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ABSTRACT

We study the inverse problem for persistent homology: For a fixed simplicial complex K, we analyse
the fiber of the continuous map PH on the space of filters that assigns to a filter f : K Ñ R the total
barcode of its associated sublevel set filtration of K. We find that PH is best understood as a map
of stratified spaces. Over each stratum of the barcode space the map PH restricts to a (trivial) fiber
bundle with fiber a polyhedral complex. Amongst other we derive a bound for the dimension of the
fiber depending on the number of distinct endpoints in the barcode. Furthermore, taking the inverse
image PH´1 can be extended to a monodromy functor on the (entrance path) category of barcodes.
We demonstrate our theory on the example of the simplicial triangle giving a complete description of
all fibers and monodromy maps. This example is rich enough to have a Möbius band as one of its
fibers.
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Introduction

Topological Data Analysis (TDA) is a rapidly expanding, new area [7, 17, 30] which has been applied to a large variety
of data science problems. Its best-known tool, persistent homology, provides a non-linear dimension reduction method
which is computable [29, 40] and robust with respect to small perturbations of the underlying data [10]. A growing
number of vectorisation methods [1, 6] enable statistical studies of the outcome of persistent homology and combining
it with machine learning methods.

It is thus natural to ask how much information can be recovered from persistent homology: Given a particular instance
of a persistence module, what can we say about the data set it has been derived from? Any qualitative or quantitative
understanding of the information loss would be of great value for future applications, and several approaches to
variations of this question have recently appeared [12, 13, 15, 36]. We refer to [32] for a survey of inverse problems for
persistent homology.

In this paper we analyse this foundational problem in a general form: For a fixed simplicial complex K, we study the
persistent homology map PH (and its inverse) from the real-valued functions on K to the space of barcodes. We are
naturally led to study PH as a map of stratified spaces and to extend PH´1 to a functor defined on a natural category of
barcodes. This rich structure we expect may also be of interest outside the data science community. Indeed, persistent
homology has attracted much recent interest from other branches of mathematics, in particular symplectic topology,
stemming from its connection to Morse theory and its close cousin Floer homology [2, 33, 37], and may yet find uses in
other areas, see for example [25].

Content and results

Given a fixed finite simplical complex K, let FiltK be the space of its filters. By definition these are functions f : K Ñ

I “ r0, 1s Ă R that are monotonic with respect to face inclusions,

σ Ď σ1 ñ fpσq ď fpσ1q for all σ, σ1 P K.

Thus each sublevel set f´1pp´8, tsq defines a simplicial subcomplex of K and every f gives rise to a filtration.
Persistent homology then defines a continuous map

PH : FiltK ÝÑ Bar8,

where Bar8 is the space of total barcodes and PH assigns the union of barcodes in all homological degrees. As K is
fixed we restrict our attention to the image

BarK :“ PHpFiltKq.

In this notation, to understand the information loss of persistent homology is to understand the fiber PH´1
pDq at a

barcode D P BarK . This naturally leads us to a closer analysis of the spaces FiltK and BarK themselves. We will
endow them with monoid actions and stratifications, and show that PH is compatible with these extra structures.

Let EndpI,ďq be the monoid of order preserving continuous maps of the unit interval I that fix the endpoints, and
let AutpI,ďq be its subgroup of homeomorphisms. The monoid EndpI,ďq and hence AutpI,ďq act continuously
on FiltK by post-composition and on BarK by moving the endpoints of the bars. As the endpoints of the bars in PHpfq
are a subset of the values of f , the map PH is readily seen to be equivariant with respect to these actions (Lemma 1.5).

For our further analysis it is important that both FiltK and BarK have a natural stratification where each i-dimensional
stratum is identified with an open simplex

∆̊i “
 

px1, ¨ ¨ ¨ , xiq | 0 ă x1 ă ¨ ¨ ¨ ă xi ă 1
(

such that the coordinates are given by the distinct values in the image of f , and respectively, the distinct endpoints of the
bars in D. We identify each such stratum as an AutpI,ďq-orbit, and thus PH, by its equivariance, is a strongly stratified
map taking a stratum of filters surjectively onto a stratum of barcodes (Proposition 1.15). In particular, the inverse
image PH´1

pBq of any barcode stratum B is a finite union of filter strata. We then show that PH over a stratum B is a
fiber bundle with fiber a polyhedral complex (Theorem 2.2), and derive some general properties of this fiber. Thus,
for example, we show that the dimension of the fiber over a barcode D is bounded by half the difference between the
number 7K of simplices and the number 7D of endpoints in the barcode (Proposition 2.5):

dim PH´1
pDq ď

7K ´ 7D

2
.

Unlike FiltK , BarK is not (the realisation of) a simplical complex: On the boundary of a barcode stratum, viewed as an
open simplex, the 1-dimensional subspaces corresponding to bars pxj , xjq of length zero are collapsed. Nevertheless,
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we are able to describe the attaching (or monodromy) maps of the fiber over B to the fiber of a lower dimensional
stratum B1 Ď B̄ in its closure. These attaching maps are homotopic to maps of polyhedra but are not in general
homotopic to each other (Proposition 3.12). We find that this structure is most naturally described in terms of the
category BarK: Its objects are the barcodes in BarK and its space of morphisms from D to D1 is the subspace of
maps φ P EndpI,ďq that send the endpoints of the bars in D surjectively to those of D1. Each of these morphism
spaces is discrete up to homotopy (Theorem 3.2). Taking the inverse image then extends to a functor from BarK to the
category of topological spaces and continuous maps

PH´1 : BarK ÝÑ Top

taking a morphism φ P BarKpD,D
1q to the continuous map Lφ : f P PH´1

pDq ÞÝÑ φ ˝ f P PH´1
pD1q, which is

indeed well-defined by the equivariance of PH under the action of EndpI,ďq.

The category BarK, which we were naturally led to consider, is closely related to the entrance path category EntpBarKq
of the space BarK which we prove to be homotopically stratified (Proposition 4.4) in the sense of Quinn [34]. Indeed,
we show that descending to the homotopy category, i.e. replacing morphism spaces with the set of their connected
components, induces an isomorphism of categories (Proposition 4.7)

hBarK » EntpBarKq.

Recall that the entrance path category is the analogue for stratified spaces of the fundamental groupoid, and that functors
from the entrance category to the category of sets are in correspondence with branched covers. Taking this analogy one
step further by replacing the category of sets with the homotopy category of spaces hTop, we may most naturally think
of PH as a stratified fiber bundle with polyhedral fibers:

PH´1 : EntpBarKq ÝÑ hTop.

Finally in section 5 we consider variants of our fiber problem and interactions with the symmetries of the underlying
simplicial complex. Thus, in section 5.1 we consider the case where filters and barcodes are allowed to take values in
the real line R instead of I. The results on the fiber PH´1

pDq adapt to this situation, with the only difference that the
polyhedra in the fiber may now be unbounded. However, we illustrate with examples that the topology of BarK is more
complicated in the unbounded situation: we show that the bottleneck topology on barcodes does not in general agree
with the easy to understand quotient topology, unlike in the bounded case (Proposition 1.17). This is in general no
longer true in the unbounded situation. In addition, in section 5.2 we show that the overall analysis holds if instead of
all filters we consider only lower star filters. Indeed, the space LowK of lower star filters is a union of strata in FiltK .
Thus the fiber of PH restricted to the lower star filters is again a polyhedral complex.

In Appendix A, illustrating our theory, we describe in complete detail the case when K is a triangle (with 6 simplices).
For each of the 34 barcode strata in BarK we describe the fiber with the action of the symmetry group of K and their
monodromy maps. While most fibers consist of a set of discrete points, three fibers are homeomorphic to a circle, one is
homeomorphic to two copies of the circle, and one is homeomorphic to the Möbius band. As far as we are aware this is
the first non-contractible simplicial complex for which the fibers of PH have been studied and also the first example
where the fibers are not homotopy discrete.

Related work

Our set-up here is most closely related to that in the work of Cyranka, Mischaikow and Weibel [15] where the authors
consider lower star filters on the n-fold subdivided interval and show that the fibers of PH are homotopy discrete.

Previously, Curry in [12] considers the interval with the set of continuous maps. In particular he bounds the connected
components of the fiber in terms of the nestings of the intervals in the barcode. Curry with coauthors also studies the
higher dimensional example of a sphere in [8] with the set of functions that arise as compositions of an embedding
of S2 into R3 followed by a projection onto the last coordinate.

In general, the persistent homology associated to a single filter cannot determine the underlying simplicial complex or
its homotopy type, no more than homology can determine the homotopy type of the underlying space. However, under
some conditions a family of such functions might suffice. To understand this question Turner, Mukherjee and Boyer
introduced the persistent homology transform (PHT) [36], and proved that indeed under certain circumstances PHT
is injective on shapes embedded in R3, see also [14, 19] for a generalisation to higher dimensions. It has even been
possible to find algorithmically a left inverse for PHT for some specific classes of sets [4, 5, 18, 26].

There are other persistence based invariants of spaces. One such (stable and computable) invariant for metric graphs has
been proposed by Dey, Shi, and Wang [16]. In [31] Oudot and Solomon show that the fiber of this intrinsic transform is
generically globally and always locally injective.
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Since this paper was submitted, several other properties of the fiber PH´1
pDq have been studied. Motivated by our

analysis here, in [23] the first author with Gregory Henselman-Petrusek provides an algorithm and software for the
computation of the fiber PH´1

pDq. This allows for many more examples to be computed explicitly. Furthermore,
with David Beers he analyzes in [22] the fiber of PH for Morse functions on any smooth compact manifold with
boundary M and shows that each path connected component in the fiber equals the orbit of one of its Morse functions
under the action of isotopies of M. This enables in particular the computation of the homotopy type of each path
connected component in the fiber for almost all surfaces. Meanwhile, the second and third author of [15] have extended
their analysis in [28] to the n-fold subdivided circle where the fibers are shown to be homotopy equivalent to S1.
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1 Stratifications of the spaces of filters and barcodes

We first recall some background theory and define the persistence map PH, the fibers of which are the object of
interest. In section 1.2, we introduce the topological monoid EndpI,ďq of non-decreasing maps of the interval, which
provides essential structure: it acts continuously on the spaces of filters and barcodes, and the persistence map PH
is equivariant with respect to this action. In section 1.3, we show furthermore that the orbits of the subgroup of
homeomorphisms, AutpI,ďq, provide stratifications for the space of filters and the space of barcodes and that, due
to its equivariance, PH is a strongly stratified map between them. It follows now easily that the fibers over barcodes
from the same stratum are pairwise homeomorphic, thus turning the identification of the fiber into a finite problem. In
section 1.4 we also show that the image BarK of the space of filters under PH has the quotient topology.

1.1 The definition of the persistence map

Let SCpx denote the category of finite (abstract) simplicial complexes and inclusions, and let K P SCpx be an
arbitrary, non-empty simplicial complex of dimension d P N, which is fixed throughout the paper. We consider K as a
subset of the power set on its vertices. Recall, if σ P K then all its non-empty subsets σ1 Ă σ, i.e. its faces, are also
in K. We write 7K for the total number of simplices in the complex K.

We denote by I :“ r0, 1s the closed unit interval. A typical function on K valued in I is denoted by f P IK .
Definition 1.1. A filter function, or filter for short, on K is a map f : K Ñ I that is monotonic with respect to face
inclusions: For all simplices σ1, σ P K

σ1 Ď σ ñ fpσ1q ď fpσq.

The set of all filters on K is denoted by FiltK .

The monotonicity condition on filters is equivalent to the property that their sublevel sets are simplicial subcomplexes
of K. Thus a filter f gives rise to a filtration Kpfq “ tf´1pp´8, tsqutPR, of K which we may think of as a functor
from R (as an ordered set) to the category of simplicial complexes

Kpfq : pR,ďq ÝÑ SCpx.

We can then compose this with the functor Hp which takes a simplicial complex to its p-th simplicial homology with
coefficients in a fixed field k. This defines the pth persistent homology functor

HppKpfqq : pR,ďq ÝÑ Vectk,

which is an instance of a one-parameter, pointwise finite dimensional, finite persistence module, or persistence module
for short. We denote by Pers the category of such persistence modules and natural transformations between them.

Given an interval J Ď R, the associated interval module IJ P Pers has copies of the field k over J and zero elsewhere,
the copies of k being connected by identity maps. Given a persistence module V P Pers, by the Decomposition
Theorem [11], there exists a unique finite multiset J of intervals such that we have an isomorphism:

V –
à

JPJ
IJ .

The finite multiset BarpVq of pairs pinf J, sup Jq P pR \ t´8uq ˆ pR \ t8uq for intervals J P J appearing in the
above decomposition is the so-called barcode of the module V. If V “ HppKpfqq is a persistent homology module, then
the intervals that occur are all half-open intervals of the form J “ rb, dq with restricted values pb, dq P Iˆ pI\ t8uq.
Consequently, we formally define barcodes as follows.
Definition 1.2. A barcode D is a finite multi-set of pairs pb, dq in IˆpI\t8uq, with b ă d, called the intervals or bars
of D. An interval pb, dq is bounded (resp. infinite) if d ă 8 (resp. d “ 8). The multiplicity of an interval pb, dq P D is
denoted by Dpb, dq P N. The set of all barcodes is denoted by Bar.

We can now define the degree p persistence map as the composition

PHp :“ BarpHp ˝Kp.qq : FiltK ÝÑ Bar

and the (total) persistence map as the product

PH :“ pPH0, . . . ,PHdq : FiltK ÝÑ Bard`1.

We will refer to elements D “ pD0, . . . , Ddq P Bard`1 simply as barcodes. We will mainly be interested in barcodes
in the image of PH:

BarK :“ PHpFiltKq Ď Bard`1.

6
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The set of filters FiltK is naturally topologised as a subset of the finite dimensional Euclidean space RK .

The standard topology on Bar, and hence on BarK , is induced by an (extended) metric which we now recall. A
matching γ between two barcodes D,D1 P Bar is a partial injective map γ from intervals of D to those of D1. The
cost cpγq of a matching is the maximum of the following three quantities: (i) the maximum }pb, dq ´ γpb, dq}8 over
intervals pb, dq P D where γ is defined, (ii) the maximal length d´b

2 over intervals pb, dq P D where γ is not defined, and
(iii) the maximal length d1´b1

2 over intervals pb1, d1q P D1 that are not in the image of γ. Here we allow8 as a possible
value for d, d1, and hence also for the maxima; and }.}8 denotes the (extended) supremum norm on Rˆ pRY t8uq.
The bottleneck distance, db, between D and D1 is then defined as:

dbpD,D
1q :“ inf

γ matching
cpγq.

Since our barcodes are finite multisets, db defines a true (extended) metric on Bar. We endow Bar with the induced
bottleneck topology.

We thus have the following instance of the Stability Theorem [3, 9, 10] in our context.
Theorem 1.3. The degree p persistence map PHp is Lipschitz continuous, and thus so is the persistence map PH.

For later reference, we record the following elementary fact.

Proposition 1.4. Let D P Bard`1 be a non-empty barcode. Then for small enough ε, another barcode D1 is ε-close
to D if and only if its intervals satisfy the following:

• for each integer 0 ď p ď d and interval pb, dq P Dp, the intervals pb1, d1q inD1p satisfying }pb1, d1q´pb, dq}8 ă
ε have multiplicities summing up to Dppb, dq, the multiplicity of pb, dq in Dp;

• the other intervals pb1, d1q P D1, that is those that are not ε-close to intervals inD, are ε-small, i.e. |d1´b1| ă ε.

Proof. Take ε ď α
2 where α is the minimum of (a) the lengths d´ b of intervals pb, dq P D and (b) all pairwise distances

}pb, dq ´ pb, dq}8 for any two geometrically distinct intervals pb, dq and pb, dq in D. Note that α ą 0 as by definition
all our barcodes are finite, i.e. D has finite support.

1.2 Actions on filters and barcodes, and equivariance of the persistence map

Let AutpI,ďq be the space of orientation preserving homeomorphisms of I, and EndpI,ďq be the space of continuous
non-decreasing maps that fix the boundary points 0 and 1. We consider them as subspaces of the space of all continuous
maps of I to itself with the compact open (or equivalently ||.||8-metric) topology. In this topology EndpI,ďq is the
closure of AutpI,ďq. For future reference we note that the straight line interpolation

φt :“ p1´ tqφ` tφ1

between maps φ, φ1 P EndpI,ďq defines a continuous path in EndpI,ďq.

Since the boundary points are fixed by elements in AutpI,ďq and EndpI,ďq, they extend by the identity to automor-
phisms and endomorphisms of the real line R and the extended real line RY t˘8u. When the context requires it, we
will tacitly extend our maps without changing notation.

The monoid EndpI,ďq acts from the left on FiltK by post-composition:

φ.f :“ φ ˝ f.

It also acts from the left on Bar, and hence diagonally on Bard`1, by applying φ to all the endpoints of the bars in D
with the convention that φp8q “ 8 and bars of length zero are suppressed:

φ.D :“ tpφpbq, φpdqq | pb, dq P D and φpbq ‰ φpdqu. (1)

Thus φ.D contains (with multiplicities) an interval pφpbq, φpdqq for each interval pb, dq P D as long as φpbq ‰ φpdq,
and an interval pφpbq,8q for each interval pb,8q P D. Note that φ being non-decreasing does not imply that φpxq ě x
for all x. In particular, through the action of φ, intervals can move to the left, to the right, be contracted or expanded.

A key result used in this work is that the persistence map is equivariant with respect to these actions.
Lemma 1.5 (Equivariance). The persistence map PH is EndpI,ďq-equivariant: For all φ P EndpI,ďq and f P FiltK

PHpφ ˝ fq “ φ.PHpfq.

7



A PREPRINT - APRIL 12, 2022

Proof. We fix a filter f P FiltK and a map φ P EndpI,ďq.

Recall that PHpfq is the union of PHppfq for p “ 0, . . . , d, and PHppfq is given by the composition BarpHp ˝Kpfqq.
By definition of Kpφ ˝ fq, for t P R we have

Kpφ ˝ fqptq “ pφ ˝ fq´1
`

p´8, ts
˘

“ f´1
`

p´8,maxpφ´1pttuqqs
˘

“ Kpfq
`

maxpφ´1pttuqq
˘

.

Note that φ is non-decreasing and continuous. Thus the inverse image φ´1pttuq of the point t is a closed, bounded
interval and hence contains its maximum. On composition with the singular homology functor Hp this yields

Hp ˝Kpφ ˝ fqptq “ Hp ˝Kpfq
`

maxpφ´1pttuqq
˘

.

Hence the barcode PHppφ ˝ fq is the barcode of the persistence module t ÞÑ Hp ˝Kpfq
`

maxpφ´1pttuqq
˘

, which
rewrites uniquely as a sum of interval modules:

Hp ˝Kpfq
`

maxpφ´1pttuqq
˘

»
“

à

pb,dqPPHppfq

Irb,dq
‰`

maxpφ´1pttuqq
˘

“
à

pb,dqPPHppfq

Irb,dq
`

maxpφ´1pttuqq
˘

“
à

pb,dqPPHppfq

Irφpbq,φpdqqptq.

The first equality follows from the definition of the barcode PHppfq, i.e. Hp ˝Kpfq decomposes as
À

pb,dqPPHppfq
Irb,dq.

The second equality holds because pre-composition by the map t ÞÑ maxpφ´1pttuqq induces an additive endofunctor
on persistence modules. The third one is a consequence of φ being non-decreasing, as then maxφ´1pttuq P rb, dq is
equivalent to t P rφpbq, φpdqq.

This yields PHppφ ˝ fq “ φ.PHppfq, and hence PHpφ ˝ fq “ φ.PHpfq.

Remark 1.6. In the above proof we indirectly made use of the following more general categorical framework where
both Kpfq and Hp ˝ Kpfq are considered as functors from the category pR,ďq of ordered real numbers defining
concrete instances of filtrations and persistence modules, that is functors

F : pR,ďq ÝÑ SCpx and V : pR,ďq ÝÑ Vectk.

Precomposition with any endofunctor α of pR,ďq defines a right action both on filtrations and on persistence modules.
Furthermore, composition by any functor L : SCpx Ñ Vectk defines a map from filtrations to persistence modules,
and we have the following general equivariance result due to associativity for composition of functors:

LpF.αq “ L ˝ pF ˝ αq “ pL ˝ F q ˝ α “ LpF q.α.

The endofunctors of pR,ďq are the (weakly) order preserving maps of R, that is maps α satisfying: t1 ă tñ αpt1q ď
αptq. Note that α does not have to be continuous.

For the proof of Lemma 1.5 we have used the functor L “ Hp and the fact that an element φ P EndpI,ďq gives rise to
an endofunctor α :“ maxφ´1 defined by t ÞÑ maxφ´1pttuq. We furthermore used that Kpφ ˝ fq “ Kpfq ˝maxφ´1

and Irφpbq,φpdqq “ Irb,dq ˝maxφ´1 to translate the given action on the space of filters and barcodes into the functorial
setting.

It is an easy exercise to show that the action of EndpI,ďq on filters is continuous. We next show that the action is also
continuous on barcodes.
Proposition 1.7. EndpI,ďq acts continuously on Bar, i.e. it is induced by a continous map

EndpI,ďq ˆ Bar Ñ Bar.

Proof. We show that the map EndpI,ďqˆBar Ñ Bar is sequentially continuous. Let pφn, Dnq P EndpI,ďqˆBar be
a sequence converging to some pφ,Dq. Let ε ą 0 be small enough such that the intervals of any barcode that is ε-close
to D satisfy the alternative of Proposition 1.4. As I is compact, φ is uniformly continuous and there exists η ą 0 such
that |φpdq ´ φpbq| ă ε whenever b, d P I satisfy |d ´ b| ă η. Let n be large enough such that Dn is minpε, ηq-close
to D, and moreover }φn ´ φ}8 ă ε.

If pbn, dnq P Dn is a small interval, i.e. dn ´ bn ă minpε, ηq, then:
|φnpdnq ´ φnpbnq| ă |φnpdnq ´ φpdnq| ` |φpdnq ´ φpbnq| ` |φpbnq ´ φnpbnq| ă 3ε.

Therefore pφnpbnq, φnpdnqq is a 3ε-small interval in φn.Dn.

Else, pbn, dnq is minpε, ηq-close to a unique interval pb, dq of D, and then
}pφnpbnq, φnpdnqq´pφpbq, φpdqq}8 ď }pφnpbnq, φnpdnqq´pφpbnq, φpdnqq}8`}pφpbnq, φpdnqq´pφpbq, φpdqq}8 ă 2ε.

This yields a canonical matching from φn.Dn to φ.D with cost less than 3ε.

8
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1.3 Stratifications of the spaces of filters and barcodes

We introduce a weak notion of stratification in the sense that we will not require (for now) any conditions on how strata
are glued together. We will return to this in Section 4.1.

Definition 1.8. A stratification of a topological space X is a filtration H “ X´1 Ď X0 Ď X1 Ď ¨ ¨ ¨ by a (possibly
infinite) sequence of closed subspaces Xi, i P N, where the sets XizXi´1 are topological manifolds of dimension i.
The path connected components of XizXi´1 are called i-strata, or strata of dimension i. A stratified map between two
stratified spaces X and X 1 is a continuous, filtration preserving map of the underlying spaces. A strongly stratified map
is a stratified map that maps any stratum of X surjectively to a stratum of X 1.

We will show that FiltK and BarK are stratified spaces with strata given by the AutpI,ďq-orbits, each homeomorphic
to an open standard simplex for some i,

∆̊i :“
 

px1, ¨ ¨ ¨ , xiq | 0 ă x1 ă ¨ ¨ ¨ ă xi ă 1
(

Ă Ri.

Recall that AutpI,ďq acts continuously on the space of filters FiltK by post-composition. For f P FiltK , we denote
the associated orbit by

S “ Sf :“ tφ.f |φ P AutpI,ďqu.

Two filters are in the same orbit if they induce the same pre-order on the simplices of K: σ ď σ1 ðñ fpσq ď fpσ1q.
Inside a given orbit a filter is uniquely determined by the sequence of its values that are not equal to 0 or 1 sorted in
increasing order. Varying f by an element in AutpI,ďq varies this sequence over the whole open standard simplex.
Thus for each orbit S the map

S –
ÝÑ ∆̊dimS , dimS :“ 7pImpfq X p0, 1qq

that sends a filter to the increasing sequence of its distinct values that are not equal to 0 or 1 defines an affine
homeomorphism. The inverse map µ is a coordinate chart for the stratum S which in fact extends to the closure,

µ : ∆dimS –
ÝÑ S, (2)

and S is the orbit of EndpI,ďq. We record that the orbits define a stratification.

Proposition 1.9. For each i ě 0, let Fi be the union of AutpI,ďq-orbits S with dimS ď i. This defines a stratification
of FiltK . The i-strata are given by the orbits of dimension i.

Remark 1.10. A stratum is simply an equivalence class of filters, where filters are declared equivalent if they induce the
same pre-order on simplices. This point of view was already adopted in [24] in the context of persistence differentiation.
Equivalently, the stratification is the hyperplane arrangement generated by the equalities fpσq “ fpσ1q. It is well-known
to be a Whitney stratification, but we will not make use of this richer structure here.

Similarly we construct a stratification of barcodes Bard`1. ForD P Bard`1, we consider the associated AutpI,ďq-orbit

B “ BD :“ tφ.D |φ P AutpI,ďqu.

The orbits partition the space of barcodes Bard`1. Within such an orbit, the multiplicities and the nestings of bars are
constant, and it is only the consecutive values of the interval endpoints that can vary. Thus for each orbit B the map

B –
ÝÑ ∆̊dimB, dimB “ dimBD “ dimD :“ 7 distinct endpoints of D that are in p0, 1q

that sends a barcode to the increasing sequence of its distinct values of interval endpoints that are not equal to 0, 1 or8
defines a homeomorphism. The inverse map ν is then a coordinate chart for the stratum:

ν : ∆̊dimB –
ÝÑ B. (3)

Remark 1.11. In fact ν is even a local isometry when B is equipped with the bottleneck distance and ∆̊dimB with the
}.}8-metric: This is because in a fixed stratum barcodes have a constant number and nestings of bars; hence endpoints
can be matched (in an increasing order) and the }.}8-metric gives us the cost of the induced matching, which will be
optimal when the barcodes are close enough.

Proposition 1.12. For each i ě 0, let Bi be the union of the AutpI,ďq-orbits B with dimB ď i. This defines a
stratification of Bard`1. The i-strata are the orbits of dimension i.

9
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Proof. As orbits provide a partition, the sets Bi for i P N form a filtration of Bard`1. Each of the Bi is also closed as
the complement is open: barcodes close to a given barcode D have the same number of bars with endpoints in p0, 1q or
more as can be deduced from Proposition 1.4.

Furthermore, the complements BizBi´1 are by definition the union of finitely many (disjoint) orbits B1, . . . ,Bli , each
homeomorphic to ∆̊i. The lemma below implies that the closure of each Bj does not intersect any of the Bk for k ‰ j.
Thus a path Dt of diagrams in BizBi´1 with D0 P Bj cannot leave the orbit Bj . On the other hand, each stratum Bj is
path connected since D0 can be connected to any other diagram D1 P Bj by a linear path Dt :“ ptφ` p1´ tqIdq.D0

where φ P AutpI,ďq is such that D1 “ φ.D0. Hence the path connected components of BizBi´1 are the orbits of
dimension i, and BizBi´1 is a manifold of dimension i.

Lemma 1.13. Let D,D1 P Bard`1 be two barcodes. Then the following are equivalent:

(1) There exists a non-decreasing map φ P EndpI,ďq such that D1 “ φ.D;

(2) BD1 Ď BD, i.e. the stratum containing D1 is in the closure of that containing D.

Proof. Assume (1) and let φ P EndpI,ďq be such that D1 “ φ.D. Consider the paths

φt :“ p1´ tqId` tφ and Dt :“ φt.D.

For t P r0, 1q, φt P AutpI,ďq and hence Dt P BD. By continuity of the monoid action, Proposition 1.7, the path of
barcodes Dt is continuous in t on the whole interval r0, 1s. Consequently, in the limit, D1 “ D1 P BD. If D2 P BD1
is another barcode from the orbit defined by D1 then there exists a β P AutpI,ďq with D2 “ β.D1. Consider
β.Dt “ pβ ˝ φtq.D. By the same argument as above, this is a continuous path of barcodes from D to D2 that is
contained entirely in BD with the possible exception when t “ 1. Hence D2 P BD, and more generally BD1 Ď BD
which is (2).

Conversely, assume (2). If D1 P BD then by definition of BD there exists a φ P AutpI,ďq with D1 “ φ.D and (1)
is satisfied. So we may assume D1 R BD (and hence the entire orbit BD1 is contained in the boundary BDzBD).
Let Dn, n ě 0, be a sequence in BD converging to D1, and let φn P AutpI,ďq such that Dn “ φn.D. Then, by the
characterisation of the local neighborhoods in Bar, Proposition 1.4 for small enough ε and large enough n, the bars inD1
can be matched up (one-to-one) with bars in Dn that are ε-close, and furthermore any additional bar in Dn is of length
less ε. Let γ be an optimal matching fromDn toD1 which collapses the small bars. The number of intervals inDn is the
same as in D, in particular finite, so for ε small enough relative to the distances between consecutive endpoints xi, xi`1

of D1, the union of the ε-small intervals in Dn do not cover any segment rxi, xi`1s. In this case we can use γ to
construct a non-decreasing map φ1 P EndpI,ďq with φ1.Dn “ D1. Hence, D1 “ φ1.Dn “ pφ1 ˝ φnq.D “ φ.D
with φ :“ φ1 ˝ φn. This gives (1).

Remark 1.14. The monoid EndpI,ďq acts coordinate-wise on any simplex ∆i, and under this action the orbit of any
point in the interior ∆̊i is the closed simplex ∆i. As both µ and ν are compatible with the action restricted to AutpI,ďq,
they can be extended to equivariant maps from the closed simplex:

ν : ∆dimB ÝÑ B, with νpφ.xq :“ φ.νpxq. (4)

This is easily seen to be well-defined, i.e. given x, x1 P ∆̊dimB and φ, φ1 P EndpI,ďq such that φ.x “ φ1.x1 we
have φ.νpxq “ φ1.νpx1q. From the above lemma B is the monoid orbit of EndpI,ďq, therefore the extension ν is
surjective. Hence B (as a set) can be identified as a quotient of the closed standard simplex. Indeed, ν is a strongly
stratified map where the stratification on the standard simplex is the usual one and B is considered a sub-stratified space
of Bard`1. In general ν is not injective on the boundary, see Example 1.19.

With both the stratifications of FiltK and Bard`1 in place, the persistence map PH : FiltK Ñ Bard`1 is then a map of
stratified spaces in the following strong way:

Proposition 1.15. The persistence map is a strongly stratified map. Namely, let S be an i-stratum in the space of filters.
Then there exists a j-stratum B with j ď i and PHpSq “ B.

Proof. Strata in the spaces of filters and barcodes are the AutpI,ďq-orbits with respect to which PH is equivariant by
Lemma 1.5. We thus have for all f P FiltK and associated stratum Sf

PHpSf q “ tPHpφ.fq “ φ.PHpfq |φ P AutpI,ďqu “ BPHpfq.

10
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Furthermore, over a fixed stratum in BarK the fibers are all homeomorphic.
Proposition 1.16. Let B Ď BarK be a barcode stratum. The pre-images of PH over elements in B are pairwise
homeomorphic.

Proof. LetD,D1 P B so thatD1 “ φ.D for some φ P AutpI,ďq. By the equivariance of PH, Lemma 1.5, the action (by
post-composition) of φ on FiltK restricts to a map from PH´1

pDq to PH´1
pD1q “ PH´1

pφ.Dq “ φ.PH´1
pDq.

Therefore BarK is a stratified subspace of Bard`1 consisting of the union of strata PHpSq, where S Ď FiltK varies
over the set of strata of the space of filters. In particular BarK is a finite union of strata, finite dimensional and compact,
unlike Bard`1 which has infinitely many strata of arbitrarily large dimensions.

1.4 The space BarK as a quotient space

We will now show that as a topological space BarK is the quotient of the space of filters FiltK induced by the
persistence map.
Proposition 1.17. The quotient topology on BarK “ PHpFiltKq induced by PH agrees with the bottleneck topology,
that is we have a homeomorphism from the quotient

PH : pFiltK { „q
–
ÝÑ BarK ,

where „ is defined by f „ f 1 ô PHpfq “ PHpf 1q.

Proof. By Theorem 1.3, PH : FiltK Ñ BarK is continuous, and hence, by the universal property of the quotient,
it induces a continuous bijection PH. It remains to prove that the inverse PH

´1
is also continuous, or equivalently

that PH is open.

Let U be an open set in pFiltK { „q and let D P U . Then by definition of the quotient topology PH´1
pUq is open and

contains PH´1
pDq. Since PH is continuous, PH´1

pDq is closed, and being a subset of IK it is in fact compact. Thus
for some η ą 0 we have that the η-offset of PH´1

pDq lies in PH´1
pUq:

PH´1
pDqη :“

 

f P FiltK , Dg P PH´1
pDq, }f ´ g}8 ă η

(

Ď PH´1
pUq.

We will show that PH´1
pD1q Ď PH´1

pDqη for D1 close enough to D in the bottleneck metric. By the above this
implies that PH´1

pD1q Ď PH´1
pUq, which amounts to D1 P U , and hence U is an open set in BarK .

By Proposition 1.4, for ε small enough, bars pb1, d1q P D1 that are not ε-small are matched up with bars of D that
are ε-close. We consider the following equivalence relation on interval endpoints b1, d1 of D1. First, we deem equivalent
all endpoints that are ε-close to the same endpoint xi of D. Then, we deem equivalent two ε-small intervals that
overlap: rb1, d1s X rb2, d2s ‰ H and take the transitive closure of that relation. Since there are at most 7K endpoints
in D1, the endpoints in the same equivalence class span a range of size at most 7K ˆ ε. Thus if ε has been chosen small
enough to start with, then it is impossible to find in the same equivalence class two endpoints of D1 that are ε-close to
distinct endpoints xi ‰ xj of D.

This allows constructing a map φ : I Ñ I such that φ.D1 “ D as follows: Over the span of an equivalence class of
endpoints we define φ as the constant map with value xi in the case where there is an endpoint b1 or d1 which is ε-close
to the endpoint xi of D, and with an arbitrary value in the span in the case where there is no such endpoint in the
equivalence class. We extend φ linearly on I. By design φ differs from the identity map by at most 7K ˆ ε, because
the span of each equivalence class has diameter bounded by 7K ˆ ε. Hence if we take an arbitrary f P PH´1

pD1q,
then g :“ φ ˝ f belongs to PH´1

pDq by equivariance of PH, and g is p7K ˆ εq-close to f . Up to shrinking ε so
that 7K ˆ ε ă η, we have f P PH´1

pDqη . Therefore PH´1
pD1q Ď PH´1

pDqη .

The top dimensional strata of FiltK consists of the injective filters f : K Ñ I that do not take the values 0 or 1. Hence
the dimension of the top strata is 7K. The interval endpoints of a barcode D “ PHpfq form a subset of the values
of f and in general dimBD ď dimSf . However, when f is injective, each simplex enters the next sublevel set of the
filtration by itself and hence induces a change in homology. Thus in particular we see that the dimension of the top
dimensional barcode strata in BarK is again 7K. Let

Bartop
K :“

ď

dimB“7K
B “ tPHpfq | f P FiltK is injective and does not take the values 0 or 1

(

.
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Proposition 1.18. The barcode space BarK is the closure of its top dimensional strata, i.e.

BarK “ Bartop
K .

Proof. Let D “ PHpfq be a barcode in the image. We can always factor f as f “ φ ˝ g for some injective filter g P
FiltK and a non-decreasing map φ P EndpI,ďq. By the equivariance of PH (Lemma 1.5), we have D “ φ.PHpgq.
Up to an arbitrarily small perturbation, g does not take the values 0 and 1, and hence PHpgq is an element in a top
dimensional stratum. The result then follows from Lemma 1.13.

The space BarK can thus be built as a quotient of a finite collection of (closed) simplices corresponding to the top
dimensional barcode strata where some of the faces may be identified to each other and where i-dimensional faces may
be reduced to a j-dimensional simplex through collapsing pi´ jq-dimensional affine subspaces (corresponding to bars
of length zero). The following example illustrates this.
Example 1.19. Let K represent the unit interval with vertices a, b and 1-simplex σ. The space of filters consists of two
3-dimensional strata corresponding to the induced orderings a ă b ă σ and b ă a ă σ, which are mapped to each
other via the action on K given by the involution pa, bq on its set of vertices. All faces are included in FiltK and the
two simplices are glued together along their common face corresponding to a “ b ď σ. Under the map PH the two
3-simplices are identified to one 3-simplex giving a unique top dimensional stratum Btop in the space of barcodes BarK
parametrising barcodes of the form tpx1,8q, px2, x3qu with 0 ă x1 ă x2 ă x3 ă 1. The barcode space BarK can
then be identified with the quotient space of the closed 3-simplex where the 2-dimensional face corresponding to
0 ď x1 ă x2 “ x3 ď 1 is collapsed to the line segment 0 ď x1 “ x2 “ x3 ď 1, i.e. we identify:

px1, x2, x3q „ px1, x
1
2, x

1
3q whenever x2 “ x3 and x12 “ x13.

See Figure 1. We thus see that the fiber PH´1
pDq of a barcode D “ tpx1,8q, px2, x3qu P BarK consists of two

points if x1 ă x2 ă x3, of one point if x1 “ x2 ă x3, and of an interval (consisting of two intervals glued together) if
x1 ă x2 “ x3.

Figure 1: When K is the simplicial interval, the space BarK is the quotient space of the closed 3-simplex with each
dotted line on the back face collapsed to one point.
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2 The persistence map as a polyhedral stratified fiber bundle

Although the persistence map PH is globally not a fibration, we show in section 2.1 that it is a trivial fibration over each
barcode stratum with a polyhedral complex as fiber. Using this structure in section 2.2, we derive topological properties
of the fiber.

2.1 Polyhedral structure on the fiber

We strengthen Propositions 1.15 and 1.16, showing that, over each barcode stratum in the image BarK “ PHpFiltKq,
the persistence map is a trivial fiber bundle with a polyhedral complex as fiber. The intuition behind this result is
that PH can be viewed as a piecewise linear projection as follows. Given a filter stratum S Ď FiltK and the barcode
stratum B “ PHpSq, the restriction PH|S can also be described as a map πB

S : ∆̊dimS Ñ ∆̊dimB via the coordinate
charts µ : ∆̊dimS –

ÝÑ S and ν : ∆̊dimB –
ÝÑ B given by Eq. (2) and Eq. (3):

∆̊dimS

∆̊dimB

S

B

πB
S PH

µ

ν
(5)

The map πB
S is the linear projection from RdimS to RdimB that records the values of a filter f which are bounded

interval endpoints in the associated barcode PHpfq. That PH can be described by this diagram follows from the
following two elementary observations: (i) πB

S is AutpI,ďq-equivariant since µ and ν are equivariant, where AutpI,ďq
acts on ∆̊dimS and ∆̊dimB coordinate-wise; and (ii) the set of bounded interval endpoints in the barcode PH is a subset
of the values of f .

The fiber of such a projection map, restricted to the polyhedron ∆̊dimS – S , is itself a polyhedron. In this section, we
glue the polyhedra obtained in this way over the various filter strata S in order to describe the whole fiber of PH over a
barcode stratum as a complex of polyhedra.

Recall that a (bounded) polyhedron is a bounded, finite intersection of closed half-spaces in a Euclidean space. The
dimension of a polyhedron is the dimension of its affine hull. A face of a polyhedron P is the intersection of P with a
supporting hyperplane, and is itself a polyhedron. In particular, a polyhedron P is a bounded convex Euclidean set. For
such sets, we have the notions of relative interior and relative boundary, which offer the advantage not to depend on the
ambient Euclidean space, and with a slight abuse of notations we denote them by P̊ and BP respectively.
Definition 2.1. A polyhedral complex is a finite set Π of polyhedra in some Euclidean space Rn, such that (i) if F is a
face of P P Π, then F P Π, and (ii) for all P,P 1 P Π, the intersection P X P 1 is either empty or is a face of both P
and P 1. By convention, the empty set is in Π. The support of Π is

Ť

PPΠ P Ď Rn. The dimension of a polyhedral
complex is the maximal dimension of its polyhedra.

A map of polyhedral complexes, or polyhedral map, is a map that sends a polyhedron of the domain to a polyhedron of
the co-domain surjectively, and whose restriction to each polyhedron P of the domain is affine (i.e. can be extended
to an affine map to the ambient space of P). In the case where the polyhedra are simplicial complexes, the notion of
polyhedral map coïncides with that of simplicial map, in that it is induced by a map defined on the abstract simplicial
complexes. More generally, polyhedral complexes can be thought of as geometric realisations of simplicial complexes.
In fact, it is a standard fact that a polyhedral complex admits a finite triangulation on the same set of vertices. For the
proof of this result and more about polyhedral geometry, we refer the reader to [20].
Theorem 2.2. Let B Ď BarK be a barcode stratum in the image of PH, and D P B be any barcode. For each filter
stratum S Ď FiltK X PH´1

pBq, let
PH´1

|S pDq “ PH´1
pDq X S Ď RK

be the (closure of the) restriction to the stratum S of the fiber of the persistence map over D. Then:

(a) Each PH´1
|S pDq is a polyhedron in RK of dimension dimS ´ dimB, and is affinely isomorphic to the product

of dimB ` 1 standard simplices (of various dimensions):

∆0 ˆ∆1 ˆ∆2 ˆ ¨ ¨ ¨ ˆ∆dimB´1 ˆ∆dimB.

Moreover, the relative interior of PH´1
|S pDq is PH´1

|S pDq;
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(b) The fiber PH´1
pDq is the support of the polyhedral complex

"

PH´1
|S pDq |S filter stratum

*

;

(c) There is a homeomorphism Φ giving the following commutative diagram:

B

B ˆ PH´1
pDq PH´1

pBqΦ

π1 PH

(6)

where π1 denotes the projection onto the first factor. Additionally, for any barcode D1 P B and filter stratum S ,
the restricted map ΦpD1, .q|S is an affine isomorphism between PH´1

|S pDq and PH´1
|S pD

1q. In particular, the

polyhedral structure of PH´1
pDq is the same for all barcodes in B.

In assertion (a) above, the subcript in ∆i is used as an index to order a list of standard simplices. This should not
be confused with the notation ∆i where the superscript denotes the dimension of the standard simplex. In Fig. 2 we
illustrate this part of the theorem and include a sample computation for dimS ´ dimB.

Figure 2: The filter f (green) on the complex obtained from subdividing the unit interval with five vertices yields the
2-dimensional barcode D (purple). The stratum S of f contains those filters which assign values in strictly increasing
order to the vertices v1, v2, v4, v3 and v5 and whose values over edges pvi, vi`1q are the maxima of their values over
the endpoints vi and vi`1. The filters in the restricted fiber PH´1

|S pDq must fix the equalities fpv1q “ 0, fpv3q “ x2

and fpv4q “ x1, but we may vary fpv2q P r0, x1s and fpv5q P rx2, 1s. These two degrees of freedom correspond to
the two simplices ∆0 and ∆2, which are in this case of dimension 1, whereas ∆1 is a singleton as no value of f lies
in px1, x2q. We thus get the affine isomorphism between PH´1

|S pDq and the product ∆0 ˆ∆1 ˆ∆2 of Theorem 2.2. In

particular, we check that the dimension of the polyhedron PH´1
|S pDq is 2 “ 5´ 3 “ dimS ´ dimBD.

Proof. Recall from Eq. (5) that the persistence map rewrites as the projection map πB
S : ∆̊dimS Ñ ∆̊dimB onto

the dimB consecutive filter values that modify the homology groups of the sublevel sets, and that the fibers of πB
S are

polyhedra. More precisely, let px1, ¨ ¨ ¨ , xdimBq :“ ν´1pDq be the consecutive endpoints of D, and let 1 ď i1 ă ¨ ¨ ¨ ă
idimB ď dimS be the projection coordinates of πB

S . Then:

pπB
S q
´1pν´1pDqq “

 

px1iq
dimS
i“1 P ∆̊dimS | x1i1 “ x1, ¨ ¨ ¨ , x

1
idimB

“ xdimB
(

“
 

px1iq
dimS
i“1 P RdimS | p0 ă x11 ă ¨ ¨ ¨ ă x1i1 “ x1q X ¨ ¨ ¨ X pxdimB “ x1idimB

ă ¨ ¨ ¨ ă x1dimS ă 1q
(

– ∆̊i1 ˆ ¨ ¨ ¨ ˆ ∆̊dimS´idimB ,
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where the last homeomorphism is an affine isomorphism. Therefore the restricted fiber PH´1
pDq X S is affinely

isomorphic to the product

PH´1
pDq X S – pπB

S q
´1pν´1pDqq – ∆̊0 ˆ ∆̊1 ˆ ∆̊2 ˆ ¨ ¨ ¨ ˆ ∆̊dimB´1 ˆ ∆̊dimB (7)

of open simplices ∆̊i whose dimensions sum up to dimS´dimB, where the open simplex ∆̊i corresponds to values in-
between xi and xi`1, the i-th and i` 1-th endpoint values in D (recall the convention that x0 “ 0 and xdimD`1 “ 1).
The linear isomorphism µ extends to a stratified linear isomorphism between the closed simplex ∆dimS and S.
Therefore, the homeomorphism in Eq. (7) extends to the closure and yields the affine homeomorphism:

PH´1
pDq X S – ∆0 ˆ∆1 ˆ∆2 ˆ ¨ ¨ ¨ ˆ∆dimB´1 ˆ∆dimB. (8)

This proves assertion (a). We can also deduce from the previous arguments that if S 1 Ď BS is a boundary stratum, then

PH´1
|S1pDq Ď BPH´1

|S pDq. (9)

To see this, let us fix f P S X PH´1
pDq and let f 1 be an arbitrary filter in PH´1

|S1pDq. Then the respective coordi-
nates µ´1pfq and µ´1pf 1q are in the fiber of πB

S over ν´1pDq, therefore so is the straight line rµ´1pfq, µ´1pf 1qs by
linearity of the projection. Since µprµ´1pfq, µ´1pf 1qqq Ď S, we have µprµ´1pfq, µ´1pf 1qqq Ď PH´1

|S pDq and we

deduce that f 1 P PH´1
|S pDq, and consequently PH´1

|S1pDq Ď PH´1
|S pDq. Since S 1 Ď BS, the polyhedron PH´1

|S1pDq in

fact lies in the relative boundary of PH´1
|S pDq.

We now show assertion (b), namely that the set of polyhedra PH´1
|S pDq is a polyhedral complex. So we first show that

if PH´1
|S pDq is a polyhedron and F Ă PH´1

|S pDq is one of its face, then F is of the form PH´1
|S1pDq. We assume that F

is a proper face, i.e. has codimension 1 in PH´1
|S pDq. The general case follows by induction on the codimension.

The restriction of the affine homeomorphism of Eq. (8) to the face F implies that F is affinely isomorphic to the product

F – ∆0 ˆ∆1 ˆ∆2 ˆ ¨ ¨ ¨ ˆ∆1i ˆ ¨ ¨ ¨ ˆ∆dimB´1 ˆ∆dimB, (10)

where ∆1i is a proper face of ∆i. Note that ∆1i is obtained by replacing one inequality between consecutive coordinates
in ∆i with an equality. This uniquely defines a stratum S 1 Ď BS of codimension 1 in S such that F̊ Ď S 1. Since
F Ď PH´1

pDq, we have F Ď PH´1
|S1pDq. However, by Eq. (9), the polyhedron PH´1

|S1pDq lies inside the relative

boundary of PH´1
|S pDq, and in fact by convexity, inside a proper face of PH´1

|S pDq. Since F Ď PH´1
|S1pDq is itself a

proper face, we deduce that F “ PH´1
|S1pDq, as desired.

We now show that a non-empty intersection PH´1
|S pDq X PH´1

|S1pDq of two polyhedra in the fiber is a common face of

PH´1
|S pDq and PH´1

|S1pDq. If S “ S 1 there is nothing to prove. Otherwise, SXS 1 “ H so that PH´1
|S pDqXPH´1

|S1pDq “

H. We consider two cases:

1. Either S 1 Ď BS , and then PH´1
|S1pDq lies in a proper face PH´1

|S2pDq of PH´1
|S pDq, and we must have S 1 Ď BS2.

Thus we are done by an induction on the codimension of S 1 in S. Similarly if S Ď BS 1;

2. Or PH´1
|S pDq and PH´1

|S1pDq intersect only at their relative boundaries. In this case, by convexity of the two

polyhedra, their intersection is the intersection PH´1
|S2
pDq X PH´1

|S12
pDq of some proper faces PH´1

|S2
pDq Ď

PH´1
|S pDq and PH´1

|S12
pDq Ď PH´1

|S1pDq. We are then left with the initial problem with polyhedra of smaller
dimensions. We then conclude via an induction on the dimension of the polyhedra.

We now address the proof of assertion (c). Given a barcode D1 P B, define φD1 : I Ñ I to be the unique piecewise linear
interpolation of the increasing map that takes the (bounded) endpoints of D1 to the (bounded) endpoints of D, further
fixing 0 and 1. Clearly, φD1 is an orientation preserving homeomorphism. From the homeomorphism ν : ∆̊dimB –

ÝÑ B,
the intervals’ endpoints in a barcode D1 vary continuously with D1 P B. Therefore D1 ÞÑ φD1 is continuous, and in
turn the map

Φ : pD1, fq P B ˆ PH´1
pDq ÞÑ φ´1

D1 ˝ f P PH´1
pBq (11)
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is continuous. Similarly, its inverse given by Φ´1pf 1q “ pPHpf 1q, φPHpf 1q ˝ f
1q is continuous, so that Φ is a

homeomorphism. Using Lemma 1.5, we have PH ˝Φ “ π1, i.e. the diagram in Eq. (6) commutes.

Let S Ď PH´1
pBq be a filter stratum in the fiber. For D1 P B, ΦpD1, .q “ φ´1

D1 ˝ _ is the post-composition by
φ´1
D1 P AutpI,ďq, see Eq (11), so by Lemma 1.5, the previous homeomorphism restricts to:

B

B ˆ PH´1
|S pDq S

Φ

π1 PH

To finish the proof, we show that the homeomorphism ΦpD1, .q : PH´1
pDq X S Ñ PH´1

pD1q X S is the restriction
of an affine endomorphism of RK , for any barcode D1 P B. Equivalently, we describe the coordinate functions
ΦpD1, .qσ : f ÞÑ ΦpD1, fqpσq as affine forms, for each simplex σ P K. Let px11, ¨ ¨ ¨ , x

1
dimBq :“ ν´1pD1q, and

let x10 “ 0 and x1dimB`1 “ 1 by convention. Given σ P K and f P PH´1
pD1q X S, there is an index 0 ď i ď dimB

such that x1i ď fpσq ď x1i`1. If f 1 P PH´1
pD1q X S is another filter in the fiber, we have f 1 “ φ ˝ f for

some φ P AutpI,ďq, and φ.D1 “ D1 by the equivariance Lemma 1.5, so that x1i ď f 1pσq ď x1i`1 as well. Since φ´1
D1 is

affine over rx1i, x
1
i`1s, we conclude that ΦpD1, .qσ is the restriction of an affine map, as desired.

2.2 Topology of the fiber

In this section, we collect a few results that restrict the topology of the fiber of PH over a barcodeD in the image BarK “
PHpFiltKq. We make use of the previous sections, and in particular we derive a bound for the dimension of the polyhedra
in the fiber PH´1

pDq.

With our first result we obtain finer control on the type of strata arising in BarK . Denote by

rkpBpq :“ dim ImpBp : CppK,kq Ñ Cp´1pK,kqq

the rank of the boundary map in the simplicial chain complex, and by βppKq :“ dim HppK,kq the p-th Betti of K.
Proposition 2.3. Let D “ pD0, . . . , Ddq P BarK . Then, for any homology degree 0 ď p ď d:

(i) The number of infinite intervals in Dp equals βppKq; and

(ii) The number of bounded intervals in Dp is smaller than or equal to rkpBp`1q.

Proof. Item (i) follows from the fact that infinite bars in D correspond to the homology of K.

Let D “ PHpfq be a barcode in the image, with endpoints 0 ă x1 ă ¨ ¨ ¨ ă xdimD ă 1. By convention x0 “ 0
and xdimD`1 “ 1. Via the Decomposition Theorem [11], there is an isomorphism between the p-th persistent homology
module Hp ˝Kpfq and ‘pb,dqPDp

Irb,dq. Through such an isomorphism we obtain a basis of homology classes rcpb,dqs.
The representing simplicial chains cpb,dq are linearly independent in CppKq “ Kpfqp1q and are cycles in Kpfqptq
for b ď t ă d that become boundaries in Kpfqpdq. In particular, the number of intervals pb, dq ending at xi, here i ě 1,
is less or equal than rkppBp`1q|Kpfqpxiqq ´ rkppBp`1q|Kpfqpxi´1qq. Summing over i yields item (ii).

Next we determine a bound for the dimension of the polyhedral complex PH´1
pDq. Recall that barcode strata in BarK

have maximal dimension 7K. Therefore by the (a) of Theorem 2.2 we have the obvious bound dim PH´1
pDq ď

codimpBq, where we define the codimension of a barcode stratum B as:

codimpBq :“ 7K ´ dimpBq ě 0.

To improve this bound, we introduce the following quantity, which can be thought of as the number of missing bounded
intervals in the target barcode D.
Definition 2.4. Let 7K be the number of simplices in K, and 7D be the number of interval endpoints in D with finite
value (counted with multiplicities). The bounded deficit of D is the quantity:

7K ´ 7D

2
ě 0.
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Note that the bounded deficit is the same for all barcodes inside a given stratum.

Proposition 2.5. For any barcode D P BarK , the dimension of the fiber of PH over D is less than or equal to the
bounded deficit:

dim PH´1
pDq ď

7K ´ 7D

2
ď codimpDq.

It follows in particular that HppPH´1
pDqq “ 0 for p ą 7K´7D

2 . We apply Proposition 2.5 to various fibers in the case
where K is a triangle in Appendix A. For these fibers, the bounded deficit is almost systematically a tight upper-bound
on the dimension of the fiber.

Proof. Since dimD ď 7K and dimD ď 7D, we have dimD ď 7K`7D
2 , therefore

codimpDq “ 7K ´ dimD ě
7K ´ 7D

2
.

So we now investigate the left inequality dim PH´1
pDq ď 7K´7D

2 .

Let S be a filter stratum and let px1, ¨ ¨ ¨ , xdimDq :“ ν´1pDq P ∆̊dimD, with x0 :“ 0 and xdimD`1 :“ 1. We
set tDu :“ txiu

dimD`1
i“0 . Let σ P K be a simplex. By the equivariance Lemma 1.5, a filter f P PH´1

pDq X S
satisfy fpσq P tDu if and only if all filters f P PH´1

pDqXS satisfy fpσq P tDu. There are at least 7D such simplices,
since each interval endpoint in the barcode D must correspond to at least one simplex entering the filtration.

Meanwhile, there are exactly dimS ´ dimD distinct values x “ fpσq that are not in tDu for all filters f P

PH´1
pDq X S . Each such value x is attained by at least 2 simplices, as otherwise f´1pxq would be a singleton hence

would have non-zero Euler characteristic and we would have x P tDu. We obtain

2ˆ pdimS ´ dimDq ` 7D ď 7K.

From the item (a) of Theorem 2.2, the polyhedron PH´1
|S pDq has dimension dimS ´ dimD, and the above inequality

yields dim PH´1
pDq ď 7K´7D

2 .

When D is the image of an injective filter f , then 7K “ dimD “ 7D and hence, by Proposition 2.5, the dimension of
the fiber above is zero. We thus have the following immediate consequence.

Corollary 2.6. If f P FiltK is injective, then the fiber PH´1
pPHpfqq is a finite set.

Barcodes corresponding to injective filters are of maximal dimension. At the other extreme we have barcodes of
dimension 1, i.e. barcodes D consisting simply of an infinite interval px,8q, possibly with multiplicity. The constant
filter with value x gives rise to such a barcode. Although the fiber PH´1

pDq does not reduce to this constant filter, we
nevertheless show that it retracts to it.

Proposition 2.7. A barcode of dimension 1 in BarK has contractible fiber.

Proof. Let x be the unique endpoint value in D. By assumption, there exists a filter f in PH´1
pDq. Note that we

must have min f “ x. We show that the straight line homotopy p1´ tqf ` tx lies in PH´1
pDq. For t ă 1, the filters

p1´tqf`tx and f induce the same pre-order on simplices ofK, hence lie in a common stratum S . By Proposition 1.15,
PHpSq “ B where B is the stratum containing D, which consist in barcodes D1 obtained from D by moving the
unique endpoint value x to any other value x1. Hence PHpp1´ tqf ` txq is such a barcode, and must equal D since
x1 “ minp1´ tqf ` tx “ min f “ x. By continuity, at t “ 1, we further get that the constant filter x is in the fiber.
Then PH´1

pDq is star-shaped around x.

Remark 2.8. The dimension dim PH´1
pDq being upper-bounded, we can ask if conversely the star of every polyhedron

in the fiber has dimension dim PH´1
pDq. The example section, Appendix A, suggests that this property holds true in

the case where the complexK is a manifold. In general however, two distinct filters in the fiber may have neighborhoods
of distinct dimensions. Consider the following barcode D
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where each endpoint value is given a different color. In Fig. 3 below we draw the simplicial complex (left), together

Figure 3

with two filters (middle and right) in the fiber PH´1
pDq whose values on simplices are indicated by the colors. The

filter f on the right has unspecified values on vertices and edges v, v1, e, e1 (colored in black), which means that whatever
these values are, we can modify them as long as fpvq “ fpeq and fpv1q “ fpe1q and still get a filter whose barcode
is D. Therefore, the star of f is 2-dimensional. However, the filter in the middle is alone in its neighborhood: all its
values are fixed to endpoints of D and infinitesimal changes of any of these values yield filters out of PH´1

pDq.

3 The barcode category and the fiber functor

In section 3.1, we define morphisms between barcodes. This makes the image of the persistence map into a topological
category, which is homotopy discrete (Theorem 3.2). We further show that morphisms of barcodes can be deformed into
particularly nice morphisms which we refer to as simplicial morphisms (Proposition 3.4). Such morphisms can always
be described as finite compositions of morphisms between codimension 1 barcodes (Proposition 3.5). In section 3.2,
morphisms of barcodes are pulled-back to provide maps of fibers, that are furthermore maps of polyhedral complexes
up to homotopy (Proposition 3.12).

3.1 The barcode category is homotopy discrete

We make the image BarK of the persistence map into a category, so that in the next section we view the fiber PH´1

as a functor. For this we use the action of EndpI,ďq on BarK as defined in Eq. (1) in order to define the morphisms
between any two barcodes:

Definition 3.1. We denote by BarK the Top-enriched category of barcodes with D P BarK as objects and
non-decreasing continuous maps φ P EndpI,ďq such that φ.D “ D1 as the space of morphisms between D
and D1, BarKpD,D

1q. Two morphisms φ0, φ1 P BarKpD,D
1q are homotopic as morphisms if they belong to

the same path connected component of BarKpD,D
1q.

By definition, the sets of morphisms in a Top-enriched category C come equipped with a topology, and so taking
path connected components yields the associated homotopy category which is denoted by hC. The following result,
whose proof is delayed to the end of the section, states that the spaces of morphisms in BarK are made of contractible
components.

Theorem 3.2. For any two barcodes D,D1 in BarK , the space of morphisms BarKpD,D
1q has finitely many path

connected components each of which is contractible. In particular, the category BarK is homotopy discrete, i.e.
BarKpD,D

1q » hBarKpD,D
1q.

In fact, when D and D1 belong to the same stratum, BarKpD,D
1q is contractible. Indeed, a morphism φ from D

to D1 is then simply a non-decreasing map that sends the i-th endpoint of D to the i-th endpoint of D1. Hence,
given an arbitrary φ0 P BarKpD,D

1q, the straight line homotopy pt, φq ÞÑ p1 ´ tqφ ` tφ0 is a deformation retract
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of BarKpD,D
1q onto the point φ0. In general, however, there may be more than one homotopy class of morphisms

in BarKpD,D
1q.

Before we embark on the proof of this, we explore some other properties of the morphism space BarKpD,D
1q.

As before, we use the coordinate charts ν : ∆̊dimD –
ÝÑ BD of Eq. (3) in order to define the consecutive endpoint

values px1, ¨ ¨ ¨ , xdimDq “ ν´1pDq and px11, ¨ ¨ ¨ , x
1
dimD1q “ ν´1pD1q. By convention, we also set x0 “ x10 “ 0

and xdimD`1 “ xdimD1`1 “ 1.

We denote by IpDq the simplicial complex obtained from subdividing the unit interval by the dimD endpoints 0 ă
x1 ă ¨ ¨ ¨ ă xdimD ă 1. The morphisms from D to D1 that send endpoints to endpoints piecewise linearly are of
particular interest to us.
Definition 3.3. A morphism φ P BarKpD,D

1q is simplicial if it is induced from the geometric realisation of a
simplicial map from IpDq to IpD1q.
Proposition 3.4. For any two barcodes D,D1 P BarK , each connected component of BarKpD,D

1q contains at least
one simplicial map.

Proof. Let Ω be a path connected component of BarKpD,D
1q and φ P Ω. Let ψ be the piecewise linear extension of

the map sending each xi to the unique endpoint x1j satisfying x1j ď φpxiq ă x1j`1. The morphism ψ is then simplicial,
and it is homotopic to φ through a straight-line homotopy.

Therefore, a morphism of barcodes is (up to homotopy) a simplicial map over the unit interval. We next show that
simplicial morphisms are finite compositions of simplicial morphisms between barcodes that differ by one dimension.
Note that this implies that the morphisms in hBarK are generated by morphisms between barcodes that differ by one
dimension.
Proposition 3.5. Let φ P BarKpD,D

1q be a simplicial morphism. There exists a finite sequence of barcodes

D “: D1, D2, ¨ ¨ ¨ , Dk :“ D1

satisfying 0 ď dimDi ´ dimDi`1 ď 1 for 1 ď i ď k ´ 1, together with simplicial morphisms φi P BarKpDi, Di`1q

between them, such that
φ “ φk ˝ φk´1 ˝ ¨ ¨ ¨ ˝ φ2 ˝ φ1.

Proof. We proceed by induction on dimD ´ dimD1. If dimD ´ dimD1 P t0, 1u, the statement is trivial. So we
assume that dimD ´ dimD1 ě 2. We first treat the case where φ sends the first endpoint x1 of D to 0. Then, we
may write φ as a composition φ1 ˝ φ1 where φ1 is the map that collapses the interval r0, x1s to 0 and sends rx1, 1s
to r0, 1s linearly. Clearly then, D1 :“ φ1pDq satisfies dimD ´ dimD1 “ 1, and the morphisms φ1 P BarKpD,D1q

and φ1 P BarKpD1, D
1q are simplicial. After repeating this operation as many times as necessary, we may assume

that φ does not send any endpoint xi to 0, for 1 ď i ď dimD. Symmetrically, we may assume that φ does not send any
endpoint xi to 1, for 1 ď i ď dimD.

The morphism φ being simplicial, there is an endpoint x1j , here 1 ď j ď dimD1, whose pre-image by φ is a
sequence of at least two consecutive endpoints xi of D. We choose an endpoint xi P φ´1pxjq for which there exists
a non-trivial interval pxi, dq (or pb, xiq) in D such that φpdq ‰ x1j (or φpbq ‰ x1j). Such an endpoint must exist
because x1j is the endpoint of a non-trivial interval in D1, which is the image by φ of an interval in D. We may
assume that xi`1 P φ

´1pxjq, as otherwise xi´1 P φ
´1pxjq and the rest of the proof can be conducted similarly.

So φpxiq “ φpxi`1q “ x1j , and in fact φprxi, xi`1sq “ x1j since φ is non-decreasing. We may thus factor φ as
φ1 ˝ φ1, where φ1 P EndpI,ďq is the map that collapses the interval rxi, xi`1s onto x1j , extended linearly on I. The
image D1 :“ φ1pDq then satisfies dimD ´ dimD1 “ 1, since φ1ppxi, dqq “ px1j , φpdqq is a non-trivial interval
in D1 and φ acts injectively on the endpoints xk, for k R ti, i ` 1u. Finally, the morphisms φ1 P BarKpD,D1q

and φ1 P BarKpD1, D
1q are simplicial, which concludes the proof.

We return to the study of the homotopy type of BarKpD,D
1q. In order to characterise when any two morphisms

in BarKpD,D
1q are homotopic, the following structure will be instrumental:

Definition 3.6. Let φ P BarKpD,D
1q. The index of φ is the collection Φ :“ tΦpjqudimD1`1

j“0 , where

Φpjq :“
 

1 ď i ď dimD | φpxiq “ x1j
(

.

Given φ0, φ1 P BarKpD,D
1q, we write φ0 Õ φ1 whenever

@0 ď j ď dimD1 ` 1, Φ0pjq Ď Φ1pjq.
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Figure 4: The map φ : D Ñ D1 has index Φ consisting of Φp0q “ H, Φp1q “ t1, 2u, Φp2q “ t5u, Φp3q “ t8u and
Φp4q “ t9, 10u.

Lemma 3.7. Let φ0, φ1 P BarKpD,D
1q. Then the following are equivalent:

(i) The two morphisms are homotopic, i.e. φ0 „ φ1 as morphisms.

(ii) For all pb, dq P D and pb1, d1q P D1, we have pφ0pbq, φ0pdqq “ pb
1, d1q if and only if pφ1pbq, φ1pdqq “ pb

1, d1q.

(iii) The straight line interpolation t ÞÑ tφ0 ` p1´ tqφ1 is a path in BarKpD,D
1q.

(iv) There is some φ P BarKpD,D
1q such that φÕ φ0 and φÕ φ1.

In particular, if φ0 Õ φ1, then φ0 and φ1 are homotopic.

Proof. rpiq ñ piiqs: Let φt be a path in BarKpD,D
1q joining φ0 and φ1. Given pb, dq P D and pb1, d1q P D1, let

Ib
1,d1

b,d :“
 

t P I, φtpb, dq “ pφtpbq, φtpdqq “ pb1, d1q
(

Ď I.

The sets Ib
1,d1

b,d are closed in I. They are also open since the map
ř

rpb,dq,pb1,d1qsPDˆD1 1Ib
1,d1

b,d

: I Ñ N is constant and

equals the number of intervals in D1. Therefore, Ib
1,d1

b,d “ I or Ib
1,d1

b,d “ H.

rpiiq ñ piiiqs: For t P I, φt :“ tφ0 ` p1 ´ tqφ1 is non-decreasing. Then, φtpb, dq equals a non-trivial interval
pb1, d1q P D1 if and only if φ0pb, dq “ φ1pb, dq “ pb

1, d1q. All the other intervals pb, dq P D must then be trivialized,
i.e. φ0pbq “ φ0pdq and φ1pbq “ φ1pdq, so that φtpbq “ φtpdq. This ensures that φt P BarKpD,D

1q since for instance
φ0 P BarKpD,D

1q.

rpiiiq ñ piqs: This implication is immediate. From now on, we have piq ô piiq ô piiiq.

rpiiiq ñ pivqs: Let φt be the straight line interpolation between φ0 and φ1. Let 0 ď j ď dimD1`1. Let 1 ď i ď dimD
be such that i R Φ0pjq. Without loss of generality, we assume that φ0pxiq ă x1j . Since x1j is the endpoint of a non-trivial
interval of D1 and φ0pDq “ D1, there must exist an endpoint xi1 , with i1 ą i, of an interval in D such that φ0pxi1q “ x1j .
By the item piiq, we also have φ1pxi1q “ x1j . In turn, φ1pxiq ď x1j as φ1 is non-decreasing. Therefore φ 1

2
pxiq ă x1j ,

and in particular i R Φ 1
2
pjq. We have therefore proved that Φ 1

2
pjq Ď Φ0pjq, so that φ 1

2
Õ φ0. Similarly, φ 1

2
Õ φ1.

rpivq ñ piqs: It is enough to show that if φÕ φ0, then φ and φ0 are homotopic, as we then show in the exact same
way that φ „ φ1, which implies φ0 „ φ1. Let pb, dq P D be a bounded interval (the case where d “ d1 “ 8 is dealt
with similarly) such that φpb, dq “ pb1, d1q for some pb1, d1q P D1. Then there are indices i ă i1 and j ă j1 such that
pb, dq “ pxi, xi1q and pb1, d1q “ px1j , x

1
j1q. Since Φpjq Ď Φ0pjq and Φpj1q Ď Φ0pj

1q, we have φ0pb, dq “ pb
1, d1q as

well. Therefore, the images φ0pb, dq of intervals pb, dq such that φpb, dq P D1 cover all the intervals in D1. Hence,
any other interval in D is trivialized by φ0, which guarantees that the assertion piiq holds. We are done since
piiq ñ piiiq ñ piq.

Remark 3.8. Two morphisms φ0, φ1 P BarKpD,D
1q with the same index are homotopic. In the case where D and D1

belong to strata that differ by one dimension, the converse is true as well so that in this case the index is a (complete)
homotopy invariant. To see this, observe that the index Φ associated to a morphism φ in the case dimD ´ dimD1 “ 1
cover the endpoints ofD and must consist of singletons Φpjq except for a unique Φpkq which is the unique pair ti, i`1u
of consecutive endpoints of D collapsed by φ. Therefore, if φ0, φ1 P BarKpD,D

1q are homotopic, by Lemma 3.7
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there is a third morphism φ P BarKpD,D
1q such that φÕ φ0 and φÕ φ1. By the above restriction on the index of

morphisms in BarKpD,D
1q, this immediately implies that φ0 and φ1 have the same index.

Proof of Theorem 3.2. Let D,D1 P BarK . By the assertion pivq of Lemma 3.7, if φ0, φ1 P BarKpD,D
1q are two

morphisms such that φ0 Õ φ1, then φ0 and φ1 belong to the same path connected component of BarKpD,D
1q. Since

there are finitely many possible indices, BarKpD,D
1q has finitely many path connected components.

Let Ω be a path connected component of BarKpD,D
1q. Let ψ P Ω. By the piiiq of Lemma 3.7, the map

pt, φq P r0, 1s ˆ Ω ÞÝÑ tψ ` p1´ tqφ P Ω

is a deformation retraction of Ω onto tψu. Consequently, Ω is contractible.

3.2 Monodromies and polyhedral maps of fibers

We now analyse how fibers relate to each other as we cross barcode strata. We associate to each map of barcodes a map
between the corresponding fibers as follows.

Definition 3.9. Let D P Bard`1 and φ P EndpI,ďq. The monodromy Lφ associated to φ is the map between fibers:

Lφ : f P PH´1
pDq ÞÝÑ φ ˝ f P PH´1

pφ.Dq.

Note that the monodromy is well-defined since PH is EndpI,ďq-equivariant by Lemma 1.5,

PHpφ ˝ fq “ φ.PHpfq,

and hence φ ˝ f P PH´1
pφ.Dq. Furthermore, given another φ1 P EndpI,ďq by definition

Lφ1˝φ “ Lφ1 ˝ Lφ,
and in particular, if φ is invertible then Lφ is a homeomorphism. Furthermore, the monodromy assignment φ ÞÑ Lφ is
continuous. We thus see that monodromies turn the inverse image PH´1 into a functor as follows.
Definition 3.10. The fiber functor is a functor of Top-enriched categories

PH´1 : BarK ÝÑ Top

that sends a barcode D to the fiber PH´1
pDq and a morphism φ P BarKpD,D

1q to the monodromy Lφ.

Remark 3.11. PH´1 also descends to define a functor of homotopy categories:

PH´1 : hBarK ÝÑ hTop.

When φ is not simplicial (Definition 3.3), it may send a bounded interval pb, dq of D "to the middle of nowhere",
i.e. φpbq “ φpdq may not equal an interval endpoint in D1. In turn, if this is the case, the monodromy Lφ is not a
polyhedral map, i.e. it is not an affine map on each polyhedron that sends polyhedra to polyhedra surjectively; see Fig. 5
below.

Figure 5: The barcode D has dimension 3. By Theorem 2.2, the polyhedral complex PH´1
pDq is made of polyhedra

that are products ∆D,1 ˆ∆D,2 ˆ∆D,3 of 3 standard simplices. Each simplex ∆D,i corresponds to the values of the
filters in the fiber that are in-between the i-th endpoint xi and pi` 1q-th endpoint xi`1 of D. Likewise, a polyhedron
in PH´1

pD1q is simply a unique standard simplex ∆D1 . The map φ collapses x2 and x3 strictly in-between x11 and 1.
In turn, the monodromy Lφ collapses the second standard simplex ∆D,2 of any polyhedron in PH´1

pDq in the interior
of ∆D1 , and so is not a polyhedral map.

However, simplicial maps induce polyhedral monodromies, as stated in the following result.
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Proposition 3.12. Let D,D1 P BarK and φ P BarKpD,D
1q. If φ is simplicial, then the monodromy Lφ :

PH´1
pDq Ñ PH´1

pD1q is a polyhedral map. In particular, for any φ P BarKpD,D
1q, the monodromy Lφ is

homotopic to a polyhedral map.

Given a barcode D, we denote by AutpI,ďqD the stabilizer of D, i.e. the group of homeomorphisms of the real line
that fix the endpoints of D and hence act trivially on D. The proof of Proposition 3.12 mainly relies on the following
lemma.

Lemma 3.13. Let φ P BarKpD,D
1q be a simplicial morphism. Then there exists a group homomorphism

φpost : AutpI,ďqD ÞÝÑ AutpI,ďqD1 ,

such that for all α P AutpI,ďqD, φ ˝ α “ φpostpαq ˝ φ. Similarly, there exists a group homomorphism

φpre : AutpI,ďqD1 ÞÝÑ AutpI,ďqD,

such that for all β P AutpI,ďqD1 , φ ˝ φprepβq “ β ˝ φ.

Proof. Let α P AutpI,ďq such that αpDq “ D. Note that, since φ is simplicial, for any index 0 ď i ď dimD, the
following alternative holds:

(a) Either φprxi, xi`1sq “ x1j for some index 0 ď j ď dimD1 ` 1;

(b) Or φ|rxi,xi`1s is a linear bijection onto rx1j , x
1
j`1s for some index 0 ď j ď dimD1.

According to this alternative, we define β :“ φpostpαq on each φprxi, xi`1sq as follows:

(a) Either φprxi, xi`1sq “ x1j , in which case we set βpx1jq :“ x1j ;

(b) Or φ|rxi,xi`1s is a linear bijection onto rx1j , x
1
j`1s, in which case we set β|rx1j ,x1j`1s

:“ φ ˝ α ˝ φ´1
|rxj ,xj`1s

.

Note that in case (b), β is well-defined since αpDq “ D implies that α restricts to a homeomorphism of each line
segment rxi, xi`1s. Moreover, β is defined on the whole unit interval I since φ is surjective. It is then clear that we
have β ˝ φ ˝ α “ φ on each rxi, xi`1s, so that the equality holds on I as desired. Note that β P AutpI,ďqD1 since

βpD1q “ βpφ ˝ αpDqq “ φ.D “ D1.

By construction, the association φpost : α ÞÑ β is a group homomorphism. Conversely, if we are rather given a map
β P AutpI,ďq such that βpD1q “ D1, then we can construct the map α :“ φprepβq satisfying φ ˝ α “ β ˝ φ as follows:

(a) Either φprxi, xi`1sq “ x1j , in which case we set αprxi, xi`1sq :“ Id|rxi,xi`1s;

(b) Or φ|rxi,xi`1s is a linear bijection onto rx1j , x
1
j`1s, in which case we set α|rxi,xi`1s :“ φ´1

|rxi,xi`1s
˝ β ˝ φ.

This construction also yields a group homomorphism φpre : β ÞÑ α.

Proof of Proposition 3.12. The second part of the statement follows directly from Proposition 3.4, which states that any
morphism of barcodes is homotopic to a simplicial map. Henceforth, we fix a simplicial morphism φ P BarKpD,D

1q

and show that the monodromy Lφ is a polyhedral map, i.e. it is affine on each polyhedron and sends polyhedra to
polyhedra surjectively.

Let S Ď FiltK be a filter stratum. We have PH´1
|S pDq – ∆0 ˆ ¨ ¨ ¨ ˆ ∆dimD, where the standard simplex ∆i

corresponds to filter values that are in-between the endpoints xi and xi`1 of D. Since φ is affine over rxi, xi`1s, each
coordinate function Lφ,σ : f P PH´1

|S pDq ÞÑ Lφpfqpσq P R, for σ P K, is affine as well. So the restriction of Lφ to

PH´1
|S pDq is an affine map, as desired.

22



A PREPRINT - APRIL 12, 2022

It remains to show that the image LφpPH´1
|S pDqq equals a polyhedron PH´1

|S1pD
1q. We fix a filter f P PH´1

|S pDq and
denote by S 1 the stratum containing φ ˝ f . Note that, if g P FiltK is a filter, then:

g P LφpPH´1
|S pDqq ðñ Df 1 P PH´1

|S pDq, g “ φ ˝ f 1

ðñ Dα P AutpI,ďqD, g “ φ ˝ pα ˝ fq by the equivariance Lemma 1.5
ðñ Dβ P AutpI,ďqD1 , g “ β ˝ pφ ˝ fq by Lemma 3.13

ðñ g P PH´1
S1 pD

1q. by the equivariance Lemma 1.5

Therefore, LφpPH´1
|S pDqq equals PH´1

|S1pD
1q and in fact LφpPH´1

|S pDqq equals PH´1
|S1pD

1q since the image of a closed
polyhedron via an affine map is again a closed polyhedron.

The following is a consequence of the Propositions 3.4, 3.5 and 3.12:
Corollary 3.14. For any φ P BarKpD,D

1q, the monodromy Lφ is homotopic to a polyhedral map. This polyhedral
map may further be chosen as a composition

Lφk˝¨¨¨˝φ1
“ Lφk

˝ ¨ ¨ ¨ ˝ Lφ1

of monodromies Lφk
that are polyhedral maps between fibers over barcodes that differ by one dimension.

Remark 3.15. The monodromy associated to a simplicial morphism φ acts as a projection map on each polyhe-
dron PH´1

|S pDq of the fiber. Indeed, recalling that PH´1
|S pDq is (isomorphic to) a product ∆0 ˆ ¨ ¨ ¨ ˆ ∆dimD of

standard simplices, we have the commutative diagram

LφpPH´1
|S pDqq

∆0 ˆ ¨ ¨ ¨ ˆ∆dimD ∆0 ˆ ¨ ¨ ¨ ˆ∆dimD{
ś

φpxiq“φpxi`1q
∆i

PH´1
|S pDq

π

Lφ

––

where π is the projection map. In other words, the product of simplices describing the image polyhedron LφpPH´1
|S pDqq

is obtained from the product describing PH´1
|S pDq by collapsing standard simplices ∆i whenever φ collapses the i-th

and i` 1-th endpoint of D.
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4 The space of barcodes is homotopically stratified

In this section, we take a closer look at the stratification of barcodes and show that BarK is homotopically stratified.
This naturally leads us to introducing the entrance path category of barcodes. We observe that the entrance path category
is isomorphic to the homotopy category, hBarK, of barcodes. Recall from Theorem 3.2 that BarK is homotopy
discrete. Similarly, we find that the space of entrance paths between fixed barcodes is contractible.

4.1 Regularity of the stratification of barcodes

The notion of stratification used so far (Definition 1.8) is a very weak one, as it does not impose restrictions on the
neighborhoods of strata. The space of filters FiltK is in fact Whitney stratified, being a polyhedron in IK Ď RK .
However, BarK is the quotient of FiltK induced by PH (see Proposition 1.17), so the regularity of its stratification is
less apparent. We show that the space BarK of barcodes in the image of the persistence map is homotopically stratified
in the sense of Quinn [34]. Stratified coverings over homotopically stratified spaces are classified by the entrance path
category, which we introduce and analyse in the next section in the case of barcodes.

The local neighborhoods in a homotopically stratified spaceX are defined in terms of paths that cross strata in decreasing
order of dimension:
Definition 4.1. Let X be a stratified space. A continuous path γ P XI is an entrance path if for any 0 ď t ď t1 ď 1,
the stratum containing γptq has greater or equal dimension than that containing γpt1q.
Definition 4.2. Let X be a stratified space. An entrance path γ is elementary if it stays in a unique stratum until the
very last moment, that is if γpr0, 1qq belongs to a fixed stratum. Given two strata Xi and Xj , j ă i, the homotopy
link HolinkpXi, Xjq is the space of elementary paths starting in Xi and ending in Xj with the compact open topology.
Definition 4.3. A stratified space X is homotopically stratified if it satisfies the following conditions for any pair of
strata Xi and Xj , where j ă i:

1. The inclusion Xj ãÑ Xi Y Xj is tame, which means that there is a strong deformation retraction of a
neighborhood of Xj in Xi Y Xj onto Xj such that points remain in the same stratum until the very last
moment during the deformation;

2. The evaluation at time t “ 1

ev1 : γ P HolinkpXi, Xjq ÞÝÑ γp1q P Xj

is a fibration.

Note that, in the original formulation of homotopically stratified spaces [34], the strata are not necessarily topological
manifolds, and so we should really refer to the spaces of Definition 4.3 as manifold stratified spaces, as done in [38] for
instance. However, this distinction is irrelevant for our purposes, since the strata in BarK “ PHpFiltKq are manifolds.
Proposition 4.4. The filtered space BarK is homotopically stratified.

Proof. Let B and B1 be two barcode strata with B1 Ď B̄. Recall that the coordinate chart ν extends to a continuous,
surjective, stratum-preserving map ν : ∆dimB Ñ B̄; see Eq. (4). Then, the inverse image ν´1pB1q of B1 is a union
of faces in ∆dimB. Any collection of faces has a neighborhood in ∆dimB that deformation retracts back to itself
such that points in the interior of the simplex are mapped to points in the interior but at the last moment. Pulling
back neighborhoods and composing the deformation retraction with ν, we get the required deformation retraction of a
neighborhood of B1 in B Y B1 onto B1. Therefore, the inclusion B1 ãÑ B Y B1 is tame.

To check that the evaluation map ev1 : γ P HolinkpB,B1q ÞÑ γp1q P B1 is a fibration, it is enough (see e.g. [21]) to find
a section for the map:

pγ̃hqhPr0,1s P HolinkpB,B1qr0,1s ÞÝÑ
`

pev1 ˝ γ̃hqhPr0,1s, γ̃0

˘

P B1r0,1s ˆB1 HolinkpB,B1q,
where B1r0,1s ˆB1 HolinkpB,B1q is the fiber product

B1r0,1s ˆB1 HolinkpB,B1q :“
 

pγ, γ̃q P B1r0,1s ˆHolinkpB,B1q | γp0q “ γ̃p1q
(

.

Using the coordinate chart ν : ∆̊dimB1 –
ÝÑ B1, we may view a path γ : h P r0, 1s ÞÑ γphq P B1 via its coordinates 0 ă

xγ1phq ă ¨ ¨ ¨ ă xγdimB1phq ă 1. Given 0 ď h ď 1, let φγh P AutpI,ďq be the map that sends the endpoint values xγi p0q
to xγi phq, and is extended linearly on each line segment rxγi p0q, x

γ
i`1p0qs. Clearly, the association pγ, hq ÞÑ φγh is

continuous, and we have γphq “ φγh.γp0q. Then, the map

pγ, γ̃q P B1r0,1s ˆB1 HolinkpB,B1q ÞÝÑ ph ÞÑ φγh.γ̃q P HolinkpB,B1qr0,1s

is the desired section.
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4.2 The entrance path category of barcodes

The entrance path category is the suitable generalisation of the fundamental groupoïd for stratified spaces where ordinary
paths are replaced by entrance paths between points; see [35] for the original constructions.
Definition 4.5. Let X be a stratified space. The entrance path category of X is EntpXq :“ hPathďpXq,
where PathďpXq is the topologically enriched category with X as the set of objects and spaces of entrance paths
equipped with the compact open topology as morphisms. In other words, EntpXq has the points of X as objects and
the homotopy classes of entrance paths as morphisms.
Remark 4.6. In order to make PathďpXq into a category where concatenation of paths defines a strictly associative
composition of morphisms, paths of all positive lengths need to be allowed. This is analogous to replacing loop spaces
by Moore loop spaces and the resulting morphism spaces are homotopy equivalent. In particular the definition of
EntpXq is not affected. We will ignore this subtlety in what follows.

Let φ in BarK be a morphism between barcodes D and D1. Define the path:

γφptq :“ ptφ` p1´ tqIdq.D.

For times t ă 1, tφ` p1´ tqId is a homeomorphism of the unit interval and so γφptq stays in the stratum containing D.
Hence, γφptq is in fact an elementary entrance path. It is then clear that the association

φ P BarKpD,D
1q ÞÝÑ γφ P PathďpBarKqpD,D

1q

is continuous.
Proposition 4.7. The association rφs ÞÑ rγφs is functorial and induces an isomorphism of categories:

hBarK – EntpBarKq.

Before proving this, we first characterize when elementary entrance paths are homotopic, in a similar fashion to
Lemma 3.7 for morphisms of barcodes. Recall that an entrance path γ from D to D1 is elementary if it stays in
a unique stratum until the very last moment, that is if γpr0, 1qq belongs to the stratum BD. Using the coordinate
chart ν : ∆̊dimD –

ÝÑ BD, we may view γ|r0,1q via its coordinates 0 ă xγ1ptq ă ¨ ¨ ¨ ă xγdimDptq ă 1, 0 ď t ă 1.
Alternatively, for each interval pb, dq P D, there is a continuously evolving interval pbγptq, dγptqq starting at pb, dq,
0 ď t ă 1, and together the intervals pbγptq, dγptqq form the barcode γptq.
Lemma 4.8. Let γ0, γ1 P PathďpBarKqpD,D

1q be elementary entrance paths. Then the following are equivalent:

(i) The two entrance paths are homotopic through elementary entrance paths.

(ii) For all pb, dq P D and pb1, d1q P D1, we have limtÑ1´pb
γ0ptq, dγ0ptqq “ pb1, d1q if and only if

limtÑ1´pb
γ1ptq, dγ1ptqq “ pb1, d1q.

(iii) For all pb, dq P D and pb1, d1q P D1, we have limtÑ1´pd
γ0ptq ´ bγ0ptqq “ 0 if and only if limtÑ1´pd

γ1ptq ´
bγ1ptqq “ 0.

Proof. rpiq ñ piiq and piiiqs: Let γh be a homotopy between γ0 and γ1 through entrance paths, and let h P r0, 1s.
Using Proposition 1.4, we can partition the intervals in D into sets Dγh

paq and Dγh
pbq as follows:

(a) For each interval pb1, d1q P D1, there is a unique pb, dq P D for which limtÑ1´pb
γhptq, dγhptqq “ pb1, d1q;

(b) For all other intervals pb, dq P D, we have limtÑ1´pb
γhptq ´ dγhptqq “ 0.

By continuity, the classification remains constant along the homotopy h ÞÑ γh, i.e. Dγh
paq and Dγh

pbq are the same for
all 0 ď h ď 1.

rpiiq ñ piiiqs: By assumption Dγ0
paq “ Dγ1

paq, hence Dγ0
pbq “ Dγ1

pbq.

rpiiiq ñ piiqs: By assumption Dγ0
pbq “ Dγ1

pbq, hence Dγ0
paq “ Dγ1

paq “: Dpaq. Then, γ0 and γ1 induce bijections from Dpaq
to the set of intervals in D1. Since γ0 and γ1 are entrance paths, these bijections are monotonic with respect to the
endpoint values. So they are in fact the same bijections.

rpiiq and piiiq ñ piqs: We define a homotopy h ÞÑ γh between the restrictions of γ0 and γ1 to r0, 1q by interpolating
the coordinates:

@0 ď t ă 1, @1 ď i ď dimD, xγhi ptq :“ hxγ1i ptq ` p1´ hqx
γ0
i ptq.
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For each interval pb, dq P D, we then have

@0 ď t ă 1, pbγhptq, dγhptqq “ phbγ1ptq ` p1´ hqbγ0ptq, hdγ1ptq ` p1´ hqdγ0ptqq.

Since Dγ0
pbq “ Dγ1

pbq and Dγ0
paq “ Dγ1

paq, we have limtÑ1´pb
γhptq, dγhptqq “ pb1, d1q (resp. limtÑ1´ d

γhptq´ bγhptq “ 0)
if and only if limtÑ1´pb

γ0ptq, dγ0ptqq “ pb1, d1q (resp. limtÑ1´ d
γ0ptq ´ bγ0ptq “ 0). Therefore,

@h P r0, 1s, lim
tÑ1´

γhptq “ D1,

hence the homotopy h ÞÑ γh extends to a homotopy between γ0 and γ1 on the whole unit interval.

Proof of Proposition 4.7. The functoriality of rφs ÞÑ rγφs amounts to showing that if φ P BarKpD,D
1q and ψ P

BarKpD
1, D2q are two morphisms, then the entrance paths γψ˝φ and γψ.γφ are homotopic. For t P r0, 1s, let φt

denote the interpolated map p1´ tqId` tφ, so that γφptq “ φt.D, γψptq “ ψt.D
1 and γψ˝φptq “ pψ ˝ φqt.D. Besides,

the concatenated path γψ.γφptq equals φ2t.D for t ď 1
2 and ψ2t´1.D

1 “ ψ2t´1.pφ.Dq for t ě 1
2 . A homotopy

between γψ˝φ and γψ.γφ can then be defined as:

Hph, tq :“ rhφ2t ` p1´ hqpψ ˝ φqts.D for t ď
1

2
,

and

Hph, tq :“ rhψ2t´1 ˝ φ` p1´ hqpψ ˝ φqts.D for t ě
1

2
.

Hence, we obtain a functor from hBarK to EntpBarKq, which is the identity on objects. Given barcodes D,D1, we
show that this functor gives a bijection hBarKpD,D

1q
–
ÝÑ EntpBarKqpD,D

1q.

Let γ be an elementary entrance path from D to D1. We construct a morphism φ from D to D1 using the classification
of the maps pbγptq, dγptqq:

(a) For each interval pb1, d1q P D1, there is a unique pb, dq P D for which limtÑ1´pb
γptq, dγptqq “ pb1, d1q. We

then set φpbq :“ b1 and φpdq :“ d1;

(b) For all other intervals pb, dq P D, we have limtÑ1´pb
γptq ´ dγptqq “ 0. We then set φpbq “ φpdq to be an

arbitrary value such that φ remains non-decreasing.

We extend φ to a non-decreasing map of the unit interval arbitrarily. Since γp1q “ D1, we have φ.D “ D1 by
construction. Besides, the interpolated path γφptq “ rtφ ` p1 ´ tqIds.D is an elementary entrance path beween D
and D1, which satisfies the (i) and (ii) of Lemma 4.8 with respect to γ, hence is homotopic to γ. More generally,
an arbitrary entrance path γ from D to D1 is homotopic to a finite concatenation of elementary paths. In turn, γ is
homotopic to an interpolated morphism γφ by applying the previous argument to each elementary path. Therefore, the
map rφs P hBarKpD,D

1q ÞÑ rγφs P EntpBarKq is surjective.

Besides, comparing the (ii) of Lemma 3.7 with the (ii) of Lemma 4.8, we see that if two morphisms between D
and D1 induce interpolated paths that are homotopic, then they must be homotopic. Consequently, the map rφs P
hBarKpD,D

1q ÞÑ rγφs P EntpBarKq is injective.

Remark 4.9. It is well-known that coverings over a topological space X satisfying mild properties are classified by the
fundamental groupoïd of X . When X is stratified, it is natural to consider stratified coverings, i.e. maps restricting
to coverings over each individual stratum. If X is homotopically stratified with locally simply connected and locally
connected strata, the stratified coverings which are either local homeomorphisms or branched covers are classified by
the entrance path category of X [39]. That is, functors from EntpXq to Set functorially give rise to such stratified
coverings, in fact also to constructible cosheaves, and conversely.1 Although in the case of barcodes the inverse
image PH´1 is valued in hTop, we have a natural set valued functor:

EntpBarKq
PH´1

// hTop
π0 // Set.

We next prove an analogue of Theorem 3.2 for entrance paths.

1See [14] for similar classifications of functors over EntpXq when X is conically stratified, and [35] for some 2-categorical
equivalences.
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Proposition 4.10. For any two barcodes D,D1 in BarK , the space of morphisms PathďpBarKqpD,D
1q has finitely

many path connected components each of which is contractible. In other words, the category PathďpBarKq is
homotopy discrete, i.e. PathďpBarKqpD,D

1q » hPathďpBarKqpD,D
1q.

Proof. Let D and D1 be two barcodes, and let HolinkpD,D1q be the space of elementary entrance paths from D
to D1. For homotopically stratified metric spaces, the space of entrance paths and that of elementary entrance paths are
homotopy equivalent [27, Theorem 4.9], from which we deduce that:

PathďpBarKqpD,D
1q » HolinkpD,D1q.

The proof of the statement then follows from Lemma 4.8. In more detail, let Ω be a path connected component
in HolinkpD,D1q, and let γ0 P Ω. Recall that we can partition the intervals in D into sets Dγ0

paq and Dγ0
pbq as follows:

(a) For each interval pb1, d1q P D1, there is a unique pb, dq P D for which limtÑ1´pb
γ0ptq, dγ0ptqq “ pb1, d1q;

(b) For all other intervals pb, dq P D, we have limtÑ1´pb
γ0ptq ´ dγ0ptqq “ 0.

From Lemma 4.8, any other path γ P Ω satisfies Dγ
paq “ Dγ0

paq and Dγ
pbq “ Dγ0

pbq. Define r : Ωˆr0, 1sˆ r0, 1q Ñ BarK
by:

r : pγ, h, tq P Ωˆ r0, 1s ˆ r0, 1q ÞÝÑ
 

pp1´ hqbγptq ` hbγ0ptq, p1´ hqdγptq ` hdγ0ptqq
(

pb,dqPD
P BD Ď BarK .

We can continuously extend r at time t “ 1 by rpγ, h, 1q :“ D1. We then get a deformation retraction

R : pγ, hq P Ωˆ r0, 1s ÞÝÑ rpγ, h, .q P Ω

of Ω onto tγ0u.

Combining Proposition 4.7 and 4.10 we can summarise our results in this section with the following.

Corollary 4.11. For any two barcodes D,D1 P BarK we have

PathďpBarKqpD,D
1q » hPathďpBarKqpD,D

1q “ EntpBarKqpD,D
1q – hBarKpD,D

1q » BarKpD,D
1q,

and hence the natural weak equivalences of categories

PathďpBarKq
»
ÝÑ hPathďpBarKq “ EntpBarKq

–
ÐÝ hBarK

»
ÐÝ BarK.

5 Variations of the fiber problem

We adapt our analysis to two further situations of interest, namely when we remove the constraint that filters and
barcodes take value in the unit interval, and when we restrict PH to the subspace of filters determined by their values on
vertices. Finally, we point out that the action of the symmetries of K on the filters restricts to the fibers.

5.1 The case of unbounded filters and barcodes

In the previous sections, the values of filters and the interval endpoints of barcodes were constrained to lie in the unit
interval. Here we briefly outline how our analysis can be adapted when we consider the unbounded case and replace the
interval I by the real line R. We denote by FiltpRqK the filter functions with unrestricted real values and by BarpRq the
space of finite barcodes with unrestricted endpoints. As before, persistent homology defines a map

PH : FiltpRqK ÝÑ BarpRq.

Let AutpR,ďq be the group of continuous automorphisms of the ordered real line that are the identity outside a compact
set. Similarly let EndpR,ďq be the monoid of continuous order preserving maps of the real line that are the identity
outside a compact set. Both spaces then act on the extended spaces of filters and barcodes. The proof of Lemma 1.5
generalises to show that the persistence map above is equivariant with respect to these extended actions. The actions are
continuous as in Proposition 1.7 when we equip AutpR,ďq and EndpR,ďq with the L8 topology. Using the action
of AutpR,ďq one can construct stratifications of filter and barcode spaces such that the AutpR,ďq-orbits are the strata
and the analogues of Propositions 1.9 and 1.12 hold.
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Indeed, most of the results and their proofs can easily be adapted with the caveat that fibers no longer have to be
compact. Thus, item (a) of Theorem 2.2 needs to be reinterpreted: The polyhedron in the fiber are not necessarily
products of closed standard simplices but instead we have

PH´1
|S pDq – ∆1 ˆ ¨ ¨ ¨ ˆ∆dimB´1 ˆ∆1dimB,

where the last term may be a simplex missing its last face, i.e. ∆1dimB may be the closed i-simplex ∆i or of the form:

∆i
8 :“ t0 ď x1 ď ¨ ¨ ¨ ď xi ă 8u.

Modulo this subtlety, Theorems 2.2 and Proposition 3.12 hold also in the unbounded case we consider here, and PH
is again a stratified fiber bundle whose fibers are (possibly unbounded) polyhedra. The proofs of these results in the
unbounded situation do not present additional difficulties.

Next we provide a necessary and sufficient criterion for the simplicial complex K that ensures that all the fibers of PH
are bounded.

Definition 5.1. A subset L Ď K is k-removable, or simply removable, if KzL is a subcomplex of K and the
inclusion KzL ãÑ K induces an isomorphism on (standard) homology with k-coefficients. K is said to be k-essential,
or simply essential, if it has no removable subsets.

For instance, any pair pσ, σ1q where σ1 has σ as its only co-face provides an example of a removable subset for any k.
This is an elementary collapse familiar from simple homotopy theory. More elaborate examples include the wedge
product K _ A of two simplicial complexes K and A, where A is k-acyclic, i.e. A has trivial reduced (ordinary)
homology with k coefficients. Then L “ Azt˚u is removable. A rich source of such A are the classifying spaces of
perfect groups, or the classifying spaces of finite groups when k is of characteristic zero.

Proposition 5.2. The fibers of the persistence map PH are all compact if and only if the complex K is essential.

Proof. If K is not essential, it has a removable subset L Ď K. Given a partial filter f : KzLÑ R and a real value x
with x ě maxσPKzL fpσq, f can be extended to a filter fx on all of K by assigning the common value x to all the
simplices in L. Thus the fiber of D “ PHpfxq contains the open half line tfx |x P rmaxσPKzL fpσq,8qu and is hence
not compact.

Conversely, if PH has a non-compact fiber over some barcode D, it means there exists an f P PH´1
pDq attaining

values higher than the largest (bounded) endpoint maxpDq of D. Therefore the set L of simplices on which f takes
value larger than maxpDq is removable.

Next we will exhibit a family of simplicial complexes that are essential. We say that K is a triangulated (oriented)
manifold if its geometric realisation |K| is homeomorphic to a closed (orientable) manifold. Note that this manifold
will necessarily be compact since K is finite.

Proposition 5.3. Let K be a triangulated manifold. If either the field of coefficients k is of characteristic 2 or K is
oriented, then K is essential.

Proof. Without loss of generality, we may assume that K is connected and of dimension d. Then any filter f attains its
maximum value on a top dimensional simplex, since all lower-dimensional simplices have co-faces. By our assumptions,
we have HdpKq – k and a generator of this top dimensional homology class is the sum of all top dimensional simplices
of K (with appropriate signs). At the level of barcodes, this means that there is an infinite interval in homological
degree d starting at maxσPK fpσq. Therefore the fiber of the persistence map over any barcode D is bounded, and since
it is closed by continuity of PH, it is also compact and hence essential by the previous result.

The converse of Proposition 5.3 is false as can be seen from the following simple counterexample.

Example 5.4. Let K be the wedge product of two triangles. So K has five vertices and six 1-simplices. Its first
homology group is of rank 2 but any subcomplex will have at most rank 1. Thus K is essential, but K is not a manifold.

The point-set topology is a little delicate when working with the unbounded real line R instead of the compact interval I.
This is part of the reason why we chose to work with I for the main part of our paper. For example, Proposition 1.17
cannot be adapted to the unbounded situation: If the fibers of PH are not compact then the bottleneck topology and the
quotient topology induced by PH do not necessarily agree on the image BarKpRq as Example 5.5 below shows.
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Example 5.5. Let us consider again the Example 1.19 of the complex K representing the unit interval with ver-
tices a, b and 1-simplex σ. As a set BarKpRq can be identified (as in Example 1.19) with the 3-simplex ∆13 “
tpx1, x2, x3q,´8 ă x1 ď x2 ď x3 ă 8u with two missing faces, where in addition the 2-dimensional face corre-
sponding to ´8 ă x1 ă x2 “ x3 ă 8 is collapsed to the line segment ´8 ă x1 “ x2 “ x3 ă 8. Consider the
set

U :“
 

px1, x2, x3q |x3 ´ x2 ă e´x2
(

Ď BarKpRq

of barcodes whose unique bounded bar px2, x3q has length less than e´x2 . We then have

PH´1
pUq :“

 

f P FiltKpRq | fpσq ´maxpfpaq, fpbqq ă e´maxpfpaq,fpbqq
(

Ď FiltKpRq Ď R3,

which is open in FiltKpRq for the usual topology induced by the }.}8-metric. Therefore U is an open set in the quotient
topology. However it does not contain any bottleneck ball, hence is not an open set in the bottleneck topology.

Furthermore, the choice of topology on EndpR,ďq and AutpR,ďq matters in the unbounded situation: Replacing
the L8 topology by the compact open topology results in the actions not being (sequentially) continuous as can be seen
in the following example.
Example 5.6. Consider the sequence of barcodes Dn containing a single interval pn, n ` 2´nq. The sequence Dn

converges to the empty diagram DH in the bottleneck topology. In addition, let φn : R Ñ R be the map such
that φnpnq “ n, φnpn` 2´nq “ n` 1, φn|rn,n`2´ns and φn|rn`2´n,n`2s are linear, and outside rn, n` 2s φn is the
identity. Then the sequence φn converges to the identity map of the real line in the compact open topology. If the action
were continuous in both variables, the sequence φn.Dn would converge to the empty diagram Id.DH “ DH. However,
each of the barcodes φn.Dn contains a unique interval pn, n` 1q, and the sequence does therefore not converge in the
bottleneck topology.

However, in our analysis, we have never needed to make full use of the continuity of the action of EndpI,ďq. Instead,
it is enough to ensure that the action is continuous w.r.t. the choice of φ. Namely, fixing D P Bar, the map
φ P EndpI,ďq ÞÑ φ.D P Bar is continuous. In the current unbounded situation, it can also be proven that the map
φ P EndpR,ďq ÞÑ φ.D P BarpRq is continuous, where we consider the compact open topology on EndpR,ďq. This is
precisely what is needed to carry the analysis through in a similar fashion.

Finally, if we do not impose that maps in EndpR,ďq and AutpR,ďq equal the identity outside a compact set, then the
analysis breaks down in the L8 topology. For instance, straight line interpolations on which our results rely, would not
always give continuous paths.

5.2 The case of lower star filters

The lower star filtration form an interesting subspace of the space of all filters on K and one might want to restrict one’s
attention to these as for example in [15]. We summarise briefly how our analysis can be adapted and compared to this
case.

Let K be a finite simplicial complex with vertex set V. A lower star filter on K is a filter f P FiltK such that for any
simplex σ P K:

fpσq “ max
vPσ

fpvq.

Being determined by their values on vertices, such filters offer many advantages in practice. Any function f : V Ñ I
can be extended uniquely to a lower star filter. Hence, the subspace LowK Ď FiltK of lower star filters is canonically
isomorphic to IV. We denote its image under the persistence map PH by BarLow

K .

The actions of AutpI,ďq and EndpI,ďq by post-composition restrict to IV and, by the equivariance of PH, also
to BarLow

K . As the strata are given by AutpI,ďq-orbits, we see that both LowK and BarLow
K are sub-stratified spaces,

each consisting of a subcollection of full strata from FiltK and BarK respectively. Thus PH restricts to a strongly
stratified map

PH|Low : LowK ÝÑ BarLow
K

and hence satisfies similar properties as PH. In particular, the fiber PH´1
LowpDq has again the structure of a polyhedral

complex and the analogue of Theorem 2.2 holds.

The space BarLow
K also gives rise to a subcategory BarK

Low of BarK. We note that this is a full subcategory. Thus
Theorem 3.2 and Proposition 3.12 also hold for this subcategory. In particular, BarK

Low is homotopy discrete. As
before, we can associate to morphisms in BarK

Low monodromies between fibers, turning the inverse image into a
functor

PH´1
|Low : BarK

Low
ÝÑ Top.
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Up to homotopy, the monodromies between fibers are again polyhedral maps.
Remark 5.7. Vice-versa, we may also consider the space of filters on K as a subspace of the space of lower star filters
on its barycentric subdivision K̂. Recall that the vertices of K̂ are the simplices of K. Thus f P FiltK uniquely gives
rise to f̂ P LowK̂ via

f̂pσ̂q :“ fpσq,

where σ̂ is the vertex of K̂ corresponding to the simplex σ in K. This way, we get a nested sequence of spaces:

LowK Ă FiltK Ă LowK̂ .

It is a straightforward exercise to show that PHpfq “ PHpf̂q. Thus we also have a nested sequence of barcode spaces:

BarLow
K Ă BarK Ă BarLow

K̂
.

All these inclusions are also EndpI,ďq-equivariant and PH defines an equivariant map between these nested sequences.
Thus, by similar arguments as before, PH and the inclusions are compatible with the stratifications in the strongest
sense giving rise to a sequence of full, homotopy discrete subcategories

BarK
Low

Ă BarK Ă BarK̂
Low.

It would be interesting to analyse how the fibers of PH, or more generally the fiber functors on these three categories
are related.

5.3 Symmetries restricted to fibers

In this brief section we examine how symmetries of the simplicial complex restrict to the fibers of the persistence map.
For simplicity we return to filters and barcodes in the unit interval I, but the analysis can be carried out in the unbounded
situation or when restricting to lower star filters in the same way.

Let GpKq be the group of isomorphisms of the simplicial complex K. Then GpKq can be identified as the subgroup of
the group of symmetries SympK0q of the vertices K0 which consists of all those s that map a subset σ P K to a subset
spσq P K. Pre-composition with the inverse induces a left action of GpKq on the space FiltK of filters via

s.f :“ f ˝ s´1.

Thus f and s.f take the same values and furthermore, if S Ď FiltK is a filter stratum then s.S is another stratum of the
same dimension, dim s.S “ dimS, and s maps S to spSq via an affine isomorphism.
Proposition 5.8. For all f P FiltK and all s P GpKq we have

PHpfq “ PHps.fq.

Equivalently, the action of GpKq on FiltK restricts to the fiber PH´1
pDq for every D P BarK . Furthermore, GpKq

acts through maps of polyhedra on PH´1
pDq.

Proof. The symmetry s maps the sublevel-set filtration of f isomorphically to that of s.f . Thus the associated
persistence modules are isomorphic and so the two resulting barcodes in BarK are the same. Hence, f and s.f are
in the same fiber. Since s defines an affine isomorphism from a stratum S to the stratum s.S and preserves fibers, it
restricts to an affine isomorphism from PH´1

pDq X S to PH´1
pDq X spSq for any barcode D P BarK .

Proposition 5.9. Given two barcodes D,D1 and a morphism φ P BarKpD,D
1q, the monodromy Lφ : PH´1

pDq Ñ

PH´1
pD1q is GpKq-equivariant.

Proof. Let f P PH´1
pDq, s P GpKq and σ P K. Then the statement of the proposition follows from

Lφps.fqpσq “ pφ ˝ s.fqpσq “ φpfps´1pσqqq “ Lφpfqps´1pσqq “ s.Lφpfqpσq.
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A A detailed example: the fiber of the persistence map over the triangle

In this section we illustrate our theory developed so far on an example. The simplest non-contractible simplicial
complex K is a triangle. We denote its vertices by a, b, c and its edges by ab, ac, bc.

a b

c

ab

ac bc

In this simple case, a filter is any map f : K Ñ I such that its value on an edge is greater (or equal) than the value on
the endpoints of this edge. By the elder rule and since K is connected, minpfpaq, fpbq, fpcqq is the left endpoint of
the unique infinite interval in PH0pfq. For similar reasons, PH1pfq contains a unique unbounded interval with left
endpoint given by maxpfpabq, fpbcq, fpacqq.

In addition, the example of the triangle has interesting symmetries. The symmetries of the triangle GpKq “ D3 is the
dihedral group which can also be identified with the symmetric group Σ3, the set of bijections of the set ta, b, cu of
vertices of K.

Our goal in this section is to determine all the barcode strata and the corresponding fibers, see Figure 6; describe the
action of GpKq » D3 on the fibers, and compute the monodromies between the non-discrete fibers.

Summary of the results:

1. In section A.1 we compute all 34 barcode strata in the image BarK “ PHpFiltKq;
2. In section A.2 we compute the fibers of PH over the distinct barcode strata. We find only five strata with fibers

that are not discrete. By Theorem 2.2, these fibers are polyhedral complexes, and we exhibit the polyhedra
in RK making up the complexes. The results in section 5.3 guarantee that GpKq acts on each fiber, and we
describe this action on the fibers for these five barcode strata;

3. Finally, by the results in section 3.2, the closure containment relations between barcode strata yield mon-
odromies between fibers, which up to homotopy are polyhedral maps. We describe the monodromies between
non-discrete fibers in section A.3.

This simple example of the triangle shows that the fibers of the persistence map can be topologically distinct from
each other. Furthermore, the topology of the fibers can also be more complex than that of the underlying simplicial
complex K, especially for low dimensional strata in the space of barcodes. Similar observations hold when restricting
the fibers to the subspace LowK of lower star filters, as we detail in section A.4. We contrast this with the case studied
in [15] where K is a triangulation of the interval r0, 1s and lower star filters are considered. In that case the fibers of the
persistence map are all disjoint unions of contractible sets. In particular, our example of the triangle shows that the fiber
of the persistence map does not have to be a union of contractible sets.
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Figure 6: Each stratum is represented by one of its barcodes, where the blue interval is the one corresponding to
the degree 1 homology of the triangle and the others correspond to degree 0 homology. Strata come with a label,
for instance B2

0 , whose subscript gives the codimension and the superscript allows to enumerate strata of a given
codimension. The homeomorphism type of the fiber of PH over each stratum is given in green. For instance, the
fiber PH´1

pB2
1q is finite and consists of 12 distinct filters. The blue boxes highlight the five strata with non-discrete

fibers.

A.1 Computation of BarK and its strata

For notational convenience, we replace the unit interval with a bigger interval, I :“ r´10, 10s. This allows considering
barcodes with only integer valued endpoints. In addition, we restrict ourselves to strata of barcodes with endpoints
strictly in p´10, 10q, since they completely determine strata (and their fibers) where the endpoints ´10 and 10 are
allowed.
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The top dimensional filter strata of the space of filters FiltK correspond to injective filters and can equivalently be
thought of as orderings of the simplices in the triangle, where an edge must appear after its vertices. This allows us to
count these top dimensional strata. Namely, considering the case where the vertices of the triangle appear before all the
edges, and separately the case where one edge appears before the last vertex, we get the following count of possible
orderings and hence

3!ˆ 3!` 3ˆ 2ˆ 1ˆ 1ˆ 2! “ 36` 12 “ 48 top dimensional filter strata.

The top dimensional barcode strata in the image BarK “ PHpFiltKq, by Proposition 1.18, are given by the image
of the top dimensional filter strata. We argue that there are precisely three: From section 5.3, the persistence map
is GpKq-equivariant, so we may restrict ourselves to those filter strata, viewed as orderings, for which the vertex a is
first, fpaq “ 0, followed by b, fpbq “ 1. The following simplex must either be ab or c. In the first case, fpabq “ 2, all
filters satisfying this yield the same barcode rtp0,8q, p1, 2q, p3, 4qu, tp5,8qus. We denote by B1

0 the corresponding
codimension 0 barcode stratum. In the second case, fpcq “ 2, we get two other barcodes depending on whether ab is
the next simplex in the ordering or not, rtp0,8q, p1, 3q, p2, 4qu, tp5,8qus and rtp0,8q, p1, 4q, p2, 3qu, tp5,8qus. We
denote the corresponding barcode strata by B2

0 and B3
0 .

The list of all barcode strata in BarK , by Proposition 1.18, can be derived from the three top dimensional barcode
strata B1

0 , B2
0 and B3

0 by collapsing their interval endpoints. We draw all the 34 resulting strata in Figure 6, sorted by
codimension, and give them labels that are used in the rest of the section.

A.2 Computation of fibers and the action of GpKq

The fibers over the various barcode strata in the image of the persistence map, whose computations are detailed in this
section, are summarised in Figure 6 (in green in the top right corner of each box).

Strata with discrete fibers. Most of the barcode strata have finite fibers. For instance, the unique lowest-dimensional
stratum is the one labelled by B5: there only the two essential homological features are present, and appear at the
same time. This implies that all the simplices of the triangle must appear at a given time, and therefore the fiber of
PH over B5 consists of a unique constant function. This agrees with the prediction of Proposition 2.7 that the fiber is
contractible.

The barcode strata with maximal number of bounded intervals, that is 2 such intervals, have zero bounded deficit
(Def. 1.2). There are 28 such strata. By Proposition 2.5, their fibers are discrete. For instance, a simple counting
argument gives discrete fibers for the top dimensional barcode strata B1

0 , B2
0 and B3

0 , with 12, 12, and 24 points in their
fibers respectively. More generally, Proposition 2.5 upper-bounds the dimension of the fibers over arbitrary strata by
their bounded deficit. In this example, note that the bounded deficit in fact equals the dimension of the fiber in all cases,
except in the degenerate case of the stratum B5. In the remainder of this section we compute explicitly the fibers over
the five barcode strata that have fibers of dimension greater than 0.

Stratum B1
2 . We take a representative barcode D :“ rtpb1,8q, pb2, d2qu, tpb3,8qus P Bar2, where b1 ă b2 ă d2 ă

b3, of the codimension 2 stratum B1
2 .

Without loss of generality, pb1, b2, d2, b3q “ p0, 1, 2, 3q. We use the identification of a filter f with the vector
pfpaq, fpbq, fpcq, fpabq, fpacq, fpbcqq P I6. If f yields barcode D, then:

• There is a vertex v (resp. an edge e) at which f attains its minimum (resp. maximum) value, equal to 0 (resp.
3).

• There is another vertex v1 and edge e1 such that fpv1q, fpe1q “ 1, 2.
• The remaining vertex and incident edge have same value 0 ď t ď 3.

Let us assume that the vertex a should create the first connected component, while the vertex c should create the second
one. Then the vertex b must appear at the same time as an edge connecting b to either a or c. If b appears at the
same time as ab, and if we wish that bc is the edge closing the loop, we get a 1-simplex tp0, t, 1, t, 2, 3qu0ďtď3 in the
fiber, which we break into three 1-simplices that lie in (the closures of) different filter strata: tp0, t, 1, t, 2, 3qu0ďtď1,
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tp0, t, 1, t, 2, 3qu1ďtď2 and tp0, t, 1, t, 2, 3qu2ďtď3. If rather the edge ac closes the loop of the triangle, we get the
two sets tp0, t, 1, t, 3, 2qu1ďtď2 and tp0, t, 1, t, 3, 2qu0ďtď1 in the fiber. Now, let us assume that b appears at the same
time as bc, which imposes that b appears after time 1. Then if ab closes the loop of the triangle, we get the two sets
tp0, t, 1, 3, 2, tqu1ďtď2 and tp0, t, 1, 3, 2, tqu2ďtď3 in the fiber, while if we wish that the edge ac closes this loop, we get
the unique set tp0, t, 1, 2, 3, tqu1ďtď2 in the fiber. All in all, we have gathered 8 embeddings of the standard 1-simplex
in I6. By symmetry, if we vary the choice of two vertices that create the first two connected components, we get 6
analogous collections of 8 embeddings of the standard 1-simplex described above, which together cover the fiber. This
provides a description of the fiber in terms of a graph, whose incidence structure is explicited in Fig. 7. In particular, the
fiber of PH over D is homeomorphic to S1 \ S1.

We further depitct the action of GpKq on PH´1
pDq in Fig. 7. We consider the cyclic map pa, b, cq ÞÑ pb, c, aq

and the elementary transposition pa, b, cq ÞÑ pb, a, cq as generators. We see that the cyclic map preserves the two
connected components of the fiber S1 \ S1, whereas the elementary transposition swaps them. More generally, even
permutations g P GpKq preserve the connected components of the fiber, while odd permutations exchange them.

Figure 7: The fiber of the barcode in stratum B1
2 . We observe two connected components. Each edge represents an

embedding of the standard 1-simplex in the fiber, oriented with an arrow toward increasing values of the parameter t.
The six colors correspond to the six possible choices of two vertices responsible for the appearance of the first two
connected components. If a and c (resp. a and b, b and a, b and c, c and a, c and b) create these components, we color
the edge in green (resp. red, black, blue, purple and brown). The cyclic symmetry pa, b, cq ÞÑ pb, c, aq acts on the
fiber by rotating each connected component by an angle of 2π

3 , as depicted by the dotted arrows. The transposition
pa, b, cq ÞÑ pb, a, cq acts by swapping the connected components by reflecting along the horizontal axis.
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Stratum B2
3 . Fixing two endpoints via d2 “ b3 in the stratum B1

2 , we get the stratum B2
3 represented below.

As a representative of this stratum, we consider the barcode D “ rtp0,8q, p1, 2qu, tp2,8qus P Bar2. The fiber of D
can be obtained similarly as in the previous case, that is by providing a cover of the fiber by embeddings of the 1-simplex
in I6. Imposing that vertices a and then c should be responsible for the appearance of the first two components, we
get the sets tp0, t, 1, t, 2, 2qu0ďtď1, tp0, t, 1, t, 2, 2qu1ďtď2 and tp0, t, 1, 2, 2, tqu1ďtď2 in the fiber. By symmetry in the
choice of these two vertices, we get a total of 6ˆ 3 embeddings of the standard 1-simplex that together cover the fiber.
This decomposition describes the fiber as a graph, which is described in Fig 8 and is homeomorphic to S1. The action
of the symmetries on the circle is described in the figure as well.

Figure 8: The fiber of the barcode in stratum B2
3 . Each edge represents an embedding of the standard 1-simplex in the

fiber, oriented toward increasing values of the parameter t. The six colors correspond to the six possible choices of two
vertices responsible for the appearance of the first two connected components in the barcode. The coloring convention
is the same as in case B1

2 , Fig 7. The cyclic permutation of the triangle acts as a rotation by an angle of 2π
3 oriented

counter-clockwise, while the elementary transposition acts as the horizontal symmetry of the hexagon.

Stratum B1
3 . A representative of the stratum B1

3 is D :“ rtp0,8q, p0, 1qu, tp2,8qus P Bar2.

We describe the fiber with an explicit cover by embeddings of the 1-simplex in I6. Imposing that vertices a and c should
be responsible for the appearance of the first two components, we get the following embeddings:
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• tp0, t, 0, 1, 2, tqu0ďtď1, tp0, t, 0, 2, 1, tqu0ďtď1, tp0, t, 0, t, 1, 2qu0ďtď1, tp0, t, 0, t, 2, 1qu0ďtď1,tp0, t, 0, t, 1, 2qu1ďtď2

and tp0, t, 0, 2, 1, tqu1ďtď2.

By symmetry in the choice of these two vertices, we get a total of 3ˆ 6 embeddings of the standard 1-simplex that
together cover the fiber. By inspecting adjacency relations, this decomposition describes the fiber as a graph isomorphic
to the graph of the fiber over B2

3 . In particular, the fiber is homeomorphic to S1.

Stratum B1
4 . Let D “ rtpb1,8qu, tpb2,8qus P Bar2 (where b1 ă b2) be a barcode in the stratum B1

4 .

We may set b1 “ 0 and b2 “ 1 for simplicity. If a filter f : K Ñ I yields the barcode D, then there are two
pairs pvi, eiqi“1,2 of vertices and edges such that 0 ď fpeiq “ fpviq “: ti ď 1 and the remaining vertex v0 and edge e0

realize the minimum 0 and maximum 1 of f respectively.

For a fixed choice of pvi, eiqi“0,1,2 as above, the two parameters t1 ď t2 describe a 2-simplex. This 2-simplex
corresponds to one of the top dimensional polyhedron in the fiber of PH over D, which we know is a polyhedral
complex from Theorem 2.2. To count and describe these 2-simplices, fix v0, say v0 “ a. Then we distinguish between
the two cases: (i) where e0 contains v0 and (ii) where e0 does not contain v0. In case (i), if we choose e0 “ ac,
then b and ab simultaneously appear at time t1 and finally c and bc appear at time t2. The resulting simplex in the
fiber is denoted by S :“ tp0, t1, t2, t1, 1, t2qu0ďt1ďt2ď1. In case (ii), there is only one choice for e0, i.e. e0 “ bc. The
other vertex-edge pairs have to be the pairs pb, abq and pc, acq. If we decide that the pair pb, abq appears before pc, acq,
we obtain the simplex S̄ :“ tp0, t1, t2, t1, t2, 1qu0ďt1ďt2ď1. All the other simplices in the fiber may be derived from
the action of GpKq on S and S̄. More precisely, letting τ : pa, b, cq ÞÑ pb, a, cq be the elementary transposition
and c : pa, b, cq ÞÑ pb, c, aq the cyclic permutation, we obtain all the 2-simplices in the fiber:

(i) S “ tp0, t1, t2, t1, 1, t2qu, τ.S “ tpt1, 0, t2, t1, t2, 1qu0ďt1ďt2ď1, c.S “ tpt2, 0, t1, 1, t2, t1qu0ďt1ďt2ď1,
c2.S “ tpt1, t2, 0, t2, t1, 1qu0ďt1ďt2ď1, τc.S “ tp0, t2, t1, 1, t1, t2qu0ďt1ďt2ď1, τc2.S “

tpt2, t1, 0, t2, 1, t1qu0ďt1ďt2ď1;

(ii) S̄ “ tp0, t1, t2, t1, t2, 1qu0ďt1ďt2ď1, τ.S̄ “ tpt1, 0, t2, t1, 1, t2qu0ďt1ďt2ď1, c.S̄ “

tpt2, 0, t1, t2, 1, t1qu0ďt1ďt2ď1, c2.S̄ “ tpt1, t2, 0, 1, t1, t2qu0ďt1ďt2ď1, τc.S̄ “

tp0, t2, t1, t2, t1, 1qu0ďt1ďt2ď1, τc2.S̄ “ tpt2, t1, 0, 1, t2, t1qu0ďt1ďt2ď1.

All the 12 sets are embeddings of the 2-simplex ∆2 in I6, where we represent the simplex ∆2 in R2 conveniently for
our purpose as in Fig 9.

Figure 9: An embedding of the standard simplex ∆2, with faces in red, green and blue.

The 2-simplices in the orbit of S̄ meet with 3 distinct other 2-simplices at its 3 faces (obtained by setting t1 “ 0, t2 “ 1
or t1 “ t2). The 2-simplices in the orbit of S only meet with two other simplices. Glued together, these simplices form
a Möbius band embedded in R6, as explicited in Figure 10. Therefore the fiber of the persistence map over the barcodes
in the stratum B1

4 is isomorphic, as a simplicial complex, to the Möbius band.
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We again consider how the symmetry group Σ3 of the triangle acts on the fiber. Note that the action on the fiber must
preserve the orientations and colors described in Fig. 10. The elementary transposition simply rotates the Möbius band
by an angle of π. The action of the cyclic permutation is slightly more involved as it reverses and translates the Möbius
band.

Figure 10: The 2-simplices in the fiber of the stratum B1
4 glued together in a Möbius strip. Blue (resp. red and green)

edges correspond to setting t1 “ t2 (resp. t1 “ 0 and t2 “ 1) in their co-faces. The left and right extreme blue oriented
edges are identified. The action of the transposition pa, b, cq ÞÑ pb, a, cq on the fiber can be described as a rotation of the
Möbius strip by an angle of π. The action of the cyclic permutation pa, b, cq ÞÑ pb, c, aq on the fiber can be described
as the composition of (i) the symmetry of the Möbius strip around its middle horizontal line, followed by (ii) a unit
translation on the left of each simplex.

Stratum B2
4 . The last stratum of barcodes whose fiber we explicitely compute has representative D :“

rtp0,8qu, tp0, 1q, p1,8qus:

In this case, the fiber is the union of the segments:

• tp0, t, 0, t, 1, 1qu0ďtď1, tp0, t, 0, 1, 1, tqu0ďtď1, tp0, 0, t, 1, 1, tqu0ďtď1, tp0, 0, t, 1, t, 1qu0ďtď1,
tpt, 0, 0, 1, t, 1qu0ďtď1, tpt, 0, 0, t, 1, 1qu0ďtď1;

which assemble into a regular hexagon, and therefore the fiber of PH over the stratum B2
4 is homeomorphic to S1.

A.3 Computation of monodromies between fibers

We describe the monodromies between non-discrete fibers. We focus on pairs of barcode strata that differ by one
dimension, since a monodromy between an arbitrary pair of strata is a composition of such elementary monodromies by
Corollary 3.14.

Monodromy from B1
2 to B1

3 and B2
3 . From the previous section, the fibers over B1

3 and B2
3 are isomorphic

cyclic graphs. We only describe monodromies from PH´1
pB1

2q to PH´1
pB2

3q since monodromies from PH´1
pB1

2q

to PH´1
pB1

3q are identical. The stratum B1
2 contains the stratum B2

3 in its closure. From Lemma 1.13, this ensures
that the set of morphisms BarKpD2, D

2
3q is non-empty for any representatives pD2, D

2
3q P B1

2 ˆ B2
3 . For clarity,

we take as representatives the barcodes from the previous section, that is D2 “ rtp0,8q, p1, 2qu, tp3,8qus and
D2

3 “ rtp0,8q, p1, 2qu, tp2,8qus.

From section 3.2, the number of different homotopy classes of monodromies from PH´1
pD2q to PH´1

pD2
3q is upper-

bounded by the cardinality of π0pBarKpD2, D
2
3qq. Moreover, the homotopy type of an element φ P BarKpD2, D

2
3q

is completely characterized by its index by Remark 3.8. In the current situation, any map φ from D2 to D2
3 must

collapse the third and fourth endpoint of D2. This means that up to homotopy, there is a unique monodromy map
from PH´1

pD2q to PH´1
pD2

3q to describe. It is then natural to choose φ to be any linear extension of the map:
φ : t0, 1, 2, 3u ÞÑ t0, 1, 2, 2u.
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The resulting monodromy Lφ, from Proposition 3.12, is a simplicial map between fibers. To visualize Lφ, it is convenient
to see how the fiber PH´1

pD2q is progressively deformed into a subset of PH´1
pD2

3q under the path t ÞÑ tLφ`p1´tqId.
As depicted in Fig. 11, this transformation has the effect to collapse some edges and to identify some edges and nodes.

In the same figure, we see that the monodromy is a surjection onto the fiber PH´1
pD2

3q. By Proposition 5.9, the
equivariance of the monodromy w.r.t. the GpKq “ Σ3 action on the fibers predicts that the image, through the
monodromy, of the action on PH´1

pD2q must equal the action on PH´1
pD2

3q. Let us for instance consider the cyclic
permutation pa, b, cq ÞÑ pb, c, aq of the triangle, which acts on the two hexagons constituting PH´1

pD2q by rotation of
an angle of 2π

3 . The monodromy identifies the two hexagons in the fiber, hence the induced action of g on PH´1
pD2

3q

is the rotation by the same angle, which agrees with the direct computation of the action of g on PH´1
pD2

3q in Fig. 8.
The same observation can be made about the elementary transposition τ : pa, b, cq ÞÑ pb, a, cq of the triangle.

Figure 11: Starting with the two irregular hexagons describing the fiber of the barcode rtp0,8q, p1, 2qu, tp3,8qus of
stratum B1

2 (see Fig. 7), the arrows describe the process of continuously tracking the fiber as the interval p3,8q gets
closer to the interval p2,8q, thus ending to the barcode rtp0,8q, p1, 2qu, tp2,8qus of stratum B2

3 . Plain arrows show
edges of the fiber that are collapsed during this process. Meanwhile, the two hexagons merge into the regular hexagon
depicted in Fig. 8. This merging happens by identifying edges of the two components, of the same color and orientation,
following the dotted arrows.

Monodromy from B1
3 and B2

3 to B1
4 . The stratum B2

3 contains the stratum B1
4 in its closure. We let D2

3 :“
rtp0,8q, p1, 2qu, tp2,8qus be the representative barcode of the stratum B2

3 , and D1
4 :“ rtp0,8qu, tp1,8qus be that

of B1
4 , both as in the previous section. The set of morphisms BarKpD

2
3, D

1
4q is non-empty, and in fact contains a

unique homotopy class by Remark 3.8, since all maps φ P BarKpD
2
3, D

1
4q must collapse the interval p1, 2q. It is then

natural to choose φ to be any linear extension of the map:

φ : t0, 1, 2u ÞÑ t0, 1, 1u.
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From Proposition 3.12, the resulting monodromy Lφ : PH´1
pD2

3q Ñ PH´1
pD1

4q is a map of polyhedral complexes.
Recall that the fiber PH´1

pD2
3q is a polyhedral complex described in Fig. 8. The monodromy map Lφ collapses 12 out

of the 18 edges in PH´1
pD2

3q. The remaining 6 edges form a regular hexagon which is mapped onto the green circle of
the Möbius strip describing the fiber of B1

4 , see Fig 10. Likewise, the monodromy from the fiber of (a representative of)
the stratum B1

3 to the fiber over B1
4 is unique up to homotopy, and collapses 12 out of the 18 edges in the fiber over B1

3 ,
sending the remaining 6 edges onto the red circle of the Möbius strip describing the fiber of B1

4 .

Monodromy from B1
3 and B2

3 to B2
4 . Recall that the fiber over B2

3 is a cyclic graph with 18 edges depicted in Figure 8,
while the fiber over B2

4 is a regular hexagon. There is again a unique (up to homotopy) monodromy Lφ between
these fibers. The simplicial map Lφ collapses 12 out of the 18 edges in PH´1

pD2
3q. The remaining 6 edges (one

for each color in Figure 8) form the regular hexagon PH´1
pB2

4q. In particular, Lφ is a fibration. The monodromy
from PH´1

pD1
3q to PH´1

pB2
4q can be described in the same way.

A.4 Lower star filters

If we consider the restriction of PH to the subspace LowK Ď FiltK of lower star filters, there are only 2 barcode strata
in the image: B1

4 and B5. The reason for this is that edges enter the sublevel set filtration of a lower star filter at the same
time as one of their vertices, hence there are no bounded intervals in the resulting barcode. The fibers of the restricted
persistence map over the two strata can be derived from the general case. Namely, the fiber over B5 is the constant filter,
while the fiber over B1

4 is a hexagon which embeds into the Möbius strip as the green zig-zag in Fig. 10.
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