (26) we have

sr = Supp(a∗r) ∩ (Z× {0})
⊆ {−(r + 2)e1,−(r + 1)e1, . . . , (r + 1)e1, (r + 2)e1}.

If x is not at least r+2 pixels away from the boundaries,

then the formula changes in the usual way for Toeplitz

and circulant matrices - we assume the reader is familiar

with this and no further discussion is needed. Under the

same assumptions the vector f becomes

f =
∑

y∈Supp(a∗r)\(Z×{0})

w̃r(0,y)

W
uh(x + hy)

where Supp(a∗r)\(Z× {0}) ⊆ b−r+2. We also define

W̃ :=

r+2∑
j=−r−2

w̃r(0, je1) and w̃0,0 := w̃r(0,0).

(27)

For a given point x ∈ ∂D(k)
h , (again, assuming x is far

enough from the boundary) the ratio W̃
W gives the frac-

tion of the mass of the stencil (Definition 1) centered at

x that gets “leaked” to the unknown pixels in ∂D
(k)
h ,

while
w̃0,0

W gives the fraction that gets leaked to x. To-

gether, these give a measure of the diagonal dominance

of L, as we have∑
j 6=i |Lij |
|Lii|

=
W̃ − w̃0,0

W − w̃0,0
.

The smaller this ratio is, the stronger the diagonal dom-

inance of L, and the faster damped Jacobi and SOR can

be expected to converge - see Proposition 1 for explicit

formulas.

For semi-implicit Guidefill with guidance direction

g = (cos θ, sin θ), it can be shown that L becomes a

lower triangular matrix in the limit µ → ∞, provided

we order unknowns left to right if cos θ > 0 and right

to left otherwise (see Appendix D). This gives us a hint

that Gauss-Seidel and SOR might be very effective for

the solution of (15) in this case, and indeed Proposition

1 confirms this.

6.2 Convergence rates of damped Jacobi and SOR for

semi-implicit Guidefill

Here we derive tight bounds on the convergence rates of

damped Jacobi and SOR for solving (15) in the semi-

implicit extension of Guidefill described in Section 5,

under the symmetry assumptions discussed above, and

in the limit µ → ∞ (recall that µ is the parameter

from the weights (6) controlling the extent to which

weights are biased in favor of pixels in the directions

±g). We will prove that in each case the parameter

value ω = 1 is optimal, but also pay special attention to

the case ω = ω∗ given by (19), since this is the value of ω

that our proposed implementation of the semi-implicit

extension in Algorithm 1 uses. We consider general ω

mainly in order to demonstrate that the choice ω = ω∗,

while not optimal, is close enough to optimal not to

matter in practice.

We will assume thatD = (0, 1]2 with Dirichlet bound-

ary conditions, as this simplifies our analysis of SOR -

for damped Jacobi, we could just as easily have assumed

periodic boundary conditions. We will measure conver-

gence rates with respect to the induced infinity norm,

which obeys the identity

‖A‖∞ =
N

max
i=1

N∑
j=1

|aij | (28)

for any N ×N matrix A. Note that the iterates of the

error e(0), e(1), . . . associated with any stationary iter-

ative method with iteration matrix M obey the bounds

‖e(n)‖ ≤ ‖M‖n‖e(0)‖ and R(e) :=
n

√
‖e(n)‖
‖e(0)‖

≤ ‖M‖

(29)

for any vector norm ‖ · ‖ and induced matrix norm. We

will be interested in these identities in the particular

case that the vector norm is ‖ · ‖∞, and the stationary

iterative method is damped Jacobi or SOR. Here

e(n) := uh − u(n)
h

denotes the difference between the exact solution to

(15), found by first solving (15) to machine precision,

with the approximate solution at iteration n.

Proposition 1 Suppose semi-implicit Guidefill with guid-

ance direction g = (cos θ, sin θ) is used to inpaint the

square [0, 1)2 under the assumptions above, using ei-

ther damped Jacobi or SOR to solve (15). Suppose that

in the case of SOR, ∂D
(k)
h = {(ih, kh)}N−1

i=0 is ordered

from left to right if cos θ ≥ 0 and from right to left oth-

erwise. Let L be as in (16) and define L = D−L−U ,

where D, −L, and −U are the diagonal, strictly lower

triangular, and strictly upper triangular parts of L re-

spectively. Let Jω and Gω denote the iteration matrices

of damped Jacobi and SOR respectively with relaxation

parameter ω, that is

Jω = I − ωD−1L
Gω = (I − ωD−1L)−1((1− ω)I +D−1U).

18 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Let r = ε/h and define θc = arcsin(1/r). Define, for

θc ≤ θ ≤ π − θc, j∗ = b 1
sin θ c ≤ r. Let W be the total

weight (17), let W̃ and w̃0,0 be as in (27). Then, in the

limit as µ→∞, we have

W =

r∑
j=1

1

j
, w̃0,0 = (1− sin θ)(1− | cos θ|)

W̃ =

{∑r
j=1

1
j − r sin θ if θ ∈ (0, θc] ∪ [π − θc, π)∑j∗

j=1
1
j − j

∗ sin θ if θ ∈ (θc, π − θc)

and

‖Jω‖∞ = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
for ω ∈ (0, 2)

‖Gω‖∞ =
|1− ω|

1− ω W̃−w̃0,0

W−w̃0,0

for ω ∈ (0, 1],

where ‖ · ‖∞ is the induced infinity matrix norm (28).

The optimal ω ∈ (0, 2) is in both cases independent of

θ and equal to ω = 1, where we obtain

‖J1‖∞ = 1− r sin θ∑r
j=1

1
j − (1− sin θ)(1− | cos θ|)

if θ ∈ (0, θc] ∪ [π − θc, π),

‖J1‖∞ = 1−
∑r
j=j∗+1

1
j + j∗ sin θ∑r

j=1
1
j − (1− sin θ)(1− | cos θ|)

if θ ∈ (θc, π − θc), and

‖G1‖∞ = 0.

Proof Appendix D. ut

Corollary 1 For the special case of

ω∗ =

(
1− w̃0,0

W

)
=

(
1− (1− sin θ)(1− | cos θ|)∑r

j=1
1
j

)

that is, the parameter value equivalent to running Al-

gorithm 1 with “semiImplicit” set to true, we obtain

‖Gω∗‖∞ =
w̃0,0

W − W̃k + w̃0,0

‖Jω∗‖∞ =
W̃k

W

or

‖Gω∗‖∞ =
(1− sin θ)(1− | cos θ|)

r sin θ + (1− sin θ)(1− | cos θ|)

‖Jω∗‖∞ = 1− r sin θ∑r
j=1

1
j

(a) (b)

(c) (d)

Fig. 14: Convergence rates of damped Jacobi and

SOR for semi-implicit Guidefill: Here we compare

the experimentally measured convergence rates of the

implementation of semi-implicit Guidefill outlined in

the blue text of Algorithm 1 (r = 3, g = (cos θ, sin θ)

and µ = 100) with the theoretical bounds on ‖Jω∗‖∞
and ‖Gω∗‖∞ from Corollary 1. Note the excellent per-

formance of SOR in comparison with damped Jacobi.

if θ ∈ (0, θc] ∪ [π − θc, π) and

‖Gω∗‖∞ =
(1− sin θ)(1− | cos θ|)∑r

j=j∗+1
1
j + j∗ sin θ + (1− sin θ)(1− | cos θ|)

‖Jω∗‖∞ = 1−
∑r
j=j∗+1

1
j + j∗ sin θ∑r
j=1

1
j

if θ ∈ (θc, π − θc). See Figure 14 for a plot of ‖Gω∗‖∞
and ‖Jω∗‖∞ as a function of θ for r = 3.

Proof This follows from direct substitution of ω∗ given

by (19) into Proposition 1. ut

As noted in Section 5, the implementation of semi-

implicit Guidefill outlined in Algorithm 1 (blue text) is

equivalent to solving the linear system (15) iteratively

using damped Jacobi (parallel implementation) or SOR

(sequential implementation), with relaxation parameter

ω∗ given by (19). Figure 14 compares the experimen-

tally measured convergence rates of the implementation

of semi-implicit Guidefill outlined in the blue text of Al-

gorithm 1 (r = 3, g = (cos θ, sin θ) and µ = 100) with

the theoretical bounds on ‖Jω∗‖∞ and ‖Gω∗‖∞ from

Analysis of Shell-Based image inpainting 19

Corollary 1. Specifically, (a) and (c) confirm experi-

mentally the first bound in (29) in the cases M = Jω∗

and M = Gω∗ , that is, damped Jacobi and SOR with

relaxation parameter ω∗, for the case θ = 2◦. The in-

painting problem in this case is the same as in Figure

12(a), and all the parameters of semi-implicit Guidefill

are the same. The “exact” solution uh was found by

first solving (15) to machine precision. In each case, we

measured convergence rates only within the first “shell”

of the inpainting problem. Next, (b)-(d) confirm exper-

imentally the second bound in (29), as a function of θ.

The inpainting problem is the same as the one in Fig-

ure 5(a), and all parameters are the same. In this case

we vary θ from 1◦ up to 179◦ in increments of one de-

gree, in each case iteratively solving (15) (again, only

for the first shell), computing R(e), and comparing with

‖Jω∗‖∞ and ‖Gω∗‖∞. Note the excellent performance

of SOR in comparison with damped Jacobi.

Although our choice of ω∗ is non-optimal, it is con-

venient to implement and the difference in performance

is negligible. In particular, for r = 3 we have ‖Gω∗‖∞ ≤
R(e) ≤ 0.06 indpendent of θ. Moreover, it follows from

Corollary 1 that ‖Gω∗‖∞ is decreasing function of r for

each fixed θ, so this bound holds for all r ≥ 3 as well.

6.3 Convergence of Algorithm 1 to continuum and

asymptotic limits

In this section we prove the convergence of the direct

and semi-implicit forms of Algorithm 1 to an “asymp-

totic limit” and a “fixed-ratio continuum limit”. Then,

in Section 7, we use these limits to explain the kinking

and blur artifacts of Algorithm 1 observed in practice as
outlined in Section 2. We begin by defining what these

limits are:

Definition of the continuum limit. We wish to prove

convergence of the direct and semi-implicit forms of Al-

gorithm 1 to a continuum limit u given by the transport

equation

∇u · g∗r = 0, u
∣∣∣
y=0

= u0

∣∣∣
y=0

u
∣∣∣
x=0

= u
∣∣∣
x=1

(30)

Specifically, we wish to prove convergence when we take

(h, ε) → (0, 0) along the path ε = rh (with r ∈ N
fixed). Because of the assumptions we have made in

Section 6.1, g∗r will turn out to be a constant equal to

the center of mass of the stencil a∗r with respect to the

stencil weights {wr(0,y) : y ∈ a∗r} (Definition 1), that

is

g∗r =

∑
y∈a∗r

wr(0,y)y∑
y∈a∗r

wr(0,y)
. (31)

As we will allow discontinuous boundary data u0, the

solution to (30) must be defined in a weak sense. How-

ever, since g∗r is a constant, this is simple. So long as

g∗r · e2 6= 0, we simply define the solution to the trans-

port problem (30) to be

u(x) = u0(Πθ∗r
(x)) (32)

where

Πθ∗r
(x, y) = (x− cot(θ∗r)y mod 1, 0). (33)

We call Πθ∗r
: D → ∂D the transport operator asso-

ciated with (32). The mod 1 is due to our assumed

periodic boundary conditions and

θ∗r = θ(g∗r) ∈ (0, π)

is the counterclockwise angle between the x-axis and

the line Lg∗r := {λg∗r : λ ∈ R}.

Remark 10 When u0 is smooth, convergence is straight-

forward to prove - we did so in [26, Theorem 1] for the

direct form of Algorithm 1 using a simple argument

based on Taylor series. However, in this paper we are

interested in a more general setting where u0 may not

be smooth and Taylor series may not be available. In-

stead of Taylor series, our main tool will be a connection

to stopped random walks.

Definition of the asymptotic limit. Unlike the con-

tinuum limit, which finds the limiting value of uh when

(h, ε) → (0, 0) along the path ε = rh with r ∈ N fixed,

the asymptotic limit gives the asymptotic dependence

of uh on h when r = ε/h is fixed and h� 1. For a fixed

x = (x, y) ∈ Dh the asymptotic limit is computed in

the following two steps:

1. Given discrete boundary data u0 : Uh → R, generate

new boundary data ũ0 : ∂Uh → R generated from u0

by convolving it with a discrete convolution kernel

g̃σ(y,h)(x1, x2) = gσ(y,h)(x1)∆(x2),

where gσ(y,h) is a one-dimensional Gaussian with

variance dependent on both h and y, and ∆ is a

function that “mixes” the top r rows of u0 by taking

a convex combination with weights independent of

both h and y.

2. uh is now given by the solution to the same trans-

port equation (30) as in the fixed ratio continuum

limit, but with the boundary data u0 replaced by

ũ0 = g̃σ(y,h) ∗ u0. That is,

uh(x, y) = (g̃σ(y,h) ∗ u0)(Πθ∗r
(x, y)) + o(1).

20 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Remark 11 By (g̃σ(y,h) ∗ u0)(x) we mean the discrete

circular convolution

(g̃σ(y,h) ∗ u0)(x) :=
∑
y∈Uh

u0(y)g̃σ(y,h)(x− y),

where the x-coordinate of x − y is defined modulo 1.

Strictly speaking, for this definition to coincide with

the usual definition of discrete convolution given in, for

example, [35, Ch. 6], we must have x− y ∈ Uh. In our

case x may lie between pixel centers, so we do not make

this restriction.

6.4 Connection to stopped random walks.

The convergence of Algorithm 1 to both limits above is

established based on a connection between Algorithm 1

and stopped random walks. The purpose of this section

is to explain this connection.

To begin, Note that the update formula (21) gives

a relationship between uh(x) and its immediate neigh-

bors in a∗r , which for now we assume obeys a∗r ⊆ b−r or

a∗r ⊆ b0r (if this is not the case we can apply the method

of equivalent weights from Section 4). Now suppose we

modify (21) iteratively by repeated application of the

following rule: for each y ∈ a∗r , if x + hy ∈ Dh, replace

uh(x + hy) in the RHS of (21) with the RHS of a ver-

sion of (21) where the LHS is evaluated at x + hy (in

other words, we are substituting (21) into itself). Oth-

erwise, if x+hy ∈ Uh, we are already in the undamaged

portion of the image, and we may replace uh(x + hy)

with u0(x + hy). Repeat this procedure until uh(x) is

entirely expressed as a weighted sum of u0

∣∣∣
Uh

, that is

uh(x) =
∑
y∈Uh

ρ(y)u0(y), (34)

for some as of yet unknown weights ρ. Denoting x :=

(nh,mh), then for the direct form of Algorithm 1 this

procedure will terminate after m steps, as in this case

(21) expresses uh(x) in terms of neighbors at least h

units below it. On the other hand, for the semi-implicit

extension, (34) has to be interpreted as a limit.

This elimination procedure has a natural interpre-

tation in terms of stopped random walks. Since the

weights {w(0,y)
W }y∈a∗r are non-negative and sum to 1,

we can interpret them as the density of a two dimen-

sional random vector Z := (U, V) taking values in b−r
or b0r with density

P (Zi = y) =
wr(0,y)

W
. (35)

Moreover, defining the random walk

Xj := (Xj , Yj) = (nh,mh) + h

j∑
i=1

Zi (36)

(a) k = 0 (b) k = 4

(c) k = 17 (d) k = 40

Fig. 15: Connection to Stopped Random Walks:

Here we illustrate the connection between the elimina-

tion procedure described in the text and stopped ran-

dom walks. In (a) the pixel x (colored black) is ex-

pressed as a weighted average (1) of its neighbors in

in b−r (colored in red). In this case we use the direct

form of Algorithm 1 with r = 3 and uniform weights

(which is why each neighbor in b−r is the same shade

of red). In (c)-(d) we have applied k = 4, k = 17, and

k = 40 steps of our elimination procedure (which essen-

tially consists of substituting (1) into itself repeatedly

- details in the text), and uh(x) is now expressed as

weighted sum of uh(y) for whichever pixels y are col-

ored red, with darker shades of red indicating greater

weight. The purpose of this procedure is to express the

color of a given pixel x deep inside the inpainting do-

main entirely in terms of the colors of known pixels

below the line y = 0 (shown in blue).

with {Zi} i.i.d. and equal to Z in distribution, and

defining

τ = inf{j : Xj ∈ Uh} = inf{j : Yj ≤ 0}, (37)

then after k steps of elimination, we have

uh(x) =
∑
y∈Ωh

ρXj∧τ (y)uh(y),

where ρXj∧τ denotes the density of Xj∧τ . Denoting the

mean of Z by (µx, µy) note that by (31) we have the

equivalence

(µx, µy) = g∗r .

Analysis of Shell-Based image inpainting 21

In other words, the mean of Z is precisely the transport

direction of our limiting equation (30). The condition

g∗r · e2 6= 0, which we needed for (30) to be defined,

implies µy < 0. In the nomenclature of random walks,

this means that Xk has negative drift in the y direc-

tion, while τ is the first passage time through y = 0.

Fortunately, this type of random walk and this type of

first passage time have been studied and are well under-

stood. See for example [23, Chapter 4], [24], [21], [22].

The book [23] also provides an good overview of stopped

random walks in general. In particular, we know imme-

diately that τ is a stopping time, P (τ = ∞) = 0, and

τ has finite moments of all orders [23, Chapter 3, The-

orems 1.1 and 3.1]. It follows that

uh(x) =
∑
y∈Uh

ρXτ (y)u0(y) = E[u0(Xτ)]. (38)

See Figure 15 for an illustration of these ideas.

Lattice coordinates and absolute coordinates

Our derivation of the asymptotic limit leverages known

results for stopped random walks. However, the results

most relevant to us concern random walks on the inte-

ger lattice Z2, whereas our random walk is on the scaled

lattice h · Z2. In order to facilitate conversion between

our setting and the setting of the results we quote, we

make the following definition

Definition 2 Given x = (x, y) = (ih, jh) ∈ Dh ⊂ h ·
Z2, we refer to (i, j) ∈ Z2 as the lattice coordinates of

x, while we refer to (x, y) = (ih, jh) as the absolute

coordinates of x.

Overshoot and the Ladder Process Associated
with Xτ

In general, we expect that the stopped random walk

Xτ will overshoot the line y = 0. The (asymptotic) na-

ture of the overshoot probability density is well under-

stood and is described briefly here (we will need it in

Section 6.5). However, in order to describe it, we first

need to define the ladder process associated with Xτ .

The strict ladder process {ni, Sni}i≥1 associated with

the y-coordinate of Xτ is given by

Sn =

n∑
i=1

Vi, (39)

n1 = inf{n : Vn < 0} (40)

ni+1 = inf{n : Sn < Sni}. (41)

Following the notation in [36], we denote by H the law

of Vn1
, and write νy = E[Vn1

]. The (asymptotic) over-

shoot function ∆ is then given by the following identity

[36, Equation (1.4)]:

∆(kh) = H((−∞, k))/νy. (42)

in absolute coordinates or

∆(k) = H((−∞, k))/νy. (43)

in lattice coordinates (definition 2). Note that H here

is a probability measure, so that H((−∞, k)) refers to

the measure of the interval (−∞, k).

6.5 Derivation of the Asymptotic limit

The key idea of our asymptotic limit is to combine (38)

with known results on the asymptotic distribution of

ρXτ started from (x, y) = (nh,mh) ∈ Dh when m is

very large (for fixed y, this is equivalent to h very small).

This problem has been considered by a number of au-

thors, including [23, Chapter 4], [24], [21], [22], where it

is shown that ρXτ
obeys a central limit theorem, asymp-

totically approaching a normal distribution. However,

for our purposes it is not enough to know the asymp-

totic distribution of the stopped walk for m � 1, we

must also know the rate of convergence as a function of

m. While many authors have considered the former, to

our knowledge only [30], [36] have considered the latter.

Our results here are based on [36], specifically the corol-

lary immediately following Theorem 3.3. The following

theorem restates this result, along with a modified ver-

sion adapted to our periodic boundary conditions.

Theorem 1 Let Xτ := (Xτ , Yτ) ∈ Z2 be a stopped

random walk started from (n,m) ∈ Z2 and with i.i.d.

increments ∆Xi = Zi. Assume that Xτ has negative

drift, that is (µx, µy) = E[Zi] obeys µy < 0 and define

the stopping time τ by

τ := inf{n : Yn < 0}.

Define the characteristic function ϕZi of Zi by

ϕZi(u) = E[e
√
−1Zi·u]

and assume that |ϕZi | < 1 unless each component of u

is an integer multiple of 2π. Then

lim
m→∞

√
m|ρXτ

(i, j)− G̃σ(m),µ(i, j)| = 0 (44)

uniformly in (i, j) ∈ Z2, where

G̃σ(m),µ(i, j) = Gσ(m),µ(i)∆(j)

Gσ(m),µ(i) =
e
− (i−µ)2

2σ(m)2

√
2πσ(m)

with

σ(m)2 =
γ2m

|µy|3
where γ2 = Var(µxV1 − µyU1). (45)

22 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

and

µ = n− µx
µy
m

and ∆(j) is given by (43). Moreover, if the domain of

Xτ is changed to

Xτ ∈ {0, 1, . . . , N − 1} × {−(r + 2),−(r + 1), . . . , N}

with periodic boundary condition 0 ∼ N in the x-direction,

and if m ≤ N while Zi := (Ui, Vi) obeys Vi ≤ 0, then

the same result holds but with Gσ(m),µ(i) replaced by

G∗σ(m),µ,N (i) =
e
− d

circ
N (i,µ∗)2

2σ(m)2

√
2πσ(m)

where

µ∗ = n− µx
µy
m mod N.

and dcirc
N denotes the circular distance defined for x, y ∈

R by

dcirc
N (x, y) = min(x− y mod N, y − x mod N) (46)

If µ = 0, we write Gσ and G∗σ,N in place of Gσ,0 and

G∗σ,0,N .

Proof The first statement follows from the (un-numbered)

Corollary immediately following Theorem 3.3 in [36].

The second statement is a simple corollary, the details

of which may be found in Appendix F. ut

The asymptotic limit follows straightforwardly from

Theorem 1 and (38) once we have completed the follow-

ing tasks:

1. The second statement of Theorem 1 gives the asymp-

totic probability thatXτ = i for every i = 0, . . . , N−
1 for our random walk with periodic boundary con-

ditions. However, the Gaussian G∗σ(m),µ,N that Xτ

converges to is not normalized with respect to sum-

mation over {i}N−1
i=0 . Lemma 1 addresses this prob-

lem by allowing us to convert statements aboutG∗σ(m),N

into statements about g∗σ(m),N , a discrete Gaussian

that is normalized with respect to summation over

the set {i}N−1
i=0 .

2. The assumption in Theorem 1 on the character-

istic function of Zi can be inconvenient to check.

Definition 3 gives an equivalent geometric condition

(which can typically be verified by inspection) that

is proven in Lemma 2 to be equivalent.

3. Theorem 1 is expressed with respect to the integer

lattice Z2, whereas our random walk is on the scaled

lattice h · Z2. Lemma 3 uses Theorem 1 combined

with Lemma 1 and Lemma 2 to prove a version of

Theorem 1 applicable to our setting.

4. We need to derive an expression for ∆(x2). This is

done in Lemma 4.

5. We need to derive a bound on the probability of Xτ

deviating significantly from Πθ∗r
(x). This is done in

Lemma 5.

Once the above items are taken care of, we prove con-

vergence to the asymptotic limit in Theorem 2.

We begin with task one. For now, we work in lat-

tice coordines (definition 2). Let us denote by Gσ,µ and

G∗σ,µ,N the standard and periodic Gaussians with mean

µ and variance σ2 defined for x ∈ R and x ∈ [0, N)

respectively by

Gσ,µ(x) =
e−

(x−µ)2

2σ2

√
2πσ

G∗σ,µ,N (x) =
e−

dcircN (x,µ)2

2σ2

√
2πσ

.

(47)

These are the functions that Xτ converges to in the

two forms of Theorem 1 (infinite domain and periodic

domain). However, neither of them are probability den-

sities. This is because while∫
R
Gσ,µ(x)dx = 1

is true, the domain of Xτ in the infinite case is not R,

but rather Z, and ∑
i∈Z

Gσ,µ(i) 6= 1.

For G∗σ,µ,N , the situation is worse: we have

∫ N

0

G∗σ,µ,N (x)dx 6= 1 and

N−1∑
i=0

G∗σ,µ,N (i) 6= 1.

We therefore consider it more natural to work with the

discrete Gaussians

gσ,µ(i) =
e−

(i−µ)2

2σ2∑
k∈Z e

− (k−µ)2
2σ2

g∗σ,µ,N (i) =
e−

dcircN (i,µ)2

2σ2∑N−1
k=0 e−

dcirc
N

(k,µ)2

2σ2

(48)

which are normalized by construction (similarly to Gσ,µ
and G∗σ,µ,N , when µ = 0 we simply write gσ and g∗σ,N).

The following lemma allows us to convert statements

about G∗σ,µ,N into statements about g∗σ,µ,N . A nearly

identical argument would allow us to do the same for

Gσ,µ and gσ,µ, but we do not pursue this here. Lemma 1

also contains a result regarding discrete sums of Gaus-

sians which is to the best of our knowledge novel and

of interest in and of itself.

Analysis of Shell-Based image inpainting 23

Lemma 1 i. There is a constant C > 0 such that for

|σ| ≥ 1 we have∣∣∣∣∣∑
n∈Z

e−
(n−µ)2

2σ2 −
√

2πσ

∣∣∣∣∣ ≤ Cσe−2π2σ2

(49)

ii. Let G∗σ,N+1 and g∗σ,N+1 be defined as above, with

common mean µ and variance σ2. Further suppose that

σ2 is proportional to m ∈ N, that is σ2(m) = σ̃2m

for some constant σ̃2 > 0. Suppose further that m ≤ N
(recall that N = 1/h). Then there exist constants A > 0

and b > 0 such that

|G∗σ(m),N (x)− g∗σ(m),N (x)| < Am
1
2 e−bm

uniformly in x ∈ R for m sufficiently large.

Proof We prove only the first statement. The second

statement is then derived from the first together with

routine tail estimates on gaussians, and is provided in

Appendix G.

First we note that our sum is closely related to Ja-

cobi theta functions of the third type, defined by [5]

ϑ3(q) =
∑
n∈Z

qn
2

.

This function is known explicitly for a few values of q,

for example

ϑ3(e−π) =
π

1
4

Γ (3
4)
. (50)

We will use this identity later on.

Our argument is based on the Poisson summation

formula [2, p. 322-333], which states that if f : R → R
is a Schwartz function (that is, decays faster than |x|−N
for all N ∈ N for x sufficiently large), then∑

n∈Z
f(n) =

∑
n∈Z

∫ ∞
−∞

f(x)e−i2πnxdx.

Choosing f(x) = e−
(x−µ)2

2σ2 gives∑
n∈Z

e−
(n−µ)2

2σ2 =
∑
n∈Z

∫ ∞
−∞

e−
(x−µ)2

2σ2 e−i2πnxdx

=
∑
n∈Z

∫ ∞
−∞

e−
(x−µ)2

2σ2 cos(2πnx)dx,

where on line two, noting that the LHS side is real, we

have eliminated the imaginary part of the RHS as well.

Changing variables in the integral to y = x− µ gives∑
n∈Z

e−
(n−µ)2

2σ2 =
∑
n∈Z

∫ ∞
−∞

e−
y2

2σ2 cos(2πny + 2πnµ)dy

=
∑
n∈Z

cos(2πnµ)

∫ ∞
−∞

e−
y2

2σ2 cos(2πny)dy

Since the sin terms in the expansion of cos(2πnx +

2πnµ) are odd functions, they integrate to 0, and we

have eliminated them in line two. But it is well known

that ∫ ∞
−∞

e−
y2

2σ2 cos(2πny)dy =
√

2πσe−2π2σ2n2

(this follows from the identity for the Fourier Transform

of a Gaussian [8]). Hence∑
n∈Z

e−
(n−µ)2

2σ2 =
√

2πσ
∑
n∈Z

e−2π2σ2n2

cos(2πnµ)

and therefore (using the fact that |σ| ≥ 1 on line four):∣∣∣∣∣∑
n∈Z

e−
(n−µ)2

2σ2 −
√

2πσ

∣∣∣∣∣ ≤ 2
√

2π

∞∑
n=1

e−2π2σ2n2

| cos(2πnµ)|

≤ 2
√

2π

∞∑
n=1

e−2π2σ2n2

= 2
√

2πσe−π
2σ2

∞∑
n=1

e−2π2σ2(n2−1)

≤ 2
√

2πσe−π
2σ2

∞∑
n=1

e−π(n2−1)

=
√

2πeπ
(
ϑ3(e−π)− 1

)
σe−π

2σ2

.

Using (50), claim i. then follows with

C =
√

2πeπ
(
ϑ3(e−π)− 1

)
=
√

2πeπ

(
π

1
4

Γ (3/4)
− 1

)
≈ 5.014.

ut

Remark 12 Although statement i. of Lemma 1 is stated

asymptotically, in practice the convergence is so rapid

that we have ∑
n∈Z

e−
n2

2σ2 =
√

2πσ

to machine precise for |σ| > 2. This has been noted

empirically by other authors, e.g. [19, pg. 288], but as

far as we know (49) is the first explicit bound. Note

also that our bound (49) is extremely tight. For σ = 1,

the first value of σ for which our bound is valid, the left

hand side and right hand side of (49) differ byO(10−12).

For α > 1, the bound rapidly becomes even tighter.

Having established a connection between discrete

and continuous Gaussians, we now move onto task num-

ber two and derive a necessary and sufficient condition

for the characteristic function ϕZi of Zi to satisfy the

conditions of Theorem 1.

24 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Definition 3 We say that a stencil a∗r is “confined to

a sublattice of Z2” if there exists an (n,m) ∈ Z2 and

k1, k2 ∈ Z with at least one of k1, k2 greater than one

in magnitude, such that the density of Supp(a∗r) is zero

outside of (n,m) + k1Z × k2Z. We say that a∗r is not

confined to any sublattice of Z2 if no such (n,m) and

k1, k2 exist.

Lemma 2 The characteristic function of Zi, defined

by

ϕZi(u) = E[e
√
−1Zi·u]

obeys |ϕZi | < 1 unless each component of u is an integer

multiple of 2π if and only if the associated stencil a∗r is

not confined to any sublattice of Z2 (in the sense of

Definition 3).

Proof First assume that a∗r is not confined to any sub-

lattice of Z2. For convenience, let us write w̃y := w̃r(0,y).

By the definition of expectation we have

ϕZi(u) = E[e
√
−1Zi·u] =

∑
y∈Supp(a∗r) w̃ye

√
−1y·u

W
.

Since W ≡
∑

y∈Supp(a∗r) w̃y we have |ϕZi(u)| ≤ 1, with

equality if and only if e
√
−1y·u have the same phase

for all y ∈ Supp(a∗r) such that w̃y > 0. Since a∗r is

not confined to any sublattice of Z2, there must exist

a y1 ∈ Supp(a∗r) such that w̃y1 > 0 and w̃y1+e1 > 0.

Thus

|ϕZi(u)| = 1⇒ e
√
−1y1·u = e

√
−1(y1+e1)·u

⇒ e
√
−1u·e1 = 1

after canceling a common factor of e
√
−1y1 . But then

u · e1 must be an integer multiple of 2π, and a similar

argument with proves that the same must be true of

u · e2.

Now assume that a∗r is confined to some sublattice

(n,m) + k1Z × k2Z of Z2. Then defining u := (u1, u2)

and y = (y1, y2) we can write

|ϕZi(u)| =
∣∣ ∑
y∈Z2

w̃y

W
e
√
−1(n+y1k1,m+y2k2)·u∣∣

=
∣∣e√−1(n,m)·u

∑
y∈Z2

w̃y

W
e
√
−1(y1k1,y2k2)·u∣∣

=
∣∣ ∑
y∈Z2

w̃y

W
e
√
−1(y1k1,y2k2)·u∣∣

If u1 = 2π/k1 and u2 = 2π/k2, then we have

|ϕZi(u)| =
∑
y∈Z2

w̃y

W
= 1.

Since at least one of k1, k2 is greater than one in mag-

nitude, at least one of u1, u2 is not an integer multiple

of 2π. ut

Next, we use the above lemma together with Lemma

1 to prove a version of Theorem 1 expressed in terms of

a discrete Gaussian g∗σ(y,h),µ∗,1 rather than G∗σ(m),µ∗,N .

Lemma 3 Let a∗r be a stencil not confined to any sub-

lattice of Z2 in the sense of definition 3, or equivalently

that the characteristic function of Zi, that is

ϕZi(u) =
∑

y∈Supp(a∗r)

wr(0,y)e
√
−1y·u

W
,

obeys |ϕZi(u)| < 1 unless both components of u are

integer multiples of 2π. Let x = (x, y) ∈ Dh, and let

Xτ denote the stopped random walk started from x de-

scribed in Section 6.4. Then for y fixed, we have

ρXτ (ih, jh) = g̃σ(y,h),x̂(ih, jh) + o(
√
h)

where

g̃σ(y,h),x̂(ih, jh) = g∗σ(y,h),x̂,1(ih)∆(jh)

with ∆(jh) given by (42) and where g∗σ(y,h),x̂,1 is the one

dimensional discrete periodic gaussian (48) with mean

x̂ = x− µx
µy
y mod 1 ≡ Πθ∗r

(x, y),

where Πθ∗r
is the transport operator (33), and with vari-

ance

σ(y, h)2 =
γ2yh

|µy|3
where γ2 = Var(µxV1 − µyU1).

Proof Let x = (x, y) = (nh,mh). By Theorem 1 we

have

ρXτ (ih, jh) = G∗σ(m),µ∗,N (i)∆(jh) + o

(
1√
m

)
,

where G∗σ(m),µ∗,N is defined by (47), has mean µ∗ =

n̂ := x̂/h and variance σ(m)2 = γ2m
|µy|3 := σ̃2m. By

Lemma 1 statement ii, we have

G∗σ(m),n̂,N (i) = g∗σ(m),n̂,N (i) +O(m
1
2 e−cm),

for some constant c > 0, and hence

ρXτ (ih, jh) = g∗σ(m),n̂,N (i)∆(jh) + o

(
1√
m

)
,

since the asymptotic decay of m
1
2 e−cm is strictly faster

than that of m−
1
2 for all c > 0. But h = y/m and y is

a constant, so o(1√
m

) = o(
√
h). Finally, since

g∗σ(m),n̂,N (i) =
e−

dcircN (i,n̂)2

2σ̃2m∑N−1
j=0 e−

dcirc
N

(j,n̂)2

2σ̃2m

=
e
− d

circ
1 (ih,x̂)2

2σ̃2yh∑N−1
j=0 e

− d
circ
1 (jh,x̂)2

2σ̃2yh

= g∗σ(y,h),x̂,1(ih),

Analysis of Shell-Based image inpainting 25

we conclude

ρXτ (ih, jh) = g∗σ(y,h),x̂,1(ih)∆(jh) + o
(√

h
)
.

ut

Now we move onto task three and derive an expres-

sion for ∆(x2) for the random walk Xτ under consid-

eration:

Lemma 4 Let H denote the law of Vn1
, where n1 =

inf{k : Vk < 0}, and let νy = E[Vn1
]. Let ∆ denote the

asymptotic law of the overshoot Yτ . Then, for the direct

method we have

∆(kh) =
1

µy

∑
j∈b̄−r w̃r(0, j)1(j · e2 < k)

W
.

For the semi-implicit method we have

∆(kh) =
1

νy

∑
j∈b̄0r

w̃r(0, j)1(j · e2 < k ∩ j · e2 6= 0)∑
j∈b̄0r

w̃r(0, j)1(j · e2 6= 0)
,

where νy = (1 − ps)−1µy and ps is the probability that

the random walk in the implicit case does not move

downwards in a given step:

ps =
1

W

∑
j∈b̄0r

w̃r(0, j)1(j · e2 = 0).

Proof First, note that since the increments {V } obey

−r − 1 ≤ Vi ≤ 0 for both the direct and semi-implicit

methods, we have

∆(kh) = H((−∞, k))/νy = H([−r − 1, k))/νy.

For the direct method, the ladder process above is par-

ticularly simple, since Xτ is guaranteed to move at least

one pixel down in the y direction every iteration. In this

case we simply have ni = i for all i. Hence νy = µy and

H is equal to the law of V1. It follows that

∆(kh) =
1

µy
H([−r − 1, k))

=
1

µy

∑k−1
`=−r−1

∑
j∈b̄−r w̃r(0, j)1(j · e2 = `)

W

=
1

µy

∑
j∈b̄−r

∑k−1
`=−r−1 w̃r(0, j)1(j · e2 = `)

W

=
1

µy

∑
j∈b̄−r w̃r(0, j)1(j · e2 < k)

W
.

The semi-implicit case is more complex, since although

Xτ can never move in the positive y direction, it can

“pause” at a constant value of y for an arbitrarily long

duration before resuming its downward march. Let ps
denote the probability that a given increment of the

walk does not move in the y-direction, that is ps =

P (Vi = 0). Then we clearly have

ps =
1

W

∑
j∈b̄0r

w̃r(0, j)1(j · e2 = 0).

By Wald’s Identity we have νy = E[Vn1] = µyE[n1]

since n1 is a stopping time. We have

E[n1] =

∞∑
n=1

pn−1
s (1− ps)n

=
1− ps
ps

∞∑
n=1

npns

=
1− ps
ps

· ps
(1− ps)2

=
1

1− ps
,

and hence

νy =
µy

1− ps
.

The law of Vn1
(and hence H) is given by:

pVn1
(j) =

w̃r(0, j)1(j · e2 6= 0)∑
j∈b̄0r

w̃r(0, j)1(j · e2 6= 0)
.

It follows that

∆(kh) =
1

νy
H([−r − 1, k))

=
1

µy

∑k−1
`=−r−1

∑
j∈b̄0r

w̃r(0, j)1(j · e2 = `)∑
j∈b̄0r

w̃r(0, j)1(j · e2 6= 0)

=
1

νy

∑
j∈b̄0r

∑k−1
`=−r−1 w̃r(0, j)1(j · e2 = `)∑

j∈b̄0r
w̃r(0, j)1(j · e2 6= 0)

=
1

νy

∑
j∈b̄0r

w̃r(0, j)1(j · e2 < k)∑
j∈b̄0r

w̃r(0, j)1(j · e2 6= 0)
.

ut

Our final task before proving our main result is

to bound the probability of Xτ deviating significantly

from Πθ∗r (x). The following Lemma accomplishes this.

Lemma 5 Let x ∈ Dh and x̂ := (x̂, 0) := Πθ∗r
(x). Let

dcirc
1 denote the circular distance (46). Then

P (dcirc
1 (Xτ , x̂) > δ) ≤ 2 exp

(
− (δ − rh)2 sin2 θ∗r

4 r
|µy|rh

)

+ exp

(
− 1

4 r
|µy|rh

)
.

Proof Our random walk on the periodic domain [0, 1)×
(−δ, 1] is equivalent to the same walk on the infinite

domain R × (−δ, 1], modulo the equivalence relation

(x, y) ∼ (x + k, y) for all k ∈ Z. Let us denote (within

26 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

this lemma only) our periodic walk by X∗τ while the

walk on R× (−δ, 1] is denoted by Xτ . Then we have

{dcirc
1 (X∗τ , x̂) > δ} =

⋂
k∈Z
{|Xτ − (x̂+ k)| > δ}

⊆ {|Xτ − x̂| > δ}.

We therefore have

P (dcirc
1 (X∗τ , x̂) > δ) ≤ P (|Xτ − x̂| > δ),

and hence it suffices to prove

P (|Xτ − x̂| > δ) ≤ 2 exp

(
− (δ − rh)2 sin2 θ∗r

4 r
|µy|rh

)

+ exp

(
− 1

4 r
|µy|rh

)
.

Step 1. P
(
τ > d 2

|µy|he
)
≤ exp

(
− 1

4 r
|µy|

rh

)
. We define

Mk := Yk∧τ − (τ ∧ k)µyh−mh

which the reader may verify is a zero mean martingale

with bounded increments

|Mk+1 −Mk| ≤ rh.

Next we note that for any k the following events are

equal:

{τ ≥ k} = {Yτ∧k ≥ 0} = {Mk ≥ −(k ∧ τ)µyh−mh}
= {Mk ≥ −kµyh−mh}.

Therefore{
τ ≥

⌈
2

|µy|h

⌉}
=

{
M⌈

2
|µy|h

⌉ ≥ −
⌈

2

|µy|h

⌉
µyh−mh

}
⊆
{
M⌈

2
|µy|h

⌉ ≥ 1

}
where we have used the inequality

−
⌈

2

|µy|h

⌉
µyh−mh =

⌈
2

|µy|h

⌉
|µy|h−mh ≥ 2−mh ≥ 1.

Noting that M0 = 0 we apply Azuma’s inequality to

find

P

(
τ >

⌈
2

|µy|h

⌉)
≤ P

(
M⌈

2
|µy|h

⌉ ≥ 1

)

≤ exp

− 1

2
⌈

2
|µy|h

⌉
r2h2


≤ exp

(
− 1

4 r
|µy|rh

)
.

Step 2. Let d(Xτ , Lx,x̂) denote the orthogonal distance

from Xτ to the line passing through x and x̂. This time

we define

Mk := (Xτ∧k − x) · (− sin θ∗r , cos θ∗r).

Once again,Mk is a zero-mean martingale with bounded

increments |Mk+1 −Mk| ≤ rh obeying M0 = 0. There-

fore, applying Azuma’s inequality again gives, for any

k ∈ N,

P (|Mk| > δ) ≤ 2 exp

(
− δ2

2kr2h2

)
.

Moreover, if τ ≤ k, then we have the equality

|Mk| = d(Xτ , Lx,x̂)

For any integer k ∈ N we clearly have

P (d(Xτ , Lx,x̂) > δ) ≤ P ({d(Xτ , Lx,x̂) > δ} ∩ {τ ≤ k})
+ P (τ > k)

≤ P (|Mk| > δ) + P (τ > k).

Taking k = d 2
|µy|he, substituting the above bound as

well as the one from Step 1 gives

P (d(Xτ , Lx,x̂) > δ) ≤ 2 exp

(
− δ2

4 r
|µy|rh

)

+ exp

(
− 1

4 r
|µy|rh

)
.

Finally, by the triangle inequality and simple trigonom-

etry we have

|Xτ − x̂| ≤
d(Xτ , Lx,x̂)

sin θ∗r
+ rh.

Hence

P (|Xτ − x̂| > δ) ≤ P (d(Xτ , Lx,x̂) > (δ − rh) sin θ∗r),

from which the claimed result follows trivially. ut

Having accomplished all of our tasks, we are now

ready to prove our main result.

Theorem 2 Let the inpainting domain D and undam-

aged area U , as well as their discrete counterparts Dh,

Uh be as described in Section 6.1. Let u0 : U → Rd
denote as usual the undamaged portion of the image,

and assume u0 is bounded in norm, that is, there is an

M > 0 such that ‖u0‖ ≤ M on U . Suppose we inpaint

Dh using Algorithm 1 or its semi-implicit extension,

and denote the result by uh : Dh → Rd. Assume the

assumptions of Section 6.1 hold and let a∗r denote the

stencil of our inpainting method. Let Zi = (Ui, Vi) tak-

ing values in Supp(a∗r) with mean (µx, µy) denote the

Analysis of Shell-Based image inpainting 27

increments of the random walk described above, with

probability density given by (35). Assume that a∗r is not

confined to any sublattice of Z2 in the sense of defini-

tion 3, or equivalently that the characteristic function

ϕZi of Zi, that is

ϕZi(u) =
∑

y∈Supp(a∗r)

wr(0,y)e
√
−1y·u

W
,

obeys |ϕZi(u)| < 1 unless both components of u are

integer multiples of 2π. Let Πθ∗r
: D → ∂D denote the

transport operator defined in (32) (recall that that the

transport direction g∗r obeys g∗r = (µx, µy)), and let x =

(x, y) = (nh,mh) ∈ Dh, and assume y is fixed. Let

g̃σ(y,h)(ih, jh) = g∗σ(y,h),1(ih)∆̄(jh)

where g∗σ(y,h),1 is the one-dimensional discrete Gaussian

gσ(y,h)(ih) =
e
− d

circ
1 (ih,0)2

2σ(y,h)2∑N−1
k=0 e

− d
circ
1 (kh,0)2

2σ(y,h)2

with variance

σ(y, h)2 =
γ2yh

|µy|3
where γ2 = Var(µxV1 − µyU1)

and where ∆̄ denotes the even extension of ∆ defined

by

∆̄(jh) = ∆(|j|h)

where ∆(jh) is given by Lemma 4. Then

uh(x, y) = (u0 ∗ g̃σ(y,h))(Πθ∗r
(x, y)) + o(1) (51)

Proof Our goal is to show that for any ε > 0, taking h

sufficiently small gives

‖uh(x, y)− (u0 ∗ g̃σ(y,h))(Πθ∗r
(x, y))‖ < ε.

Let us define x̂ := (x̂, 0) := Πθ∗r
(x, y). Then this is

equivalent to proving∥∥∥∥∥∑
x∈Uh

u0(x)
(
ρXτ (x)− g̃σ(y,h)(x̂− x)

)∥∥∥∥∥ < ε,

where the x-coordinate of x̂ − x is understood to be

taken modulo 1 due to our periodic boundary condi-

tions. Since ‖u0‖ ≤M it suffices to prove

S ≡
∑

(ih,jh)∈Uh

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣
<

ε

M
.

We will prove shortly that the per-term error∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣

is of size o(1/
√
N). However, this condition alone is

not enough to prove the desired result, as S contains

O(N) terms. To get around this, we introduce the sets

I = {0, 1, . . . , N − 1} and

Ik = {i mod N}b
x̂
h+k
√
mc

i=d x̂h−k
√
me,

where k ∈ N is a constant to be determined. Note that

Ik may equivalently be characterized as

Ik = {i ∈ I : dcirc
N (i,

x̂

h
) ≤ k

√
m},

which in turn means that

I\Ik = {i ∈ I : dcirc
N (i,

x̂

h
) > k

√
m}, (52)

Which will be critical later.

We break the sum into two pieces S = S1 + S2

defined as

S1 ≡
0∑

j=−r−2

∑
i∈Ik

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣
S2 ≡

0∑
j=−r−2

∑
i∈I\Ik

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣ .
Since m = yN and y is fixed, m is proportional to N ,

and hence S1 contains O(
√
m) = O(

√
N) terms concen-

trated around x̂. We will control the size of S1 by using

the o(
√
h) = o(1/

√
N) error estimate from Lemma 3.

The second sum S2 will contain all remaining terms in

S. We will bound S2 by making separate tail estimates

for ρXτ and g∗σ(y,h),1(x̂− ih), both based on (52).

Claim 1: For k ≥ max
(

2r√
y , 4
)

there exist con-

stants C1, C2, C3, C4 > 0 (dependent on r and y)

such that

S2 < C1e
−C2k

2

+ C3N
3
2 e−C4N .

We defer the proof of Claim 1 until the end. For

now, note that it gives us the estimate

S ≤ S1 + C1e
−C2k

2

+ C3N
3
2 e−C4N .

Fixing k so that C1e
−C2k

2

< ε
4M and k ≥ 2r√

y are both

true, and taking N large enough that

C3N
3
2 e−C4N < ε

4M , it remains to prove that S1 <
ε

2M .

Defining C := (r + 3)3k
√
y we have

S1 ≡
0∑

j=−r−2

∑
i∈Ik

∣∣∣ρXτ (ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)
∣∣∣

≤ C
√
N sup

i,j

∣∣∣ρXτ (ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)
∣∣∣ .

28 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

By Lemma 3, we have
√
N sup

i,j

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣
→ 0 as N →∞.

Taking making N large enough (equivalently, h small

enough) that
√
N sup

i,j

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣
<

1

C

ε

2M
,

we are done.

Proof of Claim 1:

We break S2 into two pieces:

S2 ≡
0∑

j=−r−2

∑
i∈I\Ik

∣∣∣ρXτ
(ih, jh)−∆(jh)g∗σ(y,h),1(x̂− ih)

∣∣∣
≤

0∑
j=−r−2

∑
i∈I\Ik

ρXτ
(ih, jh)

+

0∑
j=−r−2

∆(jh)
∑
i∈I\Ik

g∗σ(y,h),1(x̂− ih)

But by (52), we have

S2 ≤ P (dcirc
1 (Xτ , x̂) > k

√
y
√
Nh)

+
∑
i∈I\Ik

g∗σ(y,h),1(x̂− ih).

The first of these, we already know how to bound. By

Lemma 5, we have

P (dcirc
1 (Xτ , x̂) > k

√
y
√
Nh)

≤ 2 exp

(
−

(k
√
y
√
Nh− rh)2 sin2 θ∗r
4r2/|µy|h

)

+ exp

(
− 1

4 r
|µy|rh

)
Since k ≥ 2r√

y we have

(k
√
y
√
Nh− rh)2

h
= (k
√
y−r
√
h)2 ≥ (k

√
y−r)2 ≥ 0.5yk2,

it follows that

P (dcirc
1 (Xτ , x̂) > k

√
y
√
Nh)

≤ 2 exp

(
−y
{

sin2 θ∗r
16r2/|µy|

}
k2

)
+ exp

(
− 1

4 r
|µy|rh

)
. (53)

For the second, we find it convenient to rewrite the sum

in terms of G∗σ(m),N (i − x̂/h). To that end, we define

σ̃2 = σ2(y, h)/(yh) = γ2

|µy|3 where γ2 > 0 is a constant

given by (45). Then∑
i∈I\Ik

g∗σ(y,h),1(ih− x̂) =
∑
i∈I\Ik

gσ(m),N (i− x̂/h)

≤
∑
i∈I\Ik

G∗σ(m),N (i− x̂/h)

+
A

y
m

3
2 e−bm, (54)

where we have used Lemma 1 together with |I\Ik| ≤
N = m/y in the rightmost inequality. Next, define

Ξ =

{
dcirc
N

(
i,
x̂

h

)
: i ∈ I\Ik

}
.

Since I\Ik ⊆ Z, every member of Ξ must be of the form

ξ + n where ξ =
x̂

h
−
⌊
x̂

h

⌋
∈ [0, 1)

for some n ∈ Z. But by (52), we must have n ≥ bk
√
mc.

Finally, since the map i ∈ I\Ik → dcirc
N (i, x̂h) is at most

two to one, we have∑
i∈I\Ik

G∗σ(m),N (i− x̂/h) =
∑
i∈I\Ik

Gσ(m)(d
circ
N (i, x̂/h))

≤ 2
∑
x∈Ξ

Gσ(m)(x)

≤ 2

∞∑
n=bk

√
mc

Gσ(m)(ξ + n)

The following routine tail estimate gives us a bound

on our sum.

∑
i∈I\Ik

G∗σ(m),N (i− x̂/h) ≤ 2

∞∑
n=bk

√
mc

Gσ(m)(ξ + n)

= 2

∞∑
n=bk

√
mc

e
− (ξ+n)2

2σ(m)2

√
2πσ(m)

≤ 2

∞∑
n=bk

√
mc

e
− n2

2σ(m)2

√
2πσ(m)

≤ 2

∫ ∞
bk
√
mc−1

e
− x2

2σ(m)2

√
2πσ(m)

dx.

Since k > 4, we can find a c ∈ (0, 1) independent of

1 ≤ m ≤ N and k (for example c = 0.5 will work)

such that ck
√
m ≤ bk

√
mc − 1. At the same time, we

have σ(m)2 = σ̃2m where σ̃2 = γ2/|µy|3 with γ2 =

Analysis of Shell-Based image inpainting 29

Var(µxV1 − µyU1). Therefore

∑
i∈I\Ik

G∗σ(m),N (i− x̂/h) ≤ 2

∫ ∞
ck
√
m

e−
x2

2σ̃2m

√
2πσ̃
√
m
dx

≤ 2

∫ ∞
ck
√
m

x

ck
√
m

e−
x2

2σ̃2m

√
2πσ̃
√
m
dx

=

√
2

π

σ̃

ck
e−

c2k2

2σ̃2

≤
√

2

π

σ̃

c
e−

c2k2

2σ̃2

Putting this together with (54) and (53) gives

S2 ≤ 2 exp

(
−y
{

sin2 θ∗r
4r2/|µy|

}
k2

)
+ exp

(
− 1

4 r
|µy|rh

)

+

√
2

π

σ̃

c
e−

c2k2

2σ̃2 +Am
3
2 e−bm

≤

(
2 +

√
2

π

σ̃

c

)
e−αk

2

+ (1 +A)y
3
2N

3
2 e−βyN

where α ≡ min(
sin2 θ∗r

4r2/|µy| ,
c2

2σ̃2), β ≡ min(1
4r2/|µy| , b). Tak-

ing C1 =
(

2 +
√

2
π
σ̃
c

)
, C2 = α, C3 = (1 + A)y

3
2 ,

C4 = βy completes the proof of the claim. ut

6.6 Asymptotic Limit Version 2

An important special case of the general framework

considered in the previous two sections occurs when

only the x-component of Xτ is random. In particu-

lar, let us assume that the increments ∆Xi = hZi =

h · (U, V) obey U ∈ {−(r+ 2),−(r+ 1), . . . , r+ 1, r+ 2}
but V ≡ −1. Then the assumptions of Theorem 1 are

never satisfied, as

ϕZi(u1, u2) = e−
√
−1u2

(r+2)∑
k=−(r+2)

P (U = k)e
√
−1ku1

obeys |ϕZi | = 1 for u1 an integer multiple of 2π and

any u2 ∈ R. Since we cannot use Theorem 1, a different

approach is required in this case.

Here we use the following local central limit theorem

for U :

Theorem 3 Let X1, X2, . . . be i.i.d. copies of an integer-

valued random variable X of mean µ and variance σ2.

Suppose furthermore that there is no infinite subpro-

gression a + qZ of Z with q > 1 for which X takes

values almost surely in a+ qZ. Then one has

P(Sn = m) =
1√

2πnσ
e−(m−nµ)2/2nσ2

+ o(1/n1/2)

for all n ≥ 1 and all integers m, where the error

term o(1/n1/2) is uniform in m.

Proof This theorem may be found on Terrance Tao’s

blog [37].

The requirement in Theorem 3 “that there is no

infinite subprogression a+qZ of Z with q > 1 for which

X takes values almost surely in a+qZ” is equivalent to

the following one dimensional version of Definition 3:

Definition 4 We say that an integer valued random

variable X is “confined to a sublattice of Z” if there

exists an n ∈ Z and k ∈ Z with |k| > 1, such that the

density of X is zero outside of n+ kZ. We say that X

is not confined to any sublattice of Z if no such n and

k exist.

Moreover, by an argument almost identical to that of

Lemma 2, this is equivalent to the characteristic func-

tion ϕX(u) defined by

ϕX(u) =
∑
j∈Z

P (X = j)e
√
−1ju

obeying |ϕX(u)| < 1 unless u is an integer multiple of

2π.

Following a sequence of steps almost identical to the

previous section, we arrive at a version of the asymp-

totic limit applicable to this case.

Theorem 4 Let the inpainting domain D and undam-

aged area U , as well as their discrete counterparts Dh,
Uh be as described in Section 6.1. Let u0 : U → Rd
denote as usual the undamaged portion of the image,

and assume u0 is bounded in norm, that is, there is

an M > 0 such that ‖u0‖ ≤ M on U . Suppose we

inpaint Dh using Algorithm 1 or its semi-implicit ex-

tension, and denote the result by uh : Dh → Rd. As-

sume the assumptions of Section 6.1 hold and let a∗r de-

note the stencil of our inpainting method. Assume that

the stencil weights w̃j assign zero mass outside of the

line Z × {−1}, and assume that the x-coordinate U of

Zi = (U, V) is not confined to any sublattice of Z in the

sense definition 4, or equivalently that the characteristic

function ϕU of U defined by

ϕU (u) =

r+2∑
j=−(r+2)

P (U = j)e
√
−1ju

obeys ϕU (u) < 1 unless u is an integer multiple of 2π.

Let Πθ∗r
: D → ∂D denote the transport operator de-

fined in (32) (recall that that the transport direction g∗r

30 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

obeys g∗r = (µx, µy)), and let x = (x, y) ∈ Dh. Let

gσ(y,h) denote the one-dimensional discrete Gaussian

gσ(y,h)(ih) =
e
− d

circ
1 (ih,0)2

2σ(y,h)2∑N−1
k=0 e

− d
circ
1 (kh,0)2

2σ(y,h)2

with mean 0 and variance

σ(y, h) = σ2yh

where σ2 denote the variance of U . Then

uh(x, y) = (u0 ∗ gσ(y,h))(Πθ∗r
(x, y)) + o(1) (55)

Proof The proof is nearly identical to that of Theorem

2 and is left as an exercise to the reader.

6.7 Derivation of Fixed-Ratio Continuum Limit

In this section, we prove pointwise convergence of the

discrete solution uh(x) to the fixed ratio continuum

limit u(x), for those points x ∈ D for which Πθ∗r
(x) ∈

∂D is a continuity point of u0. Theorem 2 tells us that

uh(x) = g̃σ(y,h) ∗ u0(Πθ∗r
(x)) + o(1),

where g̃σ(y,h) is the blur kernel from Lemma 3. Since

u(x) = u0(Πθ∗r
(x)), our job amounts to proving that

g̃σ(h) ∗ u0(x)→ u0(x) as h→ 0

when x is a continuity point of u0.

Before tackling this problem, it is worth digressing

briefly to consider what would happen had we con-

sidered the original high resolution vanishing viscosity

limit of März and Bornemann, in which first h→ 0 and

then ε → 0. Writing uε,h in place of uh to make the

dependence on ε explicit, after h→ 0, we are left with

uε = lim
h→0

uε,h = Gσ(y,ε) ∗ u0

where Gσ(y,ε) is an integral convolution operator. For

u0 ∈ BV (U) the limit

lim
ε→0

uε(x)

can be almost characterized completely by well known

results for functions of bounded variation. For com-

pleteness, we quote these results and the relevant defi-

nitions here:

Definition 5 (Approximate limit) we say that u ∈
BV (Ω) has an approximate limit at x ∈ Ω if there

is a z ∈ R such that

lim
ρ↓0

1

|Bρ(x)|

∫
Bρ(x)

|u(y)− z|dy = 0.

The set Su of points where this property does not hold

is called the approximate discontinuity set. For any x ∈
Ω\Su, we define ũ(x) = z.

Definition 6 (Approximate jump points) Given x ∈
Ω ⊆ Rn, v ∈ Sn−1, and ρ > 0, define:

B+
ρ (x,v)) := {y ∈ Bρ(x) : (y − x) · v > 0}

B−ρ (x,v)) := {y ∈ Bρ(x) : (y − x) · v < 0}.

Let u ∈ BV (Ω) ⊆ Rn and x ∈ Ω. We say that x is an

approximate jump point of u if there exist a, b ∈ R and

v ∈ Rn−1 such that a 6= b and

lim
ρ↓0

1

|B+
ρ (x)|

∫
B+
ρ (x)

|u(y)− a|dy = 0.

lim
ρ↓0

1

|B−ρ (x)|

∫
B−ρ (x)

|u(y)− b|dy = 0.

The set of x ∈ Ω where this property holds is called

the approximate jump set Ju of u. For any x ∈ Ju, we

define u+(x) = a and u+(x) = b.

Theorem 5 If ρε is a family of mollifiers and if x ∈
Ω\Su, then the functions u ∗ ρε(x) converge to ũ(x) as

ε ↓ 0. Moreover, if x ∈ Ju, then

lim
ε↓0

u ∗ ρε(x)→ u+(x) + u−(x)

2
.

Proof See Proposition 3.64 and Corollary 3.80 on pages

160 and 175 respectively of [1].

März and Bornemann’s high-resolution vanishing vis-

cosity limit is also the solution to a transport equa-

tion, differing from our fixed-ratio limit only in that

the transport operator, which we denote here by ΠM ,

is different (see [7,31] for details). If u0 ∈ SBV (U), the

approximate discontinuity set Su0 equals the approxi-

mate jump set Ju0
and in this case we have

lim
ε→0

uε(x) = uM (x)

where

uM = u0(ΠM (x)) if x ∈ U\Ju0

and

uM = αu+
0 (ΠM (x)) + (1− α)u−0 (ΠM (x)) if x ∈ Ju0

for some α ∈ [0, 1]. This is a result that März and

Bornemann appear to be unaware of, as their approach

is very different from ours.

In our case, however, g̃σ(y,h) is discrete and BV (U)

(or SBV (U)), where functions are only defined up to a

set of measure zero, does not give us the right setup to

prove our result. Moreover, even for piecewise continu-

ous boundary data with simple jump type discontinu-

ities, the behavior of u0(x) when Πθ∗r
(x) is not a con-

tinuity point of u0 is in general rather complex. There-

fore, we content ourselves with proving convergence in

the case where Πθ∗r
(x) is a continuity point of u0.

Analysis of Shell-Based image inpainting 31

Theorem 6 Assume u0 obeys the same conditions as

in Theorem 2. Then for every x ∈ D such that Πθ∗r
(x)

is a continuity point of u0 we have

uh(x)→ u(x) = u0(Πθ∗r
(x)) as h→ 0.

where Πθ∗r
(x) is given by

Πθ∗r
(x, y) = (x− cot(θ∗r)y mod 1, 0),

and

θ∗r = θ(g∗r) ∈ (0, π)

is the counterclockwise angle between the x-axis and

the line Lg∗r := {λg∗r : λ ∈ R}, and g∗r is the center of

mass of the stencil a∗r which can be computed in two

equivalent ways (definition 1)

g∗r =

∑
y∈a∗r

wr(0,y)y∑
y∈a∗r

wr(0,y)
=

∑
y∈Supp(a∗r) w̃r(0,y)y∑
y∈Supp(a∗r) w̃r(0,y)

.

Proof Assume that Πθ∗r
(x) := x̂ is a continuity point

of u0. Note that

‖uh(x)− u0(x̂)| ≤ ‖uh(x)− (g̃σ(h) ∗ u0)(x̂)‖
+ ‖(g̃σ(h) ∗ u0)(x̂)− u0(x̂)‖.

By Theorem 2, for h sufficiently small the first term

in the above sum is at most ε
2 . It suffices to show

that taking h sufficiently small bounds the second term

by ε
2 as well. For convenience, within this proof given

x := (x1, x2),y := (y1, y2) ∈ [0, 1)×R we define Br,h(x)

and x− y in the circular sense, that is

Br,h(x) := {y : dcirc
1 (x1, y1)2 + (x2 − y2)2 ≤ r2}

x− y := (x1 − y1 mod 1, x2 − y2).

For any r > 0 we have

‖(g̃σ(y,h) ∗ u0)(x̂)− u0(x̂)‖

≤

∥∥∥∥∥∥
∑

y∈Uh∩Br,h(x̂)

g̃σ(y,h)(x̂− y)u0(y)− u0(x̂)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

y∈Uh\Br,h(x̂)

g̃σ(h)(x̂− y)u0(y)− u0(x̂)

∥∥∥∥∥∥
≤

∑
y∈Uh∩Br,h(x̂)

g̃σ(h)(x̂− y)‖u0(y)− u0(x̂)‖

+
∑

y∈Uh\Br,h(x̂)

g̃σ(h)(x̂− y)‖u0(y)− u0(x̂)‖.

Take r small enough that y ∈ Br,h(x̂) implies |u0(y)−
u0(x̂)| < ε

4 . At the same time, since σ(y, h) → 0 as

h→ 0, taking h sufficiently small ensures that the mass

of g̃σ(y,h)(x̂−y) outside of Br,h(x̂) is no more than ε
4M .

This gives

‖(g̃σ(y,h) ∗ u0)(x̂)− u0(x̂)‖ ≤
∑

y∈Uh∩Br,h(x̂)

g̃σ(h)(x̂− y)
ε

4

+
∑

y∈Uh\Br,h(x̂)

g̃σ(h)(x̂− y)M

≤ 1 · ε
4

+
ε

4M
·M ≤ ε

2

as required.

Remark 13 Here we have derived the fixed-ratio contin-

uum limit as a corollary of the asymptotic limit. This

was done for the sake of efficiency - it can also be de-

rived as a stand alone result. Moreover, this result is

much more general, covering convergence in Lp rather

than just pointwise convergence, and the assumption

that the stencil a∗r not be restricted to any sublattice of

Z2 (definition 3) can be eliminated. Convergence rates

are also given, which turn out to depend on both the

choice of Lp norm and the regularity of the boundary

data u0. However, the proof is very long and technical,

so for this reason we have published it online only -

please see [25].

7 Consequences

In this section apply the fixed-ratio continuum limit

and asymptotic limit of the previous section, that is

Theorem 2 and Theorem 6 , in order to explain:

1. The “kinking” and “blur” artifacts listed in Section

2.2 and illustrated in Figures 5, 6, and 8.
2. The differences between the direct form of Algo-

rithm 1 and its semi-implicit extension in terms of

coping with these artifacts.

We begin by considering kinking artifacts, and then go

on to blur. We will see that the fixed-ratio continuum

limit from Theorem 6 is all that is required to under-

stand kinking artifacts, while blur artifacts require the

asymptotic limit from Theorem 2. Shocks and cut off

isophotes are not considered as they have already been

adequately explained elsewhere [31,32].

7.1 Kinking

We begin by exploring kinking artifacts. First we prove

a fundamental distinction between the direct form of

Algorithm 1 and the semi-implicit extension. Then we

go on to look at the limiting transport directions associ-

ated with three specific methods: coherence transport,

Guidefill, and semi-implicit Guidefill.

32 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) Repeat of the experi-
ment in Figure 5 for Guide-
fill with r = 3, with
Conv(−b̄−r) superimposed.

(b) Repeat of the experi-
ment in Figure 5 for semi-
implicit Guidefill with r =
3, with Conv(−b̄0r) super-
imposed.

Fig. 16: Convex hulls and transport directions:

An immediate corollary of Theorem 6 is that the limit-

ing transport direction g∗r lies in the convex hull of b̄−r
for the direct form of Algorithm 1, and the convex hull

of b̄0r for the semi-implicit extension. Since Conv(b̄−r)

contains only a cone of directions while Conv(b̄0r) con-

tains the full arc from 0 to π, this explains why Guide-

fill (and more generally all direct methods of the gen-

eral form given by Algorithm 1) fail for shallow angles,

while this is not true of the semi-implicit extension. To

illustrate this, we have repeated the experiment from

Figure 5 using Guidefill (a) and semi-implicit Guide-

fill (b), while superimposing the sets Conv(−b̄−r) and

Conv(−b̄0r) respectively (we have negated the sets for

convenience which we can do since g∗r and −g∗r define

the same transport equation). Note that in the case of

semi-implicit Guidefill, the lines appear to be getting

fainter as θ(g∗r) → 0 and θ(g∗r) → π. This likely has

two causes. For one, the angular footprint of the red

dot in Figure 5(a), i.e. the width of the dot multiplied

by sin θ∗r (which tells you how much of the dot is “vis-

ible” from direction θ∗r) is going to zero. Secondly, we

will see in Section 7.3 (see in particular Figure 23) that

semi-implicit Guidefill has blur artifacts that become

arbitrarily bad as θ(g∗r) → 0 or θ(g∗r) → π. Neverthe-

less, Figure 12 demonstrates that semi-implict Guidefill

can successfully extrapolate lines with θ very close to 0

without serious issues of faintness. All parameters are

the same as in Figure 5.

7.1.1 The direct form Algorithm 1 kinks, the

semi-implicit extension need not

An immediate corollary of Theorem 6 is that the direct

form of Algorithm 1 is limited in terms of what direc-

tions it can extrapolate along, while this is not true of

the semi-implicit extension. This follows from the ge-

ometric interpretation of the limiting transport direc-

tion g∗r as the center of mass of the stencil a∗r with the

respect to the stencil weights {wr(0,y)/W : y ∈ a∗r}.
Specifically, since the original weights {wr(0,y)

W }y∈a∗r are

non-negative and sum to one, by the preservation of

total mass (10) and inheritance of non-negativity (12)

properties of equivalent weights, the same is true of the

equivalent weights { w̃r(0,y)
W }y∈Supp(a∗r). Hence

g∗r =
∑

y∈Supp(a∗r)

w̃r(0,y)

W
y ∈ Conv(Supp(a∗r)),

where Conv(Supp(a∗r)) denotes the convex hull of Supp(a∗r).

But by (26) we have

Supp(a∗r) ⊆

{
b̄−r direct form of Algorithm 1

b̄0r semi-implicit form
(56)

where b̄0r and b̄−r are the dilated sets defined by (24)

and (25) respectively. It follows that g∗r has to lie in

the convex hull of b̄−r if the direct form of Algorithm

1 is used, or the convex hull of b̄0r if the semi-implicit

form is used instead. That is

g∗r ∈

{
Conv(b̄−r) direct form of Algorithm 1.

Conv(b̄0r) semi-implicit form.
(57)

This in turn immediately implies that if we use the

direct form of Algorithm 1, then θ(g∗r) is restricted to

the cone

θc ≤ θ(g∗r) ≤ π − θc (58)

where

θc = arcsin

(
1

r

)
(59)

is the smallest possible angle one can make given the

restriction (57), while for the semi-implict method we

have

0 < θ(g∗r) < π (60)

where the angles θ = 0 and θ = π are omitted not be-

cause of the restriction (57), but because Theorem 6

does not apply in either case (indeed, the continuum

limit u given by (30) is not even defined). The cone

(58) is exactly what we saw in Figure 5(c). At the same

time, the lack of restrictions implied by (60) is consis-

tent with our experience in Figures 12 and 14, where

semi-implicit Guidefill was able to successfully extrap-

olate lines making an angle as small as 1◦ with the

inpainting domain boundary for r = 3, well under the

critical angle θc = arcsin(1
3) ≈ 19.5◦ where standard

Guidefill breaks down. Figure 16 illustrates this result.

Analysis of Shell-Based image inpainting 33

(a) Coherence transport,
r = 3.

(b) Coherence transport,
r = 5.

(c) Guidefill, r = 3. (d) Guidefill, r = 5.

(e) Semi-implicit Guidefill
r = 3.

(f) Semi-implicit Guidefill
r = 5.

Fig. 17: Limiting transport direction θ∗r = θ(g∗r) as

a function of the guideance direction θ = θ(g) for

the three main methods: The theoretical limiting

curves θ∗r = F (θ) obtained for coherence transport (a)-

(b), Guidefill (c)-(d), and semi-implicit Guidefill (e)-

(f). The desired curve F (θ) = θ is highlighted in red.

Coherence transport exhibits a staircase pattern with

F (θ) 6= θ for all but finitely many θ, Guidefill obeys

F (θ) = θ for all θ ∈ (θc, π − θc) where θc is the critical

angle (59), and semi-implicit Guidefill obeys F (θ) = θ

for all θ 6= 0. All angles are in degrees.

7.1.2 Limiting Transport Directions for Coherence

Transport, Guidefill, and semi-implicit Guidefill

Here we derive formulas for the limiting transport di-

rections of coherence transport, Guidefill, and semi-

implicit Guidefill in the limit as µ → ∞. For conve-

nience, in this section we rescale the limiting transport

direction g∗r by a factor of W =
∑

y∈a∗r
wr(0,y), giving

g∗r =
∑
y∈a∗r

wr(0,y)y. (61)

This is more convenient to work with and defines the

same transport equation. In fact, the ability to rescale

g∗r by any λ 6= 0 without changing the underlying trans-

port equation is a tool that we will use repeatedly in

our arguments throughout this section. To make the de-

pendence of the transport direction on µ explicit, within

this section we write this direction as g∗r,µ, and define

g∗r := lim
µ→∞

g∗r,µ.

In order to resolve the ambiguity that g∗r and −g∗r de-

fine the same transport equation, we will frequently be

taking angles modulo π. This is reflected in the defini-

tion we have selected for θ(v) - recall that this refers to

the angle that the line Lv = {λv : λ ∈ R} makes with

the x-axis, and hence always lies in the range [0, π). We

define g = (cos θ, sin θ), θ∗r,µ := θ(g∗r,µ), θ∗r := θ(g∗r) and

consider the function θ∗r = F (θ). Our main concern is to

determine when θ∗r = θ (no kinking) and when θ∗r 6= θ

(kinking). Results are illustrated in Figure 17.

Coherence Transport. We have already stated in

Section 2 and illustrated in Figure 5 that coherence

transport in the limit µ → ∞ kinks unless g = λv for

some v ∈ Bε,h(0) and some λ ∈ R. Under the assump-

tions of Section 6.1, a more precise statement is that

coherence transport in the limit µ→∞ fails to kink if

and only if g = λv for some v ∈ b−r and λ ∈ R. Before

we prove this, let us make some definitions. We define

the angular spectrum of b−r as

Θ(b−r) := {θ1, . . . , θn ∈ [0, π) : ∃ y ∈ b−r s.t. θi = θ(y)}.
(62)

In other words, Θ(b−r) is the collection of angles modulo

π that are representable using members of b−r (or which

elements of the projective space RP1 are representable,

to be more mathematically precise), see Figure 18 for

an illustration. The angular spectrum may be similarly

defined in the obvious way for more general sets, and we

do so in Appendix E. We will show that for coherence

transport, when 0 < θ < π, we either have

θ∗r ∈ Θ(b−r)

or

θ∗r =
θi + θi+1

2
for consecutive θi, θi+1 ∈ Θ(b−r).

To begin, note that in this case (61) becomes

g∗r,µ :=
∑
y∈b−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖
,

where b−r is the discrete half ball (23). Denote by Ψ the

set of minimizers of |y · g⊥| for y ∈ b−r , meaning that

|y · g⊥| := ∆ ≥ 0 for all y ∈ Ψ and |y · g⊥| > ∆ for

34 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Fig. 18: Illustration of the angular spectrum: The

angular spectrum Θ(b−r) tells us which angles (mod-

ulo π), are representable using elements of b−r . Here

we have illustrated Θ(b−r), measured in degrees, for

r = 1, 2, . . . , 10.

all y ∈ b−r \Ψ . After rescaling by e
µ2

2r2
∆2

, the transport

direction g∗r,µ becomes

g∗r,µ =
∑
y∈Ψ

y

‖y‖
+

∑
j∈b−r \Ψ

e−
µ2

2r2
{(y·g⊥)2−∆2} y

‖y‖

→
∑
y∈Ψ

y

‖y‖
as µ→∞. (63)

Note that |y ·g⊥| represents the distance from the point

y to the line through the origin Lg. Thus computing

the set Ψ is equivalent to finding the set of points in b−r
closest to a given line through the origin. In Appendix E

we prove that as θ sweeps out an arc from 0 to π, for all

but finitely many θ the set Ψ is a singleton, containing

a sequence of lone minimizers that we enumerate (in

order of occurrence) as y1,y2, . . .yn′ (for some finite

n′). Now, it turns out that n′ = n and moreover for

every θi ∈ Θ(b−r) we have

θi = θ(yi)

(Appendix E, Proposition 4). In other words, we have

a 1-1 correspondence between (singleton) minimizers of

|y · g⊥| and the angular spectrum Θ(b−r). Moreover, it

can be shown that if θi < θ < θi+1 for some θi, θi+1 ∈
Θ(b−r), then either Ψ = {yi} (for θ close to θi) or Ψ =

{yi+1} (for θ close to θi+1) or Ψ = {yi,yi+1} if θ =

θi,i+1, where θi,i+1 ∈ (θi, θi+1) is a critical angle we

refer to as a transition angle.

Definition 7 Given minimizers {yi}ni=1 defined as above

we define the set of transition angles {θi,i+1}n−1
i=1 by

θi,i+1 = θ(yi + yi+1) for 1 ≤ i ≤ n− 1,

where θ(y) denotes as usual the angle between the line

Ly and the x-axis.

(a) (b)

Fig. 19: Closest points and shallowest angles: We

claim that the closest point in the set b−r ⊂ Z2 to a

given line Lg (g = (cos θ, sin θ)) is always one of the

two points casting the shallowest angle with Lg on ei-

ther side, as illustrated in (a) for θ = 53◦, r = 4.

This statement does not hold if b−r is replaced with a

generic A ⊂ Z2, as demonstrated by the counterexam-

ple A = {(1, 2), (4, 6), (6, 4)} and θ = 45◦ in (b).

For convenience, we also define θ0,1 = 0 and θn,n+1 = π.

Since one can also prove Ψ = {y1} for 0 := θ0,1 < θ <

θ1 and Ψ = {yn} for θn < θ < θn,n+1 := π, with this

notation we have the general result

Ψ =



{yi} if θi < θ < θi,i+1

for some i = 1, . . . , n

{yi,yi+1} if θ = θi,i+1

for some i = 1, . . . , n− 1

{yi+1} if θi,i+1 < θ < θi+1

for some i = 0, . . . , n− 1

(Appendix E, Proposition 5 - note that we have care-

fully excluded θ0,1 := 0 and θn,n+1 = π from the middle

case). In words, this means that the element(s) of b−r
closest to the line Lg are also the member(s) of b−r that

cast the shallowest angles with Lg from above and be-

low. This statement is not true if b−r is replaced with

a generic subset of Z2 - see Figure 19. The remaining

cases are θ = θi ∈ Θ(b−r) and θ = 0. We deal with the

former first - in the first case we have

Ψ = {y ∈ b−r : θ(y) = θi},

a set containing up to r members, all of which are paral-

lel to each other and to g. In order to make these ideas

more concrete, Example 1 gives explicit expressions for

Θ(b−r) and Ψ in the case r = 3. Also, in Appendix E

Remark 20, we give an algorithm for computing Θ(b−r)

and Y (b−r) := {y1,y2, . . . ,yn} for any r.

Analysis of Shell-Based image inpainting 35

Example 1 When r = 3 we have

Θ(b−3) := {θ1, θ2, θ3, θ4, θ5, θ6, θ7}

= {arctan(1/2),
π

4
, arctan(2),

π

2
,

π

2
+ arctan(1/2),

3π

4
,
π

2
+ arctan(2)}.

For 0 < θ ≤ π
2 , (we omit π

2 < θ < π for brevity) the set

of minimizers Ψ is given by

Ψ =



{(−2,−1)} := {y1}
if 0 < θ < θ1,2.

{(−2,−1), (−1,−1)} := {y1,y2}
if θ = θ1,2.

{(−1,−1)} := {y2}
if θ1,2 < θ < θ2.

{(−1,−1), (−2,−2)} := {y2, 2y2}
if θ = θ2.

{(−1,−1)} := {y2}
if θ2 < θ < θ2,3.

{(−1,−1), (−1,−2)} := {y2,y3}
if θ = θ2,3.

{(−1,−2)} = {y3}
if θ2,3 < θ < θ3,4.

{(−1,−2), (0,−1)} = {y3,y4}
if θ = θ3,4.

{(0,−1)} := {y4}
if θ3,4 < θ < θ4.

{(0,−1), (0,−2), (0,−3)} := {y4, 2y4, 3y4}
if θ = θ4.

where θ0,1 = 0, θ1,2 = arctan(2/3), θ2,3 = arctan(3/2),

θ3,4 = arctan(3).

When Ψ is a singleton set, that is Ψ = {yi} for some

1 ≤ i ≤ n, (63) becomes g∗r = yi
‖yi‖ and we have

θ(g∗r) = θ

(
yi
‖yi‖

)
= θi

On the other hand, if θ = θi ∈ Θ(b−r), g∗r is a sum of

vectors all parallel to one another and to g, and we get

θ∗i = θi again. This is the lone case in which coherence

transport doesn’t kink. Next, at the transition angles

θi,i+1 where Ψ = {yi,yi+1}, we have g∗r = yi
‖yi‖+ yi+1

‖yi+1‖ ,

so that

θ(g∗r) = θ

(
yi
‖yi‖

+
yi+1

‖yi+1‖

)
=
θi + θi+1

2
,

where we have used the observation (proved in Ap-

pendix E, Observation 7) that θ(v + w) = θ(v)+θ(w)
2

holds for all unit vectors v,w ∈ S1. Finally, suppose

θ = 0. Here we have Ψ = {(i,−1) : −r+ 1 ≤ i ≤ r− 1},
giving

g∗r = e2 for θ = 0

after rescaling. In summary, for θ ∈ [0, π) we then have

θ∗r =


π
2 if θ = 0

θi if θi−1,i < θ < θi,i+1 for some i = 1, . . . n
θi+θi+1

2 if θ = θi,i+1 for some i = 1, . . . n

(64)

See Figure 17(a)-(b) for an illustration of (64) for r = 3

and r = 5. In Appendix E, Corollary 2 we prove a

generalization of this result that applies if, for example,

the discrete ball used by coherence transport is replaced

with a discrete square.

Guidefill. In this case (61) becomes

g∗r,µ :=
∑
y∈b̃−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖
,

where b̃−r is given by (23). It is useful to patition b̃−r
into a disjoint union of sets `−k such at each `−k is the

collection of points in b̃−r distance k from the line Lg =

{λg : λ ∈ R}, that is

`−k = {ng +mg⊥ ∈ b̃−r : m = ±k}.

Since the weights (6) exponentially decay with distance

from Lg, then so long as `−0 is non-empty, we expect the

contribution of the other `−k to vanish. For Guidefill, `−0
can be explicitly parametrized as

`−0 := {ng ∈ b̃−r : ng · e2 ≤ −1}
= {ng : n = −r, . . . ,−dcsc θe}.

For `−0 to be non-empty, we need dcsc θe ≤ r, which

occurs only if θc ≤ θ ≤ π − θc, where θc is the same

critical angle (59) from Section 7.1.1. If `−0 6= ∅, we have

g∗r,µ =
∑
y∈`−0

y

‖y‖
+

r∑
k=1

∑
y∈`−k

e−
µ2

2r2
k2‖g‖2 y

‖y‖

→
∑
y∈`−0

y

‖y‖
as µ→∞.

=

−dcsc θe∑
n=−r

ng

= g after rescaling.

Hence we transport in the correct direction in this case.

One the other hand, if `−0 = ∅ but θ 6= 0, then the

weights (6) concentrate all their mass into `−1 , with all

other `−k vanishing. Unfortunately, unlike `0, the set `−1

36 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

is not parallel to g so we expect kinking in this case.

In general `−1 can consist of two parallel components on

either side of `−0 . But in this case, since `−0 lies entirely

above the line y = −1, we know `−1 consists of just one

component and we can write it explicitly as

`−1 = {ng − sgn(cos θ)g⊥ : n = −r + 1, . . . ,−1}

(remember that g⊥ denotes the counterclockwise rota-

tion of g by 90◦). After rescaling by e
µ2

2r2
‖g‖2 we obtain

g∗r,µ =
∑
y∈`−1

y

‖y‖
+

r∑
k=2

∑
y∈`−k

e−
µ2

2r2
(k2−1)‖g‖2 y

‖y‖

→
∑
y∈`−1

y

‖y‖
as µ→∞.

=

(−1∑
n=−r+1

n√
1 + n2

)
g

− sgn(cos θ)

(−1∑
n=−r+1

1√
1 + n2

)
g⊥

= g + sgn(cos θ)αrg
⊥ after rescaling.

where

αr =

∑r−1
n=1

1√
1+n2∑r−1

n=1
n√

1+n2

.

Finally, if θ = 0 we have b̃−r = b−r and we obtain g∗r = e2

as for coherence transport. Defining ∆θr = arctan(αr),

for θ ∈ [0, π) we obtain

θ∗r =


π
2 if θ = 0

θ +∆θr if 0 < θ < θc

θ if θc ≤ θ ≤ π − θc
θ −∆θr if π − θc < θ < π.

(65)

In other words, aside from exceptional case θ = 0, we

have θ∗r = θ for the “well behaved” range of values

θc ≤ θ ≤ π− θc, but θ∗r jumps by a constant angle ∆θr
near θ = 0 and θ = π. The first few values of ∆θr are

∆θ3 ≈ 35.8◦, ∆θ4 ≈ 30.0◦, ∆θ5 ≈ 25.9◦. See Figure

17(c)-(d) for an illustration of (65) for r = 3 and r = 5.

Semi-implicit Guidefill. The analysis of semi-implicit

Guidefill is the same as for Guidefill except that the set

b̃−r is replaced by b̃0r. Defining `0k as the collection of

points in b̃0r distance k from the line Lg = {λg : λ ∈ R}
as before, we find that in this case

`00 := {ng ∈ b̃r : ng · e2 ≤ 0}

is never empty. In fact, for 0 ≤ θ < π we have

`00 =

{
{ng : −r ≤ n ≤ −1} if 0 < θ < π

{ng : −r ≤ n ≤ r, n 6= 0} if θ = 0.

If θ > 0, we proceed as before and find

g∗r,µ =
∑
y∈`00

y

‖y‖
+

r∑
k=1

∑
y∈`0k

e−
µ2

2r2
k2‖g‖2 y

‖y‖

→
∑
y∈`00

y

‖y‖
as µ→∞.

=

−1∑
n=−r

ng

= g after rescaling.

However, if θ = 0, this argument doesn’t work because

the elements of `00 all cancel each other out. In fact, in

this case we have

g∗r,µ =
∑
y∈`00

y

‖y‖︸ ︷︷ ︸
=0

+
∑
y∈b−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖︸ ︷︷ ︸
the g∗r,µ from coherence transport.

.

Hence, in this case g∗r = e2 yet again, just like for

Guidefill and coherence transport. In general, for 0 ≤
θ < π, we have

θ∗r =

{
π
2 if θ = 0

θ if 0 < θ < π
(66)

In other words, semi-implicit Guidefill kinks only if g is

exactly parallel to boundary of the inpainting domain.

See Figure 17(e)-(f) for an illustration of (66) for r = 3

and r = 5 (the curves are of course the same, since (66)

is independent of r).

Remark 14 In contrast to Guidefill and coherence trans-

port, (66) tells us that for semi-implicit Guidefill in the

limit µ→∞ we have θ∗r = θ for all θ ∈ (0, π), indepen-

dent of r. This is in fact exactly the same prediction

(albeit under stronger simplifying assumptions) that

März and Bornemann obtained for coherence transport

in their own continuum limit uM as µ→∞ [7, pg. 14].

We have in some sense come full circle - the original pre-

dictions of [7] for coherence transport under their high

resolution and vanishing viscosity limit are the same

as ours for semi-implicit Guidefill under our fixed ratio

limit.

7.2 Numerical Validation of limiting transport

directions for coherence transport, Guidefill, and

semi-implicit Guidefill.

In this experiment we compare the limiting transport

directions derived in Section 7.1.2 for coherence trans-

port, Guidefill, and semi-implicit Guidefill as µ → ∞
with the orientation of extrapolated isophotes in an ac-

tual inpainted image uh obtained in practice with finite

Analysis of Shell-Based image inpainting 37

(a) Original Inpaint-
ing problem, inpaint-
ing domain shown in
yellow.

(b) Inpainting using
coherence trans-
port with g =
(cos 45◦, sin 45◦),
r = 3, µ = 40.

Fig. 20: Stretching a dot into a line: In (a) we

have an inpainting problem consisting of a red dot on a

blue background, with the inpainting domain in yellow.

In (b), we see the result of inpainting using coherence

transport with µ = 40, r = 3, and g = (cos 45◦, sin 45◦).

The dot is now stretched into a line, the orientation of

which may be measured to deduce g∗r .

µ. In each case we choose as our boundary data the im-

age shown in Figure 20(a), consisting of a red dot on a

blue background, with the inpainting domain shown in

yellow. We run each algorithm with

g = (cos(k◦), sin(k◦))

for k = 0, 1, . . . , 90, with µ = 40 fixed and for various

values of r. The dot is then stretched into a line as in

Figure 20(b), the orientation of which gives g∗µ,r and

which can be measured numerically.

Results are shown in Figure 21 for r = 3 (similar re-

sults may be found for different values of r, but these are

omitted for brevity). The theoretical curves are shown

in blue, while the measured curves are shown in red.

While we see some smoothing out of the jump discon-

tinuities in the case of coherence transport, this is ex-

pected as one can easily show that the convergence to

θ∗ = limµ→∞ θ∗r,µ is pointwise but not uniform, becom-

ing arbitrarily slow in the vicinity of the jumps. On the

other hand, for Guidefill and semi-implicit Guidefill we

see excellent agreement with theory even in the vicinity

of jump discontinuities. This is to be expected as well,

since one can easily show that the relevant limits are

uniform in this case.

7.3 Consequences of the asymptotic limit

In this section, we apply the asymptotic limit from The-

orem 2 to study the blur artifacts associated with Algo-

rithm 1 and illustrated in Section 2.2. As a motivating

example, we consider the situation illustrated in Figure

22, where we extrapolate a vertical line using Guidefill

with two different guideance directions: g1 = e2 and

g2 = e1. We have already shown in Section 7.1.2 that

these lead to the same continuum limit with transport

(a) Coherence transport, r = 3.

(b) Guidefill, r = 3.

(c) Semi-implicit Guidefill, r = 3.

Fig. 21: Validation of limiting transport direc-

tions for coherence transport, Guidefill, and

semi-implicit Guidefill: Here we compare the lim-

iting transport directions θ∗r = θ(g∗r) as a function of

θ = θ(g) derived in Section 7.1.2 for coherence trans-

port, Guidefill, and semi-implicit Guidefill as µ → ∞
with the orientation of extrapolated isophotes in the in-

painting problem shown in Figure 20(a) (where µ = 40).

The theoretical curves are shown in blue, while the mea-

sured curves are shown in red. In every case we have

r = 3.

38 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) Original in-
painting problem.
D = [0, 1]2 is
200 × 200px and
shown in yellow.

(b) Inpainting
with Guidefill,
µ = 100, r = 3,
g = e2.

(c) Inpainting
with Guidefill,
µ = 100, r = 3,
g = e1.

(d) Slice of the result from
(c) at y = 0.1, compared
with the theoretical curve
from Theorem 2.

(e) Slice of the result from
(c) at y = 1.0, compared
with the theoretical curve
from Theorem 2.

Fig. 22: Transport is not the whole story: In this

experiment, the problem shown in (a) of inpainting

D = [0, 1]2 (200×200px) given data on [0, 1]× [−0.3, 0)

is solved using Guidefill with µ = 100, r = 3 and

g = (cos θ, sin θ) for θ = π
2 (b) and θ = 0 (c). While Sec-

tion 7.1.2 tells us that θ = 0 and θ = π
2 have the same

continuum limit, evidently they are very different in re-

ality. This is reflected in the asymptotic limit (Theorem

2) which is able to predict differences not reflected in

the continuum limit. In (c)-(d) we compare horizontal

slices of (c) at y = 0.1 and y = 1 respectively with the

predictions of Theorem 2. In this case the predictions

are accurate to within an error of 1/255, the minimum

increment of an image on our machine.

direction g∗r = e2 (Figure 17). However, g1 = e2 leads to

a clean extrapolation (Figure 22(a)) while the extrap-

olation using g1 = e2 suffers from heavy blur (Figure

22(b)). Evidently, the fixed ratio continuum limit from

Theorem 6 is inadequate to explain this discrepancy.

Instead we turn to the asymptotic limit - plugging the

relevant parameters into Theorem 2, we obtain a the-

oretical result that is indistinguishable from the result

obtained in reality (Figure 22(c)-(d)). The asymptotic

limit thus appears to yield excellent predictions of the

blur obtained in practice.

Although our asymptotic limit more closely approx-

imates the real behavior of Algorithm 1 than the fixed-

ratio continuum limit, the latter remains valid in the

high resolution limit h → 0. This is illustrated in Fig-

ure 24 where we repeatedly solve the same inpainting

problem with D = [0, 1)×(0, 0.5] but at increasing high

resolutions. By examining sections of constant y for dif-

fering values of h, we see explicitly the convergence of

the discrete solution uh to the fixed-ratio continuum

limit u.

Remark 15 Since uh converges to u obeying the trans-

port PDE (30), Algorithm 1 may be viewed as a numer-

ical method for solving (30). It is well known (see for ex-

ample [28]) that numerical methods for transport equa-

tions tend to introduce blur, and therefore we should

not be surprised that this is also the case of Algorithm

1. One way of studying this blur is the technique of

modified equations [28, p. 117]. However, this is not the

approach we have adopted in this paper.

Angular dependence of blur artifacts Here we briefly

explore how the variance σ(y, h)2 depends on

g = (cos θ, sin θ) as θ changes. Since σ(y, h)2 = γ2yh
|µ3
y|

can be quite complex in general we explore this nu-

merically. Figure 23 illustrates the angular dependence

of σ(y, h) as a function of θ ∈ [0, π] with y = 1 and

h = 0.01 fixed, for the three main methods of inter-

est - coherence transport, Guidefill, and semi-implicit

Guidefill (note the log scale). In every case we have

r = 3 and µ = 100.

Note that for semi-implicit Guidefill, since µy → 0

as θ → 0, we expect blur artifacts to become arbitrarily

bad as θ → 0, unless we also have γ2 → 0 as θ → 0 in

such a way that the ratio remains bounded. In fact,

γ2 = Var(µxV1 − µyU1) = Var[(µx, µy) · (U1, V1)].

is the variance of the increments Z1 = (U1, V1) or-

thogal to the mean (µx, µy), which does go to zero

as θ → 0. However, as Figure 23 illustrates, it does

not do so fast enough to compensate for the blow up

of 1/|µy|3. Indeed, numerical experiments (omitted for

brevity) demonstrate that the blur artifacts for semi-

implicit Guidefill do become arbitrarily bad as θ → 0.

Note that for coherence transport, σ2(y, h) = 0 for

all but finitely many angles, explaining the methods

apparent lack of blur artifacts (Figure 6). These spe-

cial angles correspond precisely to the jumps in Fig-

ure 17(a), where coherence transport puts its mass into

more than one y ∈ b−r (Section 7.1.2).

Degenerate stencils As noted above, coherence trans-

port suffers from no blur artifacts for all but finitely

Analysis of Shell-Based image inpainting 39

Fig. 23: Angular variation of blurring artifacts:

Here we plot the angular dependence of the variance

σ2(y, h) from the asymptotic blur kernel gσ(y,h) in The-

orem 2, for the three methods coherence transport,

Guidefill, and semi-implicit Guidefill. We fix with r = 3,

take µ → ∞, vary g = (cos θ, sin θ), and plot σ2(y, h)

as a function of θ. We fix y = 1 and h = 0.01.

many angles. To understand why this is, recall from

the analysis of Section 7.1.2 that coherence transport

“kinks” because in the limit as µ → ∞, the stencil

weights wr(0,y) are zero for all but a single y∗ ∈ b−r
which receives stencil weight one (except when θ(g) is

a transition angle or θ(g) = 0, in which case - as ob-

served in numerical experiments omitted for brevity -

coherence transport does blur). We call such stencils

degenerate.

Theorem 2 cannot be applied to degenerate stencils

as we have

ϕZi(u) = e
√
−1y∗·u

which has magnitude one irrespective of u. In this case,

the “random” walk Xτ has become deterministic as the

increments ∆Xi now obey ∆Xi = hZi = hy∗ with

probability one. One may readily show that ρXτ assigns

mass 1 to a single pixel in Uh, an hence there is no blur.

Alternative interpolation schemes

As noted in Remark 7, if we were to modify semi-

implicit Guidefill so that ghost pixels are defined not

using bilinear interpolation, but by some other interpo-

lation scheme that also

1. can be expressed in terms of non-negative basis func-

tions summing to one

2. preserves polynomials of degree 1

we would obtain an identical continuum limit as for

semi-implicit Guidefill. In the future, we would like to

explore whether or not another interpolation scheme

can be found such that σ(y, h) remains bounded as θ →
0. This would amount to finding a scheme for which the

orthogonal variance γ2 → 0 as θ → 0 fast enough to

compensate for the blow up of 1/|µy|3.

(a) h = 1
100

. (b) h = 1
200

.

(c) h = 1
2000

. (d) h = 1
4000

.

Fig. 24: Convergence to the fixed-ratio contin-

uum limit: The continuum problem of inpainting the

line tan(73◦) − 0.1 ≤ y ≤ tan(73◦) + 0.1 with image

domain Ω = [−1, 1]× [−0.5, 0.5] and inpainting domain

D = [−0.8, 0.8] × [−0.3, 0.3] is rendered at a variety of

resolutions and inpainted each time using Guidefill. Ex-

amining cross-sections of uh at y = 0.3 (on the bound-

ary of Dh), y = 0.25 (just inside), and y = 0 (in the

middle of Dh) we notice a gradual deterioration of the

initially sharp signal. This deterioration is to be ex-

pected in light of Theorem 2, as uh(x) is related to a

mollified version of u0 with a Gaussian mollifier gσ(y,h).

However, in light of Theorem 6, we also expect that as

h→ 0 and we approach the fixed-ratio continuum limit,

this signal degradation should disappear. By examining

the same slices at differing resolutions, we see that this

is indeed the case.

Summary

Theorem 2 and the experiments of this section have

four main takeaway messages:

– Blur gets worse as one moves further into the in-

painting domain and (e.g. y increases) - Figures 22

and 25.

– Blur gets better as h→ 0 - Figure 24.

– Blur is non-existent if the stencil weights are degen-

erate - that is, put all of their mass into a single real

pixel y (since in this case Zi is deterministic and all

variances are 0).

– For semi-implicit Guidefill, blur gets arbitrarily bad

as the θ(g)→ 0.

40 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) Original inpainting
problem (Dh in yellow).

(b) Inpainted using semi-
implicit Guidefill with pe-
riodic boundary condi-
tions.

(c) Boundary data at y = 0. (d) y = tan(10◦) ≈ 0.18.

(e) y = 2 tan(10◦) ≈ 0.35. (f) y = 3 tan(10◦) ≈ 0.53.

Fig. 25: Extrapolating a diagonal line: Similarly

to Figure 22, here we consider again the problem of

inpainting D = [0, 1]2 given data on [0, 1] × [−0.3, 0).

This time u0 consists of a line making a an angle of

10◦ with the horizontal, but the slice u0(x, 0) is the

same step function as in Figure 22. This time Dh is

1000 × 1000px. Inpainting is done using semi-implicit

Guidefill (r = 3, g = (cos 10◦, sin 10◦) µ = 100). In (c)

we show the initially sharp signal at y = 0, while (d)-

(f) compare horizontal slices at y = tan(10◦) ≈ 0.18,

y = 2 tan(10◦) ≈ 0.35 and y = 3 tan(10◦) ≈ 0.53 with

the predictions of Theorem 2, once again obtaining a

very good prediction. Compared with Figure 22, notice

that despite the fact that h has decreased by an order of

magnitude, our loss of signal is much more rapid. This

is consistent with the divergence σ(y, h)→∞ as θ → 0

we will encounter later in Figure 23.

8 Applications to Numerical Linear Algebra

Although we have derived our asymptotic and contin-

uum limits in the context of image inpainting, they are

abstract results that apply more generally. In partic-

ular, the asymptotic limit applies to any situation in

which a sequence of vectors {x(m)}m∈N is generated re-

cursively (for some r ∈ N) by

A0x
(m) = A1x

(m−1) +A2x
(m−2) + . . .+Arx

(m−r)

where A0, A1, A2, . . . , Ar are circulant or Toeplitz2 ma-

trices with bandwidth at most 2r + 1, with A0 an M-

matrix (positive diagonal and non-negative off-diagonal

entrees) whileA1, A2, . . . , Ar are element-wise non-negative.

An example of a situation where this comes up is the

application of damped-Jacobi for iteratively solving the

linear system

Ax = b

where A is a Toeplitz or circulant M-matrix. In this

case the evolution of the error is given by

e(m) = Jωe(m−1) = Jmω e(0) (67)

where ω is the damping parameter and the iteration

matrix Jω is given by

Jω = I − ωD−1A,

with D denoting the diagonal of A. This can be viewed

as a special case of the above with r determined by the

bandwidth of A, A0 = I, A1 = Jω, and

A2 = A3 = . . . = Ar = O.

One may easily verify that Jω is non-negative so long

as ω ∈ (0, 1). Here we demonstrate how our asymptotic

limit may be used to predict the evolution of the er-

ror of damped Jacobi applied to the one-dimensional

convection diffusion equation

uxx + αux = f (68)

with Dirichlet boundary conditions.

Boundary Conditions Technically, our asymptotic

limit is only valid for periodic boundary conditions. To

make our result rigorous for Dirichlet boundary condi-

tions, we would need to change the stopping time τ of

the stopped random walk Xτ := (Xτ , Yτ) from Section

6.4 to

τ := inf{n : Xn < 0 or Xn > 1 or Yn < 0}.

However, we know that as h → 0 the asymptotic limit

approaches the continuum limit, and one may easily see

that simply padding the boundary data u0 on either

side with an infinite strip of zeros leads to the same

continuum limit - and hence this should also lead to a

reasonable approximation for the asymptotic limit, at

least away from the boundary at x = 0 and x = 1.

2 technically, our result only applies to the circulant case,
but we will argue that it applies approximately to the Toeplitz
case as well.

Analysis of Shell-Based image inpainting 41

Discretization We consider two discretizations: 2nd

order centered differences, leading to

Acentered = tri

[
−1− αh

2
, 2,−1 +

αh

2

]
and first order upwind differences

Aupwind = tri [−1, 2− αh,−1 + αh]

Centered Differences In this case, we obtain the it-

eration matrix

J
ω,centered = tri

[
ω

2

(
1 +

αh

2

)
, 1− ω, ω

2

(
1− αh

2

)]
.

Assuming 0 ≤ ω ≤ 1 and −2 ≤ αh ≤ 2 we have

J
ω,centered non-negative, and hence by Section 6.4 we

have the associated random walk with increments (U, V)

given by

U =


1 with probability ω

2

(
1− αh

2

)
0 with probability 1− ω
−1 with probability ω

2

(
1 + αh

2

)
and V = −1 with probabilty 1. Since V is deterministic,

the second form of the asymptotic limit (Theorem 4)

applies so long as ω 6= 1. If ω = 1, the stencil of U

is constrained to the sublattice −1 + 2 · Z (Z and

hence the conditions of Theorem 4 are violated. We

will see in Figure 26 that in this case the asymptotic

limit of Theorem 4 does not accurately predict the error

evolution (67). To compute the asymptotic limit, we

need only consider the mean µ and variance σ2 of U .

We have

µ = −ωαh
2

σ2 = ω − ω2α2h2

4

Thus, defining

gσ,µ(n) :=
e−

(n−µ)2

2σ2∑N
n′=1 e

− (n′−µ)2
2σ2

we have

e
(m)
k ≈ (e(0) ∗ gmσ,mµ)k. (69)

Figure 26 presents a comparison of the predicted error

(69) with the real measured error, for N = 100, αh = 1

fixed and for ω = 0.5 and ω = 1. Note that even in the

case ω = 1, where the assumptions of Theorem 4 do not

apply, (69) is still able to predict the overall shape of

the error, minus high frequency oscillations. For ω 6= 1,

(69) is an excellent prediction of the error, except near

the boundaries x = 0 and x = 1.

Upwind In this case, we obtain the iteration matrix

Jω,upwind = tri

[
ω

2− αh
, 1− ω, ω 1− αh

2− αh

]
.

This time we assume 0 ≤ ω, αh ≤ 1 and consider the

associated random walk with increments (U, V) given

by

U =


1 with probability ω 1−αh

2−αh
0 with probability 1− ω
−1 with probability ω

2−αh

and V = −1 with probabilty 1. Again, the second form

of the asymptotic limit (Theorem 4) applies so long as

ω 6= 1. The mean µ and variance σ2 of U in this case

are given by

µ = −ω αh

2− αh
σ2 = ω − ω2α2h2

(2− αh)2

Once again the predicted error is given by (69). Simi-

lar results (omitted for brevity) are obtained as in the

centered differences case.

Remark 16 The multigrid algorithm [9], [39] is based in

part on the observation that simple iterative methods

such as damped Jacobi or Gauss-Seidel - while not nec-

essarily effective at eliminating the error - can be very

effective at smoothing it. It is well known that while

Jacobi iteration (ω = 1) is typically not an effective

smoother, damped Jacobi with ω 6= 1 often is, and

indeed it is widely employed in the multigrid method

[39]. The analysis of this section corroborates this well

known fact from the multigrid community - for ω 6= 1,

Theorem 4 gives us an explicit formula for the asymp-

totic error at iteration m as “smoothed” version of the

initial error. However, when ω = 1, the assumptions of

Theorem 4 are violated and this fails.

Remark 17 In its present form, our asymptotic limit

cannot be used to analyze the error evolution of damped

Jacobi applied to the linear systems arising from the

discretization of partial differential equations in dimen-

sion d ≥ 2. To handle this case, we must first generalize

our asymptotic limit to Rd+1. This is straightforward.

In particular, the original form of Theorem 1 as it is pre-

sented in [36], is applicable to random walks in Rd. We

quoted the two dimensional version of it in Theorem

1 simply because this was the version relevant to the

problem at hand. Since the asymptotic limit is derived

from Theorem 1, generalizing it to arbitrary dimensions

is straightforward.

42 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

(a) ω = 0.5, iteration 1. (b) ω = 1, iteration 1.

(c) ω = 0.5, iteration 10. (d) ω = 1, iteration 10.

(e) ω = 0.5, iteration 100. (f) ω = 1, iteration 100.

Fig. 26: Error evolution of damped Jacobi: Here

we plot evolution of the error of damped Jacobi applied

to the one dimensional convection diffusion equation

(68), discretized using centered differences with αh = 1

and on a grid of size N = 100. Also included is the

theoretical error as predicted by the asymptotic limit

(Theorem 4). We consider both ω = 1 and ω = 0.5. In

the former case, the asymptotic limit captures of the

overall trend of the error evolution, but fails to capture

some high frequency osscillations. This is because when

ω = 1, the assumptions of Theorem 4 are not satisfied.

On the other hand, when ω = 0.5, the conditions of

Theorem 4 are satisfied and the asymptotic limit gives

an excellent approximation of the true error evolution.

9 Conclusions and Future Work

9.1 Conclusions

In this paper we have presented a detailed analysis of

a class of geometric inpainting algorithms based on the

idea of filling the inpainting domain in successive shells

from the boundary inwards, where every pixel to be

filled is assigned a color equal to a weighted average

of its already filled neighbors. These methods are all

special cases of a generic framework sketched in Algo-

rithm 1. Methods in the literature falling within this

framework include

– Telea’s Algorithm [38].

– Coherence Transport [7,31].

– Guidefill [26].

A subtle but important point about these methods is

that pixels in the current inpainting boundary are filled

independently. Noting this, we have proposed a semi-

implicit extension of these methods in which pixels in

the current shell are instead filled simultaneously by

solving a linear system. We have also sketched in Al-

gorithm 1 a straightforward extension of the original

framework that is equivalent to solving this linear sys-

tem using damped Jacobi or successive over-relaxation

(SOR). A theoretical convergence analysis of these meth-

ods is presented for the semi-implicit extension of Guide-

fill, where we show that SOR is extremely effective. This

analysis is backed up by numerical experiments.

As all of the algorithms listed above (with the ex-

ception of semi-implicit Guidefill, which is presented for

the first time in this paper) are known to create some

disturbing visual artifacts, the main objective of our

analysis is to understand why these occur and whether

or not they are inevitable. We focus specifically on kink-

ing artifacts and blur artifacts. Other artifacts includ-

ing the formation of shocks and extrapolated isophotes

that end abruptly are discussed but not analyzed, as

they have already been studied elsewhere [7,32] and are

well understood. Our analysis is based on three main

ideas:

– A continuum limit, which we use to explain kinking

artifacts.

– An asymptotic limit, which we use to analyze blur

artifacts.

– A connection to the theory of stopped random walks,

from which both limits are derived.

Similarly to the earlier work of Bornemann and März

[7], our continuum limit is a transport equation. How-

ever, our limit process is different and so are the coef-

ficients of the resulting transport equation. Moreover,

numerical experiments show that our transport equa-

tion is a better reflection of the behaviour of Algorithm

1 (the direct form and our proposed semi-implicit ex-

tension) in practice, capable of accurately predicting

kinking phenomena that is not captured by the alter-

native continuum limit proposed in [7]. The third core

idea of our analysis, which is to relate Algorithm 1 and

its extension to stopped random walks, is critical for

two reasons. Firstly, it allows us to prove convergence

to our continuum limit even for boundary data with low

regularity, such as jump discontinuities. By contrast,

the analysis in [7] demonstrates convergence under the

Analysis of Shell-Based image inpainting 43

assumption of smooth boundary data, which is an unre-

alistic assumption for images. Secondly, this connection

is central to our analysis of blur artifacts, which we an-

alyze based not on a continuum limit where h → 0,

but rather an asymptotic limit where h very small but

nonzero. Our asymptotic limit allows us to make quan-

titative predictions regarding blur that are in excellent

agreement with numerical experiments, even for rela-

tively low resolution images (e.g. Figure 22 which is

only 200 × 200px). Although our analysis operates in

a highly idealized setting (Section 6.1), our conclusions

are far reaching. In particular, we prove the following:

1. In the direct form of Algorithm 1, kinking artifacts

will always be present. That is, certain isophotes

cannot be extended into the inpainting domain with-

out bending (Section 7.1.1).

2. This is not true of the semi-implicit extension of

Algorithm 1. In particular, semi-implicit Guidefill

can extrapolate isophotes with any orientation3, and

moreover is able to do so efficiently by using SOR

to solve the required linear system (Section 7.1.1,

Section 7.1.2, Corollary 1).

3. Blur artifacts exhibit an angular dependence, which

for semi-implicit Guidefill become arbitrarily bad

as the angle an extrapolated isophote makes with

the boundary of the inpainting domain goes to zero.

Thus, semi-implicit Guidefill pays a heavy price (on

top of the need to solve a linear system for every

shell) for its ability to successfully extrapolate such

isophotes (Theorem 2 Figure 23).

4. Blur artifacts become less significant as the resolu-

tion of the image goes up, and get worse the further

into the inpainting domain you extrapolate (Theo-

rem 2).

5. Methods that put all of their weight into a single

pixel exhibit no blur, but can only extrapolate with-

out kinking in finitely many directions (Section 7.3).

In addition to this, we have also demonstrated that

our asymptotic limit has applications outside of im-

age processing. In particular, in Section 8 we showed

how it could be used to predict the error evolution of

damped Jacobi applied to a discretized one-dimensional

convection-diffusion problem.

9.2 Future Work

There are a three main questions we would like to ex-

plore in the future.

3 that is, unless the isophotes are exactly parallel to the
boundary of the inpainting domain. But in this case extrap-
olation is not defined.

1. Does there exist an algorithm within the framework

we have described that avoids blurring artifacts and

kinking artifacts at the same time? If not, is it at

least possible to design an algorithm that, like semi-

implicit Guidefill, avoids kinking artifacts so long as

the guidance direction g = (cos θ, sin θ) obeys θ 6= 0,

but for which the severity of blur as a function of θ

remains bounded? Could this be done, for example,

by the replacing the bilinear interpolation used to

define ghost pixels with a more sophisticated inter-

polation scheme?

2. What happens if the semi-implicit version of Algo-

rithm 1 is generalized to a fully-implicit extension in

which pixel colors are computed as a weighted av-

erage not only of their (known) already filled neigh-

bors in Aε,h(x)∩Ω\D(k) and (unknown) neighbors

within the same shell ∂D
(k)
h , but of all neighbors

in Aε,h(x)? Are their additional benefits in terms of

artifact reduction and, if so, can the resulting lin-

ear system be solved efficiently enough to make this

worthwhile?

3. We would like to explore the connection of our asymp-

totic limit to problems in numerical linear algebra

more deeply. In particular, we would like to general-

ize our asymptotic limit to arbitrary dimensions so

that it can be applied to discretized partial differen-

tial equations in dimension d ≥ 2 (we have already

sketched how to do this in Remark 17). We would

also like to see whether our results can be applied

to more sophisticated methods than damped Jacobi

and - if so - whether or not any new insights can be

gained by doing so.

10 Acknowledgements

The authors would like to thank Vittoria Silvestri, James

Norris, and Arieh Iserles for helpful conversations. Thanks

is also due to Dömötör Pálvölgyi, whose idea of a symmetry-

based argument eventually led to Appendix E, Propo-

sition 5. Finally, we would like to thank an anonymous

referee for their insightful comments and suggestions.

References

1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of
bounded variation and free discontinuity problems. Ox-
ford Mathematical Monographs (2000)

2. Apostol, T.M.: Mathematical Analysis. Pearson (1974)
3. Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A varia-

tional framework for exemplar-based image inpainting.
Int. J. Comput. Vision 93(3), 319–347 (2011). DOI
10.1007/s11263-010-0418-7. URL http://dx.doi.org/

10.1007/s11263-010-0418-7

http://dx.doi.org/10.1007/s11263-010-0418-7
http://dx.doi.org/10.1007/s11263-010-0418-7

44 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

4. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G.,
Verdera, J.: Filling-in by joint interpolation of vector
fields and gray levels. IEEE Transactions on Image Pro-
cessing 10(8), 1200–1211 (2001). DOI 10.1109/83.935036

5. Bellman, R.: A Brief Introduction to Theta Functions.
Holt (1961)

6. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Im-
age inpainting. In: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques,
pp. 417–424. ACM Press/Addison-Wesley Publishing Co.
(2000)

7. Bornemann, F., März, T.: Fast image inpainting based
on coherence transport. Journal of Mathematical Imag-
ing and Vision 28(3), 259–278 (2007). DOI 10.1007/
s10851-007-0017-6. URL http://dx.doi.org/10.1007/

s10851-007-0017-6

8. Bracewell, R.: The Fourier Transform and its Applica-
tions, second edn. McGraw-Hill Kogakusha, Ltd., Tokyo
(1978)

9. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multi-
grid Tutorial: Second Edition. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2000)

10. Brown, R.A.: Barycentric coordinates as interpolants.
CoRR abs/1308.1279 (2013). URL http://arxiv.org/

abs/1308.1279

11. Burger, M., He, L., Schönlieb, C.: Cahn-hilliard inpaint-
ing and a generalization for grayvalue images. SIAM J.
Imaging Sci. 2(4), 1129–1167 (2009)

12. Buyssens, P., Meur, O., Daisy, M., Tschumperlé, D.,
Lézoray, O.: Depth-guided disocclusion inpainting of syn-
thesized rgb-d images. IEEE Transactions on Image Pro-
cessing 26(2), 525–538 (2017). DOI 10.1109/TIP.2016.
2619263

13. Chan, T., Kang, S., Shen, J.: Euler’s elastica and
curvature-based inpainting. SIAM Journal on Applied
Mathematics pp. 564–592 (2002)

14. Chan, T., Shen, J.: Variational image inpainting. Com-
munications on pure and applied mathematics 58(5),
579–619 (2005)

15. Cilleruelo, J.: The distribution of the lattice points
on circles. Journal of Number Theory 43(2), 198 –
202 (1993). DOI http://dx.doi.org/10.1006/jnth.1993.
1017. URL http://www.sciencedirect.com/science/

article/pii/S0022314X83710176

16. Criminisi, A., Pérez, P., Toyama, K.: Region filling
and object removal by exemplar-based image inpainting.
IEEE Transactions on Image Processing 13, 1200–1212
(2004)

17. Daribo, I., Pesquet-Popescu, B.: Depth-aided image in-
painting for novel view synthesis. In: 2010 IEEE Inter-
national Workshop on Multimedia Signal Processing, pp.
167–170 (2010). DOI 10.1109/MMSP.2010.5662013

18. Erdös, P., Hall, R.: On the angular distribution
of gaussian integers with fixed norm. Discrete
Mathematics 200(1–3), 87 – 94 (1999). DOI
http://dx.doi.org/10.1016/S0012-365X(98)00329-X.
URL http://www.sciencedirect.com/science/

article/pii/S0012365X9800329X

19. Getreuer, P.: A Survey of Gaussian Convolution Algo-
rithms. Image Processing On Line 3, 286–310 (2013).
DOI 10.5201/ipol.2013.87

20. Guillemot, C., Meur, O.: Image inpainting : Overview
and recent advances. IEEE Signal Processing Magazine
31(1), 127–144 (2014). DOI 10.1109/MSP.2013.2273004

21. Gut, A.: On the moments and limit distributions of
some first passage times. Ann. Probab. 2(2), 277–308

(1974). DOI 10.1214/aop/1176996709. URL http://dx.

doi.org/10.1214/aop/1176996709
22. Gut, A.: On the moments of some first passage times for

sums of dependent random variables. Stochastic Pro-
cesses and their Applications 2(1), 115 – 126 (1974). DOI
http://dx.doi.org/10.1016/0304-4149(74)90015-5. URL
http://www.sciencedirect.com/science/article/pii/

0304414974900155
23. Gut, A.: Stopped Random Walks: Limit Theorems and

Applications. Springer Series in Operations Research and
Financial Engineering. Springer New York (2009). URL
https://books.google.co.uk/books?id=tWfBs5G7jHIC

24. Gut, A., Janson, S.: The limiting behaviour of certain
stopped sums and some applications. Scandinavian Jour-
nal of Statistics 10(4), 281–292 (1983). URL http:

//www.jstor.org/stable/4615930
25. Hocking, L., Holding, T., Schönlieb, C.: Numerical anal-

ysis of shell-based geometric image inpainting algorithms
and their semi-implicit extension URL https://arxiv.

org/abs/1707.09713
26. Hocking, L., MacKenzie, R., Schönlieb, C.: Guidefill: Gpu

accelerated, artist guided geometric inpainting for 3d con-
version of film URL http://arxiv.org/abs/1611.05319

27. domotorp
(http://mathoverflow.net/users/955/domotorp): Conjec-
ture regarding closest point inside a discrete ball to a
line. MathOverflow. URL http://mathoverflow.net/

q/187830. URL:http://mathoverflow.net/q/187830 (ver-
sion: 2014-11-22)

28. LeVeque, R.J.: Numerical methods for conservation laws
(2. ed.). Lectures in mathematics. Birkhäuser (1992)

29. Ma, L., Do, L., de With, P.: Depth-guided inpainting al-
gorithm for free-viewpoint video. In: 2012 19th IEEE
International Conference on Image Processing, pp. 1721–
1724 (2012). DOI 10.1109/ICIP.2012.6467211

30. Malinovskii, V.K.: Limit theorems for stopped random
sequences. i: Rates of convergence and asymptotic expan-
sions. Theory of Probability & Its Applications 38(4),
673–693 (1994). DOI 10.1137/1138067. URL https:

//doi.org/10.1137/1138067
31. März, T.: Image inpainting based on coherence transport

with adapted distance functions. SIAM J. Img. Sci. 4(4),
981–1000 (2011). DOI 10.1137/100807296. URL http:

//dx.doi.org/10.1137/100807296
32. März, T.: A well-posedness framework for inpainting

based on coherence transport. Foundations of Compu-
tational Mathematics 15(4), 973–1033 (2015). DOI
10.1007/s10208-014-9199-7. URL http://dx.doi.org/

10.1007/s10208-014-9199-7
33. Masnou, S., Morel, J.: Level lines based disocclusion. In:

Image Processing, 1998. ICIP 98. Proceedings. 1998 In-
ternational Conference on, pp. 259–263. IEEE (1998)

34. Schönlieb, C.: Partial Differential Equation Methods for
Image Inpainting. Cambridge University Press (2015)

35. Smith, S.W.: The Scientist and Engineer’s Guide to Dig-
ital Signal Processing. California Technical Publishing,
San Diego, CA, USA (1997)

36. Stam, A.J.: Local central limit theorem for first entrance
of a random walk into a half space. Compositio Math-
ematica 23(1), 15–23 (1971). URL http://eudml.org/

doc/89073
37. Tao, T.: Variants of the central limit theorem.

URL https://terrytao.wordpress.com/2015/11/19/

275a-notes-5-variants-of-the-central-limit-theorem/

#more-8566
38. Telea, A.: An image inpainting technique based on the

fast marching method. Journal of Graphics Tools 9(1),
23–34 (2004)

http://dx.doi.org/10.1007/s10851-007-0017-6
http://dx.doi.org/10.1007/s10851-007-0017-6
http://arxiv.org/abs/1308.1279
http://arxiv.org/abs/1308.1279
http://www.sciencedirect.com/science/article/pii/S0022314X83710176
http://www.sciencedirect.com/science/article/pii/S0022314X83710176
http://www.sciencedirect.com/science/article/pii/S0012365X9800329X
http://www.sciencedirect.com/science/article/pii/S0012365X9800329X
http://dx.doi.org/10.1214/aop/1176996709
http://dx.doi.org/10.1214/aop/1176996709
http://www.sciencedirect.com/science/article/pii/0304414974900155
http://www.sciencedirect.com/science/article/pii/0304414974900155
https://books.google.co.uk/books?id=tWfBs5G7jHIC
http://www.jstor.org/stable/4615930
http://www.jstor.org/stable/4615930
https://arxiv.org/abs/1707.09713
https://arxiv.org/abs/1707.09713
http://arxiv.org/abs/1611.05319
http://mathoverflow.net/q/187830
http://mathoverflow.net/q/187830
https://doi.org/10.1137/1138067
https://doi.org/10.1137/1138067
http://dx.doi.org/10.1137/100807296
http://dx.doi.org/10.1137/100807296
http://dx.doi.org/10.1007/s10208-014-9199-7
http://dx.doi.org/10.1007/s10208-014-9199-7
http://eudml.org/doc/89073
http://eudml.org/doc/89073
https://terrytao.wordpress.com/2015/11/19/275a-notes-5-variants-of-the-central-limit-theorem/#more-8566
https://terrytao.wordpress.com/2015/11/19/275a-notes-5-variants-of-the-central-limit-theorem/#more-8566
https://terrytao.wordpress.com/2015/11/19/275a-notes-5-variants-of-the-central-limit-theorem/#more-8566

Analysis of Shell-Based image inpainting 45

39. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid.
Elsevier Science (2000). URL https://books.google.

ca/books?id=9ysyNPZoR24C
40. TschumperlÉ, D.: Fast anisotropic smoothing of multi-

valued images using curvature-preserving pde’s. Interna-
tional Journal of Computer Vision 68(1), 65–82 (2006).
DOI 10.1007/s11263-006-5631-z. URL http://dx.doi.

org/10.1007/s11263-006-5631-z
41. Varah, J.: A lower bound for the smallest sin-

gular value of a matrix. Linear Algebra and
its Applications 11(1), 3 – 5 (1975). DOI
http://dx.doi.org/10.1016/0024-3795(75)90112-3. URL
http://www.sciencedirect.com/science/article/pii/

0024379575901123
42. Varga, R.: Matrix iterative analysis. Prentice-Hall series

in automatic computation. Prentice-Hall (1962). URL
https://books.google.co.uk/books?id=PFYWAAAAIAAJ

43. Wexler, Y., Shechtman, E., Irani, M.: Space-time comple-
tion of video. IEEE Trans. Pattern Anal. Mach. Intell.
29(3), 463–476 (2007). DOI 10.1109/TPAMI.2007.60

A Punctured sums

Here we provide further justification for our exclusion of the
point x from the update formula (1) in Algorithm 1 as men-
tioned in Remark 4. As we mentioned there, this makes no
difference to the direct form of Algorithm 1, because the
subroutine FillRow only involves sums taken over Aε,h(x) ∩
(Ω\D(k)), which never contains x. However, the semi-implicit
extension of Algorithm 1 expresses uh(x) as a sum of uh(y)
over a set of points that might include x. The reason we de-
liberately exclude x is because, as the following proposition
shows, if wε(x,x) < ∞, it doesn’t matter, but if wε(x,x) =
∞, it wreaks havoc. Moreover, the weights (6) which we wish
to study do have the property that wε(x,x) =∞.

Proposition 2 Suppose x ∈ B for some finite set B ⊂ R2,
and suppose there exist non negative weights w : B × B →
[0,∞], finite everywhere except possibly at (x,x). Then if
w(x,x) <∞, we have

uh(x) =

∑
y∈B w(x,y)uh(y)∑

y∈B w(x,y)
=

∑
y∈B\{x} w(x,y)uh(y)∑

y∈B\{x} w(x,y)
.

On the other hand, if w(x,x) =∞, we have an indeterminate
expression

uh(x) =
∞
∞
.

Proof The proof is an exercise in cancellation and left to the
reader. ut

B Properties of Ghost Pixels and Equivalent

Weights

In this appendix we prove the six properties of ghost pixels
and equivalent weights listed in Section 4. These properties
all follow from the definition of uh(y) when y is a ghost pixel,
namely

uh(y) =
∑

z∈Supp({y})

Λz,h(y)uh(z),

where {Λz,h}z∈Z2
h

denote the basis functions of bilinear inter-

polation associated with the lattice Z2
h, and where Supp(A)

denotes the set of real pixels needed to define a set A of ghost
pixels using bilinear interpolation. Note that if y ∈ A, then

Λz,h(y) = 0 for all z /∈ Supp(A). (70)

The following explicit formula for Supp({(x, y)}) (which comes
from the definition of bilinear interpolation) will occasionally
be useful.

Supp({(x, y)}) =

{(⌊
x

h

⌋
h,

⌊
y

h

⌋
h

)
,

(⌈
x

h

⌉
h,

⌊
y

h

⌋
h

)
,(⌊

x

h

⌋
h,

⌈
y

h

⌉
h

)
,

(⌈
x

h

⌉
h,

⌈
y

h

⌉
h

)}
. (71)

First we prove property one.

1. Explicit formula:

w̃(x, z) =
∑

y∈A(x)

Λy,h(z)w(x,y)

Proof This follows straightforwardly from the definition of
ghost pixels, the property (70), and a few exchanges of finite
sums.

uh(x) =
∑

y∈A(x)

w(x,y)uh(y)

=
∑

y∈A(x)

w(x,y)
∑

z∈Supp({y})

Λz,h(y)uh(z)

=
∑

y∈A(x)

w(x,y)
∑

z∈Supp(A(x))

Λz,h(y)uh(z)

=
∑

z∈Supp(A(x))

 ∑
y∈A(x)

Λz,h(y)w(x,y)

︸ ︷︷ ︸
:=w̃(x,z)

uh(z)

ut

Next, instead of proving properties two and three, we prove
a stronger result from which they both follow.

1.(a) Preservation of degree 1 polynomials: Suppose f(y) is a
(scalar valued) polynomial of degree at most 1, that is f(y) =
a+ b · y for some a ∈ R and b ∈ R2. Then

∑
y∈A(x)

w(x,y)f(y) =
∑

y∈Supp(A(x))

w̃(x,y)f(y).

Proof This follows from the fact that the bilinear interpolant
of a polynomial of degree at most 1 is just the polynomial
back. That is,

∑
z∈Supp({y})

Λz,h(y)f(z) = f(y).

https://books.google.ca/books?id=9ysyNPZoR24C
https://books.google.ca/books?id=9ysyNPZoR24C
http://dx.doi.org/10.1007/s11263-006-5631-z
http://dx.doi.org/10.1007/s11263-006-5631-z
http://www.sciencedirect.com/science/article/pii/0024379575901123
http://www.sciencedirect.com/science/article/pii/0024379575901123
https://books.google.co.uk/books?id=PFYWAAAAIAAJ

46 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

This is obvious and we do not prove it. We will also use (70)
once.∑

y∈A(x)

w(x,y)f(y)

=
∑

y∈A(x)

w(x,y)

 ∑
z∈Supp({y})

Λz,h(y)f(z)


=

∑
y∈A(x)

w(x,y)

 ∑
z∈Supp(A(x))

Λz,h(y)f(z)


=

∑
z∈Supp(A(x))

 ∑
y∈A(x)

Λz,h(y)w(x,y)

 f(z)

=
∑

z∈Supp(A(x))

w̃(x, z)f(z).

ut

2. Preservation of total mass.∑
y∈A(x)

w(x,y) =
∑

y∈Supp(A(x))

w̃(x,y).

Proof Special case of 1.(a), p(y) ≡ 1. ut

3. Preservation of center of mass (or first moment).∑
y∈A(x)

w(x,y)y =
∑

y∈Supp(A(x))

w̃(x,y)y.

Proof Apply 1.(a) to each component of f(y) = y. ut

4. Inheritance of non-negativity:

w̃ε(x, z) ≥ 0 for all z ∈ Supp(Aε,h(x)).

Proof This is immediate from the non-negativity of the orig-
inal weights {wε}, the non-negativity of the basis functions
{Λy,h}, and the explicit formula (9). ut

5. Inheritance of non-degeneracy condition (3).∑
y∈Supp(Aε,h(x)∩(Ω\D(k)))

w̃ε(x,y) > 0.

Proof Apply preservation of total mass to (3). ut

6. Universal Support. For any n ∈ Z, we have

Supp(Aε,h(x) ∩ {y ≤ nh}) ⊆ Dh(Bε,h(x)) ∩ {y ≤ nh}
⊆ Bε+2h,h(x) ∩ {y ≤ nh}.

where {y ≤ nh} := {(x, y) ∈ R2 : y ≤ nh}, and where Dh is
the dilation operator defined in our section on notation.

Proof Let (x, y) ∈ Aε,h(x) ∩ {y ≤ nh}. Then x2 + y2 ≤ ε2

and y ≤ nh. Hence
(⌊
x
h

⌋
h,
⌊
y
h

⌋
h
)
∈ Bε,h(x), and by (71)

we have

Supp({(x, y)}) ⊆ N
((⌊

x

h

⌋
h,

⌊
y

h

⌋
h

))
⊆ Dh(Bε,h(x)),

Where N (x) denotes the nine-point neighborhood of x ∈ Z2
h

defined in the notation section. But since we also know y ≤

nh, we have
⌈
y
h

⌉
h ≤

⌈
nh
h

⌉
h ≤ nh, and hence applying (71)

again we conclude

Supp({(x, y)}) ⊆ {y ≤ nh}

as well. Since (x, y) ∈ Aε,h(x)∩ {y ≤ nh} was arbitrary, the
first inclusion follows. For the second inclusion, note that
every element of Dh(Bε,h(x)) ∩ {y ≤ nh} is of the form
(x, y) = y + ∆y where y ∈ Bε,h(x) and ∆y ∈ {−h, 0, h} ×
{−h, 0, h}. Hence

‖(x, y)‖ = ‖y +∆y‖ ≤ ‖y‖+ ‖∆y‖ ≤ ε+
√

2h < ε+ 2h.

At the same time we have y ≤ nh, so (x, y) ∈ Bε+2h,h(x) ∩
{y ≤ nh} as claimed. ut

C Proof that our proposed extension of
Algorithm 1 is equivalent to damped Jacobi or
SOR

Here we supply the proof, promised in Section 5, that the
blue text in Algorithm 1 is actually an implementation of ei-
ther damped Jacobi or SOR, depending on whether the “Fill-
Boundary” subroutine is executed sequentially or in parallel.

Proposition 3 Changing the boolean “semiImplicit” to true
in Algorithm 1 is equivalent to solving (15) with damped Ja-
cobi if “FillBoundary” is executed in parallel, and with SOR
if it is executed sequentially. In either case, the relaxation
parameter is given by

ω∗ =

(
1−

w̃ε(x,x)

W

)
.

Proof First, note that the Jacobi iteration for solving the lin-
ear system (15) may be written as

ũ
(n+1)
h (x) =

1

1− w̃ε(x,x)

W

 ∑
y∈S(k)

ε,h(x)\{x}

w̃ε(x,y)

W
u
(n)
h (y) + f


with f defined as in (18). By comparison, repeated (parallel)
executation of

FillBoundary(D
(k+1)
h , ∂D

(k)
h) is equivalent (after applying the

definition of equivalent weights) to

u
(n+1)
h (x) =

∑
y∈S(k)

ε,h(x)

w̃ε(x,y)

W
u
(n)
h (y) + f

=
w̃(x,x)

W
u
(n)
h (x)

+
∑

y∈S(k)
ε,h(x)\{x}

w̃ε(x,y)

W
u
(n)
h (y) + f

= (1− ω∗)u(n)
h (x) + ω∗ũ

(n+1)
h (x),

which is a definition of damped Jacobi. The proof for SOR
is analogous. ut

Analysis of Shell-Based image inpainting 47

Fig. 27: Illustration of the position of the line

`−r relative to the current shell ∂D
(k)
h and previ-

ous shell ∂D
(k−1)
h : Here we visualize the line `−r :=

{−jg}rj=1 ⊆ b̃−r when g = (cos θ, sin θ) with 0 < θ <

θc = arcsin(1/r). In this case `−r fits entirely into the

space between ∂D
(k)
h and ∂D

(k−1)
h . For convenience, we

enumerate `−r as `−r := {pj}rj=1 where pj = −jg. We

write the current pixel of interest x as x
(k)
0 for con-

venience, and its unknown neighbors in ∂D
(k)
h as x

(k)
j

for −r − 2 ≤ j ≤ r + 2, while its already filled neigh-

bors (we only show the ones in ∂D
(k−1)
h) are denoted

by x
(k−δ)
j := x + h(j, δ) ∈ ∂D(k−δ)

h for (j, δ) ∈ b−r+2.

D Proof of Proposition 1

First we fix some notation. Suppose we are on iteration k of

semi-implicit Guidefill and let x := x
(k)
0 denote a fixed but

arbitrary member of ∂D
(k)
h . The pixel x

(k)
0 is coupled by (15)

to its immediate neighbors x
(k)
j for −r − 2 ≤ j ≤ r + 2, and

also depends on the pixels x
(k−δ)
j := x + h(j, δ) ∈ ∂D(k−δ)

h

for (j, δ) ∈ b−r+2 which appear in the right hand side of (15)
within the vector f .

Next, note that since µ → ∞, the weights wr have van-
ished on all of b̃0r except for the line of ghost pixels

`−r := {−jg}rj=1.

For convenience, we enumerate `−r as `−r := {pj}rj=1 where
pj = −jg. Each pj receives weight

wj :=
1

j
.

This situation is illustrated in Figure 27 for the case 0 < θ <

θc, where `−r fits entirely into the space between ∂D
(k)
h and

∂D
(k−1)
h .
To compute the entries of L, we follow the idea of Section

4 and consider how the weight wj of each ghost pixel pj gets
distributed to its real pixel neighbors. For example, in Figure
27, the weight w1 of p1 gets redistributed amongst the four

pixels x
(k)
0 , x

(k)
−1 , x

(k−1)
0 , and x

(k−1)
−1 .

How exactly this weight gets redistributed is for the most
part not something we need to know precisely. For example, it
is already clear from Figure 27 that if 0 < θ ≤ π

2
, then none

of the weight of any of the pj make it into any of x
(k)
1 , x

(k)
2 ,

x
(k)
3 Similarly, if π

2
≤ θ < π, no weight makes it to any

of x
(k)
−1 , x

(k)
−2 , x

(k)
−3 This means that, given our assumed

ordering of pixels within each layer ∂D
(k)
h , we already know

that L is a lower triangular matrix. Hence L = L, U = O.
Therefore, Gω takes on the simplified form

Gω = (1− ω)(I − ωD−1L)−1.

We begin with ‖Gω‖∞, the harder case. In this case, defining

A := I − ωD−1L,

we have

‖Gω‖∞ = |1− ω|‖A−1‖∞ (72)

We know L = D − L is strictly diagonally dominant, so
the following computation shows that A is as well, provided
0 < ω ≤ 1:∑

j 6=i

|Aij | =
|ω|
|Dii|

∑
j 6=i

|Lij | < |ω| ≤ 1 = |Aii|.

Hence, the following classical bound due to Jim Varah [41,
Theorem 1] applies:

‖A−1‖∞ ≤
1

minNi=1∆i(A)

where
∆i(A) :=

∣∣|Aii| −∑
j 6=i

|Aij |
∣∣.

Since A is a Toeplitz matrix with band width r+2 and at the
same time a lower triangular matrix , we know that ∆i(A) is
the same for all i ≥ r+3, but increases somewhat for i ≤ r+2
as there are fewer off diagonal terms (due to our assumed
Dirichlet boundary conditions). In particular, the first row
has no off diagonal terms, so we have ∆1(A) = A11 = 1. It
follows that

∆1(A) ≥ ∆2(A) ≥ . . . ≥ ∆r+3(A) = ∆r+4(A) = . . . = ∆N (A).

Choosing row N as a representative row for convenience gives

‖A−1‖ ≤
1

∆N (A)
.

However, the identity

‖A−1‖−1 = inf
x

‖Ax‖
‖x‖

(valid for any induced norm) means that in particular, for
the vector e containing r + 2 zeros followed by N − r − 2
ones, that is

e = (0, . . . , 0︸ ︷︷ ︸
r+2

, 1, . . . , 1︸ ︷︷ ︸
N−r−2

),

we have

‖A−1‖−1
∞ ≤

‖Ae‖∞
‖e‖∞

=
N

max
i=1

∣∣∣∣∣∣
N∑
j=1

Aijej

∣∣∣∣∣∣
=

N
max
i=r+3

∣∣∣∣∣∣|Aii| −
∑
j 6=i

|Aij |

∣∣∣∣∣∣ = ∆N (A).

where we have used the fact that for all i we have Aii > 0
and Aij ≤ 0 for j 6= i. The vector e was chosen deliberately
in order to avoid the first r + 2 rows of A, which we have
already said are different due to boundary conditions. Hence

‖A−1‖∞ ≥
1

∆N (A)

as well, and having proven the bound in both directions we
conclude

‖A−1‖∞ =
1

∆N (A)
. (73)

48 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Remark 18 It appears that Varah’s bound [41, Theorem 1]
should generalize to equality not only in our case, but to
general strictly diagonally dominant Toeplitz matrices obey-
ing Aii > 0 for all i and Aij ≤ 0 whenever j 6= i, using
a very similar argument. However, this generalization does
not appear in [41] and we have been unable to find it in the
literature.

The next step is to compute ∆N (A). To that end, note that
by definition A = I − ωD−1L obeys Aii = 1 for all i and

Aij = −ω

(
w̃r(0,(j−i)e1)

W

)
(

1− w̃r(0,0)

W

) = −ω
w̃r(0, (j − i)e1)

W − w̃r(0,0)

for
max(i− r − 2, 1) ≤ j < i.

by (27). Here W are the total weight and equivalent weights
w̃r defined in Section 6.1. Hence

∆N (A) =

∣∣∣∣∣1− ω
∑−1
j=−r−2 w̃r(0, je1)

W − w̃r(0,0)

∣∣∣∣∣ =

∣∣∣∣∣1− ω
(
W̃ − w̃0,0

W − w̃0,0

)∣∣∣∣∣ ,
where W̃ and w̃0,0 are defined as in (27). Combining the
above with (72) and (73) we finally obtain

‖Gω‖∞ =
|1− ω|

1− ω
(
W̃−w̃0,0

W−w̃0,0

)
as claimed. We leave deriving expressions for W , W̃ , and
w̃0,0 until the end. First we derive an expression for ‖Jω‖∞
in terms of these three quantities. Since U = O we have

Jω = I −ωD−1L = I −ωD−1(D−L) = (1−ω)I +ωD−1L.

By definition we have

‖Jω‖∞ :=
N

max
i=1

N∑
j=1

|(Jω)ij |.

So long as i ≥ r + 3, this sum becomes

N∑
j=1

|(Jω)ij | = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
.

If i ≤ r + 2, then this sum includes fewer terms and is po-
tentially smaller. Hence

‖Jω‖∞ = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
.

Our remaining task is to derive the claimed expressions for
W , W̃ , and w̃0,0. The easiest is W . By (17) we have

W =

r∑
j=1

wj =

r∑
j=1

1

j
.

It is also not difficult to compute w̃0,0, which represents frac-
tion of the mass w1 = 1 of the point p1 that gets redistributed

back to x
(k)
0 (see Figure 27). Since p1 sits h sin θ units be-

low ∂D
(k)
h and h(1− sin θ) units above ∂D

(k−1)
h , and either

h cos θ units to the left x
(k)
0 and h(1−cos θ) units right of x

(k)
−1

if 0 ≤ θ ≤ π
2

or h| cos θ| units right of x
(k)
0 and h(1−| cos θ|)

units left of x
(k)
1 otherwise, it follows that

w̃0,0 = (1− sin θ)(1− | cos θ|)w1 = (1− sin θ)(1− | cos θ|).

For W̃ , we split into cases. If 0 ≤ θ ≤ θc or π − θc ≤
θ ≤ π, then `−r fits entirely between ∂D

(k)
h and ∂D

(k−1)
h ,

as in Figure 27. If θc < θ < π − θc, then only p1 up to
pj∗ fit (recall the definition of j∗ from the statement of the
proposition). As a result, in the first case every pj for 1 ≤
j ≤ r contribute mass to W̃ . In the second case, only the first
j∗ contribute. Each contributing pj is situated hj sin θ units

below ∂D
(k)
h and h(1 − j sin θ) units above ∂D

(k−1)
h . Hence

each contributing pj contributes (1 − j sin θ)wj towards W̃ .
Hence, in the first case we have

W̃ =

r∑
j=1

(1− j sin θ)
1

j
=

r∑
j=1

1

j
− r sin θ,

while in the second we have

W̃ =

j∗∑
j=1

1

j
− j∗ sin θ.

Our final claim on the expressions for ‖J1‖∞ and ‖G1‖∞
and the optimality of ω = 1 is now a simple exercise and is
left to the reader. ut

E Additional details on coherence transport
and the angular spectrum

In Section 7.1.2 we related the limiting transport direction
g∗r = limµ→∞ g∗µ,r of coherence transport to the angular

spectrum Θ(b−r) of b−r defined by (62). More precisely, first
we connected g∗r to the set of minimizers Ψ within b−r of the
orthogonal distance to the line Lg = {λg : λ ∈ R}, where
g is the guidance direction of coherence transport. Then we
claimed that Ψ and Θ(b−r) are related. Now is the time to
prove that claim. We will do this in Proposition 4 not just
for b−r , but for a general finite subset A ⊆ Z2∩{y ≤ −1}. To
do this, however, first we generalize the concept of angular
spectrum to a general subset A ⊆ Z2.

Definition 8 Given A ⊆ Z2 we define the angular spectrum
of A by

Θ(A) = {θ ∈ [0, π) : θ = θ(y) for some y ∈ A\{0}} (74)

If A is finite it follows that Θ(A) is as well, and we write

Θ(A) = {0 ≤ θ1 < θ2 < . . . < θn < π}.

See Figure 28(b) for an illustration of Θ(A) in the case A =
b−r .

Once again we have defined Θ(A) modulo π to reflect the
fact that g∗r and −g∗r define the same transport equation.
The characterization of Θ(A) is of interest in and of itself
and has been studied for A = br by the likes of Erdös [18]
and many others, see for example [15] (they, however, do not
define it modulo π).

Analysis of Shell-Based image inpainting 49

Remark 19 The point of generalizing the concept of angular
spectrum and generalizing Proposition 4 from b−r to a general
A ⊆ Z2 ∩{y ≤ −1} is so that we can show (Corollary 2) that
our kinking results for coherence transport from Section 7.1.2
continue to hold, essentially unchanged, if coherence trans-
port is modified to sum over a discrete square, for example,
rather than a discrete ball.

Proposition 4 Let A ⊆ Z2 ∩ {y ≤ −1} obey |A| < ∞, and
let Θ(A) = {θ1, θ2, . . . , θn} denote the angular spectrum of
A, and assume n = |Θ(A)| ≥ 2 in order to avoid degenerate
cases (that is, the elements of A do not all sit on a single
line through the origin). Let gθ = (cos θ, sin θ) and denote by
Ψθ the set of minimizers of |g⊥θ · y| over y ∈ A (that is, the
point(s) in A minimizing the orthogonal distance to the line
Lgθ . Given y ∈ A, we say that y is a singleton minimizer
if there is some θ ∈ [0, π) for which Ψθ = {y}. Let Y :=
{y1,y2, . . . ,yn′} denote the set of all singleton minimizers,
ordered so that θ(yi) ≤ θ(yi+1) for all i = 1, . . . n′−1. Then
n′ = n,

Θ(A) = {θ(y1), θ(y2), . . . , θ(yn)},
and moreover θi = θ(yi) for all i = 1, . . . , n. Finally, each
singleton minimizer yi is the shortest vector in A such that
θ(y) = θi, that is for every y ∈ A such that θ(y) = θi, we
have ‖y‖ ≥ ‖yi‖.

Proof Let θi ∈ Θ(A). Our main objective is to show that θi =
θ(yi). To achieve that, it suffices to show that the sets Θ(A)
and {θ(y1), θ(y2), . . . , θ(yn′)} are equal, since from here it
follows that n′ = n, and then the desired identity follows from
the ordering property θ(yi) ≤ θ(yi+1) for all i = 1, . . . , n−1.
Our secondary objective, to show that yi is the shortest vector
in A obeying θ(y) = θi is something that will be proved along
the way.

For the first step, the inclusion

Θ(A) ⊇ {θ(y1), θ(y2), . . . , θ(yn′)}

is obvious and follows from the definition of Θ(A). Hence it
suffices to prove

Θ(A) ⊆ {θ(y1), θ(y2), . . . , θ(yn′)}. (75)

Still fixing θi ∈ Θ(A), by definition we have θi = θ(y) for
some y ∈ A. In fact, we have θi = θ(y) for all y ∈ Ψθi , which
in this case is a set of vectors that are all scalar multiples of
gθi and hence all of which obey |g⊥θi · y| = 0. Define the

functions ∆(θ) and δ(θ) by

δ(θ) := max
y∈Ψθ

|g⊥θ · y|

∆(θ) :=

{
miny∈A\Ψθ |g⊥θ · y|. if A\Ψθ 6= ∅
δ(θ) otherwise.

Then δ(θ) and ∆(θ) each depend continuously on θ. More-
over, it is straightforward to show that ∆(θi) > δ(θi) = 0,
since we have assumed |Θ(A)| ≥ 2 (this condition could only
ever be violated if all elements of A were scalar multiples
of one another). By continuity, it follows that for |θ − θi|
sufficiently small we have δ(θ) < ∆(θ), which means that
Ψθ ⊆ Ψθi . But for |θ − θi| ≤ π

2
and for y ∈ Ψθi , we have the

explicit formula

|g⊥θ · y| = ‖y‖ sin |θ − θi|.

This is obviously minimized by whichever y∗ ∈ Ψθi is shortest
- i.e. ‖y∗‖ ≤ ‖y‖ for all y ∈ Ψθi . Moreover, since A is

Fig. 28: Proving that the point casting the shal-

lowest angle on Lg from above is also the point

minimizing the orthogonal distance from above:

Given yi ∈ A ⊆ Z2 ∩ {y ≤ −1} and line Lg = {λg :

λ ∈ R}, g = (cos θ, sin θ) passing through the origin,

we define the (open) triangles Ti, T̃i to be the unique

pair of open triangles with one side parallel to Lg, an-

other side horizontal, and a third side equal to the ray

from the origin to yi. A symmetry-based argument in

Proposition 5 shows that, under modest hypotheses on

A, the triangle Ti contains a lattice point (element of

Z2) if and only if T̃i does.

contained in the lower half plane we know this minimizer
is unique. Hence Ψθ = {y∗}, which makes y∗ a singleton
minimizer. Since θi = θ(y∗), this proves the desired inclusion
(75), and we have already proven our secondary claim on the
length of y∗ being minimal. ut

Our next claim was a formula for Ψ valid when θi < θ <
θi+1 for two consecutive members θi, θi+1 ∈ Θ(A), when
0 := θ0,1 < θ < θ1, and when θn < θ < θn,n+1 := π.
Proposition 5 derives this formula, under the assumption that
A can be described a union of discrete rectangles on or below
the line y = −1 and straddling the line x = 0. This includes
the case A = b−r , but also covers a number of other cases,
as mentioned in Remark 19. Credit for this proposition goes
to Dömötör Pálvölgyi, who had the critical idea of using a
symmetry based argument [27].

Proposition 5 Let A ⊆ Z2 ∩ {y ≤ −1} be a finite union of
discrete rectangles of the form

A =

K⋃
k=1

[ak, bk]× [ck, dk] ∩ Z2

where −∞ < ak ≤ 0 ≤ bk <∞, −∞ < ck ≤ dk ≤ −1 for all
k. Let

Θ(A) := {θ1, θ2, . . . , θn}

denote the angular spectrum of A, let g = (cos θ, sin θ), and
let Y = {y1,y2, . . . ,yn} be the set of singleton minimizers
defined in Proposition 4 of |g⊥ · y| over A as θ varies from
0 to π. For each 1 ≤ i ≤ n − 1, define the transition angle
θi,i+1 ∈ (θi, θi+1) by

θi,i+1 = θ(yi + yi+1).

50 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Define also θ0,1 := 0 and θn,n+1 = π for convenience. Then

Ψ =



{yi}
if θi < θ < θi,i+1 for some i = 1, . . . , n

{yi,yi+1}
if θ = θi,i+1 for some i = 1, . . . , n− 1

{yi+1}
if θi,i+1 < θ < θi+1 for some i = 0, . . . , n− 1

Proof The bulk of the work is to prove that if θi < θ < θi+1,
then

Ψθ := argminy∈A |g⊥ · y| ⊆ {yi,yi+1}.
Once this is established, since we evidently have Ψθ = {yi},
Ψθ = {yi+1} for θ sufficiently close to θi and θi+1 respec-
tively, it follows that that

Ψθ =


{yi} if θ < θc

{yi,yi+1} if θ = θc

{yi+1} if θ > θc.

where θc is defined by |g⊥ ·yi| = |g⊥ ·yi+1|. One can readily
show this is equivalent to θc = θ(yi + yi+1).

To prove that Ψθ := argminy∈A |g⊥ · y| ⊆ {yi,yi+1} as

claimed, consider the open triangles Ti, T̃i defined in terms
of yi as shown in Figure 28, as well as open triangles Ti+1,
T̃i+1 defined in the same way in terms of yi+1. The triangles
Ti and Ti+1 each have empty intersection with A, as yi and
yi+1 are the elements of A that cast the shallowest angles
on Lg from above and below. To prove Ψθ ⊆ {yi,yi+1}, we
need to show that yi and yi+1 are also the two closest points
in A to Lg. This amounts to proving that the triangles T̃i
and T̃i+1 have empty intersection with A as well.

To show this, first note that our assumptions on A imply
that the intersection of each of our four triangles with A is
equal to their intersection with Z2 as a whole (because A has
no “holes”). Second, note that the map

F(x) = yi − x

is a bijection of the plane taking Ti to T̃i such that F(Z2) =
Z2. Hence T̃i contains a lattice point if and only if Ti does.
But

Ti ∩ Z2 = Ti ∩A = ∅
by assumption, and so

T̃i ∩ Z2 = T̃i ∩A = ∅

as well. This proves the claim for T̃i and the proof for T̃i+1

is analogous. The remaining cases 0 := θ0,1 < θ < θ1 and
θn < θ < θn,n+1 := π are straightforward and left as an
exercise. ut

Proposition 5 has a couple of straightforward corollaries.
The first is our claim from 7.1.2 that Ψ is a singleton set for
all but finitely many θ. This is obvious from the statement of
the proposition (which gives an expression for Ψ for all but
finitely many θ) and requires no proof. The second corollary
generalizes our formula for θ∗r from Section 7.1.2, and uses
the following observation, which we also used in Section 7.1.2
and owe a proof of.

Observation 7 Let v, w be unit vectors in S1. Then

θ(v + w) =
θ(v) + θ(w)

2
.

Proof This is simplest if we work in complex arithmetic, that
is, we write v = eiψ and w = eiφ for some ψ, φ ∈ [0, 2π).
However, by symmetry we may assume v = 1 (otherwise
rotate the plane). Hence, it suffices to prove

1 + eiφ

|1 + eiφ|
= ei

φ

2 .

But this follows from the following simple manipulation:

1 + eiφ = ei
φ

2 (e−i
φ

2 + ei
φ

2) = 2 cos

(
φ

2

)
ei

φ

2 .

ut

The following corollary shows that coherence transport-
like algorithms, which use the same weights but replace Bε,h(x)
with a different set of pixels (a finite union of discrete rect-
angles) exhibit similar kinking behaviour in the limit µ→∞.

Corollary 2 Suppose we inpaint D = (0, 1]2 using Algo-
rithm 1 with boundary data u0 : U → Rd and suppose the
symmetry assumptions of Section 6.1 hold as usual. Assume
our stencil a∗r is of the form

a∗r =
K⋃
k=1

[ak, bk]× [ck, dk] ∩ Z2

where −∞ < ak ≤ 0 ≤ bk <∞, ck ≤ dk ≤ −1 for all k. Let

Θ(a∗r) := {θ1, θ2, . . . , θn}

denote the angular spectrum of a∗r , let g = (cos θ, sin θ), as-
sume we use as stencil weights the weights of März (6), and
denote by g∗µ,r the limiting transport direction from Theorem
6. Let g∗r = limµ→∞ g∗µ,r and define θ∗r := θ(g∗r). Then

θ∗r =


π
2

if θ = 0

θi if θi−1,i < θ < θi,i+1 for some i = 1, . . . n
θi+θi+1

2
if θ = θi,i+1 for some i = 1, . . . n

(76)

Proof This follows from Proposition 5 and observation 7 in
exactly the same way as when showed this for the special case
a∗r = b−r in Section 7.1.2. ut

We conclude this appendix with a remark on a practical
algorithm for computing the angular spectrum Θ(A) given
A ⊆ Z2 satisfying the hypotheses of Proposition 4. This al-
gorithm was used to generate the theoretical limiting curves
for θ∗r for coherence transport in Section 7.1.2.

Remark 20 GivenA ⊆ Z2 satisfying the hypotheses of Propo-
sition 4, a simple algorithm for computing the angular spec-
trum Θ(A) and singleton minimizers Y is as follows:

1. Starting with Y ∗ = ∅, go through each y ∈ A and find
the unique y′ ∈ A such that θ(y) = θ(y′) and y′ is of
minimal length. If y′ is not already in Y ∗, add it.

2. For each y ∈ Y ∗, compute θ(y). Sort Y ∗ according to
θ(y). The sorted list Y ∗ is now equal to Y , and the sorted
list of angles is Θ(A).

Analysis of Shell-Based image inpainting 51

F Proof of Theorem 1 statement ii.

First off, note that since Vi ≤ 0, m ≤ N , and Yτ ≥ −(r+ 2)
the restriction of our domain in the y-direction from Z to
{−(r+ 2),−(r+ 1), . . . , N} makes no difference. Putting this
together with our periodic boundary conditions, we find that
our situation is equivalent to a random walk on Z2 modulo
the equivalence relation

(i, j) ∼ (i+ kN, j) for all k ∈ Z.

Denoting by ρ∗Xτ
the density of our stopped random walk on

the periodic domain and ρXτ
the density of the original walk

on Z2 considered in [36], we clearly have

ρ∗Xτ
(i, j) =

∑
k∈Z

ρXτ
(i+ kN, j). (77)

Now, for fixed i let k∗ denote the value of k minimizing |i+
kN − µ|, where

µ = n−
µx

µy
m

denotes the mean (in the x-direction) of the asymptotic dis-
tribution of the original random walk on Z2. Let us define

µ∗ = µ mod N.

Then it is not hard to see that we have

|i+ k∗N − µ| = dcircN (i, µ∗),

where dcircN is the circular distance (46).
With this in mind, let us rewrite (77) as

ρ∗Xτ
(i, j) =

∑
∆k∈Z

ρXτ
(i+ (k∗ +∆k)N, j).

By the first statement of Theorem 1 we have

ρ∗Xτ
(i, j) =

∑
∆k∈Z

∆(j)
e
− (dcircN (i,µ∗)+∆kN)2

2σ(m)2

√
2πσ(m)

+ o

(
1
√
m

)

= ∆(j)
e
− dcircN (i,µ∗)2

2σ(m)2

√
2πσ(m)

+R+ o

(
1
√
m

)
where

R =
∑

∆k∈Z\{0}

∆(j)
e
− (dcircN (i,µ∗)+∆kN)2

2σ(m)2

√
2πσ(m)

≤
∑

∆k∈Z\{0}

e
− (dcircN (i,µ∗)+∆kN)2

2σ(m)2

√
2πσ(m)

.

One may easily show that dcircN (i, µ∗) ≤ N
2

. It follows that
for ∆k ∈ Z\{0} we have

(dcircN (i, µ∗) +∆kN)2 ≥
(
|∆k|N −

N

2

)2

=

(
∆k2 − |∆k|+

1

4

)
N2.

We therefore have:

R =
∑

∆k∈Z\{0}

e
− (dcircN (i,µ∗)+∆kN)2

2σ(m)2

√
2πσ(m)

≤
∑

∆k∈Z\{0}

e
− (∆k2−|∆k|+ 1

4)N2

2σ(m)2

√
2πσ(m)

However, the mapping ∆k ∈ Z\{0} → ∆k2 − |∆k| takes
values in N ∪ {0} and is two to one. Therefore

R ≤ 2

∞∑
k=0

e
− (k+ 1

4)N2

2σ(m)2

√
2πσ(m)

≤
2

√
2πσ(m)

e
− N2

8σ(m)2

∞∑
k=0

(
e
− N2

2σ(m)2

)k

=
2

√
2πσ(m)

e
− N2

8σ(m)2

1− e−
N2

2σ(m)2

≤
2

√
2πσ(m)

e
− N2

8σ(m)2

Now, σ(m)2 = σ̃2m where σ̃2 = γ2

|µy|3
is a constant. Hence,

for m sufficiently large we have σ(m) ≥ 1. Noting that m =
yN , for m sufficiently large we have

R ≤ e−
N2

8σ(m)2 = e−
y2

8σ̃2
m.

Hence

ρ∗Xτ
(i, j) ≤

e
− dcircN (i,µ∗)2

2σ(m)2

√
2πσ(m)

+ e−
y2

8σ̃2
m + o

(
1
√
m

)

=
e
− dcircN (i,µ∗)2

2σ(m)2

√
2πσ(m)

+ o

(
1
√
m

)
.

G Proof of Lemma 1 statement ii.

The proof follows from the first statement of Lemma 1 to-
gether with with routine tail estimates for Gaussians and
other simple manipulations. First, note that

|G∗σ(m),µ,N (x)− g∗σ(m),µ,N (x)|

=

∣∣∣∣∣e− dcircN (x,µ)2

2σ(m)2

∣∣∣∣∣
∣∣∣∣∣∣∣

1
√

2πσ(m)
−

1∑N−1
n=0 e

−
dcirc
N

(n,µ)2

2σ(m)2

∣∣∣∣∣∣∣
≤

1

√
2πσ(m)

∑N−1
n=0 e

−
dcirc
N

(n,µ)2

2σ(m)2

∣∣∣∣∣√2πσ(m)−
N−1∑
n=0

e
− dcircN (n,µ)2

2σ(m)2

∣∣∣∣∣
Let us define

Ξ = {dcircN (n, µ) : n = 0, . . . , N − 1}.

We do not need to characterize Ξ precisely. It is enough for
us to note that for N sufficiently large we have

Ξ ⊇
{
−
(
µ̂−

⌊
N

4

⌋
− 1

)
, . . . ,− (µ̂− 1) , µ̂, µ̂+ 1, . . . , µ̂+

⌈
N

4

⌉
+ 1

}
,

where µ̂ := µ− bµc. From this it follows that

N−1∑
n=0

e
− dcircN (n,µ)2

2σ(m)2 ≥
dN

4
e+1∑

n=−bN
4
c−1

e
− (n−µ̂)2

2σ(m)2 (78)

First, by (78) together with the assumption σ(m)2 = σ̃2m→
∞ as m→∞ we have

√
2πσ(m)

N−1∑
n=0

e
− dcircN (n,µ)2

2σ(m)2 ≥
√

2πσ(m)

dN
4
e+1∑

n=−bN
4
c−1

e
− (n−µ̂)2

2σ(m)2

≥
√

2πσ(m)e
− µ̂2

2σ(m)2

≥ 1 for m sufficiently large.

52 L. Robert Hocking, Thomas Holding, and Carola-Bibiane Schönlieb

Hence, for m sufficiently large we have:

|G∗σ(m),µ,N (x)− g∗σ(m),µ,N (x)| ≤

∣∣∣∣∣√2πσ(m)−
N−1∑
n=0

e
−
dcircN+1(n,µ)2

2σ(m)2

∣∣∣∣∣
≤

∣∣∣∣∣√2πσ(m)−
∑
n∈Z

e
− (n−µ̂)2

2σ(m)2

∣∣∣∣∣
+

∣∣∣∣∣∑
n∈Z

e
− (n−µ̂)2

2σ(m)2 −
N−1∑
n=0

e
− dcircN (n,µ)2

2σ(m)2

∣∣∣∣∣
≤ Cσ̃

√
me−2π2σ̃2m

+

∣∣∣∣∣∣∣
∑
n∈Z

e
− (n−µ̂)2

2σ(m)2 −
bN

4
c−1∑

n=−dN
4
e+1

e
− (n−µ̂)2

2σ(m)2

∣∣∣∣∣∣∣
Where we have used Lemma 1 part one and (78) for the third
inequality. Next,∣∣∣∣∣∣∣

∑
n∈Z

e
− (n−µ̂)2

2σ(m)2 −
bN

4
c+1∑

n=−dN
4
e−1

e
− (n−µ̂)2

2σ(m)2

∣∣∣∣∣∣∣
=

−bN
4
c−2∑

n=−∞
e
− (n−µ̂)2

2σ(m)2 +

∞∑
n=dN

4
e+2

e
− (n−µ̂)2

2σ(m)2

≤
∫ −N

4

−∞
e
− x2

2σ(m)2 dx+

∫ ∞
N

4

e
− x2

2σ(m)2 dx

= 2

∫ ∞
N

4

e
− x2

2σ(m)2 dx ≤
∫ ∞
N

4

x

N/4
e
− x2

2σ(m)2 dx

=
σ(m)2

N/4
e
− N2

32σ(m)2

= 4σ̃2ye−
y2m

32σ̃2

where we have use m = yN in the last equality. This gives:

|G∗σ(m),µ,N (x)− g∗σ(m),µ,N (x)| ≤ Cσ̃
√
me−2π2σ̃2m + 4σ̃2ye−

y2m

32σ̃2

≤ (Cσ̃ + 4σ̃2y)
√
me−min(2π2σ̃2, y2

32σ̃2
)m

From which the claim follows with A = Cσ̃ + 4σ̃2y and b =

min(2π2σ̃2, y2

32σ̃2).

	Introduction
	Shell-based geometric inpainting
	Review of main methods
	Ghost pixels and equivalent weights
	Semi-implicit extension of Algorithm 1
	Analysis
	Consequences
	Applications to Numerical Linear Algebra
	Conclusions and Future Work
	Acknowledgements
	Punctured sums
	Properties of Ghost Pixels and Equivalent Weights
	Proof that our proposed extension of Algorithm 1 is equivalent to damped Jacobi or SOR
	Proof of Proposition 1
	Additional details on coherence transport and the angular spectrum
	Proof of Theorem 1 statement ii.
	Proof of Lemma 1 statement ii.

