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Abstract

Knowledge of different phases and phase transitions in low-dimensional systems is essential
for the understanding and control of nanoscale devices. Theoretical models aided by first-
principles calculations have proven invaluable in this respect. However, observed behaviour
often differs from what is predicted theoretically. One common reason for this is that in many
systems several different phase transitions are possible, and the phases typically compete, or
even coexist.

The aim of this thesis is to provide a theoretical and computational study of competing phases
and phase transitions in several interesting nanoscale systems. The first is polar-nonpolar
interfaces such as LaAlO3/SrTiO3, where an insulator–metal transition occurs at the inter-
face via the formation of a two-dimensional electron gas (2DEG) which screens the polar
discontinuity there. In spite of the interest, tunability, and very special properties of the
2DEG, important uncertainties remain about the character of the metal–insulator transition
induced by film thickness and/or perpendicular electric field. We show that a rich variety of
scenarios is possible for the apearance of free carriers in such systems due to the coupling
of the dielectric response of the film with common structural distortions of the perovskite
systems employed, namely the rotations of oxygen octahedra (tilts). We show that continuous
or discontinuous, and simultaneous or separate appearances of tilts and carriers can occur,
depending very sensitively on the energetics of the tilts, carriers, the biquadratic coupling
between them, and the correlation length of the tilts in the polar film.

The second is ferroelectric thin films, which tend to fall victim to depolarization effects,
limiting their use in practical applications. It is well-known that depolarization can be
mitigated by the formation of complex domain structures, but recently it has been proposed
theoretically and signalled experimentally that the formation of a 2DEG at the surfaces of the
films may make it possible to sustain a polarization without domains. Previous theoretical
studies have suggested that the effects compete, and that either domains or a 2DEG will
form in the thin and thick limits, respectively. However, recent experimental observations
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suggest they can coexist. We propose a model of ferroelectric interfaces in which the polar
discontinuities can be screened both by domains and a 2DEG. We find that the polydomain
and monodomain phases are separated by a region of coexistence in which both phenomena
are simultaneously observed.

The final example comes from twistronics, an emerging field in which the properties of
layered systems are tuned by introducing a relative twist or lattice mismatch between the
layers (moiré superlattice). Recently, ferroelectricity was observed in a typically non-polar
system, facilitated by twisting, although the phenomenon has not yet been understood
theoretically. It is well-known that stacking domains form in moiré superlattices due to
the competition between the interlayer van der Waals forces and intralayer elastic forces,
which can be recognized as polar domains due to the local spontaneous polarization in
bilayers without centrosymmetry. We propose a theoretical model which captures the effect
of an applied electric field on the domain structure. The coupling between the spontaneous
polarization and field leads to uneven relaxation of the domains, and a net polarization in
the superlattice at nonzero fields, which is sensitive to the moiré period. We show that the
dielectric response to the field reduces the stacking energy and leads to softer domains in all
bilayers.
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Chapter 1

Introduction

The study of phase transitions has driven the advancement of technology and our understand-
ing of the world around us for centuries. For example, thermodynamics was developed in
order to better understand the transition between water and steam, with the aim of increasing
the efficiency of the steam engine. The ability to switch the orientation of the magnetiza-
tion of a ferromagnet with an applied field, was used as one of the first mechanisms for
random-access memory (RAM) in the early days of computers.

Fig. 1.1 Atomic structure of a layer of graphene.

With advancements in nanotechnology, it is possible to fabricate and control devices com-
prised of a small number of atoms in one or more dimensions, the properties of which vary
considerably from their bulk counterparts. Graphene, a one atom thick layer of carbon atoms
(see Fig. 1.1), is of huge interest to the scientific community due to its high tensile strength
and electrical conductivity, and has become a household name in the last decade [1]. Owing
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to experimental techniques such as liquid exfoliation [2], it is possible to synthesize a wide
variety of two-dimensional materials (2D) from van der Waals materials in a way which is
relatively inexpensive and provides a high yield. Besides graphene, one of the most popular
classes of 2D materials is the transition metal dichalcogenides (TMDs) MX2, where M is
a transition metal and X is a chalcogen, such as MoS2 and WSe2. Unlike graphene, TMD
monolayers have a direct band gap, and have applications in electronics as transistors, and in
optics as emitters and detectors [3]. Their in-plane crystal structure is the same as graphene,
but TMD monolayers are three atoms thick.

Using other techniques such as pulsed laser deposition (PLD), it is possible to grow thin
films of oxide materials, which are a few unit cells in thickness [4]. Perovskites, the class
of materials with the same crystal structure as calcium titanate (CaTiO3), have become
widely known in many areas of science due to the huge number of interesting properties
observed across many different materials. Halide perovskites have achieved record solar cell
efficiencies in recent years [5]. Oxide perovskites such as lead titanate (PbTiO3, PTO) and
barium titanate (BaTiO3, BTO) are some of the most well-known examples of ferroelectric
materials [6, 7]. Bismuth ferrite (BiFeO3 BFO) is one of the most promising multiferroic
materials [8], being both ferroelectric and ferromagnetic. Strontium titanate (SrTiO3, STO)
should be ferroelectric, but remains paraelectric down to very low temperatures, making it a
quantum paraelectric material [9, 10].

Most of these interesting properties are governed by various types of phase transitions. In
order to understand the behavior of these materials, and utilize them for future applications
in nanotechnology, a good understanding of the phases they exhibit and the phase transitions
they can undergo is essential. Theoretical and computational condensed matter physics
have proven invaluable in this respect. Concepts such as universality, criticality and renor-
malization [11, 12], have shaped our understanding of modern theoretical physics. These
concepts, as well as complex many-body models are essential to a deeper understanding
of the physical mechanisms underpinning phenomena such as superconductivity, quantum
phase transitions and the insulator–metal transition. The insulator–metal transition is one of
the most widely studied problems in condensed matter physics [13, 14], particularly in oxide
materials [15–18]. It is simple to model and understand the behavior of good insulators, such
as silicon and germanium, or good metals, such as silver or gold. But developing a theory
which can describe both, and the transition from one to the other, is a very difficult problem.
The two limits, a good metal and a good insulator, have different elementary excitations. For
metals, the excitations are fermionic quasiparticles, corresponding to electrons above the
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Fermi sea. For insulators, the excitations are bosonic, such as phonons, like the polar mode
for ferroelectrics, or spin waves for ferromagnets. In the intermediate region, both types
of excitations coexist, and it is difficult to write down an order parameter which describes
the transition between a metallic and insulating phases. Insulator-metal transitions in 2D
have attracted additional interest [19, 20], in particular, the one occurring at polar-nonpolar
perovskite interfaces, first observed for thin films of lanthanum aluminate (LaAlO3, LAO)
grown on STO [21, 22].

However there are some phenomena, such as ferroelectricity and ferromagnetism, for which
an understanding of their behavior in nanoscale systems can be obtained from a qualitative,
phenomenological description. We can describe these systems using Landau theory, a simple
but powerful method for theoretically describing and understanding phase transitions in
crystals [23, 24]. It was originally conceived as a thermodynamic description of continuous
transitions between liquid and crystal phases, facilitated by a discontinuous change in the
symmetry of the system. The theory revolves around the construction of a Landau free
energy, which describes a phase transition from a high symmetry phase to a lower symmetry
phase via some symmetry breaking. The symmetry breaking is described by some internal
order parameters, and the Landau free energy is written as an expansion of these order
parameters, using symmetries such as locality, rotational and translational invariance to
reduce the number of terms in the expansion. Then, for a given set of external parameters,
the stable phase of the system is described by the set of order parameters which minimize the
free energy.

We can illustrate many concepts in Landau theory using the example of a ferroelectric
perovskite, e.g. PTO or BTO. The zero polarization phase is the one corresponding to
the ideal perovskite structure, where the Ti atom lies at the center of the O6 octahedron.
A polar phase can be adopted via the off-centering of the Ti atoms with respect to the
oxygen octahedra, driven by the hybridization of the O 2p and the Ti 3d orbitals [6, 7].
In three dimensions, the stable equilibrium state is sixfold degenerate, but we can write a
one-dimensional version of the Landau free energy as

F =
1
2

X−1
P

(
1
4

(
Pη

Ps

)4

− 1
2

(
1− T

TC

)(
Pη

Ps

)2
)

, (1.1)

where Pη is the average polarization associated to a polar mode η and ±Ps is the spontaneous
polarization, i.e. the polarizations at which F is minimized, which is only twofold degenerate
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Fig. 1.2 (a): Landau free energy of a ferroelectric perovskite as a function of polarization Pη , in units
of 1

2 X−1
P . Sketches of the perovskite at Pη = 0,±Ps are shown above the curve. (b): Landau free

energy curves at several different temperatures.

in one dimension. XP describes the curvature of the free energy about the minima, and 1
2X−1

P

has units of energy per unit volume, which sets the energy scale (the depth of the wells is
an appropriate alternative). The double well is shown in Fig. 1.2 (a), with sketches of the
perovskite at Pη = 0,±Ps above. At zero temperature, the system can undergo a displacive
transition from Pη = 0 to Pη =±Ps, facilitated by Ti off-centering. At a nonzero temperature,
each Ti atom will experience thermal fluctuations about ±Ps, and the average polarization
of the system decreases. At smaller temperatures, there is still a net polarization, so the
Landau free energy still has the shape of a double well, but with a reduced width and depth.
Eventually, the fluctuations will be large enough that the polarization averages to zero. We
call the temperature at which this occurs TC, the Curie temperature. At and above TC, the
Landau free energy becomes a single well, see Fig. 1.2 (b).

Landau theory can provide a physically intuitive thermodynamic description of second order
phase transitions in periodic crystals in terms of a homogeneous order parameter, but is not
appropriate for semi-periodic systems, such as a semi-infinite slab or a thin film, where the
order parameter cannot be homogeneous due to the presence of free surfaces. These types of
systems can be described using Ginzburg-Landau theory, a generalization of Landau theory
in which the order parameters vary in space, and the free energy is also expanded in powers
of the gradients of the order parameters. While Ginzburg-Landau theory is perhaps most
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well-known in the context of superconductivity [25], it has been successful in describing
phase transitions in e.g. ferromagnetic [26] and ferroelectric [27–29] thin films, in which the
magnetization or polarization in the out of plane direction can increase or decrease towards
the free surfaces, and complex domain structures can form in the plane.

We can write down the Ginzburg-Landau free energy of a ferroelectric thin film by generaliz-
ing Eq. (1.1) [28, 29]:

F =
1
2

X−1
P

1
V

∫ (
λ 2
(

∇
(

Pη

Ps

))2

+
1
4

(
Pη

Ps

)4

− 1
2

(
Pη

Ps

)2
)

dV , (1.2)

where λ > 0 is the correlation length and V is the volume of the thin film. We set T = 0 in this
example, but the correlation length is temperature dependent. The gradient term is essentially
an energy penalty for having spatial variations in polarization, and in the absence of any free
surfaces, the energy is minimized by a homogeneous polarization. Eq. (1.2) could be used to
describe spatial variations in a thin film in the out-of-plane direction due to the difference in
the energy at the surfaces and in the interior of the thin film. This will cause the polarization
to either turn up or down towards the surfaces. The amount by which the polarization changes
towards the surfaces is determined by the competition between the surface energy and the
energy penalty for having gradients in the polarization. Eq. (1.2) could also be used to
describe spatial variations of the polarization in the plane. The presence of free surfaces leads
to a depolarizing electric field in ferroelectric thin films, which can reduce or completely
suppress the polarization in the absence of any charge compensation. Depolarization effects
can be mitigated by the formation of ferroelectric domains with polarizations of alternating
sign, causing the depolarizing field to bend around the surfaces and domain walls [30, 31].
Domain structures in ferroelectric films tend to be much sharper than in ferromagnetic films,
and a typical approximation made is that the walls are infinitely thin, i.e. the spontaneous
polarization takes the form of a square wave. While this is a rather large approximation,
especially for ultra thin films (only a few unit cells thick), it has historically been successful
in providing insight into the behavior of domain structures in ferroelectric systems [32, 33].

Many materials have several energetically stable phases available to them, and can undergo
several phase transitions. Typically, there is competition between the phases. A well-known
example of this is is the competition between polarization and the rotations of oxygen
octahedra (tilts, see Fig. 1.3 (a)) in oxide perovskites [34–37]. The antiferrodistortive (AFD)
phase transition from an untitled phase to a tilted phase is another example of a displacive
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Fig. 1.3 (a): Sketch of a single oxygen octahedron of a perovskite material. Two different tilting
modes, φz and φxy, and their principle axes of rotation, are shown. (b): Landau free energy of a tilted
perovskite as a function of the tilt angle φ . Sketches of the untilted and tilted phases are shown above
the curve.

phase transition which can occur in oxide perovskites. Tilts were originally classified by
Glazer using group theory [38], but can also be described thermodynamically using a double
well for the Landau free energy, similarly to ferroelectrics, see Fig. 1.3 (b). Many perovskite
materials possess ferroelectric instabilities at zero temperature, but are not observed to
be ferroelectric. This is because they also possess AFD instabilities, and it may be more
energetically favorable for some materials to adopt a nonpolar tilted phase rather than a
ferroelectric one. This is a result of the competition between the two phases. Empirically,
this competition has been rationalized in terms of the Goldschmidt tolerance factor of an
ABO3 perovskite [39]:

t =
1√
2

RA−O

RB−O
(1.3)

where RA−O and RB−O are the A−O and B−O bond lengths, respectively. When t < 1, the
ferroelectricity is suppressed and the material becomes tilted. When t ∼ 1, in PTO and BTO
for example, the ferroelectricity suppresses the tilts.

Competition between order parameters can also affect phase transitions, leading to a very
different picture than the one obtained when considering the separate phases in isolation. At
the Landau level, the competition can be considered by constructing a Landau free energy as
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an expansion of both order parameters, including coupling terms. The coupling terms are
subject to the same symmetry constraints as the isolated free energies [40, 37]. The most
common type of coupling is biquadratic, i.e. quadratic in both order parameters, which is
allowed if both free energies have quadratic terms. A bilinear coupling is also allowed if
both order parameters have the exact same symmetries, e.g. for tilts and ferroelectricity. The
coupling can lead to simultaneous or separate transitions, and even change the order of a
phase transition [40, 37].

The aim of this thesis is to provide a theoretical and computational study of competing
phases and phase transitions for several interesting nanoscale systems. The first is polar-
nonpolar perovskite interfaces, where two-dimensional electron gas (2DEG) formation has
been observed at the interface between two insulating materials. The second is ferroelectric
thin films, where similar 2DEG formation has been theorized and recently observed, and
competes with the formation of ferroelectric domains. The third comes from twistronics,
a newly established field in condensed matter physics, in which the properties of layered
systems are tuned by introducing a twist or lattice mismatch. Recently, ferroelectricity has
been observed, facilitated by the twist angle, although the underlying physical mechanisms
are not yet well-understood theoretically. A brief introduction to each of the three topics is
provided in the next three sections.

1.1 Polar-nonpolar perovskite interfaces

The discovery of an insulator–metal transition at the interface between two insulating per-
ovskites was of huge interest to the scientific community [21, 22]. When thin films of
LAO were grown on substrates of STO, a 2DEG was found to appear at the interface in
order to screen the polar discontinuity there. This 2DEG has been found to be associated
with interesting phenomena such as enhanced capacitance [41], superconductivity [42] and
magnetism [43], even at the same time [44, 45]. It also has potential for applications in field
effect transistors (FET) [46–48], sensors [49], photodetection [50], thermoelectrics [51, 52]
and solar cells [53, 54].

The physical origin and character of this insulator–metal transition have been debated for
many years, and discussed in several reviews [55–66]. Two of the most popular theories for
the physical origin are indirectly supported by experimental evidence: the first is electronic
reconstruction, where the 2DEG forms via a transfer of electrons from the valence band at
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Fig. 1.4 Illustration of the (a): polar catastrophe and (b): 2DEG formation for a polar-nonpolar
perovskite interface such as LAO/STO. On the left is a sketch of a thin film of LAO grown on top of a
semi-infinite substrate of STO. The formal polarizations of each half layer are shown to the right of
the sketch. The charge density, internal field and electrostatic potential are shown on the right. In (a)
we see that the electrostatic potential diverges in the LAO film. This is known as the polar catastrophe.
In (b), a 2DEG forms at the interface in order to screen the polar discontinuity there and prevent the
polar catastrophe.
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dc

σ

d

Continuous

Discontinuous

Beyond
Mean Field

Fig. 1.5 Sketch of the various predictions for the carrier concentration σ as a function of LAO film
thickness. The solid curve shows the prediction from the phenomenological theory in Ref. [66]. The
dashed curve shows the beyond mean-field correction to this theory. The dot-dash curve shows a
discontinuous transition, which has been experimentally observed and predicted in other theoretical
studies.

the surface of the thin film to the conduction band at the interface in order to screen the polar
discontinuity [67–69]. The second is redox screening, where oxygen vacancies or hydrogen
adatoms, for example, form at the surface, creating charge carriers that can move to the
interface [70–76]. In Ref. [77] it was predicted that both mechanisms are possible, depending
on the experimental conditions such as the oxygen pressure and the growth temperature
[76, 78].

The character of the transition with film thickness, i.e. whether the carriers appear continu-
ously or discontinuously after a critical thickness, is still debated. It has been observed in
experimental studies [22] and suggested in theoretical studies [66, 79] based on redox effects
that a discontinuous transition occurs at a critical thickness dc between 3 and 4 unit cells of
LAO. However, film thickness is not a good parameter with which to make any conclusions
about the order of the transition, since it is fixed for each sample and is changed discretely by
a number of unit cells. Thus, it is impossible to conclude whether the transition is continuous
or discontinuous, and the problem is only of theoretical interest. A more realistic approach to
investigate this would be to apply an electric field, using top and back gates [80], to a sample
which is close to the critical thickness. An electric field can be used to switch the 2DEG on



10 Introduction

[81] and off [82] in a single sample, which is a desirable feature in practical applications. It
can also enhance the properties of the 2DEG such as the superconductivity [83–85] magneto-
transport [86] and optical behavior [87]. An electric field could be tuned with more precision
and thus would be more suitable for studying the character of the insulator–metal transition
experimentally.

A phenomenological theory at the mean-field level, which treats the carriers as a homogeneous
charge distribution σ , predicts that the onset of carriers with thickness is continuous, with
a critical exponent for σ of 1 [66]. When thinking about the redox defects proposed in
Ref. [66], an assumption of non-interacting defects suggests a drastically discontinuous
transition, switching on directly to σ ∼ Ps [79], Ps being the polar discontinuity, half an
electron per primitive unit cell surface area for LAO/STO; when it becomes favorable for
one vacancy-carrier pair to form, it is favorable for all of them to form, giving the mentioned
discontinuity at dc. One can go beyond the mean-field level by considering the interactions
between the traps [88]. The vacancy at the surface and carrier at the interface act like a dipole,
and thus there would be dipole-dipole interactions between the vacancies. This predicts a
transition which is still continuous, but with a critical exponent of 2

3 . The different predictions
for the behavior of σ with film thickness are illustrated in Fig. 1.5.

Something that has to our knowledge not yet been considered is the influence of other phase
transitions, such as tilting, which both LAO and STO can exhibit. As mentioned previously,
tilts compete with the polar mode, so it is reasonable to expect that they may indirectly
interact with the carriers, which appear to screen the polar discontinuity. The competition
between tilts and the polar mode in LAO/STO has been considered in a previous study [89],
although not in the context of the appearance of carriers.

1.2 Ferroelectric Thin Films and Superlattices

1.2.1 Electrostatics

The formation of ferromagnetic [32, 90–92] and ferroelectric [33, 30] domain structures in
thin films is a well-known phenomenon. Polydomain structures appear in ferroelectric thin
films in order to screen the electric depolarizing field arising at the interfaces between the
surfaces of the thin film and its environment, such as vacuum or a non-metallic substrate
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Vacuum

Substrate/
Vacuum

d

Fig. 1.6 Sketch of a ferroelectric thin film of thickness d with a 180◦ stripe domain structure. The red
lines represent the electrostatic depolarizing field, which bend around the interfaces and domain walls.

(see Fig. 1.6). The electrostatic description of an isolated ferroelectric thin film in an infinite
vacuum has been studied in detail [30, 31]. The equilibrium domain width w follows Kittel’s
law: w ∝

√
d when w ≪ d, d being the film thickness. Within the same model but making

no approximations on the electrostatics arising from an ideal, regular polydomain structure,
for w ≳ d, w reaches a minimum and grows again with decreasing d, until the monodomain
phase is reached [30, 31]. A similar effect was first predicted and observed in ferromagnetic
thin films [93–96]. This description of an isolated thin film, however, does not describe the
effect that the surrounding environment has on the electrostatics of the thin film and hence
the domain structure.

It is now possible to fabricate ferromagnetic and ferroelectric samples by growing alternating
layers of different thin films, just a few unit cells in thickness, in a periodic array (superlattice)
[97–99]. Alternating between ferroelectric and paraelectric layers (FE/PE superlattice, see
Fig. 1.7), a great deal of control over the superlattice’s properties can be achieved by changing
the relative thicknesses of the layers [100–103]. This has generated interest in the study of
FE/PE superlattices from the theoretical [104, 105] and computational [106] perspectives.

The dependence of the domain structure on superlattice geometry cannot be described using
the theory of a thin film in an infinite vacuum, however. Some generalizations have appeared
in the literature which include the effects of surrounding materials [107, 107–113, 104]. For
a free-standing thin film on a substrate, it was claimed that the electrostatic description is
the same as for a thin film of half the width sandwiched between two paraelectric media
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D

Fig. 1.7 Geometry of a FE/PE periodic superlattice. The unit cell is indicated by the dashed square.
The thicknesses of the layers are indicated on the right and W+ and W− are the widths of the positive
and negative polarization domains. In polydomain limit, these widths are equal: W+ =W− = w. The
ferroelectric and paraelectric layers have thicknesses dFE and dPE, respectively, and the thickness of
the unit cell is D = dFE +dPE.

[107]. This has been used to fit measurements of ferroelectric domains [114, 115], but a
free-standing film on a substrate was never studied explicitly.

By placing a ferroelectric thin film together with a paraelectric layer between two short
circuited capacitor plates, it was found that the domain structure could be controlled by
tuning the properties of the paraelectric layer, and the stability of the ferroelectric film could
be improved [108–113]. This system is to some extent equivalent to a FE/PE superlattice
since the capacitor plates impose periodic electrostatic boundary conditions.

Although ferroelectric thin films have been frequently simulated from first principles in
different settings and environments [116–121], ferroelectric domains are quite demanding to
simulate from first principles, as they require much larger supercells. Recent developments in
effective model building from first-principles calculations (second-principles methods) make
it possible to study very large systems, including large domain structures in ferroelectric
materials [122–130] and observe interesting related effects such as negative capacitance [131]
and polar skyrmions [132]. These scientific advances, both experimental and computational,
have motivated us to revisit the electrostatic description of ferroelectric domains.

The continuum electrostatic description of a monodomain ferroelectric thin film is essentially
unaffected by a dielectric environment of the film. This is because there is zero field outside
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the thin film and hence these regions make no contributions to the electrostatic energy. For
a polydomain ferroelectric thin film, the domain structure introduces stray electric fields
into the regions outside the film, see Fig. 1.6. We expect different behavior if we replaced
the vacuum regions with a dielectric medium. Understanding the effect of more general
geometries on the electrostatic description of ferroelectric thin films not only gives an insight
into how the surrounding dielectric media contribute to the screening of the depolarizing
field, but also allows us to understand the behavior of the domain structure of the film in
different environments, bringing us closer to a realistic description of a thin film.

1.2.2 Appearance of carriers at ferroelectric interfaces

As mentioned in the previous section, interesting effects can occur at interfaces between
different materials such as the formation of a 2DEG at polar-nonpolar interfaces. It is thought
that the 2DEG appears to screen the polar discontinuity at the LAO/STO interface [66], and
similarly, it has recently been proposed as a mechanism to screen the depolarizing field at
FE/PE interfaces [133, 116]. This has proven difficult to directly observe experimentally,
and indirect evidence for 2DEG formation at FE/PE interfaces has only very recently been
found [134–136].

The difficulty in experimentally observing 2DEG formation at ferroelectric-insulator inter-
faces is most likely due to competition with ferroelectric domains. In LAO/STO, the polar
discontinuity arises due to the different formal polarization lattices of the two materials. If
the polar material is replaced with a ferroelectric one, the polar discontinuity is caused by the
spontaneous polarization of the film. This is a well-known problem, and as already discussed,
ferroelectric materials can form polydomain structures in order to mitigate depolarization
effects. If ferroelectric systems can already screen polar discontinuities by the formation
of domains, it is unclear when, or if at all, it would be more favorable to screen via the
formation of a 2DEG instead.

In Ref. [133], a model of a monodomain ferroelectric film sustained by a 2DEG generated
via oxygen vacancies was compared against a polydomain film with no 2DEG, following
Kittel’s law. It was found that for thinner films, the polydomain phase with no 2DEG was
more energetically favorable. However, above a crossover thickness (4.6 nm for PTO), the
monodomain phase sustained by a 2DEG became energetically favorable. This suggests
that, with increasing film thickness, the domain width follows Kittel’s law until a crossover
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thickness where a 2DEG appears. With the polar discontinuity screened by the carriers, there
is no need for a polydomain structure, and the film abruptly adopts a monodomain phase.
This suggests that experimental measurements of domain widths in ferroelectric materials
may serve as a signal for 2DEG formation: if a deviation from Kittel’s law is observed, it
may indicate that interfacial carriers have formed and are screening the polar discontinuity.

The competition-based comparison between monodomain (with a 2DEG) and polydomain
phases suggests that an abrupt transition between the two should occur at a critical thickness.
However, this does not agree with experimental observations. In fact, evidence for 2DEG
formation has been observed in thin films of BiFeO3 grown on TbScO3, coexisting with
a 109◦ ferroelectric domain structure [134]. In addition, recent measurements of domain
widths in PTO/STO superlattices have shown a continuous deviation from Kittel’s law
above a critical thickness1. Both of these observations indicate that the crossover between
monodomain and polydomain phases may actually be continuous, with both effects coexisting
and simultaneously screening the polar discontinuity. Of course, by comparing the free
energies of the polydomain and monodomain phases separately, we can only predict that either
one or the other will more energetically favorable. In order to describe the aforementioned
experimental observations, a more general model in which it is possible for both effects to
coexist is needed.

1.3 Polarization in 2D materials

1.3.1 Flexoelectricity in nanotubes

The polar response to an inhomogeneous strain, known as flexoelectricity, is a property of
all insulators and was predicted in the late 1950s [137, 138], with theoretical descriptions
following shortly afterwards [139–142]. The components of the polar response P to the
gradient of a strain σ are

Pi = µi jkl∂lσ jk (1.4)

where ∂l ≡ ∂
∂xl

and

1Matthew Dawber, private communication
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µi jkl =
∂Pi

∂ (∂lσ jk)
(1.5)

is the flexoelectric tensor. Unlike the more well-known piezoelectricity, the polar response to
an homogeneous strain, flexoelectricity can be observed in materials that are centrosymmetric,
because a strain gradient will always locally break centrosymmetry. This is illustrated in
Fig. 1.8. Understanding the electromechanical properties of solids such as piezoelectric and
flexoelectric responses is important for their practical application in technology.

Pie
zoe

lec
tri
cit
y

σ

Flexoelectricity

∇σ

P = 0

P = 0

P 6= 0

Fig. 1.8 Sketch of applying a strain and strain gradient to a centrosymmetric material. When a
strain is applied, the centrosymmetry is preserved, so no polarization is induced. An additional
symmetry breaking is required for a piezoelectric response. When a strain gradient is applied, the
centrosymmetry is always broken, leading to a flexoelectric response.

Flexoelectricity is not as widely-known or applied as piezoelectricity, likely for two reasons.
Firstly, it is a more complex phenomenon than piezoelectricity. Significant progress on the de-
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velopment of theoretical descriptions of flexoelectricity has been made in the last few decades,
however [143–151]. Significant progress has also been made on first-principles descriptions
of flexoelectricity, including density functional theory [152], effective modeling [153], and,
perhaps most successfully, density functional perturbation theory [147–151]. Some aspects
were not well understood, such as the distinction between surface and bulk effects [144, 154].
The components of the flexoelectric tensor, i.e. the flexoelectric coefficients, are also dif-
ficult to calculate, and consistent results remained elusive [155, 143, 152] until recently
[154, 150, 151]. The second reason is that flexoelectricity is a size dependent effect, which
scales as e/a, where e is the electron charge and a is the system size [141, 142, 156–158]. In
bulk-like systems it is typically negligible in comparison to piezoelectricity.

While the second reason seems to suggest that it may not a very significant or useful effect, it
actually implies that flexoelectricity would be most prominent and have the greatest potential
for applications in nanoscale systems, such as thin films and 2D materials [159–163, 155];
it has been suggested that flexoelectricity could be utilized in electromechanical devices
[164], as well as for energy and information technology [165–167]. It has also been found
that flexoelectricity plays a role in the bending and vibration of piezoelectric nanobeams
[168, 169]. In addition to solid devices, the study of flexoelectricity in liquid and biological
systems is an active field of research, and plays a significant role in liquid crystals and
biological membranes, for example [170–176]. There are many comprehensive reviews
in the literature, both general [177–181] and more focused on 2D and biological systems
[182–185, 171, 170].

While flexoelectricity is a property of all insulators, calculations are typically restricted
to cubic crystals such as STO, since the number of independent flexoelectric coefficients
reduces to 3. This is unfortunate, because as mentioned above flexoelectricity has the most
potential in low-dimensional systems, not bulk. Flexoelectric effects have been studied and
observed in graphene and graphene based nanostructures [186–191], as well as in TMD
monolayers [192–195].

The effects of flexoelectricity in 1D structures i.e. nanotubes (NTs) is not as well known,
however. In addition to carbon nanotubes (CNTs), it is also possible to fabricate transition
metal dichalcogenide nanotubes (TMD NTs) from monolayers such as WS2 [196], MoS2

[197], etc. Although not as widely studied and used as CNTs, structural and electronic
properties of TMD NTs have been investigated using first-principles calculations [198–201,
201]. To our knowledge, the role of flexoelectricity in TMD NTs has not been investigated.
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Fig. 1.9 Illustration of the polarization induced by rolling a 2D monolayer into a NT. There is a strain
gradient in each unit cell around the wall of the NT with respect to the geometry of the monolayer,
and hence a radial polarization Pflex via flexoelectricity.

The effect of flexoelectricity on electronic and optical properties of single- and double-wall
CNTs has been investigated very recently, however [202].

If a NT is formed by rolling a 2D layer of finite thickness, there would be a difference in
strain between the inside and outside of the wall. Hence we would expect the wall of the
NT to have a finite polarization around the wall in the radial direction in response to this
difference in strain, see Fig. 1.9. We would naturally expect this effect to occur in TMD NTs
since the walls are three atoms thick. In fact, we would still expect this to occur in CNTs, but
it would be a purely electronic effect in this case and may be much weaker.

1.3.2 Twistronics

Perhaps the most exciting advancement in the study of 2D materials in recent years is the
establishment of the field of twistronics [203], the study of layered systems where a relative
twist angle or lattice mismatch between the layers is introduced. This leads to an interference
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θ = 0◦ θ = 5◦

θ = 9◦ θ = 13◦

Fig. 1.10 Atomic structure of a 2D bilayer system at various twist angles. The first panel shows a
twist angle of 0◦, i.e. the two layers (red and blue) are perfectly aligned. The next three panels show
different non-zero twist angles. We can see that an interference pattern (moiré superlattice) forms, the
period of which is sensitive to the magnitude of the twist angle.

pattern known as a moiré superlattice (see Fig. 1.10), which changes the properties of the
system and is sensitive to the twist angle and degree of lattice mismatch.

It was predicted about a decade ago that introducing a small relative twist in a layered
system such as bilayer graphene could lead to flat electronic bands, and strongly correlated
behavior [204, 205]. Moiré superlattices have since been shown to exhibit superconductivity
[206, 207], metal-insulator transitions [208], as well as magnetic [209], topological [210–
213] and excitonic [214, 215] behavior, facilitated by the tuning of the twist angle or lattice
mismatch. Recently, ferroelectricity was observed in bilayer graphene [216] and hexagonal
boron nitride (hBN) [217], which is highly unusual, because the constituent materials are
non-polar, and bilayer graphene is normally metallic. The ferroelectricity was found to be
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Fig. 1.11 Illustration of lattice relaxation as a function of twist angle. (a): stacking energy of bilayer
MoS2 in configuration space without lattice relaxation. (b)-(f): stacking energy after lattice relaxation
for decreasing twist angles.

sensitive to the twist angle and lattice mismatch, with some samples exhibiting no hysteresis
and some exhibiting strong hysteresis. The ferroelectricity is clearly very unconventional,
and the physical mechanism is currently not well understood.

Structural phenomena in moiré superlattices are generally well understood. It is known that
the interlayer separation ripples in space due to the local misalignment of the atoms, which
can influence physical properties [218, 219]. Additionally, lattice relaxation occurs due to the
competition between the in-plane strains and out-of-plane van der Waals interactions, leading
to the formation of stacking domains [220–226], see Fig. 1.11. The elastic energy depends
on the twist angle and lattice mismatch quadratically [223], meaning the domains can be
tuned. The domain structures have been shown to have a large influence on the properties of
the system [227–229, 220, 221, 203, 222], leading to the opening of band gaps and enhanced
Fermi velocity, for example. Polar effects have been given less consideration because the
typical materials use to fabricate moiré superlattices, graphene, hBN and TMDs such as
MoS2, are non-polar.

There are two main mechanisms by which polar phenomena could manifest in moiré systems.
The first is a local spontaneous out-of-plane polarization [230], which occurs in bilayers
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without centrosymmetry and averages to zero over the moiré period. The second is the
couplings between strain and polarization mentioned previously, namely piezoelectricity
[231–233] and flexoelectricity [231]. The strain gradient is largest across the domain walls,
and via flexoelectricity, they have an inherent polarization. The flexoelectric response in 2D
materials can be estimated by measuring the potential drop across the wall of a nanotube in
the large radius limit [154, 231, 202, 234], and it has been estimated that the flexoelectric
coefficients in bilayer graphene is similar in magnitude to the clamped-ion flexoelectric
response in oxide perovskites [231, 154, 149]. The flexoelectric polarization is localized
within the relatively narrow domain walls, however.

If we identify the stacking domains as polar domains via the two aforementioned mechanisms,
then the stacking domains may serve as the basis for understanding polar phenomena in
moiré materials. Thus, in order to understand the observed ferroelectricity, it is essential to
understand how the stacking domains respond to an electric field. It is known that the domain
structures in moiré materials can lead to interesting effects such as the opening of band gaps
and topologically protected states or channels when an electric field is applied [235, 210–
212, 236]. To our knowledge, the influence of an applied electric field on the domains
themselves has not been considered. It is known that an electric field can modify the interlayer
separation and lead to a breakdown of TMD bilayers, for example [237, 238]. The stacking
domains are a result of lattice relaxation, which describes the delicate competition between
the interlayer interactions and the intralayer elasticity. Since the interlayer interactions are
sensitive to an applied field, it is reasonable to expect that the field would change the delicate
balance and affect the resulting domain structure.

1.4 Summary

A brief summary of the layout of this thesis is given below.

In Chapter 2, we provide a brief overview density functional theory, and the main approx-
imations used in typical first-principles calculations, the main computational method to
supplement the theoretical models developed in this thesis.

In Chapter 3 we generalize the phenomenological model of carrier formation at polar-
nonpolar perovskite interfaces to account for coupling with tilts in the thin film. We show
that, upon coupling to homogeneous tilts, four new distinct types of transitions are possible,
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depending only on the energetics of the tilts, polar discontinuity and the coupling between
them, regardless of whether the transition occurs with film thickness or an applied electric
field. These include continuous and discontinuous transitions of the carriers, facilitated
by the tilts, and both simultaneous and distinct transitions of tilts and carriers. Using first
principles calculations, we can make predictions about the type of transition which occurs at
the LAO/STO interface.

In Chapter 4, we generalize the model developed in Chapter 3 to allow for inhomogeneous
tilts in the polar thin film, using Ginzburg-Landau theory. The inhomogeneity of the tilts is
determined by the correlation length in the film and the extrapolation lengths, which describe
the relative energy differences between the tilts in the interior and at the surfaces. We show
that two of the transitions predicted in Chapter 3 are unaffected by the inhomogeneity of
the tilts, other than the values at which the transitions occur being renormalized. For the
other two transitions, their character can be changed by decreasing the correlation length,
leading to two entirely new types of transitions which are not possible for homogeneous
tilts. Motivated by experimental [89] and first-principles measurements of tilts in LAO/STO,
we also consider additional types of couplings beyond the biquadratic coupling with the
polar mode, namely the direct bilinear coupling between oxygen vacancies and the tilt at the
surface. We show that this coupling implies that the appearance of carriers will always result
in a surface tilt, which can propagate into the thin film and possibly the substrate. Including
this direct coupling, we predict that very thin films, down to 3 unit cells, exhibit a small tilt
in the presence of carriers, where an untilted phase is predicted when only considering the
biquadratic coupling, rationalizing results from first-principles calculations.

In Chapter 5, we first review the continuum model of an isolated ferroelectric thin film in
a vacuum (IF) with the full treatment of the electrostatics and a domain wall term. We
then generalize the theory for three different systems: a thin film on an infinite substrate
(overlayer, OL), a thin film sandwiched between two infinite dielectric media (SW), and a
FE/PE superlattice (SL). We keep the prevalent nomenclature in the literature of referring to
a spacer material such as STO as paraelectric, but the description will be exclusively that
of a dielectric material with a given isotropic dielectric permittivity. All of these systems
except the OL have appeared in the literature in various contexts and with different levels of
detail. We compare the different cases, first in the Kittel limit (w ≪ d), for which analytic
expressions are obtained for w(d), and also in the general situation. Previous studies of
periodic superlattices have assumed ferroelectric and paraelectric layers of equal width. Here
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we provide a more general study of domain structures as a function of superlattice geometry.
We also present a detailed derivation of the electrostatic energies.

In Chapter 6, we introduce a model which addresses and explains the observed coexistence
between ferroelectric domains and 2DEG formation at ferroelectric-insulator interfaces.
After reviewing the competition-based theory between a monodomain ferroelectric film with
a 2DEG and a polydomain film with no 2DEG, we introduce a model which allows for
the possibility of both domains and a 2DEG. The thin and thick film limits agree with the
previous competition-based study [133], in which the polydomain and monodomain phases
are realized respectively, but we show that the two regimes are separated by a region of
coexistence where both effects are observed simultaneously.

In Chapter 7 we demonstrate using first-principles calculations that the walls of CNTs and
TMD NTs are polarized in the radial direction, the strength of the polarization increasing as
the size of the NT decreases. This is reminiscent of a flexoelectric response in bulk insulators,
the strain gradient being achieved by bending the 2D monolayers into NTs. For CNTs
and TMD NTs with chiral indices (n,m), the radial polarization of the walls PR diverges
below C(n,m)/a =

√
n2 +nm+m2 ∼ 10, where C(n,m) is the circumference and a is the

monolayer lattice constant. For CNTs, PR drops to zero above this value but for TMD NTs
there is a non-zero polarization, which is ionic rather than electronic. The size dependence
of PR in the TMD NTs is interesting: it increases gradually and reaches a maximum of
PR ∼ 100 C/cm2 at C(n,m)/a ∼ 15, then decreases until C(n,m)/a ∼ 10 where it starts to
diverge. Measurements of the radial strain on the bonds with respect to the monolayers
shows that this polarization is the result of a larger strain on the outer bonds than the inner
bonds, but did not explain the peculiar size dependence. These results suggest that while the
walls of smaller CNTs and TMD NTs are polarized, the walls of larger TMD NTs are also
polarized due to a difference in strain on the inner and outer bonds.

In Chapter 8, we propose a theoretical model which captures the effect of an applied electric
field on the domain structure in moiré superlattices. The coupling between the spontaneous
polarization and field leads to uneven relaxation of the domains, and a net polarization in the
superlattice at nonzero fields, which is sensitive to the moiré period. We also show that the
dielectric response to the field reduces the stacking energy and leads to softer domains in all
bilayers. Finally, we discuss the recent observations of ferroelectricity in the context of our
model.
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Density functional theory

Density functional theory (DFT) [239, 240] is probably the most widely used and successful
method for describing the physical properties of solids. In order to obtain a quantum
mechanical description of a system of electrons and nuclei, the total energy must be obtained
and minimized with respect to the electronic and nuclear coordinates. This requires the
treatment of a complex quantum many-body system of interacting electrons and nuclei which
cannot be done analytically, and for realistic systems is too computationally demanding to be
done numerically. Fortunately, we can make use of some invaluable theorems from DFT and
other useful approximations to make quantum mechanical total energy calculations feasible.

There are large specialized communities dedicated to developing and improving the methods
which make DFT calculations efficient and accurate. The broader communities of condensed
matter physicists, solid-state chemists and materials scientists are not exclusively dedicated to
this purpose, but rather using DFT calculations to supplement their theoretical or experimental
research by helping them understand the properties of a wide range of systems. The work
presented in this thesis falls under this category: we mainly used DFT calculations as a tool
to parameterize the theoretical models we developed, and also verify that they give sensible
results. Thus, in this chapter we provide a general overview of DFT and the approximations
used in a realistic DFT calculation, with no aim to be exhaustive. For that purpose, there
already exists many excellent reviews [241–244].

The Hamiltonian for a system of interacting electrons and nuclei in atomic mass units
(me = h̄ = e = 1) is
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Ĥ =−1
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riµ
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1
ri j

+
1
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ν ̸=µ

ZνZµ

Rνµ
, (2.1)

where µ , ν are used for nuclei and i, j are used for electrons. The first two sums contain the
kinetic energy operators of the nuclei and electrons, respectively, where M is the mass of the
nuclei. The third sum describes the Coulomb interactions between the electrons and nuclei,
where Zµ is the atomic number of the nuclei, and riµ =

∣∣ri −Rµ
∣∣ is the distance between

an electron at ri and a nucleus at Rµ . The last two sums describe the Coulomb repulsion
between the electrons and nuclei respectively, both of which have a factor of 1

2 to avoid
double counting.

The many-body wavefunction of an electronic system with ne electrons and N nuclei is

ψ (r1, . . . ,rne ,R1, . . . ,RN) , (2.2)

which is obtained by solving the Schrödinger equation: Ĥψ = Eψ . The probability of finding
the system in a given configuration is

P = |ψ|2 = ψ∗ψ , (2.3)

and the probability of finding the first electron at position r is

P(r1 = r) =
∫

|ψ (r,r2, . . . ,RN)|2 dr2 . . .dRN . (2.4)

Thus, the probability of finding any electron at position r is

n(r) = ∑
i

P(ri = r) =
∫

|ψ (r,r2, . . . ,RN)|2 dr2 . . . . . .dRN , (2.5)

which is normalizable,

∫
n(r)dr = ne , (2.6)
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i.e. if we look everywhere, we should find all of the electrons. Of course, solving the
Schrödinger equation and obtaining an ne +N dimensional wavefunction is difficult even for
small ne and N, and practically impossible when they are very large. If we are to have any
chance of obtaining a quantum mechanical description of a realistic system, we will need to
make a few approximations.

2.0.1 Born-Oppenheimer Approximation

Because of the large difference in mass between the electrons and nuclei (M ∼ 1836me), it is
reasonable to assume that the nuclei are fixed with respect to the electrons. This is known as
the clamped nuclei approximation. Under this approximation, the kinetic energy of the nuclei
is zero, and the Coulomb energy is constant. Thus, we can write the electronic Hamiltonian
with respect to a set of fixed nuclear coordinates {Rµ}:

Ĥel
Rµ =−1

2 ∑
i

∇2
i +

1
2 ∑

i ̸= j

1
ri j

+V ext
Rµ ({ri}) , (2.7)

where V ext
Rµ

({ri}) is effectively the external potential felt by the electrons due to the nuclei.
We then proceed to solve the Schrödinger equation for the electronic Hamiltonian of each
configuration. For the nuclear problem, we replace the electronic terms in Eq. (2.1) with the
resulting electronic ground state energy:

Ĥn =−1
2 ∑

µ

1
Mµ

∇2
µ +Eel

0
(
{Rµ}

)
, (2.8)

which can be thought of as the effective potential felt by the nuclei due to the electrons.

Thus, we have obtained a separation of the electronic and nuclear Hamiltonians, and hence
wavefunctions, reducing the complexity of the problem by a great deal, starting from the
simple fact that the nuclei are much heavier than the electrons. This is known as the Born-
Oppenheimer approximation [245].



26 Density functional theory

2.0.2 Hartree and Hartree-Fock equations

Even after having simplified the problem with the Born-Oppenheimer approximation, the
many-body problem is still difficult because of the electron-electron interactions. In an
attempt to simplify things, we can write the total electronic Hamiltonian as a sum of single-
electron Hamiltonians plus the electron-electron interactions:

Ĥel = ∑
i

ĥi +
1
2 ∑

j ̸=i

1
ri j

ĥi =−1
2

∇2
i +V ext (ri)

. (2.9)

If we ignore the electron-electron interactions, we obtain a set of single electron Schrödinger
equations which can be solved independently:

ĥiφin = εinφin , (2.10)

where n is the energy level. Having solved the single-electron equations, we can build a
many-body wavefunction from the single-electron wavefunctions:

ψn = ∏
i

φin(ri) . (2.11)

Thus,

Ĥψn = Enψn

En = ∑
i

εin
. (2.12)

This is a very crude approximation because it violates the Pauli exclusion principle and
ignores electron-electron interactions.
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Since electrons are fermions, the electronic wavefunction must be skew-symmetric under par-
ticle exchange. This is known as the Pauli exclusion principle. A system of indistinguishable
particles is invariant under any relabeling:

P(σ{ri}) = P({ri})
=⇒ ψ (σ{ri}) = sψ ({ri})

, (2.13)

where σ is some permutation, and |s|2 = 1. An obvious choice is s =±1, where s =+1 is
for bosons and s =−1 is for fermions. Clearly, the independent electron wavefunction is not
skew-symmetric, but we can use single electron wavefunctions to build one that is. When
ne = 2, for example,

ψ (r1,r2) =
1√
2
(φ1(r1)φ2(r2)−φ2(r1)φ1(r2)) =

1√
2

[
φ1(r1) φ1(r2)

φ2(r1) φ2(r2)

]
(2.14)

satisfies the Pauli exclusion principle. In general, this is known as a Slater determinant,

ψ ({ri})≡
1√
ne!

||φ1 . . .φne||=
1√
ne!


φ1(r1) · · · φne(r1)

... . . . ...
φ1(rne) · · · φne(rne)

 , (2.15)

which is skew-symmetric under the exchange of any pair of electrons.

Perhaps the simplest way to reintroduce the electron-electron interactions is using mean-field
theory, i.e. every electron feels the average electronic Coulomb potential. This is known as
the Hartree method. From Poisson’s equation, the electronic charge distribution generates a
potential, which we call the Hartree potential, V H:

∇2V H(r) =−4πn(r)

=⇒ V H(r) =
∫

dr′
n(r)

|r− r′|
. (2.16)

Next we add the average Hartree potential to each single-electron hamiltonian:
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ĥi =−1
2

∇2
i +V ext

Rµ (ri)+V H(ri) , (2.17)

and the system is described by the solutions to a set of self-consistent equations:

ĥiφi = εiφi

n(r) = ∑
j
|ψ j(r)|2

∇2V H(r) =−4πn(r)

. (2.18)

We can account for exchange by using a Slater determinant for the many-body wavefunction.
Then we obtain the Hartree-Fock equations:

ĥiφi +
∫

V x(r,r′)φi(r′)dr′ = εiφi

n(r) = ∑
j
|ψ j(r)|2

∇2V H(r) =−4πn(r)

, (2.19)

where

V x(r,r′) =−∑
j

φ∗
j (r′)φ j(r)
|r− r′| (2.20)

is the exchange potential, which arises from the Pauli exclusion principle and prevents
self-interactions. The Hartree-Fock equations are an improvement on the Hartree equations,
but the exchange potential is non-local, which makes them more difficult to solve.

2.0.3 Density Functional Theory

Hohenberg and Kohn proved that the total energy of an electron gas is a unique functional
of the electronic charge density [239]. This means that the instead of trying to obtain the
complex many-body wavefunction of a given system, we can consider the electron density as
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the fundamental quantity of a system. The minimum value of the total energy functional is
the exact ground state energy:

E [n(r)]≥ EGS

E
[
nGS(r)

]
= EGS

. (2.21)

Writing the Hamiltonian as

Ĥ = T̂ +V e-e︸ ︷︷ ︸
F̂=F [n]

+∑
i

V ext(ri) , (2.22)

and the external potential in terms of the density,

∑
i

V ext(ri) = ∑
i
⟨ψ|V ext(ri)|ψ⟩=

∫ (
V ext(r)∑

i
ψ∗

i ψi

)
dr =

∫
V ext(r)n(r)dr , (2.23)

the energy functional is of the form

E[n(r)] =
∫

(Vext(r)n(r)+F [n])dr . (2.24)

The Hohenberg-Kohn theorem can be illustrated using Levy’s construction [246]. We
construct the functional F as

F [n] = min
|ψ⟩→n(r)

⟨ψ|F̂ |ψ⟩ , (2.25)

i.e. it takes the minimal value with respect to all states ψ that give the density n(r). For
a system with external potential V ext(r), ground state |ψ0⟩ and energy E0, consider a state
|ψ[n]⟩ which gives the n(r) that minimizes F [n]. Let

EV [n] = F [n]+
∫

V ext(r)n(r)dr = ⟨ψ[n]|F̂ +V ext|ψ[n]⟩ . (2.26)
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Since Ĥ = F̂ +Vext, the variational principle gives

EV [n]≥ E0 (2.27)

where the equality is true if and only if |ψ0⟩= |ψ[n]⟩. From the definition of of F [n], we must
have

F [n0]≤ ⟨ψ0|F |ψ0⟩ (2.28)

because F [n0] will take the minimum with respect to all states that generate n0. ψ0 may give
n0, but it may not be the state that minimizes F . Adding V ext to both sides, we get

EV [n0]≤ E0 (2.29)

Combining Eqs. (2.27) and (2.29), we must have

EV [n0] = E0 (2.30)

i.e. the ground state density gives the exact ground state energy. This almost seems trivial,
but it illustrates that DFT is an exact theory, in theory.

The Hohenberg-Kohn theorem proves the existence of the energy as a functional of electronic
density, but does not provide its explicit form. Kohn and Sham showed that it is possible to
map the many-body problem onto another system of non-interacting particles moving in an
external potential with the same ground state density [240]:

E[n] =
∫

V ext(r)n(r)dr−∑
i

∫
φ∗

i

(
1
2

∇2
i

)
φi dr

+
1
2

∫ ∫ n(r)n(r′)
|r− r′| drdr′+EXC[n]

. (2.31)
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The first term is the external potential, the second is the kinetic energy of the electrons, the
third is the Hartree potential and the last term contains the exchange and correlation energy
functionals. The ground state density, n0(r) is the one that minimizes the total energy via the
variational principle:

δE[n]
δn

∣∣∣∣
n0

= 0 . (2.32)

For orthonormal wavefunctions, this gives the Kohn-Sham equations,

(
−1

2
∇2

i +V ext +V H +V XC
)

φi(r) = εiφi(r)

V XC =
δEXC

δn

(2.33)

The explicit form of the exchange-correlation potential remains unknown, but it can be
efficiently approximated.

2.0.4 Approximate Exchange Correlation Functionals

The exchange-correlation energy is expected to be a universal functional of the density.
However, the Hohenberg-Kohn theorem provides motivation for using approximations. The
first and historically most widely used approximation is the local density approximation
(LDA) [240]. It assumes i) that EXC per particle at each point r only depends on the density
and ii) that it is equal to the exchange-correlation energy per particle of a homogeneous
electron gas of density n(r) in a neutralizing background:

EXC
LDA =

∫
εXC

LDA(r)n(r)dr

εXC
LDA(r) = εXC

hom[n(r)]
. (2.34)

The form of εXC
hom[n(r)] can be obtained from various sources. The exchange part can be

obtained analytically from Hartree-Fock theory, where it can be shown that it scales like

εXC
hom[n(r)]∼

3
4π
(
3π2)1/3

n1/3 . (2.35)
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For the correlation part, Ceperly and Alder made approximations using Monte Carlo simu-
lations of a homogeneous electron gas [247], and there are many other viable alternatives
[248, 240, 249–251].

The LDA is probably the most crude approximation we could make, but it has the advantage
of simplicity. It describes structural and dynamical properties of systems with surprising
accuracy: calculated bond lengths and angles are usually within a few % of experiment, and
phonon frequencies are usually within 5-10% [243, 252]. However, the LDA typically gives
poor results for cohesive energies and dielectric susceptibilities.

There are many sophisticated techniques to go beyond LDA. A first alternative is to use a
semi-local functional which also depends on the gradient of the density. Different forms have
been proposed, which are known as generalized gradient approximations (GGA). They are
based on a functional of the form [253, 254]

EXC
GGA[n] =

∫
εXC

GGA[n(r),∇n(r), . . .]n(r)dr . (2.36)

This kind of approximation improves approximations to the cohesive energy with respect
to LDA. It can also improve the description of bond lengths and lattice parameters, but
overestimates compared to experiment [255, 256]. It also gives a rather limited improvement
to the dielectric susceptibility.

2.0.5 Bloch’s Theorem

Theoretical descriptions of periodic solids are described by a basic unit cell, repeated in one
to three spatial directions to form a crystal lattice. The atomic position Ri,a of atom i in unit
cell a is given by

Ri,a = Ra + ri , (2.37)

where Ra is a lattice vector and ri is the atom’s position in the unit cell.

By imposing periodic boundary conditions on the unit cell, the wavefunctions can be written
as a product of a plane wave and a function u(r) which has the same periodicity as the lattice,
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ψn,k(r) =
1√

NΩ0
eik·run,k(r) , (2.38)

where k is a reciprocal lattice vector, N is the number of unit cells and Ω0 is the unit cell
volume. ψn,k(r) are known as Bloch functions.

Bloch’s theorem reduces the problem of calculating an infinite number of electronic wave-
functions in real space to a finite number in reciprocal space, but over an infinite number of k
vectors. The periodicity of real space leads to the periodicity of reciprocal space, so we only
need to consider the k vectors in the first Brillouin zone (BZ).

The electron density in terms of the cell Bloch functions is

n(r) =
NΩ0

(2π)3

∫
BZ

dk
occ

∑
m

sψ∗
m,k(r)ψm,k(r) , (2.39)

where s is the occupation number (2 for spin-degenerate systems).

2.0.6 Pseudopotentials

The pseudopotential approximation is essential to nearly all modern total energy calculations
[257–259, 252]. Because the core electrons are chemically inert, and in most materials,
the physical and chemical properties typically only depend on valence electrons, we can
apply the frozen core approximation, in which the core electrons are treated as they would
be for an isolated atom. If the core is frozen, there is no need to solve for the Kohn-Sham
wavefunctions of the core electrons. However, removing the core electrons is not trivial,
since the valence electron wavefunctions oscillate and have nodes near the nucleus in order
to be orthogonal to the core wavefunctions.

We can replace the ‘all-electron’ wavefunctions with pseudowavefunctions, which are equal
to the all-electron wavefunctions outside of the core region, but don’t have nodes inside
the core region. Below some radial cutoff rc, the oscillating part is replaced with a smooth,
nodeless part. The values of the wavefunctions and their derivatives must be matched at rc in
order to ensure smooth continuity [260, 261]. We must also ensure that the total charge in
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the core region is correct, ∫ rc

0
|ψ(r)|2r2 dr =

∫ rc

0
|ψPS(r)|2r2 dr . (2.40)

We get pseudowavefunctions by solving the Kohn-Sham equations with a pseudopotential.
Above rc, it coincides with the regular potential. Below rc, the solution of the Kohn-Sham
equations give the pseudowavefunction.

2.0.7 Basis Sets

The final essential ingredient in a total energy calculation is a suitable basis set. Using a
finite basis, {φi(r)}, a general state can be expanded

ψn(r) = ∑
i

cn,iφi(r) . (2.41)

Inserting this into the Schrödinger equation gives

∑
i

cn,iĥφi = εn ∑
i

cn,iφi . (2.42)

Multiplying by φ∗
j and integrating:

∑
i

(∫
φ∗

j ĥφi dr
)

cn,i = εn ∑
i

(∫
φ∗

j φi dr
)

cn,i

∑
i
⟨φ j|ĥ|φi⟩cn,i = εn ∑

i
⟨φ j|φi⟩cn,i

∑
i

hi jcn,i = εn ∑
i

Si jcn,i

. (2.43)

hi j are the Hamiltonian matrix elements and Si j the overlap matrix elements. For orthonormal
basis sets, S is simply the identity matrix. In a basis of atomic orbitals, the density functional
is given by
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ρ(r) =
occ

∑
n
|ψn(r)|2 = ∑

i, j

occ

∑
n

c∗n,icn, jφ∗
i φ j

= ∑
i, j

φ∗
i φ j

occ

∑
n

c∗n,icn, j

= ∑
i, j

φ∗
i φ jρi j

, (2.44)

where

ρi j =
occ

∑
n

c∗n,icn, j (2.45)

is the density matrix.

From Bloch’s theorem, we know that the electronic wavefunction can be represented using a
discrete plane-wave basis in the k-points in the BZ [244]:

ψn,k(r) =
1√

NΩ0
∑
g

cn,gei(k+g)·r , (2.46)

where the sum is performed over reciprocal lattice vectors g. Of course, we can’t include an
infinite number of reciprocal lattice vectors, so we must choose a suitable cutoff. This can be
done using a kinetic energy cutoff: Let gmax be the largest vectors such that

Ecut =
1
2
|gmax|2 . (2.47)

In Eq. (2.46) we include all g that satisfy

1
2
|g|2 ≤ Ecut . (2.48)

The Kohn-Sham equations are then solved for the coefficients. Plane-wave basis sets are used
in DFT codes such as CASTEP [262, 263] and ABINIT [264–268]. They are conceptually
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simple and can be systematically converged for a given system with very little human input:
only a kinetic energy cutoff needs to be specified.

Another option is to expand the wavefunctions using a basis of atomic orbitals [269–271]:

ψi(r) = ∑
i,nlm

ci,nlmφi,nlm(r−Ri)

φi,nlm(r) = Ri,nl(r)Yi,lm(r̂)
. (2.49)

R is the radial part of the atomic wavefunction and Y are spherical harmonics. Atomic
orbitals are used in SIESTA [272]. They have the advantage of being very quick, efficient and
accurate, as well has having a straightforward physical interpretation. However, the basis
cannot be systematically converged. For a given system, a basis set must be constructed and
tested by hand. Also, the basis depends on the atomic positions, which can lead to additional
complications in time-dependent calculations, for example [273].



Chapter 3

Coupling between homogeneous tilts and
2DEG formation

In this chapter we generalize the phenomenological model of carrier formation at polar-
nonpolar interfaces to account for coupling with homogeneous tilts in the polar film. We show
that, upon coupling to homogeneous tilts, four new distinct types of transitions are possible,
depending only on the energetics of the tilts, polar discontinuity and the coupling between
them, regardless of whether the transition occurs with film thickness or an applied electric
field. These include continuous and discontinuous transitions of the carriers, facilitated by the
tilts, and both simultaneous and distinct transitions of tilts and carriers. Using first principles
calculations, we make predictions about the type of transition which occurs at the LAO/STO
interface.

3.1 Phenomenological theory of 2DEG formation

First, we review the phenomenological model of carrier formation at polar-nonpolar per-
ovskite interfaces [66]. A sketch of the system is shown in Fig. 3.1. We have a polar thin
film of thickness d on top of a non-polar substrate, with a vacuum region above. An external
electric field, which can be thought of as the total electric field in the substrate, is applied
across the entire system with an electrode / tip at the surface of the film and a back gate the
bottom of the substrate [274, 48, 82], following a similar treatment in Ref. [133]. In order
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Vacuum

Substrate

Gate

Tip

2DHG
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d

Fig. 3.1 Sketch of the electrostatics of a polar-nonpolar interface. A thin film of thickness d is placed
on top of a semi-infinite substrate. An electric field is applied using a back gate under the substrate
and a biased tip at the surface of the film. A 2DEG forms at the interface and a corresponding 2DHG
forms at the surface of the thin film. The vectors in the film represent the total electric field Efilm and
polar discontinuity Ps. The vector in the substrate represents the total electric field Esub.

to screen this discontinuity, a 2DEG of carrier concentration σ forms between the film and
substrate, and a corresponding two-dimensional hole gas (2DHG) forms at the surface.

We assume that the film and substrate are linear dielectrics, so the displacement fields are
Dfilm = εfilmEfilm+Ps and Dsub. = εsubEsub, respectively, where εfilm and εfilm are the dielectric
permittivities. All vectors are normal to the plane of the interface, so the vector notation is
omitted. Then from Maxwell’s equations, the boundary condition at interface relates the
displacement fields in the film and the substrate to the 2DEG carrier concentration σ :

(Dsub −Dfilm) · n̂ =−σ

εsubEsub − εfilmEfilm −Ps =−σ

=⇒ Efilm =
εsub

εfilm
Esub −

1
εfilm

(Ps −σ)

(3.1)
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where n̂ points outwards from the film. Using Eq. (3.1) we can write the electrostatic energy
in terms of Esub, Ps and σ :

Felec =
1
2

εfilmE2
film

=
1
2

ε2
sub

εfilm
E2

sub −
εsub

εfilm
Esub · (Ps −σ)+

1
2εfilm

(Ps −σ)2
(3.2)

The first term corresponds to the energy of the applied field in the film, which does not
depend affect the carrier concentration and can be neglected. The second term represents the
coupling between the applied field and the polar mode and the third term is the electrostatic
energy of the polar discontinuity. Writing Eq. (3.2) in terms of reduced variables σ ′ = σ

Ps

and E ′ = Esub
(Ps/εsub)

, we get

Felec(σ ′,E ′) =
P2

s
2ε

(1−σ ′)2 − P2
s
ε
E ′ · (1−σ ′) , (3.3)

where we drop the subscript of the permittivity of the film, εfilm → ε , since the permittivity
of the substrate has been absorbed into the scale for the applied field and no longer appears
in the free energy. The first term is the electrostatic energy of the polar discontinuity, and the
second term is the linear coupling between the polarization and the applied field. For E ′ = 0,
the energy is minimized when σ ′ = 1, i.e. the polar discontinuity is fully screened by the
carriers. For LAO/STO, this corresponds to a carrier concentration of exactly half an electron
per unit cell surface area. However, we have neglected the formation energy of the carriers
which appear the interface. Including the cost of generating an electron-hole pair across a
gap ∆, the free energy is

Fσ (σ ′,E ′) =
P2

s
ε

(
dc

d
σ ′+

1
2
(1−σ ′)2 −E ′ · (1−σ ′)

)
, (3.4)

where dc =
ε0∆
Ps

is the critical thickness, above which it is favorable for carriers to appear.
Minimizing with respect to σ ′ gives:

σ ′(d,E) = 1−
(

dc

d
+E ′

)
, (3.5)
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which implies that the carrier concentration increases with the thickness of the film, and can
be tuned, and even switched on/off with an electric field. When an electric field is applied,
the critical thickness for carriers to appear is

dc(E ′) =
dc

1−E ′ , (3.6)

which can be reduced or increased, depending on the sign of E ′. In Fig. 3.2 (a) we show the
carrier concentration as a function of thickness at zero field, and at positive and negative
values of E ′. When E ′ = 0, the appearance of carriers is as described in Ref. [66]: σ ′ switches
on at dc and approaches 1 asymptotically from below. When a negative field is applied, the
polar discontinuity is enhanced, and the carrier transition occurs at a reduced thickness. In
this case there is a second critical thickness where σ ′ reaches 1 and saturates:

dc,2(E ′) =−dc

E ′ . (3.7)

When E ′ =−1, the critical thicknesses are dc(−1) = dc
2 and dc,2(−1) = dc, i.e. the carriers

appear at half the original critical thickness and saturate at the original critical thickness.
When a positive field is applied, the polar discontinuity is partially screened, and the critical
thickness increases.

The other (more realistic) possibility is to fix the thickness and induce the carriers with an
applied field. From Eq. (3.6), at a fixed thickness there is a critical field value for which the
carriers appear:

E ′
c(d) = 1− dc

d
. (3.8)

If d < dc, the film is sub-critical and E ′
c(d)< 0. If d ≥ dc, the carriers will already be present

at zero field. Applying a positive field partially screens the polar discontinuity, reducing the
need for carriers. There is a second critical field value at which the carrier concentration
saturates:

E ′
c,2(d) =−dc

d
, (3.9)
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Fig. 3.2 (a): Carrier concentration as a function of thickness for zero (black), positive and negative
(red) values of reduced electric field E ′. When E ′ is positive, dc increases to dc+. When E ′ is
negative, dc is reduced to dc−, and σ ′ saturates to 1 at a second critical thickness. (a): Reduced carrier
concentration with applied field at different thicknesses. The critical thickness d = dc is shown in
black, and the sub- and super-critical thicknesses, d = 1

2 dc and d = 2dc, respectively, are shown in
red.

which is always negative for finite d. We have the relation between the two critical field
values:

E ′
c(d)−E ′

c,2(d) = 1 . (3.10)
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The different scenarios for inducing or suppressing carriers with an applied field are summa-
rized in Fig. 3.2 (b).

3.2 Coupling to homogeneous tilts

In this section we consider the effect of coupling to homogeneous tilts on the formation of
carriers. The simplest way to consider this is to add the independent free energies of the tilts
and carriers plus a coupling term: F = Fσ +Fφ +Fσφ .

For simplicity we assume that the thin film undergoes a simple displacive transition from
untilted to tilted below some temperature TC. Thus, the free energy of tilts can be described
by a double well:

Fφ (φ ,T ) =
1

2χφ

(
1
4

φ 4

φ 2
0
− 1

2

(
1− T

TC

)
φ 2
)

, (3.11)

where φ is the tilt angle, φ0 is the bulk equilibrium tilt angle and χφ is the curvature about
the minima of the double well.

Bulk LAO undergoes a transition from cubic to rhombohedral at TC ∼ 541◦C [276]. The tilt
pattern observed is, in Glazer notation [38], a−a−a−. For a thin film of LAO, the tilt pattern
changes to a−a−c0 due to the tensile biaxial imposed by clamping to the STO substrate
[277, 278]. If a compressive biaxial strain were applied by using a substrate with a smaller
lattice constant than LAO, the observed tilt pattern changes to a0a0c− [277].

The simplest coupling we can introduce is a biquadratic coupling between the tilts and the
polar mode [34, 37, 89]:

Fσφ (σ ,φ) =
1
2

αφ 2(Ps −σ)2 . (3.12)

Combining Eqs. (3.4), (3.11) and (3.12), and introducing a reduced variable for the tilt,
φ ′ = φ

φ0
, the total free energy is
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Ftot = Fσ +Fφ +Fσφ

Fσ =
P2

s
ε

(
dc

d
σ ′+

1
2
(
1−σ ′)2 −E ′ · (1−σ ′)

)
Fφ =

1
2

X−1
φ

(
1
4

φ ′4 − 1
2

(
1− T

TC

)
φ ′2
)

Fσφ =
1
2

Aφ ′2(1−σ ′)2

, (3.13)

where

X−1
φ = φ 2

0 χ−1
φ

A = φ 2
0 P2

s α
, (3.14)

which both have units of energy per unit volume. They define the energy scales associated
with the tilts and the biquadratic coupling, respectively. The energy scale associated with the
carriers, i.e. the polar discontinuity, is P2

s
ε .

Setting T = 0 and minimizing Eq. (3.13) with respect to σ ′ and φ ′, we get

φ ′ =
√

1−2AXφ (1−σ ′)2

σ ′ = 1− 1
1+ A

(P2
s /ε)φ

′2

(
dc

d
+E ′

)
. (3.15)

Note that when we set A = 0, we recover the solutions of the uncoupled order parameters:
Eq. (3.5) for σ ′ and φ ′ = 1. Eq. (3.15) is a pair of self-consistent equations which does not
have analytic solutions. However, we can use physical constraints to understand the behavior
of σ ′ and φ ′ upon coupling. Firstly, the square of the tilts cannot be negative:

1−2AXφ (1−σ ′)2 ≥ 0

=⇒ 1− 1√
2AXφ

≤ σ ′ ≤ 1+
1√

2AXφ

. (3.16)
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The right-hand side of the inequality is always satisfied since σ ′ saturates at 1. The left-hand
side can lead to situations where σ < 0, which is not physical. This leads to a condition
which determines whether or not it is favorable for tilts to appear:

A =
1
2

X−1
φ . (3.17)

Above this line, for σ ′ = 0 we would have φ 2 < 0, so the tilts must be zero in the absence
of carriers. Thus, the carriers will appear at dc as in the uncoupled model, and the tilts will
appear at a new critical thickness, dφ , which is greater than dc. Below the line, the tilts can
be finite in the absence of carriers: φ ′ =

√
1−2AXφ . In this case, carriers appear earlier at

dφ < dc, facilitated by a change in the tilts.

To summarize, above the straight line in Eq. (3.17), there are two separate transitions, the
uncoupled carrier transition at dc and a second one facilitated by tilts at dφ > dc. Below
the line, both transitions occur simultaneously at dφ < dc, i.e. there is one critical thickness
which is reduced by tilting. It is interesting to note that Eq. (3.17) is obtained independently
of whether the carriers are induced via thickness or electric field.

While the uncoupled carrier transition at dc is always continuous, we can investigate whether
the transition at dφ is continuous or discontinuous. If we insert the solution for φ ′ into σ ′ in
Eq. (3.15), we obtain a cubic equation,

f (σ ′) = 2AXφ (1−σ ′)3 −
(

1+
P2

s /ε
A

)
(1−σ ′)

+

(
P2

s /ε
A

)(
dc

d
+E ′

)
= 0

, (3.18)

the roots of which determine the value of σ ′. We cannot obtain the roots analytically, but
we can plot f (σ ′) at different thicknesses and field strengths to get some insight about the
transition, see Fig. 3.3.

Since d and E only appear in the constant term, the curve is shifted up or down by changing
thickness or electric field, and the positions of the extrema are unaffected. The maximum
and minimum are uniquely determined by the energy densities X−1

φ , A and P2
s
ε ,
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Fig. 3.3 Plots of the cubic polynomial f (σ ′) for different values of thickness or electric field. The
polynomial has extrema σ ′

min/max indicated by the black dots on each curve, where σ ′
min ≤ 1 and

σ ′
max ≥ 1. The curve is shifted up and down by changing thickness or electric field. A non-zero

carrier concentration is obtained when the polynomial has a root between 0 and 1, indicated by the
red dots. For the highest curve, there is no root between 0 and 1, so the carrier concentration is
zero. As we increase thickness (say), the curve is lowered. When σ ′

min crosses the zero axis, carriers
appear. Since σ ′

min > 0, the carrier concentration jumps from zero to a finite value, and the transition
is discontinuous. As the curve is shifted further downwards, the root moves to the right until it reaches
1, i.e. σ ′ increases until it reaches 1, where it saturates.

σ ′
min/max = 1±

√
1

6AXφ

(
1+

P2
s /ε
A

)
. (3.19)

σ ′
max is always greater than 1, which is not physical, but σ ′

min is bounded from above by 1.
This provides a clear picture of how the carrier transition occurs: the curve in Eq. (3.18) is
shifted by changing d or E , and carriers appear when there is a root between 0 and 1. If
σ ′

min < 0, they appear continuously and if 0 < σ ′
min < 1 they appear discontinuously. Thus,

σ ′
min = 0 defines a boundary between first and second order transitions:

6A2 −X−1
φ

(
A+

P2
s
ε

)
= 0 , (3.20)

which is quadratic in A and has one positive solution:
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A =
1
12

X−1
φ

(
1+

√
1+24

(P2
s /ε)

X−1
φ

)
. (3.21)

Above this curve, the transition at dφ is discontinuous and below it is continuous. Once
again, Eq. (3.21) was derived independently of whether the transition occurs via thickness or
electric field. Combining Eqs. (3.17) and (3.21) results in four different possible sequences
of transitions, depending only on the energy densities X−1

φ , A and P2
s
ε . These transitions are

summarized in Fig. 3.4. The lines intersect at a tetra-critical point (A∗,X−1
φ

∗
), where

A∗ =
P2

s
2ε

X−1
φ

∗
=

P2
s
ε

. (3.22)

In Figs. 3.5 and 3.6 we plot the order parameters as a function of thickness and electric
field respectively, as well as contours of the total free energy as a function of σ ′ for several
thicknesses and electric field strengths.
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Fig. 3.4 Diagram summarizing the coupled transitions of carriers and tilts. Region I, the line A = 0,
describes the uncoupled order parameters. The straight line has slope 1

2 . Above this line, the tilts
switch on after the 2DEG at dφ > dc and are zero beforehand. When the tilts switch on, there is a
continuous (region III) or discontinuous (region V) change in the 2DEG, separate to the uncoupled
carrier transition at dc. Below the straight line, there is a kink in the tilts at dφ < dc, accompanied
by a kink in the carrier concentration which can be continuous (region II) or discontinuous (region
IV). First-principles calculations using LDA (PAW), PBE and PBEsol functionals, summarized in
Table 3.1, were used to place the LAO/STO interface on the diagram, indicated by the large black
dots. The smaller dots show the effect of applying a small amount of compressive or tensile strain on
the in-plane lattice parameter aSTO, using the PBEsol functional.
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Fig. 3.5 Summary of the carrier transitions with film thickness for the four coupled regions in Fig. 3.4.
The left panel for each region is an order parameter plot of φ ′ and σ ′ with thickness. The critical
thickness from the uncoupled theory is dc, and the additional critical thickness at which the tilts switch
on/jump is dφ . The right panel shows an effective theory, Feff(σ ′), obtained by using Eq. (3.15) to
write Eq. (3.13) solely in terms of σ ′. Several energy curves are shown for different thicknesses in
each panel, and the dashed line shows a continuation of the uncoupled theory. The value of σ ′ at each
value of d is given by the horizontal position of the minimum on each curve.
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Fig. 3.6 Summary of the carrier transitions with applied electric field for the four coupled regions in
Fig. 3.4. The critical field values at which the carriers appear and saturate in the uncoupled theory
are given by E ′

c and E ′
c,2, respectively, and the additional critical field value at which the tilts switch

on/jump is given by E ′
φ . The right panels are as described in Fig. 3.5. The dashed blue line shows the

value of σ ′ without coupling to tilts.
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3.3 Estimating the order of the carrier transition from first-
principles

We can approximate X−1
φ , A and P2

s
ε for LAO/STO by performing first-principles calculations

using bulk LAO, biaxially strained to the lattice parameter of cubic STO. We follow the
methodology in Ref. [89], where similar calculations were performed.

First-principles density functional theory (DFT) calculations were performed using the
ABINIT code [264–268]. We used both Perdew-Burke-Edwards (PBE) [279] and PBEsol
[280, 281] exchange-correlation functionals within the generalized gradient approximation
(GGA) using PSML [282] norm-conserving [283] pseudopotentials, obtained from pseudo-
dojo [284]. We also performed calculations using the Perdew-Wang (PW92) [285] exchange-
correlation functional within the local density approximation (LDA), using the projector
augmented-wave method [286, 287] (PAW) in order to compare to Ref. [89]. For the
electronic configurations, we included 11 valence electrons for La (5s25p65d16s2), 11 for
Al (2s22p63s23p1) and 6 for O (2s22p4), explicitly including the semicore 2s22p6 states in
the valence configuration of Al. When the semicore electrons were included for Al, a cutoff
of 2500 eV was required to adequately converge the total energy of the 5-atom unit cell. A
Monkhorst-Pack k-point grid [288] of 6×6×6 was used for the 5-atom calculations and a
grid of 4×4×3 was used for the 20-atom calculations.

We first optimized the geometry of cubic STO in order to obtain the lattice parameter, aSTO.
The in-plane lattice parameters of LAO were then fixed to aSTO, and the out-of-plane lattice
parameter c was allowed to relax. It was found that the lattice parameter was not affected
significantly more by the tilt or the electric fields applied, so it was fixed to the value obtained
in the untilted case in the more time-consuming calculations. The untilted calculations
were performed using the 5-atom primitive cell. To allow for tilts, we used a

√
2×

√
2×2

supercell containing 20 atoms, which is the smallest cell required to allow for the a−a−c0 tilt
pattern which appears in LAO when biaxially strained to aSTO [277]. The depth of the tilt
double well, E0, is the energy difference per 5 atom unit cell between the tilted and untilted
systems. Using Fφ (φ ′ =±1) = E0, we get

X−1
φ =−8E0 . (3.23)
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E0 and X−1
φ are given in Table I for all of the functionals used, in units of meV/Ω5, where

Ω5 is the volume of the 5-atom unit cell. The LDA results are close to those obtained in
Ref. [89], but the results obtained using PBE and PBEsol differ by a factor of ∼ 2.

P0

-9.3

-9.2

-9.1

-9.0

0 1 2 3 4 5 6 7

P
(1

0−
3

a.
u.

)

E (10−4 a.u.)

Relax (untilted)
Relax (tilted)

Static (untilted)
Static (tilted)

Fig. 3.7 Polarization as a function of applied electric field, from the PBEsol calculations. The solid
lines are results obtained from the untilted system and the dashed lines are results obtained for the
tilted system. The blue lines indicate the static case, where the ions were fixed and the red lines
indicate the relaxed case, where a geometry relaxation was performed at each value of E .

A and P2
s
ε were obtained by calculating the dielectric constants in the untilted and tilted

systems. This was done by performing a set of bulk calculations using a finite electric field
parallel to the c-axis [289–293]. In Ref. [89] a finite displacement field was used [275], but
either type of field can be used to calculate A. The polarization, calculated using Berry phases
[294, 295], was measured in the presence of a small applied field E , with the ions both fixed
and allowed to relax. Plots of polarization as a function of applied field are shown in Fig. 3.7.
In Gaussian units, the relation between polarization and electric field, and dielectric constant
is

Pi = χi jE j +O(E2)

εi j = 1+4πχi j
, (3.24)
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The slope of P(E) is reduced in the tilted case, because the tilts compete with the polar mode.
For the static calculations, the tilted and untilted systems gave identical results. When the
tilts are allowed to relax, the relation between P and E is

P(E ,φ(E)) =
(

1
ε5

+
A
P2

s
φ ′(E)2

)−1

E , (3.25)

where ε5 is the dielectric constant of the untilted system. The dielectric constant of the tilted
system, ε20, is obtained in the limit E → 0:

1
ε20

=
1
ε5

+
A
P2

s
, (3.26)

where we used φ ′(E → 0) = 1. Rearranging Eq. (3.26) gives

ε−1
20 − ε−1

5

ε−1
5

=
A

(P2
s /ε5)

, (3.27)

which is exactly the vertical axis of the phase transition diagram in Fig. 3.4. Values of ε5,
ε20, A and P2

s
ε5

are given in Table 3.1 for all of the functionals used. For the LDA (PAW)
calculations, the electric field calculations for the tilted system failed to converge, so we used
the value of A from Ref. [89] in Fig. 3.4.

Functional aLAO aSTO c E0 X−1
φ ε5 ε20

P2
s

ε5
A

PAW LDA [89] 3.75 3.85 3.68 27.7 221.6 - - - 96.1

PAW LDA 3.75 3.86 3.67 35.9 287.8 26.1 - 425.7 -

PBE 3.81 3.93 3.72 60.5 483.9 40.4 26.5 268.9 141.2

PBEsol 3.77 3.89 3.69 54.2 433.8 34.6 24.6 317.9 129.4

Table 3.1 Summary of results from first-principles calculations. The lattice constants are in units of Å,
the energies are in units of meV/Ω5, and the dielectric constants are dimensionless.

The results in Table 3.1 were used to place the LAO/STO interface on the phase transition
diagram in Fig. 3.4. Although there is a relatively large distance between the three points,
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each exchange-correlation functional predicts that the LAO/STO interface is in region II, i.e.
a single second order transition at a reduced critical thickness dφ . The difference in LDA
can be attributed to the shallower tilt double well. The difference between PBE and PBEsol
appears to arise from the difference in the untilted dielectric constants.

We also performed calculations to investigate the effect of strain on the carrier transition,
using the PBEsol exchange-correlation functional. Calculations were repeated but with small
amounts of compressive and tensile strain applied to aSTO, up to ±1%. The results are
included in Fig. 3.4, indicated by the smaller dots. We found that a compressive strain moved
the point towards the origin and a tensile strain moved the point up and to the right, although
it appears that a significantly larger amount of strain than the ones investigated here would
be required to change the order of the carrier transition. It may be possible to change the
character of the transitions using biaxial strain for a system with a point which lies closer to
a boundary between regions, however.

3.4 Coupled Transitions with temperature

In this section we investigate the possibility of inducing a carrier transition with temperature.
When the order parameters are uncoupled, at a nonzero temperature we have

σ ′(d) = 1− dc

d

φ ′(T ) =
√

1− T
TC

, (3.28)

where we set E ′ = 0 for simplicity. For nonzero A, minimizing Eq. (3.13) gives

φ ′ =

√(
1− T

TC

)
−2AXφ (1−σ ′)2

σ ′ = 1− 1
1+ A

(P2
s /ε)φ

′2
dc

d

. (3.29)
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If we require that φ 2 ≥ 0 as before, we get

1− 1√
2AXφ (T )

≤ σ ′ ≤ 1+
1√

2AXφ (T )
, (3.30)

where Xφ (T ) =
(

1− T
TC

)−1
Xφ . As in Eq. (3.16), the inequality on the left hand side can lead

to situations where φ 2 < 0. This implies that there is an additional critical temperature, T ′
C:

T ′
C ≡ TC

(
1−2AXφ

)
. (3.31)

This is the reduced critical temperature of the thin film, a phenomenon which is typically
seen in phase transitions when going from bulk to thin films [26, 27, 25, 28]. Interestingly,
we have T ′

C = 0 when

A >
1
2

X−1
φ , (3.32)

i.e. there is no tilt transition at all. This is the same straight line obtained for transitions
with thickness and electric field at zero temperature. However, it has a different meaning
for transitions with temperature: below the line there is a tilt transition at a reduced critical
temperature T ′

C, and above the line there is no tilt transition. There is a second transition
temperature, T ′′

C , below which the carriers appear. Inserting φ ′ into σ ′ in Eq. (3.29) and
letting σ ′(T ′′

C ) = 0, we get

T ′′
C ≡ T ′

C −TC

(
P2

s /ε
A

)(
dc

d
−1
)

(3.33)

We can see that T ′′
C < T ′

C for sub-critical films, and T ′′
C = T ′

C when d = dc. Thus, two
transitions are possible by decreasing temperature in sub-critical films and only one transition
is possible otherwise. Additionally, it is possible for the transition at T ′′

C to be first or second
order. Inserting φ ′ into σ ′ as before, we obtain another cubic equation in σ ′:
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fT (σ ′) = 2AXφ︸ ︷︷ ︸
Λ

(1−σ ′)3 −
(

1− T
TC

+
P2

s /ε
A

)
︸ ︷︷ ︸

Γ(T )

(1−σ ′)

+

(
P2

s /ε
A

)
dc

d
= 0

, (3.34)

with extrema

σ ′
max/min(T ) = 1±

√
Γ(T )
3Λ

. (3.35)

In the previous section, the positions of the extrema were not dependent on the quantity that
induced the transitions. Assuming the transition occurs at some temperature T ∗, we can
determine the character of the transition by requiring that fT (σmin(T ∗)) = 0,

−Λ

(√
Γ(T ∗)

3Λ

)3

+Γ(T ∗)

(√
Γ(T ∗)

3Λ

)(
P2

s /ε
A

)
dc

d
= 0

=⇒ Γ(T ∗) = 3

√
27
4

((
P2

s /ε
A

)
dc

d

)2

Λ

, (3.36)

and also requiring that σmin(T ∗)> 0,

1
4

(
P2

s /ε
A

)
dc

d
< Λ . (3.37)

Thus, we get

A >

√
1
4

dc

d

(
P2

s
ε

)
X−1

φ (3.38)

The lines in Eqs. (3.32) and (3.38) form a diagram for transitions with temperature, shown in
Fig. 3.8. There are only two distinct regions (II and III), but the number of transitions in each
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is determined by the ratio d
dc

, so four different types of carrier transitions are possible. Plots
of the order parameters for the four different scenarios are shown in Fig. 3.9.
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0 /ε)
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Fig. 3.8 Phase transition diagram for transitions driven by temperature. The line A = 0 describes the
uncoupled order parameters (region I). The straight line is the same as in Fig. 3.4. Above this line,
no tilt transitions with temperature are possible: T ′

C = 0. The curved line is given by Eq. (3.38) and
determines whether the carrier transition is continuous (below) or discontinuous (above). The number
of transitions, i.e. whether or not T ′

C and T ′′
C are different is determined by the ratio d

dc
only: if d

dc
< 1

there are two transitions and if d
dc
≥ 1 there is only one transition.
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Fig. 3.9 Summary of the carrier transitions with temperature for the two coupled regions in Fig. 3.8.
The left hand side shows transitions for thin films at the uncoupled critical thickness (d = dc) and
the right hand side shows transitions for sub-critical thin films (d = 1

2 dc). The right panels shows
energy contours for different temperatures and are as described in Fig. 3.5, but an effective theory in
φ ′ instead of σ ′ is used.



Chapter 4

Coupling between inhomogeneous tilts
and 2DEG formation

In this chapter we generalize the model developed in the previous chapter to consider coupling
between carriers and inhomogeneous tilts at polar-nonpolar perovskite interfaces. In thicker
films, the tilts will deviate from the bulk equilibrium value at the boundaries due to surface
effects, but will be close to the bulk value sufficiently far away from the boundaries. In
thinner films, the behavior of the tilts may be dominated by surface effects, and thus very
different from a bulk crystal. Additionally, it is also possible to have tilts in the substrate,
which can couple to the tilts in the film across the interface: STO is tetragonal below room
temperature, facilitated by an a0a0c− tilt. The behavior of coupled carriers and homogeneous
tilts uncovered in the previous chapter is very rich and interesting, but it is a very ideal
scenario. While it may be appropriate for thicker films, it is already known experimentally
that the tilts in LAO/STO are very inhomogeneous for thinner films of LAO close to the
critical thickness for carrier formation [89]. Thus, in order to provide a more realistic
description of the coupling between tilts and carriers, we must allow for inhomogeneous
tilting: φ ′ = φ ′(r).

4.1 Ginzburg-Landau theory of inhomogeneous tilts

We can allow for inhomogeneous tilts by generalizing from a Landau theory to a Ginzburg-
Landau theory, i.e. the free energy is expanded in powers of both the order parameter and its
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Fig. 4.1 Sketch of inhomogeneous tilts in a thin film grown on a substrate, e.g. LAO/STO, and the
effect of (a): λ , the correlation length of the tilts in the LAO film (b): δsurface, the relative difference
in the energy of the tilts at the surface with respect to the bulk and (c): δinterface, the relative difference
in the energy of the tilts at the interface with respect to the bulk. The effect of the energetics of the
tilts in the substrate may be absorbed into δinterface.

gradient. We do this following the methodology which has been used to describe semi-infinite
ferromagnetic [26], ferroelectric [27–29] and superconducting [25] systems in which the
order parameter is inhomogeneous due to the presence of a free surface. Considering only
the tilts in the thin film, Eq. (3.11) becomes an integral over the volume of the film:

F ′GL
φ =

1
V

∫
V

[
λ 2 (∇φ ′(rrr)

)2
+

1
4

φ ′(rrr)4 − 1
2

φ ′(rrr)2
]

dV , (4.1)

where F ′ ≡ F/1
2X−1

φ and λ > 0 is the correlation length of the tilts, which sets the length
scale for the variations of the tilts, see Fig. 4.1 (a). The correlation length depends on the
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temperature of the system, but we assume a fixed temperature for simplicity. Eq. (4.1) is
written so that each term in the integrand is dimensionless, and the free energy is in units of
1
2X−1

φ , the energy scale of the homogeneous tilts.

Next, we reintroduce the carriers. We take the order parameter to be the carrier concentration
averaged over an in-plane unit cell: σ ′ ≡ ⟨σ ′⟩ = 1

A
∫

σ ′(x,y)dA. If we assume that the in-
plane variance in σ ′ is small, so that ⟨(1−σ ′)⟩2 ≈ (1−⟨σ ′⟩)2, then F ′GL

σ = F ′
σ . It should

be noted that this is a significant assumption, especially in the low carrier regime.

For inhomogeneous tilts, the biquadratic coupling term becomes

F ′GL
σφ =

1
V

∫ 1
2
(2AXφ )φ ′(r)2(1−σ ′)2 dV , (4.2)

which, since we assume the in-plane variance in σ ′ is small, reduces to

F ′GL
σφ =

1
2
(2AXφ )(1−σ ′)2 〈φ ′2〉 , (4.3)

where

〈
φ ′2〉= 1

V

∫
φ ′(r)2 dV (4.4)

is the mean of the square of the tilt throughout the film.

Under these assumptions, the free energy can be minimized with respect to σ ′ as in the
homogeneous case, yielding

σ ′ = 1− 1
1+ A

P2
0 /ε ⟨φ ′2⟩

(
dc

d
+E ′

)
, (4.5)

which is the same as the second line of Eq. (3.15), but with φ ′2 →
〈
φ ′2〉. We only consider

transitions with thickness for illustrative purposes, although it would be simple enough to
include an applied electric field as we did in the previous chapter.

For the tilts, we have
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F ′GL
φ +F ′GL

σφ =
1
V

∫
V

[
λ 2 (∇φ ′)2

+
1
4

φ ′4

−1
2
(
1−2AXφ (1−σ ′)2)φ ′2

]
dV

. (4.6)

Following a similar treatment of ferroelectric thin films with inhomogeneous polarization [28],
we split the free energy into interior and surface contributions: FGL = FGL

interior +FGL
boundary,

where FGL
φ ,boundary is given in terms of an expansion of a local order parameter at the bound-

aries. First, we use the reverse product rule to rewrite the gradient term:

(∇φ ′)2 = ∇ · (φ ′∇φ ′)−φ ′∇2φ ′ , (4.7)

then we use Stokes’ theorem on the first term in Eq. (4.1):

∫
(∇φ ′)2 dV =

∫ [
∇ · (φ ′∇φ ′)−φ ′∇2φ ′]dV

=
∫

φ ′∇φ ′ dS−
∫

φ ′∇2φ ′ dV
, (4.8)

where for a thin film on a substrate the surface integral has two terms: one at the free surface
and one at the interface with the substrate:

F ′GL
=

1
V

∫
V

[
1
4

φ ′4 − 1
2
(
1−2AXφ (1−σ ′)2)φ ′2 −λ 2φ ′∇2φ ′

]
dV

+
1
V

∫
s

[
λ 2 (n̂ ·∇φ ′)φ ′]dS

+
1
V

∫
i

[
λ 2 (n̂ ·∇φ ′)φ ′]dS

, (4.9)

where s and i refer to the surface and interface, respectively. Note that the surface free
energies are also in units of 1

2X−1
φ , and the surface integrals are dimensionless.

Next we claim that there must be a difference in the energies at the boundaries compared
to the interior of the film [26, 25, 28], which can described using an expansion of the local
order parameters at the boundaries:
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F ′GL
φ ,boundary =

1
V

∫
s

[
λ 2 (n̂ ·∇φ ′)φ ′+

1
2

δsφ ′2
]

dS

+
1
V

∫
i

[
λ 2 (n̂ ·∇φ ′)φ ′+

1
2

δiφ ′2
]

dS
. (4.10)

The quadratic coefficient of the surface order parameter describes the relative difference
between the energy of the tilts at the surface and the energy per unit volume of the tilts in
the bulk, and therefore must have units of length. We call this the extrapolation length, δ .
δs and δi are the surface and interface extrapolation lengths, respectively, which describe
the difference in energy at the surface and interface with respect to the bulk, see Figs. 4.1
(b) and (c). In general, higher order terms could be included in this expansion, but we
assume that the leading term is the quadratic one [28]. Also, the boundaries may have a
temperature dependence which differs from the bulk, which could lead to a change in sign of
the extrapolation lengths.

Minimizing the total free energy in the bulk and at both boundaries, we get

φ ′3 −
(
1−2AXφ (1−σ ′)2)φ ′−λ 2∇2φ ′ = 0

(n̂ · (∇φ ′))+
δi

λ 2 φ ′ = 0, z = 0

(n̂ · (∇φ ′))+
δs

λ 2 φ ′ = 0, z = d

σ ′ = 1− 1
1+ A

P2
0 /ε ⟨φ ′2⟩

(
dc

d
+E ′

) . (4.11)

This is the generalization of Eq. (3.15) but with inhomogeneous tilts. The expression for σ ′ is
almost identical, but with the square of the tilt replaced with the mean of the square of the tilt
throughout the film. φ ′ is described by a second order differential equation plus two boundary
conditions, one for the free surface and one for the interface. These boundary conditions are
referred to as Robin boundary conditions, i.e. a linear combination of the tilt and its gradient
at each boundary. The equations for φ ′ and σ ′ are again self-consistent, making them difficult
to solve. In the previous chapter we used physical constraints to determine the character
of the carrier and tilt transitions under various conditions, summarized in Fig. 3.4, but this
would be difficult or impossible for Eq. (4.11). Thus, our only option is obtaining numerical
solutions, solving for σ ′ and φ ′ iteratively until both are converged below a suitable tolerance.
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This approach was used in the previous chapter to obtain the order parameter plots shown
in Figs. 3.5, 3.6 and 3.9. With Eq. (4.11) however, each step requires the solution of a
nonlinear second order differential equation with Robin boundary conditions, which is not
trivial. Before examining solutions to Eq. (4.11), we briefly describe the methods used to
solve the differential equations.

4.1.1 Solutions to nonlinear ODEs with Robin boundary conditions

Consider a one-dimensional nonlinear ordinary differential equation (ODE):

φ ′′(z)+ f (φ(z)) = 0 . (4.12)

We discretize the equation using finite difference methods by discretizing real space with an
evenly spaced grid: zn = z0 +nh, and using central differences to approximate the second
derivative:

φ ′′(zn) =
φ(zn+1)−2φ(zn)+φ(zn−1)

h2 . (4.13)

Thus, Eq. (4.12) becomes

φ(zn+1)−2φ(zn)+φ(zn−1)+h2 fn = 0, n = 1, . . . ,N −1 (4.14)

Consider a situation where the values at the boundaries are fixed:

φ(z0) = α

φ(zn) = β
. (4.15)

We can write Eq. (4.14) as a nonlinear system of the form
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G(φφφ) =



(α −2φ1 +φ2)+h2 f1

(φ1 −2φ2 +φ3)+h2 f2
...

(φN−3 −2φN−2 +φN−1)+h2 fN−2

(φN−2 −2φN−1 +β )+h2 fN−1


= 0 , (4.16)

where φφφ = {φ1, . . . ,φN−1}, and φn ≡ φ(zn), etc.

Eq. (4.16) can be solved iteratively using Newton’s method. Starting with an initial guess φφφ 0,
the kth iteration is obtained by Taylor expanding Eq. (4.16):

G(φ k+1) = G(φ k)+G′(φ k)(φ k+1 −φ k) , (4.17)

where we drop the vector notation. If φ k+1 is the solution then G(φ k+1) = 0, and rearranging
gives

φ k+1 = φ k − J−1(φ k)G(φ k) , (4.18)

where J is the Jacobian matrix:

Ji j = ∂ jGi . (4.19)

Fortunately, we can write down the Jacobian analytically:

J =



−2+h2 f ′1 1 0 · · · 0
1 −2+h2 f ′2 1

0 . . . . . . . . .
... 1 −2+h2 f ′N−2 1
0 · · · 1 −2+h2 f ′N−1


, (4.20)

which greatly reduces the computational effort required to calculate Eq. (4.18).
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Eq. (4.16) assumes fixed values at the boundaries (Dirichlet boundary conditions). However,
the ODE in Eq. (4.11) has Robin boundary conditions, a linear combination of the function
and its derivative at each boundary:

α0∂zφ0 +β0φ0 = γ0

αN∂zφN +βNφN = γN
. (4.21)

These can be treated using the ‘ghost point method’, where we include fictitious points z−1

and zN+1 to write the derivatives at the boundary using central differences:

∂zφ0 =
φ1 −φ−1

2h

∂zφN =
φN+1 −φN−1

2h

(4.22)

Discretizing the derivatives in Eq. (4.21), we get

α0

(
φ1 −φ−1

2h

)
+β0φ0 = γ0

=⇒ φ−1 = φ1 +2h
β0

α0
φ0 −2h

γ0

α0

φN+1 = φN−1 −2h
βN

αN
φN +2h

γN

αN

. (4.23)

Discretizing the ODE, Eq. (4.12) becomes

φn+1 −2φn +φn−1 +h2 fn = 0, n = 0, . . . ,N (4.24)

which is identical to Eq. (4.14), but the range has been extended to include the ghost points.
The vector G then becomes
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G(φ) =



(φ−1 −2φ0 +φ1)+h2 f0

(φ0 −2φ1 +φ2)+h2 f1
...

(φN−2 −2φN−1 +φN)+h2 fN−1

(φN−1 −2φN +φN+1)+h2 fN


= 0 . (4.25)

Using Eq. (4.23) to write the values of φ at the ghost points, we get

φ−1 −2φ0 +φ1 +h2 f0 = 0

=⇒ −2
(

1−h
β0

α0

)
φ0 −2h

γ0

α0
+2φ1 +h2 f0 = 0

=⇒ −
(

1−h
β0

α0

)
φ0 +φ1 +

h2

2
f0 −h

γ0

α0
= 0

, (4.26)

for φ−1, and similarly for φN+1. Thus, the vector G becomes

G(φ) =



−
(

1−h β0
α0

)
φ0 +φ1 +

h2

2 f0 −h γ0
α0

(φ0 −2φ1 +φ2)+h2 f1

(φ1 −2φ2 +φ3)+h2 f2
...

(φN−3 −2φN−2 +φN−1)+h2 fN−2

(φN−2 −2φN−1 +φN)+h2 fN−1

xN−1 −
(

1−h βN
αN

)
φN + h2

2 fN −h γN
αN


= 0 . (4.27)

In this case, the Jacobian is
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J =



(
−1+h β0

α0

)
+ h2

2 f ′0 1 0 · · · · · · · · · 0

1 −2+h2 f ′1 1 0 · · · · · · ...

0 1 −2+h2 f ′2 1 0 · · · ...
... · · · . . . . . . . . . · · · ...
... · · · 0 1 −2+h2 f ′n−2 1 0
... · · · · · · 0 1 −2+h2 f ′n−1 1

0 · · · · · · · · · 0 1
(
−1+h βn

αn

)
+ h2

2 f ′n


. (4.28)

4.1.2 Coupling between carriers and inhomogeneous tilts

Eq. (4.11) is solved as follows: the tilt profile inside the film is obtained by solving the first
three lines using finite difference methods. The mean of the tilt squared in the film is then
used to calculate the carrier concentration, which is re-inserted into the ODE. The two are
solved self-consistently until their relative changes between successive iterations are below a
suitable tolerance.

For a given set of system parameters, we can obtain order parameter plots as a function
of thickness or applied field, similar to Figs. 3.5 and 3.6. The main difference with the
inhomogeneous tilts is that λ , δs and δi need to be specified, in addition to X−1

φ , A and
dc. Thus, for inhomogeneous tilts, Fig. 3.4 becomes five dimensional, and systemically
navigating such a diagram would be impractical.

It is also difficult to estimate λ , δs and δi. Previous studies have fixed λ to a small number
of unit cells [27]. In Ref. [89], λ is estimated to be around 1-2 unit cells in bulk LAO from
calculations of the dispersion of the phonon branch corresponding to the a−a−c0 tilt. To
our knowledge, it is not possible to directly measure the extrapolation lengths. In principle,
one could fit measurements of tilts in a thin film, either from experiment or first-principles
calculations, to Eq. (4.11), but the tilts at the boundaries are strongly affected by both the
correlation length and the extrapolation length, which would lead to overfitting.

It is helpful to note that, since we only consider indirect coupling, the carrier concentration
depends only on the mean of the square of the tilts, and not on the specific shape of the
tilts. Thus, we can understand the influence of the inhomogeneity of the tilts by fixing the
extrapolation lengths and allowing the correlation length to change.
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Fig. 4.2 Order parameter plots in the four coupled regions in Fig. 3.4, for both homogeneous (dashed
lines) and inhomogeneous (solid lines) tilts. (a): Region II (red): X−1

φ = 1.36454, A = 0.407. (b):
Region III (green): X−1

φ = 0.2, A = 0.5. σ and σGL are identical between dc and dφ . (c): Region
IV (yellow): X−1

φ = 3, A = 1.4. (d): Region V (blue): X−1
φ = 0.5, A = 1.5. σ and σGL are identical

between dc and dφ . In all regions, dc = 2 unit cells.

First, we examine the behavior of the order parameters in the different regions in Fig. 3.4 and
compare them to results obtained for homogeneous tilting. For each region, we set λ = 2 unit
cells, dc = 2 unit cells, the thickness at which a density of trapped Ti 3d-like states has been
observed in LAO/STO [296–299], δi = 5 unit cells and δs = 0. The order parameter plots are
shown in 4.2 (solid lines), alongside the corresponding result from the homogeneous theory
(dashed lines). We see that, for this choice of parameters, all of the points except the one in
region V shift to region III when the tilts become inhomogeneous. In all cases, the carriers
appear continuously at dc, and dφ increases with respect to the corresponding scenario from
the homogeneous theory. This makes sense, since at smaller thicknesses there would be a
large gradient in the tilts and hence a large energy penalty. Thus, the tilts can only appear at
larger thicknesses, where the magnitude is roughly constant inside the bulk of the film and
only changes in a small region near both boundaries.

Next, we examine the effect of changing λ . We found that for regions III and V, the transitions
remain in regions III and V, but the value of dφ is sensitive to λ . For regions II and IV, the
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Fig. 4.3 Order parameter plots in region II for several values of λ , for both homogeneous (dashed
lines) and inhomogeneous (solid lines) tilts. (a): λ = 2 unit cells, (b): λ = 1 unit cell, (c): λ = 0.5
unit cells, and (d): λ = 0.5 unit cells.

points move through different regions as λ decreases, shown in Figs. 4.3 and 4.4, respectively.
As λ decreases, and there is less of a penalty for the inhomogeneity of the tilts, dφ decreases,
and eventually the order of the transitions reverse, which occurs continuously in region
II (Figs. 4.3 (c) and (d)) and discontinuously in region IV (Fig. 4.4 (d)). These types of
transitions do not correspond to any of the regions in Fig. 3.4, so we label them regions
VI and VII. In region VI, tilts first appear continuously at dφ , and then carriers at a critical
thickness between dφ and dc. In region VII, the order of the transitions with thickness is the
same, but the carriers appear discontinuously.

In Fig. 4.5 we summarize the transitions observed in the inhomogeneous theory. Regions III
and V remain unchanged, with the exception that dφ is renormalized by λ . For regions II and
IV, the type of transition can change, depending on the value of λ (and the other parameters).
The different transitions that can occur by changing λ but fixing the rest of the parameters
are shown. For λ → ∞, the homogeneous case is realized. As λ decreases, the character of
the transition changes. For sufficiently small λ , two entirely new types of transitions occur,
which we label region VI (Figs. 4.3 (c) and (d)) and region VII (Fig. 4.4 (d)).
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Fig. 4.4 Order parameter plots in region IV for several values of λ , for both homogeneous (dashed
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4.2 Direct coupling between tilts and oxygen vacancies

So far, we have only considered the indirect biquadratic coupling between the carriers and
the tilts through the polar mode. However, other types of interactions between tilts and
carriers may be possible. For example, if carriers at the interface are generated by oxygen
vacancies at the free surface of the film, there would be a direct coupling at the surface, since
removing an oxygen vacancy may break an oxygen octahedron. This coupling may have a
large influence on the tilts at the surface which could propagate into the film, and even the
substrate for very thin films.

In this section we show results from first principles calculations of the LAO/STO interface1,
where carriers are induced at the interface both via oxygen vacancies at the surface and
fictitiously via the use of virtual atoms with fractional charge. We found that the behavior of
the tilts is very different in both cases, motivating the study of the direct coupling between
oxygen vacancies and the tilts at the surface.

4.2.1 First-principles calculations of the LAO/STO interface

First-principles calculations were performed using the SIESTA code [272], which employs
a basis of localized numerical atomic orbitals (NAOs) [270]. Real space integrations were
performed on a uniform real space grid with an equivalent plane wave cutoff of 800 Ry, and a
Monkhorst-Pack sampling [288] equivalent to 12×12×12 in a five atom perovskite unit cell
was used for BZ integrations. Calculations were carried out within the LDA. For geometry
optimizations, the in-plane lattice parameter was fixed to the theoretical value for bulk STO
(a = 3.896 Å), and a threshold of 0.001 eV/Åwas used for the forces. All atomic positions
were allowed to relax, except for the layer at the bottom of the STO substrate, whose internal
coordinates were fixed to the bulk structure in order to mimic the presence of a semi-infinite
substrate.

A Hubbard U term [300] was added to the Ti 3d orbitals of STO in order to obtain a better
approximation to the band gap and avoid underestimating the layer breakdown in LAO with
film thickness. A value of U = 8.5 eV was found to produce a band gap of 2.95 eV, close to
the experimental value of 3.2 eV [301, 302]. Such a large value greatly underestimates the
relative permittivity and polarizabilitiy of STO, which is important for the tail of the 2DEG

1calculations performed by Pablo Aguado-Puente.
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deep in the substrate, where the displacement field decreases and the dielectric constant
massively increases [303]. However, the tail of the 2DEG is truncated in our calculations
due to the finite thickness of the STO slab.

The calculations were performed on vacuum-terminated (SrTiO3)n/(LaAlO3)m slabs, where
n = 8,15 unit cells, and m = 3 unit cells. Three different mechanical boundary conditions
were used, corresponding to different rotation patterns at the bottom of the substrate. At
room temperature (RT), STO has an ideal undistorted perovskite structure. Below 105 K,
AFD rotations of oxygen octahedra emerge and the material evolves into a tegragonal
phase, facilitated by a a0a0c− rotation, in Glazer notation [38]. This gives rise to two
possible orientations of the tetragonal axis with respect to the interface: the tetragonal axis
perpendicular (Z-domain) or parallel (X-domain) to the interface.

The electrical boundary conditions for the LAO film are determined by the presence of free
charge at the free surface and interface with STO, coming from (i) an intrinsic breakdown
due to the electric field resulting from the polar discontinuity from STO and LAO [304] or (ii)
the oxygen vacancies on the free the surface. The vacancies can be introduced by removing
one of the oxygen atoms from the AlO2 surface; removing one oxygen atom from a 2×2
in-plane supercell is equivalent to imposing a displacement field of D = 0.5 electrons per
unit cell surface area in LAO. In order to distinguish between the effect an oxygen vacancy
has on just the electrostatic boundary conditions, and overall, i.e. also on the tilts, we used
the virtual crystal approximation (VCA) to include ‘virtual atoms’ with fractional atomic
numbers to gradually modify the electrostatic boundary conditions of the slab [305]. In this
case, substituting the oxygen atom at the surface with O1−xFx can be used to mimic the
presence of charged defects at different concentrations.

The tilt profiles for the Z domain are shown in Fig. 4.6, for a LAO film which is 3 unit
cells thick. The hollow points represent calculations with no 2DEG, and the filled points
represent calculations where the 2DEG was induced using the VCA and explicitly via oxygen
vacancies at the surface in Figs. 4.6 (a) and (b), respectively. Note that φ corresponds to the
a−a−c0 tilt, which is the one observed in LAO under biaxial strain, and θ is the tilt a0a0c−

axis, which does not couple as strongly with the polar mode. We can see for the Z domain
calculations, the φ tilt is zero, both in LAO and STO. We can see that in the oxygen vacancy
calculations a very large tilt is induced at the interface, which decays into the thin film and
into STO. This effect is completely absent in the VCA calculations however, indicating that
there is a significant coupling between carriers / vacancies and tilts, beyond the indirect
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biqaudratic coupling through the polar mode, which has not yet been considered in our
model.
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Fig. 4.6 Tilt profiles in LAO/STO from first-principles calculations for (a): VCA (b): explicit oxygen
vacancies. The hollow points show results with no 2DEG, and the filled points show results with a
fully saturated 2DEG.

4.2.2 Direct coupling between tilts and vacancies

Starting with the phenomenological theory proposed in the previous section which describes
the formation of carriers, including coupling to inhomogeneous tilts, we propose a direct
coupling between the oxygen vacancies and the tilts at the surface φ ′

s:
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F ′direct
=

1
d

β1σ ′ ∣∣φ ′
s
∣∣+ 1

d
β2σ ′φ ′

s
2
, (4.29)

We also include the a term which is quadratic in the surface tilt. βi have units of length, and
represent of the energy per unit area of the direct couplings with respect to the energy per
unit volume of the bulk tilt, similar to the extrapolation lengths introduced in the previous
section. When βi < 0 it becomes favorable for a tilt to appear at the surface when carriers
appear via oxygen vacancies. The Ginzburg-Landau free energy developed in the previous
section is now given by

F ′GL
= 2Xφ

P2
s
ε

(
dc

d
σ ′+

1
2
(
1−σ ′)2

)
+

1
V

∫
V

[
1
4

φ ′4 − 1
2
(
1−2AXφ (1−σ ′)2)φ ′2 −λ 2φ ′∇2φ ′

]
dV

+
1
V

∫
s

[
λ 2 (n̂ ·∇φ ′

s
)

φ ′
s +

1
2

δsφ ′2
s +β1σ ′ ∣∣φ ′

s
∣∣+β2φ ′2

s

]
dS

+
1
V

∫
i

[
λ 2 (n̂ ·∇φ ′

s
)

φ ′
s +

1
2

δiφ ′2
s

]
dS

, (4.30)

The last two lines describe the boundary conditions of the tilts at the free surface, which
includes the direct coupling between the surface tilt and oxygen vacancy, and the interface
with the substrate. Minimizing Eq. (4.30) with respect to σ ′, we get

σ ′ = 1− 1
1+ A

P2
0 /ε ⟨φ ′2⟩

(
dc

d
+

1
2X−1

φ

P2
s /ε

1
d

(
β1
∣∣φ ′

s
∣∣+β2φ ′

s
2
))

, (4.31)

where we take the surface tilt to be averaged in-plane. The surface tilt is determined by the
following boundary condition:

n̂ · (∇
∣∣φ ′

s
∣∣)+ 1

λ 2

(
δs +β2σ ′)∣∣φ ′

s
∣∣+ 1

λ 2 β1σ ′ = 0 , (4.32)

The general solution to Eq. (4.32) is
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∣∣φ ′
s
∣∣= c1e−

1
λ2 (δ1+β2)(z−d)− β1σ ′

δ1 +β2σ ′ (4.33)
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Fig. 4.7 Solutions to Eq. (4.34) at several values of β1, in units of |β ∗
1 |, with β2 = 0, δs = dc, and

P2
s
ε = 1

2 X−1
φ .

We could proceed to minimize the Eq. (4.30) numerically for σ ′ and φ ′ as we did in the
previous chapter. First, it is instructive to examine the effect of the direct coupling in isolation.
In order to do this, we neglect the direct coupling between tilts and carriers by setting A = 0
in Eq. (4.31). Also, we assume that in the absence of oxygen vacancies there are no tilts in
the film, as observed in Fig. 4.6. This can be achieved by setting c1 = 0 in Eq. (4.33). Then,
σ ′ and φ ′ are obtained by self-consistently solving
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Fig. 4.8 Solutions to Eq. (4.34) at several values of β1, in units of |β ∗
1 |, with β2 =−0.5, δs = dc, and

P2
s
ε = 1

2 X−1
φ .

φ ′
s =− β1σ ′

δs +β2σ ′

σ ′ = 1−
(

dc

d
+

1
2X−1

φ

P2
s /ε

1
d

(
β1
∣∣φ ′

s
∣∣+β2φ ′

s
2
)) . (4.34)

For β2 = 0 and β1 < 0, σ ′ switches on at dc and increase more rapidly as |β1| increases. The
appearance of carriers is always accompanied by the appearance of a surface tilt at dc, i.e. the
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oxygen vacancies always result in a surface tilt. σ ′ and φ ′
s are plotted for several values of β1

in Fig. 4.7. σ ′ and φ ′
s both jump to 1 at dc for a critic value of β1:

β ∗
1 =−

√√√√( P2
s /ε

1
2X−1

φ

)
δsdc . (4.35)

If we switch on β2, the surface tilt and carrier concentration are slightly enhanced at smaller
values, but at larger values a discontinuous jump occurs, where σ ′ saturates to 1 and φ ′

s

saturates at a value larger than 1. Results for β2 ̸= 0 are shown in Fig. 4.8.
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Fig. 4.9 Tilt profile for films of several thicknesses, with (solid lines) and without (dashed lines) direct
coupling between tilts and oxygen vacancies. The values of the parameters used are: X−1

φ = 1.36454
and A = 0.407 obtained from PBEsol calculations, λ = 2 u.c., δi = 10 u.c., δs = 0 u.c., dc = 2 u.c.
and β1 =−0.125.

Next, we proceed to minimize Eq. (4.30) and solve the resulting equations self-consistently,
including the direct coupling at the surface. In Fig. 4.9 we plot the tilt profile φ ′(z) in films
of several thicknesses, both with and without direct coupling. We see that for d = 3 u.c., the
film is predicted to be untilted without direct coupling, but with the direct coupling included,
a tilt appears at the surface which decays into the film. A surface tilt occurs for any β1 < 0 in
films where d > dc. As d increases, the contribution from direct coupling becomes negligible,
and the bulk tilting in the interior of the film become dominant.



78 Coupling between inhomogeneous tilts and 2DEG formation

In Fig. 4.10 we plot σ ′ and φ ′
RMS ≡

√
⟨φ ′2⟩ for several values of β1. We can see that when

β1 < 0, the appearance of carriers at d = dc is always accompanied by a tilt at the surface.
For stronger direct coupling, both carrier and tilts saturate more quickly. For sufficiently
strong direct coupling, the carriers switch on discontinuously at dc and are fully saturated.
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Fig. 4.10 Numerical solutions to Eq. (4.30) as a function of d for several values of β1, with β2 = 0.
The dashed lines show similar results obtained for homogeneous tilting. The values of the parameters
used are: X−1

φ = 1.36454 and A = 0.407 obtained from PBEsol calculations, λ = 2 u.c., δi = 10 u.c.,
δs = 0 u.c. and dc = 2 u.c.



Chapter 5

Electrostatics and domains in
ferroelectric superlattices

In this chapter we present a detailed study of the electrostatics of ferroelectric thin films and
superlattices. As mentioned in the introduction, a ferroelectric film with a 180◦ stripe domain
structure is a well-studied system. However, some details, and generalizations from a thin
film in a vacuum to other geometries remain scattered in the literature. The purpose of this
chapter is to provide a detailed review of the electrostatics of an isolated polydomain thin
film in a vacuum (IF), and introduce the generalizations to a thin film on top of a substrate
(overlayer, OL), a thin film sandwiched between two infinite dielectric media (SW), and a
periodic ferroelectric/paraelectric superlattice (SL).

5.1 Review of electrostatics of a thin film in vacuum

The fundamental model used in this chapter is based on the following free energy per unit
volume of a ferroelectric thin film in a vacuum with a 180◦ stripe domain structure [32, 33]
(e.g. Fig. 1.6),

F = F0(P)+
Σ
w
+Felec(w,d) , (5.1)

where F0(P), defined as
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F0(P) =
1

2ε0κc

(
1
4

P4

P2
s
− 1

2
P2
)
, (5.2)

is the bulk ferroelectric energy with spontaneous polarization Ps and dielectric permittivity
κc, which describes the curvature about P = Ps. Σ is the energy cost per unit area of creating
a domain wall, Felec is the electrostatic energy associated with the depolarizing field, and w

and d are the width of one domain and thickness of the film, respectively.

In the Kittel model, instead of solving for P in Eq. (5.2), the total polarization field P(r)
is taken to deviate from the spontaneous polarization ±Ps in linear response to the electric
depolarizing field, according to the dielectric susceptibilities normal and parallel to the
film, κc and κa, respectively. This model makes significant approximations about the form
of P(r), such as neglecting domain-wall width and surface/interface effects. Ferroelectric
domain walls tend to be much thinner than ferromagnetic domain walls, typically of order 1
nm. Realistic descriptions of nanometric films should rather resort to theories with proper
consideration of those effects, such as explicit first-principles calculations or Ginzburg-
Landau (see for example Refs. [104, 105, 29]). There are situations, however, for which
this model is relevant (in our case, this work was prompted by situations as described in
Ref. [133]), and, more generally, a clear account for the behavior of this simple model in the
electrostatic settings considered represents a valuable paradigmatic reference.

Since we will be interested in the electrostatic effects due to a finite polarization, we will
consider the polarization to be Ps, except for its modification in linear response to the
depolarizing field implicit when using a dielectric permittivity for the material normal to the
field, κc. This assumption is equivalent to replacing the form of F0(P) in Eq. 5.2 by

F0(P) =
1

2ε0κc
(P−Ps)

2 . (5.3)

The equilibrium domain structure for this system for a given thickness is obtained by
minimizing the energy: ∂wF = 0.

As mentioned above, we consider an ideal domain structure made by regular straight stripes
of width w. For an isolated film, the electrostatic energy for such a structure is given by [30]
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Felec =
8P2

s
ε0π3

w
d ∑

n odd

1
n3

1
1+χκc coth

(nπ
2 χ d

w

) , (5.4)

where κa, κc are the dielectric permittivities in the directions parallel and normal to the film
and χ =

√
κa/κc is the dielectric anisotropy of the film. In the Kittel limit [32, 33], w

d ≪ 1,
Eq. (5.4) reduces to

FKittel
elec =

P2
s

2ε0
β

w
d
, (5.5)

where

β =
14ζ (3)

π3
1

1+χκc
, (5.6)

and ζ (n) is the Riemann zeta function. An analytic expression is obtained for the equilibrium
domain width:

w(d) =
√

lkd , (5.7)

where

lk =
2ε0Σ
P2

s β
(5.8)

is the Kittel length, which defines a characteristic length scale of the system. Eq. (5.7) is
known as Kittel’s law [32].

Beyond the Kittel regime, we can obtain the equilibrium domain width from the numerical
solution to Eq. (5.1) for the full electrostatic expression in Eq. (5.4). In Fig. 5.1, we plot the
domain width as a function of thickness both from the Kittel law and Eq. 5.4 with numerical
solutions, truncated at n = 100 terms. We use PTO and STO as examples of ferroelectric
and paraelectric materials, respectively, using suitable parameters. PTO and STO are some
of the the most widely studied ferroelectric and paraelectric materials respectively, both
experimentally and theoretically, particularly in the context of FE/PE superlattices. The
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Fig. 5.1 Equilibrium domain width as a function of thickness for an isolated thin film. The red
curve shows the numerical solution using the full expression for the electrostatic energy, truncated at
n = 100 terms. The solid black curve is the Kittel curve, scaled by the Kittel length: w(d)/lk =

√
d/lk.

A number points are marked with black dots, which are referred to in Fig. 5.2 in order to show
the evolution of domain width with thickness (scaled by the Kittel length). In particular, dm is the
thickness at which the domain width is minimal and d∞ is the thickness at which the domain width
diverges. The following values of d were used: d1 = 2 nm, d2 = 1 nm, d3 = 0.4 nm, d4 = 0.105 nm,
d5 = 0.1 nm, d6 = 0.99 nm, d6 = 0.9 nm. The values of the parameters used are: Ps = 0.78 C/m2,
Σ = 0.13 J/m2, χη = 26, κa = 185, κc = 34, κs = 300.

predictions of the model should be reliable in the Kittel regime, but other materials will
better conform to the approximations of this model for single sub-Kittel thin films. The
model is suitable, however, for strongly coupled PTO/STO superlattices, as for the situations
described in Ref. [133].

In Fig. 5.1 we see that the domain width follows Kittel’s law at large values of d, but, for
decreasing d, w reaches a minimum at dm and then diverges at d∞. We can understand this
behavior by studying the shape of the energy curves as a function of domain width and
thickness, which is done in Fig. 5.2. The energy per unit volume associated with creating
the domain walls, shown in red, is unaffected by the thickness of the film. The dashed lines
show the electrostatic energy Eq. (5.4) at different thicknesses. We can see in each case that
for small w, the energy is approximately linear in w, following Kittel’s law. As w increases,
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Fig. 5.2 Energy as a function of domain width (scaled by the Kittel length) for the various values of d
introduced in Fig. 5.1 The red curve is the domain wall term. The black curves are the total energies
for different values of d, and the dashed curves immediately beneath are the respective electrostatic
energies at the same thicknesses (truncated at n = 100 terms). The minimum with respect to w is
indicated with a black dot. The inset shows the energy curves near where the equilibrium domain
width diverges.

Kittel’s law breaks down, and the curves begin to saturate to the monodomain electrostatic
energy:

Fmono =
P2

s
2ε0κc

. (5.9)

As d decreases, the saturation of the electrostatic energy is realized earlier, and the minimum
in total energy becomes shallower, eventually disappearing, the equilibrium domain width
thereby diverging. We can visualize this by looking at the minima of the total energy curves
as d is decreased. The minima are marked with black dots on Fig. 5.2 and are also shown on
the plot of w(d) in Fig. 5.1.

The described deviation from Kittel’s law is sensitive to the system’s parameters. In Ref. [31],
an expression for dm was reported of the form
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Fig. 5.3 Energy as a function of domain width (scaled by the Kittel length) for a fixed value of d and
various multiples of κc = 34. The red curve is the energy cost of creating a domain structure. The
black curves are the total energies for different values of κc, and the dashed grey curves immediately
beneath are the respective electrostatic energies at the same thicknesses (truncated at n = 100 terms).

dm = 5πΣε0
κc

χ
1

P2
s
, (5.10)

although details on how this was obtained were not provided.

In Fig. 5.3 we show the effect of changing κc. Increasing κc decreases the curvature of the
electrostatic energy and also decreases the monodomain energy (the asymptotic energy for
large w). By increasing κc for a fixed value of d, the total energy minimum again becomes
shallower and then disappears.

Although analytic solutions for the equilibrium domain width can not be obtained using
Eq. (5.4), we can obtain approximate solutions, following the method in Ref. [108]. For the
IF system, the total energy is approximately
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F ∼= Σ
w
+

8P2
s

ε0κcπ2
1
ζ

∞

∑
n=0

1
(2n+1)3 tanh

(
(2n+1)

2
ζ
)
, (5.11)

when ζ = πχ d
w ≪ 1. Using

tanh
(
(2n+1)

2
ζ
)
=
∫ 1

0
∂λ

(
tanh

(
(2n+1)

2
ζ λ
))

dλ (5.12)

we get

F ∼= Σ
w
+

4P2
s

ε0κcπ2

∫ 1

0
dλ

∞

∑
n=0

1
(2n+1)2

1

cosh2
(
(2n+1)

2 ζ λ
)

≈ Σ
w
+

16P2
s

ε0κcπ2

∫ 1

0
dλ

∞

∑
n=0

e−(2n+1)ζ λ

(2n+1)2

. (5.13)

From Ref. [108]:

∫ 1

0
dλ

∞

∑
n=0

e−(2n+1)ζ λ

(2n+1)2 =
π2

8
− ζ

4
ln
(

ep

ζ

)
+O(ζ 3) , (5.14)

where p = 1
2(3+ ln(4)). Thus, the approximation to the energy becomes

F ∼= Σ
w
+

P2
s

2ε0κc
+

P2
s

2ε0κc

(
3− 8

π
χ

d
w

ln
(

Λ
w
d

))
, (5.15)

where

Λ =
ep

πχ
. (5.16)

The first two terms are the energy of creating a domain wall and monodomain electrostatic
energy, and the third term is an asymptotic correction. Minimizing with respect to w, we get
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w(d) =
πχ
2
√

e
d exp

(
π2

8
κc

χ
β

lk
d

)
. (5.17)

The corresponding minimum width is

dm =
π2

8
κc

χ
β lk . (5.18)

Close to dm, below which the width begins to diverge, we have

w(d)∼= πχ
2
√

e
d exp

(
π2

8
κc

χ
β

lk
d

)
dm ∼= π2

8
κc

χ
β lk =

π2

4
Σε0

κc

χ
1

P2
s

. (5.19)

In this approximation dm has the same dependence on the systems parameters as Eq. (5.10),
but the constant prefactor is different.

We can also obtain an analytic approximation to the domain width at all thicknesses by
replacing Eq. (5.4) with a simpler expression which reproduces the monodomain and Kittel
energies in the appropriate limits. For the IF system, we could use:

F∗
elec =

P2
s

2ε0κc︸ ︷︷ ︸
Fmono

1
1+ 1

κcβ
d
w

. (5.20)

When w/d is very large, the second term in the denominator goes to zero and we get
F∗

elec = Fmono. When w/d is very small, the second term in the denominator dominates and
we get F∗

elec =
P2

2ε0
β w

d = FKittel. This approximation can also be used for the OL and SW
systems, since as we will see later, the generalization to these systems is simply achieved via
β = βIF → βOL/SW/SL.

Minimizing Eq. (5.20), we get
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w(d) =
√

lkd

1−κcβ
√

lk
d

. (5.21)

The width diverges at

d∞ = κ2
c β 2lk , (5.22)

and has a minimum at

dm = 4d∞ = 4κ2
c β 2lk = 8ε0κ2

c βΣ
1

P2
s
. (5.23)

Interestingly, the relation dm = 4d∞ is independent of system-specific parameters.

This approximation is of the same form as Eq. (5.10) but again with a different numerical
prefactor. Eq. (5.21) gives a good approximation to dm, but overestimates the domain width
near dm. This is because, while Eq. (5.20) has the correct behavior in the monodomain and
polydomain limits, it underestimates the curvature of the energy in the intermediate region. In
spite of this, the approximation predicts the correct dependence on the system’s parameters.

Having understood the behavior of the equilibrium domain width with thickness and the
system’s parameters, we proceed to investigate the effect of changing the surrounding
environment of the thin film. For that purpose more general expressions for the electrostatic
energy, similar to Eq. (5.4) are needed.

5.2 Generalized electrostatics

In this section we obtain the electrostatic energies for the OL, SW and SL systems. Some
of the predictions of the model have been discussed previously in the literature [107, 107–
113, 104] . The results for all systems are presented and compared here. To our knowledge,
some of the SL results and all of the OL results are new.
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5.2.1 Electrostatics of a ferroelectric/paraelectric superlattice

dPE/2

dFE

dPE/2

I

II

III

W+ W−
x

z

Fig. 5.4 The geometry of a FE/PE superlattice. Regions I and III correspond to half of a paraelectric
layer each and region II is the ferroelectric layer. The thicknesses of the layers are indicated on the
right and W+ and W− are the widths of the different domain orientations. The black squares are
positive domains, with polarization +P and the white squares are negative domains with polarization
−P. The system is periodic in the horizontal and vertical directions, with periods W =W++W− and
D = dFE +dPE, respectively.

We present the derivation for the SL system, but the method also applies to the OL and SW
systems, the only difference being that the boundary conditions change from periodic to
infinite.

Consider a periodic array of ferroelectric and paraelectric layers as shown in Fig. 5.4. The
spontaneous polarization of the ferroelectric layer has a 180◦ stripe domain structure with
magnitude ±Ps and widths W±. The unit cell of such a system is formed by one positive
and one negative polarization domain in the x-direction, with period W =W++W−, and one
ferroelectric and one paraelectric layer in the z-direction, with period D = dFE + dPE. As
mentioned previously, we assume that the domain walls are infinitely thin. Thus, we write
the spontaneous polarization as a Fourier series:

Ps(x) = APs +
∞

∑
n=1

4Ps

nπ
sin
(nπ

2
(A+1)

)
cos(nkx) , (5.24)

where A = W+−W−
W is the mismatch between the domains and k = 2π

W . We can see that the
spontaneous polarization is split into a monodomain term, the average polarization APs, and
polydomain terms in the infinite series. The polydomain limit is obtained when A → 0,
i.e. the domain widths are equal. The monodomain limit is obtained when A →±1, i.e. one
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of the domain widths tends to zero. To obtain the electric fields in the SL, we must first
determine the electrostatic potentials. They satisfy the following Laplace equations:

κi j∂i∂ jφII = 0

κs∇2φI = κs∇2φIII = 0
, (5.25)

where regions I, II and III are the different parts of the unit cell as shown in Fig. 5.4,

and κ =

[
κa 0
0 κc

]
. Since the terms in (5.24) are linearly independent, we can treat the

monodomain and polydomain cases separately. Clearly the potentials must be even and
periodic in x, so the general solutions to (5.25) are of the form

φI(x,z) = c1
0(z)+

∞

∑
n=1

cos(nkx)
(

c1
nenkz +d1

ne−nkz
)

φII(x,z) = c2
0(z)+

∞

∑
n=1

cos(nkx)
(

c2
ne

nk
√

κa
κc z

+d2
ne

−nk
√

κa
κc z
)

φIII(x,z) = c3
0(z)+

∞

∑
n=1

cos(nkx)
(

c3
nenkz +d3

ne−nkz
) . (5.26)

In order to obtain the potentials, we use the symmetries and boundary conditions of the
system to determine the coefficients:

φI(dFE/2) = φII(dFE/2)

φIII(−dFE/2) = φII(−dFE/2)

φI(D/2) = φIII(−D/2)

(DI −DII) · n̂ = 0

(DIII −DII) · n̂ = 0

φI(z) =−φIII(−z)

. (5.27)
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The first two conditions are obtained by matching the potentials at the interfaces. The third
comes from imposing periodic boundary conditions on the unit cell. The fourth and fifth are
obtained by matching the normal components of the displacement fields,

DI = ε0κsEI

DII = ε0κEII +Ps

DIII = ε0κsEIII

, (5.28)

at the interfaces, and the final condition is obtained from the symmetry of the system under
z →−z.

After some algebra, we find that the potentials are given by

φI(z) =− APs

ε0

[
κc

dFE
+ κs

dPE

]
dPE

(z−D/2)−
∞

∑
n=1

αnβn
cos(nkx)sinh(nk (z−D/2))

χκc cosh
(

nkχ dFE
2

)
+κs coth

(
nk dPE

2

)
sinh

(
nkχ dFE

2

)
φII(z) =

APs

ε0

[
κc

dFE
+ κs

dPE

]
dFE

z+
∞

∑
n=1

αn
cos(nkx)sinh(nkχz)

χκc cosh
(

nkχ dFE
2

)
+κs coth

(
nk dPE

2

)
sinh

(
nkχ dFE

2

)
φIII(z) =− APs

ε0

[
κc

dFE
+ κs

dPE

]
dPE

(z+D/2)−
∞

∑
n=1

αnβn
cos(nkx)sinh(nk (z+D/2))

χκc cosh
(

nkχ dFE
2

)
+κs coth

(
nk dPE

2

)
sinh

(
nkχ dFE

2

)
, (5.29)

where

αn =
4Ps

ε0n2πk
sin
(nπ

2
(A+1)

)
βn =

sinh
(

nkχ dFE
2

)
sinh

(
nk dPE

2

) . (5.30)

The monodomain part of the potential has a zig-zag shape which is sensitive to the ratio of
layer thicknesses and permittivities, as expected. The electrostatic energy of the system is
obtained from
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Felec =
1
2

∫
κi jEiE j dxdz , (5.31)

where the fields are the gradients of the potentials: E =−∇φ . We integrate over the domain
period in the x-direction and over both layers in the z-direction. Finally, the total electrostatic
energy of the SL system is given by

FSL
elec =

1
(1+α)

P2
s

2ε0κc

(
κc

κc+α−1κs
A2 + 16κc

π3
w
d ∑∞

n=1
sin2 ( nπ

2 (A+1))
n3

1
χκc coth( nπ

2 χ d
w)+κs coth( nπ

2 α d
w)

)
, (5.32)

where

d = dFE

α =
dPE

dFE

, (5.33)

so that

dPE = αd

D = (1+α)d
. (5.34)

The energy of the SW system is

FSW
elec =

P2
s

2ε0κc

(
A2 +

16κc

π3
w
d

∞

∑
n=1

sin2 (nπ
2 (A+1)

)
n3

1
κs +χκc coth

(nπ
2 χ d

w

)) , (5.35)

and the energy of the OL system is

FOL
elec =

P2
s

2ε0κc

(
A2 +

8κc

π3
w
d

∞

∑
n=1

sin2 (nπ
2 (A+1)

)
n3 γ−2

n Γn

)
, (5.36)
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where

γn = (χ2κ2
c +κs)sinh

(
nπχ

d
w

)
+χκc(1+κs)cosh

(
nπχ

d
w

)
Γn = (χ2κ2

c −κs)(1+κs)−4χ2κ2
c (1+κs)cosh

(
nπχ

d
w

)
+(1+κs)(3χ2κ2

c +κs)cosh
(

2nπχ
d
w

)
−4χκc(χ2κ2

c +κs)sinh
(

nπχ
d
w

)
+χκc(1+2χ2κ2

c +κs(4+κs))sinh
(

2nπχ
d
w

)
. (5.37)

In all cases the energy is split into monodomain and polydomain parts. We can see that the
monodomain parts for the OL and SW cases are identical to that of a thin film in a vacuum,
as expected. We can also see that the polydomain part vanishes when A → ±1, and the
polydomain limit is obtained when A → 0.

It is important to check that the polydomain part of the energy reproduces the monodomain
and Kittel energies in the appropriate limits. Letting A = 0, we have

FSL
elec =

P2
s

2ε0κc

(
16κc

π3
w
d ∑

n odd

1
n3

1
χκc coth

(nπ
2 χ d

w

)
+κs coth

(nπ
2 α d

w

)) , (5.38)

ignoring the prefactor of (1+α)−1. The monodomain limit is realized when w → ∞. Using
the expansion coth(ax)∼ 1

ax about x = 0, we get

FSL
elec →

P2
s

2ε0(κc +α−1κs)

8
π2 ∑

n odd

1
n2

=
P2

s
2ε0(κc +α−1κs)

, (5.39)

since ∑n odd
1
n2 =

π2

8 . For the Kittel limit, d
w ≫ 1, using coth(x)→ 1 for large x, we get
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FSL
elec →

P2
s

2ε0

14ζ (3)
π3

1
κs +χκc

w
d
, (5.40)

where we used ∑n odd
1
n3 =

7ζ (3)
8 .

5.2.2 Generalized Kittel law
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Fig. 5.5 w(d) for the IF system (black), the OL system (red), the SW and the SL system with α = 3
(blue). The solid lines show the analytic solutions from the generalized Kittel’s law and the dashed
lines show numerical results obtained by minimizing the full electrostatic energies. The SL and SW
systems have identical square root curves in the Kittel limit.

Taking the Kittel limit for the energies in Eqs. (5.32), (5.35) and (5.36), we obtain a general-
ization of Kittel’s law:

w(d) =
√

lk(κs)d

lk(κs) =
2ε0Σ

P2
s β (κs)

. (5.41)
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The generalization is introduced through the factor β :

βSL(κs,α) =
1

1+α
14ζ (3)

π3
1

κs +χκc

βSW(κs) =
14ζ (3)

π3
1

κs +χκc

βOL(κs) =
7ζ (3)

π3

(
1+κs +2χκc

(1+χκc)(κs +χκc)

) . (5.42)

The SL system has an additional dependence on α ≡ dPE/dFE, the ratio of thicknesses of
the paraelectric and ferroelectric layers. However, the energy cost of creating a domain wall
is also renormalized by this prefactor, and thus, in the Kittel limit, the ratio α affects the
energy scale but does not influence the behavior of the domains. For each case in Eq. (5.42),
Eq. (5.6) is recovered in the limit κs → 1.

The domain widths for the four different systems are plotted in Fig. 5.5. We can see that
including the environment has the effect of shifting the curve upwards, but the square root
behavior is unaffected. This makes sense physically: the paraelectric medium contributes
to the screening of the depolarizing field. For higher dielectric constants, this contribution
grows, meaning less screening is required by the domains, so there are fewer domains, and
hence the width increases.

The SL and SW cases have the exact same behavior in the Kittel limit. This is expected, since
in the Kittel limit, the electric field in the superlattice loops in the paraelectric layers but
does not penetrate through to neighboring ferroelectric layers. In this regime, the coupling
between the ferroelectric layers is weak, and the ferroelectric layers are essentially isolated
from each other, tending to the SW case.

In Ref. [107], it was claimed that there should be a factor of two between the length scales of
the OL and SW systems. From Eq. (5.42) we have:

lk,OL(κs)

lk,SW(κs)
=

βSW(κs)

βOL(κs)
=

1+χκc

1+κs +2χκc
. (5.43)

When κs ≈ 1, this is indeed true. However, when κs is comparable to or larger than χκc, the
approximation is not valid. For example, for PTO and STO, χκc ∼ 79 and κs = 300 and
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can be as large as 104 at low temperatures, and the difference in the Kittel lengths becomes
significantly larger than a factor of two.

5.2.3 Beyond Kittel: thin films
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Fig. 5.6 Domain widths as a function of thickness for various values of κs for (a) the OL system and
(b) the SW system. The domain width and film thickness are normalized by the Kittel length for that
value of κs.

Although the square root curve is simply shifted upwards when generalizing to different
geometries, the behavior for thinner films is quite different. In Fig. 5.5 we can see that the
thickness at which the domain width diverges is very sensitive to the dielectric environment.
In Fig. 5.6, we plot the domain widths for various values of the permittivity of the dielectric
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material, κs for the OL and SW systems, each curve scaled by the relevant Kittel length,
lk(κs). We see that dm decreases with increasing κs. In Fig. 5.7 we plot the critical thickness
as a function of κs to illustrate this effect. For the SW system, dm decreases more dramatically.
This is expected, as there is screening on both sides of the thin film in the SW system.
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Fig. 5.7 dm relative to the corresponding Kittel length as a function of dielectric permittivity of the
substrate material for the IF (black), OL (red) and SW (blue) systems.

We can understand the effect the permittivity has on dm by examining the form of the
electrostatic energy. For example, for the SW system:

FSW
elec =

1
κs

8P2
s

ε0π3
w
d ∑

n odd

1
n3

1
1+χ κc

κs
coth

(nπ
2 χ d

w

) . (5.44)

This is equivalent to the the electrostatic energy of the IF system, but with the overall energy
and κc both scaled by κs. As we know from Eqs. (5.10), (5.19) and (5.23), dm ∝ κ3/2

c , and it
is clear that dm should decrease with increasing κs.

5.2.4 Beyond Kittel: superlattices

For the SL system with with α = dPE/dFE = 1, we find that dm actually increases with the
permittivity of the paraelectric layers, as shown in Fig. 5.8 (a), contrary to the behavior
observed in the OL and SW systems. For small values of α , the periodic boundary conditions
of the superlattice make the electrostatic description very different from the OL and SW
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systems. When the paraelectric layers are thin, the depolarizing field penetrates through
them and there is strong coupling between the ferroelectric layers. The superlattice acts as
an effectively uniform ferroelectric material. The average polarization decreases with the
permittivity of the paraelectric layers, and according to Eqs. (5.10), (5.19) and (5.23), dm

increases.

For large spacings between the ferroelectric layers (α ≫ 1), the coupling between them
becomes weak, the SW system being realized for α → ∞. This is illustrated in Fig. 5.8 (c),
which is identical to Fig. 5.6 (b).

Interestingly, when α = αc ≡ χ =
√

κa/κc, dm/lk(κs) is independent of κs. At this ratio, the
permittivity of the paraelectric layers has no influence on the equilibrium domain structure,
relative to the length scale given by lk(κs). This is shown in Fig. 5.8 (b). In Fig. 5.9 we plot
dm as a function of κs for different values of α . We see that when α > αc, dm increases with
κs, while it decreases for α < αc, and remains constant when α = αc. Thus, αc represents a
natural boundary between the strong and weak coupling regimes of FE/PE superlattices.

The critical ratio αc can be predicted from both the asymptotic and analytic approximations,
Eqs. (5.19) and (5.23), respectively. We can illustrate this by generalizing Eq. (5.23) to the
SL system. In this case, the monodomain energy is

FSL
mono =

1
(1+α)

P2
s

2ε0(κc +α−1κs)
. (5.45)

The prefactor (1+α)−1 scales the energy with the ratio of the layer thicknesses. The energy
cost of creating a domain structure is scaled by this prefactor. Thus, the equilibrium domain
width will be unaffected by this prefactor, and we can neglect it. Now, the monodomain
energy for a SL is similar to the case of a thin film, but with renormalized permittivity:
κc → κc +α−1κs.

The total energy for the SL system is

F =
Σ
w
+

FSL
mono

1+ x
w

, (5.46)

where
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Fig. 5.8 Domain width as a function of thickness for the SL system with (a) α = 1, (b) α = αc (=
2.33 for PTO/STO), and (c) α = 100. Each domain width and film thickness is normalized by the
Kittel length for that value of κs.
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Fig. 5.9 Critical thickness of the SL system as a function of κs for several values of α . Each value of
d is scaled by the appropriate Kittel length.

x =
d

(κc +α−1κs)β (κs)
. (5.47)

Minimizing Eq. (5.46), we get

w(d) =

√
lk(κs)d

1− (κc +α−1κs)β (κs)

√
lk(κs)

d

. (5.48)

Eq. (5.48) has square root behavior for large d (Kittel) and diverges for small d (monodomain).
The width diverges at

d∞ = (κc +α−1κs)
2β (κs)

2lk(κs) , (5.49)

and has a minimum at

dm = 4(κc +α−1κs)
2β (κs)

2lk(κs) = 4d∞

= 8ε0(κc +α−1κs)
2β (κs)Σ

1
P2

s

. (5.50)
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Again, the relation dm = 4d∞ is independent of system-specific parameters. Dividing by the
Kittel length, we get

dm

lk(κs)
= 4(κc +α−1κs)

2β (κs)
2

∝
κc

κa

(1+ κs
ακc

)2

(1+ κs
χκc

)2
1

P2
s

. (5.51)

From this we can see that when α = αc = χ , the dependence on κs vanishes.



Chapter 6

2DEG formation in polydomain
ferroelectrics

In this chapter, we introduce a model which allows for the possibility of both domains and a
2DEG in a ferroelectric system, building on the model which considered the competition
between a polydomain phase and a monodomain phase sustained by a 2DEG [133].

6.1 2DEG formation in monodomain ferroelectrics

First, we review the theory of 2DEG formation for a monodomain ferroelectric thin film.
Consider an isolated ferroelectric thin film of thickness d and polarization P in a vacuum.
In the absence of any charge compensation, a depolarizing field will reduce or suppress
the polarization. As discussed in the previous chapter, ferroelectric thin films can form
polydomain structures in order to screen the depolarizing field. However, it has recently
been proposed that the depolarizing field could be screened in a monodomain film by the
formation of a 2DEG/2DHG at the interfaces, similar to the those observed in LAO/STO
[133]. Starting with the phenomenological model of 2DEG formation at polar-nonpolar
interfaces used in Chapters 3 and 4, we can generalize to a ferroelectric thin film:

F = F0(P)+
∆
d

σ +
1

2gd
σ2 +

1
2ε0κc

(P−σ)2 , (6.1)
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where σ is the carrier concentration of the 2DEG, ∆ is the band gap, g is the density of states
(DOS) and κc is the dielectric permittivity in the direction normal to the thin film. The key
difference between Eq. (6.1) is the source of the polar discontinuity, and the fact that the
polarization is described by a double well potential F0(P) with spontaneous polarization Ps,
i.e. Eq. (5.2). The second term is the energy cost of creating an electron-hole pair across the
gap ∆, and the the third term is the cost of filling the energy bands with a finite DOS g. As in
Chapters 3 and 4, these terms could be repurposed to describe the formation of carriers via
surface vacancies. The last term is the electrostatic energy of the depolarizing field. A 2DEG
will appear when the energy saved by screening the depolarizing field is greater than the
energy cost of creating creating the electron-hole pairs and filling the bands. If we minimize
(6.1) with respect to P and σ , we find that there is a critical thickness dc at which the carriers
appear discontinuously. Assuming the DOS to be infinite (g → ∞), this leads to a jump in
polarization,

Pcrit =
1√
3

Ps , (6.2)

which is independent of the material properties. After this, the polarization approaches the
bulk spontaneous polarization with increasing thickness. A finite DOS has the effect of
slightly shifting the critical thickness and changing the size of the polarization jump, but
the transition remains discontinuous [133]. For an isolated film of PTO, dc was predicted
to be around 1.6 nm, or 4 unit cells, assuming that the carriers are generated by oxygen
vacancies at the surface of the film [133]. Below dc, it is not energetically favorable for
carriers to form, the depolarizing field will suppress the spontaneous polarization, and the
system will adopt a paraelectric phase. In reality, a polydomain structure may form at lower
thicknesses [117, 118]. If we compare the free energy from Eq. (6.1) against the free energy
of a polydomain ferroelectric film, e.g. Eq. (5.1), we find that, with increasing film thickness,
the energetically stable phase changes discontinuously from the polydomain phase to the
monodomain phase, sustained by a 2DEG. In PTO for example, the crossover between
polydomain and monodomain phases was predicted to occur at around 4.6 nm [133]. Of
course, if we only consider the two phases in isolation, our model cannot predict the observed
coexistence between the two.



2DEG formation in polydomain ferroelectrics 103

6.2 Coexistence model of ferroelectric domains and 2DEG
formation

Vacuum

Substrate/
Vacuum

+σ

−σ
d

w w

Fig. 6.1 Geometry of a ferroelectric thin film of thickness d with a 180◦ stripe domain structure in a
vacuum or on a substrate. The positive and negative domains are both of width w and polarization
±P, and the walls between domains are infinitely thin. ±σ show the orientation of the 2DEG/2DHG
at the interfaces with the vacuum and/or substrate.

Using the model of polydomain ferroelectric films discussed in the previous chapter, we
generalize Eq. (6.1) to allow for the formation of a polydomain structure as well as a 2DEG,
see Fig. 6.1. The free energy is modified as follows:

F = F0(P)+F2DEG +
Σ
w
+Fdep(P−σ ,w) , (6.3)

where we have included the energy cost of creating a domain wall, with w being the width
of a single domain and Σ the surface energy associated with creating a domain wall. The
depolarizing energy is also replaced by the polydomain equivalent, Eq. (5.4). For the
monodomain phase, the depolarizing field is constant and contained entirely within the film,
assuming it extends infinitely in the plane. A domain structure will cause the depolarizing
field to bend and loop around the interfaces and domain walls [30, 31]. In the Kittel limit,
w ≪ d, the depolarizing energy of is given by

Fdep(P,w) =
1

2ε0
β

w
d

P2 , (6.4)
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where from the previous chapter

β =
7ζ (3)

π3
1

1+
√

κaκc
. (6.5)

Putting all of this together, Eq. (6.1) becomes

F = F0(P)+
Σ
w
+

∆
d

σ +
1

2gd
σ2 +

1
2ε0

β
w
d
(P−σ)2 . (6.6)

We can see that the depolarizing field is being screened by both the 2DEG and the domain
structure, i.e. for larger σ or smaller w (more domains), the depolarization energy is reduced.

The equilibrium values of the polarization, domain width and carrier concentration can be
determined by minimizing the free energy: ∂PF = ∂σF = ∂wF = 0. For the polarization,
we find that the behavior is the same as in the monodomain theory, i.e. Eq. (6.2). Fixing
the polarization to the spontaneous polarization of the material, P = Ps, say, we can obtain
analytic expressions for σ and w with thickness:

σ(d) = g∆

(√
d
d1

−1

)

w(d) =
√

lkd

1− g∆
Ps

(√
d
d1
−1
) , (6.7)

where

d1 =
ε0∆2

2Σβ
, (6.8)

is the critical thickness, below which σ = 0 and the domains follow the Kittel law:

w(d) =
√

lkd

lk =
2ε0Σ
P2

s β
. (6.9)
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∆ (eV/e) d (nm) IF OL SL/SW

3.6
d1 65.3 107.8 308.4

d2 272.1 449.1 1285.1

1
d1 5.0 8.3 23.8

d2 113.6 187.5 536.7

Table 6.1 Summary of critical thicknesses of the coexistence model for different band gaps and
geometries. The SL and SW systems give identical results in the Kittel limit.

There is a second critical thickness,

d2 = d1

(
1+

Ps

g∆

)2

, (6.10)

at which σ saturates and the domain width diverges.

To summarize, below d1, there is no 2DEG and the domains follow the Kittel law. Above d1,
carriers begin to appear at the interface and contribute the to screening of the depolarizing
field. This means that fewer domains are required to screen the field, so the width increases
and deviates from the Kittel law. At d = d2, the carrier concentration completely screens
the depolarizing field and saturates, meaning no domains are required, and the width of the
domains diverges. This behavior is summarized in Fig. 6.2.

The most notable difference between this and the previous model is the continuous transition
between polydomain and monodomain phases in the region of coexistence between d1 and d2.
The onset of this region is quadratically dependent on the gap, and the range of this region is
sensitive to the gap and the DOS. Interestingly, the value of d1 does not depend on the DOS,
unlike the monodomain theory, and the range of the coexistence region is crucially dependent
on a finite DOS: if g → ∞, then d2 → d1. In Table 6.1 we compare the different values of d1

and d2 obtained using values for the gap: ∆ = 3.6 eV is the experimental band gap of bulk
PTO and ∆ = 1 eV is the approximate energy required to create an oxygen vacancy [133].

As in the previous chapter, one of the largest approximations of this model is that the
ferroelectric thin film is isolated in an infinite vacuum. As we have seen, the surrounding
media, such as the substrate on which the thin film is grown, can have a big influence on the



106 2DEG formation in polydomain ferroelectrics

0

w1

(a)

0 d1 d2
0

w−1
1

0

Ps

0 d1 d2

(b)

dc d1
0

Pcrit

Ps

w

w
−

1

d

σ

d

P

d

Fig. 6.2 Plots of (a): domain width w and (b): 2DEG carrier concentration σ from Eq. (6.7), for an
isolated thin film of PTO. In (a), the dashed line shows the continuation of the square root behavior of
the Kittel law beyond the width w1 = w(d1). The inset shows the inverse domain width, which has a
kink at d1 and tends to zero at d2, illustrating the divergence of domain width. In (b), σ switches on
at d1 and saturates at d2. The inset shows the polarization as a function of thickness (g → ∞). The
discontinuous jump at dc is much smaller than d1 and d2.

properties of the film. We can generalize our model to SL, SW and OL systems by changing
the value of β using Eq. (5.42). Changing the geometry of the system changes d1 and d2:

dOL/SL/SW
i

dIF
i

=
βIF

βOL/SL/SW(κs)
, i = 1,2 . (6.11)
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This implies that a substrate or paraelectric layer with a large permittivity can shift the onset
and extend the range of the coexistence region. To illustrate the effect of the geometry, we
compare the 2DEG carrier concentration and domain width for the IF, OL and SL systems in
Fig. 6.3, using PTO and STO as the ferroelectric and paraelectric materials, using the same
parameters as in the previous chapter. We see that d1 and d2 have a significant dependence
on the permittivity of STO. A comparison of d1 and d2 for the three different geometries is
given in Table 6.1.

Another difference between the SL and IF systems is the behavior of the domains at the
interfaces. It is possible for the domains to induce a weak domain structure in the paraelectric
layers [104, 306, 106], i.e. when there is strong coupling between the ferroelectric and
paraelectric layers. In this scenario, the energy cost of creating a domain wall becomes

Σ = ΣFE +
1
α

ΣPE . (6.12)

We consider this contribution to be negligible except when dPE → 0 i.e. for very small values
of α . Thus, we neglect it in our model.

Perhaps the largest approximation of our model is that the electrostatics takes the simple
form of the Kittel expression screened by the 2DEG, which is valid for thicker films but not
for very thin films.

Using Eqs. (5.4), (5.36) and (5.32), truncating the infinite series at n = 100 terms, the free
energies were minimized numerically for the IF, OL and SL systems. The results were found
to be in agreement with the analytic solutions except near d2, where the domain widths
diverge, and near d = 0, where the domain width also diverges. The behavior of the domains
near d2 is summarized in Fig. 6.4 for the three different systems. In the ultrathin limit, σ = 0
and the typical behavior of polydomain ferroelectrics was observed: the widths obey the
Kittel law until a critical thickness, below which the widths increase again and eventually
diverge. In the intermediate region, the theoretical and analytic results are in agreement.
Thus, the Kittel approximation is suitable for describing the coexistence between domains
and the 2DEG.
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Fig. 6.3 (a): 2DEG carrier concentration as a function of thickness for IF (black), OL (red) and SL
with α = 1 (blue) systems, using the theoretical values of the parameters for PTO and STO. For
the superlattice, the thickness of the ferroelectric layer is used. (b): domain width as a function of
thickness for the same three systems. For each plot, the dashed line shows the continuation of the
square root curve from the generalized Kittel law.
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α = 1 (blue) systems.





Chapter 7

Flexoelectric polarization of
single-walled nanotubes

In this chapter we illustrate, using first-principles DFT calculations, that the walls of both
carbon nanotubes (CNTs) and TMD nanotubes (NTs) in general have a radial polarization. It
is difficult to measure polarization of low-dimensional structures using DFT calculations,
since Berry phase techniques cannot be used. Instead, we estimate polarizations from
the electrostatic potentials, using the method of macroscopic averaging [307–309], which
has been used successfully to measure polarization in slab-like systems. The electrostatic
potential is obtained in the direction normal to the slab or interface, averaging in the other
directions. The rapid oscillations caused by the ions are filtered out to obtain a smooth
potential, and the polarization can be estimated by measuring the electric field or voltage
drop across the thin film or interface. Since the number of atoms in the walls of NTs is small
(≤ 3), it is not possible to smooth out the oscillations, nor is it possible to define the exact
width of the wall. However, a potential drop between the inside and the outside of the wall
would indicate that there is a finite electric field in the wall, and hence a polarization.

First-principles DFT calculations were performed using the SIESTA code [272] using PSML

[282] norm-conserving [283] pseudopotentials, obtained from pseudo-dojo [284]. DZP
orbitals were used for all calculations. The basis sets were optimized by hand, following the
methodology in Ref. [310]. Calculations were performed using both Perdew-Wang (PW92)
[285] LDA and PBE [279] functionals. A mesh cutoff of 800 Ry was used for the real space
grid in all calculations. A Monkhorst-Pack k-point grid [288] of 12×12×1 was used for
the 2D monolayers and a grid of 1×1×12 was used for the NTs.
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Calculations were first performed for monolayers of graphene, and the TMDs MoS2, MoSe2,
WS2 and WSe2 to be used as reference geometries for the NTs. A dipole correction [311–
314] was used in the vacuum region to prevent long-range interactions between periodic
images. To perform the geometry relaxations, the size of the in-plane lattice vectors a was
relaxed while preserving the angle between them and the in-plane atomic positions. For the
TMDs, the out-of-plane atomic coordinates were also relaxed in order to obtained the thick-
ness t of the monolayers. The results were found to be in agreement to similar calculations
in the literature [315] and are summarized in Table 7.1.

Material
LDA PBE

a (Å) t (Å) a (Å) t (Å)

Graphene 2.468 - 2.475 -

MoS2 3.141 3.137 3.207 3.155

MoSe2 3.282 3.367 3.356 3.393

WS2 3.151 3.140 3.217 3.163

WSe2 3.286 3.377 3.358 3.407

Table 7.1 Lattice constants a and thicknesses t of the 2D monolayers obtained using both LDA and
PBE functionals.

NT structures were generated from the relaxed monolayers using the C2X utility [316].
Geometry relaxation calculations were then performed, relaxing the atomic coordinates in
the plane of the circumference of the NTs, and the c lattice vector, but fixing the atomic
coordinates along the c lattice vector.

A number of quantities obtained from the DFT calculations can be used to measure strain
effects and estimate the polarization in the NTs. The strain energy per atom is a typical
quantity used to measure such strain effects:

Estrain =
Etot −ncellsE2D

ntot
, (7.1)

where Etot is the total energy of the NT, E2D is the energy of the monolayer, ntot is the number
of atoms in the NT and ncells =

ntot
n2D

is the number of unit cells of the monolayer required to
form the NT. It is well-known that Estrain ∼ R−2 in general, where R is the radius of the NT.
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Fig. 7.1 Radial electrostatic densities (top) and potentials (bottom) for a (4,0) CNT (left) and a
(4,4) MoS2 NT (right). The red lines show the Hartree density and potential, which do not include
exchange-correlation contributions, and the blue lines show the total density and potential, which do.
The solid lines show results obtained using the PW92 functional and the dashed lines show results
obtained using the PBE functional. The insets in the bottom plots show a close up of the potentials
close to the center of the NT.

The electrostatic potentials and densities obtained from SIESTA, both with (total) and without
(Hartree) exchange-correlation contributions, were converted to radial potentials using the
C2X:

VR(r) =
1

2πc

∫
V (r)dzdθ

ρR(r) =
1

2πc

∫
ρ(r)dzdθ

, (7.2)

where r is the distance from the center of the NT. Examples of these potentials are plotted in
Fig. 7.1 for a (4,0) CNT and a (4,4) MoS2 NT. The electric field in the wall, and hence the
polarization, is proportional to the potential drop ∆VR across the wall:
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∆VR =VR(L/2)−VR(0) , (7.3)

where L×L is the area of the unit cell in the plane of the circumference of the NT. Measuring
the radii of the TMD NTs is a subtle problem. For CNTs, The standard formula

R(n,m) =
C(n,m)

2π
≡ a

2π

√
n2 +nm+m2 (7.4)

is normally used, where (n,m) are the chiral indices, C(n,m) is the circumference and a is
the length of the in-plane lattice vectors of graphene (see Table 7.1). This is exactly the same
as the radius obtained from the relaxed geometry obtained from DFT calculations, except
when the radius is very small. The radii are also sensitive to DFT parameters such as the
exchange-correlation functional, for example.

For TMD NTs, there are three atoms in the wall, and hence three radii: RS,inner, RMo

and RS,outer, and Eq. (7.4) does not correspond to any of them. In order to estimate the
polarization of the walls of the TMD NTs we also require the thickness of the wall. As
with the monolayers, we will take this to be the distance between the chalcogen atoms,
RS,outer −RS,inner, however as we can see from the density plots in Fig. 7.1 the wall extends
slightly beyond the chalcogen atoms and hence this will be a lower bound on the thickness of
the wall. In order to avoid confusion and for consistency across different NTs and exchange-
correlation functionals we use C(n,m)/a =

√
n2 +nm+m2 as a measure of the size of the

NTs, as it only depends on the chiral indices. We can estimate the polarization across the
wall of a TMD NT using

PR ≈ ε0ER =
ε0∆VR

RS,outer −RS,inner
, (7.5)

where ER is the electric field across the wall. However this will be an upper bound for the
reasons mentioned above. We can calculate the radial strain on the bonds with respect to the
monolayer:

ein/out =
∆Rin/out − t/2

t/2
, (7.6)

where
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∆Rin = |RS,inner −RMo|
∆Rout = |RS,outer −RMo|

, (7.7)

and t is the thickness of the monolayer, as in Table 7.1.

7.0.1 Carbon nanotubes

Geometries of zigzag (n,0) CNTs were created from the graphene monolayers using C2X.
The chiral index n ranged from 6-20. Geometry relaxations were performed using both
PW92 and PBE functionals until the total force on each atoms was less than 1 meV/Å. The
electrostatic potentials and densities were then converted into radial potentials and densities
using c2x. The strain energy per atom and the potential drop are plotted as a function of
C(n,m)/a for both functionals in Fig. 7.2. We can see that the strain energy per atom is
inversely proportional to radii of the NTs, as expected.

The results for the potential drop are more interesting. The potential drop is zero until
C(n,m)/a ∼ 10, below which it begins to diverge. By plotting the drop for both Hartree and
total potentials, we can see that this effect mainly comes from the exchange-correlation part
of the potential. Both LDA and PBE results are in good agreement.

7.0.2 TMD nanotubes

Similar calculations were performed for MoS2, MoSe2, WS2 and WSe2 NTs, both zigzag
(n,0) and armchair (n,n) with chiral indices n ranging from 6-20 and 4-20, respectively. The
strain energy per atom was found to have similar size dependence as the CNTs in all cases.
The potential drops for the TMD NTs are shown in Fig. 7.3

The potential drops of the TMD NTs also diverged below C(n,m)/a∼ 10, as in the case of the
CNTs. With the TMD NTs however, the potential is non-zero above this value. The potential
drop increases gradually as C(n,m)/a decreases. There is a maximum at C(n,m)/a ∼ 15,
below which it starts to decrease, before eventually diverging at C(n,m)/a ∼ 10. This
behavior is not observed in the CNTs, and thus we can conclude that it arises from a
difference in strain on the bonds in the walls of the TMD NTs. We can use Eq. (7.5) to
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Fig. 7.2 Strain energy per atom (top) and potential drop (bottom) as a function of C(n,m)/a for
the zigzag CNTs. The red lines show the Hartree density and potential, which does not include
exchange-correlation contributions and the blue lines show the total density and potential, which does.
The solid lines show results obtained using the PW92 functional and the dashed lines show results
obtained using the PBE functional.

estimate the polarization across the wall from the potential drops in Fig. 7.3. In Fig. 7.4 we
plot the polarization in the walls, PR, of the TMD NTs. First we note that, even before the
potential drop diverges, the polarization across the walls is of the order of 100 C/cm2. The
maximum at C(n,m)/a ∼ 15 is interesting and unexpected behavior. Typically we expect
strain effects to decrease monotonically with NT size, such as the strain energy per atom in
Fig. 7.2.

In Fig. 7.5 we plot the radial strain on the inner and outer bonds, obtained using Eq. (7.6),
for the MoS2 NTs. From this we can see that the strain on the bonds increases monotonically
as C(n,m)/a decreases, which does not explain the maximum of the polarization. It does
however illustrate that the polarization is a result of an inhomogeneous compression of the
inner and outer bonds, the compression of the outer bond being much larger.
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Chapter 8

Ferroelectricity in moiré superlattices

Twisted bilayer systems are the subject or intense study at present. In this chapter we
introduce a model of lattice relaxation in a moiré superlattice which includes the effect of an
applied field on the bilayer. The total energy is an integral of the energy density over a moiré
supercell

Vtot =
1

Asc

∫
Asc

Vtot(r)dr , (8.1)

where Asc is the area of the supercell. For a bilayer system Eq. (8.1) is a discrete sum over
atomic sites, but generalizes to a continuum field theory when the moiré period is much
larger than the lattice constants of the monolayers.

We can model moiré superlattices at different levels of theory depending on the contributions
we include in Eq. (8.1). The stacking energy Vstack captures the weak van der Waals interac-
tions between the layers in terms of the layer separation d. The elastic energy Velastic allows
for in-plane displacements of the atoms in the layers. Together, the stacking and elastic ener-
gies provide a good description of the atomic structure in moiré superlattices, namely lattice
relaxation and the formation of stacking domains. Having obtained a realistic description of
the structure, we could proceed to obtain the electronic bands from tight-binding theory.

In order to consider the effect of an electric field on the atomic structure, we also include the
electrostatic energy induced by an electric field E perpendicular to the bilayer, see Fig. 8.1
(d). The total energy density is
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Fig. 8.1 (a): Atomic structure of a MoS2 monolayer. The two stacking configurations are shown
below: (b): alignment of the layers (3R stacking) and (c): the two layers mirrored with respect to
one another (2H stacking or a twist of 180◦). (d): Sketch of the electrostatics of bilayer MoS2. The
dashed lines indicate the vertical positions of the atoms, and the vectors show the applied field E and
resulting polarization P and internal field Eint. (e): Sketch of the charge density of bilayer MoS2 along
the out-of-plane direction, averaged in the in-plane directions.

Vtot = Velastic +Vstack +Velec

Velastic =Ci jklεi jεkl

Vstack = |V0(r)|
[(

d0(r)
d

)12

−2
(

d0(r)
d

)6
]

Velec =−E p0(r)−
1
2

ε0

(
α0(r)+α1(r)

(
d

d0(r)
−1
))

E2

. (8.2)

In the elastic energy, summation is assumed, C is the linear elasticity tensor and

εi j =
1
2
(
∂iU j(r)+∂ jUi(r)

)
(8.3)

is the strain tensor, written in terms of a relative in-plane displacement U.

The stacking energy can be included in a number of ways. The simplest is to use the cohesive
energy as a function of space, V0(r), assuming that at each point in the supercell the layer
separation takes the value that minimizes the local stacking energy: d(r) = d0(r). Other
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studies have allowed the layer separation to vary by performing a harmonic expansion about
the equilibrium layer separation [218]. When considering the effect of an applied field, it is
necessary to include the full van der Waals potential because some phenomena cannot be
captured at the harmonic level, such as the breakdown of the bilayer for stronger fields [237].

The first term in Velec is the coupling between the electric field and the out-of-plane spon-
taneous dipole moment of the bilayer [230]. Bilayer systems without inversion symmetry,
such as 3R MoS2 (Fig. 8.1 (b)), have a local dipole moment throughout the supercell which
averages to zero, whereas systems with inversion symmetry, such as 2H MoS2, have no
local dipole moment anywhere in the supercell (Fig. 8.1 (c)). The second term describes
the dielectric response of the bilayer to the electric field, where α0 and α1 are the first two
coefficients in the expansion of the polarizability α about the equilibrium layer separation. A
bilayer system cannot simply be treated as a pair of capacitor plates; due to the overlap of
electronic states in the vacuum region between the layers, it is more appropriate to treat the
system as a single slab with a nonuniform charge density, see Fig. 8.1 (e). Thus, changing
the layer separation will affect the polarizability of the system. To capture this physics we
perform a Taylor expansion of the polarizability in d about the equilibrium layer separation
d0. In addition, the polarizability will vary throughout the superlattice due to the different
local stacking configurations and equilibrium layer separations. A dielectric response occurs
in all layered systems, irrespective of symmetry.

Before proceeding to study lattice relaxation under an electric field, we derive and study
the three contributions to Eq. (8.2) in detail, both theoretically and using first-principles
calculations.

8.1 Physical Model

8.1.1 Twistronics

A twisted bilayer system is composed of two layers with a relative twist angle θ between
them, which we call the reference (r) and twisted (t) layers, respectively. For bilayers
comprised of hexagonal monolayers, the lattice vectors of the reference layer and the twisted
layer are
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Fig. 8.2 Sketch of the mapping between real space and configuration space. On the left is a 3× 3
section of a moiré superlattice with twist angle θ . The positions r are mapped into configuration
space via the operator A = (I −R−1

θ ), modulo a primitive unit cell. The vectors s are shown for the
four highlighted cells.

ar,1 = a

[
1
0

]
, ar,2 =

a
2

[
1√
3

]
at,1 = Rθ ar,1, at,2 = Rθ ar,2

, (8.4)

respectively, where a is the monolayer lattice constant and Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. For a

general θ , the two layers are incommensurate, i.e. they form a supercell which is infinitely
large. If the two layers form a commensurate supercell we can define supercell lattice vectors
Li as a linear combinations of the lattice vectors of either layer:

L1 = nar,1 +mar,2

= pat,1 +qat,2 = pRθ ar,1 +qRθ ar,2

L2 = Rπ/3L1

. (8.5)

The second line of Eq. (8.5) leads to a Diophantine equation in the integers n, m, p and q,
and the set of angles which result in a commensurate supercell is given by [317–319]
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θ(n,m) = cos−1
(

n2 +4nm+m2

2(n2 +nm+m2)

)
. (8.6)

Consider an atom in the reference layer, with in-plane position r0. The corresponding
atom in the twisted layer has position r = Rθ r0. The displacement due to twisting is
δ (r) = r− r0 =

(
I −R−1

θ
)

r. If the layers form a commensurate supercell with lattice vectors
LM

i , say, the atoms will realign when the displacement is equal to a lattice vector, δ (LM
i ) =

ar,i:

LM
i =

(
I −R−1

θ
)−1 ·a1

i . (8.7)

The cell spanned by LM
i is known as a moiré superlattice, and

LM ≡
∣∣LM

i
∣∣= a

2sin(θ/2)
, (8.8)

is known as the the moiré period, which is is not necessarily equal to the supercell period:

Lsc =
|m−n|a

2sin(θ/2)
= |m−n|LM . (8.9)

For m ̸= n, there will be (m−n)2 moiré periods in the supercell.

Having established a geometric description, we can model structural or electronic phenomena
in a twisted bilayer using phenomenological or tight-binding models. These models can
be parameterized using first-principles calculations. However in practice this is difficult
to do in real space because the size of and the number of atoms in the supercell becomes
prohibitively large at smaller twist angles. Fortunately, we can take advantage of a useful
mapping which allows us to parameterize systems at arbitrary twist angles using just a single
cell of a commensurate bilayer.

The set of displacements of every atom in a moiré superlattice can be described by δ (r).
Alternatively, we can describe the displacements by a set of local translations
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s(r) =
(
I −R−1

θ
)

r mod {ar,1,ar,2}
≡ A · r

, (8.10)

i.e. at r, the system is locally equivalent to an untwisted bilayer, with a relative in-plane
slide s(r) between the layers, see Fig. 8.2. The set of translations s(r) is contained in a
single primitive cell of the reference layer, even in the continuum limit. We call this space of
translations configuration space [203, 320, 321, 223]. This space can be traversed by taking
an untwisted commensurate bilayer and sliding one layer over the other. Physical properties
can be measured in configuration space, and we can use the inverse map,

r(s) =
(
I −R−1

θ
)−1 s = A−1s , (8.11)

to parameterize a moiré superlattice in real space for arbitrary twist angles [223]. Derivatives
in real space and configuration space are related by

∇r = AT ∇s , (8.12)

which is useful for mapping quantities which depend on spatial derivatives, such as strains,
to configuration space.

8.1.2 Stacking energy

It is well known layered systems interact via long-range van der Waals forces. For non-polar
materials, this is facilitated by induced dipole−induced dipole, or London interactions, where
fluctuations in the charge density of one layer lead to a dipolar response in the other layer,
and vice versa. This can be described by a van der Waals potential in the layer separation d:

Vstack(d) =
n

m−n
|V0|

[(
d0

d

)m

− m
n

(
d0

d

)n]
, (8.13)

where V0 is the depth of the potential well or cohesive energy per unit cell, d0 is the
equilibrium separation, and the indices (n,m) determine the curvature of the well about the
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minimum. Eq. (8.13) can be parameterized using first-principles calculations, which is done
in the next section. For two slabs which extend infinitely in area, the energy is expected to
behave like d−2 at larger separations, since the dipole-dipole interaction is integrated twice
over an infinite area [322]. From first-principles calculations we found that this is not the
case, and the long-range interactions in bilayer graphene and MoS2 decay with n ≥ 6. We
suspect that this is because a bilayer is not adequately described as a pair of capacitor plates,
but rather a single slab with a non-uniform charge density as in Fig. 8.1 (e). The non-zero
overlap of states in the vacuum region may be screening the long-range interactions and
could be responsible for larger than expected values of (n,m), although a more detailed study
is required to verify this.

8.1.3 Electrostatic energy

The electrostatic energy of a dielectric slab in the presence of a perpendicular electric field E
is

Velec(P,E ,d) = Ω
(

1
2ε0χ(d)

(P−P0)
2 −E ·P

)
, (8.14)

where P and P0 are the total and spontaneous polarization, respectively, Ω is the volume of the
bilayer, and χ(d) is the dielectric susceptibility, which in general depends on the geometry of
the system. Eq. (8.14) assumes a linear response to the applied field, P(E ,d) = P0+ε0χ(d)E ,
which inserting into Eq. (8.14) gives:

Velec(E ,d) =−1
2

ε0α(d)E2 −E p0 , (8.15)

where α = Ωχ is the polarizability, which describes the linear response of the dipole moment
to the applied field, and p0 = ΩP0 is the spontaneous dipole moment. When an electric field
is applied, the layers are no longer non-polar, and the long-range interactions can no longer
be considered to be pure induced dipole−induced dipole interactions. However, we can think
of the interactions between the layers as arising due to fluctuations about a finite polarization,
rather than zero polarization.

For the polarizability, we perform a Taylor expansion about d0 to linear order,
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Fig. 8.3 (a): Total energy from Eq. (8.17) as a function of d for increasing values of E . The points
show the positions of dmin and dmax on each curve. The lowest curve is for field strength of E = Ecrit,
where dmin = dmax ≡ dcrit. (b): dmin and dmax as a function of E for different values of n, increasing
from left to right. The solid black curve is n = 6, and the dashed red curve is the theoretical value
n = 2. The solid red curve shows the critical values (dcrit,Ecrit) from Eq. (8.18). The critical points on
each curve are marked, i.e. when d = dcrit and the bilayer breaks down.

α(d) = α0 +α1

(
d
d0

−1
)

, (8.16)

where α0 and α1 are both positive and have units of Å3. In the next section we verify
using first-principles calculations that the polarizability is indeed linear about d0. Taking
(n,m) = (n,2n), we can write the energy, excluding elastic contributions, as
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Vtot(d,E) = |V0|
[(

d0

d

)2n

−2
(

d0

d

)n
]

−E p0 −
1
2

ε0

(
α0 +α1

(
d
d0

−1
))

E2

. (8.17)

By plotting contours of the energy as a function of d for fixed values of E , see Fig. 8.3 (a),
we can see that the stacking energy is lowered by the electric field, consistent with results
the from first-principles calculations. At zero field, Vstack has a minimum at the equilibrium
separation dmin = d0, and a maximum (for d > dmin) at dmax → ∞. When a field is applied,
Vstack diverges as d → ∞. This makes physical sense: increasing d will increase the total
dipole moment and lower the total energy. For a non-zero field, dmax has a finite value, at the
top of the energy barrier which separates dmin and d → ∞. As the field strength increases,
dmin and dmax move closer together, eventually meeting at a critical point (dcrit,Ecrit) where
the energy barrier vanishes, and the bilayer becomes unstable,

d′
crit =

(
2n+1
n+1

) 1
n

E ′
crit = 2n

√√√√ (n+1)1+ 1
n

(2n+1)2+ 1
n

, (8.18)

where d′ ≡ d
d0

and E ′ ≡
√

ε0α1d0
|V0| E . In Fig. 8.3 (b) we show dmin and dmax as a function of E ′

for several values of n. The solid red line shows Eq. (8.18), which separates dmin and dmax.
Interestingly, the behavior is highly sensitive to the value of n. For larger values of n, which
are predicted from first-principles calculations, dmin does not change by much until E ∼ Ecrit,
where it increases by about 10% before the bilayer becomes unstable. For smaller values of
n, the layers separate more easily because the potential well is shallower, but the breakdown
occurs at smaller field strengths.
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8.1.4 Elastic energy

The elastic energy in Eq. (8.2) is given as a contraction of the strain tensors with the fourth
rank elasticity tensor [223, 323]:

C11 =

[
B+µ 0

0 B−µ

]
, C12 =

[
0 µ
µ 0

]
,

C21 =

[
0 µ
µ 0

]
, C22 =

[
B−µ 0

0 B+µ

] (8.19)

and is given explicitly as

Velastic =
1
2

[
B(ε11 + ε22)

2 +µ
(
(ε11 − ε22)

2 +(ε12 + ε21)
2
)]

=
1
2

[
B(∂xUx +∂yUy)

2+

+ µ
(
(∂xUx −∂yUy)

2 +(∂xUy +∂yUx)
2
)] , (8.20)

where B is the bulk modulus and µ is the shear modulus. The strain tensor in configuration
space is [223]

εi j =
1
2
(
(∂iuk)Ak j +(∂ juk)Aki

)
(8.21)

which allows us to write down the elastic energy in configuration space:

Velastic =
θ 2

2

[
B
(
∂sxusy −∂syusx

)2
+

+ µ
((

∂sxusy +∂syusx

)2
+(∂sxusx −∂sxusx)

2
)] (8.22)



Ferroelectricity in moiré superlattices 129

It is convenient to work in terms of the lattice vectors ar,1 and ar,2. Under this transformation,
the displacement transforms as u → gu and the strain tensor transforms as εi j → g−1

iα g jβ εαβ ,

where g =

[
1 1/2
0

√
3/2

]
. The elastic energy is then

Velastic =
θ 2

2

[
B
(
∂axuay −∂ayuax

)2
+

+ µ
(

4
3
(
∂axuay +∂ayuax

)2
+
(
∂axuax −∂ayuay

)2
)] (8.23)

8.2 First-principles study of TMD bilayers
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Fig. 8.4 Stacking energy as a function of layer separation for bilayer graphene for various VDW-
corrected functionals in SIESTA: revPBE [324] (GGA), DRSLL (DF1) [325, 326], LMKLL (DF2)
[325, 327], KMB [325, 328], C09 [325, 329], BH [325, 330], VV [331].

First-principles DFT calculations were performed using the SIESTA code [272], as described
in the previous chapter. A mesh cutoff of 1200 Ry was used for the real space grid in
all calculations. A Monkhorst-Pack k-point grid [288] of 12× 12× 1 was used for the
initial geometry relaxations, and a mesh of 18×18×1 was used to calculate polarizabilities.
Calculations were converged until the relative changes in the Hamiltonian and density matrix
were both less than 10−6. For the geometry relaxations, the atomic positions were fixed
in the in-plane directions, and the vertical positions and in-plane stresses were allowed
to relax until the force on each atom was less than 0.1 meV/Å. The layer separation d

was taken to be the distance between the carbon atoms in bilayer graphene an the distance
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between the metals in bilayer MoS2 (see Fig 8.1 (e)), and the stacking energy is calculated as
Vstack = Vbilayer −2Vmono, where Vbilayer and Vmono are the total energies of the bilayer and
monolayer systems, respectively.

Because GGA functionals tend to underestimate the cohesive energy of van der Waals
systems, the different VDW-corrected functionals in SIESTA were tested by measuring the
stacking energy of bilayer graphene as a function of layer separation, see Fig. 8.4. The rest
of the calculations were performed using the C09 functional, as it was found to give good
results for both bilayer graphene and MoS2.

8.2.1 Parameterizing the stacking energy

We can parameterize the stacking energy by calculating V0, d0 and the two indices (n,m).
Using suitable values for (n,m), a fit to the stacking energy as a function of layer separation
was obtained using Eq. (8.13), which is shown in Fig. 8.5 for bilayer graphene and MoS2

with 3R stacking. The parameters used to fit Eq. (8.13) to the first-principles calculations are
given in Table 8.1.
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Fig. 8.5 Parameterization of Vstack(d) for bilayer graphene and MoS2 (3R stacking). The points show
results from DFT calculations, and the solid lines show the parameterization using the values in Table
8.1. The dashed lines show the same parameterization, but with the smaller index changed to 2.
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Material a (Å) V0 (eV) d0 (Å) (n,m)

graphene 2.473 -0.163 3.393 (6,8)

MoS2 (3R) 3.164 -0.165 6.716 (8,15)

Table 8.1 Parameterization of Vstack(d) for bilayer graphene and MoS2 from first-principles calcula-
tions.

8.2.2 Parameterizing the electrostatic energy

To parameterize Velec, an electric field was applied in the out-of-plane direction. A dipole
correction [311–314] was used in the vacuum region to remove the fictitious long-range
interactions between periodic images. The resulting dipole moment in the out-of-plane
direction was then measured.

We first performed geometry relaxations of bilayer MoS2 for electric fields of increasing
strength. We found that the layer separation increases only marginally (a very low force
tolerance is required to see this, otherwise the layers do not move) until around E ∼ 2 V/Å,
where the layers begin to separate and the bilayer quickly becomes unstable. In Fig. 8.6 (a)
we plot the potential energy curves for bilayer MoS2 as a function of d for different values of
applied field in order to clarify this peculiar behavior. We see that the electric field lowers
the energy at larger separations, and the bilayer becomes unstable at Ecrit ≈ 2.25 VÅ, similar
to the results obtained in Ref. [237]. By calculating the Mülliken charges on each layer in
Fig. 8.6 (b), we find that there is an interlayer charge transfer when an electric field is applied.
The charge transfer is linear in E above E ≈ 0.27 V/Å, below which no charge transfer is
observed. The charge transfer may be a result of Zener tunneling, facilitated by the electric
field, although a more detailed study is required to verify this.

For each value of d, we calculate the dipole moment as a function of electric field, p(E),
as shown in Fig. 8.7 (a). We see that, when the field is not strong enough for an interlayer
charge transfer to occur, E < 0.27 V/Å, changing the interlayer separation has no effect on
the polarizability α . For E < 0.27 V/Å, a charge transfer occurs and α(d) increases linearly
with d, see Fig. 8.7 (b).
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Fig. 8.6 (a): Vstack(d) for different fixed values of electric field for 3R MoS2. (b): Change in Mülliken
charges ∆Q of each layer as a function of electric field. The vertical dashed line indicates the field
strength beyond which interlayer charge transfer occurs.
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8.2.3 Parameterization in configuration space

Calculations were repeated to parameterize V0, d0, α0 and α1 as a function of s. The high
symmetry stacking configurations AA (metal over metal), AB/BA (metal over chalcogen),
and the saddle point (SP) all lie along the configuration space diagonal. Thus, it was sufficient
to perform a series of calculations along the diagonal, and use a 2D Fourier interpolation
to parameterize the model everywhere in configuration space. One layer was fixed, and the
other layer was translated by s = s(a1 +a2), s ∈ [0,1], and the aforementioned quantities
were measured on a fine grid of values of s. The interpolation was done following similar
approaches in previous studies [220, 221, 214, 223]: each quantity is written as a Fourier
expansion. The results from the first-principles calculations at different values of s are
used to fit the Fourier coefficients, and a smooth interpolation of each quantity is obtained
everywhere in configuration space. The reciprocal lattice vectors G of the same length are
sorted into shells, and the first few shells are sufficient to obtain good parameterization. The
first-principles results and parameterization using the first three shells are shown in Fig. 8.10
for 3R and 2H stacked bilayer MoS2.

After parameterizing the model, we can examine the effect of an electric field on the system
in configuration space. Fig. 8.8 (a) shows the layer separation along the configuration space
diagonal at different electric field values for 3R MoS2. Without lattice relaxation, only the
dielectric response affects the layer separation. We can see that the layer separation increases
non-uniformly in configuration space, leading to a corresponding reduction in the stacking
energy, shown in Fig. 8.8 (b). We plot results only up to E = 1.68 V/Å because that is the
smallest critical field at which dmin → ∞ somewhere in configuration space. We examine
this in more detail in Fig. 8.8 (c) by showing dmin as a function of electric field at the AA,
AB and SP points. We can see that the critical field values for the AB and SP points are
considerably larger. We could reach stronger field strengths by including terms proportional
to ∇d in the elastic energy from von Karman plate theory [220], but this would make the
model considerably more difficult to solve, requiring solutions to fourth order differential
equations. However, without including nonlinear terms in the elastic energy, we are limited
by the smallest critical field, EAA

crit .
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Fig. 8.9 (a): Spontaneous polarization P0 along the configuration space diagonal for 3R MoS2. (b):
Stacking energy along the configuration space diagonal at different field strengths, including only the
linear electrostatic term.

In Fig. 8.9 (a) we show the spontaneous polarization P0(s) along the diagonal in configuration
space. The coupling between the polarization and the field leads to an even splitting of the
AB and BA wells, increasing one and decreasing the other, which is shown in Fig. 8.9 (b).

In Fig. 8.10 we summarize the parameterizations of 3R and 2H stacked bilayer MoS2 in
configuration space. The hollow points show results from first-principles calculations and
the solid lines are the Fourier interpolations. The stacking energy and equilibrium layer
separation both vary by about 1 Å / 0.1 eV, respectively, which is expected. We also found
that both polarizability parameters vary significantly throughout configuration space. Having
parameterized Eq. (8.2), we can now proceed to study the effect of an applied field on lattice
relaxation.
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8.3 Lattice Relaxation

The lattice relaxations at finite electric fields were performed in configuration space by
including an additional in-plane displacement u(s) in the stacking and electrostatic energies,
and minimizing the total energy numerically. The two terms in Velec were included separately
in order to illustrate their individual effects. The quadratic term arising from the dielectric
response of the bilayer to the field does not break any symmetries. Thus, we can study its
effect on the domain structures by mapping the moiré superlattice to a 1D Frenkel-Kontorova
(FK) model [332, 333, 224]. We discuss this in detail in the next section. The linear term
describing the coupling to the spontaneous local polarization breaks the C6 rotation symmetry
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of the 3R moiré superlattice, leading to a breaking of the degeneracy of the AB and BA
domains, which cannot be captured by a 1D FK model.

Eq. (8.1) can be minimized by using variational methods and solving the resulting differential
equations. This can be relatively demanding in 2D. Instead, we minimized the total energy
using numerical optimization methods. Eq. (8.1) is a functional of the in-plane displacement
u in configuration space. If we perform a plane-wave expansion, u(s) = ∑G uGeiG·s, where G
are the reciprocal lattice vectors of the commensurate bilayer, then the total energy becomes
a function of {uG}: Vtot [u]→Vtot ({uG}), and can be minimized numerically with respect to
the coefficients: ∇uGVtot = 0. The gradient with respect to the Fourier components is

∇uGVtot =
1
As

∫
As

δVtot

δu
∇uGuds , (8.24)

where each component of ∇uGu picks out the basis function for the Fourier component uG.
If we also write the functional derivative as an expansion over the reciprocal lattice vectors,

δVtot

δu
≡ L= ∑

G
LGeiG·s , (8.25)

then each component of the right-hand side of Eq. (8.24) projects out the Fourier coefficient
corresponding to the vector G:

∇uGV =


LG1

...
LGN

 , (8.26)

which must be truncated at some suitable choice of N. For a given {uG}, we can calculate
{LG} numerically, and thus we can solve ∇uGVtot = 0 using root finding methods. Although
we have an analytic expression for the gradient, we cannot obtain an analytic expression for
the Hessian, so we cannot use Newton’s method. Instead, we must resort to a quasi-Newton
method, such as the limited memory BFGS algorithm (L-BFGS) [334]. This was done in
JULIA, using the OPTIM package. The total energy was optimized until the gradient was
below 1×10−5 eV.
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We can take advantage of the C3 symmetry of our model to greatly reduce the number of
independent G vectors:

u(s) =
3

∑
n=1

∑
G
Cn−1

3
[
(uG +u−G)cos

(
Cn−1

3 G · s
)

+i(uG −u−G)sin
(
Cn−1

3 G · s
)]
.

(8.27)

When there is a C6 symmetry, i.e. for 3R MoS2 at zero field, we have u−G =−uG, and the
cosine terms vanish. The optimization was done using the independent G in the first five
shells (10 vectors) for θ ≥ 0.5◦, six shells (21 vectors) for 0.5◦ > θ ≥ 0.3◦ and and seven
shells (28 vectors) for 0.3◦ > θ ≥ 0.1◦.
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Fig. 8.11 (a)-(d): Lattice relaxation in configuration space for 3R MoS2 including the linear elec-
trostatic term. The top panels show the stacking energy before lattice relaxation at electric field
strengths of (a): 0 V/Å and (b): 2 V/Å. (c) and (d) show the corresponding stacking energies after
lattice relaxation at a twist angle of θ = 0.1◦. The AA regions (yellow) shrink and the AB/BA regions
(purple) expand. When an electric field is applied, the AB and BA regions relax unevenly, one
increasing in area and the other decreasing. (e): average polarization as a function of electric field
for several twist angles. (f): Susceptibility of the moiré superlattice χM as a function of twist angle,
obtained from the slopes from (e) about E = 0.
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The 2D relaxation including only the coupling between the electric field and spontaneous
polarization was performed for a range of twist angles 0.1◦ ≤ θ ≤ 1.0◦ and field strengths
0 ≤ E ≤ 2 V/Å, and the results are summarized in Fig. 8.11. In Figs 8.11 (a) and (b) we
show the stacking energy in 3R MoS2 in configuration space obtained from first-principles
calculations, at electric field strengths of 0 and 2 V/Å, respectively. The electric field
increases the depth of the well at AB and decreases the depth of the well in BA by the same
amount, breaking the C6 rotation symmetry. The panels below, Figs 8.11 (c) and (d), show
the corresponding stacking energies after lattice relaxation for a twist angle of θ = 0.1◦. At
zero field, the relaxation reduces the area of the AA regions and increases the area of the
AB/BA regions, leading to a triangular domain structure with sharp domain walls. When an
electric field is applied, the AB and BA regions relax unevenly, leading to larger AB regions
and smaller BA regions reducing the rotation symmetry to C3. When the AB and BA domains
are no longer equal in area, the polarization no longer averages to zero. In Fig. 8.11 (e) we
show the average spontaneous polarization ⟨P0(s)⟩ in configuration space as a function of
field for different twist angles. We can see that the response to the field is very sensitive to
the twist angle. In Fig. 8.11 (f) we show the susceptibility of the moiré superlattice χM as a
function of twist angle, which was obtained by taking the slope of the polarization about zero
field. We can see that the susceptibility increases dramatically as the twist angle decreases.
In Figs. 8.12–8.15 we show the stacking energy in configuration space after lattice relaxation
for 0.1◦ ≤ θ ≤ 0.4◦ and 0 V/Å ≤ E ≤ 2 V/Å.
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Fig. 8.12 Lattice relaxation for 3R stacked bilayer MoS2 at a twist angle of θ = 0.4◦ for several
electric field values.
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Fig. 8.13 Lattice relaxation for 3R stacked bilayer MoS2 at a twist angle of θ = 0.3◦ for several
electric field values.
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Fig. 8.14 Lattice relaxation for 3R stacked bilayer MoS2 at a twist angle of θ = 0.2◦ for several
electric field values.
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Fig. 8.15 Lattice relaxation for 3R stacked bilayer MoS2 at a twist angle of θ = 0.1◦ for several
electric field values.
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8.4 Frenkel-Kontorova model
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Fig. 8.16 Sketch of a 1D FK model. The layers are represented by chains of atoms A and B, connected
by springs. The supercell period of the chains LM is shown along the x-axis. The lattice mismatch
between the chains plays the role of the twist angle.

The Frenkel-Kontorova (FK) model was first introduced in the 1930s and is widely used in
condensed matter physics [335, 336]. It is a discrete model where a chain of atoms is subject
to a rigid periodic potential, from a substrate for example [335, 337–339]. The FK model
has been used as a 1D representation of twisted bilayer systems [332, 221, 320], replacing
the rigid substrate with a second chain of atoms which can also deform, see Fig. 8.16, and
has successfully been used to describe commensurate-incommensurate phase transitions
[332, 333], lattice relaxation and domain structures [221, 223, 225].

Because the dielectric response does not break any symmetries, we can study its effect on
the domain walls using a 1D FK model. For 3R MoS2, the domain walls are along the path
AB → SP → BA, so we use those points to parameterize the stacking energy [332, 333, 224]
in a one dimensional version of configuration space,

VFK
0 (s) = V+

0 +V−
0 cos(2πs)

V±
0 =

1
2
(
V0
(1

2

)
±V0

(1
3

)) , (8.28)

described by a single variable s, the relative displacement between the atoms in the two
chains, and similarly for d0, α0 and α1.
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Fig. 8.17 Solutions to Eq. (8.30) at zero field for various twist angles: (a): total displacement in
configuration space s+u(s), (b): change in displacement ∂su(s), equivalent to the strain tensor in 1D,
(c): stacking energy as a function of total displacement Vstack(s+ u(s)) and (d): equilibrium layer
separation as a function of total displacement dmin(s+u(s)).

The total energy in configuration space is

V FK
tot =

1
As

∫
As

[
1
2

Bθ 2 (∂su)
2 +VFK

stack(s+u(s),d)

+VFK
elec(s+u(s),d,E)

]
ds

, (8.29)

where θ is the lattice mismatch, B is the bulk modulus [223] and Vstack and Velec include
the displacement u(s) to allow for relaxations. Eq. 8.29 can be also be minimized using
optimization techniques, but in 1D the differential equations are easy enough to solve.
Minimizing with respect to both u and d, we obtain
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Fig. 8.18 Lattice relaxation from the 1D FK model, including the quadratic electrostatic term. (a):
total displacement in configuration space s+u(s), (b): gradient of displacement ∂su(s), (c): stacking
energy as a function of total displacement Vstack(s+u(s)) and (d): equilibrium layer separation as a
function of total displacement dmin(s+u(s)).

∂u

[
VFK

stack(s+u(s),d)+VFK
elec(s+u(s),d,E)

]
−Bθ 2∂ 2

s u(s) = 0

∂d

[
VFK

stack(s+u(s),d)+V FK
elec(s+u(s),d,E)

]
= 0

. (8.30)

The second equation can be solved independently to obtain dmin(s,E). This is inserted into
the first equation, which can be solved numerically.

In Fig. (8.17) we show results for MoS2 for various values of θ at zero field. For larger θ ,
the atoms do not move much from their initial stacking configuration. As θ decreases, the
elastic energy is reduced, and the atoms are able to relax more. We see from Fig. (8.17) (a),
the total displacement s+u(s), that the atoms move to maximize the area around s = 1

2 , the
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stacking configuration with lowest energy. Figs. (8.17) (c) and (d) show the effect of the
lattice relaxation on the stacking energy and layer separation. We can see that a domain
structure forms, with wide AB/BA regions and narrow SP regions. The two are separated by
a domain wall, the width of which is proportional to θ . Fig. (8.17) (b) shows the change in
displacement ∂su(s), which is equivalent to the strain tensor in 1D, from which we see that
there is a large strain gradient across the domain wall.

In Fig. 8.18 we show results for finite electric fields at θ = 0.4◦. Fig. 8.18 (a) shows that, as
the field strength increases, the atoms move back towards their initial stacking configuration.
This can be understood from Figs. 8.18 (c) and (d): when a field is applied, the equilibrium
separation increases everywhere in configuration space, which reduces the stacking energy.
This reduces the atoms’ ability to relax, leading to a softer domain structure.

At s = 0, we have the analytic approximation [332]:

u(s) =
2
π

tan−1

e
2π

√
V−

0 − 1
2 ε0E2α−

0
Bθ2 s

− 1
2
, (8.31)

which is shown alongside the numerical solutions to Eq. (8.30) in Fig. 8.19 (a). We can
approximate the width of the domain wall as

w ∼ 1
2

√
Bθ 2(

V−
0 − 1

2ε0E2α−
0
) , (8.32)

illustrating the dependence on both twist angle and electric field. In Fig. 8.19 (b) we plot

w(E) for several values of θ . w diverges at a critical field Ew
crit =

√
2V−

0
ε0α−

0
which is independent

of the lattice mismatch. For MoS2, we have Ew
crit ≈ 2.47 V/Å which is larger than the largest

critical field EAB
crit = 2.37 V/Å.
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Chapter 9

Conclusions and outlook

9.1 Polar-nonpolar perovskite interfaces

In Chapter 3, we introduced a phenomenological theory which considers the influence of
homogeneous tilts on the appearance of carriers at polar-nonpolar perovskite interfaces.
We show that, upon coupling, four new types of transitions of tilts and carriers with film
thickness or applied field are possible, depending only on the energetics of the tilts, the polar
discontinuity, and the biquadratic coupling between the tilts and the polar mode. These
include the simultaneous appearance of tilts and carriers at a reduced thickness compared
to the uncoupled theory, which can be either continuous or discontinuous, and separate
transitions, with carriers appearing first and then tilts, the second transition being either
continuous or discontinuous.

First-principles calculations of bulk LAO were performed to predict the character of the
transitions at the LAO/STO interface. For various exchange-correlation functionals, all of the
calculations predicted that at zero temperature, LAO/STO lies in region II of Fig. 3.4, i.e. a
single continuous transition of both tilts and carriers. We also investigated the possibility
of tuning the character of the transition via biaxial strain by changing the in-plane lattice
constant by up to ±1% and repeating the calculations. We found that the position of the point
in Fig. 3.4 can be changed by adjusting the strain, but not by enough to change the character
of the transitions. However, in general, if a system were closer to a boundary between regions,
it may be possible to change the regions using biaxial strain. Additionally, if compressive
strain is applied to aLAO, the tilt pattern changes to a0a0c− [277], which would change the
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competition with the polar mode. This could be achieved by using a nonpolar perovskite
with a smaller lattice constant than LAO as the substrate material.

In addition to changing the strain and the tilt pattern as mentioned above, changing the
materials which form the polar-nonpolar interface can also change the chemistry at the
interface, and hence the polar discontinuity. Different interfaces have been investigated
experimentally [78, 340–342], computationally [343–345], and high throughput searches
for new interfaces have been done [346]. Carrier transitions have also been observed at
spinel-perovskite interfaces [347–349]. Thus, it may be possible to observe a wide variety
of behavior in the carrier transitions at different polar-nonpolar perovskite interfaces for
different combinations of materials. More specifically, by estimating where different systems
would lie on Fig. 3.4, it may be possible to establish an atlas of transitions across different
possible polar-nonpolar perovskite interfaces.

We also showed how the appearance of carriers can be tuned via temperature through the
temperature dependence of the tilts. At a finite temperature, the curvature of the tilt double
well is X−1

φ (T ) = X−1
φ

(
1− T

TC

)
, so increasing the temperature would move any point on

the diagram in Fig. 3.4 to the left. We would expect the dependence of the biquadratic
coupling term A(T ) on temperature to be similar but weaker. Thus, it may be possible to
move a system from one point in the diagram to another if the initial point is sufficiently
close to a boundary. In Ref. [278], when grown on a substrate of cubic STO, LAO was found
to undergo a transition from untilted to tilted below 695◦C for a thickness of 24 unit cells
and 540◦C for a thickness of 9 unit cells, where both samples were under the same strain
conditions. Because both films were supercritical there was no carrier transition associated
with the tilt transitions, but their observations are in agreement with our prediction of a
second transition temperature, T ′′

C , which is sensitive to the ratio d
dc

. Assuming that the films
were sufficiently thick so that the effect of gradients are negligible, this may provide evidence
for the additional transition temperature arising from the coupling between tilts and carriers.

In Chapter 4 we investigated the influence of the inhomogeneity of the tilts on the coupling
between tilts and carriers. Upon coupling to homogeneous tilts, the diagram in Fig. 3.4
becomes five dimensional, with additional axes for the correlation length of the tilts in
the polar film, and extrapolation lengths for the interface and the free surface of the film.
Practically, it would be very demanding to explore this five dimensional space numerically,
and to our knowledge, it can’t be done analytically. However, since the biqaudratic coupling
between tilts and carriers only depends on the mean of the tilt squared throughout the film, we
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can examine the influence of inhomogeneous tilts by examining the effect of the correlation
length on transitions in each region in Fig. 3.4, with the rest of the parameters fixed. We
found that, for the regions corresponding to the separate appearances of tilts and then carriers,
the order of the transitions is unaffected by the correlation length, except for the value of the
second transition shifting slightly. For the regions corresponding to simultaneous transitions,
we found that a finite correlation length can actually change the character of the transition,
and can lead to two new types of transitions which are not possible for homogeneous tilts,
where the tilts appear before carriers, either continuously or discontinuously.

We also considered the influence of direct coupling between oxygen vacancies and tilts at the
surface of the polar thin film. We found that, if the coupling between oxygen vacancies and
tilts at the surface is cooperative, then the appearance of carriers will always result in a small
tilt at the surface of the thin film, which decays into the film and possibly the substrate. If
the coupling is strong enough, the appearance of both carriers and the surface tilts becomes
completely discontinuous. We found that the inclusion of the direct coupling leads to very
different results in thinner films, but is negligible in thicker films. For a 3 unit cell thick
film of LAO, the tilted phase is unstable when only considering the biquadratic coupling of
the tilts and the polar mode. However, when the direct coupling between oxygen vacancies
and tilts at the surface was included, we found that a small tilt appeared at the surface,
which decayed towards the interface. This rationalizes results obtained from first-principles
calculations of the LAO/STO interface, and experimental measurements of tilts in the same
system [89].

Due to the large number of system parameters required, many of which cannot be directly
measured, it remains difficult to conclusively determine the order of the carrier transition at
polar-nonpolar perovskite interfaces. However, we have shown that, even using a phenomeno-
logical description, an extremely rich variety of behavior is possible for the appearance of
carriers at polar-nonpolar perovskite interfaces. This includes first-order transitions, which
have been observed experimentally [22], and have been claimed to occur in other theoretical
studies [79], but without a detailed explanation.

One important caveat with this work is the distinction between the onset of carriers and the
onset of conduction. In the original discovery, the electron-doped interface was found to
be conducting while the hole-doped interface was found to be insulating [22]. It may be
possible that carriers can appear but are not conducting. This is supported by experimental
evidence: a density of trapped Ti 3d-like states has been observed in LAO/STO at just 2 unit
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cells of LAO, i.e. before the observation of the 2DEG [296–299]. For carriers generated via
oxygen vacancies, the charge carriers are trapped below the surface defects which generated
them, and thus will be localized in the plane of the interface [88]. As the thickness of the
film increases, more surface defects will be created and the associated carriers will become
more delocalized, and conductivity will occur at a thickness later than the thickness at which
carriers first appear. We have presented a phenomenological theory which describes the
appearance of carriers, using the carrier concentration σ as the order parameter. Without a
microscopic model to describe the delocalization of the carriers at the interface, it is difficult
to make any conclusions about the difference between the onset of carriers and conductivity.
Qualitatively however, if the carriers become delocalized in the plane of the interface at a
thickness which is less than the smaller of dc and dφ in our model, then the transitions which
occur at dc and dφ would truly be insulator–metal transitions, since the carriers would be
conducting as soon as they appear.

9.2 Ferroelectric Thin Films and Superlattices

9.2.1 Electrostatics

In Chapter 5 we extended the continuum electrostatic description of an isolated ferroelectric
thin film within Kittel’s model to thin films surrounded by dielectric media and FE/PE
superlattices. While some of the generalizations have previously appeared in the literature,
a detailed comparison had not been done before. In doing so, we have understood how the
surrounding dielectric materials influence the domain structure in the ferroelectric materials,
both in the Kittel limit and beyond.

In the Kittel limit, the square root behavior is only affected in scale, the domain width
increasing with dielectric permittivity, κs. This provides a useful correction to measurements
of domain width with film thickness, as Kittel’s law for an isolated film typically underesti-
mates domain widths. Beyond Kittel’s regime, we found that increasing κs decreases dm, the
thickness for which the domain width is minimal.

For FE/PE superlattices, we found that κs can either decrease or increase dm, depending
on the ratio of thicknesses, α = dPE/dFE. We relate this behavior to the different coupling
regimes between the ferroelectric layers, as discussed in Ref. [104] for example. When α is
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large, the ferroelectric layers are weakly coupled, and the minimum thickness decreases with
κs. When α is small, the ferroelectric layers are strongly coupled, and dm increases with
κs. Remarkably, when α = αc ≡ χ =

√
κa/κc, the dielectric anisotropy of the ferroelectric

layers, dm/lk is unaffected by κs. In reality dm does change, since the Kittel length depends
on κs, but the scaling is different above/below αc. The critical ratio αc serves as a clear
boundary between the strong and weak coupling regimes from an electrostatic viewpoint.

One important approximation in the Kittel-like model used is the description of the polariza-
tion in the ferroelectric material, assuming a dielectric linear-response modification of the
spontaneous polarization Ps (or using Eq. (5.3) instead of Eq. (5.2) as the free energy term
related to the polarization). Within this approximation, the system approaches a monodomain
phase in a thin-limit regime in which the more complete treatment may predict P = 0. We
investigate this possibility by considering a theory with Eq. (5.2) for the polarization, and
Eq. (5.20) as the model electrostatic energy. We find that the polarization is zero for small
thicknesses until

dc = 27(κcβ )2lk , (9.1)

at which the polarization jumps to Ps/
√

3 and quickly saturates to Ps [133]. Or, coming
from d > dc, the polarization decreases and the domain width increases, until dc, where the
ferroelectric material becomes paraelectric.

If dc < d∞ the theory is unaffected, and the polydomain to monodomain transition would
occur before the ferroelectric to paraelectric transition. Otherwise, the ferroelectric film
becomes paraelectric without a polydomain to monodomain transition. For an isolated thin
film of PTO, dm ∼ 0.2lk and dc ∼ 0.8lk, meaning a ferroelectric to paraelectric transition takes
place before the polydomain to monodomain transition. However, dc is also very sensitive
to the environment of the film. For a sandwich system with a thin film of PTO between
two regions of STO, again dc ≫ dm. For strongly-coupled FE/PE superlattices (small α),
however, dm increases with κs, and we would have dm ≫ dc, and therefore the thin-limit
behavior presented above should be observable before the films becoming paraelectric.

The model described in Chapter 5 makes use of a number of significant approximations.
Domains are typically not straight or of infinite length, and the domain structure may not
be an equilibrium one (A ̸= 0,±1). In addition, the polarization gradients expected close
to surface, interfaces and domain walls are better described within a Ginzburg-Landau
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theory, which will give significantly different predictions for ultrathin films, where complex
structures such as polar vortices and skyrmions have been observed [350, 351].

However, the comparative study gives the expected behavior of ferroelectric/dielectric het-
erostructures within the simplest Kittel continuum model (continuum electrostatics for a
given spontaneous polarization and dielectric response, plus ideal domain wall formation).
While the domain width outside of Kittel regime may not be a realistic description for some
materials, the values of dm predicted by this theory provide an estimate for when Kittel’s law
breaks down. In particular, we have seen how the break down of Kittel’s law can be changed
by the material parameters of the ferroelectric, as well as the surrounding environment. The
described behaviors are already quite rich, and represent a paradigmatic reference as basis for
the understanding of more complex effects. In particular for superlattices, the strong to weak
coupling regime separation based on this simplest model should be a useful guiding concept.

9.2.2 2DEG formation in polydomain ferroelectrics

In Chapter 6, we introduced a model which allows for 2DEG formation in the presence of
ferroelectric domains, building on the previous competition-based study [133]. We found that,
after allowing for the simultaneous screening of the polar discontinuity via both carriers and
domains, the discontinuous transition between polydomain and monodomain (sustained by a
2DEG) phases was replaced by an intermediate region in which carriers and domains coexist.
The onset and range of the coexistence region is very sensitive to the material parameters,
and requires a finite density of states. At smaller thicknesses, there are no carriers, and the
domain wall width follows Kittel’s law. At a first critical thickness d1, the carriers switch on
continuously causing the domain width to deviate from Kittel’s law and grow more rapidly
with thickness. At a second critical thickness d2, the carriers saturate, having fully screened
the polar discontinuity, and the domain width diverges.

Using the theoretical parameters for PTO and STO, we were able to estimate the values of d1

and d2 for carriers generated via oxygen vacancies and electronic reconstruction. We saw
that for carriers generated via oxygen vacancies, d1 was of the order of a few nanometers,
whereas it was of the order of hundreds of nanometers for carriers generated via electronic
reconstruction. For both scenarios, d2 was of the order of hundreds of nanometers, indicating
that it is more likely to observe carriers in coexistence with ferroelectric domains, even in
thicker films. This is a very different to the result obtained when considering the polydomain
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and monodomain phases in isolation, where it was predicted that a discontinuous transition
to a monodomain phase sustained by a 2DEG would occur at only a few nanometers [133].

Using the generalized electrostatics detailed in Chapter 5 we showed that the surrounding
environment has a large influence not only on the domain structure, but also on the coexistence
with the 2DEG, through its modification of the depolarizing field. The presence of a dielectric
leads to additional screening of the depolarizing field, partially reducing the need for carriers
and domains. As a result the domain width increases, as was seen in Chapter 5, but the onset
of carriers with thickness also increased.

The aim of the work presented in this chapter was to understand the physics of coexistence
between domains and carriers in ferroelectric systems, motivated by experimental obser-
vations [134–136]. We propose that our model could be used to identify 2DEG formation
in experiments from measurements of domain width with ferroelectric film thickness: if a
deviation from the Kittel law is observed, it may indicate that carriers have formed at the
interface and are contributing to the screening of the depolarizing field. The Kittel length and
the onset of coexistence, d1, could be estimated from the square root curve and the thickness
at which deviation from the square root curve occurs. By measuring these quantities, it may
be possible to infer the mechanism by which a 2DEG has formed, i.e via oxygen vacancies
or electronic reconstruction. The measurements of d1 in Table 6.1 indicate that for carriers to
form in relatively thin films, a few nanometers in thickness, they would need to be generated
by oxygen vacancies.

9.3 Polarization in 2D materials

9.3.1 Flexoelectric polarization of single-walled nanotubes

In Chapter 7 we used first-principles DFT calculations to illustrate that a radial polarization
is present in the walls of all NTs, even when they are only a single atom thick. We saw
that the electronic polarization diverges in CNTs below C(n,m)/a ∼ 10 by calculating the
drop in the electrostatic potential across the walls of the NTs. A similar effect was observed
in TMD NTs, however they displayed a finite polarization even when C(n,m)/a > 10. We
found that polarization of the TMD NTs reaches a maximum around C(n,m)/a ∼ 15 and
decreases below before eventually diverging like the polarization of the CNTs. This behavior
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was observed in all TMD NTs and is interesting and unexpected, but its origin is unclear.
Plots of the radial strain on the bonds in the TMD NTs did not reveal an explanation for
this maximum, but did reveal that the polarization in the walls is mainly caused by a larger
compression on the outer bonds than the inner bonds.

The aim of the work presented in this chapter was not to provide a theory of flexoelectricity in
NTs, but it does show that the flexoelectric response of the walls of NTs is interesting. In fact,
it is debatable whether or not the polarization observed here should be called flexoelectric
polarization. Typically one thinks of flexoelectric polarization as the response to an applied
strain gradient such as bending, whereas the strain gradient here is intrinsic to the geometry
of the NTs, and there is no reference state for a given NT with zero strain gradient. One
could think of the order parameter that controls the strain as the inverse radius, 1/R, such
that the reference state is a flat 2D monolayer with PR = 0, obtained when R → ∞, i.e. when
1/R → 0. However, each radius corresponds to a different NT. Thus, the polarization is not a
parameter that is directly tunable in experiment, since it is fixed for a given nanotube.

In any case, the behavior of the polarization of the walls with the size of the NTs is unexpected.
The total dipole moment of the NTs is still zero, but the local polarization is non-zero.
Because of this, there will be no induced dipole-dipole interactions between NTs, which
is known from theory and other first-principles calculations. However, in situations where
local polarization can have an effect, such as the interactions between NTs and liquids, this
may be significant. It has already been seen that liquid crystals can have their flexoelectric
coefficients enhanced via doping with CNTs [352]. Thus, this polarization could influence
the behavior of water and other liquids or biomolecules inside or in the vicinity of the NTs.
Knowledge of this effect and its influence on liquids and biomaterials could lead to advances
in technology on the nanoscale, such as nanofiltration or screening of impurities in liquids,
for example [353, 354].

9.3.2 Ferroelectricity in twisted bilayer systems

In Chapter 8 we introduced a model which illustrates the effect of an applied electric field on
lattice relaxation in moiré superlattices. The model contains two electrostatic contributions.
The first is a linear coupling between the field and the local spontaneous polarization in
bilayers without centrosymmetry, which breaks the degeneracy between the AB and BA
stacking domains. Under an electric field, the AB and BA regions will relax unevenly
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with one growing and the other shrinking with respect to the relaxed structure at zero field.
This leads to a nonzero average out-of-plane polarization in the superlattice. The second
contribution is the dielectric response to the field, which occurs in all bilayers. This term
leads to a nonuniform increase the layer separation, which reduces stacking energy, leading
to softer domains structures under lattice relaxation.

Finally, we provide some thoughts on the recent experimental observations of ferroelectricity
in the context of our theoretical model. For a system to be considered ferroelectric, it must
(i): exhibit a spontaneous polarization at zero field which (ii): must be switchable with an
electric field. The stacking domains indeed have a local spontaneous polarization at zero field,
and while the average polarization of a domain can change via lattice relaxation under an
electric field, the sign of the polarization in each domain cannot be switched. Therefore, the
stacking domains in moiré superlattices are in general not ferroelectric. Conversely, the moiré
superlattice itself exhibits an average polarization, the direction of which can be changed by
the field, but has zero average polarization at zero field. Therefore, under ideal conditions,
moiré superlattices are also not ferroelectric. This may not be true in experimental situations,
where samples are not ideal, and defects, mislocations or strain induced by the finite size
of samples may lead to uneven domains at zero field. Also, the direct couplings between
strain and polarization, piezoelectricity and flexoelectricity, have not been considered, which
may make it energetically favorable for the domains to relax unevenly and the superlattice to
have a nonzero average polarization at zero field. We leave the consideration of these effects
for future work. To summarize, for an ideal system, when considering the spontaneous
local polarization and lattice relaxation under an electric field, neither the moiré superlattice

nor the stacking domains are ferroelectric, since the former does not have a spontaneous
polarization at zero field and the latter does not have a switchable polarization.

There have also been reports of a switching of the polarization in a single stacking domain by
a sliding of the atoms by half a monolayer lattice constant when a local field was applied to
the domain using a biased atomic force microscopy (AFM) tip [217]. This sliding changed the
stacking configuration from AB ↔ BA, resulting in a first order switching of the polarization.
This is a separate mechanism to the one mediated by lattice relaxation, which results in a
second order change in the polarization. We can understand this sliding in the context of
our model. When a field is applied to the domain, the linear coupling between the field and
polarization will lower the energy if the two are aligned and result in a large energy penalty
if they are anti-aligned. In either case, the dielectric response will reduce the stacking energy
by the same amount, making it easier for one layer to slide with respect to the other. When
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the field and polarization are anti-aligned, the energy can be lowered considerably via a
sliding by half a monolayer unit cell, flipping the polarization so that it becomes aligned with
the field. However, the field is applied to the domain locally via an AFM tip, and it is not
clear whether the sliding occurs locally under the tip, or throughout the entire domain. It is
also not clear whether or not the domain will remain flipped once the field is removed, or
relax back to its original orientation. Thus, it is not clear whether or not this mechanism for a
first order switching of polarization in a stacking domain is truly ferroelectric either.

The model introduced in this chapter illustrates, clearly and intuitively, the effect an electric
field can have on lattice relaxation in moiré superlattices. We propose an electric field
as a third quantity with which the domain structures in moiré superlattices can be tuned.
Unlike the twist angle and lattice mismatch which are fixed for a given sample, an electric
field can be applied dynamically to tune a sample in-situ. Thus, it may serve as a more
practical approach to achieve control in moiré superlattices. We have also discussed how
our theoretical model can be used to understand the recent observations of ferroelectricity
in moiré superlattices. We believe it is inaccurate to consider moiré materials to be truly
ferroelectric via lattice relaxation or sliding under an electric field. However, this motivates
further study into polar phenomena in moiré materials.
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