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Probabilistic modelling of somatic alterations in bulk tissue
and single cells using repeat DNA

Samer Abujudeh

Chromosomal instability characterises several cancer types, in which large-scale structural
alterations of the genome accumulate at an increased rate. An important class of structural
alterations are somatic copy number alterations (SCNAs). SCNAs have been shown to be
major drivers of oncogenesis and are associated with prognosis and response to therapies.

Current sequencing and array-based methods that are used to infer SCNAs are cost-
prohibitive for widespread clinical use. A low-cost, simple and more clinically applicable
method to amplify and sequence more than 10,000 repeat regions across the genome was
recently developed, called FAST-SeqS. However, current computational methods do not make
effective use of this low-cost assay. This limits its application to clinical medicine and to
biomedical research.

In this thesis, I develop conliga; a probabilistic generative model and associated inference
algorithms to infer relative copy number from FAST-SeqS data at the amplicon level. I
implement this method in R and C++ and provide the software as an open-source tool. By
applying conliga and FAST-SeqS to oesophageal adenocarcinoma and related conditions, I
show that it has similar performance to QDNAseq applied to low-coverage whole-genome
sequencing, which is a more expensive and laborious alternative for SCNA profiling.

I explore several aspects of FAST-SeqS data and show that sample-specific biases can
affect SCNA inferences. By extending the conliga model, I demonstrate that these biases can
be jointly inferred with SCNA profiles. I validate these extensions by comparing the results
to inferences obtained from whole genome sequencing in prostate cancer samples.

I show that the variants present in FAST-SeqS data can be used to infer tumour purity,
ploidy and allele-specific copy number. This has potential application in large-scale cancer
genome studies to identify samples with sufficient purity before performing high-coverage
whole-genome sequencing. Finally, I describe preliminary data showing that the FAST-SeqS
protocol can be applied to single cells, enabling further extensions of the conliga model which
could lead to the inference of SCNAs in single cells.
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Chapter 1

Introduction

Cancer is one of the major noncommunicable, or chronic, diseases (NCDs) along with diabetes,
cardiovascular and chronic respiratory diseases. Today, NCDs are responsible for the majority
of human deaths globally. According to estimates made by the World Health Organisation
(WHO) in 2015, cancer was the first or second leading cause of premature death1 in 91 out
of 185 countries. Around the world, cancer incidence and mortality are on the rise; 18.1
million new cases of cancer and 9.6 million deaths due to cancer were estimated in 2018.
Currently, cancer is the cause of one in six deaths worldwide and, as we progress through the
twenty-first century, cancer is expected to become the leading cause of death in every nation
and a major barrier to increasing human life expectancy [1].

Cancer is characterised by uncontrolled proliferation of abnormal cells that can invade
surrounding or distant tissues. These abnormal cells can originate from almost any cell type
and organ in the body. Hence, cancer is considered a collection of more than a hundred
related diseases with varied risk factors and epidemiology [2]. Since the draft sequence of the
human genome was published in 2001 [3] and massively parallel high-throughput sequencing
was introduced in 2004-2006, cancer research has rapidly advanced [4]. Current technologies
allow us to study the molecular characteristics of cancer samples in great detail and at
single-cell resolution. Large-scale studies have revealed that the genomes of cancer cells
show particular patterns of disruption. These patterns can be used to detect cancer in its
early states, determine prognosis, select targeted treatments and monitor progress over time.
However, many of the technologies are impractical or currently too expensive for widespread
clinical use. The development of practical, low-cost, alternatives is needed to translate these
findings into standard clinical practice.

Low-cost molecular assays generate complex and noisy data. This creates a demand for
new statistical models and associated inference algorithms to extract relevant biological signal

1where premature death is defined as death before 70 years of age
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from these complex data. In this thesis, we focus on the development of statistical tools that
accurately quantify copy number alterations, seen in many cancer genomes, using data from
a low-cost and clinically applicable assay.

1.1 The cell and the genome

The Earth is populated by living things, chemical factories that use matter from their
surroundings to survive and proliferate. There are millions of species of animals, plants, fungi,
protists, archaea, and bacteria, found on this planet. To the eye, living things are incredibly
diverse. Yet, common to all lifeforms is the fundamental unit of life - the cell. The cell is a
microscopic, aqueous solution of chemicals, enclosed within a membrane, equipped with the
ability to make copies of itself and to divide into two daughter cells. With each division, the
parent cell passes down information, specifying characteristics of the cell and the instructions
its progeny require to survive and proliferate.

These hereditary instructions are encoded in molecules called Deoxyribonucleic acid
(DNA). DNA is a linear polymer chain made up of monomers called nucleotides. Each
nucleotide consists of three parts; deoxyribose (a 5-carbon sugar), a phosphate group, and a
nitrogenous base. The base may be either adenine, guanine, cytosine, or thymine (commonly
referred to by their initials A, G, C and T). Linear sequences or strands of nucleotides
are formed by phosphodiester bonds, linking the 5’ carbon atom of one nucleotide’s sugar
molecule to the 3’ carbon atom of the next via the phosphate group. Hence, like the words
in our alphabet, a DNA molecule has directionality.

Bases from two DNA strands can hybridise together via hydrogen bonds to form base-
pairs. There is strict complementarity whereby A can hybridise to T and C can hybridise to
G. Double-stranded DNA (dsDNA) is made up of two complementary strands running in
opposite directions. Therefore, dsDNA has redundancy of information; knowing the sequence
of one strand, one could create the sequence of the other strand. This principle allows cells to
replicate their DNA and in doing so, proliferate and pass their DNA to their daughter cells.
The hydrogen bonds which bind the strands together are weaker than the phosphodiester
bonds, allowing dsDNA to be pulled apart without the sequence of bases being destroyed.
Then, a new strand can be created by using one of the strands as a template, using the cell’s
DNA replication machinery, to synthesise a complementary strand of nucleotides from 5’ to
3’.

The complete set of an organism’s DNA is called the genome. For Homo sapiens, the
genome consists of approximately six billion nucleotides (three billion base-pairs). The genome
comprises DNA found in the nucleus and the mitochondria of the cell. The nuclear genome
consists of 24 linear molecules of DNA called chromosomes; the autosomes (chromosomes
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1-22) and the sex chromosomes (chromosomes X and Y). Each chromosome is composed
of two chromosome arms, separated by a centromere. The ends of each chromosome are
protected by telomeres. In addition to the nuclear genome, the mitochondria of the cell
contain the mitochondrial genome which is circular and 16,569 base-pairs in length [5].

Chromosomes contain multiple genes, which are units of information with coding regions
(exons), and non-coding regions (introns). It is estimated that the human genome contains
approximately 20,000 protein-coding genes [6], in addition to many thousands of genes that
encode ribonucleic acid (RNA) molecules whose final product is not a protein but that have
important functions in the cell. However, approximately only 1.5% of the genome contains
protein-coding genes [7]. The rest is composed of regulatory elements and repeat sequences
(which are described in section 1.3) and a large proportion appears to lack biological function.

Chromosomes are tightly condensed into chromatin fibres. The degree of chromatin
condensation has been associated with two states: less condensed and more accessible regions
are identified as euchromatin, while highly condensed and less accessible regions are identified
as heterochromatin. Heterochromatin condensation levels have shown to be highly dynamic.
Changes in heterochromatin condensation levels contribute to the exposure of DNA regions
and regulation of gene expression, and are associated to developmental processes and responses
to environmental signals [8, 9].

In sexually reproducing multicellular eukaryotes (such as Homo sapiens), there are two
fundamentally different types of cell; somatic cells and germ cells. Germ cells are the link
between the generations of the organism and are the only cells that can transmit DNA to
their offspring through the germline. Somatic cells are those that form the body of the
organism. In humans, there are hundreds of different types of somatic cells which together
make up the various tissues of the human body. Human somatic cells are diploid, meaning
they contain two sets of the 22 autosomes and two copies of the sex chromosomes. Typically,
a female’s somatic cells contain two copies of chromosome X while a male’s somatic cells
contain one copy of chromosome X and one copy of chromosome Y.

1.2 Cancer: diseases of the genome

Within healthy multicellular organisms, individual cells cooperate and organise themselves
in complex tissues. Cells act as communities, with each cell deciding when to grow, divide,
differentiate and die; communicating via extracellular signals for the survival of the organism.
Cancer occurs when the subservient relationship of cell and organism survival is disrupted
and cells proliferate and spread at the expense of the organism as a whole.

Even before the discovery of DNA as the molecular basis of inheritance [10] and its double
helix structure [11], the association of the genome in the development of cancer was evident.
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In the early twentieth century, Theodor Boveri noticed the presence of unusual alterations of
the chromosomes visible within dividing cancer cells under the microscope [12]. Since then,
evidence has accumulated that genomic alterations characterise and play a causal role in
cancer development [2]; carcinogenic chemicals were also found to cause genomic alterations
[13], recurrent genomic alterations were seen in patients with specific cancer types (e.g. the
Philadelphia translocation in chronic myeloid leukemia) [14, 15] and the introduction of DNA
from cancer cells into normal cells could convert them to cancer cells [16, 17]. These findings
led to the discovery of oncogenes [18, 19], whose alteration or mutation can lead to a gain of
function that can help drive cancer development. Meanwhile, studies on hereditary cancers
led to the discovery of tumour suppressor genes, which help to prevent cancer development
and can be inactivated by alterations in cancer cells [20, 2, 7, 21].

All cells in the human body are descendants of the fertilised egg (zygote) and inherit
their diploid genome from the maternal and paternal germlines. DNA is an inherently
reactive molecule that is susceptible to damage brought about by endogenous (e.g. oxidative
stress due to reactive oxygen species) and exogenous agents (e.g. ultraviolet radiation or
alkylating agents) or mistakes during DNA replication [22]. DNA damage or errors are
usually corrected by the cell’s various DNA repair mechanisms. However, some do not get
repaired or are repaired incorrectly and are passed to the daughter cells as mutations [21, 22].
When mutations occur in the germ cells, they are called germline mutations and are inherited
by offspring through the germline. When mutations occur in somatic cells they are called
somatic mutations and as such, cannot be inherited by offspring. When observing mutations
in a population, be that a population of genomes from individual humans or genomes from a
population of cells, mutations are often referred to as variants. These variants are typically
defined by their difference to the reference sequence of the human genome [3].

Mutations can be broadly characterised into two types; small-scale or large-scale mutations.
Small-scale mutations alter small sections of the genome. The most simple small-scale
mutation involve substitutions of a single base and are often referred to as point mutations
or single nucleotide variants (SNVs). A germline point mutation that is present in more than
1% of a population is referred to as single nucleotide polymorphism (SNP). Other small-scale
mutations involve the insertion or deletion of short sequences (< 50 base-pairs), collectively
referred to as indels. Large-scale mutations affect ≥ 50 base-pairs of the genome and more
greatly influence its structure. As such, they are often referred to as structural variants (SVs).
SVs can be classified as deletions, duplications, insertions and rearrangements. Deletions and
duplications alter the number of copies of a sequence of DNA in the genome and are referred
to as copy number alterations (CNAs). CNAs that are inherited through the germline are
often referred to as copy number variants (CNVs) while those that arise in somatic cells are
referred to as somatic copy number alterations (SCNAs). Insertions refer to DNA sequences
that are inserted into the genome, such as the integration of viral genomes or transposable
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elements. Rearrangements include inversions and translocations. Inversions occur when
the orientation of a DNA segment is changed. Translocations involve the rearrangement of
segments between non-homologous chromosomes. SVs that result in CNAs are said to be
unbalanced, otherwise they are balanced [23–28]. A cell is considered euploid if it has an
equal number of copies of each of its chromosomes. A cell is considered aneuploid if it is not
euploid. The detection and quantification of CNAs and aneuploidy is a central theme of this
thesis.

Somatic alterations are not limited to the structure or sequence of DNA. DNA methy-
lation and histone modifications regulate the structure of chromatin and can influence the
observable characteristics (i.e. phenotype) of the cell. These processes are termed epigenetic
modifications or marks, and are key regulators of tissue-specific gene expression and genome
reprogramming during events such as embryogenesis [29]. The disruption of epigenetic modi-
fication mechanisms can lead to the development of diseases, including cancer, which can be
studied by analysing epigenetic molecular landmarks [30]. The entire set of a cell’s epigenetic
marks is often referred to as its epigenome. A population of cells that are descendant from a
single progenitor cell and have identical genomes and epigenomes is called a clone.

Cancer development (oncogenesis) is widely accepted to be an example of Darwinian
evolution. As somatic cells divide, their genomes accumulate mutations compared to their
zygote progenitor. Some of these mutations lead to changes in the cell’s phenotype. Cellular
phenotypes that confer an increased ability to survive and proliferate are selected. With
continual selection and clonal expansion, cells can acquire characteristics (the hallmarks of
cancer) that lead to their malignant transformation [31–34]. Cancer cells can have thousands
of somatic mutations. Typically, only a handful are positively selected during development
and are termed driver mutations. Driver mutations are vastly outnumbered by neutral
or mildly deleterious mutations, which do not confer a selective advantage to the cancer
cell’s progenitors and do not contribute to cancer development. These mutations are termed
passenger mutations [2, 21].

During the course of oncogenesis, cells often experience an increased rate of somatic
mutation, which is termed genetic instability (GIN). Genetic instability is the most important
enabling characteristic that allows cells to acquire the hallmarks of cancer [34]. This state
can be achieved by dysfunction of the cell’s genomic maintenance and repair mechanisms or
increased exposure to mutagenic agents. The cell has surveillance systems which monitor its
genome’s integrity. If these systems are functioning properly, the detection of a disrupted
genome should result in the cell entering senescence or triggering apoptosis. However, if these
systems are compromised, the cell will escape these fates and continue to proliferate leading
to an accumulation of somatic mutations. TP53 (and the protein it encodes, p53) plays a
central role in this process and as such, is often found to be suppressed, mutated or deleted
in cancer cells [34].
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Chromosomal instability (CIN) is a specific type of genetic instability, which leads to
increased rates of aneuploidy, SVs and CNAs [35]. The mechanisms of CIN (and GIN more
generally) are reviewed by Lee et al. [35], Aguilera and Garcia-Muse [36] and Janssen and
Medema [37]. Briefly, CIN can be the result of a number of mechanisms. One of these is
oncogene-induced replication stress. The activation of particular oncogenes (such as MYC )
or disruption of tumour suppressor genes can lead to the activation of signalling pathways
that increase cell proliferation. This can result in the stalling or collapse of replication forks
during DNA replication, which if not resolved, cause double-stranded breaks (DSBs) in the
genome. Subsequent dysfunctional repair of DSBs by non-homologous end joining (NHEJ)
or homologous recombination (HR) can lead to various SVs. Fork collapse can also result in
tandem duplication events and complex structural alterations as a result of failures in the
break-induced replication (BIR) mechanism. Telomere shortening or breakage is another
cause of CIN. When telomeres become short or break, the ends of sister chromatids can fuse
together during mitosis. As the sister chromatids segregate during anaphase, this leads to
a "bridge" formation. During segregation this bridge breaks and SVs result. This process
continues in the replication cycles of daughter cells leading to what is called the breakage-
fusion-bridge (BFB) cycle. Mitotic defects can also result in aneuploidy. Whole-genome
doubling (WGD) has been shown to occur frequently in oncogenesis, leading to tetraploid
cells. It has been shown that WGD provides increased tolerance to CIN, allowing cells to
evolve more rapidly [38, 36, 37, 39, 35].

As we have discussed, genetic instability leads to the accumulation of somatic alterations.
As cells divide they acquire differences from each other with respect to their DNA content
(genotype) and phenotype. The resulting variation observed in a population of cancer cells is
termed intratumoural heterogeneity [7]. It is this variability along with selective pressures,
which drive Darwinian evolution and clonal expansion discussed above. This results in cancers
consisting of multiple clones. Somatic alterations that appear in all clones are sometimes
referred to as clonal alterations, while those that are present in a subset of the clones are
referred to as subclonal alterations. Intratumoural heterogeneity may be the result of linear
evolution, in which increasingly fit clones outcompete their ancestral clones, or branched
evolution whereby clones emerge from ancestors and multiple clones propagate in the cancer
cell population [40]. Recent evidence has shown that clones can cooperate, suggesting that
the assumption of competition between clones may not always be valid [40]. Heterogeneity
can manifest spatially, with different sites in the tumour harbouring different clones, and
temporally, with the alterations in cancer cells and their relative frequencies varying with
time. Intratumoural heterogeneity should not be confused with intertumoural heterogeneity,
which describes the variation in alterations seen between different patients [7].

The genes that are mutated and causally implicated in the development of cancer are
referred to as cancer genes [41]. In the current iteration of the Cancer Gene Census Database
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(COSMIC, version 87) [42], there are 723 genes that are deemed to play a causal role in
cancer development and this number continues to grow with each version. 680 of the 723 have
been shown to be somatically altered in cancer while 107 are germline alterations which can
predispose patients to the development of cancer2. Indeed, inherited germline mutations can
increase the probability of developing certain cancer types. Famously, germline mutations
which inactivate the BRCA1 or BRCA2 genes dramatically increase the risk of developing
breast, ovarian and other types of cancer. BRCA1 and BRCA2 are involved in DNA repair of
DSBs via HR [21, 43]. Cancers that result as a consequence of germline mutations are called
familial or hereditary cancers while those that do not are referred to as sporadic. However,
the lines that separate the two are becoming increasingly blurred as some sporadic cancers
are being shown to have some inherited component [44].

Cancer types can often be dominated by particular types of somatic alterations. For
example, serous ovarian cancer is dominated by SVs and CNAs while others such as kidney
clear-cell carcinoma are dominated by small-scale somatic mutations. Intriguingly, the results
of a study of 3,299 tumours from 12 cancer types by Ciriello et al. suggests that cancers tend
to be driven by large-scale or small-scale somatic alterations but not both [45].

1.3 Repeat elements

While sequences of genes and known functional elements constitute 5-10% of the human
genome, at least 50% of the human genome is comprised of repetitive elements [3, 46]. More
recent analyses performed since the initial sequencing of the human genome suggest that more
than two thirds of the human genome could be derived from repeat elements [46]. Repeat
elements can be generalised into classes: (1) interspersed repeats which are transposon-derived,
(2) partially retroposed and inactive copies of genes (processed pseudogenes), (3) simple
sequence repeats (SSRs), also called microsatellites and minisatellites, which are contiguous
repetitions of short k-mers, e.g. (CA)5 3, (4) segmental duplications (SDs) also known as
low copy repeats (LCRs) are regions of the genome (typically 10-300 kb in length) that have
been copied from one region to another, (5) blocks of tandemly repeated sequences, such as
those contained within centromeres and telomeres [3].

1.3.1 Transposable elements

By far the most abundant repetitive elements are transposons, also called transposable
elements (TEs). Discovered by Barbara McClintock when studying the maize genome
[47], they form a class of mobile genetic elements which have been referred to as "jumping

2Note that some genes have somatic and germline alterations associated with cancer development
3where (CA)5 denotes the sequence comprised of 5 repetitions of CA, i.e. CACACACACA



8 Introduction

genes". TEs can be categorised into two types; retrotransposons, which mobilise by an RNA
intermediary using a "copy-and-paste" mechanism and DNA transposons which do not have
an RNA intermediary and transpose directly as DNA. Together, approximately 45% of the
genome can be identified and annotated as transposons with 42% retrotransposons and 3%
DNA transposons [3]. Indeed, it is thought that much of the "dark matter" of the genome
which neither encodes functional elements or is annotated as repeat elements, are the relics
of ancient transposable elements that have mutated and diverged beyond recognition [3, 46].

Retrotransposons

Retrotransposons can be further divided into three types; long interspersed elements (LINEs),
short interspersed elements (SINEs) and LTR retrotransposons [3]. Since LINEs are utilised
in the work presented in this thesis, we focus on their description. LINEs are incredibly
successful members of the genome, accounting for approximately 20-21% of its content [3, 48].
LINEs are classed as autonomous transposons, meaning they encode proteins which are
used to mediate their transposition in the genome [49]. The LINE1 (L1) class of LINEs
are the only active autonomous elements in humans [50]. In humans, a full-length LINE1
is approximately 6 Kbp. They include a 5’ untranslated region (UTR) which includes an
internal polymerase II promoter, along with two open reading frames (ORF1 and ORF2)
and a 3’ UTR which ends with a poly (A) tail [50].

Upon transcription of a full-length LINE1 DNA sequence, the resulting messenger ri-
bonucleic acid (mRNA) molecule moves to the cytoplasm and is translated to produce the
proteins ORF1p and ORF2p. These two proteins and the LINE1 mRNA form a complex
which can gain access to the cell’s nucleus. Once there, ORF2p cleaves one of the DNA
strands and the LINE1 mRNA is reverse transcribed from its 3’ end into the genome by
ORF2p [3, 51]. Typically, reverse transcription fails and does not proceed to the 5’ end of
the mRNA, such that only a portion of the LINE1 is copied into the genome. Indeed, the
average length of LINE1 repeats is approximately 900 bp [3]. For this reason and due to
inversions and mutations within the ORFs, more than 99.9% of the LINE1s present in the
human genome are incapable of retrotranscription [49].

LINE1s have been evolving in mammalian genomes for more than 150 million years. In
what can be considered an evolutionary arms race, host mechanisms have evolved to repress
retrotransposition, while LINE1s have relentlessly evolved to avoid repression and continue
to retrotranspose throughout the genome [52, 53] (see Goodier for a review [50]). There
have been several LINE1 subfamilies that were simultaneously active in ancestral primates.
However, in the last 40 million years, there has been a single lineage of primate-specific
LINE1s that have succeeded each other [52, 53]. Of the estimated 500,000 LINE1s in the
human genome, there are approximately 80-100 retrotransposition-competent human-specific
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LINE1 elements (a subset of the L1HS subfamily) currently active in the human genome
[54, 55, 49]. Somatic LINE1 insertions have been implicated in various diseases including
autoimmunity and cancer (see Beck et al. [49], Hancks and Kazazian [56] for reviews).

1.4 High-throughput sequencing

Since the discovery of DNA, the desire to determine the sequence of bases of DNA from
biological systems intensified as its crucial role become evident. One of the most popular
first-generation DNA sequencing methods was Sanger sequencing, which was developed by
Frederick Sanger during the 1970s and later commercialised by Applied Biosystems [57]. This
technique was used to complete the first draft human genome in 2003 [58], which cost $3
billion and took 13 years [59, 60].

While hugely successful, Sanger sequencing is low-throughput and time consuming. Since
2004, methods have been developed to read millions of short sequences in parallel. These
methods have been termed massively-parallel sequencing (MPS), next-generation sequencing
(NGS), or high-throughput sequencing (HTS) and have revolutionised the sequencing of DNA
by reducing costs and accelerating turnaround times.

The most popular next-generation sequencing technologies are manufactured by Illumina.
Illumina sequencing technologies are based on sequencing-by-synthesis (SBS). Originally,
Shankar Balasubramanian and David Klenerman developed the sequencing-by-synthesis
approach in the mid 1990s. This led them to found Solexa in 1998 and to launch the Genome
Analyzer in 2006. A year later, Illumina acquired Solexa and has continued to develop the
technology [61]. In 2014, Illumina announced a new system able to sequence 16 human
genomes in three days with an average of 30 reads per region in the genome (30X coverage),
costing $1,000 per genome [62].

The methods developed by Illumina include paired-end sequencing, which involves the
sequencing of DNA molecules from both ends [63]. It is also possible to sequence DNA from
multiple samples in parallel with sample-specific indices (muliplexed sequencing) [63].

The Illumina DNA-sequencing workflow involves three main steps [64, 65]:

1. Library preparation. During this step, DNA is cleaved into short fragments with
the length dependent on the platform used. Oligonucleotides, which include grafting
sequences (allowing the fragments to bind to the flow cell), sample-specific indices and
sequencing primers, are ligated to the 5’ and 3’ ends of the DNA fragments. Library
preparation is performed for each sample.

2. Cluster generation. Libraries can then be pooled and loaded onto the flow cell.
Single-stranded DNA (ssDNA) fragments in the library hybridise to millions of short
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oligonucleotides which are attached to the flow cell. Next, the complementary strand
of the hybridised strand is synthesised. Fragments are then denatured and the original
strand is washed away, leaving complementary single-stranded molecules attached to
the flow cell. The strands are then clonally amplified by bridge amplification. In this
process, immobilised ssDNA molecules bend over such that their free-end hybridises to
another surface oligonucleotide nearby. A complementary strand is then synthesised
for each molecule, creating double-stranded bridges. Lastly, dsDNA molecules are
denatured, resulting in two ssDNA molecules attached to the flow cell. This process
repeats until clusters are formed consisting of single-stranded copies of each original
fragment.

3. Sequencing. Sequencing-by-synthesis (SBS) is used to sequence the single strands of
all the clusters in parallel. The principle of SBS is to synthesise the complementary
strand of each single-strand attached to the flow cell. This is performed in cycles in
which one nucleotide is synthesised per cycle. Each cycle consists of adding fluorescent-
labelled nucleotides to the reaction. The nucleotides have terminators, which allow only
one nucleotide to be assembled at a time in each growing complementary strand. After
the nucleotide is assembled, lasers are used to excite its fluorescent tag and an image is
taken. The signals from the molecules within each cluster are processed to report a base
call per cluster together with an associated base quality (Phred) score, which provides
an uncertainty measure of the base call. After imaging, the terminators and fluorescent
tags are cleaved and washed away to start a new sequencing cycle. The number of
cycles depends on the desired read length. The sequence of the sample-specific index
in each cluster is also sequenced, which will then be used to determine which sample
the reads originated from. If paired-end sequencing is performed, the reverse strand is
re-synthesized and sequenced in a similar way. This results in each cluster having a
forward and a reverse read.

1.5 Polymerase chain reaction

The polymerase chain reaction (PCR) [66–68], developed by Kary Mullis and colleagues
at Cetus Corporation in 1983, is one of the most widely used techniques in biological and
medical research [69]. PCR is an in vitro technique designed to amplify (make many copies
of) a region of DNA. It can be used for a variety of purposes and is often used to prepare
amplicon or targeted sequencing libraries, enabling a particular region or regions of the
genome to be sequenced by next-generation sequencing technologies.
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PCR requires the following components (reagents): DNA template, primers, deoxynu-
cleotide triphosphates (dNTPs)4, DNA polymerase and a buffer solution. The DNA template
(also referred to as "input DNA") is dsDNA which contains the DNA target sequence to be
amplified. For example, this might be DNA extracted from a tissue sample or circulating DNA
that has been purified. Primers are short oligonucleotide sequences (ssDNA molecules) that
are 18 to 30 nucleotides in length. They are manufactured (synthesised) to be complementary
to the 3’ ends of each strand of the DNA target sequence. They are termed forward and
reverse primers. The dNTPs are the building-blocks that are used to synthesise copies of the
DNA target sequence. DNA polymerase is an enzyme which polymerises new complementary
DNA strands from 5’ to 3’ using ssDNA from the DNA target as a template. Finally, the
buffer solution provides a suitable chemical environment for stable and efficient PCR.

PCR consists of multiple cycles of three sequential, temperature dependent steps: template
denaturation, primer annealing and primer extension. Figure 1.1 shows an illustration of the
first cycle of PCR. In the first step, the PCR mixture is heated to approximately 95 ◦C which
is sufficient to break the hydrogen bonds between the strands of a dsDNA molecule, leaving
ssDNA molecules. The mixture is cooled to around 55 ◦C, allowing the forward and reverse
primers to anneal to their target locations on their respective template strand. The mixture is
then heated to approximately 72 ◦C, initiating the extension of the primer-ssDNA complexes
from the 3’ end of the hybridised primers. The extension is facilitated by DNA polymerase,
which assembles dNTPs complementary to the template strands, thereby producing dsDNA
molecules (amplicons). The newly synthesised molecules, along with the original DNA starting
material, act as templates for the next cycle of PCR. This process repeats in each cycle, with
the original DNA starting material and DNA synthesised in all previous cycles, acting as
templates for the following cycles. In this way, the DNA target is amplified exponentially.
Note that at the end of the second cycle, ssDNA copies of the DNA target sequence (that
are also the same length) should have been synthesised.

Typically there are many target DNA molecules in the PCR mixture. In practice, not all
of these molecules are amplified in any one PCR cycle. The fraction of molecules that are
copied in a cycle is referred to as the PCR efficiency [70, 71]. The PCR efficiency can vary
due to a number of factors and from cycle to cycle; stable in the early cycles (exponential
phase) and then decays in later cycles (linear and plateau phases) [72, 73].

During PCR, errors can be made during the synthesis of new DNA strands. The fidelity
of PCR can vary depending on the DNA polymerase used and other experimental conditions.
For example, Taq DNA polymerase I has been reported to have an error rate between
1 × 10−5 and 2 × 10−4 errors per base per doubling event [74]. These errors accumulate
because amplicons with errors act as templates for the synthesis of further amplicons in

4nucleotides containing triphosphate groups
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later cycles. PCR errors are problematic because they appear in sequencing data and can be
misclassified as germline or somatic mutations [75, 74] or lead to the inability to determine a
read’s location in the genome (alignment error).

To mitigate these issues unique identifiers (UIDs) [75], which are also commonly referred
to as unique molecular identifiers (UMIs) [76], can be introduced. By incorporating random
nucleotides (denoted by the letter N) to the 5’ end of one (or both) of the primer sequences,
random sequences are introduced to the amplicons. By doing so, each dsDNA target should
have two random nucleotides associated with it after two PCR cycles; one for each strand
(assuming a PCR efficiency of 1). Further amplification beyond 2 cycles would result in
"swapping out" a UMI sequence with another and each strand will no longer have a unique
identifier. In addition to the unique identifier, the Safe-SeqS approach [75] introduces a
forward and reverse universal primer sequence (UPS) on the 5’ ends of the forward and
reverse primers. Hence, these are also introduced to the amplicon sequence. After two cycles
of the first round of PCR (PCR1), a new second round PCR (PCR2) is performed in which
the UPS sequences are used as primers to synthesise copies of amplicons from PCR1. In this
way, the UMI sequence is not "swapped out" and instead, amplicons represent copies of the
same unique molecules with the same UMI sequence. Sample indices and Illumina grafting
sequences can be introduced to the 5’ ends of the second round primers. This means that,
after performing several cycles of PCR2, the PCR2 product represents a sequencing library
ready for sequencing on Illumina’s high-throughput sequencers. This process is represented
in Figure 1.2. After sequencing, true germline and somatic variants should be present in all
reads sharing the same UMI. Variant sequences appearing at low frequency in reads that
share the same UMI are likely to be PCR or sequencing errors and can be ignored. However,
PCR errors introduced in the first cycle of PCR1 will be indistinguishable from germline or
somatic mutations. In addition, identifying duplicate reads representing the same molecule
can help to reduce stochastic noise associated with the process of PCR.



1.5 Polymerase chain reaction 13

Figure 1.1 An illustration showing the first cycle of a polymerase chain reaction. The top
of the figure depicts a molecule of double-stranded DNA which acts as the template DNA
for the reaction. The first grey panel depicts the first step of PCR, template denaturation,
where the hydrogen bonds holding the two complementary strands of DNA are broken by
heating the PCR mixture to approximately 95 ◦C. The next step in the process, primer
annealing, is shown in the second grey panel. The PCR mixture is cooled to approximately
55 ◦C (this varies depending on the primer sequences and PCR mixture components) allowing
the forward and reverse primer molecules to hybridise to their complementary sequences
within the template DNA. The third grey panel shows the final step in the cycle, primer
extension. The PCR mixture is heated to approximately 72 ◦C, allowing DNA polymerases
to assemble dNTPs to build complementary sequences to the template DNA in the 5’-to-3’
direction from the 3’ end of the primer sequences. This primer extension continues until the
DNA polymerase reaches the end of the molecule, until it disassociates stochastically from
the template, or until the next cycle of PCR starts with template denaturation.
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Figure 1.2 An illustration depicting two rounds of PCR and how this results in an amplicon
library, following the Safe-SeqS approach. The figure is split into three parts, the top part
depicts the first round of PCR (PCR1), the section below outlines the second round of PCR
(PCR2) and the section at the bottom shows a representation of the final amplicon library.
For the first round of PCR, the composition of the forward and reverse primers is shown at
the top, including the nucleotide sequence (Fwd/Rev) that will hybridise to the target, the
UMI sequence (UMI) which, in this example, is present only in the forward primer and the
universal primer sequence (Fwd UPS/Rev UPS) which comprises the 5’ end of the primers.
In Cycle 1, the template DNA is denatured, the reverse primer hybridises to its target (top),
the forward primer to its target (bottom) and the primers are extended. The dashed lines
indicate that the sequences (the DNA template and the newly synthesised molecules) extend
indefinitely beyond the target region. Note that a UMI sequence has been introduced during
cycle 1 and a shape represents its uniqueness (in this case a hexagon). The four ssDNA
molecules (the original DNA template and the newly synthesised molecules) act as template
for cycle 2. In cycle 2, the process repeats. By the end of cycle 2, two ssDNA molecules
have been synthesised that are not of indefinite length (shown in a darker grey box), each
with a unique UMI sequence represented by a star and a hexagon. After a PCR clean-up
step (not shown), these two ssDNA molecules act as templates in the second round of PCR
(PCR2). Here, a new set of primer sequences are used to hybridise to their respective UPS.
This hybridisation step is shown in the grey box. The second round primers contain a sample
index (i7 index) and the Illumina grafting sequences (P5 and P7). Several cycles of PCR2
are performed (typically more than 10) resulting in many copies of the template. The final
amplicon library is depicted at the bottom of the figure, showing the composition of the
amplicon sequencing library.

1.6 Copy number alterations in the context of high-throughput
sequencing

The inference of SVs and CNAs from high-throughput (short read) sequencing data has been
reviewed by Teo et al. [77], Zhao et al. [78] and Liu et al. [79]. Broadly, SV and CNA
inference methods can be grouped into four approaches: read depth (RD), split read (SR),
paired-end mapping (PEM) and de novo assembly (AS)5. Read depth is the most common
approach and is also known as the depth of coverage (DOC) approach. This approach is
based on the assumption that, after aligning sequencing reads to the reference genome, the
number of reads mapped to a genomic region is proportional to the copy number of the
cells in the sample. The split read approach uses reads that fail to align or partially align.
By splitting the reads and realigning them, potential breakpoints can be discovered in the
genome. The paired-end mapping strategy is similar to that of the split read approach.

5Note that some methods use a combinations of these approaches
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In the PEM approach, given DNA fragments are generally of a certain length, read pairs
are expected to align to the genome with some expected distance from each other (insert
length). Read pairs that align with an unexpected genomic distance (discordant read pairs)
can indicate that a breakpoint has occurred between the read pairs. Finally, overlapping
short reads can be assembled into longer fragments of the genome (contigs). By comparing
these contigs to the reference genome SVs can be inferred. SR and PEM approaches are used
to infer SVs while the RD approach is more appropriate for CNAs. The assembly approach
is rarely used in practice due to the computational demands and the difficulty in assembling
the genomes of eukaryotes [78].

Since the RD approach is most appropriate for the data presented in this thesis, we will
briefly cover the mathematical concepts behind it.

1.6.1 Copy number of a cancer sample

As we have discussed, cancer samples consist of a mixture of cancer cell clones and normal
cells. A normal diploid cell contains two copies of genetic material, one copy is inherited from
the maternal germline, while the other is inherited from the paternal germline. In cancer
cells, somatic copy number alterations (SCNAs) can accumulate, leading to a varying number
of copies of genetic material in the cancer cells.

The mean copy number at locus l, cl, of a sample of cells can be expressed as:

cl = 1
(

1 −
K∑

k=1
pk

)
︸ ︷︷ ︸

A allele from normal cells

+ 1
(

1 −
K∑

k=1
pk

)
︸ ︷︷ ︸

B allele from normal cells

+
K∑

k=1
naklpk︸ ︷︷ ︸

A allele from cancer cells

+
K∑

k=1
nbklpk︸ ︷︷ ︸

B allele from cancer cells

= 2
(

1 −
K∑

k=1
pk

)
︸ ︷︷ ︸

normal cells

+
K∑

k=1
pk (nakl + nbkl)︸ ︷︷ ︸

cancer cells
(1.1)

where, pk denotes the proportion of cells from clone k, K denotes the total number of clones,
nakl denotes the number of copies of allele A in clone k at locus l, nbkl denotes the number of
copies of allele b in clone k at locus l and ∑K

k=1 pk is the tumour purity or cellularity. Note
that without any prior parental genotype information, we are unable to distinguish maternal
from paternal alleles, and therefore we denote alleles arbitrarily as A and B.

Relative copy number of a cancer sample

A feature of HTS data is that the absolute number of reads does not reflect the absolute
number of copies of a locus in the sample. Instead, it reflects a sample of the molecules that
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were prepared from the DNA sample, i.e. a sample of the sequencing library. Indeed, the
absolute numbers of molecules in the sequencing library may not reflect the absolute numbers
of copies of DNA in the sample. The library preparation may be composed of many steps.
Each step may take a sample of DNA from the previous step. As a result, the alignment
counts reflect a relative copy number measure rather than absolute.

The mean relative copy number of the sample of cells, r̂l at locus l is given by the mean
copy number scaled by the average copy number of the sample (referred to as the ploidy), D:

r̂l = cl

D
(1.2)

where D = 1
L

∑
l cl and L denotes the total number of loci in the genome.

Observed relative copy number from sequencing data

In practice, each step of the library preparation may introduce various biases leading to
altered proportions of molecules in the sequencing libraries. Furthermore, the process of
sequencing may introduce biases such that some molecules are preferentially sequenced over
others. In addition, reads from particular regions of the genome may be more easily aligned
than others (referred to as mappability bias). Hence, the read depth can vary across the
genome not only due to copy number alterations but also because of these biases. This
concept is reflected in figure 1.3.

Biases affect the observed relative copy number, which we shall denote ĉl. It is dependent
on the mean copy number and the number of reads observed at each locus. This is of particular
importance when there is a strong bias, leading to particular regions seeing substantially
more alignments than others. Let ml denote the expected proportion of reads to align to
locus l if the sample is normal diploid, where ∑imi = 1, and let d denote the amount by
which the mean copy number is scaled, such that:

ĉl = cl

d
(1.3)

we can show that:
d =

∑
i

mici (1.4)

We can see that when all mi are equal, i.e. no bias exists, then d = D and ĉl = r̂l.

Allele frequency

In the absence of information other than the read depth, it is difficult to estimate the absolute
copy number of the cells in the cancer. Germline variants can help with this. The observed
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Figure 1.3 An illustration of the process of sequencing a tumour sample. Each segment
represents a stage in the process from tissue biopsy through data processing. The illustration
includes a representation of a region of the genome. The small blocks represent the quantity
of molecules derived from each genomic locus from each clone or normal cell. The purple
clone includes a duplication and the red clone includes a deletion. Noise and biases propagate
through each step of the process, obscuring the biological signal.

proportion of B alleles in a region can inform how many copies of the B allele are present in
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comparison to the A allele. The B allele frequency (BAF) at locus l, bl, is given by:

bl =
1
(
1 −

∑K
k=1 pk

)
+∑K

k=1 nbklpk

1
(
1 −

∑K
k=1 pk

)
+ 1

(
1 −

∑K
k=1 pk

)
+∑K

k=1 naklpk +∑K
k=1 nbklpk

= 1 −
∑K

k=1 pk +∑K
k=1 nbklpk

2 − 2∑K
k=1 pk +∑K

k=1 pk (nakl + nbkl)

(1.5)

Note that, bl is only informative if the allele at locus l is heterozygous, i.e. the sequences of
A and B are different. This is because if A and B are the same, i.e. the locus is homozygous,
then bl will be 0 or 1 respectively and will remain 0 or 1 regardless of the number of copies
of A and B in the cancer cells.

Expressing the allele-specific copy number in terms of ĉl and bl

From equations 1.1 and 1.3 we have:

ĉl =
2
(
1 −

∑K
k=1 pk

)
+∑K

k=1 pk (nakl + nbkl)
d

(1.6)

Rearranging equation 1.6 we get:

K∑
k=1

pk (nakl + nbkl) = ĉld− 2 + 2
K∑

k=1
pk (1.7)

Substituting 1.7 into 1.5 we obtain the B allele-specific copy number for clone j, nbjl:

bl = 1 −
∑K

k=1 pk +∑K
k=1 nbklpk

2 − 2∑K
k=1 pk + ĉld− 2 + 2∑K

k=1 pk

= 1 −
∑K

k=1 pk +∑K
k=1 nbklpk

ĉld

nbjl =
∑K

k=1 pk − 1 + blĉld−
∑K

k=1,k ̸=j nbklpk

pj

(1.8)

If we denote the A allele frequency as al, and by noting that al = 1 − bl, we find that the A
allele-specific copy number for clone j is:

najl =
∑K

k=1 pk − 1 + (1 − bl) ĉld−
∑K

k=1,k ̸=j naklpk

pj
(1.9)

Note that, given relative copy number and B allele frequencies, multiple solutions can
exist for ploidy, purity and allele-specific copy number.
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1.7 Profiling cancer genomes in the clinic

The application of genomics and high-throughput sequencing in the clinic has great promise.
While currently limited, these technologies are already being used to diagnose cancer, estimate
prognosis and guide treatments [80]. Current successes in targeted treatments include the
use of the kinase inhibitor, imatinib, to treat chronic myeloid leukemia (CML) patients
that have the BCR-ABL1 fusion gene caused by a balanced translocation (the Philadelphia
chromosome) [81]. Remarkably, this treatment has allowed CML patients to achieve similar
life expectancy as those from the general population [82]. Another example is the development
of HER2-targeted therapies for breast cancer which have led to increased survival for those
with metastatic disease (from less than 2 years to almost 5 year median survival) and
the cure of up to 50% of patients for those with early stage HER2-positive breast cancer
[83–85, 80]. Other targeted treatment examples include crizotinib for the treatment of
MET -amplified non-small cell lung cancer (NSCLC) [86] and vemurafenib which targets
BRAF V600 mutations that occur in approximately 50% of cutaneous melanoma patients
[87]. As well as identifying patients for which targeted treatments may benefit, genomic
profiling may be useful for identifying those that would not benefit. For example, patients
with colorectal cancer (CRC) harbouring KRAS, NRAS or BRAF mutations would not
benefit from cetuximab, a EGFR-targeted therapy [88].

Large-scale cancer genome studies are revealing the wide array of genomic alterations that
afflict different cancer types. While some recurrent driver alterations are observed within
cancer types, some are shared between cancer types. Therapies targeting those alterations
in the particular context of one cancer type may be successfully administered to patients
with a different cancer type sharing the same genomic alterations. For example, while
obtaining regulatory approval for the treatment of BRCA1/2 associated ovarian cancer, the
poly-ADP-ribose polymerase (PARP) inhibitor, olaparib, has been found to have efficacy
in treating patients with germline BRCA1 and BRCA2 mutations for breast, prostate and
pancreas cancer [89]. Results like these encourage a move away from traditional pathology
and tissue-of-origin classification to genomic and molecular classification [90].

Intratumoural heterogeneity complicates the targeted treatment of cancers. Genomic
alterations present in some cancer cells, that are acquired either before or after cancer
development, can confer resistance to therapy. Under the selection pressure of targeted
therapy, these resistant clones can come to dominate the tumour landscape. An example
of this is the EGFR T790M mutation which confers resistance to first-generation EGFR
inhibitors used to treat EGFR mutant non-small cell lung cancer patients. Hata et al.
observed cases in which this mutant clone pre-existed before treatment and cases where the
cells acquired the mutation during treatment [91]. Profiling the genomic heterogeneity within
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the tumour population and applying combinations of drugs is likely to help reduce or slow
acquired resistance [92, 80].

SCNAs frequently occur in cancer genomes. As we have discussed, SCNA frequencies
vary between cancer types. However, the "average" cancer genome has 16% of its genome
amplified and 17% deleted [93], compared with the genome of a normal sample which has
CNAs affecting approximately 1.2% of the genome [94]. Therefore, just detecting such gross
chromosomal abnormalities can be helpful in the diagnosis of cancer (we discuss this in
the context of oesophageal adenocarcinoma in chapter 3). Short, or focal, amplifications or
deletions often affect oncogenes and tumour suppressor genes respectively. Some SCNAs are
associated with prognosis and response to treatment. For example, focal amplifications which
increase the expression of the antiapoptotic genes MCL1 (chromosome 1q21.2) or BCL2L1
(chromosome 20q11.21) may protect cells from chemotherapy [93]. Other examples include
amplifications of a 10 to 15 Mbp region within chromosome 1 that includes a number of
genes (including the oncogene, CKS1B) that have abnormal expression in multiple myeloma
(MM). This alteration is associated with poor prognosis and a less sensitive response to
treatment [95–97]. Another example includes the amplification of CCNE1 that occurs in
approximately 25% of patients with ovarian cancer and is associated with poor prognosis.
Subsequent CDK2-targeted therapy seems to select tetraploid cells which appear to confer
resistance to therapy [98].

The application of genomics testing in the clinic presents a challenge. One of these is the
low quantity and quality of tumour material available for testing. Patients usually receive
a fine-needle aspiration or small core biopsy. Currently, much of the material collected is
used for standard, often histopathology-led, diagnostic evaluation [80]. This leaves little
molecular material with which to apply various HTS arrays. Whole-genome sequencing, while
comprehensive and falling in cost, is still prohibitively expensive and impractical for most
patients. Whole-exome sequencing (WES), can be performed at lower cost, however it is
more expensive than simple gene panel assays and requires more input DNA. Gene panels are
low-cost and useful for the identification of SNVs and indels. However, they typically include
portions of 50-500 genes, representing a small proportion of the whole genome. As such, they
have limited use for genome-wide SV and SCNA profiling. Given that some cancer types
appear to be driven almost entirely by SVs and SCNAs [45, 99], there is a need to provide
low-cost SCNA profiling that could be widely used in the clinic. Low-cost SCNA profiling,
perhaps coupled with gene panels for SNV screening, could provide a means of diagnosis,
guide treatment decisions and enable the monitoring for resistance to therapy [80, 99].

The non-invasive sampling of cells or DNA is a promising avenue for cancer care. One
example is the capture of circulating cell-free DNA (cfDNA) from blood or other fluids
(so-called liquid biopsies), which may include DNA originating from cancer cells (circulating
tumour DNA, ctDNA). In addition to the isolation of cfDNA, other non-invasive technologies
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have been developed. For example, cytology-retrieval devices (discussed in the context
of oesophageal adenocarcinoma in chapter 3) can be administered more easily than more
expensive and more invasive traditional approaches and provide a sample of cells from a
particular tissue [100]. Together, these technologies have exciting application for diagnosis,
prognosis, treatment selection and disease monitoring [101].

Inherent with non-invasive approaches is the problem that a high proportion of the sample
will originate from normal cells. For example, if ctDNA is present in a liquid, it usually
represents a small fraction of the total cfDNA; much of the cfDNA is likely to have originated
from normal cells. This is particularly true for early stage cancer and the proportion of ctDNA
increases with tumour size and stage. However, quantities can vary between individuals and
cancer types [102, 101]. The problem of normal contamination is not limited to non-invasive
sampling. The proportion of cancer cells present in traditional biopsies is variable with
different quantities of normal, stromal and immune cells seen between samples [103]. The
proportion of tumour cells in a sample is referred to as the purity or cellularity, while the
proportion of non-tumour cells is sometimes referred to as the normal contamination. Low
purity samples result in a lower proportion of somatic alterations present in sequencing data
(a lower signal). Low tumour purity, coupled with intratumoural heterogeneity (a mixture
of signals), makes inferring the somatic alterations present in a sample more challenging.
Developing principled statistical tools to distinguish between noise and signal, particularly
in the extreme case of low purity and heterogeneity, is critical for these technologies to be
useful in the clinical setting.

1.8 Thesis overview

The focus of this thesis is the inference of somatic copy number alterations from data
generated by a low-cost and simple HTS sequencing assay (FAST-SeqS [104]) that utilises
LINE1 repeats across the genome.

In Chapter 2, I describe the FAST-SeqS protocol and review published approaches for
the analysis of FAST-SeqS data. By exploring the features of FAST-SeqS data, I motivate and
describe the development of a probabilistic generative model (conliga). I go on to describe
associated Markov chain Monte Carlo (MCMC) algorithms for the inference of SCNAs from
FAST-SeqS data, and methods for summarising the posterior distribution. By application to
normal samples derived from male and female donors, I show that conliga infers relative copy
number, as expected.

In Chapter 3, I apply conliga to oesophageal adenocarcinoma, Barrett’s oesophagus
and gastric adenocarcinoma samples. I introduce oesophageal adenocarcinoma and the need
for improvements to screening and surveillance strategies. I argue that SCNAs may be
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useful as biomarkers for detection, monitoring and treatment choices. In this chapter, I
compare conliga to existing and widely used SCNA inference methods for whole-genome
sequencing (WGS) data. I explore conliga’s performance in determining the SCNA status of
a set of recurrently altered genes in oesophageal adenocarcinoma. In addition, I explore its
performance when applied to low purity samples.

In Chapter 4, I describe changes to the FAST-SeqS protocol with the aim of increasing
the number of samples sequenced per experiment. This chapter describes a new pipeline for
processing FAST-SeqS data and technical aspects of the data. Sample-specific biases are
discovered when analysing prostate samples which can cause artifacts in the SCNA inferences.
I describe methods to correct these biases and show that more realistic SCNA profiles can be
inferred.

In Chapter 5, I explore the use of variants in FAST-SeqS data and how these could be
used to infer purity, ploidy and allele-specific copy number. I show that conliga and FAST-
SeqS could potentially be used to screen samples prior to performing WGS in large-scale
cancer genome studies. Finally, I explore preliminary single-cell FAST-SeqS (scFAST-SeqS)
data and briefly discuss the possibility of extending conliga to infer single cell copy number.

In Chapter 6, I summarise the key findings of the thesis, discuss limitations and several
avenues for future work.

1.9 Original contribution

During my PhD, I made the following original contributions:

1. I developed a new probabilistic model for FAST-SeqS data and associated algorithms
to infer relative copy number at the amplicon level. I implemented these methods in
C++ and developed an open-source R package, conliga.

2. I applied conliga to oesophageal adenocarcinoma, gastric adenocarcinoma, Barrett’s
oesophagus and prostate cancer samples, showing its potential as a clinical tool and for
biomedical research applications.

3. I made modifications to the FAST-SeqS primer design, which included UMIs of variable
lengths to increase library diversity for higher-quality sequencing. In addition, I
introduced unique dual indices to identify index swapping.

4. I showed that variants present in LINE1 sequences, in addition to inferences provided
by conliga, can be used to infer the purity, ploidy, allele-specific copy number and
evidence of intratumoural heterogeneity.
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5. I designed experiments to apply FAST-SeqS to single cells. Using preliminary data, I
showed that copy number signal is present in the data, suggesting that methods could
be developed for the inference of SCNAs in single cells.



Chapter 2

conliga: a method and tool for
inferring relative copy number
from FAST-SeqS data

Some of the work presented in this chapter forms a subset of the work described in Abujudeh
et al. [105] and is shared as a preprint on bioRxiv. In some sections of this chapter, parts of
the paper are reproduced. This work was performed in collaboration with the Fitzgerald
Laboratory at the MRC Cancer Unit at the University of Cambridge. Sebastian Zeki and
colleagues performed the FAST-SeqS protocol and were responsible for processing the clinical
samples through to data (FASTQ files). Jamie MJ Weaver conceived the clinical utility of
FAST-SeqS for upper gastrointestinal cancers. The rest of the work presented in this chapter
is my own.

In this chapter I explore the FAST-SeqS protocol; a simple and low-cost method of library
preparation for DNA amplicon sequencing across the genome. I discuss previously published
approaches for the analysis of FAST-SeqS data and motivate the creation of a new approach.
By exploring FAST-SeqS data, I show that it has the potential to be used as a relative copy
number assay. I go on to introduce a probabilistic generative model and tool, conliga1, which
I designed and implemented to infer relative copy number from FAST-SeqS data. Finally,
I test the method on male and female samples to detect and quantify changes in the sex
chromosomes.

1conliga gets its name from “copy number from LINE1 genomic amplicons” and it is also the second-person
singular present active imperative of the Latin word conligō, meaning bring together, gather, deduce or infer.
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2.1 The FAST-SeqS protocol

The Fast Aneuploidy Screening Test Sequencing System (FAST-SeqS) [104] is a simple protocol
involving two rounds of PCR. It results in a library of amplicons ready for sequencing on
Illumina platforms. The first round of PCR (PCR1) uses a single primer pair to amplify
multiple genomic loci (>10,000) [104, 106–108] dispersed throughout the genome. The PCR1
primers introduce a universal primer sequence (UPS) which is used for the second round of
PCR (PCR2). PCR2 uses the UPS to amplify the product produced in PCR1. The PCR2
primers include sample indices and the sequences required for the amplicons to hybridise to
the flow cell on an Illumina sequencer. This process is the same as the Safe-SeqS approach
described in chapter 1 (Figure 1.2). Figure 2.1 shows the composition of the resulting
amplicon library.

Figure 2.1 A diagram showing the composition of the FAST-SeqS amplicon sequencing
library. Together, the multicoloured bars represent a double-stranded amplicon produced
by a FAST-SeqS experiment. Each coloured bar represents a nucleotide sequence associated
with different elements of the amplicon. The beige section in the middle of the amplicon
represents the target LINE1 sequence. The lengths for each element of the amplicon is listed
underneath. The top of the figure indicates the portion of the amplicon that is sequenced
when performing 150 bp single-end sequencing. Since the LINE1 sequences vary in length,
the resulting sequencing reads include varying portions of the reverse primer (Rev), reverse
UPS and sample indices. A dotted line indicates the uncertainty regarding the elements of
the amplicon the reads contain.
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FAST-SeqS is an attractive assay for use in research and in the clinic because of its
simplicity and low-cost. PCR machines are commonly present in research laboratories and
hospitals around the world. The protocol is quick and easy to perform, requiring minimal
hands-on time and samples can be prepared for sequencing in approximately an hour. The
simplicity of the protocol lends itself to automation, meaning the process could be easily
scaled to process many samples by the use of liquid handling robots. The simplicity of
FAST-SeqS is in contrast to whole-genome sequencing (WGS) library preparation which is
laborious and requires approximately half a day to prepare [104, 108]. In addition, FAST-SeqS
is simpler than multiplex PCR, in which multiple primer pairs are used to amplify regions
within the genome with each pair designed to amplify a unique region. This is because it is
technically challenging to design thousands of primer pairs which do not hybridise to each
other (primer dimerisation) and have similar chemical properties (e.g. melting temperature).
Furthermore, ordering thousands of primer pairs incurs a greater upfront cost compared with
buying a single primer pair.

The set of primers used by Kinde et al. [104] (which they call the FAST-1 primer
pair) amplify segments close to the 3’ end of a subset of LINE1s, in particular a set of
primate-specific LINE1s. The most commonly observed LINE1 subfamilies amplified by the
FAST-1 primers are the most prolific subfamilies in the human genome (L1PA8 - L1PA3)
which are estimated to have proliferated in the genome between 40 and 12 Mya [53]. These
subfamilies make up approximately 90% of the observed FAST-SeqS alignments [104]. LINE1s
accumulate mutations at a neutral rate and therefore older subfamilies have greater sequence
divergence than newer ones [53]. The L1PA subfamilies have accumulated a sufficient number
of mutations to allow a substantial number of FAST-SeqS amplicons to be aligned uniquely
to the genome [104]. Additionally, these older L1PA subfamilies are typically not capable of
retrotransposition (which is limited to the more recent human-specific LINE1s) [49].

The FAST-SeqS amplicons vary in length with a bimodal distribution observed by gel
electrophoresis with modes around 124 and 142 bp. The distribution of amplicon lengths means
that the FAST-1 amplicons can amplify cell-free DNA (cfDNA). cfDNA is approximately 150
bp in length [109] with a prominent mode at 167 bp [110]. As such, FAST-SeqS has promise
as an assay that could be used for the detection, classification and longitudinal surveillance
of patients with cancer via non-invasive sampling of ctDNA.

2.2 Published methods for FAST-SeqS data

There have been three computational methods published for FAST-SeqS data (at the time of
writing). Here, I discuss their purposes, approaches and limitations. A critical examination of
the computational methods is presented in section 2.2.4, after I describe the three methods.
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2.2.1 Kinde et al., 2012

As the name suggests, the first application of FAST-SeqS was for the detection of aneuploidy
(variation in the number of whole chromosomes). Kinde et al. demonstrated the use of FAST-
SeqS for the detection of trisomy 13 (Patau syndrome), trisomy 18 (Edwards’ syndrome) and
trisomy 21 (Down’s syndrome) in circulating fetal DNA from maternal plasma [104].

Library preparation

33 ng of DNA was used as an input to the first round of PCR. The first round forward
primer (FP) included a 20 bp UMI sequence (or 16 bp UMI in some experiments). Table 2.1
summarises the experimental protocol.

Table 2.1 FAST-SeqS experimental protocol summary

Step Kinde et al. Belic et al.

PCR1 input DNA
33 ng cell lines: 20 ng

cfDNA: 0.1-5 ng

UMI FP: 16 or 20 bp No

PCR1/PCR2 reaction

50 µl volume 50 µl volume
0.5 µm each primer 0.25 µm each primer
2U PHSII* 2U PHSII*

Bead clean-up Yes, 1.4× volume Yes, 1.4× volume

PCR1 thermocycler conditions

98 ◦C for 120 s 98 ◦C for 120 s
2 cycles of: 5 cycles of:

98 ◦C for 10 s 98 ◦C for 10 s
57 ◦C for 120 s 57 ◦C for 120 s
72 ◦C for 120 s 72 ◦C for 120 s

PCR2 thermocycler conditions

98 ◦C for 120 s 98 ◦C for 120 s
13 cycles of: 15 or 18 cycles of:

98 ◦C for 10 s 98 ◦C for 10 s
65 ◦C for 15 s 57 ◦C for 120 s
72 ◦C for 15 s 72 ◦C for 120 s

* PHSII: Phusion Hot Start II Polymerase
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Sequencing, read processing and alignment

Kinde et al. sequenced the FAST-SeqS libraries using a HiSeq 2000 machine obtaining 37 bp
single-end reads. They kept reads that passed the Illumina chastity filter and contained at
least three terminal bases of the forward primer sequence. They masked bases that had a
quality score of less than 20 with an ambiguous base N. Then they aligned the processed
reads to the hg19 version of the human reference genome (including unresolved or unplaced
contigs) using Bowtie 0.12.7 [111]. The reads were aligned allowing for up to one mismatch
to the reference genome and reads mapping to multiple locations were discarded.

Kinde and colleagues sequenced a total of 49 samples and reported a mean of 20,819,781
reads per sample (range: 3,716,461-42,674,992, median: 19,063,243, interquartile range (IQR):
9,976,099-31,518,407). After alignment, they observed a mean of 7,671,928 aligned reads per
sample (range: 1,343,382-16,015,347, median: 7,556,803, IQR: 3,964,677-11,526,042).

Post alignment processing and normalisation

The authors likened FAST-SeqS data to data generated from a microarray; the repeatedly
amplified positions in the genome are equivalent to probes and the amplicon read counts
are equivalent to microarray intensities. They observed that multiplexing samples on a
sequencing lane would produce a different number of reads per sample due to what they
believed to be stochastic and experimental variations. Given this observation, they reasoned
that it was essential to normalise the data. They believed that expressing the reads as a
fraction of the total read count per sample was too simplistic and susceptible to potential
systemic biases in the data.

They filtered some of the loci in order to approximate the organisation of microarray data.
They did this by including only the loci that appeared in all samples within each sequencing
experiment and reported that this involved filtering less than 1% of the data. They also
excluded loci mapping to unresolved or unplaced contigs in addition to the sex chromosomes.

Then, they used quantile normalisation to normalise the data in each sequencing experi-
ment. The authors noted that the normalised data were negatively skewed and bimodal. They
believed that the bimodality in normalised counts was caused by the preferential amplification
of the 124 bp length amplicons with respect to 142 bp amplicons. They decided to filter the
loci with the lowest counts by using kernel density estimation to obtain a smooth distribution
of normalised counts, determining the inflection point between the two modes, and filtering
all loci to the left of the inflection point. Following this, they performed an additional step of
quantile normalisation on the filtered normalised counts. I discuss why quantile normalisation
is not appropriate for this type of data in section 2.2.4.
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Statistical test for evidence of aneuploidy in chromosomes 13, 18 and 21

Given normalised data, including a panel of control euploid samples, they used a simple
statistical method to determine evidence of the duplication of chromosomes 13, 18 and 21 in
a sample of interest. They determined a z-score for a sample i in a chromosome of interest,
chrN, by using the formula:

z-scorei,chrN = chrNi − µchrN
sdchrN

(2.1)

here, chrNi represents the sum of the normalised counts for chrN in sample i. µchrN and
sdchrN represent the mean and standard deviation (respectively) of the sum of normalised
counts for the euploid control samples in chrN. A chromosome in a sample is assumed to be
aneuploid if the z-score is greater than or equal to 3.

2.2.2 Belic et al., 2015

In 2015, Belic et al. [106] applied FAST-SeqS to cfDNA with the aim of detecting chromosome
arm-level alterations in circulating tumour DNA. They named their method the modified
FAST-SeqS (mFAST-SeqS) approach. In addition, they developed a score which determined
if the sample had evidence of aneuploidy (genome-wide). mFAST-SeqS was additionally
presented as a pre-screening tool whereby, samples with a sufficient aneuploidy score would be
processed by their low-coverage WGS method “plasma-Seq” [112] for copy number profiling,
while samples with insufficient scores would be screened for SNVs, indels and structural
rearrangements (not SCNAs). If the genome-wide score was low, the assumption was that
either SCNAs were not present in the sample or that there were insufficient mutant alleles
(purity). Belic et al. assessed the detection limit of mFAST-SeqS to be 10% purity.

Library preparation

The library preparation steps were largely the same as Kinde et al. with a few modifications.
They used 20 ng of input DNA for cell line experiments and 0.1 - 5 ng of DNA for cfDNA
compared with 33 ng used by Kinde et al.. They removed the degenerate bases that were
attached to the forward primer meaning that they entirely removed the UMI sequence.
Although not mentioned in the main text of their paper, they replaced the custom UPS
sequence with the Illumina TruSeq adapter sequence. This makes multiplexing WGS and
FAST-SeqS libraries on the same lane more straightforward.
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Sequencing, read processing and alignment

Libraries were sequenced on the Illumina MiSeq platform. The paper does not describe how
the reads were processed. We can expect that sequencing adapters were removed but we do
not know how Phred quality scores were handled; whether bases were trimmed, masked, or
reads discarded based on thresholds or if the primer sequences from the reads were removed.
Burrows-Wheeler Aligner (BWA) 0.7.4 was used to align reads. It is not stated whether
BWA-MEM or BWA backtrack algorithms were used for alignment.

Post alignment processing and normalisation

Alignments with mapping quality (MAPQ) less than 15 were discarded2. The remaining
alignments were counted with a custom script. The authors note that zero reads aligned
to 13p, 14p, 15p, 21p, 22p, and Y and therefore they were removed from the analysis. To
normalise the data and account for varying total counts between samples, read counts were
divided by the sample total read count. Belic et al. do not mention if they filter loci so they
may have differing numbers of aligned loci between samples. Post filtering, they reported a
mean of 242,190 reads for the control samples (range: 106,205 - 925,843). Note that alignment
counts were not presented for the other (non-control) samples.

Statistical tests

The z-score approach of Kinde et al. was extended to whole chromosome arms by Belic et
al.. Rather than limiting the test to evidence of duplication, they called evidence of deletion
(z-score < -5) and duplication (z-score > 5). Furthermore, they devised a “genome-wide
z-score” to provide an overall measure of aneuploidy for a sample. They define it as the
squared sum of all chromosome-specific z-scores. A genome-wide z-score of greater than 5
suggests that a sample shows evidence of aneuploidy. It is not clear from the paper whether
this is the squared sum of chromosome arm z-scores or whole chromosome z-scores.

2.2.3 Douville et al., 2018

A method called Within-Sample AneupLoidy DetectiOn (WALDO) has recently been pub-
lished by Douville et al. [107]. The aim of WALDO is similar to mFAST-SeqS; to detect
evidence of chromosome arm-level deletions and duplications and to provide a method to
call overall aneuploidy in a test sample. As part of their study, they processed and analysed
1,678 formalin-fixed and paraffin-embedded (FFPE) tumour samples, 176 peripheral white
blood cells (WBCs) samples from healthy individuals, DNA purified from the plasma of 566

2I explore how mapping qualities behave for LINE1 elements in chapter 4
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healthy individuals and 982 individuals with cancer. The authors were able to detect allelic
imbalance at chromosome arm-level resolution by using SNPs identified in LINE1 regions
from the 1,000 Genomes Project [113]. By using matched control samples, they note the
ability to detect somatic sequence variants.

Library preparation

Douville et al. [107] used the same library preparation steps as Kinde et al. [104]. However,
they do not state the quantity of input DNA used in the study. For the plasma samples, they
obtained DNA from 250 µl of plasma which is likely to yield differing quantities of DNA. The
amount of DNA used for the WBC and FFPE tumour samples was not stated.

Sequencing, read processing and alignment

Depending on the experiment, the samples were sequenced using either an Illumina Miseq,
HiSeq 2500 or HiSeq 4000. They do not state the length of the reads used or whether
they were single or paired-end reads. The authors state that they used the term “read”
to refer to “uniquely identified reads” and that, depending on the experiment, each read
was sequenced 1-20 times. Presumably, by this they mean that a read’s UMI was used to
determine its originating molecule in the experiment. The reads were reduced down to their
original molecules and as such, the term “read” was used instead to represent a “unique
molecule”. They do not state how they perform this process. The authors used Bowtie2 [114]
to align the reads (presumably the UMI reduced reads) to the GRCh37 reference genome
but they do not state the version or parameters that were used. For the primary tumour
samples that were analysed, they reported a mean of 4,309,367 reads per sample (range:
181,124-36,367,299, median: 2,562,829, IQR: 1,718,905-4,091,714) and a mean of 2,074,172
UMIs per sample (range: 101,210-18,316,187, median: 1,144,478, IQR: 734,981-1,749,316).
For plasma samples a mean of 11,537,394 reads were reported (range: 157,297-41,510,757,
median: 11,844,636, IQR: 9,571,024-13,972,903) and a mean of 3,516,114 UMIs per plasma
sample (range: 101,739-17,565,186, median: 3,516,114, IQR: 2,165,617-5,953,431).

Post alignment processing and normalisation

The WALDO method involves several filtering and normalisation steps to the amplicon
read counts. Firstly, WALDO finds the set of seven normal (i.e. euploid) reference samples
which are believed to have similar DNA fragment lengths as the test sample from a pool
of previously sequenced samples. This was achieved by selecting the seven samples which
minimised D(p, q) =

√∑
n(qn − pn)2. Here, pn and qn represent the fraction of amplicons

of length n bp in the test sample and a euploid sample respectively. They believed this
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was important due to samples with shorter fragment lengths being more likely to have an
overrepresented number of shorter FAST-SeqS amplicons. These samples were selected from
a panel of 677 WBC and 566 plasma samples. The methods described in the supplementary
materials within Douville et al. [107] imply that they tested every combination of seven
samples from the pool of 1,243 samples. For each set of seven samples tested, the 1% of
amplicons with the highest variance of counts across the seven samples were filtered, in
addition to amplicons with < 10 reads in one sample but > 50 reads in any of the remaining
six euploid samples. Only the amplicons from the autosomes were considered in the analysis.

After choosing the seven reference euploid samples and filtering amplicons, the counts of
the remaining amplicons were summed in 500 kb bins. The rationale for binning the genome
was that it minimised the stochastic and experimental variability observed in the amplicon
counts. Subsequently, the 500 kb bins were normalised for each sample. For each sample, the
500 kb binned counts were normalised by subtracting the mean and dividing by the standard
deviation of the 500 kb binned counts in the sample.

The normalised 500 kb bins were then clustered together using the selected seven euploid
samples. Each 500 kb bin was assigned to its own primary cluster. Then, for each primary
cluster, the normalised reads in the 500 kb bin from the seven euploid samples were compared
to the mean normalised read counts (of the seven samples) of all the other 500 kb bins. If
the counts were not considered to be significantly different (paired t-test p > 0.05 and F -test
p > 0.05) then the bins were clustered together. Essentially, they clustered bins together
with similar normalised read depths across the selected euploid samples.

After clustering the bins, clusters containing fewer than ten 500 kb bins were discarded.
They assumed that the normalised read counts (of the test sample) within the remaining
clusters were normally distributed and fitted the mean and variance for each cluster. Then they
iteratively removed outlying 500 kb bins from the clusters (if min(2·Φ(y−µi

σi
), 2·(1−Φ(yi−µi

σi
)) <

0.01, where Φ represents the cumulative distribution function for the standard normal
distribution, y represents the summed count for the 500 kb bin being tested, µi and σi

represent the fitted mean and standard deviation respectively for cluster i) and refitted the
means and variances until no more outlying 500 kb bins remained.3 These clusters were then
used for determining the status of chromosome arms in the test sample.

Statistical tests

Given the remaining l 500 kb regions on a chromosome arm and their associated cluster
memberships, a z-score was calculated to determine the status of the chromosome arm
(amplified, deleted, normal). The normalised reads were summed over the chromosome arm.

3Note that any outlying 500 kb bins were removed from all the clusters they belonged to. As such, they
were removed from all downstream analyses.
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Then, z-scores were produced by computing 1 − Φ((∑l
i=1 yi −

∑l
i=1 µi)/

∑l
i=1 σi) where yi is

the summed normalised count for the ith 500 kb bin and µi and σi represent the fitted mean
and standard deviation of the cluster to which the ith 500 kb bin belongs.4 If the z-score was
greater than α then the chromosome arm was determined to be gained and lost if the z-score
was less than α, where α was a selected threshold.

This z-score approach detected chromosome arm gains and losses when the tumour fraction
was greater than 5-10% of the sample. To attempt to detect samples with several chromosome
arm losses or gains at lower tumour fractions, a two-class support vector machine (SVM) was
used. The SVM was trained on synthetic samples created by adding and subtracting read
counts from 5-25 chromosome arms to 63 selected WBC samples. The counts were added
and subtracted to simulate tumour fractions in the range 0.5-10%.

2.2.4 Discussion of previously published approaches

The methods described above focus on the detection of whole chromosome and chromosome
arm-level deletions and duplications. Common to all methods is the assumption of normally
distributed normalised data. The methods involve the calculation of z-scores coupled with a
threshold to decide if sufficient evidence exists for a duplication or deletion. These methods
are limited to the resolution of chromosome arms and do not provide information about
alterations at the sub-chromosomal arm-level. Moreover, they do not provide quantitative
copy number profiles and are limited to, at most, three discrete levels; amplified, deleted,
normal.

This level of resolution limits the application of FAST-SeqS data within clinical and
basic research. Sub-chromosomal alterations commonly occur in cancer genomes and do
so at higher frequencies than whole chromosome arm alterations [93]. In a pan-cancer
study of SCNAs in 4,934 primary tumours, Zack et al. [115], showed that a median of 11
amplification and 12 deletion events were shorter than chromosome arm-level while there
were 3 amplifications and 5 deletions of chromosome arm length or longer. Moreover, focal
SCNAs have been found to be major drivers of tumour development and are associated with
response to therapies and prognosis [93]. Chromosome arm-level z-scores are a poor measure
for focal or sub-chromosomal arm-level alterations. For example, if half of a chromosome
arm is deleted and the other half is amplified, the chromosome arm z-score may be close to
zero and hence these alterations will not be detected. Furthermore, highly focal alterations,
if detected at all, may be falsely characterised as chromosome arm-level alterations. Making
the distinction between the focal amplifications of particular oncogenes such as ERBB2 and

4Though not explicitly stated in Douville et al. [107], here I assume that the mean and standard deviation
were taken from each 500 kb bin’s primary cluster
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EGFR (which have known drug targets) and a chromosome arm-level alteration may be
critically important in classifying and determining optimal therapies for patients.

By failing to provide quantitative measures of copy number alterations, these methods
have limited use in the study of temporally or spatially related samples. By providing
quantitative measures, we might be able to infer that copies have accumulated or been lost (at
least relatively) with respect to time or space in particular regions of interest. This may guide
the time-course of patient’s clinical treatment and be used to further the understanding of
tumour evolution. Also, quantitative estimates of copy number may facilitate the estimation
of the sample’s tumour purity. This is itself an important piece of information and can inform
further sequencing experiments from the same sample (I discuss this further in chapter 5).

mFAST-SeqS and WALDO provide a method to detect overall "aneuploidy". Here,
aneuploidy is not used in the strict sense of the definition, i.e. duplications or deletions of
whole chromosomes. Instead, they detect (or provide a measure of) evidence that a sample
contains chromosome arm-level copy number alterations. WALDO uses chromosome arm-level
z-scores as input features to a SVM to call whether a test sample is aneuploid. mFAST-SeqS
uses the squared sum of all chromosome-specific z-scores to calculate an overall score. Overall
scores such as these are potentially useful for the detection of cancer from low purity tumour
samples such as cfDNA for example. However, by using chromosome arm-level scores as the
input to these methods and not higher resolution information, they are unlikely to be as
sensitive as they could be. Using sub-chromosomal or amplicon-level resolution as an input
to discriminate a cancer sample from a normal sample is likely to result in greater sensitivity.

Modelling sequencing data, sampling and technical variation

As I discussed in the introduction, sequencing is fundamentally a process of sampling (or
reading) a fixed number of molecules from a library of many more molecules. Because of
this, it means we are not measuring absolute numbers of molecules from the sample but
rather relative differences between molecule counts from a chromosome arm or locus with
those from another chromosome arm or locus (within the same sample). This means that
when one chromosome arm is duplicated, the reads originating from it will proportionally
increase compared to those that were not duplicated. To "compensate", the reads from the
other chromosome arms will proportionally decrease. In this example, other chromosome
arms might be inferred to be deleted when they were not. The z-score approach used by
FAST-SeqS, mFAST-SeqS and WALDO will suffer from this issue. Explicitly modelling the
fact that we are measuring relative quantities between molecules would be preferable and
avoids incorrectly interpreting the observed biological signal.

The process of sequencing, sampling reads and dealing with the resulting count data is
well studied. Methods developed for other sequencing assays, for example RNA-seq [116, 117]
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and DNA-seq [118, 119], utilise count distributions such as the multinomial, binomial or
Poisson (and over-dispersed versions thereof) when making inferences from sequencing data.
We note that the currently published methods for FAST-SeqS data (presented above) do
not use count distributions to account for sampling variation in a principled way. Indeed,
Kinde et al. [104], Belic et al. [106] and Douville et al. [107] reported that the number of
reads per sample can vary substantially, leading to varying amounts of sampling variation
between samples. FAST-SeqS and mFAST-SeqS chose arbitrary z-score thresholds for all
tested samples (FAST-SeqS uses > 3 and mFAST-SeqS uses > 5 or < -5). This can lead
to increased false positive calls for samples with few reads and greater false negative calls
for samples with high read counts. Furthermore, by using fixed z-score thresholds, these
methods assume that the amount of technical variation does not vary between samples which
could be the case. The WALDO method does not explicitly use read depth information in its
approach but by fitting Normal distributions to 500 kb regions with similar read counts, it is
indirectly doing so. However, this approach unnecessarily confounds sampling and technical
error and, by fitting Normal distributions to each cluster separately, global trends in the data
are ignored. If sampling and technical error in FAST-SeqS data are not sufficiently modelled,
methods to calculate an overall aneuploidy score will likely amplify these errors, leading
to an increased chance of misclassifying normal samples as aneuploid. This is particularly
detrimental to methods such as mFAST-SeqS which use the squared sum of the z-scores. It
appears that the opportunity exists to make substantial improvements in the modelling of
sampling and technical error in FAST-SeqS data.

Normalisation and data processing

All three methods apply normalisation techniques to the data. The normalisation process
described by Kinde et al. [104] includes two steps of quantile normalisation. Quantile
normalisation is used to remove technical variation between samples and is based on the
assumption that technical variation is the cause of global variation between samples [120].
This assumption may not hold, particularly in tumour samples with many copy number
alterations. By using quantile normalisation, biological variation may be inadvertently
removed or distorted. Furthermore, by forcing all samples to have the same distribution
and total number of counts, we lose information about the sample’s total read counts and
hence the variation due to sampling error. This means we are unable to account for this
source of variability when making inferences from the data. Kinde et al. [104] made the
decision to filter a substantial amount of data by filtering below the inflection point of the
two modes of the normalised counts (after the first quantile normalisation step). This choice
does not appear to be justified, particularly given that they believed these two modes were a
reflection of preferential amplification of shorter fragments. If this is the case, they will be
removing amplicons that have a length of approximately 142 bp while keeping those around
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124 bp. Unless there is a particular reason to filter longer amplicons, this appears to be an
unnecessary step.

Belic et al. [106] normalise the counts by dividing the counts by the sample’s total count.
With this approach, biological signal will not be removed. However, this method relies on
the assumption that technical variation is consistent between samples and therefore does
not require correcting. While it is a simple approach and allows for direct comparisons
between samples, it also removes the total count information and therefore the variation due
to sampling error is lost.

Douville et al. [107] normalise 500 kb bin counts within a sample by subtracting the
mean bin count and dividing by the standard deviation. Like the other two methods, this
removes the total read information and hence sampling variation information is lost. The
authors take an interesting approach to match the test sample to a set of seven previous
sequenced normal samples. They believe that the fragment length distribution of the DNA
within a sample affects the representation of amplicon lengths that are sequenced; shorter
DNA fragment distributions lead to an over-representation of reads from shorter amplicons.
They take a data-driven strategy to pick seven samples which they infer to have similar DNA
fragment distributions. The downside to this approach is that it requires a large (>1,000)
number of previously sequenced samples. These seven samples are used only to define clusters
of 500 kb bins with similar normalised read counts. After these clusters are decided, Normal
distributions are fitted to each cluster individually using the test sample’s 500 kb normalised
bin counts. Outlying 500 kb bins within each cluster are iteratively removed and Normal
distributions are refitted to the clusters until no more bins are removed. Presumably, the
authors consider these bins to be outlying due to noise rather than biological signal. However,
it is likely that they are also filtering regions with focal amplifications and deletions, which
could be informative for detecting cancer.

Conclusion

Existing methods provide low resolution and categorical inferences from FAST-SeqS data and
do not quantify copy number alterations. A method to provide high-resolution, quantified
copy number profiles from FAST-SeqS data would be valuable from a clinical and basic
biological research perspective and would represent a significant improvement over existing
methods. Previous methods have employed different techniques to normalise FAST-SeqS
data and in doing so, have potentially distorted or removed biological signal in the data.
Developing methods which avoid the use of normalisation procedures would be preferable.
Avoiding the use of arbitrary thresholds and instead, appropriately accounting for sampling
and technical variation, is critical in order to balance sensitivity with specificity. In section 2.5,
I explore the characteristics of FAST-SeqS data. I show how these observations lead to the
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development of a new method (conliga) that can infer copy number profiles from FAST-SeqS
data and addresses the various shortcomings in existing computational methods.

2.3 Generation of FAST-SeqS data

This section is largely the same as the methods section described in Abujudeh et al. [105],
a preprint manuscript which I authored and is shared on bioRxiv. Since the methods were
very similar to those presented in this thesis, I reproduce them here.

Sequencing libraries were prepared using two rounds of PCR, using a similar protocol to
previously published methods [104, 106]. Each extracted DNA sample underwent a 50 µl first
round PCR reaction with 10 µl 5x Phusion HF Buffer (ThermoFisher Scientific), 1 µl 10 mm
dNTP (ThermoFisher Scientific), 5 µl of both the forward and reverse primers (0.5 µm) each
(Sigma-Aldrich), 0.5 µl Phusion Hot Start II DNA Polymerase 2U/µl, 5-10 µl DNA template
depending on the extracted concentration, and RNAse free water to make the total reaction
volume. The cycling conditions for the L1PA7 primers were 98 ◦C for 120 s followed 2 cycles
of 98 ◦C for 10 s, 57 ◦C for 120 s, and 72 ◦C for 120 s.

The second round was also carried out as a 50 µl sample reaction using 20 µl taken from
the first round. The rest of the reaction constituents were the same as the first round reaction
with the exception of primers (see Supplementary Table 12 of Abujudeh et al. [105]), which
contained a unique index for each sample. The cycling conditions for the second round
reaction were 98 ◦C for 120 s followed by 13 cycles of 98 ◦C for 10 s, 65 ◦C for 15 s, and 72 ◦C
for 15 s for all the primers. After the second round, samples underwent quantification using
the 2200 TapeStation (Agilent), Agilent 2100 Bioanalyser (Agilent) and Kapa quantification
(KapaBiosystems) prior to submission for sequencing. The samples were then pooled in
equimolar concentrations and gel extracted according to manufacturer’s instructions (Qiaquick
gel extraction kit, Qiagen). Finally the samples were submitted for sequencing on a MiSeq
(Illumina) platform. When sequencing molecules on Illumina platforms, it is important to
have a similar proportion of all four nucleotides in each cycle of sequencing. The proportion
of nucleotides is often referred to as nucleotide diversity or sequencing complexity. It is
important to have sequencing libraries with high nucleotide diversity (especially in the first
25 cycles) so that effective template generation is performed and high quality base calls are
produced [121]. As such, all samples were sequenced with 20% PhiX control libraries to
increase nucleotide diversity and sequencing complexity. Sequencing was performed as 150bp
single end. Samples were run with at least three normal controls prepared at the same time
and sequenced on the same platform.
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2.4 Processing of FAST-SeqS data

We can broadly split the analysis of FAST-SeqS data into two parts. The first step involves
processing each sample’s FASTQ file into counts at genomic locations. The second step
involves statistical modelling and inference from those read counts. The development of this
work started in 2015, before the Belic et al. [106] (2015) and Douville et al. [107] (2018)
methods were published. I decided that significant improvements could be made in the
statistical modelling and inference step and marginal improvements (at least proportionally)
could be made to the read processing step. For this reason, I decided to restrict the number
of changes I made to Kinde et al.’s strategy for processing FAST-SeqS data and instead focus
my energies on modelling the data and statistical inference (which are covered in sections 2.5
and 2.7). Note that I explore the processing of the data in more detail in Chapter 4.

This section is largely the same as the methods section described in Abujudeh et al. [105],
a preprint manuscript which I authored and is shared on bioRxiv. Since the methods were
very similar to those presented in this thesis, I reproduce them here.

Each sequencing run of the Illumina MiSeq platform produced a binary base call (BCL)
file which was converted to FASTQ format (using Illumina’s bcl2fastq tool). Sequencing reads
that failed the Illumina chastity filter were removed. The FASTQ file was demultiplexed into
separate FASTQ files corresponding to each sample using the demuxFQ tool [122] with the
default settings. The sample barcodes are provided in Supplementary Table 12 of Abujudeh
et al. [105]. Each sample’s FASTQ file was then processed through a custom pipeline which
we describe below.

2.4.1 Identifying forward primer position

For each read in the FASTQ file, the position of the forward primer sequence was detected
by searching for the sequence with the minimum Hamming distance to the forward primer
sequence using a sliding window. Reads with a minimum hamming distance greater than 5
were discarded.

2.4.2 Read trimming

The portion of the reads before and including the forward primer sequence were trimmed. The
ends of the reads were also trimmed such that the length of the reads used for downstream
analyses were 100 base pairs minus the forward primer length. Any reads shorter than 100
base pairs minus the forward primer length after trimming were discarded.
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2.4.3 Quality control

After trimming, reads were discarded if they contained at least one base with a Phred quality
score less than 20 and/or contained one or more ambiguous base calls (N).

2.4.4 Obtaining unique sequences and counts per unique sequence

To avoid aligning the same sequence multiple times, only unique read sequences were kept.
For each unique read, the number of identical reads were recorded.

2.4.5 Alignment of unique sequences

Unique raw read sequences were aligned with Bowtie 1.0.0 [111] (using the option: -r).
Three mismatches were permitted (option: -v3) and reads aligning to multiple locations
were discarded (option: -m1). The reads were aligned to GRCh38 (GenBank accession:
GCA_000001405.15, no alt analysis set).

2.4.6 Counts and alignments combined

Each sample’s unique read alignments and its corresponding unique read counts were combined
into a single file consisting of a matrix of counts. The rows corresponded to genomic positions
(the union of genomic positions from the alignments in all samples) and columns corresponded
to samples. The first three columns of the matrix corresponded to the chromosome, position
and strand for the locus, respectively. The matrix of counts used in this analysis can be
found in the conliga R package and in Supplementary Table 10 of Abujudeh et al. [105].

2.4.7 Selecting loci

Rows of the count matrix corresponding to genomic loci within chromosomes X, Y and within
unplaced or unresolved contigs were discarded5. For each batch of samples, genomic loci
obtaining a zero count in any one of a set of control samples were also discarded. Depending
on the sequencing batch we analysed and the controls chosen to filter loci (Supplementary
Table 11 of Abujudeh et al. [105]), this resulted in approximately 10,000 - 12,000 genomic
loci across chromosomes 1 to 22.

5though counts from chromosomes X and Y are included in some of the data exploration that follows
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2.5 Exploration of FAST-SeqS data and the development of
a statistical model

In this section, we focus on a set of 13 samples which were obtained from normal adjacent
tissue in the oesophagus of patients with oesophageal adenocarcinoma (OAC). These samples
were taken from 5 female donors and 8 male donors.

2.5.1 LINE1 subfamilies observed in FAST-SeqS data

I used RepeatMasker annotation [48] (hg38, Dec 2013, RepeatMasker open-4.0.5, Repeat
Library 20140131) and the GenomicRanges package [123] to obtain the overlaps of the FAST-
SeqS alignments and the repeat annotation of GRCh38. Of the 31,653 unique alignments
observed within chromosomes 1-22, X and Y across all samples, nine did not overlap with
annotated repeats, 31,644 were found to overlap with annotated repeats and of these 26,992
were unique repeat elements. The reason multiple alignments can overlap with the same
repeat element is that a few reads occasionally align a few bases upstream or downstream to
the majority of the other alignments to the same repeat. This is likely to be because PCR
or sequencing errors are introduced in a few of the molecules, leading to altered alignment
positions. Indeed, the sequence following the FAST-1 forward primer is typically a short
dinucleotide repeat (CA)3 which is susceptible to error in PCR and sequencing [124]. Of the
26,992 repeat elements, 26,958 originated from primate-specific LINE1 elements (the L1PA
subfamilies). Figure 2.2A shows the distribution of primate-specific LINE1 elements that
received an aligned read (count) in at least one of the 13 control samples. This distribution
is similar to that shown in Figure 1C of Kinde et al. [104] and suggests that we observe
alignments at similar genomic locations. By normalising by the number of elements of each
subfamily in the genome, we see that the observed elements are biased towards L1PA3-L1PA11,
which propagated through the genomes of ancestral primates approximately 12.5-53.3 million
years ago [53] (Figure 2.2B).

Since the reads are single-end, we cannot precisely determine the length of the amplicons
from the reads alone. Given the alignment position, I searched for the most likely reverse
primer sequence in the reference genome. This was achieved by finding the sequence with the
minimum Hamming distance (maximum of 5 mismatches) to the reverse primer up to 300
bp downstream of the alignment. For this analysis, I filtered the loci such that only those
with a non-zero count in all 13 samples were considered. After filtering, 12,834 amplicons
remained and the lengths of 12,364 amplicons could be inferred. The remaining amplicons
either had multiple matches to the primer sequence (424) or had zero matches (46) and so
were discarded for this analysis.
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Kinde et al.. showed that the distribution of FAST-SeqS amplicon lengths is primarily
bimodal, with modes observed at 124 and 142 bp (Kinde et al. Figure 1A). In Figure 2.2C, I
show that this multimodality arises due to length differences between the L1PA subfamilies.
The lengths of the targeted sequence within the L1 3’ UTR in subfamilies older than L1PA8
and L1PA8A, tend to be more variable. The L1PA8A subfamily appears to have acquired
a deletion and has lengths distributed around 103 bp, while the L1PA8 subfamily (which
co-occurred with L1PA8A for some time [53]) has lengths distributed around 142 bp. L1PA7,
L1PA6 and L1PA5 have a similar length distribution around 124 bp. An additional base is
inserted sometime between the expansion of the L1PA5 and L1PA4 subfamilies, resulting in a
typical length of 125 bp for L1PA4 and L1PA3 subfamilies. Figure 2.3 shows the alignment of
the consensus sequences of the L1PA subfamilies and further illustrates this point. I used the
Bioconductor package DECIPHER [125] to align the 3 prime consensus sequences obtained
from the Repbase-derived RepeatMasker libraries (version 20181026) [48].
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Figure 2.2 Primate-specific LINE1 subfamilies in FAST-SeqS data. A: Histogram showing
the number of unique overlaps of FAST-SeqS loci with primate-specific LINE1 subfamilies
and other repeats across 13 normal samples (unfiltered). The annotation was obtained from
RepeatMasker for the human genome (GRCh38). B: Histogram showing the proportion
of primate-specific LINE1s within the genome that overlap with FAST-SeqS loci. C: Top:
Histogram of estimated amplicon length for filtered FAST-SeqS loci (filtered such that all
13 normal samples had a non-zero count). Bottom 9 histograms: Estimated length by
primate-specific LINE1 subfamily (L1PA3-L1PA11).
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2.5.2 Distribution of loci counts with fixed copy number

To begin with, let us explore and understand the behaviour of FAST-SeqS data in the absence
of copy number alterations. The 13 normal samples are assumed to contain only diploid
cells and as such, we expect equal copy numbers for every locus within each sample. Since
the normal samples were obtained from male and female donors, we focus on the autosomes
(chromosomes 1-22) and remove the sex chromosomes (chromosomes X and Y) and loci that
are assigned to unresolved or unplaced contigs for this exploratory exercise. In addition,
to limit noise introduced by alignment error, we only consider loci that had a non-zero
count across all 13 control samples. Figure 2.4A shows the raw count proportions for a
control sample plotted across the genome (chromosomes 1 to 22) and Figure 2.4B shows the
distribution of proportions within the sample. We observe considerable variation between
the loci proportions within the sample. While the read depth varies considerably, a similar
range of read depths can be observed across the genome with similar mean proportions in
each chromosome (figure 2.4C).

By comparing count proportions between control samples, we see that the loci proportions
are similar between samples. This shows that a substantial amount of the variability in
loci counts can be attributed to a systematic technical bias in the production of loci counts
(from the sample preparation and PCR, through to the sequencing and alignment). This
bias is likely to be the result of multiplicative biases introduced at each step in the protocol.
I suspect that a large proportion of it is explained by differential amplification efficiencies
between loci. Other factors such as differential mappability are also likely to play a part. We
explore these biases in more detail in Chapter 4.

By computing the mean and variance for each locus’ counts across the control samples,
we can explore how the variability of the data relates to the mean count. If the variability
observed could be explained by sampling variation only then we’d expect the variance to be
approximately equal to the mean (Poisson noise). In Figure 2.4E we see that the variance is
greater than the mean which shows that the there is additional variance beyond sampling
error, i.e. the data are over-dispersed.

Using these important observations of the data, we can begin to explore statistical models
which can describe its generation.
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Figure 2.4 Exploration of count data within the autosomes of normal samples. A: Loci count
proportions of an example sample plotted across chromosomes 1-22. B: The distribution of
loci count proportions from the same sample. C: Sina plot showing the proportion of counts
observed across 13 samples. Each grey point represents a locus, blue points represent the
median proportion within the chromosome and blue bars indicate the interquartile range. D:
Proportion of counts of one normal sample plotted against another normal sample. E: Log
mean-log variance relationship in which each point represents a locus for which the mean
and variance were calculated across 13 normal samples. The blue line represents a LOESS fit
and the dashed black line has an intercept of 0 and slope of 1 (representing Poisson noise).
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2.5.3 Modelling loci counts for samples with equal copy number

The key observations of the data which inform the modelling of the counts are:

1. Loci count proportions vary considerably within samples. We know that at least some of
this variation will be introduced by the process of sampling molecules from a sequencing
library (sequencing).

2. Loci proportions between control samples are similar. This shows that large part of
this variation stems from a bias (or a series of biases) in the protocol, sequencing and
downstream processing. These biases appear to be consistent between samples.

3. The data are over-dispersed. This means that the bias (or series of biases) together
with the sampling variation introduced by sequencing cannot explain all of the variation
in the data.

We wish to model the counts for a sample at a set of L loci, 1, . . . , L using a probabilistic
approach. I assume that the loci bias is constant between samples; that there are no sample-
specific biases which would alter the observed count proportions. For a locus, l, the mean
proportion of reads can be denoted by ml, where ∑l ml = 1. We can alternatively view
ml as the probability that a mappable read aligned to locus l. In order to account for the
sampling process, we might imagine that the counts, xj , for a sample, j, could be drawn
from a multinomial:

xj | nj ,m ∼ Multinomial(nj ,m) (2.2)

where nj denotes the total number of reads that aligned to loci 1, . . . , L in sample j and
m = {m1, . . . ,mL}.

This model might be sufficient if we were not dealing with over-dispersed counts. In order
to account for over-dispersion, we might imagine that due to stochastic variations in the
protocol and that the protocol involves a series of sampling processes associated with each
step, that the probability of aligning a read to a locus can vary between samples. As such,
we could model the loci counts as follows:

θj | sj ,m ∼ Dirichlet(sjm)
xj | nj ,θj ∼ Multinomial(nj ,θj)

(2.3)

where θj = {θ1,j , . . . , θL,j} and θl,j represents the probability of a mappable read aligning to
locus l in sample j, sj represents a sample-specific parameter which inversely controls the
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over-dispersion of the counts and sj > 0. Here, we are explicitly stating that the amount of
over-dispersion can vary between samples. We might intuitively imagine that this is the case,
due to varying quantities of input DNA, varying DNA quality, or a combination of these
factors and others. It can be shown for arbitrarily large sj , θ converges in probability to m
and, as sj goes to infinity, the multinomial model in equation 2.2 is recovered.

The expected value of θl,j is:

E [θl,j ] = ml (2.4)

and the expected value of xl,j is:
E [xl,j ] = njml (2.5)

The variance of θl,j is:

Var [θl,j ] = ml(1 −ml)
sj + 1 (2.6)

and the covariance of θl,j and θl′,j is:

Cov
[
θl,j , θl′,j

]
= −mlml′

sj + 1 (2.7)

The variance of xl,j is:

Var [xl,j ] = njml(1 −ml)
(
nj + sj

1 + sj

)
(2.8)

and the covariance of xl,j and xl′,j is:

Cov
[
xl,j , xl′,j

]
= −njmlml′

(
nj + sj

1 + sj

)
(2.9)

While θ helps to understand the conceptual idea of over-dispersion in sample counts,
we are not particularly interested in the values it takes. Since the Dirichlet distribution is
a conjugate distribution to the multinomial, we can integrate out θ to obtain a tractable
compound distribution (Dirichlet-multinomial distribution):

p(xj | sj ,m) =
∫
θj

p(xj | θj)p(θj | sjm)dθj

= (nj !)Γ(sj)
Γ(nj + sj)

L∏
l=1

Γ(xl,j + sjml)
(xl,j !)Γ(sjml)

(2.10)
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Intuitively, as the number of loci (L) becomes large, we can expect that the proportion
of aligned reads at each locus (m) will be small. From equation 2.7 we see that as L
goes to infinity, the covariance of xl,j and xl′,j will tend to zero. Indeed, for FAST-SeqS
and many other genomics or transcriptomics assays, the number of considered loci is often
large (≥ 10, 000) and the covariance is negligible. As such, it is often convenient and
more tractable to assume independence between variables. The marginal distribution of
a Dirichlet-multinomial is a beta-binomial. Hence, rather than modelling loci counts by
the Dirichlet-multinomial distribution, we can simply model the counts by independent
beta-binomial distributions. As we will see, the assumption of independence is critical for
further extensions of the model described in section 2.5.5.

Assuming independence, our model for the loci counts becomes:

θl,j | sj ,ml ∼ Beta(sjml, sj(1 −ml))
xl,j | nj , θl,j ∼ Binomial(nj , θl,j)

(2.11)

Since the beta distribution is a conjugate distribution to the binomial, we can obtain a
tractable compound distribution (Beta-binomial distribution) by integrating out θl,j :

p(xl,j | sjml, sj(1 −ml)) =
∫

θl,j

p(xl,j | θl,j)p(θl,j | sjml, sj(1 −ml))dθl,j

=
(
n

xl

)
B(xl + a, n− xl + b)

B(a, b)

= Γ(n+ 1)
Γ(xl + 1)Γ(n− xl + 1)

Γ(xl + a)Γ(n− xl + b)
Γ(n+ a+ b)

Γ(a+ b)
Γ(a) + Γ(b)

(2.12)

where a = sjml, b = sj(1 − ml), B(x, y) =
∫ 1

0 t
x−1(1 − t)y−1dt (the beta function) and

Γ(z) =
∫∞

0 tz−1e−tdt (Gamma function defined for positive z).

Now we can describe a generative model for loci counts with equal copy numbers. To
make the model generative, we need to draw values of sj and ml

sj | ψ ∼ Gamma(ψshape, ψscale)
ml | ϕ ∼ Beta(ϕc,l, ϕd,l)

θl,j | sj ,ml ∼ Beta(sjml, sj(1 −ml))
xl,j | θl,j , nj ∼ Binomial(nj , θl,j)

(2.13)

In section 2.7.2 I describe an Markov chain Monte Carlo (MCMC) sampler to infer the
latent variables m and s and in section 2.7.3, I briefly investigate the fit of the model using
eight male samples and show that it provides a reasonable approximation to the distribution
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of loci counts. For the sake of the narrative, we now continue with the exploration of data
and extending the count model to include copy number alterations.

2.5.4 Modelling loci counts for samples with copy number alterations

Now that we have developed a generative model for loci counts from samples with equal copy
number at all loci, we can look to extend it to allow for altered copy number. How would we
expect the counts to vary depending on the copy number alterations? One way to examine
this is to explore the copy number differences in males and females. Here, we have a simple
controlled experiment in which we can observe the change in count proportions due to the
deletion of chromosome Y and duplication of chromosome X in female samples with respect
to male samples.

Figure 2.5 shows the count proportions of the same two samples explored in figure 2.4D.
When we considered the autosomes in isolation, the proportion of reads from the female
sample was approximately equal (with some variance) to that of the males, and as such the
slope of this relationship was equal to one. Now, with the addition of chromosome X and
Y, we see that the slope describing the relationship between the proportion of reads within
the autosomes is less than one and the slope for chromosome X is exactly double that of the
autosomes. The value of this slope is the relative copy number of the female sample’s DNA
with respect to the male sample’s DNA. Importantly, this relationship holds despite the loci
bias; loci with high proportions are proportionally scaled by the same amount as loci with
low proportions. This shows that the copy number signal is present in loci with low and high
counts and that low counts (or high counts) are not simply the result of mismapping reads
for example. In addition, the absence of counts from chromosome Y in the female sample
further illustrates this point.
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Figure 2.5 Comparison of loci count proportions between a normal male and normal female
sample. Normal male loci proportions against normal female loci proportions indicating how
copy number alterations affect the proportion of counts. Grey points represent loci located
within the autosomes (chromosomes 1-22), blue points represent loci within chromosome X,
green points represent loci within chromosome Y and pink points represent loci within the
pseudoautosomal regions (PAR1 and PAR2).

Notice that the loci located within the pseudoautosomal regions (PAR1 and PAR2) are
highlighted in figure 2.5. These regions are present at the termini of chromosomes X and
Y and as such, cells from males and females will have two copies of these regions. PAR1 is
approximately 2.7 Mbp in length and is located at the beginning of the p arms of chromosomes
X and Y while PAR2 is around 330 Kbp and located at the end of the q arms of chromosomes
X and Y. We see that the count proportions from these regions cluster with the autosomal
chromosomes. This indicates that we may be able to use FAST-SeqS data to observe short
regions of altered copy number.

I have shown there to be a difference in the proportion of counts (or mean count) between
regions with altered copy number, but how do copy number alterations affect the variance?
We can explore this by examining the mean-variance relationship of loci counts between
male samples, comparing regions with one copy (chromosomes X and Y, excluding PAR1/2)
with regions with two copies (automosomes and PAR1/2). Figure 2.6 shows that there is no
discernible difference in the mean-variance relationship. This suggests that we do not need
to include a dependence between the variance and relative copy number in the model.
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Figure 2.6 The log mean-variance relationship of loci counts with varying copy number.
Each point represents a locus in which the mean and variance of the loci counts were
calculated across eight normal male samples obtained from the oesophagus. Left: FAST-SeqS
loci with one copy per cell; loci located within chromosome X and Y but not within the
pseudoautosomal regions. Right: FAST-SeqS loci with two copies per cell; loci located within
the autosomes and the pseudoautosomal regions.

Therefore, given the observations described above, we can extend the loci count model to
account for copy number alterations. Here, I introduce a relative copy number value for each
locus, ĉl:

sj | ψ ∼ Gamma(ψshape, ψscale)
ml | ϕ ∼ Beta(ϕc,l, ϕd,l)

θl,j | sj , ĉlml ∼ Beta(sj ĉlml, sj(1 − ĉlml))
xl,j | θl,j , nj ∼ Binomial(nj , θl,j)

(2.14)

Here, ĉl scales the sample’s expected proportion of reads, and as such equation 2.4 becomes
E [θl,j ] = ĉlml and equation 2.5 becomes E [xl,j ] = nj ĉlml. A sample without copy number
alterations can be generated if ĉl = 1, ∀l. With this updated generative model and given
m (or the hyper-parameters ϕc,1:L and ϕd,1:L), nj , sj (or the hyper-parameters ψshape and
ψscale) and the loci relative copy numbers, ĉ, we can generate in silico FAST-SeqS samples
that have relative copy number alterations.
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2.5.5 Linking loci using a Hidden Markov model

Given a sample’s loci counts and given the model we described in 2.14, we could use a simple
mixture model to infer the values of {ĉ1, . . . , ĉL}. However, by doing this we are not using
all the information available to us. In particular, we are disregarding spatial information.
By calculating the distances between FAST-SeqS loci within each chromosome arm, we
observe that the median distance between neighbouring loci is 119,167 (IQR: 46,727-264,133,
mean: 219,341) and that the distribution of these distances are similar between chromosomes
(figure 2.7). The distribution of SCNA lengths (see Figure 1a of Beroukhim et al. [93]) suggest
that neighbouring loci are likely to have the same copy number. Indeed, focal events are
likely to involve multiple FAST-SeqS loci. Beroukhim et al. showed that the median length
of focal SCNAs across cancer types is 1.8 Mb [93], while Zack et al. reported that median
focal events were 19.6 Mb for telomere-bounded amplification events, 0.9 Mb for internal
amplification events, 22.7 Mb for telomere-bounded deletions and 0.7 Mb for internal deletion
events [115].

Figure 2.7 Distribution of genomic distances between neighbouring loci. Sina plot in which
each grey point represents a distance between two neighbouring loci within a chromosome
arm. Blue points represents the median distance between neighbouring loci for the associated
chromosome and blue bars represent the interquartile range.

We can incorporate our understanding that neighbouring loci are more likely to share the
same copy number through the use of a Hidden Markov model (HMM) [126, 127]. I chose
to model each chromosome arm as an independent Markov chain; the relative copy number
(RCN) of the first FAST-SeqS locus at the 5’ end of the q arm of a chromosome is independent
from that of the RCN of the last locus at the 3’ of the p arm from the same chromosome (and
all other chromosome arms). To continue to develop the model, we introduce an additional
index to denote the chromosome arm, r. Now, a genomic locus is defined by its chromosome
arm, r and the locus on the chromosome arm l, e.g. the count xchr1p,10 is associated with the
tenth FAST-SeqS locus, with the loci index starting at the 5’ end of each chromosome arm.
Each chromosome arm, r, has a total of Lr FAST-SeqS loci within it.
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Let us define the following additional variables (note that for simplicity I have dropped
the sample index j):

• zr,l as the hidden state (or copy number state) of the Markov chain at locus l in
chromosome arm r

• π0 as the initial distribution of the first locus (l = 1) in chromosome arm

• πu,v as the transition probability from hidden state, u, to hidden state, v. The transition
probabilities can be written more compactly as a transition matrix, π. A row of the
transition matrix, πu, can be thought of as a transition distribution from state u.

• ĉu as the relative copy number associated with hidden state, u.

The first locus of a chromosome arm (l = 1) is distributed:

zr,1 ∼ π0 (2.15)

For all other loci (l > 1):
zr,l | zr,l−1 ∼ π(zr,l−1) (2.16)

The count, yr,l, at locus l in chromosome arm r is conditionally independent of the hidden
states and observations of other loci:

θr,l | ĉ, zr,l,mr,l, s ∼ Beta(sĉzr,l
mr,l, s(1 − ĉzr,l

mr,l))
yr,l | θr,l, n ∼ Binomial(n, θr,l)

(2.17)

The joint density for Lr loci in chromosome arm r is:

p(zr,1:Lr , yr,1:Lr , θr,1:Lr ) = p(yr,1 | zr,1, θr,1)p(θr,1 | zr,1)p(zr,1)
Lr∏
l=2

p(yr,l | zr,l, θr,l)p(θr,l | zr,l)p(zr,l | zr,l−1)

= π0
zr,1p(yr,1 | zr,1, θr,1)p(θr,1 | zr,1)

Lr∏
l=2

πzr,l−1,zr,l
p(yr,l | zr,l, θr,l)p(θr,l | zr,l)

(2.18)

where, zr,1:Lr denotes the sequence {zr,1, . . . , zr,Lr }, yr,1:Lr denotes {yr,1, . . . , yr,Lr }, and θr,1:Lr

denotes {θr,1, . . . , θr,Lr }. The joint density for all L loci in the genome is given by:

p(z,y,θ) =
∏
r

p(zr,1:Lr , yr,1:Lr , θr,1:Lr ) (2.19)
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2.5.6 The number of copy number states in a sample

In a classical finite HMM, the number of hidden states is assumed known and fixed. However,
we do not know the number of copy number states present in a test sample a priori. Samples
with equal copies of each locus will only have one copy number state. On the other hand, it is
possible (although unlikely) that every locus in a sample has a unique copy number, leading
to L copy number states in the sample. Furthermore, as we discussed in the introduction,
samples contain a mixture of cells from multiple clones. Each clone could have a distinct,
although probably phylogenetically related, SCNA profile. This heterogeneity increases the
complexity in choosing the number of states; a copy number state represents a mean copy
number within the sample and hence, the relative copy number states are not restricted to
map to integer copy numbers.

Rather than choosing the number of states a priori, it would be preferable to learn the
number of states from the data. Standard parametric model selection methods could be
used to choose the number of states. However, this could involve testing up to L models
and since L > 10, 000 this is likely to be computationally expensive. One approach is
to place a prior over the number of states in the model and use reversible jump MCMC
(RJMCMC) and split-combine approaches to move between the number of hidden states
using Metropolis-Hastings steps. However, these approaches can suffer from low acceptance
rates in the split-combine steps and result in slow mixing [128].

Another approach is to use a Bayesian nonparametric version of the HMM [129–131].
In this approach, Teh et al. developed a model (the HDP-HMM) which uses a hierarchical
Dirichlet process as a prior on the transition distributions and as such, allows for countably
infinite numbers of states [130, 131]. Fox et al. showed that the HDP-HMM is inadequate
for applications which involve temporal (or spatial) persistence of hidden states. In tasks
such as these, the HDP-HMM can infer redundant hidden states with unrealistically rapid
switching dynamics between states [131]. To account for state persistence, Fox et al. [131]
proposed a modification to the HDP-HMM, which they called the sticky HDP-HMM. In
this approach, an additional parameter was added to model self-transition bias. The sticky
HDP-HMM was shown to have improved performance over the HDP-HMM in segmenting
speech recordings into speaker-homogeneous regions while also inferring the number of total
speakers (the speaker diarisation task) [131].

The sticky HDP-HMM provides a framework to extend our generative model for loci
counts with a relative copy number profile. By using it, we are able to adequately model the
spatial persistence of copy number states while simultaneously allowing for countably infinite
copy number states within a sample. The sticky HDP-HMM generative model is as follows
(note that I have omitted an emission distribution for now):
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β | γ ∼ GEM(γ)
π0 | α,β ∼ DP (α,β)

πu | α, κ,β ∼ DP
(
α+ κ,

αβ + κδu

α+ κ

)
ĉu | H,λ ∼ H(λ)
zr,1 | π0 ∼ π0

zr,l | {πu}∞
u=1, zr,l−1 ∼ πzr,l−1 , for l > 1

(2.20)

Here, DP denotes the Dirichlet process, GEM denotes the stick-breaking construction of the
Dirichlet process and H is the prior base distribution of the Dirichlet process and represents
a parametric distribution with parameters λ. H(λ) can be viewed as our prior probability
distribution on the relative copy number values of the hidden states. γ is a hyper-parameter
of the sticky HDP-HMM and controls the number of copy number states in the sample;
the greater the value of γ, the greater number of copy number states we expect in the
sample. Indeed, the expected number of states is ∑n

i=1
γ

γ+i−1 ≃ γ · log (1 + L/γ) [132]. An
introduction to the Dirichlet process is not provided here. A review of the Dirichlet process
is provided in Teh [132] and the HDP-HMM and its sticky derivative are covered in depth by
Teh et al. [130] and Fox et al. [131] respectively.

Each row of the transition matrix, πu, is drawn from a Dirichlet process and depends on
β, α and κ. It can be shown that:

E [πu,v | α, βv, κ] = αβv + κδu,v

α+ κ
(2.21)

where δu,v represents the discrete Kronecker delta function [131]. If we define ρ = κ
α+κ (as in

Fox et al. [131]) and by noting that α = (1 − ρ)(α+ κ), we obtain:

E [πu,v | βv, ρ] = (1 − ρ)βv + ρδu,v (2.22)

As such, we see that ρ defines how much weight is placed on self-transition within a copy
number state. The vector, β, itself drawn from a Dirichlet process, represents the global
transition distribution and holds information about the proportion of loci expected in each
copy number state. Hence, 1 − ρ is the weight placed on the global transition distribution.

The variance of the transition probability from copy number state u to v is given by:

Var(πu,v | α,β, κ) = E [πu,v | α,β, κ] (1 − E [πu,v | α,β, κ])
α+ κ+ 1 (2.23)
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We see that α+κ is inversely proportional to the variance of the state transition probabilities.
As such, it controls the variation between rows of the transition matrix.

2.6 The conliga probabilistic generative model

By noting observations drawn from exploring FAST-SeqS data, I have justified and described
generative models for:

• loci counts with equal copy number (equation 2.13)

• loci counts with relatively altered copy number (equation 2.14)

• countably infinite copy number states with spatial state persistence (equation 2.20)

In this section, I put these generative models together into a formal and full model describing
the generation of FAST-SeqS loci counts.

2.6.1 The full model

Here we describe the full generative model for the loci counts, xk, for k ∈ {1, . . . ,K} control
samples together with the loci counts, yj , for j ∈ {1, . . . , J} non-control samples with copy
number profiles defined by ĉzj,r,l

for all j, r and l, along with all other latent variables.
This model is not used as a basis for inference of the latent variables due to the reasons
described in the next section. Instead, this model is split into two parts for the purposes of
inference. However, I include the full model for completeness. Figure 2.8 provides a graphical
representation of the full model using plate notation.
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βj | γ ∼ GEM(γ)
π0

j | α,βj ∼ DP (α,βj)

πj,u | βj , α, κ ∼ DP
(
α+ κ,

αβj + κδu

α+ κ

)
ĉj,u | H,λ ∼ H(λ)
zj,r,1 | π0

j ∼ π0
j

zj,r,l | {πj,u}∞
u=1, zj,r,l−1 ∼ πj,zr,l−1 , for l > 1

s̃j | ω ∼ Gamma(ωshape, ωscale)
sk | ω ∼ Gamma(ωshape, ωscale)

mr,l | ϕc,r,l, ϕd,r,l ∼ Beta(ϕc,r,l, ϕd,r,l)
θk,r,l | sk,mr,l ∼ Beta(skmr,l, sk(1 −mr,l))
xk,r,l | θr,l,k, nk ∼ Binomial(nk, θk,r,l)

θ̃j,r,l | {ĉj,u}∞
u=1, zj,r,l,mr,l, s̃j ∼ Beta(s̃j ĉj,zj,r,l

mr,l, s̃j(1 − ĉj,zj,r,l
mr,l))

yj,r,l | θ̃j,r,l, ñj , ∼ Binomial(ñj , θ̃j,r,l)

(2.24)

In this model we use a tilde to distinguish the variables that are associated with non-control
samples (s̃ and θ̃) from those associated with control samples. We note that β, π0, πu, ĉu,
zr,l, s̃, θ̃r,l, yr,l and ñ are specific to each non-control sample and include an index j. Notice
that the sample inverse dispersion parameters (s and s̃) are drawn from the same distribution,
reflecting our belief that control and non-control count observations have the same level of
over-dispersion. If we were to use this model as a basis for inference of the latent variables,
we may wish to place priors over the hyperparameters ω and infer them from the data. This
is also the case for the hyperparameters γ, α and κ and I exclude those priors for the sake
simplicity. I provide the option to infer these hyperparameters from the data as described in
the inference section.
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Figure 2.8 The conliga graphical model (described in section 2.6.1) represented in plate
notation. Grey circles represent observed variable, white circles represent latent variables
and block nodes indicate fixed hyperparameters. Note that θ and θ̃ have been integrated out
for simplicity.

2.6.2 The split model for simpler inference

I decided to split the full model in two parts. The first part describes the generation of loci
counts for the control samples. The second part describes the generation of the copy number
profile and loci count observations for a non-control sample, using the maximum a posteriori
(MAP) estimate of m. This was done to allow for simpler implementation of the inference
algorithms. In this way, we could infer the MAP estimates of m and the nuisance parameters
s using the counts of the control samples. Once MAP estimates were obtained, we could
infer the copy number profile for each non-control sample in independent MCMC chains.
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Splitting the model has the benefit that it is easier to implement and parallelise, allowing
the relative copy number profiles to be inferred for each sample in parallel chains. However,
splitting the model has its disadvantages. Rather than using controls and non-controls to
infer m, we are using only the control samples. By using less data, there will be less certainty
in our inference of m. In addition, by using MAP estimates in the second part of the model,
we are not propagating uncertainty through the model to the inference of the relative copy
number profiles. In practice, the mean proportions are likely to be well estimated by the
MAP estimates and the ease of implementation outweighs the loss of statistical strength
in the inference of m. The split model is defined below and figure 2.9 shows a graphical
representation of the split model using plate notation.

Part 1: Generative model for control counts

sk | ψ ∼ Gamma(ψshape, ψscale)
mr,l | ϕ ∼ Beta(ϕc,r,l, ϕd,r,l)

θk,r,l | sk,mr,l ∼ Beta(skmr,l, sk(1 −mr,l))
xk,r,l | θk,r,l, nk ∼ Binomial(nk, θk,r,l)

(2.25)

Part 2: Generative model for the counts of a sample with a relative copy number
profile

β | γ ∼ GEM(γ)
π0 | α,β ∼ DP (α,β)

πu | α, κ,β ∼ DP
(
α+ κ,

αβ + κδu

α+ κ

)
ĉu | H,λ ∼ H(λ)
zr,1 | π0 ∼ π0

zr,l | {πu}∞
u=1, zr,l−1 ∼ πzr,l−1 , for l > 1

s̃ | ω ∼ Gamma(ωshape, ωscale)
θ̃r,l | {ĉu}∞

u=1, zr,l, m̂r,l, s̃ ∼ Beta(s̃ĉzr,l
m̂r,l, s̃(1 − ĉzr,l

m̂r,l))
yr,l | θ̃r,l, ñ, ∼ Binomial(ñ, θ̃r,l)

(2.26)

Note that m̂r,l refers to the maximum a posteriori (MAP) value of mr,l and is assumed to
be a known quantity in equation 2.26. For simplicity, the hyperparameters (α, κ, γ, λ and
ω) are shown as fixed quantities in the model. In practice, λ and ω are treated as fixed (in
addition to the total number of loci counts, ñ), while the model is parameterised in terms of
ρ and (α+ κ), with an optional Beta prior placed on ρ and optional Gamma priors placed
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on (α + κ) and γ as in Fox et al. [131]. See section 2.10 for further details on the prior
distributions used.

Note that different priors are placed on the sample specific inverse dispersion parameters
in part 1 and part 2. This explicit distinction is made so that we have the freedom to use the
marginal posterior distribution of sk to update our prior distribution over s̃. A table with all
the variables used in the model can be found in table A.1 of appendix A.
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Figure 2.9 The conliga graphical model (described in section 2.6.2) represented in plate
notation. Grey circles represent observed variable, white circles represent latent variables
and block nodes indicate fixed hyperparameters. Note that θ and θ̃ have been integrated out
for simplicity. A: Part 1 of the model, representing the generation of FAST-SeqS data for
normal diploid samples. B: Part 2 of the model, representing the generation of FAST-SeqS
data for a sample with a copy number profile.
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2.7 Inference

2.7.1 Notation used in MCMC algorithms

We denote the probability mass function (pmf) of the compound beta-binomial distribution
as follows:

fBB(k;n, a, b) =
(
n

k

)
B(k + a, n− k + b)

B(a, b) (2.27)

where B represents the Beta function, n represents the total number of Bernoulli trials
(counts), k represents a count observation (k ∈ {0, . . . , n}), and a and b are parameters
(a > 0, b > 0). This is used as our likelihood function in Algorithm 1 where k = xk,r,l, n = nk,
a = skmr,l, and b = sk(1 −mr,l). It is also used as a likelihood function in Algorithm 2 where
k = yr,l, n = ñ, a = s̃ĉzr,l

m̂r,l, and b = s̃(1 − ĉzr,l
m̂r,l).

We denote the probability density function (pdf) of the Beta distribution as follows:

fBeta(x; c, d) = 1
B(c, d)x

c−1(1 − x)d−1 (2.28)

where x represents an observation (x ∈ [0, 1]), and c and d are the shape parameters of the
Beta distribution (c > 0, d > 0).

We denote the pdf of the Gamma distribution as:

fGamma(x; k, θ) = 1
Γ(k)θk

xk−1e− x
θ (2.29)

where Γ represents the Gamma function, k is the shape parameter (k > 0), θ is the scale
parameter (θ > 0) and observation x (where x ≥ 0).

The normal distribution is denoted N(µ, σ) and the uniform distribution is denoted
U(a, b).

We use the follow notation:

• x·,j = ∑
i xi,j

• xi,· = ∑
j xi,j

• xi,∗ denotes the ith row vector of matrix, x

• x∗,j denotes the jth column vector of matrix, x

• xi,\j = {xi,1, . . . , xi,j−1, xi,j+1, . . . xi,J}, where J is largest value of j

• |X| represents the cardinality of set X
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2.7.2 Inference of loci means and sample inverse dispersion parameters

Given the model described in equation 2.25, I created a Metropolis-Hastings random walk
algorithm (Algorithm 1) to sample from the joint posterior distribution p(m, s | x). It
consists of two steps to sample from the marginal posterior distributions p(mr,l | x) for all
r, l and then to sample from p(sk | x) for all k ∈ {1, . . . ,K}.

Algorithm 1 Inferring the expected proportions of reads, m, for each locus and the sample
inverse dispersion values, sk for diploid controls 1, . . . ,K

procedure InferBBParams(x,ϕ,ψ, N, σm, σs)
Initialise MCMC:
for each chromosome arm, r, do

for each locus, l, in chromosome arm, r, do
Initialise mr,l to x·,r,l

x·,·,·

for each control sample, k, do
Draw sample inverse dispersion, sk, from Gamma(ψshape, ψscale)
Compute total counts for sample k: nk ← xk,·,·

Begin MCMC:
for each iteration, 1 to N do

Update expected proportions, m:
for each chromosome arm, r, do

for each locus, l, in chromosome arm, r, do
Propose new value for expected proportion: m∗

r,l ∼ N(mr,l, σm)
if m∗

r,l > 0 then
pnew ←

∑
k
(log fBB(xk,r,l;nk, skm

∗
r,l, sk(1−m∗

r,l))) + log fBeta(m∗
r,l;ϕc, ϕd)

pold ←
∑

k
(log fBB(xk,r,l;nk, skmr,l, sk(1−mr,l))) + log fBeta(mr,l;ϕc, ϕd)

p ∼ U(0, 1)
if exp(pnew − pold) < p then

Accept new value: mr,l = m∗
r,l

Update sample inverse dispersion values, s:
for each control sample, k, do

Propose new value for sample inverse dispersion: s∗
k ∼ N(sk, σs)

pnew ←
∑

r

∑
l
(log fBB(xk,r,l;nk, s

∗
kmr,l, s

∗
k(1−mr,l))) + log fGamma(s∗

k;ψshape, ψscale)
pold ←

∑
r

∑
l
(log fBB(xk,r,l;nk, skmr,l, sk(1−mr,l))) + log fGamma(sk;ψshape, ψscale)

p ∼ U(0, 1)
if exp(pnew − pold) < p then

Accept new value: sk = s∗
k

2.7.3 Investigating the fit of the model

Now that we have described the inference procedure, we can explore how well the model fits
the data. I used the set of eight male control samples (explored previously in this chapter)
and their associated loci counts within chromosomes 1-22, X and Y, and the implementation
of Algorithm 1 within the conliga software (the fit_controls function) [105, 108] to obtain
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a sample from the posterior distribution p(m, s1:8 | x). Within this function, the marginal
distributions p(mr,l | x) for all r, l are summarised by using the KernSmooth [133] R package
to smooth the marginal posterior densities and then the mode is computed. This resulted
in the vector of MAP estimates, m̂. As we discussed previously in this chapter, m̂ can be
interpreted as a vector describing the loci biases with m̂r,l being the expected proportion of
aligned reads to originate from locus l on chromosome arm r in a control sample. Note that
these MAP estimates are unlikely to sum to one exactly, as such, we re-scale m̂r,l so that
the MAP estimates sum to 1. This means that the relative copy number for each locus in a
reference male sample should be equal to 1.

I used flat Beta(1, 1) priors on mr,l for all r, l and a Gamma(1.5, 106) prior (parameterised
by shape and scale) on s. Loci were filtered such that only those loci that had a non-zero
count in all 13 normal samples within the autosomes and chromosome X were kept. In
addition, loci from chromosome Y were kept if all eight males samples had a non-zero count.

One way to inspect how well the model is capturing the data is to compare observed
counts to our predictions using the posterior predictive distribution:

p (x̃ | x) =
∫

s̃

∫
m
p (s̃,m | x) p (x̃ | s̃,m) ds̃ · dm (2.30)

However, we carry forward the MAP estimates of m to algorithm 2 when inferring RCN
profiles because we believe the marginal posterior distribution of mr,l is well approximated by
a delta function at the MAP estimate. Therefore, rather than using the posterior predictive
distribution, I used a plug-in approximation [134] in which we assume p(x̃ | x) ≈ p(x̃ |
s̃MAP, m̂) since if the MAP approximates the marginal posterior distributions we have:

p (x̃ | x) ≈
∫

s̃

∫
m
δs̃(s̃− s̃MAP)δm(m− m̂)p (x̃ | s̃,m) ds̃ · dm

≈ p(x̃ | s̃MAP, m̂)
(2.31)

where δ(t) is the Dirac delta function.

By plugging in the MAP estimates of s̃ and m, we can compute the theoretical quantiles
of the beta-binomial distribution for each locus and sample. Figure 2.10 shows the loci counts
of the eight male samples, with the counts ordered on the x-axis in descending order of their
associated value for m̂. We see that the model provides a reasonable fit to the data. However,
in all samples, we see fewer counts outside the 90% prediction interval than expected (range:
5.5-7%). There are several possible reasons for this. One reason is that the assumption that
all control samples have equal copies of every locus is unlikely to be true. Indeed, 4.8-12% of
the human genome is thought to be variable in copy number across a population of healthy
individuals [135, 136], with CNVs occurring in approximately 1.2% of an individual’s genome
[94]. As such, it is likely that some of the outliers will be due to CNVs. To capture these
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outliers, a lower inverse dispersion will be inferred leading to more loci than expected within
the prediction intervals and fewer outside. Other assumptions of the model may not be
strictly true. For example, the assumption that there are no sample-specific biases may be
an oversimplification. Indeed, male samples 6 and 8 suggest that the assumption of a global
mean proportion may not hold. In these samples, we see more outlying high counts than
expected when m̂r,l is high. We explore this observation further in Chapter 4. For now, we
note that the model is not a perfect representation of the generation of FAST-SeqS data and
abide by George E. P. Box’s famous adage that "all models are wrong, but some are useful"
[137].

Figure 2.10 Exploration of model fit to the data. Loci counts from eight normal male
samples from the oesophagus. Loci are in descending order of the inferred value of the
mean proportions, m̂, on the x-axis. Given each sample’s inferred MAP estimate for the
inverse-dispersion parameter, sk, the blue line represents the 50% percentile of the plug-in
approximation to the posterior predictive distribution, p(x̃ | s̃MAP , m̂). Each point represents
a count which is coloured black if it falls within the 90% prediction interval and red if it falls
outside it.
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2.7.4 Inference of relative copy number profile

Based on the generative model I described in equation 2.26 in section 2.6.2, I created a
MCMC sampler to sample from the posterior distribution. I chose to do this by building
upon Fox et al.’s blocked Gibbs sampler for the Sticky HDP-HMM, which is described in
algorithm 3 of the Supplementary Materials of Fox et al. [131]. The blocked sampler uses
the weak order K limit approximation to the Dirichlet process [138, 139, 131] which gives a
prior distribution over the global transition distribution, β:

β | γ ∼ Dir(γ/K, . . . , γ/K) (2.32)

Then the prior distribution over transition probabilities and initial probabilities are:

π0 | α,β ∼ Dir(αβ1, . . . , αβK) (2.33)

πu | α,β, κ ∼ Dir(αβ1, . . . , αβu + κ, . . . , αβK) (2.34)

The marginal posterior distributions are:

β | M̄ , γ ∼ Dir(γ/K + M̄·1, . . . , γ/K + M̄·K)
π0 | z, α,β ∼ Dir(αβ1 + T 0

1 , . . . , αβK + T 0
K)

πu | z, α,β, κ ∼ Dir(αβ1 + Tu,1, . . . , αβu + κ+ Tu,u, . . . , αβK + Tu,K)

(2.35)

where T 0
u represents the number of FAST-SeqS loci at the beginning of a chromosome arm

(the first amplified locus at the 5’ end) in state u, Tu,v represents the number of transitions
from state u to state v across all loci in all chromosome arms. M̄uv represents an auxiliary
variable which Fox et al. [131] explains by analogy in which the Sticky HDP can be thought
of as a Chinese Restaurant Franchise with Loyal Customers (extending Teh et al.’s analogy
of the HDP as a Chinese Restaurant Franchise [130]). In this analogy (which can be found in
the Supplementary Materials of Fox et al. [131]), M̄u,v is the number of tables in restaurant
u that considered dish v and therefore M̄·,v represents the sum of all tables in all restaurants
that considered dish v.

The blocked Gibbs sampler utilises the forward-backward procedure [140] to jointly sample
all hidden states, z, given the count observations, y. This is achieved by firstly computing
the backward messages (µ) for each chromosome arm, where µl,zl−1 defines the backwards
message passed from zl to zl−1 within a chromosome arm and is recursively defined as (note
that I have dropped the chromosome arm index r for simplicity):

µl,zl−1 ∝


∑

zl
p(zl | πzl−1) · fBB(yl | n, s̃ĉzl

m̂l, s̃(1 − ĉzl
m̂l)) · µl+1,zl

, for 2 ≤ l ≤ L

1, for l = L+ 1
(2.36)
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and by noting that µl,zl−1 ∝ p(zl:L | zl−1,π, ñ, ĉ, m̂, s̃), the conditional distribution of zl is
given by:

p(zl | zl−1,y1:L,π, ñ, ĉ, m̂, s̃) ∝p(zl | πzl−1) · fBB(yl | n, s̃ĉzl
m̂l, s̃(1 − ĉzl

m̂l)) · µl+1,zl
, if 2 ≤ l ≤ L

p(zl | π0) · fBB(yl | n, s̃ĉzl
m̂l, s̃(1 − ĉzl

m̂l)) · µl+1,zl
, if l = 1

(2.37)

Note that the derivation of the forward-backward algorithm and conditional distributions
for the hyperparameters (α, κ and γ) can be found in the supplementary materials of Fox et
al. [131] and as such, I do not repeat those here.

I introduce Metropolis-Hastings random walk steps to sample the relative copy number,
ĉu, associated with each state, u ∈ {1, . . . , S} and to sample the inverse dispersion parameter,
s̃. The full MCMC algorithm can be found in Algorithm 2.
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Algorithm 2 Inferring the relative copy number profile and inverse-dispersion, s̃, for a test
sample

procedure InferRCN(y,A,ω,λ, m̂,L, ñ, N, S, σĉ, σs̃)
Initialise MCMC:
If γ not fixed, draw γ from prior: γ ∼ Gamma(Aγ,a, Aγ,b)
If (α+ κ) not fixed, draw (α+ κ) from prior: α+ κ ∼ Gamma(A(α+κ),a, A(α+κ),b)
If ρ not fixed, draw ρ from prior: ρ ∼ Beta(Aρ,c, Aρ,d)
Set κ← ρ(α+ κ)
Set α← (α+ κ)− κ
Draw sample inverse-dispersion, s̃, from prior: s̃ ∼ Gamma(ωshape, ωscale)
for each chromosome arm, r, do

for each locus, l, in chromosome arm, r, do
If not initialized, then randomly draw hidden state: zr,l ∼ Categorical

(
S, { 1

S
, . . . , 1

S
}
)

T 0,T ← countTransitions(z,L, S)
Define transition probabilities, π, as a S by S matrix
Define initial distribution, π0, as a vector of length S

Set π and π0 as follows:
for each state, u, from 1 to S, do

Set π0
u ←

T 0
u∑

u
T 0

if T·u is equal to 0 then
Set πu,u ← 1, πu,\u ← 0

else
for each state, v, from 1 to S, do

Set πu,v ← Tu,v

T·,v

for each state, u, from 1 to S do
If not initialized, draw relative copy number for state u: cu ∼ Gamma(λshape, λscale)

Draw β via the stick breaking (GEM) process as follows:
initialise len to 1 and initialise i to 1
while i ≤ S do

βi ∼ Beta(1, γ) · len
len← len− βi

increment i
Begin MCMC
for each iteration, 1 to N do

q ← computeLogLikCache(y, m̂, ĉ, ñ, s̃, S)
for each chromosome arm, r, do

µ← computeMessages(q,π, Lr, r, S)
zr,∗ ← sampleStates(q, µ, π, π0, Lr, r)

T 0,T ← countTransitions(z,L, S)
M ,w, M̄ ← sampleAuxVars(β,T , α, κ, S)
Sample Global Transition Distribution: β ∼ Dir

(
γ/S + M̄·,1, . . . , γ/S + M̄·,S

)
π0,π ← sampleTransDists(T 0,T , S)
ĉ← sampleCopyNumber(z, ĉ, m̂,y,λ, q, S, s̃, ñ, σĉ)
s̃← sampleInverseDispersion(y, ĉ, m̂,L,ω,R, ñ, σs̃)
α, κ, γ ← sampleHyperparameters(T ,M ,W , M̄ ,A, α, κ, γ, S)



70 conliga: a method and tool for inferring relative copy number from FAST-SeqS data

function computeLogLikCache(y, m̂, ĉ, ñ, s̃, S)
▷ This function is used so that we do not needlessly calculate the log likelihood function several times

during an iteration of the MCMC.
for each chromosome arm, r, do

for each locus, l, in chromosome arm, r, do
for each state, u, from 1 to S, do

Store log likelihood for locus in state:
qr,l,u ← log fBB(yr,l; ñ, s̃ĉum̂r,l, s̃(1− ĉum̂r,l))

return q

function computeMessages(q,π, Lr, r, S) ▷ Note that µl,u denotes the backward message passed from
zl+1 to zl

for each state, u ∈ {1, . . . , S} do
Initialise messages:
µLr,u ← 1

for each locus, l ∈ {Lr − 1, . . . , 1} do
for each state, u ∈ {1, . . . , S} do

µl,u ←
∑S

v=1 (πu,v · exp(qr,l,v) · µl+1,v)

Scale row of messages by the maximum value:
µl,∗ ← µl,∗/max1≤u≤S µl,u

return µ

function sampleStates(q,µ,π,π0, Lr, r)
for each state, u ∈ {1, . . . , S} do

log pu ← log π0
u + logµ1,u + qr,1,u

Scale p to avoid underflow: p← exp(log p−max1≤u≤S log pu)
Make p sum to 1: p← p/

∑S

u=1 pu

Sample state at the first locus of chromosome arm: z1 ∼ Categorical (S,p)
for each locus, l ∈ {2, . . . , Lr} do

for each state, u ∈ {1, . . . , S} do
log pu ← log πzl−1,u + logµl,u + qr,l,u

Scale p to avoid underflow: p← exp(log p−max1≤u≤S log pu)
Make p sum to 1: p← p/

∑S

u=1 pu

Sample state at locus, l, of chromosome arm: zl ∼ Categorical (S,p)
return z

function countTransitions(z,L, S)
Set transition counts, T , to a S by S matrix of zeros
Set initial state counts, T 0, to a vector of zeros of length S

Update T and T 0 as follows:
for each chromosome arm, r, do

increment T 0(zr,1)
for locus, l, to Lr − 1, in chromosome arm, r, do

increment T (zr,l, zr,l+1)
return T 0,T
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function sampleAuxVars(β,T , α, κ, S)
Sample M :
for each state, u ∈ {1, . . . , S} do

for each state, v ∈ {1, . . . , S} do
Set Mu,v ← 0
for i ∈ {1, . . . , Tu,v} do

sample: a ∼ Bernoulli
(

αβv+κδ(u,v)
i+αβv+κδ(u,v)

)
if a is equal to 1 then

increment Mu,v

Sample W :
Set ρ← κ

α+κ

for each state, u ∈ {1, . . . , S} do
Wu,· ∼ Binomial

(
Mu,u,

ρ
ρ+βu(1−ρ)

)
Set M̄ :

M̄u,v =

{
Mu,v, u ̸= v;

Mu,u −Wu,·, u = v

return M ,W ,M̄ ▷ here w represents the vector (W1,·, . . . ,WS,·)

function sampleTransDists(T 0,T , S) ▷ Sample π0 and π
Sample the initial distribution:
π0 ∼ Dirichlet

(
αβ1 + T 0

1 , . . . , αβS + T 0
S

)
Sample the transition matrix:
for each state, u ∈ {1, . . . , S} do

Sample row u of the transition matrix:
πu,∗ ∼ Dirichlet (αβ1 + Tu,1, . . . , αβu + κ+ Tu,u, . . . , αβS + Tu,S)

return π0,π

function sampleCopyNumber(z, ĉ, m̂,y,λ, q, S, s̃, ñ, σĉ)
Sample the copy number of each state in turn:
for each state, u ∈ {1, . . . , S} do

Select the loci counts and expected proportions in state u:
Yu = {yr,l | zr,l = u}
M̂u = {m̂r,l | zr,l = u}
if |Yu| ≠ 0 then ▷ If there are loci assigned to state u

Propose new value for relative copy number for state u:
ĉ∗

u ∼ N(ĉu, σĉ)
if ĉu > 0 then

pold ←
∑|Yu|

i=1

(
log fBB(Yi; ñ, s̃ĉuM̂i, s̃(1− s̃ĉuM̂i)

)
+ log fGamma(ĉu;λshape, λscale)

pnew ←
∑|Yu|

i=1

(
log fBB(Yi; ñ, s̃ĉ∗

uM̂i, s̃(1− s̃ĉ∗
uM̂i)

)
+ log fGamma(ĉ∗

u;λshape, λscale)
p ∼ U(0, 1)
if exp(pnew − pold) < p then

Accept new value: ĉu = ĉ∗
u

else ▷ No loci assigned to state u
Draw new value from Base Distribution:
ĉu ∼ Gamma(λshape, λscale)

return ĉ
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function sampleHyperparameters(T ,M ,W , M̄ ,A, α, κ, γ, S) ▷ Optionally sample hyperparameters (if
fixed values not provided)

If not provided as a fixed value, sample (α+ κ):
First, sample auxiliary variables, h and g:
for each state, u ∈ {1, . . . , S} do

hu ∼ Bernoulli
(

Tu,·
Tu,·+α+κ

)
gu ∼ Beta (α+ κ+ 1, Tu,·)

Then sample (α+ κ) as follows:
(α+ κ) ∼ Gamma

(
A(α+κ),a +M·,· −

∑S

u=1 hu, A(α+κ),b −
∑S

u=1 log gu

)
If not provided as a fixed value, sample γ:
Set K̄ ←

∑S

u=1 1(M̄·,u > 0), where 1(A) represents an indicator function that is 1 if event A occurs
and 0 otherwise

Sample auxiliary variables ζ and τ :
ζ ∼ Bernoulli

(
M̄·,·

M̄·,·+γ

)
τ ∼ Beta

(
γ + 1, M̄·,·

)
Then sample γ as follows:
γ ∼ Gamma

(
Aγ,a + K̄ − ζ, Aγ,b − log τ

)
If not provided as a fixed value, sample ρ:
ρ ∼ Beta

(∑S

u=1 Wu,· +Aρ,c,M·,· −
∑S

u=1 Wu,· +Aρ,d

)
Set variables:
α← (α+ κ)(1− ρ)
κ← (α+ κ)ρ

return α, κ, γ

function sampleInverseDispersion(y, ĉ, m̂,L,ω,R, ñ, σs̃)
Propose new value for inverse-dispersion:
s̃∗ ← N(s̃, σs̃)
if s̃∗ > 0 then

pold ←
∑

r∈R

∑Lr

l=1

(
log fBB(yr,l; ñ, s̃ĉzr,lm̂r,l, s̃(1− ĉzr,lm̂r,l))

)
+ log fGamma(s̃;ωshape, ωscale)

pold ←
∑

r∈R

∑Lr

l=1

(
log fBB(yr,l; ñ, s̃∗ĉzr,lm̂r,l, s̃

∗(1− ĉzr,lm̂r,l))
)

+ log fGamma(s̃∗;ωshape, ωscale)
p ∼ U(0, 1)
if exp(pnew − pold) < p then

Accept new value: s̃ = s̃∗

return s̃

2.8 Summarising the posterior distribution

We have now covered the algorithms that allow us to sample the posterior distribution. How
can one summarise the sample of the posterior distribution and provide meaningful output
to the user; a relative copy number profile? The latent variables of particular interest to us
are z and {ĉ1, . . . , ĉS}. Together, these define the relative copy number profile of our sample.
Most of the variables in the model can be considered as nuisance variables. For instance, we
are generally not interested in knowing π0, π or β.
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The most straightforward approach is to summarise the marginal posterior distributions,
P (ĉr,l | y) for all r, l. This involves disregarding the state assignments and using the relative
copy number values which were indirectly assigned to a locus (via zr,l) in all iterations (after
burn-in). These distributions can be summarised for each locus by computing the mean,
median or MAP estimate, along with various credible intervals (CIs). The second approach
is to directly use the state assignments. For instance, one might first determine the MAP
state estimate, û, for P (zr,l | y). Then P (ĉû | y) can be summarised by the mean, median or
MAP estimate and credible intervals.

In practice, the second approach is complicated by the so-called label switching problem
caused by nonidentifiability of the hidden states under our exchangeable prior and hence the
likelihood is invariant to permutations of the parameters [141, 142, 131]. This means that a
state label, u, in one iteration of the MCMC may not refer to the same entity in another
iteration.

One way to attempt to resolve this issue is to take a decision theoretic approach in which
we find a permutation of the state labels for each iteration of the MCMC that minimises a
loss function [141]. To do this, I used Stephens’ Algorithm 2 [141] which is as follows:

Starting with initial values for the permutation of the states for N iterations of the
MCMC (ν1, . . . , νN ), iterate step 1 and step 2 until a fixed point is reached:

Step 1 : choose Q̂ = (q̂ij) to minimise the following:

N∑
t=1

n∑
i=1

k∑
j=1

pij{νt(θ(t))} · log
[
pij{vt(θ(t))}

q̂ij

]
(2.38)

Step 2 : for t = 1, . . . , N , choose νt to minimise the following:

n∑
i=1

k∑
j=1

pij{νt(θ(t))} · log
[
pij{vt(θ(t))}

q̂ij

]
(2.39)

As Stephens points out, step 1 can be achieved by computing q̂ij = 1
N

∑N
t=1 pij{νt(θ(t))}.

In this algorithm, pij(θ) denotes the classification probability that locus i belongs to
state j. These probabilities are computed using the forward-backward procedure in each
iteration of the MCMC in order to sample the states (see Algorithm 2). Therefore, it was
straightforward to include these probabilities as part of the output files of conliga. We see
that q̂ij represents the mean classification probability across all iterations after permutation.
Therefore, we see that the algorithm iteratively finds the permutations of the state labels
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which minimises the Kullback-Leibler divergence [143] of the mean classification probabilities
(permuted) over all iterations to the true state classification probabilities.

While step 1 of the algorithm can be easily computed by determining the mean permuted
probabilities, step 2 requires solving a minimisation problem. For this, I implemented
the Munkres assignment algorithm (Hungarian algorithm) [144] to solve it efficiently. I
implemented the Stephens’ Algorithm and the Munkres algorithm in C++ and they are
available as part of the conliga R package (see section 2.9 for an overview of the main
functions provided in the conliga package).

Since we use a Hierarchical Dirichlet process HMM, the number of states can vary between
iterations. In order to use Stephens’ Algorithm in our case, I implemented two approaches.
The first approach (the MAP state approach) was to determine the MAP number of populated
states across all iterations. Then, only the iterations of the MCMC with the MAP number of
states were kept. Stephens’ algorithm was then run using only the filtered iterations and
setting k to the MAP number of states. The second approach (the MAX state approach) was
to find the maximum number of populated states across all iterations. Stephens’ algorithm
was then run using all iterations of the MCMC and setting k as the maximum number of
populated states. This second approach is similar to that of Fu et al. [145] which was applied
to relabel the clusters of a Dirichlet process mixture model.

Both of these methods provide a relabelling of the hidden states. Given the relabelled
states, their associated relative copy number value was summarised by the MAP estimate
(using the KernSmooth R package [133]) and credible intervals. Each locus was assigned to
its MAP relabelled state and therefore was assigned the summarised relative copy number
values of its MAP relabelled state. conliga outputs the results of both relabelling methods as
well as the marginal posterior distribution of relative copy number explained at the beginning
of this section. The relabelling process does not always work faultlessly and the Stephens’
algorithm is not guaranteed to find the optimal solution. This can depend on the initialised
permutations which can result in local optima being returned. Given this, conliga outputs
diagnostic plots from which it can be determined if the process has provided a useful and
reliable result.

To summarise, I have proposed three methods to summarise the posterior distribution:

1. Using the relative copy number assigned indirectly to each locus via the hidden state
but without using the hidden state assignments directly (which I will now refer to as
the indirect method)

2. Using the hidden state assignments and the Stephens’ algorithm, the states are relabelled
using the MAP state method
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3. Using the hidden state assignments and the Stephens’ algorithm, the states are relabelled
using the MAX state method

When analysing samples, I primarily use the indirect method for most purposes. For the vast
majority of loci the results obtained from all three methods are the same. If the first method
shows a difference in RCN between loci, it can be useful to compare the results with the other
methods which make use of the state assignments. This can show that the loci were inferred
to be in separate copy number states and can rule out differences due to other reasons. One
reason for a difference is that MAP estimates can vary (slightly) due to numerical error
introduced in smoothing the marginal posterior distributions (using KernSmooth) to calculate
MAP estimates. Another reason could be that being in one state for a few more iterations
than another, the mean or median RCN summary of one locus can be shifted relative to
another locus even though they may share the same MAP relabelled state. In this case we
are less likely to believe this difference is due to a true difference in copy number between
loci. The MAP RCN estimate is more resilient to this problem than the mean or median and
so this is one of the reasons I prefer to use the MAP to summarise the RCN.

When assessing focal amplifications (particularly highly focal loci involving few loci),
using the state information can be informative. For example, consider the example portrayed
in figure 2.11 which shows a theoretical marginal posterior distribution for the RCN of a
particular locus. In this example, the locus has a probability of 1

3 for being in state one
and probability of 2

3 for being in state two. In the indirect summarisation approach, a
MAP estimate would result in an RCN of 1 being assigned to the locus. By using the state
assignments, the locus would be assigned to its MAP state (state two) and would be assigned
a MAP RCN of 3. In this example, the marginal posterior distribution of the RCN for state
one may be more peaked due to having more loci assigned to it and therefore more data
is available for its inference in comparison to state two. If a locus has an RCN marginal
posterior distribution similar to this and it is located close to or within an oncogene, we may
be more willing to believe the results using the relabelled state assignments.

The credible intervals can be useful in the interpretation of the relative copy number
profiles. For instance, there is often uncertainty of the CNA change points and the CIs will
reflect this. This means that we can take account of this uncertainty and, if a particular
locus of interest falls close to a change point, we will be able to quantify the probability on
which side of the change point it falls. We will see examples of change point uncertainty in
figure 2.13 within section 2.10.
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Figure 2.11 A graphical representation of a theoretical marginal posterior distribution for
the RCN of a single locus. Here a locus has some probability of being in state 1 or state 2.
The probability of being in state 1 is 1

3 , while probability of being state 2 is 2
3 . The indirect

summarisation approach would result in a MAP RCN of 1 for the locus. By using the hidden
state assignments (the MAP state or MAX state methods) the locus would be assigned the
MAP estimate for state 2, which is an RCN of 3 in this illustration.

2.9 Implementation of conliga software package

In this section I briefly discuss the implementation of the algorithms described in this chapter
within the conliga software package.

I implemented conliga as an R package [108] which is freely available under an open-
source GPLv2 license at https://github.com/samabs/conliga. I implemented the two MCMC
algorithms, Stephens’ algorithm and the Munkres algorithm in C++, utilising Rcpp [146] and
RcppArmadillo [147] to interface C++ with R. conliga expects that each sample’s FASTQ
file has been processed and aligned and the alignments for all samples have been summarised
in an R data frame. Each row of the data frame should define a unique FAST-SeqS locus and
columns define the alignment counts for each sample. Note that the first three columns define
the chromosome, position and strand of each locus. conliga consists of four core functions,
which are executed in order. These are:

1. choose_loci. This function is used to filter loci that have more than the permitted
number of zero counts across a set of reference samples. For example, we may use the
set of control samples as the reference samples and set zeros_permitted to 0. In this
example, rows of the counts data frame that have a non-zero count in any of the control
samples would be filtered.

2. fit_controls. This function implements algorithm 1. It accepts as an input: the
filtered counts data frame, the set of control samples and the desired number of iterations
of the MCMC (default: 20000), the number of iterations to burn (default: 5000), the

https://github.com/samabs/conliga
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parameters of the Gamma prior on the sample specific inverse-dispersion parameter
(default: 1.5, 106), the parameters for the Beta priors on the mean proportions for each
locus (default: 1, 1 for all loci). It outputs the MAP estimate of mean proportions, i.e.
m̂.

3. run_MCMC. This function implements algorithm 2. It takes as an input: a list of samples
that the user wishes to infer the RCN profiles for, the filtered counts data frame,
the MAP estimate of the mean proportions, and the cytoband information for the
reference genome that was used to align the sample’s reads (this can be obtained by
using the get_cytobands function included with conliga). Optional arguments include
the number of cores to use on the machine (default: 1), number of iterations (default:
50000), the thinning parameter (output every nth iteration, default: 10), a data frame
describing the parameters of the prior distributions (otherwise defaults are used), γ
(default: 1), α+ κ (default: -1, meaning to infer it from the data with a default prior
distribution placed on α+ κ), ρ (default: -1, meaning to infer it from the data with a
default prior distribution placed on ρ), maximum number of states for the weak order K
limit approximation to the Dirichlet process (default: 30). The MCMC output is stored
in separate files for each latent variable for each sample. Note that if the number of
cores requested is more than one, the function allows each sample to be run in parallel
(an instance of the algorithm for each sample) with the help of the parallel R package.

4. process_MCMC. This function summarises the MCMC for a given set of samples. It
summarises the MCMC in the three ways described in this chapter. It outputs a
tab-separated values (TSV) file for each sample, providing summarised RCN profiles.
In addition, it provides relative copy number profile plots and label switching diagnostic
plots.

Within the conliga software, I allow for the option to provide fixed values for the
hyperparameters or provide priors and allow them to be inferred from the data. In practice,
I find that it is important to fix γ and provide strong priors on ρ and (α+ κ) or fix them. If
we allow γ to be inferred from the data, it tends to overfit the number of states, leading to an
unrealistically high number of inferred states. This is likely because the emission distribution
is not an exact representation of (and only an approximation to) the true emission distribution.
By allowing γ to vary, the model is able to improve the fit by introducing additional copy
number states. I find that fixing γ to a value around 1 solves this issue. In addition, given
the distance between loci and the typical lengths of SCNAs, we know that the probability of
self transition is likely to be high. As such, values of 0.99 for ρ and 200 for (α+ κ) appear to
lead to sensible inferences.
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2.10 Application to male and female samples

Having explained the development of the model and the observations that justified it (sec-
tion 2.5), described the two inference algorithms (sections 2.7.2 and 2.7.4) and how the
resulting posterior distribution can be summarised (section 2.8), we now look at a simple
application. In this section, we evaluate the performance of conliga in determining the relative
copy number differences between male and female samples.

For this experiment and all others described in this thesis, I used the following values for
the hyperparameters:

• γ = 1

• Gamma(2000, 10) prior distribution (defined by shape and scale) was placed on (α+ κ)

• Beta(100000, 100) prior was placed on ρ

• Gamma(3, 1) prior distribution (defined by shape and scale) was placed on the relative
copy number value of the hidden states; the shape and scale parameters are defined by
λ in equation 2.26

• ωshape = 1.5, ωscale = 106; where ωshape and ωscale define the shape and scale of the
Gamma prior distribution on s̃, respectively

Given m̂, inferred using the male samples and the loci aligned to chromosomes 1-22, X
and Y, and the loci counts for five female samples and the eight male samples, I ran the
run_MCMC function from the conliga R package (which implements algorithm 2). The output
of the MCMC chains were summarised (process_MCMC function in conliga) using the three
methods described in section 2.8. Figure 2.12 shows the summarised output using the MAP
estimates obtained using the indirect method to summarise the posterior distribution (the
first approach discussed in section 2.8). The results show that in all female samples, the
increased RCN in chromosome X is correctly identified as is the relative deletion (or absence)
of chromosome Y. In five selected male samples, we observe an RCN of one in chromosomes
X and Y.

In this figure, I have included the scaled counts. The scaled count is defined as ŷr,l =
yr,l/(ñ · m̂r,l). Each scaled count is coloured by its associated m̂r,l value. We see that scaled
counts with low m̂r,l values are generally more dispersed around the inferred RCN value,
whereas those with high values are more closely clustered around the inferred RCN. This
highlights the fact that loci with higher counts have greater statistical strength. As I have
mentioned previously, conliga accounts for this varying statistical strength by the use of
independent beta-binomial distributions. The HMM enables this statistical strength to be
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propagated to neighbouring loci. If this wasn’t accounted for, the noise generated by the
increased sampling error associated with low counts could lead to increased false positive
calls.

In some samples (particularly the second and fifth from the top), it is noticeable that
scaled counts with high or low m̂r,l values are not symmetrically distributed around the
inferred RCN. We note that this does not seem to affect the inference of the RCN. However,
we shall return to this observation in Chapter 4.
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Figure 2.12 Inferred RCN profiles for 5 female samples and 5 male samples across chromosomes
1-22, X and Y. Black points represent the MAP RCN obtained using indirect summarisation
method. Coloured points represent the scaled count (yr,l/(ñ · m̂r,l)) and are coloured by the
value of log(m̂r,l) where high values are red and low values are blue.

Looking across the inferred RCN profiles for the 10 samples, we observe short RCN
changes usually involving one locus or very few loci. These may be true CNVs within normal
samples, reflect false positive calls or perhaps be a mixture of the two. Indeed, short RCN
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segments are inferred for several samples within the p-arm of chromosome 6. These changes
occur within the major histocompatibility complex (MHC) which frequently harbour variants
[148]. This suggests that some of the short RCN segments may reflect true CNVs. While
some of the inferred short RCN segments may be true CNVs, some could be false positive
calls. There could be several possible causes of false positives. For example, the beta-binomial
emission distribution is an approximation and is unlikely to reflect the true distribution of
counts. As such, an imperfect emission distribution will result in false positive calls. Short
changes are more frequent in samples with greater total read counts and show that with
increased statistical strength, more of these regions are called. This would be the case if the
short RCN segments were true CNVs or were false positives inferred due to an imperfect
emission distribution. In addition, some of the false positives could be a consequence of the
Markovian assumption of the HMM. The Markovian assumption implies that the lengths of
copy number states (the state duration) follow a geometric distribution [149]. As such, the
model encourages the inference of short RCN segments. This issue is discussed further in
Chapter 6.

Figure 2.13 shows the inferred RCN profiles for the five female samples at the ends of
chromosome X, including the PAR1 and PAR2 regions. Recall that the PAR1 and PAR2
regions are present on both chromosomes X and Y but are masked in chromosome Y within
the reference genome. This means that male and female cells will have two copies of the PAR
regions and that reads from these regions will be aligned to chromosome X. Therefore, the
relative copy number within the PAR regions in the female samples should be the same as
that of the autosomes.
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Figure 2.13 RCN profile for 5 female samples at the 5’ and 3’ ends of chromosome X. Top:
RCN profiles for 10 Mbp of the 5’ and 3’ chromosome X ends with the PAR1 and PAR2
regions highlighted in purple. Bottom: Zoomed-in region of the 3’ end of chromosome X
more clearly showing the status of the two FAST-SeqS loci within PAR2. To the right of the
bottom plot are the MAP estimates of the inverse dispersion parameter (s̃) and the total
number of aligned reads for each sample (ñ).

We see that the PAR1 region was inferred to have a MAP RCN of just below one in all
female samples. This is the same RCN as was called for the autosomes and shows that the
RCN for this region has been correctly inferred. As I discussed in section 2.8, the uncertainty
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in the RCN change point is reflected by the 90% credible intervals. Here, the results suggest
that the change point could occur within or between two or three loci close to the PAR1
region. While the PAR1 region is approximately 2.7 Mbp in length, the PAR2 region is
much shorter (∼ 330 kbp) and contains only two loci. Here we see that conliga was able to
correctly infer the RCN for two out of the five samples. These two samples have high total
counts which, together with a sufficient inverse dispersion, provides the required statistical
strength to call a short RCN region. In contrast, another sample with high total count has
a lower inferred inverse dispersion and, as such, conliga was unable to infer such a short
RCN segment for this sample. These results suggest that there is a trade-off between the
total number of reads and the sensitivity but that technical variation also plays a role. The
total number of reads is a function of the sequencing cost and so greater sensitivity could be
achieved by sequencing more molecules per sample, while the technical variance could be
controlled by optimising the experimental protocol.

2.11 Analysis of convergence and state relabelling diagnostics

Determining whether an MCMC algorithm converges, that is that the samples are represen-
tative of the underlying stationary distribution of the Markov chain, is not straightforward
and is often not possible to determine with certainty [150]. However, there are several
methods which can suggest convergence or at least diagnose non-convergence [134]. One
simple approach is to run several chains with random starting points and compare the samples
(or summaries) of particular variables of interest across the runs. If the runs produce the
same result, we have good evidence of convergence [134].

I ran four chains, that were randomly initialised, for 50,000 iterations for a female
sample presented in section 2.10. The first 5,000 iterations were discarded and the chains
were thinned such that every 25th iteration was kept. This left 1,800 samples from each
Markov chain. Figure 2.14 shows various summaries of these four chains. We see similar
marginal posterior distributions for the inverse dispersion parameters (figure 2.14A), similar
posterior distributions for the number of copy number states (figure 2.14B), similar MAP
RCN estimates for all loci across two randomly chosen runs using the indirect summarisation
method (figure 2.14C) and similar quantiles of the marginal posterior distributions of the
loci RCN (figure 2.14D). We find good concordance between runs and these results suggest
convergence. Further evidence of convergence is shown in figure 2.15. figure 2.15A shows that
the four randomly initialised chains rapidly converge to a similar log-posterior probability
range. Figure 2.15B shows the log-posterior traces for the four chains after burn-in and
suggests that the chains explore the same log-posterior space. Furthermore, figure 2.15C
shows that the number of loci assigned to each relabelled state is consistent between the
four chains. This provides further evidence that the chains are converging to the stationary
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distribution. How quickly a Markov chain converges and how well it mixes may depend
on the sample. In general it is advisable to run several chains for each sample and check
concordance. In some cases it may be necessary to run more than 50,000 iterations. However,
for the majority of cases, I find 50,000 iterations to be sufficient.
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Figure 2.14 Assessing convergence: comparison of marginal posterior distributions obtained
by running four chains initiated at random starting points for a female sample. A: Marginal
posterior distribution of sample inverse dispersion parameter (s̃ from the four chains. B:
Marginal posterior distribution for the number of copy number states (the number of states
that had loci assigned to them over the iterations of the MCMC). C: Comparison of MAP
estimates (using the indirect method) for the relative copy number of 12,834 loci between
chain 1 and chain 2. D: Comparison of the percentiles of the marginal posterior distribution
for the relative copy number copy number of all loci using the indirect method (the plot
contains a total of 12843 × 11 = 141174 points).
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Figure 2.15 Assessing convergence: log-posterior trace plots for four chains initiated at
random starting points and assessment of the number of loci assigned to each state. A: The
log-posterior probability trace plots for four randomly initialised chains showing what appears
to be rapid convergence to the stationary distribution. The dotted line indicates the highest
log-posterior probability observed across all chains. B: The log-posterior probability trace
plots (zoomed in) after discarding the first 5,000 iterations for the same four chains shown
in panel A. C: Bar charts representing the number of loci assigned to each relabelled state
(after relabelling the states with the MAP state method) for each chain. The number of loci
assigned to each state is shown in black above the bars. The MAP RCN associated with each
state is shown in blue. To make the bar charts comparable between chains, the states were
ordered in terms of their associated MAP RCN.
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Figure 2.16A shows a trace plot for the relative copy number of each populated state
across the 50,000 iterations. Here we can see evidence of label-switching which we described
in section 2.8. Figure 2.16B shows the relabelling of the states by the MAP state method
and indicates a successful relabelling of the states. Figure 2.16C shows the relabelling of the
states by the MAX state method. In this case, the relabelling of the states appears to have
been unsuccessful.

Figure 2.16 Example MCMC trace plot for the RCN of the hidden states for a female sample.
A: Raw trace plot for all populated states across all 50,000 iterations. B: Trace plot of
relabelled states using the MAP state method. C: Trace plot of relabelled states using the
MAX state method.



88 conliga: a method and tool for inferring relative copy number from FAST-SeqS data

2.12 Summary

In this chapter, I have described the FAST-SeqS protocol and critically examined the
previously published computational methods for FAST-SeqS data. By exploring the FAST-
SeqS data obtained from samples of the normal oesophageal epithelium from male and female
donors, I have motivated and developed a probabilistic generative model for FAST-SeqS
data. In addition, I described the associated inference procedures to infer the biases in the
FAST-SeqS protocol and infer RCN profiles for each sample of interest, These algorithms
are implemented in an R package called conliga, which is freely available and open-source.
By using conliga and the set of male samples to infer the bias, I showed that appropriate
RCN profiles were inferred for female and male samples. In the next chapter we explore the
application of FAST-SeqS and conliga to oesophageal adenocarcinoma and its associated
premalignant lesion, Barrett’s oesophagus.



Chapter 3

Application to oesophageal
adenocarcinoma and precursor
lesions

Some of the work presented in this chapter forms a subset of the work described in Abujudeh
et al. [108] and is shared as a preprint on bioRxiv. In some sections of this chapter, parts of
the paper are reproduced. This work was performed in collaboration with the Fitzgerald
Laboratory at the MRC Cancer Unit at the University of Cambridge. Sebastian Zeki and
colleagues performed the FAST-SeqS protocol and were responsible for processing the clinical
samples through to data (FASTQ files). Jamie MJ Weaver conceived the clinical utility of
FAST-SeqS for upper gastrointestinal (GI) cancers. Lawrence Bower designed the pipeline for
processing high-coverage WGS and obtaining allele-specific copy number calls from ASCAT.
The rest of the work presented in this chapter is my own.

In this chapter, I discuss the challenges associated with oesophageal cancer and the need
for its early detection. In particular, the chapter focuses on oesophageal adenocarcinoma
(OAC) and its associated pre-malignant lesion, Barrett’s oesophagus. I explore the limitations
of the current screening and surveillance programmes, describe low-cost alternatives, and
motivate the use of a low-cost SCNA assay to identify chromosomal instability, which is
associated with OAC progression. As a proof of principle, FAST-SeqS and conliga are
applied to OAC samples that were previously sequenced as part of the International Cancer
Genome Consortium (ICGC) oesophageal adenocarcinoma project and conliga’s performance
is compared with ASCAT and QDNAseq. FAST-SeqS and conliga are applied to Barrett’s
oesophagus (BO) and gastric adenocarcinoma (GAC) samples that were not previously
sequenced and regions of interest are explored.
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3.1 Introduction and motivation

3.1.1 Oesophageal cancer: global incidence, mortality, development and
risk factors

In 2018, oesophageal cancer accounted for an estimated 572,034 cancer cases out of 18,078,957
(3.16%) worldwide; ranking as the ninth most common cancer. It is the sixth most common
cause of cancer-related death; responsible for 508,585 out of 9,555,027 (5.32%) cancer-related
deaths globally [1]. Oesophageal cancer largely comprises two distinct histological types:
oesophageal squamous cell carcinoma (OSCC) and oesophageal adenocarcinoma (OAC). While
these two diseases affect the same organ, they have striking differences in their epidemiology
and risk factors [151, 152].

OSCC comprises almost 90% of oesophageal cancer cases globally and is particularly
prevalent in East Africa, Central and East Asia [151]. It develops from squamous epithelial
cells, which form the lining of the oesophagus, via morphological steps; squamous hyperplasia
and dysplasia (low to high-grade), carcinoma in situ through to invasive OSCC [153, 152].
Repeated physical and chemical injury to the mucosa is associated with the risk of developing
OSCC, although the risk factors depend on geographic location. In areas with relatively low
incidence, tobacco smoking and alcohol consumption appear to be strongly associated with
developing disease. However, in areas with high incidence such as Linxian (within Shanxi
province, China), smoking has mild effect (1.33-fold increase risk vs 9-fold increase risk in the
United States) [154, 155, 152]. Other associations include age, low consumption of fruit and
vegetables, nutritional deficiencies, positive family history of OSCC (although relatively few
genetic predispositions are known) and injury caused by consumption of high-temperature
beverages. Many of these factors are associated with socioeconomically deprived regions and
groups. Moreover, access to water piped into the home, increased body mass index (BMI),
consumption of eggs, fruits and meat were inversely associated with developing OSCC in
Linxian [154, 152]. Perhaps owing to improved socioeconomic conditions and a reduction
in alcohol consumption and tobacco smoking, the incidence of OSCC has fallen in many
countries. For example, rates fell annually by 3.6% in the USA from 1998 to 2003 and 3.3%
age-adjusted annual falls were observed in China from 1989 to 2008 [156, 157, 152].

OAC differs in its geographical incidence distribution in comparison to OSCC with
relatively high incidence in North America, Northern and Western Europe and Oceania
[152]. In stark contrast to OSCC, the incidence of OAC has risen rapidly in many western
industrialised countries [158]. In the United States for example, the rate of increase of OAC
was greater than any other cancer type between the 1970s and 1990s with a >350% rate
of increase reported [159, 156]. Similar and sustained trends have been observed in other
countries during the same time [158]. Indeed, OAC has overtaken OSCC to become the
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predominant cancer type affecting the oesophagus in Australia, Canada, Iceland, Ireland,
New Zealand, Netherlands, Norway, Sweden, UK and the USA among others [151]. OAC
disproportionally affects men, with 7 out of 8 patients being male [152]. Given incidence
trends, it is predicted that one in 100 men in the UK and Netherlands will be diagnosed with
OAC by the age of 75 in 2030 [151].

Like OSCC, OAC generally develops from a pre-malignant lesion. OAC typically develops
from Barrett’s oesophagus (BO), a metaplastic condition in which specialised columnar
mucosa replace the native squamous cell mucosa. BO tends to occur near the gastro-
oesophageal junction and is thought to form in response to inflammation and damage due
to gastro-oesophageal reflux disease (GORD) [160]. Indeed, GORD is the most important
risk factor for the development of Barrett’s and OAC (odds ratio of 3.48 and 12 respectively
[161]). Obesity, particularly central or visceral obesity, is the second most important risk
factor [162, 152]. Tobacco smoking, male sex, Caucasian race, age, and dietary factors (low
vegetable and fruit consumption and high red meat consumption) and genetic factors also
increase the risk of OAC development [163, 152, 164].

3.1.2 The prognosis and staging of oesophageal cancer

Both OSCC and OAC carry very poor prognosis with median survival of less than 1-year
[152]. Indeed, oesophageal cancer is among the cancer types with the lowest survival rates
[165, 166]. Poor survival rates are seen around the world, even in developed countries, with
an overall five year survival of 19% in the United States [167] and a 42% one year, 15%
five year and 12% 10 year survival rate in England and Wales [168]. The five year survival
rate in England and Wales is on a par with the average in Europe [165] and only modest
improvements have been made in survival rates in the last 40 years (from 4% to 12% 10 year
survival rates in England and Wales) [166].

For OAC and OSCC, the most critical factor in determining prognosis is the stage at
which it is detected; the later the stage, the poorer the prognosis [169]. The stage classifies
the progression of cancer and, in oesophageal cancer, is determined by the tumour-node-
metastasis (TNM) system, in which information about the size of the primary tumour and
its invasion of nearby tissue (T), the local lymphatic involvement (N) and the presence of
distant metastases (M) are combined to provide an overall stage classification [170]. Staging
classification depends on the mode of staging. The first mode is clinical staging which is
based on imaging studies with limited resolution (cTNM), pathologic (pTMN) which includes
histological information gathered from the microscopic examination of resection specimens
and finally, pathological staging post neoadjuvant therapy (ypTMN) [170].

Symptoms of oesophageal cancer present relatively late in the course of the disease
compared with many other cancers. It is only at a relatively advanced stage that obstruction
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or restriction of the oesophagus occurs. Prior to this point, oesophageal cancer is generally
asymptomatic and clinical examination is unlikely to discover evidence of disease [169, 152].
Because of this, the majority of patients are diagnosed at a late stage and after symptoms
present, with locally advanced or metastatic disease. For example, 70-80% are diagnosed with
late stage cancer (stage III or IV) in the UK [168]. At this point in the cancer development,
the majority of cancers have invaded the muscularis propria (T2) and spread to local lymph
nodes (N1) [169] and around 37-42% have metastasised to distant organs (M1) [168].

3.1.3 The current stage-stratified treatment of oesophageal cancer

Current treatments are more effective at earlier stages in the disease. As such, the five year
survival rate for patients caught with early stage OAC, i.e. high-grade dysplasia (HGD) or
intramucosal adenocarcinoma (IMC, T1a), is approximately 90% (though lead-time bias may
relatively inflate survival rates to some extent) [171, 169]. Malignant tumours confined to
the mucosa (T1a) can be successfully removed with endoscopic mucosal resection (EMR) or
submucosal dissection (ESD) along with radiofrequency ablation techniques [152]. Patients
with HGD and IMC that are treated with these methods have low OAC recurrence; with
recurrent disease seen in approximately 0.7-1.4% of cases [172]. The progression of HGD
to OAC can be prevented by ablation and shows similar long-term survival and fewer
complications compared with more radical surgical procedures [173, 163]. Ablation therapy is
recommended for patients with low-grade dysplasia (LGD) and reduces the number that go
on to develop HGD and OAC [174, 163]. However, ablation treatment for patients with non-
dysplastic Barrett’s oesophagus (NDBO) is not warranted given the low rates of progression
to OAC with the side effects of treatment outweighing the benefit [163, 152]. Occasionally,
patients with OAC invading the submucosa (T1b) can be treated by endoscopic therapies but
oesophagectomy is the current treatment standard. This is because tumours that have spread
to the submucosa have reasonably high risk (17%) of metastasising to lymph nodes, at which
point treatment becomes more difficult and prognosis worsens [175, 172]. Indeed, the depth
of invasion into the submucosa affects the risk of lymph node metastasis (varying from 9% to
50%) [176, 177]. Fewer studies exist for the prevention of disease progression or treatment
of early stage OSCC with endoscopic treatments. However, higher rates of progression and
complications (e.g. stricture) are seen in patients with squamous dysplasia when treated
with ablation therapy compared to patients with Barrett’s oesophagus [178–180, 152].

For patients with more locally advanced disease (≥T2) or those that have lymph node
involvement, surgery (oesophagectomy and potentially lymphadenectomy) is the main mode
of treatment [152]. However, surgery alone offers poor survival; even patients at relatively
early stage (T1b) have only a 50% 10 year survival when surgery is the only mode of therapy
(for OAC and OSCC) [181, 152]. For these patients, adjunctive treatment is required and
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can involve neoadjuvant or perioperative chemotherapy, radiotherapy or chemoradiotherapy.
Indeed, adjunctive treatment can be used to reduce tumour size prior to surgery in order to
increase the chances of curative resection and reduce risk of disease recurrence. Treatment
choices vary depending on clinical factors and disease type. For example, surgery may not
be suitable for all patients given other comorbidities or old age and other treatments may
be sought. Indeed, oesophagectomy can have a severe impact on quality of life and is itself
associated with increased morbidity. Fortunately, some patients with OSCC can be treated
with radiotherapy or chemoradiotherapy and achieve good response without surgery but
typically not those with OAC [182, 152].

A substantial number of patients are diagnosed with metastatic disease (M1) for which
curative therapy is not currently possible. Moreover, more than 50% of patients that are
considered to have curative disease and are treated as such, will eventually have disease
recurrence that is not curable. These patients will be limited to palliative care and therapy
which include radiotherapy, chemotherapy and stents [182, 152].

3.1.4 The need for screening and surveillance of oesophageal cancer de-
velopment and associated precursor lesions

Given the clear survival differences between those patients with early and late stage disease
and that treatments are much more effective for early stage disease, progress must be made
to detect oesophageal tumours earlier in their development and before the onset of symptoms.
Indeed, detection and removal of precursor lesions prior to the progression to malignant
disease is preferred given the risk of spread in relatively early disease.

Detection of malignancy or precursors prior to the onset of symptoms necessitates the
screening and surveillance of individuals. In this context, screening is considered as a single,
one-off test to detect a disease or identify individuals at risk of developing the disease within
the general population. Surveillance is considered to be repeated application of a test, most
often administered to individuals deemed to be at greater risk of developing the disease than
the general population. In both screening and surveillance, the aim is to identify disease
early so that interventions can be made to improve prognostic outcomes [169].

Successful mass screening programmes have been deployed for the early detection of
breast, colorectal, lung and uterine cervical cancer and have been shown to lower mortality
rates [183, 184]. Furthermore, the screening and surveillance for cervical and colorectal cancer
development has shown efficacy in the detection and subsequent removal of pre-malignant
lesions before they can develop to cancer [183, 184].

For a screening or surveillance programme to be successful there are multiple factors to
consider. Firstly, the test employed needs to have an acceptable level of sensitivity (true
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positive rate) and specificity (true negative rate). In addition, the test needs to be acceptable
to the individual receiving it, not be dangerous to the individual’s health and be cost effective
[185, 186]. Clearly then, a perfect test is 100% sensitive and specific, unnoticeable and risk
free to the recipient, requiring zero cost to deliver and ultimately leading to 100% prevention
or cure of the disease.

Despite OSCC and OAC having known precursor lesions that may be successfully treated
with endoscopic therapy, there are currently no mass screening programmes for oesophageal
cancer in the West [152]. The British Society of Gastroenterology and American College
of Gastroenterology currently suggest that screening for Barrett’s oesophagus could be
considered for those at high-risk of developing the condition (male sex, GORD ≥5 years,
family history and multiple other risk factors) by endoscopy [177, 163, 152]. Endoscopic
surveillance of patients with a known Barrett’s oesophagus diagnosis is recommended and
surveillance intervals depend on a number of factors, including the length of the Barrett’s
segment, whether intestinal metaplasia (IM) is present and the presence and level of dysplasia
[177]. If LGD or HGD is identified, endoscopic therapy (ablation) is recommended along
with continued endoscopic surveillance [177, 163, 187].

The screening and surveillance process can be split into two conceptual parts. The first
part involves a process by which tissue samples and/or images of the oesophagus are taken.
Samples could also be taken from other sources, e.g. blood, saliva or urine. The second part
involves the analysis of measurable indicators (a biomarker, or set of biomarkers) within the
sample or image. These biomarkers are used to distinguish between normal and diseased
tissue and to stratify patients and make treatment decisions. Currently, the first part is
performed by endoscopy in which images and biopsies of the oesophagus are taken. The
second part involves clinical observations (e.g. presence of salmon-coloured mucosa, length
of Barrett’s segment) and histopathological analysis of the biopsies (e.g. level of dysplasia,
presence of IM, evidence and depth of invasive OAC) [177, 163].

3.1.5 The limitations of endoscopic and histopathological-guided screen-
ing and surveillance

There are a number of problems with the current screening and surveillance paradigm.
Firstly, 90-95% of patients diagnosed with OAC do not have a previous diagnosis of Barrett’s
oesophagus [188, 164, 189, 163]. These patients are missed by the current surveillance strategy.
Furthermore, only 0.12-0.6% of patients with Barrett’s oesophagus progress to OAC [152].
Most patients with Barrett’s die from other causes, suggesting that Barrett’s may not be a
major predictor for OAC. In a meta-analysis involving 7,930 patients with Barrett’s, only 88
out of 1,271 deaths were due to OAC. Within the subset of studies that reported mortality
cause, 64 out of 921 (7%) deaths were due to OAC while 93% were due to other causes.
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Indeed, more patients died from other malignancies (16%) than OAC, while other deaths
were due to cardiac disease (35%) and pulmonary disease (20%) [190, 163].

The presence of IM and the grade of dysplasia is used as a biomarker for progression to
OAC and patient stratification [177, 163]. Meta-analyses have shown that non-dysplastic
Barrett’s progresses to OAC with an annual rate of 0.33% [191] and that LGD has an annual
progression rate of 1.7% to HGD/OAC (combined) and 0.5% for OAC alone [192]. However,
the progression of LGD varies considerably between studies and Shaheen et al. [163] suggest
that this variation can be explained by more liberal LGD diagnoses (and perhaps overcalling
LGD) in some studies. As such, the risk of progression to LGD may be overestimated [163].
Variation between progression rates are also seen in studies of progression from HGD to OAC;
rates vary from less than 10% to 59% per year [164]. Crude and weighted annual incident
rates of 6% and 7% respectively were estimated in a meta-analysis of patients with HGD
from four studies [193]. However, incident rates of approximately 19% were found in two
randomised trials that included surveillance of subjects with HGD and required confirmation
of HGD by another expert pathologist [194, 195]. These results suggest that with more
thorough histopathological validation, the level of dysplasia may be more predictive of OAC
development [163]. However, these results also highlight that the grading of dysplasia is
subjective. Indeed, studies have shown substantial variation between the assessment of
pathologists [196, 197, 164]. Another issue is that endoscopic sampling error is high and
a large number of endoscopic biopsies are required to minimise it [164]. For example, a
retrospective study found that when four biopsies were taken IM was detected in 35% of
cases but when eight biopsies were taken IM was detected in 68% [198, 163]. Even with
pathologist variation and sampling error aside, there is likely to be biological heterogeneity
within discrete grades of dysplasia [164] and further biomarkers are needed for more precise
risk stratification [152].

Standard transoral endoscopy is the gold standard diagnostic tool for oesophageal cancer
and precursor lesions [186, 177]. However, it is expensive, invasive and requires skilled
operators [186, 163, 152]. In 2012, standard white-light endoscopy was estimated to cost
£520 in the UK and $930 in the US per patient [186]. Histopathological analysis of at least
four biopsies increases these costs further. Indeed, due to inter-pathologist variability it is
recommended that dysplasia diagnoses be confirmed by independent expert pathologists [177]
which increases costs and puts additional burden on healthcare systems. Given the costs and
logistics, endoscopic screening and histopathological-led diagnosis of the whole population is
not cost-effective and not recommended [177, 163]. Indeed, the screening of patients with
GORD alone is highly controversial and the cost-effectiveness is uncertain [177]. It is for
this reason that additional risk factors plus GORD are used to select patients for screening
[177, 163]. Indeed, the cost-effectiveness of endoscopic surveillance for patients with Barrett’s
oesophagus is debated and there is insufficient data to prove its cost-effectiveness [177].
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The costs and logistics of endoscopic screening limit the screening population to high-risk
individuals, however the criteria used to select patients is suboptimal. Patients with Barrett’s
oesophagus do not necessarily have reflux symptoms. In a random sample of adults from the
Swedish population, 16 (1.6%) were found to have Barrett’s and of those 9 reported having
reflux symptoms. The prevalence of Barrett’s in patients with reflux was 2.3% compared with
1.2% with those without reflux [199]. Similar results were seen in a random sample of adults
in two Italian villages with 1.3% found to have Barrett’s oesophagus and 46.2% of those with
Barrett’s reporting no symptoms of reflux [200]. Moreover, many patients with OAC do not
report typical reflux symptoms. In a nationwide case-control study in Sweden, 76 out of 189
patients with OAC (40%) reported that they did not have regular symptoms of reflux [201].
In a study in the United States, 72 out of 198 OAC patients (36%) reported never having
reflux symptoms and 24 (12%) reported having infrequent reflux symptoms (1-12 times/year)
[202]. These patients are likely to be missed by the current screening recommendations.

3.1.6 Low-cost alternatives to standard endoscopy and histopathological-
guided screening and surveillance

Given the limitations of standard endoscopy and histopathological-guided diagnoses, alter-
natives are sought. Lower cost and less invasive devices to capture samples are required to
screen and surveil a greater proportion of the population. Furthermore, biomarkers that
can predict oesophageal cancer development with high sensitivity and specificity are also
necessary along with associated low-cost assays to measure them.

Unsedated transnasal endoscopy (TNE) is a less invasive alternative to standard endoscopy.
In a study of 95 randomised patients, it was shown to provide a sensitivity and specificity of
98% and 100% respectively for the detection of Barrett’s oesophagus when compared with
standard endoscopy [203]. However, further studies with larger patient cohorts are required
before it be considered to replace standard endoscopy for screening [177]. Furthermore,
biopsies taken using TNE are significantly smaller than standard endoscopy [203] which may
lead to increased sampling error and difficulty in diagnosing dysplasia grades. In addition,
substantial investment would be required in new equipment and skilled operators [152]. Hence,
TNE is not recommended for Barrett’s surveillance at this time [177].

Capsule endoscopy provides another alternative to standard endoscopy. It involves the
ingestion of a small device which can record images from the oesophagus. However, capsule
endoscopy has low sensitivity and specificity for the detection of Barrett’s oesophagus (73%
and 78% respectively) and is therefore not recommended for screening [163, 152]. In addition,
tissue sampling is not possible so follow-up by standard endoscopy would be required to take
biopsies of any suspicious lesions [186].
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Non-endoscopic devices have shown promise for the detection of Barrett’s oesophagus. A
number of cytology-retrieval devices have been developed to sample tissue from the oesophagus
[186, 152]. These devices are simple and low-cost technologies including inflatable balloons
and sponges [204, 205, 100]. The Cytosponge is an example of one of these devices. It takes
the form of a polyurethane sponge contained within a gelatin capsule that is attached to a
string. After the capsule is swallowed and reaches the stomach, the capsule dissolves and the
sponge expands. The sponge is then retrieved by pulling on the string and it collects cells as
it makes its way back through the oesophagus [100]. It has been shown to be well tolerated
by those that have used it [206]. When immunocytochemistry for trefoil factor 3 (TFF3)
is performed on the specimens obtained by the Cytosponge, Barrett’s oesophagus can be
detected with a sensitivity and specificity of 79.9% and 92.4% [207]. Sensitivity improves for
longer segments of Barrett’s oesophagus and when patients take two Cytosponge tests [207].

While this test offers a low-cost alternative to endoscopy for the detection of Barrett’s
oesophagus, TFF3 does not enable risk-stratification of patients. In a theoretical population of
10,000 patients with reflux symptoms and an assumed 3% prevalence of Barrett’s oesophagus
that are given the Cytosponge plus TFF3 test, the expectation is that there would be 237
true positives, 737 false positives, 8963 true negatives and 63 false negatives [207]. Without
further risk-stratification, 974 out of 10,000 patients will require follow-up endoscopy. In the
majority of cases, the follow-up endoscopy will be needless. In addition to this, 63 will be
missed and might go on to develop OAC. It is clear that without further risk-stratification,
the number of patients requiring endoscopy following a TFF3 test would create a substantial
burden on healthcare systems [152].

The expression of p53 as a biomarker for risk-stratification has been investigated. In a
endoscopic surveillance study of 720 patients with BO, 49 patients developed HGD or OAC.
Aberrant p53 protein expression (determined by immunohistochemistry) was associated with
increased risk of progression to HGD or OAC; overexpression and loss of p53 expression were
shown to have a relative risk (after adjusting for other factors) of 5.6 and 14.0 respectively.
Indeed, these results suggest that aberrant p53 expression is a better predictor of progression
than the histopathological diagnosis of LGD [208].

Other studies have looked at mutations within genes as markers of OAC progression.
Weaver et al. [209] used a discovery cohort of OAC samples (using WGS and amplicon
resequencing) to identify a set of recurrently mutated genes. Of the 26 genes identified, only
TP53 mutational status showed promise as a biomarker for progression; mutations in TP53
were found in 72% of the 44 HGD samples, 69% of the 90 OAC samples and only in 1 out of
66 (2.5%) NDBO samples. Of the other 25 genes, only SMAD4 showed significant difference
in mutational frequency between the patient cohorts (NDBO, HGD, OAC); mutations were
found in 13% of OAC samples but not HGD or NDBO samples. Given the higher frequency
across patients and that mutation in TP53 appears to occur prior to malignant progression,
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TP53 mutational status was determined to be a biomarker with more promise than SMAD4.
When TP53 mutations were used as a biomarker in Cytosponge samples, TP53 mutations
were detected in 86% (19/22) of HGD samples and zero mutations were detected in normal
samples (0/23) and those with NDBO (0/44). These results suggest that TP53 mutational
status has promise as a biomarker for progression. However, approximately 30% of patients
with HGD or OAC do not harbour mutations in TP53 and additional biomarkers are needed
[209].

3.1.7 Genomic instability and the development of OAC: SCNAs as biomark-
ers for detecting and predicting OAC development?

Oesophageal adenocarcinoma is characterised by a high frequency of somatic mutations and
structural rearrangements [210–212]. In a study of 149 cases of OAC and WGS and exome
sequencing of tumour-normal pairs, Dulak et al. found a median mutation frequency of
9.9 mutations/Mb; 13.9 mutations/Mb in intergenic regions, 8.7 mutations/Mb in intronic
regions and 6.5 mutations/Mb in coding exons. This places OAC among the cancers with
the highest mutational frequency after lung cancer and melanoma [210]. Dulak et al. also
found a mutational pattern unique to OAC, with high frequency of AA>AC transversions,
representing 29% of all mutations [210].

In a later study, exome sequencing of paired BO and OAC samples revealed that the
AA>AC mutational pattern is also present in the BO samples. Indeed, there were increased
AA>AC mutations in BO samples compared with OAC samples, although not found to be
statistically significant. These results suggest that these mutational patterns occur early
in the progression of BO and OAC, perhaps as a consequence of damage to the mucosa by
gastric acid and bile [212]. The same study compared median mutational frequencies between
NDBO, dysplastic BO and OAC samples. Interestingly, NDBO was found to have a higher
median mutational frequency than many invasive cancers (2.8 mutations/Mb). Dysplastic
BO and OAC were found to have slightly higher median mutational frequencies than NDBO
with 4.9 mutations/Mb and 4.1 mutations/Mb respectively [212]. Similar results showing
high mutational frequencies in BO and OAC were seen by Ross-Innes et al. when studying
WGS of paired Barrett’s and OAC samples [211]. However, there was strikingly little overlap
in the SNVs found in paired OAC and BO samples with 13 of the 23 pairs showing less than
20% overlap [211].

In contrast to somatic point mutations, structural rearrangements have been found
to markedly increase with progression to OAC [213, 211, 212]. Stachler et al. observed
that the mean number of deletions in NDBO, dysplastic BO and OAC were 10.43, 20.73
and 40.20 respectively [212]. Amplifications were seen at much higher frequency in OAC
samples compared with BO with a mean of 0.42, 0.91 and 8.44 amplifications observed
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in NDBO, dysplastic BO and OAC samples respectively [212]. Indeed, the association
between chromosomal instability and neoplastic progression of OAC has been evident since
the 1980s. Reid and colleagues evaluated 317 biopsy specimens from 64 patients under
endoscopic surveillance. By using flow cytometry, they found that specimens from 10 patients
had evidence of non-diploid cells. Nine out of the 10 patients had dysplasia or carcinoma.
Furthermore, all patients with dysplasia and carcinoma had either evidence of aneuploidy
(non-diploid) or had increased number (>6%) of cells in G2 phase of the cell cycle or tetraploid
cells [214]. Since then, there has been mounting evidence that OAC develops in association
with increasing SCNAs [164].

In a longitudinal study of patients with BO, Li et al. [213] studied the genomes of BO
samples from patients that went on to develop OAC (progressors) and those that did not
(non-progressors). Typically, the genomes of non-progressors saw relatively stable SCNAs
over time and were characterised by short deletions at fragile sites (commonly FHIT, WWOX,
CDKN2A), loss or copy neutral loss of heterozygosity (cnLOH) of 9p and little spatial
heterogeneity. More than 48 months prior to diagnosis, progressors had similar SCNA
profiles to non-progressors with 18q loss the only SCNA with significantly higher frequency in
progressors than non-progressors at this stage. At 24 to 48 months prior to diagnosis, larger
regions of SCNAs developed in progressors, including gains of chromosomes 8 and 15q and
losses of 5q, 17p, 18 and Y along with greater spatial heterogeneity in SCNA profiles. Within
24 months of OAC diagnosis, genome-doubling was often observed along with increased
SCNAs involving more than 1,850 Mb of the genome [213]. Indeed, spatial heterogeneity
and polyclonality were seen by Ross-Innes et al. in the paired BO samples from patients
with OAC [211] and clonal diversity has been shown to confer risk of OAC development
[215–217, 152]. These results suggest that SCNA load over time, spatial heterogeneity and
the presence of particular SCNAs may be useful biomarkers to predict those that go on to
develop OAC. Indeed, these biomarkers can appear two to four years before OAC diagnosis
and detecting them may allow for early intervention.

Stachler et al. [212] have since proposed two mechanisms by which BO can progress
to OAC. The first mechanism involves a gradual step-wise loss of tumour suppressor genes
including CDKN2A, ARID1A, TP53 and SMAD4 along with alterations of chromatin-
modifying enzymes. This leads to chromosomal instability, oncogenic amplifications and OAC
development without a genome-doubling event. The second mechanism involves TP53 loss
followed by a catastrophic genome-doubling event. Genome-doubling leads to chromosomal
instability, a greater number of oncogene amplifications than the first mechanism and perhaps
a more rapid development of OAC [212]. It is suggested that the majority of OACs emerge
via the second mechanism. Both mechanisms include chromosomal instability and the
accumulation of SCNAs. Oncogenic amplifications appear to occur at relatively late stage in
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OAC progression and Stachler et al. suggest it may be critical late step in the transformation
to invasive OAC [212].

In a recent study, Ross-Innes et al. [218] investigated whether the use of the Cytosponge
and a panel of biomarkers could accurately risk-stratify patients. The purpose was to identify
those at low-risk of OAC progression so that these patients could be spared endoscopy. They
devised a model including three binary biomarkers (p53 status, Aurora kinase A expression
and histopathologist assessment of glandular atypia) along with the interaction of three clinical
factors (age, length of Barrett’s segment, waist:hip ratio) that split patients into low-risk,
moderate-risk and high-risk. They also tested protein biomarkers for c-Myc and methylation
of MYOD1 and RUNX3 but did not include these in the final risk-stratification model.
Aurora kinase A expression was included as a surrogate marker for aneuploidy (evidence of a
deviation from diploidy) because performing SCNA profiling (using SNP arrays) or cell cycle
analysis was deemed to be infeasible or too expensive [218]. Interestingly, binarised Aurora
kinase A expression was the most sensitive in discriminating HGD/IMC from NDBO (78%)
when it was tested as an independent variable, while p53 immunohistochemistry was the
most specific (96%) [218]. Increased sensitivity might be achieved by using SCNA profiles
rather than using surrogate markers.

3.1.8 The landscape of SCNAs in OAC and potential drug targets

SCNAs are common in OAC and similar patterns of SCNAs alterations also occur in gastric
adenocarcinoma with both cancer types marked by chromosomal instability [219, 152].
Potential therapeutic targets include amplified receptor tyrosine kinases (e.g. ERBB2/HER2,
KRAS, EGFR, MET, FGFR2, VEGFA) cell cycle regulators (e.g. CCND1, CCNE1, CDK6 )
and transcription factors (e.g. GATA4, GATA6, MYC ). [152]. The targeting of these genes
in OAC has been largely unsuccessful to date. Only the targeting of ERBB2-positive cancers
with the use of trastuzumab has shown success. However, this success has been limited to
modest improvements in survival in patients with metastatic disease [220, 221].

Cell cycle regulators and members of the DNA damage response (DDR) pathway are
two proposed targets for therapy. 86% of OAC cases have been shown to have cell cycle
dysregulation. For example, in estrogen receptor-postive breast cancer, the inhibition of
CDK4 and CDK6 has been shown to improve survival. Therapies such as ribociclib and
palbociclib, which target CDK4/6 may also be useful CDK4/6 -amplified OAC [222, 152].
The DDR pathway could be targeted with drugs such as poly ADP ribose polymerase (PARP)
inhibitors (e.g. olaparib), ataxia telangiectasia and Rad3-related protein (ATR) inhibitors
and platinum-based chemotherapy [221, 223, 152].

There are several challenges in the development and application of targeted therapies
for OAC. These include the acquisition of additional tyrosine kinase amplifications (co-
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amplification) and the presence of intratumoural heterogeneity which both confer resistance
to therapy. So far, the targeting of the DDR pathway has been impeded by the lack of
biomarkers to select patients that may benefit from these therapies [152, 223]. SCNA
profiling may provide a means for stratifying patients for targeted therapy and monitoring
the development of resistance.

3.1.9 Concluding remarks

The incidence of OAC is rapidly increasing, particularly in the modern industrialised nations
and carries with it a very poor prognosis. Pre-malignant lesions and early disease can be
successfully treated and treatment becomes more difficult in more advanced disease. SCNAs
appear to play an important role in the onset and development of OAC and are promising
biomarkers for disease detection, stratification, therapy selection and the monitoring of disease
progress. FAST-SeqS and conliga could provide a clinically applicable solution for the SCNA
profiling of patients.

3.2 Application of conliga to OAC and comparison with high
and low-coverage WGS

The aim of this section is to assess conliga’s performance as a tool for SCNA profiling in the
context of its clinical utility for OAC. The performance is assessed by comparing copy number
calls obtained from a set of OAC samples using high-quality and high-coverage WGS data.
For comparison, I compare conliga’s performance to the performance of a widely-used method
applied to low-coverage WGS data. The performance is assessed at varying resolutions.
Firstly, I compare the overall SCNA profiles between methods (section 3.2.3). Secondly, I
compare the RCN calls across all OAC samples to assess the quantification of copy number
(section 3.2.4). Thirdly, I evaluate conliga’s performance at gene level resolution; assessing
the associated RCN values for genes that are recurrently amplified and deleted in OAC
(section 3.2.5). Lastly, by performing an in silico dilution experiment, I assess conliga’s
performance in low purity samples (section 3.2.6).

3.2.1 Sample information

We selected 15 OAC samples that were previously sequenced as part of the International
Cancer Genome Consortium (ICGC) oesophageal project using WGS at ≥ 50X coverage
(along with matched normal samples at ≥ 30X coverage) [221]. By performing FAST-SeqS
on DNA that was previously extracted and sequenced from these 15 OAC samples, we could
directly compare the performance of conliga to well-tested methods applied to WGS data.
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The FAST-SeqS sample information can be found in table 3.1. Of the 15 samples selected,
four samples had a low number of reads (≤ 350, 000 reads) and these were excluded from the
analysis.

Sample Seq. ID Reads Counts Counts (pf)

NA SLX-9396.FastSeqA 27515 13108 NA
OAC1 SLX-9396.FastSeqB 2235605 1430644 1301862
OAC2 SLX-9396.FastSeqC 1771657 1167955 1049641
OAC3 SLX-9396.FastSeqD 1386224 901797 792917
OAC4 SLX-9396.FastSeqE 1424501 950871 860611
OAC5 SLX-9396.FastSeqF 4651028 3036990 2769289
OAC6 SLX-9396.FastSeqG 2126721 1413199 1287926
OAC7 SLX-9396.FastSeqH 2479560 1608219 1445539
NA SLX-9396.FastSeqI 8945 5585 NA
OAC8 SLX-9396.FastSeqJ 753806 407586 370725
OAC9 SLX-9396.FastSeqK 1803553 1168750 1060265
NA SLX-9394.FastSeqA 163671 84952 NA
NA SLX-9394.FastSeqB 323995 182159 NA
OAC10 SLX-9394.FastSeqC 636616 335538 304306
OAC11 SLX-9394.FastSeqD 607073 316801 278129

Table 3.1 Oesophageal adenocarcinoma cohort: FAST-SeqS sample information. ‘Reads’
represents the total number of reads assigned to each sample demultiplexing the reads from
the sequencing lanes. ‘Counts’ represents the number of counts after each sample’s FASTQ
file was processed using the pipeline described in section 2.4. ‘Counts (pf)’ shows the number
of counts that remained after filtering loci with a zero count in any of a set of control samples
(see section 3.5 for details).

3.2.2 Copy number tools and data used as a comparison to conliga and
FAST-SeqS

ASCAT-NGS [224] is a widely used tool for SCNA analysis using matched tumour-normal
WGS samples and is the preferred method used for SCNA calling as part of the ICGC
oesophageal project. For example, it was used by Secrier et al. in their recent paper [221].
Because of this, I used ASCAT’s calls as the gold standard to compare conliga’s results to.

50X WGS is approximately 100-fold more expensive than FAST-SeqS data to produce
and as such has limited clinical application currently. Low-coverage (LC) WGS has been
suggested as a low-cost alternative to high-coverage (HC) WGS for SCNA profiling and is now
widely used for this purpose [225, 99]. The cost-savings associated with LC WGS are due to
the reduced sequencing required per sample. However, low-coverage is a vague term and its
meaning depends on the context. For example, in the context of variant calling, low-coverage
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can be considered as 4-10X while 1-2X is considered as extremely low-coverage [226]. In the
context of copy number profiling, low-coverage is also ill-defined; 0.1-1X coverage has been
considered low-coverage [225, 227] whereas 0.01X has been considered as ultra low-coverage
[228]. For our purposes, I define LC WGS as 0.1X coverage using single-end 50 bp reads. To
achieve 0.1X coverage, approximately 9 million reads are required assuming that of these 9
million reads, 6 million reads will align to the genome [225]. As we calculated in Abujudeh
et al. [108], this means that LC WGS is approximately £52-72 per sample (depending on the
library preparation used) and 3.7-5.1 fold more expensive than FAST-SeqS which costs £14
per sample when using two million 150 bp single-end reads per sample [108]. Rather than
preparing new sequencing libraries and sequencing the OAC samples again, LC WGS was
produced by down-sampling reads from HC WGS, see section 3.5.1 for details.

QDNAseq [225] is a widely used tool for SCNA profiling using LC WGS data and has
been cited more than 100 times. It uses a depth of coverage approach to infer relative copy
number values for genomic bins and the genomic bin size is defined by the user. To remove
read depth biases in the count data, it applies a two-dimensional LOESS correction using GC
content and mappability as the two dimensions. After correcting for these biases, the noise
observed in the normalised counts is primarily comprised of sampling noise [225], suggesting
that GC content and mappability make up most of the technical variation in LC WGS binned
read counts. Scheinin et al. successfully applied QDNAseq to samples with ∼ 0.1X coverage
(50bp single-end reads) and showed good performance [225]. For these reasons, I chose to
compare conliga’s performance to QDNAseq applied to LC WGS data.

3.2.3 Comparing copy number profiles

Comparing conliga’s scaled and QDNAseq’s normalised counts to ASCAT’s total
copy number calls

As an exploration of the data, we can compare the scaled counts from conliga to ASCAT’s
total copy number calls (TCN; that is, the sum of allele-specific copy number). In figure 3.1A
we see ASCAT’s TCN calls and their corresponding scaled count calculated by conliga at
FAST-SeqS loci for a particular OAC sample. We see that the scaled count is proportional
to ASCAT’s TCN; the scaled counts proportionally increase as the TCN increases. This
observation is a generalisation of what we observed when comparing male and female samples
in figure 2.5 in chapter 2. When comparing QDNAseq’s normalised counts (which corresponds
to conliga’s scaled counts) in figure 3.1B, we see the same relationship but with less variation.
However, we see that FAST-SeqS loci with high m̂ values have less variation around the
ASCAT’s RCN estimate and the amount of variation appears to be comparable to QDNAseq’s
normalised count. It is the loci with low m̂ values that vary considerably around ASCAT’s
RCN estimate.
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Figure 3.1 Comparison between conliga’s scaled counts and QDNAseq’s normalised counts
with ASCAT’s total copy number calls for sample OAC2. A: Sina plot showing the distribution
of conliga’s scaled counts that overlap with ASCAT’s total copy number (TCN) calls and
QDNAseq’s calls. Each locus is plotted as a point and coloured by the loci’s associated log m̂
value (higher values are red, lower values are blue). B: Sina plot showing the distribution of
QDNAseq’s normalised counts that overlap with ASCAT’s total copy number (TCN) calls.

Figure 3.2A shows the Pearson correlation coefficient between ASCAT TCN calls and
conliga’s scaled and QDNAseq’s normalised counts for each of the 11 OAC samples. We
see that when including all FAST-SeqS loci, QDNAseq’s normalised counts more strongly
correlate with ASCAT’s TCN calls than conliga’s scaled counts correlate with ASCAT TCN.
However, if we compare the 1000 loci with the highest inferred m̂ values, we see a similar
strength of correlation which confirms our observations from figure 3.1.
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Figure 3.2 Comparison between the output of conliga and QDNAseq with ASCAT’s TCN
copy number profiles. A: Pearson correlation between QDNAseq’s normalised counts with
ASCAT’s TCN profiles compared against the Pearson correlation between conliga’s scaled
counts with ASCAT’s TCN profile. Each point represents an OAC sample. Left: comparison
using conliga’s scaled counts from the 1000 FAST-SeqS loci with the lowest inferred m̂ value.
Middle: comparison using all FAST-SeqS loci. Right: comparison using conliga’s scaled
counts from the 1000 FAST-SeqS loci with the largest inferred m̂ value. In all cases, all
the 15 Kbp bins were used in calculating QDNAseq’s correlation with ASCAT TCN (see
section 3.5.5 for more details). B: Pearson correlation between QDNAseq’s segmented RCN
profile with ASCAT TCN profile against Pearson correlation between conliga’s RCN profile
and ASCAT’s TCN profile. Each point represents an OAC sample.

Comparing conliga’s and QDNAseq’s RCN calls to ASCAT’s TCN calls

ASCAT produces absolute and allele-specific copy number calls along with an estimation
of the proportion of normal cell contamination. If all methods provided allele-specific copy
number, it would be straightforward to provide measures of sensitivity, specificity and false
positive rates for conliga and QDNAseq. However, conliga and QDNAseq produce relative
copy number calls. A simple alternative to provide a similarity metric between copy number
profiles is to report the Pearson correlation between conliga’s RCN and ASCAT’s TCN and
QDNAseq’s RCN and ASCAT’s TCN for each sample.
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Another issue is that calls are made at different genomic regions; ASCAT provides calls
in contiguous genomic regions, whereas conliga makes calls at FAST-SeqS loci and QDNAseq
provides calls in 15 Kbp genomic bins. Indeed, in some cases conliga makes calls which do
not fall in a region called by ASCAT or the corresponding QDNAseq bin was filtered by
QDNAseq’s applyFilters function. Table 3.2 shows the number of FAST-SeqS loci that do
not have a corresponding ASCAT or QDNAseq call for each OAC sample. For the purposes
of comparing profiles, I chose to use the overlapping FAST-SeqS loci with ASCAT calls for
computing the Pearson correlation between conliga and ASCAT. For computing the Pearson
correlation between QDNAseq and ASCAT, I used the overlapping 15 Kbp bins with ASCAT
calls. In this case, there might be multiple ASCAT calls within a given 15 Kbp bin. In
such cases, I used the length-weighted mean of ASCAT’s overlapping TCN values with the
QDNAseq bin to calculate the Pearson correlation.

Sample ASCAT QDNAseq

OAC1 6 274
OAC2 9 274
OAC3 10 274
OAC4 3 274
OAC5 14 274
OAC6 5 274
OAC7 6 274
OAC8 2 274
OAC9 12 274
OAC10 4 274
OAC11 3 274

Table 3.2 The number of FAST-SeqS loci without a corresponding copy number call in
ASCAT and QDNAseq (out of a total of 11,854 loci in chromosomes 1-22 in each sample).

Figure 3.2B and table 3.3 show the Pearson correlation coefficients for each OAC sample.
We see that conliga appears to have similar performance to QDNAseq with a median Pearson
correlation of 0.95 (IQR: 0.92-0.96) between conliga and ASCAT compared with 0.98 (IQR:
0.93-0.99) between QDNAseq and ASCAT. Indeed, this analysis is biased in favour of
QDNAseq given that the LC WGS reads were downsampled from the HC WGS reads used
by ASCAT. There is a strong relationship between the Pearson correlation of both methods.
We see from figure 3.3A that samples with a low value for ASCAT’s goodness-of-fit have
a lower correlation with conliga and QDNAseq. Indeed, these samples also have a lower
inferred tumour purity (figure 3.3B). Together, these results suggest that ASCAT’s solution
may be less reliable for these samples or that conliga and QDNAseq have lower performance
for lower tumour purity samples or a combination of both factors.
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Sample conliga/ASCAT QDNAseq/ASCAT conliga/QDNAseq

OAC1 0.945 0.985 0.953
OAC2 0.944 0.992 0.943
OAC3 0.961 0.993 0.939
OAC4 0.947 0.980 0.956
OAC5 0.949 0.952 0.956
OAC6 0.959 0.992 0.964
OAC7 0.889 0.916 0.921
OAC8 0.961 0.987 0.967
OAC9 0.959 0.980 0.958
OAC10 0.015 0.142 0.480
OAC11 0.820 0.849 0.818

Table 3.3 Pearson correlation coefficients between copy number calls obtained from con-
liga, QDNAseq and ASCAT. conliga/ASCAT represents the Pearson correlation between
the overlapping ASCAT TCN calls with and conliga’s RCN calls at FAST-SeqS loci. QD-
NAseq/ASCAT represents the Pearson correlation coefficient between ASCAT’s length-
weighted TCN calls with QDNAseq 15 Kbp calls. conliga/QDNAseq represents the Pearson
correlation coefficient between conliga’s RCN calls and QDNAseq’s RCN calls.

To explore how much information is retained by sampling the genome at FAST-SeqS loci
rather than sequencing the whole genome, we can compare the ASCAT calls at FAST-SeqS
loci to the full set of genomic segments called by ASCAT. Figures 3.4A and C show that by
sampling the genome at FAST-SeqS loci, high resolution SCNA information is maintained in
ASCAT calls and the overall profile is similar.

By visually inspecting the profiles generated by QDNAseq (figures 3.4B) and conliga
(figures 3.4D) we see that both provide similar profiles. This sample has a complex SCNA
profile which both methods are able to recapitulate. For example, chromosome arms 1q, 5p,
8p, 8q and 13q show a high number of SCNA events which can be seen in the outputs of all
methods.

For one sample (OAC10), conliga’s calls more strongly correlate with QDNAseq’s calls
than either conliga’s or QDNAseq’s calls correlate with ASCAT (table 3.3). This might
suggest that ASCAT’s solution is incorrect. Inspection of the copy number profiles for this
sample obtained by the three methods (not shown), suggest that the sample may have
purity lower than that inferred by ASCAT (0.25) with indication of gains of all or part of
chromosome 6, 8, 18 and a gain of 3p which were not called by ASCAT.

In this section, I have shown that for the purposes of obtaining an overall genome-wide
RCN profile, conliga provides a similar level of performance to QDNAseq.
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Figure 3.3 Pearson correlation coefficients compared with ASCAT’s goodness-of-fit and tumour
purity. A: ASCAT’s goodness-of-fit compared with the Pearson correlation coefficients. B:
The relationship between ASCAT’s goodness-of-fit to ASCAT’s inferred tumour purity.

3.2.4 Comparing RCN calls at each FAST-SeqS locus across samples

Now, rather than comparing copy number profiles, we can compare RCN calls at each
FAST-SeqS locus between methods across the 11 samples. In order to do so, it is necessary to
convert ASCAT’s calls to RCN (see section 3.5.5). Figure 3.5A shows ASCAT’s RCN values
plotted against those obtained from conliga and QDNAseq. We see that RCN estimates
are strongly correlated with ASCAT RCN calls; the Pearson correlation coefficient between
ASCAT’s RCN and conliga’s RCN is 0.953 compared to 0.987 between ASCAT and QDNAseq.
Figure 3.5B shows very similar residual distributions for both methods. Figure 3.5C shows
that at short copy number segments, conliga and QDNAseq have greater error in their
estimations (compared with ASCAT). As expected, as the copy number segment length
increases conliga and QDNAseq see more accurate RCN estimates.
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Figure 3.4 SCNA profiles for sample OAC2 obtained by ASCAT, QDNAseq and conliga in
chromosomes 1-22. A: ASCAT total copy number calls for all copy number segments called
by ASCAT. B: QDNAseq RCN calls for 15 Kbp bins. C: ASCAT TCN calls that intersect
with FAST-SeqS loci. D: conliga RCN calls at FAST-SeqS loci.

3.2.5 Exploring performance at recurrently amplified and deleted genes

Several genes are recurrently amplified and deleted in OAC [219, 229, 211, 221]. Detecting the
copy number status of these genes is useful from a clinical perspective and for basic research
purposes. Since FAST-SeqS samples the genome at LINE1 elements, we might expect conliga
to perform poorly in detecting and quantifying focal amplifications and deletions at the gene
level of resolution. In this section, I explore conliga’s performance in quantifying the RCN
for a set of genes and compare its performance to QDNAseq which uses reads across the
whole genome. Section 3.5.5 describes how the RCN was quantified in various ways at the
gene level for each of the three methods.

I selected recurrently amplified and deleted genes that were described in Dulak et al. and
Ross-Innes et al. [219, 211]. Table 3.4 lists the genes that were selected from the literature
that were used in this analysis. These genes include tumour suppressor genes such as TP53,
CDK2NA and FHIT and also recurrently amplified oncogenes. Indeed, as we discussed in
section 3.1.8, amplifications involving some of these genes have therapeutic and prognostic
relevance.
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Figure 3.5 Relative copy number comparison between methods across the 11 OAC samples
(compared at the intersection between ASCAT’s segments, QDNAseq’s bins and FAST-
SeqS loci, n=127,310). A: ASCAT’s converted RCN against conliga’s RCN calls (top) and
QDNAseq’s RCN calls (bottom). B: The distribution of differences between ASCAT’s
converted RCN calls and conliga’s and QDNAseq’s RCN calls; ASCAT RCN minus conliga
RCN (top) and ASCAT RCN minus QDNAseq RCN (bottom). C: Comparing the length of
ASCAT’s copy number segment length against the difference in RCN between ASCAT and
conliga (top) and ASCAT and QDNAseq (bottom).

One important factor that affects conliga’s ability to detect SCNAs involving genes is
the proximity of the FAST-SeqS loci to the genes of interest. Figure 3.6A shows a graphical
representation of the genomic distance of neighbouring FAST-SeqS loci to the 5’ and 3’ end of
the genes. Interestingly, 13 out of the 36 genes have FAST-SeqS loci within them, presumably
within intronic regions. Some of the tumour suppressors genes have multiple FAST-SeqS
loci within them (as many as 15 in PTPRD). It is not only tumour suppressors that contain
FAST-SeqS loci, CDK6 (a cell cycle regulator) and MET (which encodes a tyrosine kinase
receptor) both contain a FAST-SeqS locus. Indeed, these genes are among those that have
potential therapeutic relevance [152]. Note that I have used the filtered FAST-SeqS loci
(which had a non-zero count in all control samples) so there may be additional loci that fall
within these genes and others. However, since these loci were not used for the inference of
RCN profiles, I did not include them in this analysis.

The remaining 23 genes out of 36 do not contain FAST-SeqS loci but rather are flanked
by them. If either (or both) the loci that flank these genes show evidence of amplification
or deletion, we may believe that the copy number of the gene has been altered (i.e. that
either of the loci have sampled the copy number segment involving the gene). Naturally, if an
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Gene Chr Start End Status Source

ARID1A chr1 26696033 26782104 del D
MCL1 chr1 150574551 150579738 amp D
PARD3B chr2 204545793 205620162 del D
FHIT chr3 59749310 61251459 del D; R
PRKCI chr3 170222365 170305981 amp D; R
CCSER1 chr4 90127535 91601913 del D
PDE4D chr5 58969038 60522120 del D; R
VEGFA chr6 43770184 43786487 amp D; R
MYB chr6 135181315 135219173 amp D; R
PARK2 chr6 161347420 162727771 del D; R
EGFR chr7 55019021 55256620 amp D
CDK6 chr7 92604921 92836594 amp D
MET chr7 116672390 116798386 amp D
EPHB6 chr7 142855061 142871094 amp D
GATA4 chr8 11676959 11760002 amp D; R
MYC chr8 127735434 127741434 amp D
PTPRD chr9 8314246 10612723 del D; R
CDKN2A chr9 21967753 21995301 del D; R
FGFR2 chr10 121478334 121598458 amp D
CCND1 chr11 69641087 69654474 amp D; R
FGF19 chr11 69698232 69704642 amp R
FGF4 chr11 69771016 69775403 amp R
FGF3 chr11 69810224 69819024 amp R
ATM chr11 108222484 108369102 del D
KRAS chr12 25204789 25250936 amp D
MDM2 chr12 68808172 68850686 amp D
KLF5 chr13 73054976 73077542 amp R
RBFOX1 chr16 6019094 7713338 del R
WWOX chr16 78099413 79212667 del D; R
TP53 chr17 7661779 7687550 del D
ERBB2 chr17 39687914 39730426 amp D
GATA6 chr18 22169443 22202528 amp D
SMAD4 chr18 51028394 51085045 del D
CCNE1 chr19 29811898 29824308 amp D
MACROD2 chr20 13995369 16053197 del D
RUNX1 chr21 34787801 36004667 del D

Table 3.4 Recurrently amplified and deleted genes in OAC that were selected from the
literature. The gene name supplied is the HGNC symbol. The coordinates given are those for
the GRCh38 reference genome. Status defines the recurrent status of the gene in OAC; amp
represents recurrently amplified and del represents recurrently deleted. Source represents the
literature source; D represents Dulak et al. [219] and R represents Ross-Innes et al. [211].
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Figure 3.6 Summarising conliga’s and QDNAseq’s utility in determining the RCN for recur-
rently amplified and deleted genes in OAC. A: The number of loci within currently deleted
and amplified genes or the distance of flanking FAST-SeqS loci to the 3’ and 5’ ends of the
genes (green: recurrently amplified genes, blue: recurrently deleted genes). B: The weighted
mean RCN for each gene in each sample (396 points); top: ASCAT vs conliga, bottom:
ASCAT vs QDNAseq, green: recurrently amplified genes, blue: recurrently deleted genes. C:
The minimum RCN associated with each recurrently deleted gene for each sample. The colour
represents the length of the copy number segment with the minimum TCN associated with
the gene as determined by ASCAT. D: The maximum RCN associated with each recurrently
amplified gene for each sample. The colour represents the length of the copy number segment
with the maximum TCN associated with the gene as determined by ASCAT.
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alteration occurs between the two flanking loci, conliga will not be able to detect the gene level
alteration. Indeed, the probability of detecting a copy number alteration that affects a gene
will likely be inversely correlated with the genomic distance of the flanking FAST-SeqS loci.
The majority of the 23 genes have flanking loci that are ≤ 1 Mbp of the 5’ and 3’ end of the
gene. CCND1, FGF3, FGF4 and FGF19 have the greatest mean genomic distance to flanking
FAST-SeqS loci. However, these four genes occur in close proximity to each other within
chromosome 11. ERBB2 (also called HER2 ) encodes a receptor tyrosine kinase that has
important clinical relevance in OAC and other cancers (including breast, ovarian, endometrial
and gastric) [152, 80]. Trastuzumab, which is a monoclonal antibody that targets HER2,
can be used to treat patients with OAC that overexpress ERBB2/HER2 [152]. FAST-SeqS
loci fall approximately 567 Kbp and 1.9 Mbp from the 3’ and 5’ end of ERBB2 respectively.
Other genes that encode receptor tyrosine kinases such as FGFR2, EGFR and KRAS have
FAST-SeqS loci in relatively close proximity. Therefore we may deduce that amplifications
which include these genes have greater probability of being detected compared with ERBB2,
for example.

Figure 3.6B shows the weighted mean RCN calls obtained for each gene via the three
methods in each of the 11 OAC samples (see section 3.5.5 for details of how this was
calculated). For conliga and QDNAseq, we see that recurrently amplified and deleted genes
show evidence of amplification and deletion (respectively) across the 11 samples. While
there is clear concordance between the weighted mean RCN calls of ASCAT and conliga,
QDNAseq shows greater concordance with ASCAT’s weighted mean RCN values. For highly
amplified genes, the associated weighted mean RCN from conliga occasionally falls below
that of ASCAT. This may be due to various reasons, including at least one of the following:

1. The flanking FAST-SeqS loci do not fall within a copy number segment affecting the
gene.

2. One of the flanking loci fall within the copy number segment and the other does not.
As such, the weighted mean RCN will be brought down by the locus which does not.

3. There is insufficient evidence (perhaps the sample has insufficient total reads or the
locus or loci receive relative few reads) for the HMM to call a change in copy number
state.

4. There may be sufficient evidence to call a change in state. However, since conliga
clusters loci together into copy number states, there may be insufficient statistical
strength for a separate copy number state with very few loci (or perhaps only one locus)
belonging to it. Therefore, several loci with similar copy numbers may be clustered
into a single copy number state. In some cases, this may lead to focal amplifications
being underestimated.
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5. The indirect method was used to summarise the RCN and this may lead to underesti-
mating the true RCN (this was discussed in section 2.8).

Figure 3.6C and D explore the gene level RCN values in greater detail. Figure 3.6C
explores the minimum RCN value associated with the recurrently deleted genes. This value
may be of interest because a focal deletion within a tumour suppressor gene may render
it inactive. We see that conliga and QDNAseq often fail to detect or tend to overestimate
the RCN of short deletions. For conliga, the reasons for this are similar to those described
above. In some cases, it appears that the focal deletion was sampled by FAST-SeqS loci;
by exploring the CI of the loci associated with the genes, we see that conliga places some
probability on a lower RCN value. In a minority of cases, conliga is able to detect intra-gene
deletions using the FAST-SeqS loci that fall within the genes (Figure 3.7A). This suggests
that, as long as the copy number segment is sampled by a FAST-SeqS amplicon, increasing
the proportion of correct focal deletions or amplifications could be achieved by increasing
the total number of reads per sample or reducing the technical variation of the protocol.
QDNAseq may miss or underestimate the minimum RCN for various reasons. One reason
could be that a copy number alteration was not detected by the segmentation algorithm.
Another reason could be that the focal deletion may cover a portion and not the entire 15
Kbp bin. By binning the genome, the associated RCN may be smoothed (and overestimated
or underestimated) via an averaging effect.

Figure 3.6D shows the maximum RCN value associated with recurrently amplified genes.
In two cases, we see that highly focal amplifications in sample OAC5 involving MYC and
ERBB2 were missed by conliga. By exploring those regions, we see that these events occur
between FAST-SeqS loci and were not sampled (see figure 3.7E and 3.7F). By including
the CIs, we see that in some cases, conliga places some probability on the genes having a
higher maximum RCN (see for example GATA4 in figure 3.7G). Some focal amplifications are
accurately quantified (e.g. EGFR in figure 3.7H, albeit clustered into a single copy number
state). QDNAseq tends to more accurately quantify the focal amplifications. This is in part
due to it using whole genome data and therefore every copy number segment is sampled.
Additionally, QDNAseq is not restricted to perform a global copy number clustering of the
bins as conliga does with FAST-SeqS loci. As we discussed above, this clustering can lead to
over or underestimation of the RCN for particular loci. We will see that this less restricted
approach has its disadvantages when we explore each method’s performance in detecting
RCN profiles in low purity samples (section 3.2.6).

In summary, in this section I have shown that conliga can provide evidence of focal
alterations affecting recurrently amplified and deleted genes in OAC. The ability for conliga
to accurately identify and quantify these alterations depends on whether FAST-SeqS loci
fall within the copy number segments affecting the genes. In some cases, conliga can detect
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Figure 3.7 Each panel (A-H) shows a comparison between the RCN profile inferred by
conliga (top) with the TCN profile inferred by ASCAT (bottom) for a specific region. Black
points represent the MAP RCN inferred by conliga. The vertical grey lines indicate the
90% credible interval of the loci RCN. The coloured points show the scaled count with the
colour representing the inferred value for log(m̂). The pink regions correspond to the genomic
coordinates of the genes of interest. Intra-gene deletions inferred by conliga and ASCAT of:
A-B: FHIT, C: PARK2 and D: MACROD2. Focal amplification of regions including genes
inferred by ASCAT but not by conliga due to the altered region not including FAST-SeqS
loci, E: MYC and F: ERBB2. G: An alteration in the vicinity of GATA4 is inferred by
ASCAT and conliga. A focal amplification including GATA4 is inferred by ASCAT but
not shown by conliga’s MAP RCN. However, the 90% credible interval indicates that there
is some probability of a focal amplification. H: Amplification involving EGFR inferred by
ASCAT and conliga.
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intra-gene alterations. In other cases, focal alterations can be missed due to the events
occurring between FAST-SeqS loci. If the copy number segment is sampled, more accurate
quantification might be achieved by increasing the number of reads per sample or decreasing
the technical variation in the protocol. Clearly, there are limitations in using FAST-SeqS data
to detect gene-level alterations. Including the targeted sequencing of a gene panel alongside
FAST-SeqS may be useful, particularly for genes which do not have FAST-SeqS loci in close
proximity.

3.2.6 Exploring performance in low purity samples

Non-invasive sampling of tumour DNA using cytology-retrieval devices or cfDNA from liquid
biopsies will typically result in low purity samples; that is, samples with low tumour to
normal DNA ratio [102, 209]. Of course, sampling tissue or cfDNA from an individual without
disease, should result in a sample free of DNA with large-scale structural variation. Even
samples derived from direct tumour biopsies can have widely varying tumour purities [103].
As tumour purity decreases, the relative copy number signal to noise ratio decreases. This is
the case for WGS and FAST-SeqS data and, at some point, distinguishing between noise and
signal is challenging. In this section, I explore conliga’s performance in detecting aberrant
copy number profiles in samples with low tumour content and compare it to QDNAseq.

I generated in silico FAST-SeqS and LC WGS samples with varying tumour purity by
mixing sequencing reads from OAC and normal samples. In silico FAST-SeqS and LC
WGS samples were generated by using two million and nine million reads respectively (see
section 3.5.1).

Figure 3.8A shows the performance of conliga and QDNAseq in calling RCN profiles for
various dilutions of sample OAC3. Prior to performing insilico dilution, this sample had a
tumour purity of 60% (as inferred by ASCAT). At 30% purity, conliga and QDNAseq are
able to reproduce a similar copy number profile to that called by ASCAT on the undiluted
sample. We see that QDNAseq fails to detect some of the SCNAs; it does not detect any
changes in chromosome 13q and fails to detect a loss towards the 3’ end of 1p. At 5% purity,
QDNAseq appearingly fails to detect any intra-chromosomal SCNAs other than the focal
amplifications involving chromosome 12, whereas conliga shows evidence of chromosome arm,
sub-chromosomal arm (e.g. chr5q) and focal alterations (chromosome 12). At 2% purity,
conliga is able to detect the more prominent chromosome arm gains (1q, 4q, 5p, 12p and
12q). The focal amplification on chromosome 12 is detected as low as 0.5% purity whereas
QDNAseq fails to detect it below 1%.

It can be difficult to distinguish between signal and noise generated by the RCN segmen-
tation in the profiles produced by QDNAseq. This problem is more clearly seen in figure 3.9
showing the dilution of sample OAC9. Since conliga globally clusters the loci into copy
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Figure 3.8 Determining the limit of SCNA detection in low tumour purity samples: comparing
the performance of conliga and QDNAseq. A: left column: RCN calls using the MAP state
method provided by conliga at various dilutions of sample OAC3, compared to ASCAT’s
converted RCN profile (top left). Copy number states are coloured with a gradient (light
green to purple), highlighting regions with differing SCNAs. Right column: RCN calls by
QDNAseq at various dilutions of sample OAC3, compared to ASCAT’s converted RCN profile
(top right). B: The number of copy number states detected by conliga (using the MAP state
method) in each of eight OAC samples at differing purity levels. The limit of detection is
determined by the lowest purity level in which more than one copy number state is detected.



118 Application to oesophageal adenocarcinoma and precursor lesions

number states, we can use the MAP state summarisation method to harness the hidden
state assignments. This means we can discriminate between SCNAs whereas we are unable
to do this using tools such as QDNAseq. This feature is particularly useful in a detection
setting, in which we wish to distinguish between normal samples and those with aberrant
copy number profiles.

Figure 3.9 Segmentation noise in QDNAseq RCN profiles: in silico dilution of sample OAC9.
A: left column: RCN calls using the MAP state method provided by conliga at various
dilutions of sample OAC9, compared to ASCAT’s converted RCN profile (top left). Copy
number states are coloured with a gradient (light green to purple), highlighting regions with
differing SCNAs. Right column: RCN calls by QDNAseq at various dilutions of sample
OAC9, compared to ASCAT’s converted RCN profile (top right).

In figure 3.8B, we see that conliga is able to detect SCNAs at 3% purity in all the eight
diluted samples. SCNAs were detected in five out of the eight samples at 2% purity and one
at 0.5% (OAC3; figure 3.8A). The limit of detection is dependent on a number of factors.
These include the amplitude and lengths of the SCNAs present in a sample. By sharing
and propagating statistical strength to neighbouring loci via the Markov chain, long SCNAs
involving chromosome arms can be detected as low as 2-3% purity. This is particularly
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true for those with several gains. Increased sensitivity is achieved by sharing the statistical
strength of all FAST-SeqS loci to infer global clusters of copy number states. Highly focal
amplifications, particularly those involving FAST-SeqS loci with a bias towards having a
high number of reads align to them (high m̂ value), can be detected at approximately 0.5%
purity. In addition, the limit of detection depends on the total number of reads per sample
and the technical variability (which is sample-specific). Increasing the total number of reads
beyond two million and reducing the technical variability in the protocol would assist in
further improving the limit of detection.

Figures 3.8A, 3.8B and 3.9, also show that as purity reduces, fewer copy number states are
inferred and they are seemingly merged together. As tumour purity reduces, the scaled count
distributions centred around each true copy number state will increasingly overlap. At some
purity level, there will be insufficient statistical strength for conliga to discern every true copy
number state. Indeed, we have already seen this in high purity samples in which multiple
focal amplifications (involving few loci) are merged together into a single copy number state.
This highlights an important feature of Bayesian nonparametric models; there is an inherent
preference for simpler models, often referred to as Bayesian Occam’s Razor [230]. In our case,
a simpler model refers to a solution with fewer copy number states. Hence, we should keep
in mind that conliga’s inferred number of states may not always map directly to the true
number of copy states in the sample. However, this inbuilt Occam’s Razor is what may allow
us to distinguish normal samples from those that contain evidence of SCNAs.

The results presented in this section suggest that conliga is more sensitive than QDNAseq
in detecting and discriminating between samples with normal and aberrant copy number
profiles. This is despite FAST-SeqS data being technically noisier than LC WGS and with
conliga using 4.5 fold fewer reads than QDNAseq. Moreover, these results suggest FAST-
SeqS and conliga could have useful clinical application in the early detection of OAC (and
potentially its precursor lesions). Indeed, its use combined with a non-invasive cytology-
retrieval device such as the Cytosponge is promising. Using the Cytosponge, Weaver et al.
showed that TP53 mutations were detected in Barrett’s (HGD) samples with allele fractions
ranging from 0.6% to 35.7% [209]. 12 of the 22 samples had allele fractions above 2% but 7
had allele fractions around 0.06-2% (and 3 had no detectable mutations). This range of allele
fractions and the results of the dilution experiment imply that the total number of reads
may need to be increased to more reliably detect SCNAs in these samples.
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3.3 Investigating SCNA profiles of OAC, GAC and BO sam-
ples

In this section, we briefly explore examples of SCNAs inferred across several samples from
the OAC, GAC and BO cohorts. Tables 3.5 and 3.6 provide information about the samples
within each cohort for GAC and BO samples respectively. Once again, we see that the total
number of reads can vary considerably between samples. However, all samples had greater
than 350,000 reads and were included in the analysis.

Sample Seq. ID Reads Counts Counts (pf)

GAC1 SLX-9282.FastSeqA 589050 292499 248532
GAC2 SLX-9282.FastSeqB 1479548 849084 740760
GAC3 SLX-9282.FastSeqC 1874367 1030135 898913
GAC4 SLX-9282.FastSeqD 3914819 2174418 1903357
GAC5 SLX-9282.FastSeqE 1503187 779514 643384
GAC6 SLX-9282.FastSeqF 1391575 741848 642406
GAC7 SLX-9282.FastSeqG 2935085 1549146 1310065
GAC8 SLX-9282.FastSeqH 1855764 1048785 934323

Table 3.5 Gastric adenocarcinoma cohort: FAST-SeqS sample information. ‘Reads’ represents
the total number of reads assigned to each sample demultiplexing the reads from the sequencing
lanes. ‘Counts’ represents the number of counts after each sample’s FASTQ file was processed
using the pipeline described in section 2.4. ‘Counts (pf)’ shows the number of counts that
remained after filtering loci with a zero count in any of a set of control samples (see section 3.5
for details).

Figure 3.10 shows some examples of SCNA profiles within particular chromosomes in
several OAC, GAC and BO samples, harbouring alterations to several cancer genes. For
example, figure 3.10A shows the amplification of PRKCI (a serine/threonine protein kinase)
and the focal deletion of FHIT. PRKCI expression is implicated in the resistance to apoptosis,
uncontrolled proliferation and metastasis and is a potential target for therapy in many cancer
types [231]. We see several examples of tyrosine kinase receptor amplification; EGFR in
OAC (figure 3.10B), MET in GAC (figure 3.10F) and ERBB2 in BO (figure 3.10K). These
receptors have potential as therapeutic targets. Interestingly, EPHB6, which also encodes
for a tyrosine kinase receptor, is deleted in GAC8 (figure 3.10F). It has been noted that
the loss of EPHB6 in colorectal cancer contributes to metastasis and could play a similar
role in OAC [232]. As, we have discussed previously, TP53 plays a critical role as a tumour
suppressor and is often deleted in cancer and pre-maligancies. Indeed, we see evidence of
its deletion in an OAC and BO samples (figures 3.10D and 3.10K, respectively). We see
SCNAs which may dysregulate the cell cycle pathway in a number of samples. For example,
we see amplifications of CDK6, CCND1 and CCNE1 in GAC samples in figures 3.10F, 3.10G
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Sample Seq. ID Reads Counts Counts (pf)

BO1 SLX-9283.FastSeqA 1748991 835963 742765
BO2 SLX-9283.FastSeqB 765189 404734 357402
BO3 SLX-9283.FastSeqC 1517421 773882 687025
BO4 SLX-9283.FastSeqD 1178002 590798 526001
BO5 SLX-9283.FastSeqE 2452075 1167884 1001412
BO6 SLX-9283.FastSeqF 1874540 933139 829790
BO7 SLX-9283.FastSeqH 2322558 1224522 1133421
BO8 SLX-9283.FastSeqI 977646 543048 484150
BO9 SLX-9279.FastSeqA 860807 297284 244491
BO10 SLX-9279.FastSeqB 750576 271747 229469
BO11 SLX-9279.FastSeqC 916640 347410 286348
BO12 SLX-9279.FastSeqD 1008211 362594 298655
BO13 SLX-9279.FastSeqE 1004855 323423 260074
BO14 SLX-9279.FastSeqF 874117 320774 269500
BO15 SLX-9279.FastSeqG 727422 257321 214561
BO16 SLX-9279.FastSeqH 976859 283664 234321

Table 3.6 Barrett’s oesophagus cohort: FAST-SeqS sample information. ‘Reads’ represents the
total number of reads assigned to each sample demultiplexing the reads from the sequencing
lanes. ‘Counts’ represents the number of counts after each sample’s FASTQ file was processed
using the pipeline described in section 2.4. ‘Counts (pf)’ shows the number of counts that
remained after filtering loci with a zero count in any of a set of control samples (see section 3.5
for details).

and 3.10H respectively. As discussed, CDK6 is a potential target for therapy. Chromosome
9p (which includes CDK2NA and PTPRD) shows evidence of deletion in a BO sample
(figure 3.10J). CDK2NA acts as a cell cycle regulator and tumour suppressor gene which is
recurrently deleted in many cancer types [233]. We see evidence amplifications of GATA4,
GATA6 and MYC which are transcription factors commonly amplified in OAC (figures 3.10C,
3.10L and 3.10C respectively). Lastly, in figure 3.10G, we see deletion of ATM which is a
mediator of DNA damage response to double strand breaks and is frequently mutated in
several cancer types [234]. Its deletion suggests ATR inhibitors could be used as a targeted
therapy [235]. Other deletions including tumour suppressors are observed such as SMAD4
(figure 3.10L) and PARK2 (figure 3.10E).

3.3.1 Average SCNA profiles for patient cohorts

The low-cost of FAST-SeqS could enable large cohorts of patients to be profiled for SCNAs.
This could help identify recurrently amplified and deleted genes that are associated with
response to therapy, for example. In figure 3.11, we see the mean RCN profiles for the cohorts
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Figure 3.10 SCNA profiles inferred by conliga in several chromosomes for a selection of OAC,
GAC and BO samples. Recurrently amplified and deleted genes in OAC are highlighted.
Black points represent the MAP RCN inferred by conliga. The coloured points show the
scaled count with the colour representing the inferred value for log m̂. The grey regions of
each chromosome indicate the p arm while the white regions indicate the q arm.

of OAC, GAC and BO patients. These highlight amplifications of EGFR, GATA4, MDM2
and MYC along with deletions of tumour suppressor genes, e.g. FHIT, RUNX1, SMAD4
and TP53. MDM2 inhibits p53 and its amplification may reflect another mechanism of
p53 suppression (other than TP53 mutation or loss). Here we see that similar regions are
amplified or deleted between OAC and GAC. The mean RCN profile for OAC is similar to
that seen in figure 2B of Ross-Innes et al. [211]. As expected, we see less prominent SCNAs
in the BO cohorts.
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Figure 3.11 Mean inferred RCN profiles for patient cohorts (oesophageal adenocarcinoma,
gastric adenocarcinoma and Barrett’s oesophagus). Top: oesophageal adenocarcinoma (n=11),
Middle: gastric adenocarcinoma (n=8), Bottom: Barrett’s oesophagus (n=16). The location
of the 36 genes that were selected as recurrently amplified or deleted in OAC are highlighted
for each cohort.

3.4 Summary

In this chapter, I introduced oesophageal cancer; covering its histological types, epidemiology
and its significance as a global disease. While the incidence of oesophageal squamous cell
carcinoma is falling around the world overall, the rapid rise in incidence of oesophageal
adenocarcinoma in the West is concerning. Oesophageal cancer has a very poor prognosis,
owing to symptoms occurring late in the development of disease. This means that patients
are often diagnosed with incurable metastatic disease. Treatments are much more successful
in the early stages of disease and screening and surveillance programmes are necessary to
improve prognostic outcomes. However, the current costs and invasive means of current
screening and surveillance modalities mean they cannot be applied at scale. This means
that screening and surveillance is restricted to those deemed to be at high-risk of developing
disease. However, this process is suboptimal and the cost-effectiveness is debated. New,
low-cost and noninvasive technologies and biomarkers are required to more successfully
diagnose patients with early and curable disease. Somatic copy number alterations have been
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shown to accumulate in the progression to oesophageal adenocarcinoma and are promising
biomarkers for early disease detection and patient stratification.

The use of FAST-SeqS has potential for widespread clinical use and SCNA profiling of
large patient cohorts, owing to its low-cost and simple protocol. By comparison to ASCAT,
I have shown that FAST-SeqS and conliga show comparable performance to LC WGS and
QDNAseq at reduced cost and using fewer reads. In some cases, FAST-SeqS and conliga
are able to detect amplifications and deletions of recurrently amplified and deleted genes,
including relevant therapeutic targets. conliga appears to be more sensitive than QDNAseq
at low tumour purity and may be more suitable for diagnostic purposes.

3.5 Methods

This section is largely the same as the methods section described in Abujudeh et al. [105],
a preprint manuscript which I authored and is shared on bioRxiv. Since the methods were
very similar to those presented in this thesis, I reproduce them here.

3.5.1 Sample preparation and sequencing of samples

Sample preparation and sequencing of FAST-SeqS data

FAST-SeqS samples were prepared and sequenced as described in section 2.3.

Sample preparation and sequencing of HC WGS data

WGS library preparation and sequencing was performed as previously described by Secrier et
al. [221].

In silico generation of LC WGS data

For our purposes, LC WGS data was defined as nine million single-end 50 base pair reads
per sample because this was the type of data analysed in Scheinin et al. [225]. Samples are
typically multiplexed together and sequenced on a single Illumina sequencing lane. After
processing and alignment of the reads, we expect approximately 0.1X coverage of the genome
(as per analysis described in Scheinin et al.). I obtained LC WGS data by down-sampling
reads from HC WGS Binary Alignment Map (BAM) files in the following way:
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1. I selected a subset of the alignments, containing only reads sequenced on a single lane
(chosen to be the lane from the first read in the BAM file), and trimmed the reads and
Phred scores to the first 50 base pairs using a custom Bash script.

2. The resulting alignments were filtered (using samtools [236] version 0.1.18), excluding
those that were secondary alignments (-F 256) and including only those that were first
in a pair (-f 64) and output to a new BAM file.

3. This BAM file was down-sampled to 9 million reads/alignments using the Downsample-
Sam command from Picard tools (http://broadinstitute.github.io/picard, version 2.9.1)
using the "Chained" strategy.

4. The resulting BAM file was converted to FASTQ by SamToFastq (Picard tools).

5. The FASTQ file was aligned to GRCh38 (GenBank accession: GCA_000001405.15, no
alt analysis set) using BWA-backtrack (bwa samse and bwa aln, version 0.7.15-r1140),
which is more suitable for reads below 70 base pairs in length.

6. In the resulting BAM file, I removed PCR duplicates and removed alignments with
mapping quality below 37 as per the analysis undertaken by Scheinin et al. [225] using
samtools (version 0.1.18).

I performed these steps for 11 oesophageal samples and their matched normal samples
along with an additional four normal samples obtained from other patients (see Supplementary
Table 1 from Abujudeh et al. [105]). This resulted in greater than seven million primary
alignments per sample.

In silico generation of FAST-SeqS dilution series data

I performed an in silico dilution of FAST-SeqS data by mixing sequencing reads from control
samples with reads from OAC samples. Since the number of reads in the matched controls
were insufficient to create samples with two million reads, I created a pool of control reads
(in silico) which were used to dilute the OAC samples. This was done by sub-sampling
two million reads from 12 control samples (which were prepared and sequenced in the same
batch as the OAC samples). The total number of reads from these 12 control samples was
14,405,596. To obtain a pool of 2 million reads, I used the ‘sample’ command from seqtk
(https://github.com/lh3/seqtk, version: 1.2-r101) to sample a proportion (2/14.405596) of
each control sample’s reads and merged these together into a single FASTQ file. The reads
that were sub-sampled were removed from the control samples (using a custom python script)
to avoid using the same reads to fit m̂.

http://broadinstitute.github.io/picard
https://github.com/lh3/seqtk
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I mixed the pool of control reads with the OAC samples in varying proportions to achieve
a desired diluted tumour purity. The OAC samples did not have a tumour purity of 100%,
instead they were themselves a mixture of tumour and normal DNA. The purity of these
samples were determined by ASCAT-NGS (version 2.1) [224]. Based on ASCAT’s purity
value, I calculated the number of reads required from the OAC sample to achieve a desired
dilution and total number of reads. This was calculated as follows:

required tumour reads = round
(desired purity proportion · required total reads

ASCAT inferred purity proportion

)
(3.1)

Hence, the number of control reads required were:

required control reads = required total reads − required tumour reads (3.2)

I produced in silico dilution FASTQ files in the following way:

1. I used the ‘sample’ command from seqtk to sample the required number of tumour
reads from the OAC FAST-SeqS FASTQ file

2. I used the ‘sample’ command from seqtk to sample the required number of control
reads from the pooled control reads FASTQ file

3. I merged the sampled tumour and control reads into a single FASTQ file

I performed these steps for each OAC sample to create diluted samples with two million
total reads and the following purity values: 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.06, 0.05, 0.04,
0.03, 0.02, 0.01, 0.0075, 0.005, 0.0025 and 0. Here purity is defined as the proportion of
tumour reads in the sample. Of the 11 OAC samples, 8 (OAC1-7 and 9, see Supplementary
Table 1 Abujudeh et al. [105]) were of sufficient initial tumour purity to feasibly create all
the desired dilution levels.

In silico generation of LC WGS dilution series data

I produced in silico diluted LC WGS tumour samples by mixing reads from tumour and
matched normal LC WGS BAM files (previously downsampled and filtered as described
above). I first calculated the number of reads in the tumour BAM and normal BAM files
using samtools (samtools view -F 256 -c [BAM file]). Next, I calculated the number of
reads required using equations 3.1 and 3.2. Using the DownsampleSAM command (Picard
tools) and the ‘HighAccuracy’ strategy, I sampled the corresponding desired proportion
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of reads from the tumour BAM file and normal BAM file. I used samtools to merge the
resulting sampled tumour BAM file with the normal BAM file into a single file representing
the diluted sample. I aimed to obtain seven million filtered primary alignments per diluted
sample (as this is what we expect from nine million reads after alignment and filtering) and
dilution levels which matched the diluted FAST-SeqS samples. This was performed for 8
OAC samples and their matched normals (OAC1-7 and 9).

3.5.2 Analysis of copy number from FAST-SeqS data

conliga (version 0.1.0) [108] was used to analyse all FAST-SeqS samples in this study
(Supplementary Table 1 from Abujudeh et al. [105]) using R (version 3.2.3) [237] and
RcppAramdillo (version 0.6.500.4.0) [147]. Of the 15 OAC samples sequenced, four were
excluded due to their obtaining fewer than 350,000 reads. Two control samples were excluded
due to their inferred RCN profiles having two main hidden states incompatible with their
supposed ‘normal’ status. The values for the priors used and MCMC settings are stated in
the inference sections above. The samples used as a basis to filter loci and fit m̂ for each
experiment are listed in Supplementary Table 9 from Abujudeh et al. [105].

3.5.3 Analysis of copy number from HC WGS data

High coverage WGS samples were processed and aligned using BWA-MEM [238] (version
0.5.9) and TCN profiles and normal contamination estimates were provided by ASCAT-NGS
(version 2.1) using a pipeline previously described by Secrier et al. [221]. The only exception
to this was that the reads were aligned to GRCh38 (GenBank accession: GCA_000001405.15,
no alt analysis set) rather than GRCh37.

3.5.4 Analysis of copy number from LC WGS data

QDNAseq (version 1.6.1) was used to obtain relative copy number calls for all LC WGS data.
The bin size used was 15Kb as per the analysis performed in Scheinin et al. [225] for ∼ 0.1X
LC WGS. The bins were created using GRCh38 (BSgenome.Hsapiens.NCBI.GRCh38) and a
mappability file (bigWig format) for 50-mers was created for GRCh38 using the GEM library
(GEM-binaries-Linux-x86_64-core_i3-20130406-045632) https://sourceforge.net/projects/
gemlibrary/. 15 normal LC WGS samples (see Supplementary Table 1 from Abujudeh et
al. [105]), were used to run the applyFilters and iterateResiduals functions. 11 of these 15
samples correspond to the matched normals of the oesophageal samples (Supplementary
Table 1 from Abujudeh et al. [105]). I did not run the functions normalizeBins and
normalizeSegmentedBins which scale the read counts by the median value. This was not

https://sourceforge.net/projects/gemlibrary/
https://sourceforge.net/projects/gemlibrary/
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necessary and would make the comparison between ASCAT, QDNAseq and conliga results
more difficult to interpret.

3.5.5 Comparison of copy number calls between methods

ASCAT outputs TCN in contiguous genomic regions, QDNAseq outputs RCN in 15 Kb bins
across the genome and conliga outputs RCN values at specific FAST-SeqS loci. To make a
fair comparison between the tools, it was necessary to convert ASCAT’s TCN calls to RCN
for each sample as follows:

RCNi = (1 − normal) · TCNi + normal · 2
mean TCN (3.3)

Here, normal represents the estimated normal contamination value provided by ASCAT and
i represents a contiguous genomic region or a discrete locus or fragment. In the case of a
contiguous region, the mean TCN (or ploidy) was calculated as follows:

mean TCN =
∑

i (TCNi · lengthi · (1 − normal) + 2 · lengthi · normal)∑
i lengthi

(3.4)

and in the case of discrete loci or fragments:

mean TCN =
∑

i TCNi

L
· (1 − normal) + 2 · normal (3.5)

where L represents the total number of loci or fragments considered.

In figure 3.5A, B and C I compared the RCN values at the intersection of genomic loci
across ASCAT, QDNAseq and conliga. Since this intersection represented a subset of each
method’s genomic loci, the RCN values were rescaled considering only this subset. QDNAseq
and conliga RCN values were rescaled by the sample’s mean RCN of the considered loci.
ASCAT’s RCN was calculated using equations 3.3 and 3.5.

In figure 3.6B, I compared RCN values in genes of interest. Recurrently amplified and
deleted genes were obtained from Dulak et al. [219] and Ross-Innes et al. [211]. Here,
ASCAT’s RCN values were calculated using equations 3.3 and 3.4 using all called regions for
each sample. For each gene in each sample, the weighted mean of the relative copy number
(weighted by the length of the overlapping called region) was computed for ASCAT and
QDNAseq. This was calculated as follows:

RCNgene =
∑

i RCNi · li∑
i li

(3.6)

where li represents the length of the overlapping portion of the called region with the gene.
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For conliga, if loci occurred within the gene, the mean of the RCN values within the gene
was used, otherwise the loci directly upstream and downstream, i.e. either side, of the gene
were used and a mean value was taken.

In figure 3.6C, I compared the minimum RCN value associated with recurrently deleted
genes in OAC. Here, ASCAT’s RCN values were calculated using equations 3.3 and 3.4 using
all called regions for each sample. The minimum relative copy number of genomic regions
that overlapped the gene was reported. For conliga, if loci occurred within the gene, the
minimum RCN value was reported. Otherwise the minimum RCN of the flanking loci was
reported.

In figure 3.6D, I compared the minimum RCN value associated with recurrently deleted
genes in OAC. Here, ASCAT’s RCN values were calculated using equations 3.3 and 3.4 using
all called regions for each sample. The maximum relative copy number of genomic regions
that overlapped the gene was reported. For conliga, if loci occurred within the gene, the
maximum RCN value was reported. Otherwise the maximum RCN of the flanking loci was
reported.

Computing Pearson correlation

For each sample, the Pearson correlation coefficient between ASCAT and conliga was cal-
culated. I used ASCAT’s TCN and conliga RCN values at the intersection of genomic loci
between ASCAT and conliga. The median value of the sample’s correlation coefficients was
reported.

For each sample, the Pearson correlation coefficient between ASCAT and QDNAseq was
calculated. I used the intersection of QDNAseq bins with ASCAT copy number regions, using
the length-weighted mean of ASCAT’s overlapping TCN values.

When calculating the Pearson correlation for all calls across all samples, I used the
rescaled RCN value at the intersecting genomic loci between ASCAT, QDNAseq and conliga,
using the rescaled RCN values described above for figures 3.5A, B and C.

3.5.6 Data availability

The WGS and FAST-SeqS data can be found at the European Genome-phenome Archive
(EGA) under accession EGAD00001004289.





Chapter 4

Modifications to the primer design,
processing pipeline and conliga
model

The experiments that were conducted to produce the data presented in this chapter were
performed by Sarah Field of the Tavaré laboratory at the Cancer Research UK Cambridge
Institute. The rest of the work is my own.

4.1 Modifying the primer design for higher-throughput and
paired-end sequencing

The samples analysed in the previous chapters were sequenced by an Illumina MiSeq machine.
The MiSeq can sequence up to 25 million molecules per run. Since we wanted to achieve
approximately 2 million reads per sample, we multiplexed 11 samples on each run of the
machine. These data showed that the FAST-SeqS protocol has potential as a tool for copy
number quantification and detection. However, we needed to utilise the higher-throughput
instruments, such as the HiSeq 4000 and NovaSeq machines to decrease the cost per sample
and make it more cost-effective.

At the time of our decision, the HiSeq 4000 provided the most cost-effective means at our
disposal to scale up the FAST-SeqS protocol to more samples. The HiSeq 4000’s patterned
flow cell is comprised of 8 sequencing lanes and each lane can yield up to 350-400 million
paired-end reads at approximately double the cost of a MiSeq run. When the machine is run,
all lanes must be sequenced in the same mode. For example, if single-end 150 bp is required,
all 8 lanes must be run in that mode. By far the most common mode in the institute is
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paired-end 150 bp. In addition, the difference in cost between single-end and paired-end was
small. For these reasons, we chose to perform 150 bp paired-end sequencing rather than
single-end.

Utilising the HiSeq 4000 poses a number of challenges. The HiSeq, NextSeq and NovaSeq
machines are known to be less tolerant to low-diversity libraries (such as amplicon libraries)
when compared to the MiSeq. To compensate for this, we would likely need to increase the
proportion of PhiX spiked into our sequencing libraries to increase the diversity of the library.
This would decrease the cost-effectiveness by decreasing the number of FAST-SeqS molecules
we could sequence. In an attempt to mitigate this issue, I decided to modify the first round
PCR primers. I included UMIs on the forward and reverse primers and allowed the length of
the UMIs to vary (8 - 12 bp on either end). Including UMIs on both primers means that
read1 and read2 start with random sequences which allows the sequencer to calibrate itself.
Varying the length of the UMIs means that the low-diversity sequences (the L1 sequences)
within the amplicons are phased/shifted, such that they would start at different positions
within the forward and reverse reads. This meant that the complexity of the library would
be increased. I also included UMIs on both ends of the molecule for the purposes of single
cell FAST-SeqS experiments, which we discuss further in chapter 5.

Another issue was that I needed to increase the number of sample indices to enable more
samples to be sequenced on the same lane. To ensure sufficient complexity of our library, we
decided to spike in 20-30 % PhiX, meaning that we would sequence approximately 245 to 280
million FAST-SeqS molecules and 70 to 105 million PhiX molecules. Aiming for 2 million
molecules per sample would mean approximately 120 to 140 samples per lane. With the
new UMI design described above, it may be possible to reduce the amount of PhiX (perhaps
removing its use entirely) while maintaining good sequencing quality (though we have not
tested this). This would mean sequencing up to 175 samples on each lane.

It had been reported that free primer within the sequencing library can result in index
swapping on the flow cell [239–241]. This can result in molecules from one sample being
falsely assigned to another sample. It has been estimated that in some conditions, this can
result in as many as 10% of the indices swapping [239] and was reported to be a particular
problem for the machines that use the patterned flow cell technology, such as the HiSeq
3000/4000 and NovaSeq machines [240]. A more recent study by Macconaill et al. showed
index swapping frequencies of 0.29% for patterned flow cells and 0.1% on non-patterned
flow cells [241], suggesting index swapping is less severe than previously reported. With
this uncertainty in mind, I decided to move to a unique dual index (UDI) primer design
(figure 4.1) in which each sample has a unique index on either side of the molecule. These
indices are incorporated into the forward and reverse primers for the second round PCR
reaction. If an index swap occurs at one of the ends, we will be able to detect this and remove
the molecule from downstream analyses without falsely assigning it to another sample. For
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a false assignment to take place, the unlikely event of two swaps would need to occur at
either end of the molecule and both must switch to a unique combination identifying another
sample.

Figure 4.1 A diagram showing the composition of the FAST-SeqS amplicon sequencing
library incorporating modifications to the PCR1 and PCR2 primer sequences. Together,
the multicoloured bars represent a double-stranded amplicon produced by a FAST-SeqS
experiment. Each coloured bar represents a nucleotide sequence associated with different
elements of the amplicon. The beige section in the middle of the amplicon represents the
target LINE1 sequence. The lengths for each element of the amplicon is listed underneath.
The arrowed lines above and below the amplicon indicate the portion of the amplicon that is
sequenced in read1 and read2 respectively when performing 150 bp paired-end sequencing.
Since the LINE1 sequences vary in length, the resulting sequencing reads include varying
portions of the primers (Fwd/Rev), forward/reverse UPS and sample indices. A dotted line
indicates the uncertainty regarding the elements of the amplicon the reads contain.

The danger of introducing additional sample-specific bases (i.e. indices) is that it increases
the likelihood of sample-specific effects. During PCR, we might imagine that these unique
sequences could interact with the L1 sequences and they may do so in different ways depending
on the sequence context. This may lead to altered efficiency of loci amplification between
samples which would break an essential assumption of our model and analysis. In addition
to this, we may alter the chance of interactions and hybridisation between the primers
(primer-dimer) during PCR. These interactions may vary between samples and result in
modified amplification dynamics in the second round PCR. While this may turn out to be an
issue, there might be ways to minimise the interactions by choosing index combinations that
minimise primer-dimers and interactions with the L1 sequences. In addition, we may be able
to model and correct the consequences of such iterations. While I started to design a way
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to choose UDI combinations, in the end I decided to use well-tested UDI combinations that
should minimise primer-dimers. As such, I used the NEBNext UDI sequences which provide
96 unique combinations and hence allow 96 samples to be multiplexed on a single sequencing
lane.

Another issue is the use of custom sequencing primers. It is common practice for
independent sequencing experiments to be run on each lane of the HiSeq 4000 (and other
multi-lane instruments). This is in contrast to the MiSeq which has only one lane, meaning
only one sequencing experiment can be run on the machine at any time. The use of custom
sequencing primers is more complicated on the HiSeq 4000 because they may interfere
with other sequencing lanes. Unfortunately, the HiSeq 4000 is designed such that custom
read2 sequencing primers must be delivered to all lanes on the flow cell while custom
read1 sequencing primers can be fed to each lane separately. In addition, the hybridisation
temperatures of the sequencing primers vary between Illumina machines with the HiSeq 4000
60 ◦C and the MiSeq 65 ◦C [242, 243]. This meant that the custom sequencing primers would
need to be modified to work with the HiSeq 4000. To avoid this, I decided to replace the
Universal Primer Sequence with Illumina’s TruSeq adapter sequence in the same way as Belic
et al. [106]. This meant that custom sequencing primers would not be necessary.

To summarise, I updated the primers and sequencing in the following ways:

• Paired-end sequencing instead of single-end sequencing

• UMIs of varying lengths added to both ends of the molecule

• Dual unique indices used instead of single index

• Replacement of Universal Primer Sequence with Illumina TruSeq Adapter sequence to
avoid the use of custom sequencing primers

4.2 A new UMI-aware pipeline for paired-end FAST-SeqS
data

The processing pipeline presented in chapter 2 was similar to that presented in Kinde et
al. [104] with a few changes. While it seemed to work well for single-end data, it does not
handle paired-end data and ignores the UMIs contained within the reads. In addition to this,
Bowtie 1 [111] was used to align the processed reads to the genome. This aligner has been
superseded by more modern aligners, such as Bowtie 2 [114] and BWA-MEM [238], which
are aware of indels and provide more detailed information about mapping quality. These
aligners are now routinely used for short-read DNA-seq analyses. Rather than update this
pipeline, I decided to create a new pipeline.
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The new pipeline is depicted in figure 4.2. It is built with snakemake [244] which, along
with the conda package manager, enables the pipeline to be easily distributed to different
environments and ensures a fully reproducible workflow. In addition to this, snakemake
handles the interface to cluster environments, such as Slurm [245]. This means that hundreds
or thousands of samples can be processed at the same time by scaling the pipeline to the
resources available.
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Figure 4.2 A graphical depiction of the UMI-aware and paired-end FAST-SeqS read processing
pipeline. As an input, the pipeline takes demultiplexed FASTQ files for each sample. The
top of the figure shows two grey boxes which represent read1 (R1) and read2 (R2) and the
direction of sequencing (shown as a red arrow) with respect to the amplicon sequence, The
first step in the process is to trim the segments of the reads which contain the UPS, index
and IGS. Next, the trimmed reads are merged into a single consensus read. In preparation
for aligning the reads, the UMI sequences, forward and reverse primer sequences are removed
from the read sequence and appended to the read name, along with various statistics such as
the primer edit distances. After this step, the processed reads should contain only the insert
sequence. In the next step, the reads are aligned to the genome and custom scripts are run to
annotate the resulting BAM files with the information contained in the read name from the
FASTQ file. The SAM/BAM flag names that contain this information are shown in the figure.
Next, the BAM file is coordinate sorted and the unique mapping locations are extracted
into a BED file. The overlapping regions are then merged into distinct non-overlapping
regions. Finally, a custom script filters reads and UMI sequences are clustered for each
non-overlapping region (see main text for details). This results in UMI counts per region.

Before running the pipeline, the sequencing reads from a lane of sequencing need to be
demultiplexed to separate FASTQ files for each sample. To do this, I used the demuxFQ tool
provided by the CRUK Bioinformatics Core [122]. Note that to assess index switching in
addition to demultiplexing the samples, all possible 96 × 96 (9216) combinations of indices
need to be provided to the tool.

The pipeline takes demultiplexed FASTQ files as an input, along with the reference
genome. The first step is to remove adapter sequences from the reads. Given the length of
the amplicons, the ends of read1 and read2 will commonly include portions of the Universal
Primer Sequence along with the indices and Illumina grafting sequences. I used bbduk.sh
[246] to remove the adapters and provided it a list of adapters (along with the UDIs) for it
find and remove from the reads.

The second step in the pipeline is to merge read1 and read2 into a single consensus
read. I decided to merge the reads, using BBMerge [247], rather than align read1 and read2
separately to the genome because 1) given the length distribution of the amplicons, we
expect almost all (if not all) read pairs to overlap, 2) by merging, we utilise the quality
scores to take a consensus read, thereby filtering out many sequencing errors, 3) the task of
aligning the reads to the genome should be easier, since we remove uncertainty about the
insert size of the molecule we might expect increased numbers of true positive alignments,
4) it simplifies downstream analyses, for example when counting variant allele frequencies.
A potential downfall of merging the reads is that sequencing errors from one read might
be falsely incorporated into the merged read with the true base from the other read being
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discarded. We would normally expect sequencing errors to be rejected due to lower quality
scores, though this may not always be the case.

The third step in the pipeline is to extract the primer and UMI sequences from the
merged reads. The primers can hybridise to bases in the genome that are not an exact
reverse complement to the primer. Since the sequence of the primer observed in the read
may not reflect the exact sequence in the genome, we should remove the primer sequence
before aligning the reads. I created a custom script in python which uses the Edlib library
(which is a library to calculate edit distances written in C++) [248] to find the forward
and reverse primers within the merged read. The forward primer is found by finding the
sequence within the read with the minimal edit distance to the primer sequence. In the case
of multiple matches with the same edit distance, the match which has the length closest to
the length of the primer sequence is preferred. In the case that multiple sequences have the
same edit distance and the same length, the left-most match within the read is preferred.
The same process is applied to finding the reverse primer sequence, with the exception that
the right-most match is preferred. If the edit distance to the forward primer and reverse
primer are both 5 or below, the read is kept, otherwise the read is discarded. In the previous
pipeline, we used the Hamming distance rather than the edit distance to find the primer
sequence within the read. Using the edit distance is likely to decrease the number of reads
discarded due to sequencing or PCR errors, which introduce indels into the sequence.

In the previous pipeline, the observed primer sequence and UMIs were discarded. I
reasoned that the UMI sequences might be useful for low input DNA samples, but when the
input DNA is 20 ng-50 ng, it was unlikely to help significantly reduce the number of reads
down to unique molecules. This is because the number of copies of a genomic locus within
the input DNA would be much greater than the average read depth at that locus. However,
this was not explored further. In this pipeline, we extract the UMIs and the observed primer
sequences, along with their associated phred quality scores and edit distance, and append
these to the read name.

Step 4 in the pipeline is to align the reads (minus the UMI and primer sequences) to the
genome. The pipeline uses BWA-MEM [238] and Bowtie 2 [114] and outputs the alignments
in BAM format. The reason for using both aligners is to explore the differences between
them and to decide which of them are more appropriate for aligning FAST-SeqS amplicons
to the genome. We explore these results later in this chapter.

After alignment, the BAM file is annotated with the UMI and primer sequence information
and stats that were included in the FASTQ header in step 3. I wrote a custom python
script to do this which uses pysam [249] to access and write this information as tags to
the BAM files. Specifically, the OX, BZ, XP, XQ, XE and XL tags were used to store the UMI
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sequences, UMI Phred quality scores, observed primer sequences, observed primer sequence
Phred quality scores, primer edit distances and the merged read length respectively.

The resulting annotated BAM file is then sorted by its genomic coordinates using samtools
[236]. The unique mapping locations (chromosome, start, end and strand) contained within
the BAM file are then extracted for each sample using bedtools bamtobed [250]. Overlapping
unique mapping locations are merged, using the bedtools merge function [250], into distinct
non-overlapping regions. This is in preparation for the next step in the pipeline.

The final step in the pipeline involves summarising the alignment information for each
locus in a sample. I wrote a custom script in python that iterates over the distinct non-
overlapping regions and extracts alignments from these locations. The script utilises pysam
to fetch the reads and the multiprocessing module [251] so that each region is handled in
parallel by different subprocesses. For each distinct non-overlapping region, an alignment is
discarded if at least one of the following conditions are true:

• it is a secondary alignment (meaning the read has a more likely alignment to another
location in the genome)

• it is a supplementary alignment or the read has supplementary alignments (marked as
supplementary or contains the SA tag) - this is specific for BWA-MEM which marks
chimeric (split) reads as supplementary alignments

• it has a mapping quality less than the mapping quality threshold defined by the user.

• the read maps to the other strand (pysam does not fetch reads mapped to particular
strands)

• the read does not contain a UMI tag or the length of either UMI is not valid; set by
the user, for example 5-15.

For each non-overlapping region, alignments are then grouped into UMI nodes. A UMI
node is defined as a group of alignments that have exactly the same 5’ and 3’ UMI sequence.
Each UMI node is given a count which corresponds to the number of alignments associated
to it. Note that even though alignments may have the same UMI sequence, due to PCR or
sequencing errors, they may not be identical reads and may have different mapping qualities
or slightly different alignment start and end positions.

For each non-overlapping region, reads that have the same UMI sequence are assumed to
originate from the same molecule from PCR1. However, due to PCR and sequencing error,
reads with similar but non-identical UMIs may have been derived from the same molecule. In
order to account for PCR and sequencing error, we need to identify UMI nodes that are likely
to represent the same molecule from PCR1. To do this, I use a similar approach to UMI-tools
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[183] to cluster UMI nodes; determining a network of connected UMIs by creating a directed
adjacency matrix for each non-overlapping region. I have two approaches for this, 1) the
"combined" method which is based on clustering on the combination of 5’ and 3’ UMI pairs
and, 2) the "separate" method which is based on clustering on the 5’ and 3’ UMIs separately.

In the combined method, for every possible pair of nodes A and B, the lengths of their
5’ UMIs are compared and the lengths of their 3’ UMIs are compared. If the difference in
length between the 5’ UMIs or the 3’ UMIs is greater than 1, the nodes are not considered to
be related. Otherwise, the edit distance between the 5’ UMIs of node A and node B and
the edit distance between the 3’ UMIs of node A and node B are calculated. I used Edlib
and the infix method [248] (in which gaps at the query end and start are not penalised)
to calculate the edit distance. If either of the edit distances are greater than 1, the nodes
are not considered related. Otherwise, if the count of node A is greater than or equal to the
count of node B, then a directed edge from node A to node B is created. If the count of node
B is greater or equal to the count of node A, then a directed edge from node B to node A is
created. Given the directional adjacency matrix, I then use the group_directional method
from UMI-tools to derive the UMI clusters. The "separate" method is intended for use with
single cell FAST-SeqS data and is explained in chapter 5.

The script outputs (per sample):

• Alignment counts with "combined" UMI cluster information: including various statistics
such as the UMI cluster ID, mapping quality, the forward primer observed (along with
edit distance to the forward primer sequence), the reverse primer observed (along with
the edit distance to the reverse primer sequence), the fragment length (whole sequence -
including UMI and primers) and nucleotide composition of the fragment (number of As,
Cs, Gs, Ts and Ns), the “trimmed read” length (the sequence of the alignment fragment
- minus the UMIs and primers) and the nucleotide composition of the fragment (number
of As, Cs, Gs, Ts and Ns).

• Alignment counts with "separate" UMI cluster information: including the same statistics
as above but with a UMI cluster ID for the 5’ and 3’ UMI.

• Base level count information: including the chromosome, position, alignment start and
end of the read, reference, base observed, Phred quality score, mapping quality and
count. Note that I do not report the UMI information here (see future work section in
chapter 6).

• Filtering statistics: The number of alignments excluded due to secondary alignments,
supplementary alignments, insufficient mapping quality, mapping to the wrong strand
or invalid UMI sequence lengths.
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Note that this is highly detailed information which we may want to reduce in the future.
The reason for outputting this level of detail was for the purposes of data exploration, to
understand which aspects of the data are useful for filtering and modelling, which I explore
later in this chapter.

4.3 Initial application to prostate samples

We used the new primers to prepare 96 DNA samples for sequencing using the FAST-SeqS
protocol (see section 4.8.1 for methods). These DNA samples were predominately derived
from prostate cancer samples and normal adjacent prostate tissue. Some of the samples
were previously sequenced as part of the ICGC prostate cancer project. These samples were
sequenced because they were determined to have high tumour purity by a pathologist prior to
sequencing. In some cases, the estimated tumour purity using the sequencing data was much
lower than the pathologist’s estimate. Additionally, we included samples that were believed
to have low purity according to the pathologist’s estimate and hence were not sequenced.
Other samples were included from benign prostate tumours which are assumed to have no
SCNAs and could be used as controls. In addition, since the comparison between normal
samples from male and female donors is useful for data exploration and diagnostic purposes,
we prepared six replicate FAST-SeqS samples from a DNA sample that was derived from
whole blood from multiple anonymous female donors (Promega G1521).

The purpose of the experiment was to:

• Prove that we could successfully scale-up the FAST-SeqS experiments to higher-
throughput machines

• Understand the extent and the potential causes of index swapping in FAST-SeqS
experiments using the unique dual indices (see section 4.3.1)

• Apply conliga to a new data set to see if the assumptions that were made using previous
data still hold (see section 4.3.2). If the assumptions do not hold, to investigate the
causes (see section 4.4)

• Investigate the application of FAST-SeqS and conliga in the research setting. In
particular, using the assay and tool for the screening of samples in large-scale cancer
genome studies prior to performing WGS (see chapter 5).

In the process of investigating these objectives, I found that sample-specific effects
occurring within the new data set caused RCN inferences that did not represent true SCNAs
(shown in section 4.3.2). From section 4.4 onwards, this chapter focuses on the identification of
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these sample-specific effects and methods to correct for them. The application of FAST-SeqS
and conliga to large-scale genome studies is explored in chapter 5.

4.3.1 Sample demultiplexing and index cross-talk analysis

The HiSeq 4000 lane on which the samples were sequenced produced a total of 391,866,868
paired-end 150 bp reads. Initial quality control using FastQC [252] showed that the reads
were typically of high quality across the tiles of the flow cell, with good sequence diversity
and low levels of primer-dimer as indicated by the low proportion of adapter sequence found
within the reads. I used the demuxFQ tool [122] (as previously described in section 2.4)
to demultiplex the paired reads from the lane into separate FASTQ files for each sample
such that each sample has a separate read1 and read2 FASTQ file. I supplied the demuxFQ
tool with the 96 × 96 possible index1 and index2 combinations. As such, the reads were
demuliplexed into 9,216 read1 FASTQ files and 9,216 read2 FASTQ files for each possible
index1 and index2 combination.

Of the total read pairs from the sequencing lane, 95,870,090 (24.46%) were discarded
as they did not match a combination (with a maximum of one mismatch to each index).
The vast majority of the discarded reads will have originated from PhiX and the quantity
of discarded reads coincides with our target of a library composed of 20-30% PhiX. Of the
remaining 307,688,258 read pairs, 295,996,778 (96.2%) matched valid index1 and index2
combinations which represent a specific sample. The remaining 11,691,480 (3.8%) read pairs
were invalid combinations, indicating that we see substantial index misassignment (index
cross-talk) frequencies [241, 239, 253, 125]. The proportion of reads that had invalid index
combinations are high and close to the 5-10% which Sinha et al. reported [239] and much
higher than 0.29% reported by Macconaill et al. [241]. If we assume that cross-talk or
swapping rates occur equally between indices from index1 as they do from index2, then a
single index strategy would have resulted in approximately 1.9% of reads being misassigned to
the wrong sample. A combinatorial dual-index strategy would have resulted in approximately
3.8% of reads being misassigned to the wrong sample. Using UDIs, we are able to remove
the vast majority of these events and false assignment will only occur in the rare events that
both indices swap to an index1 and index2 combination that represents another sample.

There are a several mechanisms that can introduce index cross-talk [241]. These mecha-
nisms include: cross-contamination during primer oligonucleotide synthesis or purification,
during the process of diluting or aliquoting the primers and other experimental handling
issues, the "spreading-of-signal" phenomenon on Illumina’s patterned flow cells (and to a
lesser extent the non-patterned flow cells) arising from free index primers within a pooled
library [239], sequence errors introduced during PCR (either during an experiment or during
bridge amplification) or sequencing error, bioinformatic errors, among other mechanisms
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[241]. Since all index1 indices and all index2 indices have at least an edit distance of 3 from
each other, we can assume that sequence errors are very unlikely to be the cause of index
cross-talk in this experiment.

Figure 4.3A shows an overview of the total number of read pairs assigned to each of the
possible 9,216 combinations. Tiles on the diagonal represent valid combinations and those on
the off-diagonal represent invalid combinations. We see a strong signal along the diagonal,
indicating that the reads appear to be assigned to valid samples in most cases. There appears
to be a varying frequency of index cross-talk between combinations of indices. Valid index
combinations that have low numbers of read pairs also have fewer invalid combinations
with other indices. Indeed, this occurs for both indices. This might be a reflection that
fewer swapping events occur with other free indices because fewer amplicons are present
for these samples. When we normalise by the total counts for index1 (figure 4.3B) and
index2 (figure 4.3C), we see proportionally more swapping events (in some cases) for valid
index combinations with low counts. We may hypothesise that the low counts are a result of
fewer amplicons being synthesised for these samples during PCR. If this is true, it is likely
there is a greater proportion of free primer corresponding to these samples (relative to the
samples with higher counts) when the samples are pooled together for sequencing. As it has
previously been shown, the amount of free primer within the library is directly proportional
to the number of swapping events that occur on the flow cell [239]. Figure 4.3A, B and C
also highlight potential errors during the experiment. In particular, the results might suggest
potential mix-ups between the primers of sample 61 and sample 62 and possibly between
sample 17 and 18 also. Sample 61 was assigned 610 total reads while sample 62 was assigned
substantially more than expected (9,832,386).

The samples were prepared in a 96-well plate and I explored how the frequency of index
cross-talk relates to the well position (figure 4.4). When index cross-talk occurs between
indices from the same column, we see increased cross-talk occurring between indices in
adjacent rows. Indeed, the mean frequency of index swapping within a column is proportional
to the number of rows that separate the indices (figure 4.4A and C). Interestingly, we do
not see such a strong behaviour between columns in the same row (figure 4.4A and D).
When comparing adjacent columns (figure 4.4A), we see that cross-talk frequencies are not
symmetric. Cross-talk occurs in a particular pattern that is concordant with the sample
order and the order of pipetting. The highest cross-talk frequencies between columns is
seen between the bottom well in a given column and the top well of the column to the
right. While increased cross-talk within rows and columns were reported by Macconaill et
al. [241], a relationship with the pipetting order was not reported. These results suggest
that the process of pipetting may introduce substantial index contamination. Alternatively
(or additionally) this may be explained by the order the primers were synthesised, purified,
diluted or aliquoted; it is possible that they were done so in order of their sample index.
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Figure 4.3 Exploring the number of paired-end reads assigned to valid and invalid combinations
of sample indices (index1 and index2). A: Heatmap representing the log count of paired-end
reads assigned to all 96 by 96 (9,216) possible combinations of index 1 and index2. The
diagonal represents valid sample combinations while the off-diagonal represents invalid sample
combinations. B: Same as A but the heatmap displays the log counts normalised by the total
counts of index 1. C: Same as B but normalised by the total counts of index 2.

Further experiments in which the sample indices are randomised on the PCR plate will
provide additional evidence as to the source of this issue.
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Figure 4.4 Investigating index-cross talk in the context of the 96-well plate. A: Heatmap
showing the relationship between the row and column distance with the median log count
(since multiple index combinations with have the same row and column distance). B: Diagram
indicating how the row distance for an index combination is calculated; index1 (i7) row
position - index2 (i5) row position. It also includes how the column distance is calculated;
index1 (i7) row position - index2 (i5) row position. For example, i7(blue) & i5(blue) is a valid
index combination with row and columns distances of 0. C: Sina plot showing the relationship
between the absolute row distance (of invalid index combinations from the same column) and
the log count of the index combinations. Each point represents an invalid index combination
and the colour represents the sum of the corresponding valid samples. For example, if the
invalid index combination is i7(blue) & i5(green), then the colour in the legend represents
the sum of valid combinations i7(blue) & i5(blue) and i7(green) & i5(green). The red point
represents the mean log count. D: Same as C but showing the relationship between the
absolute column distance (of invalid index combinations from the same row) and the log
count of the index combinations.
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Figure 4.5 The number of paired-end reads assigned to index combinations compared with
their corresponding sample number distance. A: Absolute sample number distance against
index combination count (log). Each point represents an index combination and the colour
represents the minimum log count of the corresponding valid samples. B: The distribution of
index combination counts (log) showing invalid combinations in red and valid combinations
in blue.

Given the high rates and spatial bias of index cross-talk observed, the use of a single
or combinatorial dual index strategy would result in a relatively high frequency of read
misassignment and a bleeding of signal between samples. Since normal and tumour samples
are multiplexed on the same lane, this would have several implications. If reads from tumour
samples are falsely assigned to samples used as controls, the inference of the bias (m̂) would
be less accurate. On its own, this might lead to increased false positive and false negatives
when inferring RCN profiles from test samples. Also, if reads from test samples that have
SCNAs bleed into those that do not, this may mean that we falsely detect SCNAs in samples
that are otherwise normal. This would be problematic for research applications but critical
for clinical application. Therefore, it appears that the use of UDIs is important in order to
maximise the sensitivity and specificity of FAST-SeqS and conliga.

While we can be confident that by using UDIs we are removing almost all of the cross-talk
events, by reducing cross-talk events we will be able to reduce the number of reads discarded.
Improved clean-up of the free primer from the samples may help to reduce the background
rate of cross-talk between indices [240, 239]. Further experiments are needed to discover the
cause of the spatial bias in index cross-talk frequency. If it is found that the source of the bias
is not due to the synthesis or purification of the primers by the manufacturer, it may be that
experimental improvements and increased handling care may reduce this effect. Sequencing
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using non-patterned flow cells such as those for the HiSeq 2500, NextSeq or Miseq may reduce
the background level of cross-talk by approximately 3-fold [241, 240]. However, the patterned
flow cell technology adopted by the HiSeq X Ten, HiSeq 3000/4000 and NovaSeq 600 decreases
the sequencing costs per read and helps to make the use of FAST-SeqS and other sequencing
assays more cost-effective. As such, discarding reads associated with increased cross-talk
events is likely to be more cost-effective than utilising non-patterned flow cell technologies
that have lower rates of cross-talk.

4.3.2 Running conliga on the samples and obtaining unusual results

After running the UMI-aware pipeline (described in section 4.2) on the demultiplexed FASTQ
files, I ran conliga to infer the RCN profiles for the samples. I used the set of benign samples
together with the matched normal samples (total of 16 samples) to infer the loci bias vector
m̂ and used the same priors previously described in section 2.10. I used the summarised
counts that were derived from aligning the processed FASTQ files to the genome using Bowtie
2 [114] (using the default settings). I used an arbitrary threshold to remove alignments that
had a mapping quality of less than 10.

In some cases, the inferred RCN profiles seemed reasonable with what appeared to be
true SCNAs and flat RCN profiles in control samples. However, in other samples, the inferred
profiles were unrealistic, often with fast-switching dynamics across the whole genome, which
were unlikely to represent true SCNAs. In addition, these types of profiles were seen in
several of the control samples. This provided further evidence that the RCN profiles did not
necessarily represent true SCNAs. Figure 4.6 shows example RCN profiles for a selection of
normal samples.
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Figure 4.6 RCN profiles for three normal prostate samples showing unrealistic inferred profiles
that are unlikely to represent true SCNAs. These samples were processed with the new
UMI-aware pipeline (section 4.2) and reads were aligned with Bowtie 2 (mapping quality
threshold >10). Each black point represents the MAP RCN inferred for each locus. The
coloured points represent the scaled count for each locus coloured by the log of the inferred
expected proportion of reads to align to each locus (log m̂).

To check that these artifacts were not introduced by the new UMI-aware pipeline, I
processed the read1 FASTQ files through the original pipeline (described in section 2.4).
Using the resultant counts and the same prior distributions, I re-ran conliga and compared
the results. Similar, although not identical, RCN profiles were obtained by using counts
derived from the old and new pipelines (figure 4.7). While the read processing may play
a role, this suggests that a major source of RCN artifacts appear to originate in the DNA
samples or sample preparation rather than sample-specific biases introduced by the read
processing.
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Figure 4.7 RCN profiles for three normal prostate samples showing unrealistic inferred profiles
that are unlikely to represent true SCNAs. These samples were processed with the original
pipeline described in section 2.4 and reads were aligned with Bowtie 1. Each black point
represents the MAP RCN inferred for each locus. The coloured points represent the scaled
count for each locus coloured by the log of the inferred expected proportion of reads to align
to each locus (log m̂).

4.4 Investigating the cause of sample-specific artifacts

In this section, I explore the data in order to identify the causes of RCN profile artifacts. In
section 4.4.1, I explore the data from the new UMI-aware pipeline and compare it to the
data obtained from the single-end pipeline. I do this in order to discover the cause of the
differences seen in profiles obtained by the old single-end read processing pipeline and the
new UMI-aware pipeline. In section 4.4.2, I explore whether sample-specific biases are present
in the data.
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4.4.1 Investigating the data obtained from the new UMI-aware pipeline

Comparing BWA-MEM and Bowtie 2 for aligning FAST-SeqS reads

Aligning reads from repeat regions, such as LINE1 elements, to the reference genome is
difficult. Since their retrotransposition into the genome, the LINE1 elements that are targeted
by the FAST-1 primer pair have accumulated mutations. FAST-SeqS functions as a copy
number assay on the premise that a substantial proportion of these elements have accumulated
a sufficient number of mutations so that they can be uniquely identified. As such, we are
able to determine the genomic origin of some, but not all, of the reads generated by the
FAST-SeqS assay.

In the pipeline presented in chapter 2, I used Bowtie 1 [111] to align the reads to the
genome. Bowtie 1 is a simple aligner which is unaware of indels and does not perform
gapped alignment. Given a threshold on the number of mismatches allowed, it aligns reads
to the genome. If, given this threshold, the read aligns to one location then the read is
considered uniquely mapped (uni-read). Otherwise, the read is considered a multi-read.
Hence, the greater the number of mismatches permitted, the greater the number of expected
multi-reads. Considering we discard multi-reads, this means that the mismatch threshold
has two effects. As the threshold increases, we are more tolerant to PCR and sequencing
errors while simultaneously more stringent with our definition of what constitutes a unique
genomic region.

More modern aligners such as Bowtie 2 [114] and BWA-MEM [238] are indel-aware and
perform gapped alignment. With the inclusion of indels, the concept of a uniquely mappable
region becomes less clear. These tools provide a mapping quality (MAPQ) which quantifies
the probability that the read is incorrectly aligned [254]. The way in which this probability
is calculated depends on the software used (e.g. Bowtie 2, BWA-MEM) and on the values
of the parameters supplied. While it may be tempting to consider all possible alignments
and use these probabilities in downstream analyses, it is common practice for reads with a
mapping quality below a determined threshold to be discarded.

The use of Bowtie 1 seemed to be sufficient to align reads from the FAST-SeqS assay. We
know this because we saw copy number signal in the data and because few reads aligned
to chromosome Y in samples from female donors (see figure 2.5 in chapter 2). If reads are
aligned to the wrong location, noise will be introduced to the data. Moreover, the number of
falsely aligned reads will not scale with the copy number changes as would be expected of
true alignments, leading to a dilution of the copy number signal.

It was unclear how Bowtie 2 and BWA-MEM would perform in aligning FAST-SeqS
reads to the genome. Furthermore, I wished to determine an appropriate mapping quality
threshold that would minimise the number of false alignments and maximise true alignments.
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Although we do not know the true origin of each read, I explored the relationship between
mapping quality and other features of the data which might indicate alignment performance.
For example, the proportion of alignments to chromosome Y in female samples can provide a
measure of false alignments. Figure 4.8A indicates that Bowtie 2 introduces a high proportion
of false alignments below a mapping quality threshold of 28 (using the sensitive and very
sensitive settings). Whereas, BWA-MEM sees approximately half the proportion of false
alignments when no threshold is set. Furthermore, the proportion of false alignments to
chromosome Y rapidly approaches zero when setting a threshold on the mapping quality.
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Figure 4.8 Comparing the effect of applying mapping quality thresholds for FAST-SeqS
reads aligned by Bowtie 2 and BWA-MEM. The relationship between the mapping quality
threshold and: A, the proportion of alignments mapping to chromosome Y in six replicates
of a female sample, B, the proportion of unique molecules at each FAST-SeqS locus across
all control samples (total number of unique molecules divided by the total number of reads),
C, the number of loci with non-zero count in all 16 control samples.

The number of unique molecules associated with a locus as a proportion of the total
read count is another indicator of performance. Because we perform a second round PCR,
we occasionally expect to see multiple reads supporting the same unique molecule at each
locus (duplicates). If all alignments were false positives, we would expect that at any given
locus, each read would represent a unique molecule, i.e. the proportion would be 1. As
false alignments decrease and true alignments increase, we expect to see proportionally fewer
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unique molecules at each locus. Figure 4.8B shows that, for reads mapped using Bowtie 2,
the proportion of unique molecules initially decreases with the mapping quality threshold and
then increases. Using the sensitive or very sensitive settings does not appear to change the
outcome substantially. Importantly, at a threshold of 28, the proportion of unique molecules
is on the rise even though, at this threshold, many of the false alignments to chromosome
Y have been filtered out. For BWA-MEM, we see that as the mapping quality threshold
increases, the proportion of unique molecules decreases. These results, plus those shown in
figure 4.8C, suggest that there does not appear to be a mapping quality threshold which
balances the removal of false alignments while retaining true alignments for Bowtie 2. For
BWA-MEM, it seems that the ratio of true alignments to false alignments improves as the
mapping quality threshold increases.

If we are to filter reads based on mapping quality scores, we would hope that the mapping
qualities for the same locus are similar between samples. Figure 4.9 compares the mapping
quality scores obtained across control samples with those obtained from a particular control
sample. The results indicate that mapping quality scores are more variable between controls
when using Bowtie 2 compared with BWA-MEM.

Figure 4.9 Comparing mapping quality scores between control samples using Bowtie 2 and
BWA-MEM. Mean mapping quality score for each locus in control sample 73 against the
mean of the mean mapping quality scores across all 16 control samples. The loci were filtered
such that only those which had a non-zero count in all 16 controls were considered. A: Bowtie
2 (very sensitive settings). B: BWA-MEM.

It has been previously reported that BWA-MEM is more tolerant to mismatches and
indels when compared to BWA-ALN, Bowtie 2, SOAP2, Subread and STAR [255]. We
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expect there to be a mixture of PCR errors and sequencing errors within FAST-SeqS reads in
addition to germline and somatic variants. Given the similarity between the LINE1 sequences,
there is increased difficulty in aligning FAST-SeqS reads with mismatches and indels to the
reference genome compared with the majority of reads generated from standard WGS. If
BWA-MEM is more tolerant than Bowtie 2 in dealing with mismatches and indels, this may
partially explain why BWA-MEM sees less variability between controls in mapping qualities
at the same locus.

I investigated how the two aligners performed in dealing with mismatches and indels
in FAST-SeqS reads. The majority of these mismatches and indels will be caused by PCR
and sequencing error. However, a small proportion will be germline and somatic variants.
Figure 4.10 shows how the frequency of mismatches and indels relate to the read depth,
mean mapping quality and mean base quality (Phred score). Many of the mismatches
and indels that cluster around a frequency of 0.5 will be heterozygous germline or somatic
variants and many of them are likely to be single nucleotide polymorphisms (SNPs). We
can be increasingly confident that these are true germline and somatic variants as the read
depth increases. Those mismatches and indels with frequencies close to zero are likely to
be caused by PCR and sequencing error in addition to mismapped reads but could also
represent somatic mutations. Those clustered around a variant frequency of 1 could be the
result of homozygous non-reference germline or somatic variants in addition to mismapped
reads. I should note that the reference human genome is not complete and may contain
errors, particularly in repeat regions. Therefore, observed variant frequencies may be in part
explained by an imperfect reference genome.
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Figure 4.10 Mismatch and indel frequencies (i.e. variant allele frequencies) in aligned reads
from normal sample 73 using Bowtie 2 (very sensitive settings) and BWA-MEM (default
settings). A: Bowtie 2, read depth against mismatch and indel frequency. Each point
represents a base which did not match the reference sequence in the set of all alignments.
Each non-reference base is coloured according to the mean base quality. B: Bowtie 2, same as
A but coloured according to the mean mapping quality. C: Same as A but for reads mapped
by BWA-MEM. D: Same as B but for reads mapped by BWA-MEM.

In figure 4.10, we see that Bowtie 2 and BWA-MEM produce alignments with similar
frequencies of mismatches and indels. By highlighting the mean base qualities, figures 4.10A
and C show that relatively few of these mismatches and indels appear to be the result of
sequencing error. Figures 4.10B and D suggest that a greater proportion of the mismatches
and indels appear to be introduced by alignment error. Importantly, for reads aligned with
what we can assume are heterozygous germline or somatic variants, Bowtie 2 frequently
estimates a lower than perfect mapping quality (<42). In contrast, BWA-MEM gives a higher
proportion of these reads a perfect mapping quality (60). This provides further evidence that
BWA-MEM is more tolerant to variants than Bowtie 2, even in the context of repeat regions
like those amplified by the FAST-SeqS assay.
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Taken together, these results suggest that BWA-MEM should be used in favour of Bowtie
2 for the alignment of FAST-SeqS reads. There does not appear to be a good choice of
mapping quality threshold for Bowtie 2; a threshold below 28 is likely to introduce many
false alignments while a threshold above 28 is likely to remove true alignments. In contrast,
it appears that BWA-MEM is not as sensitive to the choice of mapping quality threshold.
Indeed, it seems that the higher the mapping quality threshold used, the ratio of true to false
alignments increases. The analysis presented here is far from comprehensive. Further work
should be done to evaluate a wider range of aligners and to determine how the parameters of
the various aligners can be optimised to improve results. Simulating reads from FAST-SeqS
loci could be used to evaluate the sensitivity and specificity of the aligners, since the ground
truth is known. By varying the frequency of simulated mismatches and indels, we can better
understand their performance under different conditions. Recall that Bowtie 2 was used by
the authors of WALDO [107], although they did not state if mapping quality thresholds were
used in their analysis. BWA was used by the authors of mFAST-SeqS [106], although they
do not state whether the BWA-MEM, BWA-SW or BWA-backtrack algorithms were used in
their analysis.

Investigating loci features indicative of low-quality data

In chapter 2 and figure 2.4E, we showed that there was a mean-variance relationship in
FAST-SeqS count data. By visualising this relationship (figure 4.11), we can explore various
features of the data that could be used to filter loci, which if not filtered, could mislead the
copy number inference.
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Figure 4.11 Exploring the mean-variance relationship between loci read counts and various
loci features using 16 control samples. A: The mean of the unfiltered loci reads aligned to
chromosomes 1-22 (using BWA-MEM) across 16 control samples against the variance of the
loci read counts. Each point represents a unique locus defined by chromosome, align start,
align end and strand. B: The mean-variance relationship shown in A but with each point
(locus) coloured by the mean of the mean mapping quality across the 16 control samples. C:
The mean-variance relationship shown in A but with each point (locus) coloured by the mean
proportion of unique molecules across control samples. The proportion of unique molecules
is calculated for each sample at every locus by computing the number of UMI clusters at
the locus divided by the total number of reads aligned to the locus. D: The mean-variance
relationship shown in A but with each point (locus) coloured by the number of control
samples that had a zero count at the locus. E: The mean-variance relationship after filtering
(keeping only alignments that had a mapping quality greater or equal to 50 and keeping
only those loci that had a non-zero count in all 16 control sample). F: The mean-variance
relationship when using the single-end pipeline (which uses Bowtie 1) and keeping loci that
had a non-zero count in all 16 control samples.

Recall that, in the pipeline described in section 2.4, loci were filtered in two ways. Firstly,
reads were filtered by Bowtie 1 if they aligned to multiple loci. This meant that FAST-SeqS
loci that consisted of sequences within a certain Hamming distance of each other were
automatically filtered. Secondly, loci were filtered if at least one control sample had a zero
count occurring at the locus. The equivalent strategy for filtering loci obtained using the new
pipeline would be to take a mapping quality threshold on the alignments, while the second
step would remain the same.

Figure 4.11A shows the mean-variance relationship prior to filtering loci (using the 16
control samples). Figure 4.11B shows that some of the extreme high counts can be explained
by low mapping quality. It is likely that these loci are being assigned reads that were amplified
from several positions in the genome. Aside from those with extremely high mean count, the
proportion of loci with high mean mapping qualities appears to increase with mean count.

Figure 4.11D highlights the number of control samples that have a zero count associated
with each locus. Loci may have zero counts in control samples for various reasons, which
may include:

• Sampling error; loci that have low amplification efficiencies may be present at low
quantities in the sequencing library but are not "sampled" by the sequencer, i.e. do not
hybridise to the flow cell and form clusters.

• Random off-target and non-recurrent amplification of a genomic locus that is sample
specific. This would mean that most samples would not see alignments at these genomic
loci.
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• PCR or sequencing errors occur at the start or end of the read. This results in alignments
that are a few bases upstream or downstream of the other alignments. Hence, they
appear as unique "loci" with a new start or end position.

• CNVs in the control samples; particularly those that have homozygous deletions
involving FAST-SeqS loci.

• Germline or somatic variants occurring in the amplified loci; if these occur in the
sequence that the primers hybridise to then the PCR efficiency may be affected.
Alternatively, if the variants occur within the sequence that is aligned to the genome,
they may cause the read to be aligned elsewhere or with lower mapping quality.

• Random choice of equally good alignments. BWA-MEM and Bowtie 2 randomly select
an alignment when a read maps equally well to multiple locations. This is likely to
explain why there are several loci that have only a single read aligned to them in
only one control sample. Note that these will also have a mapping quality of 0 in
BWA-MEM.

• Finally, LINE1 insertion polymorphisms. There is variation in LINE1 insertions across
the human population, especially in L1HS elements [256]. However, since we amplify
relative few L1HS, this is unlikely to explain many of the zero counts.

Ideally, we would keep those loci for which sampling error was the cause of the zero counts.
If we were able to identify those loci which involve CNVs, we may also wish to include them
as long as we could account for the CNV when estimating the expected proportion of reads
(m̂). However, being able to distinguish whether a CNV or some other mechanism is the
cause of a zero count is likely to be difficult or impossible.

By using a combination of a mapping quality threshold of 50 (for reads aligned with
BWA-MEM) and keeping loci that have a non-zero count in all controls, we can filter loci
that may cause artifacts in the RCN profile. We see in Figure 4.11E that by doing this, we
obtain a set of loci with a similar mean-variance relationship to those selected using Bowtie 1
and the single-end pipeline (Figure 4.11F).

In figures 4.11C and 4.12 I explore another metric which could be used to distinguish
low-quality loci. As we discussed previously, the proportion of unique molecules aligned to a
locus is likely to be related to the loci count. Figures 4.12A and B show the distribution of
unique molecules prior to filtering. We see that those loci with low mean mapping quality
tend to have high proportions of unique molecules, as expected. Once loci are filtered (using
mapping quality and non-zero counts in controls), we see that the heavy tail representing
loci with high mean proportion of unique molecules is mostly filtered from the distribution
(figures 4.12C and D). While I do not use the proportion of unique molecules as a metric for
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loci filtering at the moment, potentially it could be used with other features of the data (such
as the mapping quality, number of zero counts in controls, mean count, mean variance and
others) to select the loci to filter. Using hard thresholds to filter on the number of non-zero
counts in controls is likely to result in over-filtering the data. Instead of using hard filters, a
machine learning model could be devised to select loci.

Figure 4.12 Exploring the mean proportion of unique molecules as a metric for loci quality.
A: The log mean count against the mean proportion of unique molecules across the 16 control
samples for each locus aligned to chromosomes 1-22 (prior to filtering). Each locus is coloured
by the mean of the mean mapping quality across controls. B: The distribution of the mean
proportion of unique molecules. C: Same as A but after filtering alignments with mapping
quality below 50 and keeping only loci with a non-zero count in all 16 control samples. D:
The distribution of the mean proportion of unique molecules after filtering.

4.4.2 Exploring sample-specific biases

In this section, I explore whether there are features of the samples or loci (other than
those associated with read processing) that may introduce sample-specific biases to the data.
Spurious RCN profiles are caused by read proportions being altered in a manner that does
not fit with conliga’s assumptions of the data generation (which I described in chapter 2).
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There are two main ways in which sample-specific effects could result in spurious RCN
profiles. Firstly, sample-specific effects could introduce a spatial signal or bias in the data.
Spatial signal is precisely what conliga intends to detect and quantify. As such, any biases
that result in spatial signal will result in spurious RCN profiles. Secondly, sample-specific
effects may alter the distribution of the data. If the distribution of the data is altered such
that the beta-binomial emission distribution (described in chapter 2) no longer fits the data
appropriately, this can result in spurious copy number states.

GC content bias

GC content, which is the proportion of G and C bases in a sequence, is known to be associated
with biases in high-throughput sequencing data [257–259]. Dohm et al. were the first to
describe a dependence between GC content and read depth using Illumina machines [258, 259].
They showed that read depth originating from 1 Kbp bins from several bacterial genomes
showed a linear relation with GC content; increasing read depth with increasing GC content
[258]. Benjamini and Speed showed that the GC content of the fragment, that is the DNA
fragment that is being sequenced, showed a non-linear and uni-modal relationship with read
depth; with a peak observed around 50% GC. Futhermore, they claimed that the fragment
GC content drives the effect seen with larger GC bins in the genome and showed that the
relationship between GC content and read depth is not consistent between samples [259].

GC content biases are not limited to next-generation sequencing platforms. Technical,
positive spatial autocorrelation, often described as ‘wave’ patterns, have been observed in
array comparative genomic hybridisation (CGH) intensities and shown to correlate with
regional GC content [260]. Van Heesch et al. carried out several technical experiments in
an attempt to find the cause of the wave patterns [261]. They found that similar wave
patterns were observed across technologies (array CGH and high-throughput sequencing)
[261]. Like others, they found that the observed wave patterns correlated with GC content.
This suggested that steps in the protocol prior to sequencing or array CGH introduce a bias
that correlates with GC content. By analysing samples obtained from different tissues of the
same rat, they showed that correcting for GC content was able to remove some, but not all,
of the depth of coverage or intensity differences between tissues [261].

GC content correlates with many other characteristics of the genome. These include
replication timing [262], gene density [3], LINE and SINE density, [3], genome isochores,
gene expression and chromatin status; with GC poor regions associated with tightly packed
heterochromatin and GC rich regions associated with more loosely packed euchromatin [261].
With chromatin organisation varying between tissues, Van Heesch et al. hypothesised that
chromatin status may be the cause of tissue-specific biases; with greater quantities of DNA
being isolated from euchromatin and less from heterochromatin. To test this hypothesis, they
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prepared multiple samples across multiple tissues with varying proteinase K lysis durations
(proteinase K is used to digest the chromatin protein structures). They found that longer
durations lead to more even coverage across the genome and increasingly similar coverage
profiles between tissues. Furthermore, they found that tissues such as blood and liver, which
are more homogeneous, had the greatest biases in read coverage [261].

Their data suggested that chromatin status explains some of the depth of coverage biases
associated with GC content. Variations in DNA isolation procedures between samples, partic-
ularly in proteinase K treatment duration, may lead to spatial variation in the proportions of
DNA isolated from the genome [261]. This is important for copy number tools, like conliga,
that rely on depth of coverage data to make inferences. In large-scale studies such as those
performed by ICGC and The Cancer Genome Atlas (TCGA), samples are often processed in
several batches, by different people and potentially using different protocols. Ensuring that
the DNA isolation protocols are consistent between samples and batches may help in reducing
sample-specific biases. Since blood is easy to obtain, it is often used as a normal control.
However, these results highlight the importance of using matched tissues as controls. If it is
necessary to use blood instead of matched tissue, it appears that increasing the proteinase K
lysis duration should be considered to reduce tissue-specific biases.

By fitting a thin-plate spline surface to the GC content across the genome, each FAST-
SeqS locus was assigned a large-scale GC content value associated with its location in the
genome which I refer to as the smoothed GC value. This was achieved by obtaining the
binned GC content of the genome (GRCh38) in 100 Kbp intervals using the the bedtools nuc
tool [250]. A thin-plate spline was then fitted to the binned GC content (excluding those bins
that contained ambiguous bases) for each chromosome independently using the mgcv package
[263] in R (gc_model = gam(gc ∼ s(centre, bs="tp", k=200), where centre represents
the centre of the genomic bin). Following this, each locus was assigned a smoothed GC
value using the predict function from the mgcv package. In addition, I computed the GC
content of the sequence fragment (amplicon) including the region that the primers hybridise
to, which I call the amplicon GC value. The Pearson correlation between the smoothed GC
and amplicon GC was low with a value of 0.12. In an attempt to not confound amplification
efficiency bias (see section 4.4.2) with this exploration, I selected only those loci that had an
exact match to the forward and reverse primer sequences. When comparing the amplicon
GC to the count proportion (figure 4.13), we see a non-linear relationship consistent with
that described by Benjamini and Speed [259]. Note that, compared with WGS fragments,
the range of FAST-SeqS amplicon GC values is narrow with few values below 50% seen.

Figure 4.14 shows the relationship between the smoothed GC and count proportion. In
some samples, the count proportion increases with smoothed GC whereas in others it appears
to decrease or not vary with smoothed GC. Given the results of Van Heesch et al., I would
have expected to see the count proportions either increase with smoothed GC (i.e. increase in
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Figure 4.13 The relationship between amplicon count proportion and amplicon GC content
(shown for each control sample). Each point represents a locus. Only loci on chromosomes
1-22 and those that have exact matches to the forward and reverse primer sequences are
shown. Each point is coloured by the expected proportion of reads to align to the locus, m̂.

euchromatic regions) or otherwise see no change with GC. However, we also see proportionally
more counts associated with low GC regions (heterochromatic regions) in some samples which
was not expected. While the relationship between amplicon GC and smoothed GC seems to
differ between samples, I explored the inferred copy number profiles to see if the smoothed
GC or amplicon GC could explain the multiple copy number states seen in some control
samples. Figure 4.15 shows that these additional states tend to appear in regions of high and
low smoothed GC. This was not seen with amplicon GC (not shown).
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Figure 4.14 The relationship between amplicon count proportion and each amplicon’s asso-
ciated smoothed GC value (shown for each control sample). Each point represents a locus.
Only loci on chromosomes 1-22 and those that have exact matches to the forward and reverse
primer sequences are shown. Each point is coloured by the expected proportion of reads to
align to the locus, m̂
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Figure 4.15 Comparing the inferred RCN profiles of four control samples with smoothed GC.
A-D show the result for four different control samples. Top: The inferred RCN profile using
the MAP state method for the sample. Bottom: The smoothed GC value assigned to each
locus, coloured by the relabelled copy number state. A: Sample 47. B: Sample 79. C: Sample
43. D: Sample 45.

Sample-specific differential loci amplification efficiencies

While exploring the effect of smoothed GC on the inferred copy number states in figure 4.15D,
we see that, in sample 45, the scaled counts with low and high m̂ values are not symmetrically
distributed around 1. Recall that we saw this same observation in chapter 2 (figure 2.5) when
analysing the RCN profiles of male and female samples. I noted that this did not seem to
affect the RCN inference in that case. However, in sample 45, we see an additional copy
number state with an RCN of approximately 1.6. Indeed, the loci with low m̂ appear to be
distributed around 1.6, while the loci with high m̂ seem to be distributed slightly below an
RCN of 1.

In figure 4.16, by comparing the observed count proportion of each control with the
inferred expected proportion (m̂), we see that the relationship is not always linear as we
would expect, e.g samples 45, 50 and 81. This figure also clearly highlights the GC effect
described in the previous section. Figure 4.15 along with figure 4.16 suggest that there is a
differential amplification of lowly and highly amplified loci between samples. For example, in
sample 45, loci that are typically lowly amplified are seen in higher count proportions than
expected and the opposite is also true. The cause of this is not clear but may be related
to differing quantities of input DNA or primers. This effect is not seen in all samples and
further experiments to ascertain the cause are required.

Loci which have an imperfect match of their target region to the primer sequence are
frequently amplified. Indeed, a large part of the differential amplification efficiencies between
loci is associated with the edit distance or Hamming distance of the primer sequence to the
target region (not shown).

4.5 Updating the conliga model to account for sample-specific
biases

In the conliga method presented in chapter 2, I made a central assumption that biases were
introduced by the protocol (e.g. differential amplification efficiencies between loci) and by
the read processing (e.g. mappability to the genome). These biases were captured in a vector,
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Figure 4.16 The expected proportion of aligned reads, m̂, against the observed count
proportion for all 16 control samples. Only loci within chromosomes 1-22 are shown. Each
point represents a locus and is coloured by its associated smoothed GC value.

m̂, describing proportions of reads we expect to align to each locus in a normal (euploid)
sample. I made the assumption that sample-specific biases were not present. As we saw in
chapter 3, the method produced very similar RCN profiles to those commonly applied to
WGS data. As such, this assumption seemed to be sufficient in most cases. However, by
exploring new data, it appears that sample-specific biases can be introduced and they can
result in the inference of spurious RCN profiles.

As I have shown, the spurious RCN profiles and sample-specific biases seem to be
associated with large-scale GC content (smoothed GC) and differential amplification of highly
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and lowly amplified loci between samples. I will now refer to these biases as GC bias and
amplification bias respectively.

Rather than model a global bias m, we can assume that there is some baseline or reference
bias, η0, and some multiplicative sample-specific bias, bj , which together give the expected
proportion of reads for the sample (assuming the sample is normal),

ηl,j = η0
l · bl,j (4.1)

here, bl,j captures a sample-specific bias for locus, l, and sample j, which may be composed
of several underlying sources.

Although I found GC and amplification biases in the data, there are potentially others.
Therefore, I tried to learn these biases from the data in a flexible manner. Here, I assumed
that bl,j was composed of several underlying biases that were multiplicative. Assuming D
sources of bias and instead modelling log ηl,j , this can be written as,

log ηl,j = log η0
l +Bl,1F1,j + · · · +Bl,DFD,j (4.2)

which can be written more compactly in matrix notation for all samples and loci,

logη = logη0 +BF (4.3)

Note that equation 4.3 is similar in form to a general factor model, in which B represents
the loading matrix and F represents the factor weights. Since η now replaces m in the
generative model of sample counts, instead of including an error term that is typical in factor
models, the noise is captured by the beta-binomial.

I attempted to use the control samples to learn B and F from the data. I do not show
the results here, however I note that I found this approach to be unsuccessful. When using
few dimensions (D ≤ 3), and by using 16 control samples, the model failed to adequately
capture the biases and correct the count proportions in the controls. Even with increasing D,
the model failed to capture the biases and instead, tended to over-fit to particular samples.
There could be several reasons for this. Perhaps more control samples are needed to be able
to learn the biases from the data. Also, given that each sample has its own inverse-dispersion
parameter, it may be that the model is insufficiently constrained; some samples could be
inferred to have unrealistically low or high count dispersion. Indeed, it may have been
appropriate to place a hierarchical prior on the sample inverse-dispersion parameters to draw
or shrink them towards a common value.

As the flexible factor model seemed to overfit, I chose to correct the two features I
identified to have a strong effect. I did this using a 2-dimension B-spline. The B-spline
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has the advantage that they can capture non-linear effects but be expressed as a linear
model. This meant that the B-spline design matrix now becomes the loading matrix, B, in
equation 4.3.

I used the bs function from the splines R package [237] to generate the B-spline basis
matrix associated with the GC bias and amplification bias. Here, the predictor variables
used were the smoothed GC values and the log mean count proportions across control
samples. The knot vector for smoothed GC was defined at intervals of 0.03 for smoothed
GC (in which GC is measured as a proportion), starting from the minimum smoothed GC
value associated with the locus minus 0.1 until the maximum smoothed GC value plus 0.1.
The knot vector for log mean proportions was defined at intervals of 0.6, starting from the
minimum log mean proportion minus 1 until the maximum log mean proportion plus 1. The
tensor.prod.model.matrix function from the mgcv R package was used to produce the
2-dimensional B-spline matrix given the smoothed GC and log mean proportion B-spline
matrices as an input. For the prostate cancer data set this resulted in a matrix (B) of size
16,403 by 156.

The optimizing function from the Rstan package [264] was used to provide a MAP
estimate for logη0, F and s, given the counts, x, for all control samples (1, . . . , J) and the
matrix B. The RStan code describing the model can be found in Appendix B. This model
replaces algorithm 1 that was used to infer m and s described in chapter 2. To make the
model identifiable, the last column of F , representing the factors associated with sample J ,
were set to zero. This means that η0 can be interpreted as the expected proportion of reads
for sample J . Therefore, sample-specific biases are measured relative to those of sample J .

Figure 4.17 and 4.18 show the smoothed GC against the scaled counts of the control
samples without (algorithm 2) and with correction (Rstan model, appendix B), respectively.
We see that, without correction the effect of GC and amplification bias can be seen in the
scaled counts and we can see the sample-specific nature of the biases. With correction, the
biases appear to be corrected; the relationship between the scaled counts and smoothed GC
is no longer present and we do not see a shift in the scaled counts that is dependent on η.
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Figure 4.17 Smoothed GC against scaled count without correcting for GC and amplification
biases for all control samples. Each point represents a FAST-SeqS locus within chromosomes
1-22. Each point is coloured by the log of its associated inferred expected proportion of
aligned reads (m̂) using algorithm 2.
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Figure 4.18 Smoothed GC against scaled count after correcting for GC and amplification
biases for all control samples. Each point represents a FAST-SeqS locus within chromosomes
1-22. Each point is coloured by the log of its associated, sample-specific inferred expected
proportion of aligned reads (η) using the Stan model shown in Appendix B.

Updating the MCMC algorithm to account for sample-specific biases

I updated the MCMC algorithm described in algorithm 2 (section 2.7) to jointly infer the
sample-specific biases and the RCN profile for a test sample. In the updated algorithm,
the m̂ vector is replaced and B, logη0 along with priors on F are passed to the algorithm
instead. By jointly inferring the factors (F ) associated with the test sample, η replaces m̂.
In order to sample F , I added an additional Metropolis-Hastings step to algorithm 2. As
there are a large number of correlated parameters, I used a block update step to update F
rather than updating each factor independently. To do this, the proposal was drawn from a



172 Modifications to the primer design, processing pipeline and conliga model

multivariate Normal distribution centred at the previous values of F and with a correlation
matrix, Σ. The value of Σ that I used is the same as that used in the Gibbs update of a
multivariate Normal regression, i.e. (BTB)−1. While we are not performing multivariate
Normal regression, the correlation structure is likely to be similar and should result in a more
efficient sampling of F . Algorithm 3 describes the blocked update Metropolis-Hastings step
which is called before the sampleHyperparameters function in algorithm 2.

Algorithm 3 Metropolis-Hastings block update step for F
function sampleF(B, log η0,Σ, σF , ψµ, ψσ2 )

Draw proposed factors from multivariate Normal:
F ∗ ∼ Normal (F ,Σ)
Calculate resulting proposed η∗ and η:
η∗ ← B · F ∗ + log η0

η ← B · F + log η0

Ensure resulting proposed η∗ and η sum to 1:
η∗ ← η∗/

∑
r,l
η∗

r,l

η ← η/
∑

r,l
ηr,l

pold ←
∑

r∈R

∑Lr

l=1

(
log fBB(yr,l; ñ, s̃ĉzr,lηr,l, s̃(1− ĉzr,lηr,l))

)
+
∑

d
log fNormal(Fd;ψµ, ψσ2 )

pnew ←
∑

r∈R

∑Lr

l=1

(
log fBB(yr,l; ñ, s̃ĉzr,lη

∗
r,l, s̃(1− ĉzr,lη

∗
r,l))
)

+
∑

d
log fNormal(F ∗

d ;ψµ, ψσ2 )
p ∼ U(0, 1)
if exp(pnew − pold) < p then

Accept new value: F = F ∗

Set η ← η∗

return F ,η

Here, fNormal(x;µ, σ2) = 1
σ

√
2π
e− 1

2 ( x−µ
σ

)2 . In practice the current values of
log fBB(yr,l; ñ, s̃ĉzr,l

ηr,l, s̃(1 − ĉzr,l
ηr,l)) for all r, l, and η are cached following the update of

the relative copy number for each state and the sample inverse-dispersion.

4.6 Comparing results: inferred RCN profiles with and with-
out bias correction

In this section, I compare some of the results obtained from the original conliga model,
which did not correct for sample-specific biases, with those obtained with the new model.
There are several things to investigate. Firstly, do we see flat RCN profiles when inferring
SCNAs in normal samples? Secondly, are true SCNAs present after bias correction or are
they inadvertently regressed away? Thirdly, are false positive SCNA calls introduced by the
correction of biases? Finally, do we see evidence of true SCNAs when correcting biases that
were not seen before correction?
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Figure 4.19 shows the RCN profiles inferred for three control samples when correcting
for biases. These control samples were presented in figure 4.7 as examples of samples that
had inferred profiles with spurious RCN states when not correcting for biases. Sample 45
was strongly affected by GC and amplification bias and was inferred to have a flat RCN
profile by jointly inferring the sample-specific biases. Recall from figures 4.19, 4.14 and 4.16
that higher smoothed GC was associated with increased read proportions in sample 43 and
decreased read proportions for sample 79. In both these cases, the biases were corrected with
the updated method and flat RCN profiles were obtained. In all three samples, we see loci
with short RCN changes, involving a single locus or very few loci. However, note that we
have seen this previously (chapter 2, figure 2.12 for example) and I believe this is unlikely to
have been introduced by the bias correction.

Figure 4.19 Inferred RCN profiles for three normal prostate samples using sample-specific bias
correction. These samples were shown to have spurious RCN profiles in in figure 4.7. Each
black point represents the MAP RCN inferred for each locus. The coloured points represent
the scaled count for each locus coloured by the log of the inferred expected proportion of reads
to align to each locus for each sample, (log η), which takes into account the sample-specific
biases.
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Figures 4.20 and 4.21 show examples of inferred RCN profiles in prostate cancer samples
with and without bias correction. Samples from these patients were also sequenced using
HC WGS as part of the prostate ICGC project. However, the samples we sequenced using
FAST-SeqS were spatially related but non-identical samples taken from regions in close
proximity to those sequenced by WGS. While we are able to see the loss of 8p and gain of 8q
without bias correction in sample 7, the RCN profile inferred for the other chromosomes is
consistent with that influenced by a strong GC bias. After bias correction is performed, the
GC signal is removed and the loss of chromosome 8p and gain of 8q remains. Moreover, we
are able to detect the subclonal deletions, called by Batternberg [265] using the HC WGS
data, involving chromosome 5q and 12q that were not detectable by conliga without bias
correction. Indeed the subclonal alteration within 12q includes 12q24.3 which is commonly
deleted in prostate cancer [266]. Prior to correction, sample 9 has evidence of strong GC bias
also (figure 4.21). After correction, the GC bias signal is removed. Encouragingly, several
subchromosomal deletions are not regressed away in the process. These include deletions seen
within 2q, 3p, 3q, 5q, 6q and 13q. Indeed, a short focal deletion which involves a deletion of
both alleles on 2q is observed and even very short alterations such as these do not appear to
be regressed away by the bias correction.
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Figure 4.20 Comparison of Batternberg inferred copy number profiles (allowing for subclonal-
ity) and conliga inferred RCN profiles for prostate cancer sample 7 with and without bias
correction. A: Inferred Batternberg profile showing the mean total copy number of the clones
(black) and the mean minor allele copy number of the clones (red). B: The RCN segmented
profile called by Batternberg prior to subclonal inference. C: RCN profile inferred by conliga
without bias correction. D: RCN profile inferred by conliga with bias correction.
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Figure 4.21 Comparison of Batternberg inferred copy number profiles (allowing for subclonal-
ity) and conliga inferred RCN profiles for prostate cancer sample 9 with and without bias
correction. A: Inferred Batternberg profile showing the mean total copy number of the clones
(black) and the mean minor allele copy number of the clones (red). B: The RCN segmented
profile called by Batternberg prior to subclonal inference. C: RCN profile inferred by conliga
without bias correction. D: RCN profile inferred by conliga with bias correction.

Figure 4.22 provides another example corresponding to sample 65. In this case, GC
and amplification biases do not appear to introduce spurious copy number states prior
to correction. This is despite amplification bias being present in the data, whereby lowly
amplified loci typically have a lower count than expected. The profiles obtained from each tool
are similar. This provides further evidence that true SCNAs do not appear to be regressed
away by the bias correction. Figure 4.23 shows more detailed profiles for chromosomes 3, 5,
13 and 17 for sample 65. In chromosome 3, conliga (with and without bias correction) is able
to detect a loss including 3p13, which is commonly deleted in prostate cancer [266] and a
subclonal deletion occurring at the start of 3q (figure 4.23A). In addition to this, two focal
deletions are detected that are also detected by Batternberg.
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Figure 4.22 Comparison of Batternberg inferred copy number profiles (allowing for subclonal-
ity) and conliga inferred RCN profiles for prostate cancer sample 65 with and without bias
correction. A: Inferred Batternberg profile showing the mean total copy number of the clones
(black) and the mean minor allele copy number of the clones (red). B: The RCN segmented
profile called by Batternberg prior to subclonal inference. C: RCN profile inferred by conliga
without bias correction. D: RCN profile inferred by conliga with bias correction.
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Figure 4.23 Comparison of the weighted mean total copy number of the clones inferred by
Batternberg against conliga inferred RCN profiles for prostate cancer sample 65 with and
without bias correction in particular chromosomes. A: chromosome 3. B: chromosome 17. C:
chromosome 5. D: chromosome 13. Top: conliga RCN inference without correction. Black
points represent the inferred MAP RCN. Coloured points represent the scaled count for each
locus coloured by the log of the inferred expected proportion of reads to align to each locus
(log m̂). Middle: conliga RCN inference with correction. Black points represent the inferred
MAP RCN. Coloured points represent the scaled count for each locus coloured by the log
of the inferred expected proportion of reads to align to each locus for each sample taking
into account sample-specific biases (log η). Bottom: Batternberg mean TCN weighted by
the inferred clone proportions. Regions of interest are highlighted in purple. Grey sections
correspond to the p arm of the chromosome while white sections correspond to the q arm of
the chromosome.

Batternberg and conliga infer a complex SCNA profile within chromosome 5 (figure 4.23C),
including a homozygous deletion of CHD1 which encodes chromodomain helicase DNA-binding
protein 1. Prostate tumours with CHD1 loss comprise a distinct subtype which typically
include SPOP mutations but lack the commonly seen TMPRSS2-ERG fusions and PTEN
deletions [266, 267]. The subtype is generally characterised by increased genomic instability.
CHD1 has been shown to be involved in double-strand break (DSB) repair [268, 267]. Loss of
CHD1 impairs the homologous recombination (HR) repair mechanism leading to increased
use of the error-prone non-homologous end joining (NHEJ) repair mechanism [268, 267].
Recent studies suggest that PARP inhibitors and DNA damaging agents (such as olaparib,
carboplatin and mitomycin C) could be effective treatments for prostate cancers harbouring
CHD1 deletions [268, 267].

By performing bias correction, conliga is able to detect focal deletions that occur close to
13q14.13 which is also commonly deleted in prostate cancer [266]. Without bias correction,
conliga was unable to detect this (figure 4.23A). Furthermore, after bias correction, conliga
infers what appears to be a subclonal event involving deletion of TP53. Before correction, a
focal deletion was inferred close to TP53 (figure 4.23B). These alterations were not detected
by Batternberg and could be either false positives inferred by conliga or represent true
SCNAs.

The WGS sample associated with FAST-SeqS sample 70 was inferred to have low tumour
purity, with a purity of 17% determined by Batternberg. Using the single-end pipeline
and without bias correction, conliga fails to detect the deletions detected by Batternberg
(figures 4.24 and 4.25). However, after using the new pipeline and by correcting for biases,
conliga is able to detect the deletions in chromosome 1, 2 and 21 (figures 4.25A, 4.25B, and
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4.25D). The loss involving chromosome 21q occurs in a commonly deleted region, which
includes ERG and TMPRSS2 [266].

Figure 4.24 Comparison of Batternberg inferred copy number profiles (allowing for subclonal-
ity) and conliga inferred RCN profiles for prostate cancer sample 70 with and without bias
correction. A: Inferred Batternberg profile showing the mean total copy number of the clones
(black) and the mean minor allele copy number of the clones (red). B: The RCN segmented
profile called by Batternberg prior to subclonal inference. C: RCN profile inferred by conliga
without bias correction. D: RCN profile inferred by conliga with bias correction.
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Figure 4.25 Comparison of the weighted mean total copy number of the clones inferred by
Batternberg against conliga inferred RCN profiles for prostate cancer sample 70 with and
without bias correction in particular chromosomes. A: chromosome 1. B: chromosome 2. C:
chromosome 20. D: chromosome 21. Top: conliga RCN inference without correction. Black
points represent the inferred MAP RCN. Coloured points represent the scaled count for each
locus coloured by the log of the inferred expected proportion of reads to align to each locus
(log m̂). Middle: conliga RCN inference with correction. Black points represent the inferred
MAP RCN. Coloured points represent the scaled count for each locus coloured by the log
of the inferred expected proportion of reads to align to each locus for each sample taking
into account sample-specific biases (log η). Bottom: Batternberg mean TCN weighted by
the inferred clone proportions. Regions of interest are highlighted in purple. Grey sections
correspond to the p arm of the chromosome while white sections correspond to the q arm of
the chromosome.

4.7 Discussion and Summary

This chapter details the process of carrying out our own FAST-SeqS experiments within the
Tavaré laboratory applied (primarily to) prostate samples. The first challenge was to adapt
the primers to utilise higher-throughput Illumina machines such as the Illumina HiSeq 4000.
Relative to the MiSeq, these machines tend to perform poorly in sequencing low-diversity
libraries such as ours. By incorporating UMIs with varying lengths, I appeared to mitigate
this issue without having to spike proportionally more PhiX control and reduce the cost-
effectiveness of the assay. Further experiments should be done to explore the possibility of
reducing the proportion of PhiX control used and perhaps removing its use altogether. This
experiment showed that we were able to successfully scale-up the sequencing of FAST-SeqS
samples, reducing the cost per sample. Hence, the experiment provides further evidence that
FAST-SeqS and conliga could be used in clinical and research applications.

By including unique dual indices (UDIs), I was able to explore the problem of index
swapping (also known as index hopping or index cross-talk). These results suggest that it is
important to include UDIs in FAST-SeqS experiments. We saw that index cross-talk occurs
at a relative high rate with 3.8% of the reads being assigned to invalid index combinations.
The results show that there is a background level of cross-talk which could have various
causes, one of which may be index hopping occurring on the flow-cell. We saw that index
cross-talk occurs more frequently in a pattern consistent with the order of pipetting and with
the order of the sample number. Further experiments are needed to determine the origin of
this issue and also to explore ways to reduce the level of index cross-talk.



4.7 Discussion and Summary 183

An exploration of the data from the new paired-end and UMI aware pipeline, showed
that BWA-MEM appears to be more appropriate for the alignment of FAST-SeqS data
when compared with Bowtie 2. By using the UMIs, we can calculate the proportion of
unique molecules observed at each locus. This appears to be a useful metric in identifying
loci that see many false positive alignments. My current strategy to filter low-quality loci,
particularly selecting only those that have a non-zero count in all control samples, will lead
to over-filtering. Those loci that were not observed purely because of sampling error will be
unnecessarily excluded. Further work is needed in this area to use the features of the data to
select the most appropriate set of loci to use.

The major finding of this chapter is that sample-specific biases were present in these data
and they can result in the inference of spurious RCN profiles. These effects were seen in
previous data sets but at seemingly lower frequency. Moreover, they tended not to affect the
RCN inference. This may be because the sample-specific biases were not as strong in the
OAC and Barrett’s oesophagus data sets as they are in the prostate data set. In part, it may
also be due to obtaining fewer reads per sample and the associated reduction in statistical
strength meant that these biases did not result in an inferred RCN signal.

My attempts to use a factor model to learn the biases from data proved to be unsuccessful.
Although, as I noted, by using more samples and modifying the model, this might be possible.
Two major causes of sample-specific bias were discovered; a bias associated with large-scale
genomic GC content (which I referred to as smoothed GC) and an amplification bias which
saw differential amplification of lowly and highly amplified loci between samples. By using
a 2-dimensional B-spline and making modifications to the conliga model, I was able to
successfully correct for these biases. By jointly inferring the sample-specific effects of GC
and amplification bias, control samples were inferred to have flat RCN profiles. True SCNAs
did not appear to be regressed away by the bias correction and few, if any, RCN artifacts
were introduced by correcting for biases. In the case of a low purity sample, the correction of
biases led to seemingly increased sensitivity, with RCN profiles obtained that were similar
to those inferred by Batternberg. Without correction, flat RCN profiles were inferred. Of
course, Batternberg corrects for GC bias also and as such, both methods may be introducing
similar spurious calls by doing so. However, this explanation seems less plausible.

In a few cases (not shown), the updated model was unable to remove sample-specific
biases from the data. This was seen in samples obtained from blood but also in a few obtained
from prostate tissue. This suggests that the model is not perfect and further work is needed
to identify and correct all the sources of sample-specific biases. However, more importantly,
further work should be done to find out where and how these sample-specific biases are
introduced. Where possible, effort should be made to eliminate or substantially reduce these
sources of bias.
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I used a 2-dimensional B-spline which could correct for interactions between GC and
amplification biases. In part, I did this because it was straightforward to implement, using
code I had developed for the factor model, and that an interaction effect between GC and
amplification bias seemed plausible. However, I did not test the use of two independent
B-splines to correct for the effects. This model would result in considerably fewer variables
and, if sufficient, would be preferable. Furthermore, I did not extensively test the number
of knots for the B-splines. Increasing or decreasing the number of knots would result in a
more flexible or inflexible spline, respectively. It is conceivable that improvements could be
made by altering the placement and the number of knots. Moreover, the use of a penalised
B-spline may be more appropriate to avoid over-fitting and regressing away true SCNAs.

While B-splines are convenient, it may be possible to use less-flexible parametric shapes
instead. Looking at samples 45 and 50 in Figure 4.16, potentially the amplification bias could
be modelled by a sigmoid or logistic function. This would help to constrain the model and
reduce the number of variables.

In the next chapter, I explore the potential use of SNP data within the FAST-SeqS
amplicons. I focus on the use of FAST-SeqS and conliga as a tool to screen and estimate the
purity of samples, prior to sequencing them with more expensive methods such as WGS.

4.8 Methods

4.8.1 Preparation of FAST-SeqS libraries

The FAST-SeqS libraries were prepared by Sarah Field from the Tavaré laboratory at the
Cancer Research UK Cambridge Institute. Libraries were created similarly to those previously
described.

The first round PCR reaction (PCR1) was performed using 1 µl DNA (50 ng/µl), 25 µl
Phusion HiFi Master Mix (ThermoFisher F531L), 0.5 µl PCR1 Forward Primer (10 µm,
Sigma), 0.5 µl PCR1 Reverse Primer (10 µm, Sigma), 23 µl nuclease free water (NFW).

The cycling conditions for PCR1 were 98 ◦C for 2 minutes followed by 2 cycles of: 98 ◦C
for 10 seconds, 57 ◦C for 2 minutes and 72 ◦C for 2 minutes. This was followed by 4 ◦C until
the samples underwent bead clean-up.

Following PCR1, 1.4X AMPure bead clean-up was performed for each sample as follows.
70 µl Agencourt AMPure XP beads (Beckman Coulter A63881) were added to the mix and
samples were incubated at room temperature for 2 minutes, placed on a magnetic rack until
clear. Supernatant was removed and each sample was washed two times with 80% ETOH.
Finally, 10 µl NFW was eluted into purified PCR1 product for each sample.
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PCR2 was performed using 10 µl of PCR1 product, 25 µl Phusion HiFi Master Mix
(ThermoFisher F531L), 0.5 µl PCR2 Forward Primer (10 µm, Sigma), 0.5 µl PCR2 Reverse
Primer (10 µm and 14 µl nuclease free water (NFW).

The cycling conditions for PCR2 were 98 ◦C for 2 minutes followed by 13 cycles of, 98 ◦C
for 10 seconds, 57 ◦C for 2 minutes and 72 ◦C for 2 minutes. This was followed by 4 ◦C until
the samples were cleaned-up. Each PCR2 product (sample) underwent a 1X AMPure bead
clean-up as follows. 50 µl Agencourt AMPure XP beads (Beckman Coulter A63881) were
added to the mix, incubated at room temperature for 2 minutes and placed on a magnetic
rack until clear. Supernatant was removed and the PCR2 product was washed two times with
80% ETOH. Finally, 10 µl were eluted into purified PCR2 product for each sample. Finally,
purified products were quantified using the Qubit High sensitivity protocol (ThermoFisher
Q32854) and quality control was performed using BioAnalyser using DNA1000 chip (Agilent).
PCR2 products were then diluted accordingly such that they could be pooled in equimolar
ratios. After pooling, libraries were sequenced with 30% PhiX spike-in on an Illumina HiSeq
4000 lane.





Chapter 5

Towards allele-specific and single
cell copy number inference using
repeat DNA

The first half of this chapter outlines more recent work regarding the exploration of SNPs in
FAST-SeqS data and its implications for inferring allele-specific and subclonal copy number.
I show that by using SNP frequencies as an independent source of data, the purity and ploidy
of a sample can be estimated and conliga’s RCN calls can be converted to absolute and
allele-specific copy number. I then discuss future work and the considerations for integrating
SNP data into the conliga model.

The second half of the chapter focuses on the development of single-cell FAST-SeqS
(scFAST-SeqS). Inferring subclonal populations from bulk FAST-SeqS data may be possible
but is likely to be limited to few clones. By performing scFAST-SeqS, we may be able to gain
more insight into the subclones present in tumour populations. I discuss the experimental
protocols which were developed in collaboration with Sarah Field of the Tavaré laboratory at
the Cancer Research UK Cambridge Institute. I go on to explore data from scFAST-SeqS
pilot experiments using flow-sorted peripheral blood mononuclear cells (PBMCs). Finally, I
briefly discuss further work to extend the conliga model to infer the copy number profiles of
single cells.

5.1 Somatic and germline variants in FAST-SeqS data

In the previous chapter, I showed the presence of mismatches and indels (with respect to the
reference genome) in FAST-SeqS data. The vast majority of these mismatches and indels
will be introduced by errors and do not represent true variants. Errors are introduced by the
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process of PCR, sequencing, read processing and alignment. A minority of the mismatches
and indels present in FAST-SeqS data are genomic variants that may be either germline or
somatic in origin. We may assume that most of the mismatches and indels that are present in
low frequencies in a normal sample are errors though some may represent somatic mutations
occuring in a minority of cells. Those that are present in approximately 50% and 100% of
reads aligned to particular locus may be true variants. Most likely, these will be germline
variants that are also present in the general population; single nucleotide polymorphisms
(SNPs). Indeed, the presence of SNPs in FAST-SeqS data has been noted by Douville et al.
also [107]. By using WGS samples from the 1,000 Genomes project [269], they identified
26,220 genomic positions within FAST-SeqS amplicons that had variants in ≥ 1% of the
samples [107] and therefore met the definition of a SNP. Douville et al. used these SNPs to
detect evidence of allelic imbalance at the chromosome arm-level [107].

As I discussed in the introduction, heterozygous variants present in the germline can be
informative for the inference of SCNAs. The proportion of reads that include a heterozygous
variant can be used to 1) infer the number of copies of each allele in tumour cells (allele-specific
copy number) and, 2) the proportion of tumour and normal cells in the sample. Also, they
may help to identify subclonal tumour populations, which we discuss later.

5.1.1 The distribution of indels and mismatches

Figure 5.1 shows the distribution of indels and mismatches present in a normal prostate sample.
Here, I am using BWA-MEM aligned reads that were processed by the pipeline described in
the previous chapter. Alignments with a mapping quality below 50 were excluded as were
indels and mismatches with a Phred quality score below 20. A total of 93,309 mismatches
and indels are found within the autosomes of this sample. Of these, 83,174 are observed at a
frequency of less than 0.25 and are likely to be errors. 772 were present at a frequency of 1
and have a least 10 reads supporting them. These are likely to be homozygous non-reference
variants but may additionally include mixture of alignment errors and artifacts of an imperfect
reference genome. There are 3,237 mismatches and indels observed with a frequency of 0.25
to 0.75. Some of these will be somatic and germline variants and we may assume the majority
are heterozygous SNPs. Some of these mismatches and indels may include PCR errors and
other artifacts.

Of the 3,237 mismatches and indels observed with frequencies between 0.25 and 0.75,
85.54% (2,769) fall within the 90% confidence interval of a binomial distribution; Binomial(n, 0.5),
where n is the total number of reads supporting the position, excluding ambiguous base
calls and bases with a Phred quality score below 20. This suggests that there is additional
variation in the data beyond merely sampling error. Additional variability may be introduced
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Figure 5.1 Distribution of mismatches and indels to the reference genome seen in aligned
FAST-SeqS amplicons for normal prostate sample 79. A: Proportion of indels and mismatches
at each genomic position plotted across autosomes. The colour of each point represents the
number of reads covering the genomic position. B: The proportion of reads supporting the
indels or mismatches against the number of reads covering the genomic position.

by the two-step PCR process or downstream processing. Also, the data may not be binomially
distributed because there may be errors mixed with the true variants.

In section 5.3, I consider the implications of errors and SNP distributions in order to
integrate SNP data into the conliga model to infer copy number from FAST-SeqS data.
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5.2 Using mismatches and indels as independent supplemen-
tary information

A natural extension of the conliga model would be to integrate SNP data into the model and
infer allele-specific copy number and potentially subclonal information. However, even in
conliga’s current form, these data can be useful as supplementary information to the relative
copy number calls. Using inductive reasoning, we may be able to convert the RCN calls to
absolute copy number and allele-specific copy number calls. In doing so, we will be able
estimate the tumour purity and average ploidy of the sample.

From equation 1.6, we know that the relative copy number of a locus, l, is given by:

ĉl = 2(1 − p) + tl · p
d

where p represents the purity of the tumour, tl represents the total copy number (where
tl = nal + nbl) assuming a sample consisting of one clone plus normal contamination (1 − p),
and d represents the sample ploidy (d = ∑

l m̂l · cl). Therefore we have,

k = ĉl

ĉl′
= 2(1 − p) + tl · p

2(1 − p) + tl′ · p
(5.1)

where l′ represents a locus that is not l. By rearranging for p, we obtain:

p = 2 − 2k
k(tl′ − 2) − tl + 2 (5.2)

where tl and tl′ represent the absolute copy number of the tumour population for locus l and
l′ respectively.

Similarly, we can estimate the sample ploidy, d,

d = 4 − 4p+ p(tl + tl′)
ĉl + ĉl′

(5.3)

As such, if we are able to make an informed estimate of the absolute copy number for two
loci, then we can use equations 5.2 and 5.3 as a simple method to estimate the tumour purity
and sample ploidy.

Figure 5.2A shows the inferred RCN profile for a prostate cancer sample (sample 67). We
know that, even copy numbers (i.e tl ∈ {0, 2, 4, . . . }) are those that can have equal copies
of each allele, whereas odd copy numbers cannot. Therefore, copy number states that have
indel and mismatch proportions centred around 0.5 are likely to represent even copy numbers.
Figure 5.2C shows the distribution of mismatch and indel proportions associated with each
copy number state. In this case, the copy number state which is associated with the most loci
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is the only state that appears to have proportions around 0.5. Let’s assume that this state
represents a copy number of 2 in the tumour population, while the two other major states
represent copy numbers 1 and 3. By using equations 5.2 and 5.3 we can estimate that p is
0.559 and d is 1.998. By plugging these estimates in to equation 1.8 and for every possible
combination of major and minor alleles, we obtain expected B allele frequencies. We see that
B allele frequencies align with the observed indel and mismatch proportions and suggests
that this solution fits the data well (figures 5.2C and D).
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Figure 5.2 The inference of purity and ploidy for prostate cancer sample 67. A: Inferred
SCNA profile using conliga’s MAP state method. Black points represent the inferred MAP
RCN for the loci’s MAP state. Coloured points represent the scaled count for each locus
coloured by the log of the inferred expected proportion of reads to align to each locus for the
sample taking into account sample-specific biases (log η). B: Mismatch and indel frequencies
across every base in FAST-SeqS amplicons. Coloured points represent the scaled count for
each locus coloured by the number of reads covering the base (log). C: Histogram of inferred
FAST-SeqS loci RCN. D: Indel and mismatch frequencies in FAST-SeqS amplicons plotted
against the number of reads supporting the base position per relabelled copy number state.
CN represents our inferred absolute copy number for each relabelled copy number state.

Figure 5.3A shows the inferred RCN profile for a OAC sample (OAC4). Note that this
sample was processed using the original pipeline, which uses Bowtie 1 (see section 2.4). As
such, indels will not be present in the data. As I discussed in chapter 3 and section 3.1.7, a
catastrophic genome-doubling event often occurs early in development. A potential solution
in which the copy number state that has SNP proportions around 0.5 is assumed to represent
copy number 4 in the tumour population is shown in figures 5.3C and 5.3D. By calculating
the purity and ploidy, the B allele frequencies align with the observed SNP frequencies
suggesting that the solution is probable. These results suggest that much of the tumour
genome has undergone copy neutral LOH, perhaps following an initial genome-doubling event.
In addition, the results suggest evidence of subclonal alterations affecting chromosome 10.
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Figure 5.3 The inference of purity and ploidy for oesophageal sample OAC4. A: Inferred
SCNA profile using conliga’s MAP state method. Black points represent the inferred MAP
RCN for the loci’s MAP state. Coloured points represent the scaled count for each locus
coloured by the log of the inferred expected proportion of reads to align to each locus
(log m̂). The arrow indicates a potential subclonal copy number state. B: Mismatch and indel
frequencies across every base in FAST-SeqS amplicons. Coloured points represent the scaled
count for each locus coloured by the number of reads covering the base (log). C: Histogram of
inferred FAST-SeqS loci RCN. The arrow indicates a potential subclonal copy number state.
D: Indel and mismatch frequencies in FAST-SeqS amplicons plotted against the number of
reads supporting the base position per relabelled copy number state. CN represents our
inferred absolute copy number for each relabelled copy number state.

5.2.1 Estimating purity for low purity samples

At low tumour purity, it is difficult to notice differences in B allele frequencies associated
with different copy number states (by inspection). By itself, this information tells us that
the sample is likely to be low purity. However, we can make assumptions without the use
of B allele frequencies to estimate the purity and ploidy. For example, conliga might infer
RCN profiles for prostate cancer samples that are predominantly flat but also includes a copy
number state with slightly lower RCN (excluding states that appear to represent outliers or
CNVs). In these cases, we might assume that the majority of the tumour genome is copy
number 2 and the state with lower RCN represents copy number 1 or 0. With this assumption,
we can estimate purity and ploidy. Table 5.1 shows the ploidy and purity estimates using
conliga’s RCN profiles for several samples that were determined by a pathologist to be low
purity.

Large-scale cancer genome studies like those carried out by ICGC and TCGA require a
pathologist to initially screen and estimate the purity of several samples taken from each
patient. This initial screening is performed so that resources are spent only on those samples
with sufficient purity. Given the chosen mean coverage of WGS (typically 30X-50X), a
certain tumour purity threshold is required so that the experiments are sufficiently powered
to detect somatic mutations, e.g. SNVs and SCNAs. Pathologist estimates often overestimate
the tumour purity [270]. After sequencing, some samples are estimated to have lower
tumour purity than expected and are required to be excluded from tumour genome studies.
Furthermore, rather than counting tumour nuclei, the time of a pathologist is better spent
on other clinical and research activities. FAST-SeqS and conliga may provide a low-cost
alternative to estimate tumour purity and select samples for more in depth sequencing (such
as HC WGS).
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Sample Ploidy Purity Pathology

18 1.990 0.118 0.05
19 1.990 0.135 0.1
20 1.986 0.137 0.15
21 1.993 0.090 0.15
22 1.998 0.102 0.1
23 2 0 0.05
24 2 0 0
25 1.989 0.087 0.15
26 2 0 0.1
27 1.999 0.183 0.1
29 1.993 0.118 0.1
30 2 0 0.05
31 1.993 0.103 0.1
32 2.009 0.188 0.1
33 2.004 0.155 0.05
34 1.992 0.314 0.2
35 1.986 0.231 0.25
36 1.994 0.088 0.05
37 2 0 0
38 1.989 0.375 0.05
39 1.980 0.370 0.1
40 2 0 0.15
41 1.995 0.086 0.1

Table 5.1 Estimates of ploidy (‘Ploidy’) and purity (‘Purity’) for 23 low purity prostate
cancer samples using conliga’s RCN inference compared with purity estimates provided by a
pathologist (‘Pathology’). Purity estimates are given as a proportion of tumour DNA within
each sample. These estimates were made by assuming the most common state (i.e. the state
mostly commonly assigned to loci) represents copy number 2, and that a state with lower
RCN (chosen by inspection) represented copy number 1.

A study by Griffith et al. concluded that greater than 30-50X coverage is required to
account for tumour heterogeneity, aneuploidy or for samples with high normal contamination
[270]. 30-50X coverage is sufficient to detect SNVs in founding clones of tumour samples with
high purity. However, they found that 30X is insufficient to infer clonal architecture and
detect variants at ≤ 15% variant allele frequency (VAF), even in tumour samples with at
least 90% purity, and 50X provides insufficient coverage to discover variants at < 10% VAF
[270]. By initially screening samples with FAST-SeqS and conliga, these factors could be
estimated. Hence, researchers may be able to scale the sequencing resources to each sample
individually, depending on the goals of the study.
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5.3 Considerations for integrating SNP data to the conliga
model

I have shown that B allele frequency data obtained from FAST-SeqS reads can be used as a
supplementary source of information to translate conliga’s RCN inference to allele-specific
calls and estimate purity and ploidy. Instead, we could include the B allele frequencies
in the model directly whereby they are emitted as observations by a copy number state.
Therefore, we could jointly segment the genome using the B allele frequencies and read depth
data. In doing so, we could achieve increased sensitivity and specificity in calling SCNAs as
well as directly inferring absolute, allele-specific copy number, purity, ploidy and subclonal
populations.

Integrating B-allele frequencies into conliga is planned future work. Further exploration
of the BAF distributions would be required to sufficiently model the observations. We may
wish to take a similar approach to Douville et al. [107] and use WGS data to create a set of
known positions within FAST-SeqS amplicons that are SNPs. By doing so, we will filter out
much of the PCR and sequencing errors. Alternatively, we could model the mismatch and
indel emissions at every position within each FAST-SeqS amplicon. The emission distribution
would need to adequately model the noise processes and homozygous SNPs. However, this
approach would be computationally more expensive and if the distributional assumptions of
the noise processes do not fit the data well, then spurious segmentation would be the result.
As such, selecting the positions that are known to be SNPs would be the more pragmatic
approach.

Currently, the pipeline does not use the UMI clusters when reporting indels and mis-
matches. The pipeline could be extended to find a consensus read for each UMI cluster. By
doing so, this should remove some of the PCR and sequencing errors present in the data.
Indeed, by using the number of clusters as n and p as the frequencies of mismatches and
indels in the consensus reads, we may find that distribution of heterozygous SNPs is binomial.

There are several methods that attempt to resolve the subclonal architecture of tumour
samples from bulk sequencing data [271–281], typically with the use of WGS, WES or deep
targeted sequencing data. These methods can typically be divided into those that 1) use
SNVs or 2) use SCNAs [278, 280]. However, some use both. The discussion of inferring
subclonal architecture from FAST-SeqS data is beyond the scope of this thesis. However,
FAST-SeqS data is more noisy than WGS and calling SNVs within FAST-SeqS amplicons is
likely to be very challenging. As such, the inference of clonal architecture from FAST-SeqS
data may be practically limited to the inference of few subclones.
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5.4 Single-cell FAST-SeqS

5.4.1 Motivation

The low-cost and simplicity of the FAST-SeqS protocol makes its application to single cells
appealing. Single-cell FAST-SeqS (scFAST-SeqS) may enable the low-cost SCNA profiling
of hundreds or thousands of single cells. This would avoid the need to infer subclonal
populations from bulk sequencing data, particularly using methods that use SCNAs as the
basis of subclonal architecture inference.

5.4.2 scFAST-SeqS experiments

To investigate whether scFAST-SeqS could be used for this purpose, I designed an experiment
in which we obtained PBMCs from two anonymous donors; one male donor and one female
donor. These PBMCs were flow sorted into 384-well plates. Given that we were dealing with
very low input DNA, it was likely that the number of cycles needed for PCR1 would need
to be increased. Also, since the bead clean-up is the most technically challenging part of
the protocol, we wanted to see if this could be replaced with a technically simpler solution.
Therefore, we tested using ExoSAP to enzymatically purify PCR product between PCR1
and PCR2 reactions.

Our first attempt involved carrying out five rounds of PCR1, with ExoSAP clean-up and
with bead clean-up. This was performed on 80 cells with the following experimental design:

1. 20 female PBMCs, 5 cycles of PCR1, ExoSAP clean-up

2. 20 male PBMCs, 5 cycles of PCR1, ExoSAP clean-up

3. 20 female PBMCs, 5 cycles of PCR1, Bead clean-up

4. 20 male PBMCs, 5 cycles of PCR1, Bead clean-up

The cells that were purified using the ExoSAP protocol produced reads that were composed
almost exclusively of primer-dimer. The cells that had PCR1 product purified using beads
produced reads originating from FAST-SeqS loci. However, relatively few loci appeared to
be amplified per cell. These results suggest that the ExoSAP protocol degraded the PCR1
product in addition to the PCR1 primers and that we needed to increase the number of PCR1
cycles. Therefore, we attempted another pilot experiment with the following experimental
design:

1. F10: 20 female PBMCs, 10 cycles of PCR1, Bead clean-up
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2. M10: 20 male PBMCs, 10 cycles of PCR1, Bead clean-up

3. F15: 20 female PBMCs, 15 cycles of PCR1, Bead clean-up

4. M15: 20 male PBMCs, 15 cycles of PCR1, Bead clean-up

By increasing the cycles of PCR1, we were able to increase the number of FAST-SeqS
loci amplified per cell. The results of this experiment are presented in this chapter.

5.4.3 Results

After demultiplexing the reads into samples, representing individual cells, I saw similar index
swapping patterns and rates as those presented in chapter 4 (not shown). A few cells appeared
to have very few reads associated with them, suggesting that the PCR reaction failed for
these cells or that no cells were sorted into these wells. As such, cells with less than 100,000
reads were removed from the analysis. This left 18, 19, 19 and 20 cells for F10, M10, F15
and M15 respectively.

In chapter 4, I mentioned two methods to cluster UMIs to identify unique molecules from
PCR1. The combined method worked by clustering pairs of 5’ and 3’ UMIs together. The
separate method works in the same way but clusters each UMI separately. Therefore, reads
are assigned a 5’ UMI cluster and a 3’ UMI cluster. In the protocols developed for single cell,
more than two cycles of PCR1 were performed. This will result in UMIs being "swapped
out" with further amplification after cycle two. In theory, clustering the UMIs separately
could allow us to identify some cases in which the UMIs swapped. In practice, the separate
clustering method failed. This is because we saw low-diversity of UMI sequences and as such, it
appeared that UMIs were being clustered together erroneously. After investigation, it appears
that by opting for primers that were purified using high performance liquid chromatography
(HPLC), certain UMI sequences were preferentially purified [282]. As such, this reduced
diversity of UMI sequences and led to erroneous clustering. This was not observed when
clustering using the combined method.

The mean loci counts computed across cells from the same experimental condition could
be considered to be analogous to a bulk sample (pseudo-bulk). Figure 5.4 shows the mean
loci counts associated to each batch of cells (F10, M10, F15, M15). By comparing the mean
loci counts across cells derived from males and females, we see a similar effect as we see in
bulk samples; the raw counts or UMI counts scale proportionally with the number of copies of
DNA. By comparing the mean counts to a previously sequenced normal bulk prostate sample
(figure 5.5), we see that highly amplified loci in bulk samples tend to be highly amplified (on
average) in single cells and vice-versa.
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Figure 5.4 Comparison of male and female pseudo-bulk FAST-SeqS samples derived from
scFAST-SeqS data. A: Raw count proportions from the PCR1 X10 experiment. B: UMI
reduced count proportions from the PCR1 X10 experiment. C: Raw count proportions
from the PCR1 X15 experiment. D: UMI reduced count proportions from the PCR1 X15
experiment.
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Figure 5.5 Count proportions of previously sequenced male bulk prostate sample compared
with count proportions of scFAST-SeqS pseudo-bulk sample; top left: Female pseudo-bulk
sample from PCR 10X experiment, bottom left: Male pseudo-bulk sample from PCR 10X
experiment, top right: Female pseudo-bulk sample from PCR 15X experiment, bottom right:
Male pseudo-bulk sample from PCR 15X experiment

Figure 5.6A shows the mean-variance relationship of the loci UMI counts across the
experimental batches. By highlighting the proportion of cells that saw alignments at these
positions, we see that there are few loci that obtain alignments across all cells. The F10
batch appears to have a greater proportion of non-zero counts at FAST-SeqS loci compared
to the other batches. The reason for this is unclear. The mean-variance relationship at
the single-cell level appears to be similar to the relationship seen in normal bulk samples
(figure 2.4E) and is similar across experimental conditions and batches. Figure 5.6B shows
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how the number of DNA copies affects the mean-variance relationship. Using the PBMCs
derived from males, we see that the loci counts associated with chromosome X and Y (one
copy) appear to have greater variance than those with the autosomes and pseudoautosomal
regions (two copies).

Figure 5.6 Mean UMI counts across the cells within an experimental condition plotted
against the variance of the UMI counts. A: Highlighting the proportion of cells within the
experimental batch that have a non-zero count at the FAST-SeqS locus. B: Highlighting the
copy number of the FAST-SeqS locus.

Figure 5.6 shows that the mean loci count (computed across cells) is greatly influenced
by the proportion of zero counts across cells. Figure 5.7 shows that the proportion of zero
counts within cells is related to the total UMI count of the cells; the greater the total UMI
counts, the fewer zeros are observed. This suggests that the average efficiency of PCR1 across
loci appears to vary between cells. The results from the mean-variance analysis suggest that
the proportion of zero counts at a locus across cells is related to the number of copies of the
locus (figure 5.6). By comparing the proportion of zero counts in different chromosomes for
each cell, we see that the number of copies affects the proportion of zeros seen; cells from
the male donor have a greater number of zeros in chromosomes X and Y compared to the
autosomes (figure 5.7).
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Figure 5.7 Proportion of loci within each cell that have a non-zero count within a region
plotted against the total number of UMI counts from the cell. Each point represents data
from chromosomes 1-22 (red), chromosome X (blue) or chromosome Y (green) from a single
cell.

As I have shown, we see a similar RCN signal from the mean loci counts across cells
(pseudo-bulk). However, do we see this signal within individual cells? Figure 5.8 shows
the proportion of UMI counts associated with different chromosomes. Here, we see that
cells derived from a male donor tend to have approximately half the proportion of counts
associated with chromosome X than those cells derived from the female donor (figure 5.8
top-right). As we have also seen in bulk samples, this results in proportionally more counts
in the autosomes for cells derived from the male donor (figure 5.8 top-left). Cells derived
from female cells see few counts associated with chromosome Y, as expected (figure 5.8
bottom-left). The PAR1 and PAR2 regions have few loci within them and we expect the
count proportions within these regions to be more variable. This is why we do not see (as
clearly) the reduced proportion of reads in cells derived from females compared with males
within the PAR1/2 regions as we see within chromosomes 1-22 (figure 5.8 bottom-right).

We see that the UMI count proportions from individual cells correlate with the mean UMI
count proportions across cells (figures 5.9A and 5.10A). Furthermore, we see that the slope
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Figure 5.8 Proportion of UMI counts from each region of the genome (chromosomes 1-22,
chromosome X, chromosome Y and PAR1/2) plotted against the total UMI count of the cell
and coloured by the experimental condition. Each point represents data from a single cell.

of the relationship varies depending on the number of zero counts the cell has (figures 5.9
and 5.10). Intuitively this is as we would expect; cells with greater zero counts share counts
across fewer loci and therefore see greater count proportions. Intriguingly, when inspecting
the UMI count proportions and their distribution (figures 5.9 and 5.10) we see that in some
cells, there appear to be several modes. These modes are more clearly present in the cells
that have greater zero counts. These modes may represent relatively few initial molecules
that were amplified in the initial cycles of PCR1 from these cells.
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Figure 5.9 Cell-level UMI count exploration for four single cells from a female sample. A:
Exploring the relationship between a cell’s UMI count proportion against the pseudo-bulk
UMI count proportion (in which the pseudo-bulk UMI count is the mean UMI count across all
cells in the female x10 experimental condition). B: The distribution of UMI count proportions
within each cell.
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Figure 5.10 Cell-level UMI count exploration for four single cells from a male sample. A:
Exploring the relationship between a cell’s UMI count proportion against the pseudo-bulk
UMI count proportion (in which the pseudo-bulk UMI count is the mean UMI count across all
cells in the male x10 experimental condition). B: The distribution of UMI count proportions
within each cell.

5.4.4 Discussion

These data suggest that scFAST-SeqS is a promising avenue for future research. The results
show that copy number signal is clearly present when the mean counts are computed across
as few as 20 cells. Indeed, copy number signal is present within individual cells with count
proportions scaling proportionally as we expect.

To infer copy number from scFAST-SeqS data and extend the conliga model, there are
several aspects of the data that would need to be modelled appropriately. The distribution of
counts at a single-cell level would need to be investigated further. Similar to bulk FAST-SeqS
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it appears the PCR efficiency varies between loci. However, the global PCR efficiency appears
to vary between cells. We may wish to explore modelling the probability of amplifying each
locus. Perhaps each locus could have a probability of amplification that is scaled by a cell
effect. It is clear that we will need to adequately model the loci drop outs or zeros. It may
be that a probability of amplification adequately models the zero counts or we may need to
use zero inflation models.

Once a count distribution is appropriately chosen for scFAST-SeqS observations, we will
need to consider how to model the copy number profiles. It seems natural to model cells as
mixtures (clones) whereby each clone has its own copy number profile. This way, by pooling
together the statistical strength of multiple cells, we should more accurately infer the copy
number profiles for each clone. The number of clones and cell memberships could be modelled
by the use of a Dirichlet process.

Although I have not shown the results here, SNPs can be detected in scFAST-SeqS data.
When pooling cells together, we see mismatch and indel frequencies around 0.5 which suggest
the presence of heterozygous SNPs. These data could be used jointly with the loci count
data to infer the allele-specific copy number profiles for each clone.

scFAST-SeqS could be combined with a scRNA-seq method to sequence the DNA and
RNA from the same cell in a similar fashion to G&T sequencing [283]. The scRNA-seq data
could be integrated with the scFAST-SeqS data to infer clusters of clones and additionally,
assist with the inference of copy number. There are several recent methods that use scRNA-
seq to infer copy number, such as InferCNV [284], HoneyBADGER [285], CONICS [286] and
CaSpER [287]. Another method, clonealign [288], uses scRNA-seq applied to a set of cells
and scDNA-seq applied to a separate batch of cells from the same tumour population, to
map gene expression profiles from scRNA-seq to clones derived from DNA-seq. scFAST-SeqS
and scRNA-seq data derived from the same cells could be used to improve on these methods.

Further work is needed to scale the protocol so that it could be applied to thousands of
cells. If the protocol can be scaled to thousands of cells, the number of reads required per cell
such that all the tumour clones could be accurately inferred would need to be determined. In
addition, optimisation of the protocol is required to minimise the variance between cells and
the number of loci that fail to amplify within cells. This could be achieved be varying the
number of PCR1 cycles, altering the PCR reaction volume, varying the quantities of primer
and other experimental variables.
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5.4.5 Methods

scFAST-SeqS library preparation

Single cell PBMCs were sorted into 384-well PCR plates, in 3 µl 1X lysis buffer (diliuted
from TaKaRa 10X Lysis Buffer 635013). Cells were incubated for five minutes at room
temperature and then PCR plates were frozen at −80 ◦C for later use.

PCR1 reaction

5 µl Phusion HiFi Master Mix (ThermoFisher F531L), 0.1 µl PCR1 Forward Primer (10uM,
Sigma), 0.1 µl PCR1 Reverse Primer (10uM, Sigma) and 1.8 µl nuclease free water (NFW)
were added to the 3 µl lysate in each well.

The cycling conditions for PCR1 were 98 ◦C for 2 minutes followed by 5, 10 or 15
(depending on the experiment) cycles of, 98 ◦C for 10 seconds, 57 ◦C for 2 minutes and 72 ◦C
for 2 minutes. This was followed by 4 ◦C until the samples underwent clean-up. For the PCR1
products that underwent purification using ExoSAP, 1 µl Exo I (NEB M0293S) and 2 µl rSAP
(NEB M0371S) were added to the mix. The mixture underwent incubation at 37 ◦C for 15
minutes followed by heating inactivation at 80 ◦C for a further 15 minutes. For the PCR1
products that underwent bead clean-up, PCR1 contents were transferred to 200 µl PCR tube
strips and 1.4X AMPure bead clean-up was performed as per section 4.8.1. Purified product
was eluted in 13 µl NFW.

PCR2 reaction

15 µl Phusion HiFi Master Mix (ThermoFisher F531L), 0.3 µl PCR2 Forward Primer (10uM,
Sigma), 0.3 µl PCR2 Reverse Primer (10uM, Sigma) and 1.4 µl nuclease free water (NFW)
were added to the 13 µl purified PCR1 product.

The cycling conditions for PCR2 were 98 ◦C for 2 minutes followed by 25 cycles of, 98 ◦C
for 10 seconds, 57 ◦C for 2 minutes and 72 ◦C for 2 minutes. This was followed by 4 ◦C until
the samples underwent bead clean-up. PCR2 products from each experimental batch (e.g.
PCR2 products from F10 cells) were pooled together. Pooled PCR2 product was purified
using a 1X AMPure bead clean up as described in section 4.8.1 and purified product was
eluted in 10 µl NFW. Each pooled batch was quantified using Qubit High sensitivity protocol
(ThermoFisher Q32854) and quality control was performed on a BioAnalyser using DNA1000
chip (Agilent). Libraries representing F10, F15, M10 and M15 were then diluted accordingly
such that they could be pooled in equimolar ratios.
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Sequencing

Each batch of 80 cells were sequenced on a lane of an Illumina HiSeq 4000 machine using
paired-end 150 bp reads.





Chapter 6

Conclusions

The profiling of somatic copy number alterations present in tumour samples has important
implications for cancer research and clinical care. Somatic copy number profiling can be
performed using high or low-coverage WGS, WES, or alternatively other sequencing and
array-based assays. However, while the costs of high-throughput sequencing are reducing,
the use of these assays is currently impractical for clinical application. In addition to the
costs being prohibitive, the laborious library preparation steps associated with WGS make it
challenging to perform in a clinical setting.

In comparison, PCR is relatively simple, low-cost and widely used in research and clinical
laboratories around the world. Kinde et al. [104] developed a simple protocol that involves
two rounds of PCR to amplify more than 10,000 primate-specific LINE1 elements across the
genome. The protocol can be performed in an hour and lends itself to automation. It results
in amplicon libraries ready for high-throughput sequencing. The cost of the entire protocol,
including sequencing two million reads per sample, is currently less expensive than WGS
library preparation kits alone [108]. As such, the FAST-SeqS protocol has exciting clinical
application and could be a valuable tool for biomedical research.

To date, the published approaches for the analysis of FAST-SeqS data are limited. In
particular, they are constrained to the detection of whole chromosome or chromosome-arm
amplifications and deletions and the output of these approaches is limited to three levels;
amplified, deleted and normal. Furthermore, the methods do not account for sampling
variation (which can be substantial when performing multiplexed sequencing) in a principled
way and some employ data normalisation approaches that are not suitable for sequencing
data (e.g. quantile normalisation). As such, current methods for FAST-SeqS data have
low-resolution and are unable to quantify SCNAs. The quantification and detection of SCNAs
at the sub-chromosomal-arm level has important clinical relevance for the diagnosis, prognosis,
treatment selection and monitoring of resistance to therapy of certain cancer types. As such,
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current computational approaches limit the clinical and biomedical research application of
the FAST-SeqS protocol. This motivated the development of a new approach for analysing
FAST-SeqS data.

In chapter 2, I described the development of a method and tool (conliga) which can be
used to infer relative copy number at the amplicon level. I explored the aspects of FAST-SeqS
data and, by finding an appropriate parametric distribution, I developed a probabilistic
approach to model FAST-SeqS data generation. In addition, I used a hidden Markov model
and a Bayesian nonparametric approach to allow for countably infinite copy number states,
while modelling the fact that neighbouring FAST-SeqS loci are likely to share the same
relative copy number. In this way, the statistical strength of all loci are pooled to infer global
relative copy number clusters, while statistical strength is shared between spatially related
loci to infer contiguous regions of altered copy number.

Based on the probabilistic generative model, I described two MCMC inference algorithms.
The first infers a global bias in the FAST-SeqS protocol using a set of normal control samples.
The second built upon Fox et al.’s [131] blocked Gibbs sampler and is used to infer a relative
copy number profile for a test sample. I discussed and explored several ways in which the
posterior distribution could be summarised to make use of the copy number state information.
Lastly, I showed evidence that the MCMC converges and that the method worked as expected
by inferring the relative copy number differences between male and female samples.

Several cancer types appear to be driven by structural alterations and somatic copy
number alterations [45]. In chapter 3, we studied an example of this and motivated the use of
a low-cost copy number assay for the detection of oesophageal adenocarcinoma (OAC). OAC
incidence is rising rapidly in the West and carries a very poor prognosis. Its poor prognosis
is due to its symptoms presenting at a late stage in the course of disease. By the time it is
detected, it has often progressed to an incurable stage. Detecting OAC at its early stages
(or detecting premalignant lesions that are likely to develop to OAC) when it is more easily
treated is a key challenge to improve prognostic outcomes. The current strategies for the
screening and surveillance of OAC development are severely limited. The development of new
technologies and biomarkers are required to enable population-based screening and better
patient stratification to identify those at risk for developing OAC.

The development of OAC is characterised by chromosomal instability. Li et al. [213]
showed that SCNAs accumulate in premalignant lesions years before development of OAC,
while those patients who do not progress to OAC tend to have stable SCNAs over time
[213]. In contrast, small-scale somatic mutations in key driver genes (other than TP53 )
appear to offer little value in determining which patients will progress [209]. In addition, the
identification of amplifications and deletions of particular oncogenes and tumour suppressors
can be used to guide targeted therapies. As such, a low-cost copy number assay combined
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with a non-invasive tissue sampling device such as the Cytosponge [289], could be used to
improve the detection and clinical care of OAC.

By using clinical OAC samples that had previously been sequenced using high-coverage
WGS, we were able to see how conliga performs in comparison to other tools. By comparing
conliga’s results to ASCAT, we saw that conliga was able to recapitulate the RCN profiles of
OAC samples. Indeed, conliga appears to offer comparable performance to a commonly used
tool for low-coverage WGS (QDNAseq) even when using 4.5-fold fewer reads.

By performing an in silico dilution series to vary the purity of OAC samples, we saw
that conliga is particularly useful in discriminating SCNAs at low purity and appears to
outperform QDNAseq for this task. The results suggested that conliga is able to detect
prominent chromosomal-arm alterations at 2-3% purity when using two million reads per
sample. In addition, we saw that a focal amplification was detected at purities as low as
0.5%.

The TP53 mutant fractions observed in Cytosponge samples by Weaver et al. [209]
suggest that the proportion of Barrett’s oesophagus or cancer cells sampled can vary widely.
For conliga and FAST-SeqS to be applied to the clinic, the number of reads may need to be
increased to reliably detect alterations. Future work is required in this area to determine how
many reads are required and, by increasing the costs of sequencing, whether the protocol
would be cost-effective for widespread use. Potentially, improvements to the protocol could
be made to reduce the technical variance. This may also offer a way to improve sensitivity.

We know that FAST-SeqS can be applied to cell-free DNA as Kinde et al. [104], Belic et
al. [106] and Douville et al. [107] showed. Although I do not show the results in this thesis, I
have successfully applied conliga to data produced by Belic et al. [106] and conliga shows
promise with application to circulating DNA. The challenge with ctDNA is that it often
represents a very small fraction of cfDNA, particularly in early stage disease. Further work is
required to see if conliga has clinical potential in the detection SCNAs from cfDNA.

I explored the potential use of conliga and FAST-SeqS in detecting the copy number
status of recurrently amplified oncogenes and deleted tumour suppressors. Intriguingly, some
LINE1 amplicons originate from the intronic regions of several genes of interest. I found
that in some cases, FAST-SeqS and conliga could detect focal deletions that have occurred
within recurrently altered tumour suppressor genes. Although, frequently these intra-gene
alterations were not detected by conliga. I note that QDNAseq struggled to detect some
of the focal deletions also. The distance of the LINE1 amplicons to genes of interest can
vary and in some cases, highly focal SCNAs can be missed due to not being sampled by
LINE1 amplicons. However, in a number of cases conliga was able to detect clinically relevant
amplifications and deletions.
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Can conliga and FAST-SeqS be used to quantify therapeutically relevant SCNAs at
gene-level resolution? The answer is, it depends. For clinical application, FAST-SeqS could
be supplemented by the targeted sequencing of a clinically relevant gene panel. In this way, in
addition to a genome-wide copy number profile, gene-level SCNAs could be better estimated
and small-scale somatic mutations could be obtained. This may provide a low-cost strategy
for clinical use. The gene-panel data could act as a auxiliary source of information in addition
to conliga’s RCN inference. However, it would be preferable to incorporate the gene-panel
data into the conliga model, to use all available information to infer a copy number profile.
Further work would be required to extend conliga for this purpose.

Alternatively, or additionally, further primer pairs could be developed. The FAST-1
primer pair designed by Kinde et al. [104] amplify a region in the 3’ UTR of L1PA3-L1PA11
elements (primarily). At least in theory, it should be possible to design other primer pairs
that target other LINE1 subclasses or other repeat elements. Indeed, Alu elements (which are
a subclass of SINEs and approximately 300 bp long) are the most repeated elements in the
human genome [3]. Assuming that their sequences have diverged sufficiently to align them
uniquely to the genome, they could be an interesting repeat element to target. Multiplexing
several primer pairs which amplify several different classes of repeats should lead to a more
granular sampling of the genome. In addition to this, by introducing degenerate bases or
altering the primer sequences, we may be able to even out the amplification biases or increase
the amplification bias towards regions of interest. This may allow us to obtain increased
statistical strength and make more sensitive RCN calls in regions of interest. As such, the
identification and modification of primer pairs that target repeat elements is a potentially
interesting area of future work. Since cancer types can have different regions of interest,
computational tools to aid with the choice of optimal primer pairs for the application to
particular cancer types is an interesting area of future study. I note also that the FAST-1
primer pair will only be of use to the study of CNAs in primates and the development of
other primer pairs are required to study other mammals.

In this thesis, I have focused on the inference of SCNA profiles from FAST-SeqS data.
However, using these inferred profiles to provide a probability that a sample contains malignant
cells (or a probability that a premalignant lesion will develop into cancer) is an area for future
study. This is likely to require a large number of SCNA profiles and clinical data (including
outcomes).

Further to this, if we know the patterns of SCNAs that are present in particular cancer
types, can we use this prior information to assist with SCNA inference? This is an interesting
topic for further work. It is not clear how this prior information could be included within the
conliga model. This would require prior distributions placed over the hidden states. However,
in conliga’s current form the hidden states are exchangeable and have no direct meaning.
An alternative would be to fix the hidden states to represent absolute or allele-specific copy
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numbers. In this way, meaningful priors could be placed on them. However, this approach
would require assumptions about the clonal composition of the tumour sample. One of
the strengths of the conliga model is that we are not constrained by clonal composition
assumptions.

In chapter 4, I described the modifications I made to the PCR1 and PCR2 primer
sequences. The two most important modifications were 1) the inclusion of variable length
UMI sequences on either end of the amplicon and 2) the inclusion of unique dual indices
(UDIs). While the LINE1 amplicons have some level of heterogeneity in their sequence
content, the resulting sequencing library consists of low-diversity sequences. The variable
length UMIs increased the complexity of the sequencing library and in theory, should allow
us to reduce the quantity of PhiX control in further sequencing experiments. This could
allow us to substantially increase the number of FAST-SeqS molecules that are sequenced
per sequencing run. Future work is required to ascertain the quantity of PhiX control that is
required to maintain sequencing quality and whether its use could be avoided entirely. This
would allow more reads to be used for samples by either increasing the number of samples or
increasing the number of reads per sample.

The inclusion of UDIs enabled the identification of sample index cross-talk. We saw a
high frequency of index swapping events resulting in 3.8% of reads being assigned to invalid
index combinations (invalid samples). With the use of UDIs, these reads can be excluded
from analyses. However, if UDIs were not included this would result in up to 3.8% of reads
being misassigned to the wrong sample (if using a combinatorial dual index strategy). Read
misassignments would affect the sensitivity and specificity of downstream analyses with reads
from cancer samples being falsely assigned to normal control samples and vice versa. Given
these results, we recommend that future FAST-SeqS experiments use a UDI strategy. We
saw that index-cross talk events occurred with increased frequency in a pattern consistent
with the pipetting order and with the order of the sample number. Future experiments are
required to identify the source of this issue and where possible, steps should be taken to
reduce index cross-talk.

In chapter 4, I described the creation of a new pipeline to process paired-end FAST-SeqS
data. I note that there are many ways to process sequencing data; different strategies and
combinations of tools and thresholds can be used. The pipeline described is unlikely to be
the best way of processing the data and further work is required to improve it. Ultimately,
the goal of the pipeline is to maximise the number of reads that are used in downstream
analyses while minimising error. The error can be reduced by 1) identifying PCR2 duplicates
and 2) minimising false alignments. I presented a strategy which utilised functions from
UMI-tools [183] to identify PCR2 duplicates. This appeared to work well and we saw that
UMIs can be useful in identifying false alignments also. I did not show whether the use of
the UMI clustering strategy reduced noise in downstream analyses. In theory, by using the
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UMI reduced counts (i.e. the number of UMI clusters) rather than the raw counts, we may
be able to improve the sensitivity and specificity of conliga’s calls. Further work is required
to investigate this.

Aligning reads to repeat regions is a notoriously difficult task and often these regions
are excluded from analyses. As such, it is important to investigate how aligners perform in
aligning FAST-SeqS reads to the genome. The results I presented in chapter 4 suggest that
BWA-MEM should be used in favour of Bowtie 2 for this task. However, further work is
required to test other aligners. Further tests of performance could include the simulation of
reads from FAST-SeqS loci so that the ground truth is known when reads are aligned.

It could be explored whether we can use the mapping qualities to propagate the uncertainty
of alignments into the copy number inference. Currently, a substantial number of reads are
excluded from downstream analyses because we cannot be confident that they have been
aligned to the correct position in the genome. By incorporating alignment probabilities, we
could make use of reads that are currently excluded. However, there is a problem with this
approach. For example, if 100 reads align equally well to three locations, we cannot know the
true proportion of reads originating from each of these locations in control samples, i.e. we
cannot estimate m̂. The assumption that the reads are equally dispersed between the three
locations may not be a good one. We could imagine doing a series of knockout experiments to
resolve this whereby each ambiguous FAST-SeqS locus is deleted and the effect on the number
of counts is seen. However, this is likely to be laborious and impractical. Alternatively, by
using previous RCN inferences, we may be able to infer m̂ for some loci; if we know the
relative copy number of the region in the genome that an ambiguous locus originated from, we
may be able to estimate m̂. This may not work in practice, particularly if reads align equally
well to many locations. However, it is an interesting avenue for future work and incorporating
the uncertainty into downstream analyses would represent an interesting technical challenge.

I note that there are several potential improvements that could be made to the conliga
model. Currently, the model assumes that all states have the same self-transition bias. This is
controlled by the hyperparameter, κ. We know that this assumption is not true. For instance,
homozygous (biallelic) deletions tend to be short as are highly focal amplifications. It would
be appropriate to make κ dependent on the copy number. This is currently challenging since
we are inferring relative copy number. As such, copy number is confounded with purity
and how κ could be made dependent on relative copy number is unclear. Alternatively,
inferring absolute or allele-specific number would make this more achievable. Additionally,
the transition probabilities are not dependent on loci distance. We know from figure 2.7 that
the genomic distance between loci can vary widely. As such, it would be appropriate to make
the transition probabilities dependent on distance; with loci closer to each other more likely
to have the same copy number.
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While we saw evidence of sample-specific biases in earlier work on oesophageal samples,
they became more apparent when I analysed the prostate samples. I showed that sample-
specific biases could affect the RCN inference. These results were concerning and were
unexpected. It was clear that my original assumption that the bias was specific to each locus
and not to the sample did not hold. As such, it became apparent that I needed to correct for
these biases. At first, it wasn’t clear whether these artifacts were introduced by processing
the data with the new pipeline. However, we saw similar results when processing the data
with the original single-end pipeline. Since the possible sources of sample-specific biases could
be numerous, my initial strategy was to try to learn the biases from the data using a factor
model. As I described in section 4.5, this strategy was ultimately unsuccessful. However, I
noted that with some tweaks to the model and with more samples it may prove successful.

Rather than learning the biases from the data, I identified two major sources of sample-
specific bias; large-scale GC content and differential amplification of highly and lowly amplified
loci between samples. I proposed a method to correct for these effects which involved the use
of a 2-dimensional B-spline. By updating the conliga model to jointly infer sample-specific
biases and the RCN profile, I showed that (in most cases) I was able to remove RCN artifacts.
Indeed, by inferring sample-specific biases, increased sensitivity was achieved and we were
able to infer SCNAs that were previously not detected in some cases. While the use of
2-dimensional B-splines appeared to work well and did not appear to regress away true
SCNAs, there may be more appropriate ways to correct for these biases. Indeed, further work
should involve investigating whether two independent splines could be used to reduce the
number of parameters. Furthermore, parametric distributions may be appropriate; potentially,
the amplification bias could be modelled by a sigmoid or logistic function and a parametric
shape could be used to model the GC bias. I note that the sample-specific bias correction
did not work in all cases and further work is required to identify and correct for all possible
sources of sample-specific bias. Moreover, the experimental cause of these biases should be
investigated and wherever possible their effect should be minimised.

In many samples, including those considered to be ‘normal’, conliga infers several short
CNAs, often involving a single locus. It is not clear whether these are false positive calls
or whether they represent true biological signal. Given that CNVs occur in approximately
1.2% of an individual’s genome, it is conceivable that some of these inferred short segments
represent CNVs present in the germline. However, some of the short RCN changes could be
artifactual and may be introduced for several reasons. When comparing raw counts from
normal samples obtained from different patients, we observed outlying counts (see Figure 2.5
for example). These outlying counts can result in the inference of short RCN segments.
Although I have not shown this in the thesis, when comparing raw counts derived from
samples from the same patient, we did not observe such outliers. This suggests that outlying
counts appear to be biological in origin. However, while they could be the result of CNVs,
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they may also be the result of germline sequence variants in the LINE1s that affect their
amplification efficiency or their ability to be aligned to the genome. The conliga model could
be altered to use FAST-SeqS data obtained from matched healthy tissue from the same
patient (in addition to the tumour sample) to infer the RCN profile of the tumour sample. In
doing so, these outliers (whether due to CNVs or otherwise) should not lead to spurious calls
in the SCNA profile of the tumour sample. However, introducing a matched healthy tissue
sample would involve doubling the cost by requiring two FAST-SeqS samples per patient.
Alternatively, further work could be done to identify the source of these outliers. If they are
found not to be the result of CNVs, the beta-binomial emission distribution could be altered
to incorporate the presence of outliers. Indeed, the beta-binomial emission distribution is an
approximation to the true count distribution. An imperfect emission distribution will result
in false positive RCN calls and the inference of short RCN segments. Further work to identify
alterations to the emission distribution, which more closely matches the true distribution of
FAST-SeqS count data, would help to reduce the false positive RCN calls.

The Markovian assumption of the HMM may also play a role in the inference of short
RCN segments. This is because the Markovian assumption implies that the lengths of SCNAs
follow a geometric distribution [149]. This assumption is unlikely to reflect the distribution of
SCNA lengths present in real tumour samples. This is evidenced by Figure 1a of Beroukhim
et al. [93], which shows that when the length of SCNAs are normalised by the length of
the chromosome arms, the normalised SCNA length distribution is multi-modal; with one
mode reflecting short focal amplifications and two other two modes reflecting SCNAs that
affect whole chromosomes and chromosome-arms. Further work could be conducted to
explore whether the use of the Hierarchical Dirichlet process Hidden Semi-Markov Model
(HDP-HSMM) [149] could overcome such issues.

In chapter 5, I showed the existence of variants within the LINE1 elements, some of
which are likely to be SNPs. This was previously noted by Douville et al. [107] and used
to detect evidence of allelic imbalance of chromosome arms. I showed that this data can be
used as an auxiliary source of information to infer tumour purity, ploidy and could be used
to infer allele-specific copy number also. Low-coverage WGS (∼ 0.1X), does not provide this
information and makes the alternative use of FAST-SeqS more appealing.

Large-scale cancer genome studies require that samples contain a minimal tumour purity
before sequencing such that sufficient statistical power is present to call somatic alterations.
Currently, the task of screening samples for sufficient purity is placed on pathologists who have
other clinical duties. FAST-SeqS and conliga could provide an alternative low-cost method
to estimate the purity and ploidy of samples. We showed a comparison between pathologist
purity estimates and estimates obtained using conliga’s RCN inference in chapter 5, which
shows this has potential. Indeed, in some cases a pathologist’s purity estimate can be vastly
different from purity estimates derived from sequencing data. By using a low-cost sequencing
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approach to estimate purity, additional high-purity samples could be identified which could
be included in large-scale studies. Additionally, some samples are believed to be of high
tumour purity but after performing HC WGS, they are found to have insufficient purity and
are excluded from analyses. It may be possible to avoid allocating sequencing resources to
these samples if they are deemed to be low purity via conliga’s RCN estimates.

Rather than use alelle frequencies as auxiliary data after RCN inference, it would be
preferable to use the data in the copy number inference. The most straightforward approach
would be to integrate the data to jointly segment the genome based on read depth and
allele frequency (and there are several tools that currently do this for other data types). As
such, each hidden state would represent a minor allele frequency and a relative copy number.
Inferences about ploidy and purity could be made following segmentation of the genome.
This approach would avoid building in assumptions about the clonal composition of the
tumour sample. Further work is required to find an appropriate distribution for the allele
frequencies in order to achieve this.

In chapters 4 and 5, we saw that conliga is able to infer RCN profiles that are indicative
of samples consisting of a mixture of clones. As I noted, several methods have attempted to
address the inference of the clonal composition from sequencing data. With the inclusion of
SNP data, similar methods could be applied to FAST-SeqS data. However, this is a difficult
problem. Even with the assumption of a single clone, there are several possible solutions for
purity, ploidy and allele-specific copy number. In the absence of somatic point mutations, the
problem is more difficult and clonal composition inference is practically limited to few clones.

Rather than attempting to infer clonal composition from bulk FAST-SeqS data, it seemed
that FAST-SeqS could be suitable for application to single cells. By adapting the protocol to
single cells (in collaboration with Sarah Field), we showed we were able to obtain scFAST-SeqS
data. As far as we are aware, this is the first time scFAST-SeqS data has been produced.
Here, I presented a preliminary analysis showing that copy number signal is present in
scFAST-SeqS data. The results are promising but they indicate that significant modifications
will be required to the conliga model to infer single cell copy number from the data (which I
discussed in section 5.4.4). Further work is required to find a suitable distribution to model
the FAST-SeqS counts of single cells. It may be appropriate to use a Dirichlet process to
cluster cells into clones and pool the statistical strength from the single cells to infer a copy
number profile per clone.

Our preliminary scFAST-SeqS experiments were limited to 80 cells and provide a proof
of concept. For scFAST-SeqS to be useful, the protocol will need to be scaled to potentially
thousands of cells. Further work is required to explore the various ways of achieving this.
Indeed, it should be possible to obtain scRNA-seq data from the same cells and incorporate
these data into the single cell copy number inference.
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Even in the absence of scFAST-SeqS data, the low-cost of the bulk FAST-SeqS protocol
and low-input DNA required will encourage the production of several spatially or temporally
related samples. This may provide another way to explore intratumoural heterogeneity.
Indeed, we have recently produced FAST-SeqS data from several spatially related samples
(not shown in this thesis). The initial results show that RCN profiles are similar between
samples and some differences can also be seen. However, rather than inferring RCN profiles
for these samples independently, it would be more appropriate to model their relatedness
and jointly infer their RCN profiles. A recent preprint on bioRxiv explores the inference of
SCNAs from multiple related WGS samples [290] and similar methods have been explored
for the inference of SNVs from multiple related samples [119]. In this way, and by pooling
the statistical strength between samples, we should be more able to infer regions that are
shared and regions that differ between related samples.

To conclude, this thesis has focused on inferring somatic copy number alterations from a
low-cost, simple and clinically applicable assay. By appropriate modelling of the data, I have
shown that higher resolution and richer inferences could be made from the data. FAST-SeqS,
along with the method and tool I developed, could have exciting clinical application and may
additionally provide a low-cost tool for biomedical research. I have presented several areas for
further study and hope that these will inspire improvements to the methods described here,
ultimately for further clinical application and to provide greater insights into cancer biology.
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Appendix A

Table of variables used in the
conliga model

Variable Description

zr,l Index of hidden state that generated observation yr,l in locus l of chro-
mosome arm r

yr,l Count observation at locus l in chromosome arm r for sample with copy
number profile z

xk,r,l Count observation at locus l in chromosome arm r for control sample k

mr,l Probability of an aligned sequencing read originating from locus l in
chromosome arm r in a control sample

m̂r,l Maximum a posteriori (MAP) estimate of mr,l

θ̃r,l Probability of observing an aligned read at locus l in chromosome arm r

for sample with copy number profile z
θr,l Probability of observing an aligned read at locus l in chromosome arm r

for control sample, k
ñ Total number of counts for sample with unknown copy number profile.

ñ = ∑
r∈R

∑Lr
l yr,l

nk Total number of counts for control sample k. n = ∑
r∈R

∑Lr
l xr,l,k

s̃ Inverse-dispersion parameter for sample with unknown copy number
profile

sk Inverse-dispersion parameter for control sample k

πu,v Transition probability from hidden state u to hidden state v

π0
u Initial probability of being in state u, i.e. probability of z∗,1 = u
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ĉu Relative copy number for hidden state u

H Base distribution for the copy number states (Gamma distribution with
parameters λ)

λ Parameters of the Gamma base distribution for the relative copy number
states

ω Parameters for the Gamma distribution prior on the inverse dispersion
parameter for sample with copy number profile z

ψ Parameters for the Gamma distribution prior on the inverse dispersion
parameter for control samples

ϕ Parameters for the Beta distribution prior on the expected proportions,
m

α Hyperparameter of the sticky HDP-HMM

κ Hyperparameter of the sticky HDP-HMM: the self-transition parameter

γ Hyperparameter of the sticky HDP-HMM: the greater the value of γ the
greater expected number of hidden states

β The global transition distribution vector

ρ Defined as κ
α+κ

A Vector representing hyperparameter priors for (α+κ), γ and ρ. A(α+κ),a

and A(α+κ),b are the shape and rate parameters of the Gamma prior
distribution on (α + κ) respectively. Aγ,a and Aγ,b are the shape and
rate parameters of the Gamma prior distribution on γ respectively. Aρ,c

and Aρ,d are the shape parameters of the Beta prior distribution on ρ

Lr The number of loci in chromosome arm r, where r ∈ R

R The set of chromosome arms of interest, for example:
R = {chr1p, chr1q, . . . chr22p, chr22q, chrXp, chrXq, chrYp, chrYq}

K The number of control samples

σm The standard deviation for the (Normal) proposal distribution for pro-
posed values of mr,l in algorithm 1

σs The standard deviation for the (Normal) proposal distribution for pro-
posed values of sk in algorithm 1

σs̃ The standard deviation for the (Normal) proposal distribution for pro-
posed values of s̃ in algorithm 1

σĉ The standard deviation for the (Normal) proposal distribution for pro-
posed values of ĉu in algorithm 1

S The fixed truncation level for the Dirichlet approximation to the Dirichlet
Process.
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T Matrix of state transitions counts, where Tu,v represents the number of
transitions from state u to v in the current iteration of the MCMC

T 0 Vector of state counts for locus 1 of all chromosome arms, where T 0
u

represents the number of loci (at the beginning of a chromosome arm)
assigned to state u in the current iteration of the MCMC

N The total number of iterations in the MCMC

M ,W ,M̄

h, g, K̄, ζ, τ Auxiliary variables used to sample (α+ κ), γ and ρ





Appendix B

Stan model used for GC and
amplification bias correction

data {
int<lower=1> L; // number of Loci
int<lower=1> J; // number of samples
int<lower=0> X[L, J]; // count matrix of size [L,J]
int<lower=1> D; // number of latent dimensions
matrix[L, D] B_mat;

}
transformed data {

int<lower=0> Sample_total_counts[J];
for (j in 1:J)

Sample_total_counts[j] = sum(X[,j]);
}
parameters {

vector<lower=0>[J] s; // vector of inverse-dispersions
matrix[D, J-1] F; // Factors
vector<upper=0>[L] log_eta0; // reference count proportions

}
transformed parameters{

// Fill F matrix
matrix[D, J] F_mat;
F_mat = rep_matrix(0, D, J);
// last sample is treated as reference for identifiability
F_mat[,1:(J-1)] = F;

}
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model {
// calculate eta
matrix[L, J] eta_l_j;
eta_l_j = B_mat*F_mat;
for(j in 1:J){

eta_l_j[,j] = eta_l_j[,j] + log_eta0;
}
eta_l_j = exp(eta_l_j);

// Priors
s ~ gamma(1.5, 1e-6);
for(j in 1:(J-1)){

F[,j] ~ normal(0, 1);
}
log_eta0 ~ normal(0, 100);

// Likelihood
for(j in 1:J){

for(l in 1:L){
X[l, j] ~ beta_binomial(Sample_total_counts[j],

s[j]*eta_l_j[l, j],
s[j]*(1-eta_l_j[l, j]));

}
}

}
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