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This paper presents a graphical method for determining the
linearized stiffness and stability of prestressed trusses consisting
of rigid bars connected at pinned joints and which possess
kinematic freedoms. Key to the construction are the rectangular
areas which combine the reciprocal form and force diagrams in
the unified Maxwell–Minkowski diagram. The area of each
such rectangle is the product of the bar tension and the bar
length, and this corresponds to the rotational stiffness of the bar
that arises due to the axial force that it carries. The prestress
stability of any kinematic freedom may then be assessed using
a weighted sum of these areas. The method is generalized to
describe the out-of-plane stability of two-dimensional trusses,
and to describe three-dimensional trusses in general. The paper
also gives a graphical representation of the ‘product forces’ that
were introduced by Pellegrino and Calladine to describe the
prestress stability of trusses.
1. Introduction
Graphic statics has traditionally concerned itself with the
equilibrium of pin-jointed trusses. Here, we extend the methods
to describe the stability of such structures. The case of interest is
known as ‘prestress stability’ and it concerns structures which
possess at least one mechanism which may be stabilized or
destabilized by the geometric stiffness effects that arise from the
axial forces carried by the structural members.

Following Maxwell [1,2] the graphic analysis of the
equilibrium of a pin-jointed truss is accomplished via a pair of
reciprocal diagrams, with the truss geometry given by the form
diagram, while the force diagram represents an equilibrium set of
axial forces within that truss. In this paper, the methodology is
extended to quantify the stiffness that arises due to the presence
of forces within the members, allowing the stability to be
assessed. Figure 1 shows a simple example where a pair of
hinged bars has a mechanism involving lateral deflection. An
axial compressive force would cause the system to buckle, while
a tension force would tend to pull the structure straight, adding
stiffness such that the structure would even be capable of
carrying some transverse load.
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Figure 1. A bar with a central hinge pulls straight under tension but is unstable in compression and buckles laterally.
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Such tension stiffening and compression de-stiffening are not described by the simplest
structural theories where equilibrium equations are written at the undeformed configuration. While
better theories can describe buckling and tension stiffening, the inability of traditional matrix
formulations of structural mechanics to undergo such destabilization persists even into the large
finite-element packages routinely used in structural analysis. An analyst will need to create a
considerably more sophisticated model in order to successfully simulate such stabilizing and
destabilizing effects. While it would be tempting to describe these as higher-order effects, this is not
strictly correct: the instability phenomena have been missed because the equilibrium equations were
written at the undeformed shape.

In this paper, we thus require a clear statement of structural behaviour which considers equilibrium at
the deformed shape. Building on work of Pellegrino & Calladine [3–6] and Connelly & Whiteley [7], Guest
[8] provides a matrix formulation of the exact tangent stiffness of any prestressed pin-jointed truss with
respect to perturbations about its deformed equilibrium configuration. This matrix decomposes into two
components similar to the possibly more familiar decomposition of a stiffness matrix into a material
part and a geometric part, with the latter representing the effects of forces on the overall system
stiffness. In the Guest description, it is the closely related stress matrix that plays this role, and that will
be the primary study of this paper. This paper begins by showing how the terms of the stress matrix
may be represented first vectorially and then graphically, giving examples of simple structures.

Before looking at stability, graphic statics is first employed in the initial equilibrium step, establishing
the reciprocal diagrams of form and force. This may be readily accomplished by the traditional technique
of constructing lines in the plane. However, the analysis gains power by the introduction of polyhedral
Airy stress functions, whose existence follows from Maxwell’s observation [1] that reciprocal form and
force diagrams are the two-dimensional projections of dual polyhedra.

Once an equilibrium state is established, the second use of graphic statics here is to identify mechanisms.
For in-plane mechanisms of two-dimensional trusses, this follows the procedure described in McRobie et al.
[9] whereby an increment to the dual Airy stress function over the force diagram leads to increments in the
coordinates of the form diagram. These small displacements give bar increments which are necessarily
parallel to the original bar directions and thus when the nodal displacement vectors are rotated by 90�,
they necessarily correspond to an infinitesimal inextensional mechanism of the original structure. Figure 4
later gives an example of this method. Geometrical methods for detecting mechanisms in
three-dimensional trusses are described in McRobie et al. [10], but these need not concern us here.

The other graphical element that is key to the construction is the Maxwell–Minkowski diagram,
which combines the form and the force diagrams into a single geometric object [11,12]. In such a
diagram, the polygons that comprise the form and the force diagrams are connected by a set of
intervening rectangles of dimensions bar length L by tension force T. The area of the rectangle thus
gives geometric manifestation to the internal work TL associated with that bar’s contribution to the
summation in the Maxwell Load Path Theorem [2,12]. Similarly, the aspect ratios of the rectangles
give geometric representation to the tension coefficients (also called the force densities) T/L that are used
in a variety of approaches to structural analysis (e.g. [13]). The novel interpretation of this paper is
that the rectangular areas TL represent the rotational stiffness of the stressed bars, and a weighted
sum of these stiffnesses determines the stability.

Throughout this paper, the emphasis on the graphical presentation of problems usually addressed by
matrix-based techniques is in line with many intentions that have led to the current renaissance of graphic
statics generally. That is, the motivation is not driven by any particular desire for solution procedures that
are more efficient or robust, given the phenomenal advances in computational speed and algorithm
reliability over the last half century. Rather, the graphical procedures provide an alternative ansatz
wherein a designer can gain a more intuitive understanding of the mechanics of structural behaviour. In
the examples that follow, it is hoped that the reader will begin to ‘see’ the basis of stability in any
particular problem, in a way that might be difficult to envisage when using a matrix algorithm.

Moreover, the duality of form and force that underlies graphic statics is particularly suited to early-
stage structural design, where a structural form may not yet be known. In that setting, graphic statics can
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provide a powerful environment in which to optimize structural efficiency [14]. The newly found ability
to visualize forces, load paths and now bar stiffnesses is all part of an approach aimed at promoting
greater understanding.

This paper relates to others that the authors are currently in the process of publishing on this subject.
It expands the initial ideas presented in the conference paper of Millar et al. [15]. A detailed case study
applying this approach to the stability of Robert Maillart’s historically significant roof design at Chiasso,
Switzerland is presented in McRobie et al. [16]. The large deformation case is considered in Millar et al.
[17], and a paper is in preparation for the case when the axial rigidity constraint is relaxed [18].

We begin by stating the matrix formulation of geometric stability. This is the linearized version of
structural analysis that uses small displacement theory, but writes the equilibrium equation at the
deformed configuration. There are a number of different descriptions of this, and we focus here on
two of them; the 1980s theory of Pellegrino & Calladine [4,19] with its use of so-called ‘product
forces’, and the later formulation by Guest [8] that has its roots in mathematical rigidity theory,
particularly that of Connelly & Whiteley [7]. Guest’s version is presented first, even though that does
not match the historical chronology.
c.Open
Sci.8:201970
2. Guest’s rigidity theory formulation
Guest [8] presents the derivation from first principles that shows that the (linearized) change in total
potential energy when a pin-jointed truss undergoes a small displacement from an equilibrium
configuration is

W ¼ 1
2
dTKd, (2:1)

where d is the vector of nodal displacements from the equilibrium configuration and K is the total tangent
stiffness matrix. This is composed of two terms

K ¼ AĜAT þ S, (2:2)

where the first term involves the equilibrium matrix A and a diagonal matrix Ĝ of modified axial
stiffnesses. The second term S is the so-called stress matrix. The first term depends on the material
elastic modulus. However, in this paper, bars are assumed to be axially rigid and we only investigate
mechanisms that exist in the left null space of A such that it will be the stress matrix S that will be
central to the analysis.

It should be noted that the ‘stress matrix’ terminology arises from rigidity theory, and does not accord
with standard engineering usage. For rigidity theorists, the word ‘stress’ refers to the quantity T/L,
which is called the ‘tension coefficient’ or ‘force density’ in engineering.

Guest’s derivation gives the stress matrix S as

S ¼

s11 s12 . . . s1n
s21 s22
..
. . .

.

sn1 snn

2
6664

3
7775, (2:3)

where, depending on the dimensionality of the problem, the 2 × 2 or 3 × 3 submatrices sij are given by

sii ¼ t̂iiI and sij ¼ �t̂ijI, (2:4)

with t̂ii being the sum of the tension coefficients T/L of all bars that meet at node i, and t̂ij being the
tension coefficient of the bar joining nodes i and j (and is zero if there is no such bar).

Subsequent papers will present results for extensional bars and multiple mechanisms [16–18], but this
paper restricts attention to the case where all bars are rigid and there is a single infinitesimal mechanism
d =m which involves no bar extensions. Since ATm ¼ 0, it follows that the only work done is that part
associated with the stress matrix. When the structure is articulated into the shape λm, the work done is

W ¼ 1
2

mTSm l2 ¼ 1
2
Ksl

2: (2:5)

The stability of the structure against articulation in that mechanism is then given by the sign of the
generalized stiffness Ks ¼ mTSm. This is a scalar quantity and the system of internal bar forces
stabilizes the mechanism if Ks is positive.
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Figure 2. Bar displacement vectors.
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2.1. Simplification of Guest’s formulation
For trusses consisting of inextensional bars, Guest’s matrix formulation may be rewritten as a simple
sum. Consider an inextensional bar from node i to node j with tension coefficient t̂. Let the nodal
displacements be a at node i and b at node j, as per figure 2. From equations (2.4) and (2.5), the
contribution of this bar to the work W is

1
2
t̂ aT , bT
� � I �I

�I I

� �
a
b

� �
¼ 1

2
t̂(b� a) � (b� a): (2:6)

The total work is thus

W ¼ 1
2

X
bars

t̂(b� a) � (b� a): (2:7)

Displacement vectors a and bmay be decomposed into components parallel and perpendicular to the
bar. Subtracting a from b removes the parallel components, leaving only the perpendicular components.
Writing the magnitude of the differential lateral displacement as w = |b− a| the contribution of this bar
to the total potential energy is

W ¼ 1
2
t̂w2 ¼ T

w2

2L
: (2:8)

The w2/2L term is familiar from traditional approaches to stability as the axial end-shortening
y = L− L cos θ = L− L(1− (1/2)(w/L)2 + · · ·)≈w2/2L that occurs due to a differential lateral
displacement w between the bar ends. Indeed, this formula for the rigid bar case follows immediately
from the total potential energy. In the deformed configuration, the contribution of each bar to the
total potential energy P is

P ¼
ðL
0
strain energy density dl� Py, (2:9)

where −Py is the work done by the loads applied at the bar ends. Here, P and y are work conjugate, and
since y is an end-shortening, then P is the compressive axial force. For inextensible bars, the strain energy
terms are zero, leaving

W ¼
X
bars

�Py ¼
X
bars

Ty ¼
X
bars

T
w2

2L
(2:10)

as earlier. This makes clear that the external work done by the applied forces is accounted for in the
energy summation over the bars, and does not need to be included separately.

Letting k be the unit vector along the bar, then during the small deformation, the bar rotates by
(k × (b− a))/L about an axis perpendicular to the bar. This rotation has magnitude θ =w/L, and the
total potential energy associated with the deformation of the whole structure is thus

W ¼ 1
2

X
bars

(TL)u2: (2:11)

Let θ be the vector of bar rotations associated with deformation into this deflected shape, and
consider the one parameter family of deformations λθ. The total potential energy of any member of
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this family is

W ¼ 1
2
KGl

2 with KG ¼
X
bars

(TL)u2: (2:12)

This is the key statement of this paper.

2.2. Graphical representation as weighted Maxwell–Minkowski
For the unimodal case considered, the stability analysis has been reduced to determining the sign of a single
scalar quantity, the geometric stiffness KG ¼ P

(T=L)w2 ¼ P
(TL)u2. Graphic statics possesses geometrical

methods for representing all of the terms involved. The form diagram contains the information on bar
lengths L and the force diagram has the information on the tensions T. In two dimensions, the nodal
displacements a, b, … etc. (and thence w) can be found using the incremental Airy procedure and can be
unified with the forces in the Maxwell–Williot constructions of McRobie et al. [10]. The tension coefficients
t̂ ¼ T=L manifest themselves as the aspect ratios of the intervening rectangles of side T by L that appear in
the Maxwell–Minkowski construction. However, it is not clear how to make use of this aspect ratio in
practice. Moreover, the concept becomes less evident for three-dimensional Rankine graphic statics. In the
three-dimensional Rankine–Minkowski construction, the intervening objects between the components of
the form and force diagrams are prisms of length Lwith polygonal ends of oriented area T. There is thus no
simple geometric interpretation of the tension coefficients in the three-dimensional Rankine construction.

The key to progress is thus to dispense with the T/L tension coefficients in the w formulation
(equation (2.11)) and focus on the TL load path terms in the θ expression of the total potential energy
(equation (2.12)).

For two-dimensional trusses, this can be seen geometrically as the weighted sum of the areas TL of
the rectangles in the Maxwell–Minkowski diagram, with the weights being the square of the bar
rotations. For three-dimensional trusses, the same weights are applied to the prismatic volumes of
length L and cross-sectional area T in the Rankine–Minkowski diagram.

Note that the statement for two-dimensional trusses applies equally to both in-plane and out-of-plane
stability. For the out-of-plane stability, a Rankine–Minkowski construction may be adopted which is
simply the unit extrusion into the third dimension of the underlying two-dimensional Maxwell–
Minkowski diagram. Everything may thus be represented diagrammatically in two dimensions, with
no need to draw the unit extrusion explicitly.

The Maxwell–Minkowski rectangles and Rankine–Minkowski prism have clear geometric
representation in terms of the unified form and force diagram, but the θ2 weights that arise from the
mechanism motions need to be dealt with separately, and there are at least four methods of
determining these. The first is via the standard matrix formulation of linear structural analysis: the
nodal displacements of the mechanisms can be obtained by extracting a set of basis vectors spanning
the null space of the compatibility matrix. The other three methods are more graphical. The first of
these is to construct the Williot diagram, the basic graphical construction of small-displacement
kinematics. Another approach which fits more closely with the overall graphic statics theme of this
paper, and may be called the ‘rotated incremental Airy’ approach, is described in McRobie et al. [9].
Small incremental dual Airy stress functions over the force diagram generate small parallel motions of
the form diagram, and 90° rotations of the nodal displacements lead to inextensional mechanisms.
Finally, the ‘sliding block’ method of McRobie et al. [10] generates mechanisms by sliding cells of the
force diagram along mutual edges, and is well suited to the identification of three-dimensional
mechanisms. Here, we shall use the ‘rotated incremental Airy’ approach.

It follows that all the required terms in the summation (equation (2.12)) that determines the structural
stability can be obtained by purely graphical means.
3. Examples: in-plane mechanisms of two-dimensional trusses
3.1. The pendulum
A simple pendulum consists of a bob of mass m suspended by a weightless rigid rod hanging from a
hinged support. Its natural frequency is v ¼ ffiffiffiffiffiffiffiffiffiffi

K=m
p

and yet according to elementary structural theory,
a pendulum is a mechanism with zero stiffness, leading to the conclusion that the frequency is zero.
Clearly, the gravitational force mg acting on the mass provides tension-stiffening and the total
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potential energy summation of equation (2.12) associated with a small sideways motion w involves only
the single bar, giving W = (1/2)(T/L)w2. The tension adds a lateral stiffness K = T/L =mg/L and the
frequency is thus v ¼ ffiffiffiffiffiffiffiffiffiffi

K=m
p ¼ ffiffiffiffiffiffiffiffi

g=L
p

as required.
3.2. Two-dimensional tensegrity dome
Figure 3 illustrates a simple two-dimensional tensegrity dome consisting of two outer triangles with an
intervening quad. Two vertical compression struts act as ‘flying columns’, surrounded by the hexagonal
tension loop which connects to the supports which are connected by the horizontal compression member
p. The geometry is a manifestation of the famous Desargues configuration of three quads and two
triangles that is central to projective geometry. The structure is a simple two-dimensional
manifestation of the familiar three-dimensional ‘suspendome’ or Geiger dome [3,20].

In figure 4, the triangle 4 of the force diagram (shown in figure 3) is taken as the base plane, thereby
fixing three of the five nodes. The two remaining nodes may be independently articulated out of plane to
create two independent Airy stress functions over the force diagram. Each generates a corresponding
form diagram, shown here as FORM1 and FORM2. Any linear combination of these two is also
reciprocal to the force diagram. The original form diagram is one such linear combination. A further
increment to the dual Airy stress function that created FORM2 keeps nodes 1 and 4 unchanged, but
enlarges triangles abc and def. As previously, bars in the incremental diagram are parallel to their
original directions, and a 90° rotation of the nodal increments leads to nodal increments which are
perpendicular to the original bar directions, and thus correspond to an in-plane mechanism, as shown
in figure 4.

The increments are shown in figure 5, with θ =w/L = δc/c for all members a− f in the triangles.
Factoring out the (δc/c)2 term, their Maxwell–Minkowski rectangles thus have unit weight, being +1
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for the sloping tension members and −1 for the flying compression struts. Via elementary geometry the
horizontal tension ties q and r have θ =w/L = 2δs/q = (2s/q)(dc/c). The weights are shown in figure 6 and
many have unit magnitude. It is known that if all weights had unit magnitude, appropriately signed for
tension and compression, then the sum of the rectangular areas is zero. This is Maxwell’s 1870 Load Path
Theorem [2], and a proof follows readily from the rectangular areas of the Minkowski sum construction
[12]. This result can simplify the equations. For the Geiger system the weighted sum is

W ¼ 1
2

4TcLc � 2CaLa þ 2
2s
q

� �2

TqLq

" #
dc2

c2
(3:1)

and the Load Path Theorem gives

4TcLc � 2CaLa ¼ CpLp � 2TqLq ¼ Cp(p� q) (3:2)

with the last step using Cp = 2Tq. Inserting this into the work equation gives

W ¼ 1
2
Cp p� qþ 2s

q

� �2

q

" #
dc2

c2
: (3:3)

Since p− q = 2s the term in square brackets simplifies to

2sþ (2s)2

q
¼ 2s

q
(qþ 2s) ¼ Lp

2s
q
: (3:4)

The work is thus

W ¼ 1
2
CpLp

2s
q

� �
dc2

c2
, (3:5)

which ascribes a weight 2s/q to the central rectangle. Since 2s/q is positive, it follows that the Geiger
dome mechanism in this configuration is stabilized by the prestress. Somewhat remarkably, the
stiffness and stability of the mechanism is most simply represented in terms of the weighted area of
the Maxwell–Minkowski rectangle of the bar p between the supports.
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3.3. The crossed tensegrity dome
Figure 7 shows a variation on the tensegrity dome of the previous example. The topology is identical but
the geometry has been changed such that the central bars now cross. The force diagram is shown in
figure 7, while figure 8 shows two dual Airy stress functions over the force diagram that lead to two
independent form diagrams, FORM1 and FORM2. The FORM1 diagram has the required geometry
for our structure, thus we increment the FORM2 diagram, rotate it by 90� and add to FORM1 to
obtain the mechanism, as shown in figure 9.

In the mechanism, the inner crossed bars do not rotate, while all bars in the two outer triangles rotate
by an angle of magnitude θ. We can thus immediately invoke Maxwell’s Load Path Theorem to eliminate
the work done in the outer bars, and express the work solely in terms of the three central bars p, q and r.

W ¼ 1
2

X
a�f

TL

2
4

3
5u2 ¼ � 1

2

X
p,q,r

TL

" #
u2: (3:6)

Within the TL summation over p, q and r, the horizontal components of q and r cancel with that of p
over the central region, leaving the vertical components Tv of q and r over height 2h and the horizontal
component C = 2Th of p over the two lengths s outside the central region. Thus

W ¼ 1
2
(� 2Tv(2h)þ (2Th)(2s))u2 (3:7)
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which, after a little geometry, leads to the result

W ¼ 1
2
KD2, where K ¼ 4Tc

Lc

cos (aþ b)
cosa cosb

, (3:8)

where Δ is the downward displacement of the centre of either of the flying columns, and Tc and Lc are the
tension and length of bar c.

For α, β each less than 90�, the denominator is positive, thus stability is determined by the sign of
cos(α + β). Thus if the apex angle between the tension wires across the columns (between c and q, say)
is less than 90� then the system is unstable. This prediction was confirmed by simple experiments, as
described in Millar et al. [15].
4. Out-of-plane mechanisms of two-dimensional trusses
Out-of-plane motions of two-dimensional trusses are essentially three-dimensional problems, and could
thus be addressed using the methods of three-dimensional graphic statics such as Rankine reciprocal
diagrams where bar forces are represented by the areas of polygons perpendicular to the bars.
However, this is an unnecessary complication. Since both form and forces lie within the plane, they
can be represented by two-dimensional graphic statics as usual, leading to the two-dimensional
Maxwell–Minkowski diagram that combines both. The out-of-plane motions then lead to weightings
of the rectangles of area TL as before, there being nothing in the earlier derivation that required the
nodal displacement vectors a and b (figure 2) to remain in the plane of the diagram.

4.1. Example: the cross-braced truss
This example, taken from Guest [8], checks the out-of-plane stability of a simple self-stressed two-
dimensional truss. The truss has the full K4 graph, and thus corresponds topologically to Maxwell
1864 (fig. 1 in [1]), but with boundary conditions as per figure 10. Three nodes are constrained to lie
in the two-dimensional plane, and there is a single mechanism in which node 4 moves out of plane,
and involves bars b, c and e only. Bars in the outer quad carry a tension T and the diagonals carry
compressions of magnitude

ffiffiffi
2

p
T.

When node 4 moves by w, the total potential energy is

W ¼ 1
2
Kw2 with K ¼

X
b,c,e

T j

L j
¼ 2

T
L
þ� ffiffiffi

2
p

Tffiffiffi
2

p
L

¼ T
L
: (4:1)
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Since the stiffness K is positive, the state of self-stress stabilizes the out-of-plane motion of node 4.
This conclusion can be obtained by inspection. The final drawing in figure 10 shows the projection
looking along the line connecting supports 2 and 3. We may generally express (T/L)w2 = (TL)θ2 = Twθ
for the contributions from the various components, and using the final expression, we note that the
bar forces and end displacements are equal for the tension and compression load paths, but that
the tension load path has the larger rotation θ, thus the system is stable. The same analysis applies
to the more familiar problem of a clothes prop propping a washing line as shown in figure 11.

Projecting onto the plane perpendicular to the line between the tension member supports, and using
the Twθ expression, it is again seen that the bar forces and end displacements are equal for the tension
and compression load paths, but the tension members have the larger rotation θ, thus the system is stable.
This accords with the familiar explanation shown in figure 11 that inextensible members endeavour to
rotate on circles of differing radii. If the prop is inextensible it will try to stretch the tension members
out along the larger radius arc. These members will resist that, and this provides the stability. Stability
would be lost if the prop base were to lie above the line 23 between the tension supports.

The same explanation applies to a structural design exercise undertaken by students early in the
engineering degree at Cambridge University, requiring the design of a cantilever truss to be loaded at
its tip by a hydraulic jack. A question arises as to whether the cantilever tip needs to be braced
against out-of-plane deflection. Figure 12 shows the simplest solution, with a sloping tension bar and
a horizontal compression bar. Again, looking along the line connecting the tension supports 2 and 3,
it can be seen that the compression support 1 lies on the opposite side of the line 23 than the joint 4,
and thus the system is stable. Were the jack to be replaced by a hanging dead load, the support 2
would effectively be at infinity and the compression support 1 would then lie on the line 23, and the
system would be neutrally stable with respect to rotations around this vertical axis.

Figure 13 shows a potentially more economical solution to the design problem. When loaded with a
suspended weight, there is neutral stability with respect to rotation about the vertical line of supports 13,
meaning that lateral bracing is required to provide positive stability. By inspection, only one brace is
required to provide the geometrically stable clothes prop configuration, either at the top or the bottom
as shown.
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Figure 13. A more economical cantilever. Node numbering as per clothes prop.

Figure 14. The Jessen icosahedral tensegrity is prestress stable because only the tension members rotate.
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5. Fully three-dimensional mechanisms
Although all the previous examples were restricted to two-dimensional trusses the total potential energy
summation over the bars was derived in three dimensions using figure 2 and is thus valid for the
prestress stability of the mechanisms of three-dimensional trusses. The only difference concerns the
graphical construction that uses the weighted sum of the Maxwell–Minkowski rectangles in two
dimensions: this must now use the weighted sum of the Rankine–Minkowski prisms in three
dimensions. That is, each TL term is now represented as a volume given by the wedge product of the
bar length vector with the polygonal area representing the tension in that bar.

We shall leave the treatment of three-dimensional trusses for later papers, as these will be more
readily handled by the full multi-modal description that will be presented. However, we note in
passing a few strong but simple results that follow almost trivially from the analysis here.

The first is that the Jessen icosahedral tensegrity is prestress stable (figure 14). It has a single
mechanism in which each of the six compression members move laterally without rotation while the
tension members in the surrounding web rotate. The work summation is thus necessarily positive
which accords with the well-known observation that the mechanism is prestress stable. The second is
that the cable-net roof designed by Buro Happold and Schlaich Bergermann Partner for the new
Tottenham Hotspur Stadium (figure 15) is prestress stable [21]. The roof is essentially a three-
dimensional version of the two-dimensional tensegrity dome of §3.2, with the central tensions being
provided by two large tension rings that run around the tops and bottoms of the flying columns. The
stiffness of the roof is provided completely by the geometric stiffness that results from the prestress.

Stability follows immediately by considering the triangular subframe consisting of a flying column
(between the two tension rings) and the two radial tension ‘spokes’ that connect it to the surrounding
compression ring. The geometric stiffness is most readily calculated by considering the subframe
rotated to a vertical configuration and carrying weights which apply the radial components of tension
from the tension rings, as per figure 15. This is equivalent to a pendulum of total weight Mg = T
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Figure 15. (a) The roof at the new Tottenham Hotspur Stadium is a cable-net tensegrity stabilized by prestress. (b) The geometric
stiffness of a roof bay is revealed by rotating it to a vertical configuration and recognizing the equivalent pendulum.
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(where T is the overall tension at the support), with the pendulum bob located at the ‘centre of mass’
which must lie below the support. Elementary analysis shows the pendulum to have rotational
stiffness TL about any axis perpendicular to the pendulum axis, and zero stiffness against rotation
about the pendulum axis itself, about which it can spin freely.

The stiffness of a mechanism of the whole roof will thus involve the sum of these non-negative
stiffness contributions from the radial subframes, plus the additional geometric stiffness due to any
rotations of members in the tension rings which—being tensile—necessarily give positive
contributions to the sum. The structure is therefore prestress stable.

Within each subframe the roof panels are supported locally by compression struts which connect to
the lower tension chord, and this arrangement is a more complex manifestation of the clothes prop in §4,
and is necessarily stable. While it could be argued that graphic statics was not involved explicitly in the
stadium roof analysis, it may also be argued that this is because the graphical analysis of the earlier
examples of this paper have by this stage built up an intuitive fluency in identifying the key
components that determine stability, allowing the stability of the complex structure to be distilled to
that of the simple equivalent pendulum.
6. Product forces
During the wider process of putting the matrix analysis of structures into a rigorous framework of linear
algebra, Pellegrino & Calladine [4,5,19] dealt with the possible prestress stiffening of mechanisms by
introducing the notion of ‘product forces’ or ‘geometric loads’. These are the nodal forces that must be
applied to the structure in order to deform it into an infinitesimal mechanism, assuming that the pre-
existing bar forces remain constant throughout the small motion.

We first provide the Pellegrino and Calladine matrix description, before giving the graphical
statement of this, and showing how these relate to our earlier description. Elementary equilibrium
requires applied nodal forces f to balance with bar tensions. Component-wise, that isX

bars j

T j cosa j ¼
X
bars j

xi � xk
L j

T j ¼ fix, (6:1)

where αj is the angle between bar j and the x-axis, fix is the x-component of the external force applied at
node i, and Tj is the tension in bar j which connects to node i. Bar j has length Lj and connects node i to
node k, these having x-coordinates xi and xk, respectively, in the equilibrium configuration.

If nodal forces p are applied to deform the structure from its original equilibrium position into a
mechanism m, then equilibrium at the new configuration requires

X
bars j

(xi þmix)� (xk þmkx)
L j

T j ¼ fix þ pix, (6:2)
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where mix, mkx are the x-components of the displacement at nodes i, k of the unscaled mechanism m.
Subtracting the initial equilibrium leaves

X
bars j

mix �mkx

L j
T j ¼ pix, (6:3)

where mix is the x-displacement at node i of the unscaled mechanism m, node i is the node where local
equilibrium is being enforced, and bar j connects node i to node k. This defines the ‘product forces’ p in
terms of the pre-existing bar tensions and the geometry of the structure and the mechanism. The aim here
is to add graphical insight to this relationship.

We begin by following in detail the example given in Pellegrino [5] of a simple funicular holding two
weights, and where the supporting inextensional cable is reeled in by a small amount at the left-hand
abutment. Rather than solving the fully nonlinear constrained problem the aim is to estimate the final
configuration using these linearized methods. Pellegrino provides the solution using matrix methods,
but here we approach the problem graphically.

Figure 16 illustrates the problem, showing the form and force diagrams for the undeformed
configuration. The form diagram involves a point at infinity where the lines of action of applied loads
meet. The areas of the Maxwell–Minkowski rectangles are [5WH, 4WH, 5WH], respectively. If the
displacements at nodes 2 and 3 are [p2x, p2y, p3x, p3y] = [1,−2, 1, 2]δ such that the bar rotations are
[1, 2, 1]δ/H, then the total potential energy is (1/2)(5 + 16 + 5)(WH)(δ/H )2 = (1/2)(26W/H )δ2, with
prestress stiffness 26W/H.

We now apply compatibility to determine the effect of reeling in the cable from the left support. In
this example, the cable is assumed to be inextensible. Compatible displacement diagrams can be
readily constructed but they are not unique. Figure 17 illustrates those features of the displacement
diagram that can be determined by first-order compatibility alone, namely:

— the abutment nodes 1 and 4 do not move and thus are represented by points at the origin of the
displacement diagram;

— the point representing node 3 must lie on line 3 that rises at the 2 : 1 slope from the origin
perpendicular to bar c;
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— the point representing node 2 must lie on line 2 that rises at the 2 : 1 slope and is offset from the origin
by Δ in the bar a direction;

— because nodes 2 and 3 are connected by the horizontal bar b the points representing them must lie on
a vertical line.
Figure 17 shows the displacement diagram for the mechanism alone, and how this fits into the overall
displacement diagram including the bar a shortening.

Any configuration satisfying these conditions is a compatible configuration. For example, in his
matrix analysis, Pellegrino chooses the configuration [p2x, p2y] ¼ (0, � ffiffiffi

5
p

D) and [ p3x, p3y] = (0, 0).
These satisfy the above requirements, each lying on the y-axis of our displacement diagram. (For Δ =
10 mm, � ffiffiffi

5
p

D ¼ �22:36mm.)
However, addition of an arbitrary multiple of the inextensional mechanism [ p2x, p2y, p3x, p3y] = [1,−2,

1, 2] will also be compatible. The question is thus to find the appropriate combination which satisfies
equilibrium.

The key is to identify what Pellegrino & Calladine [4,19] call the ‘product forces’. These are the forces
that need to be applied to the nodes to deform the structure into some particular mechanism, assuming
that the bar tensions do not change.

These ‘product forces’ are illustrated in figure 18, focusing on bar a. First, all nodes are moved to their
displaced positions. The product force at node 2 has a contribution associated with bar a. This is the
additional external force p 2a that must be applied at node 2 to re-orient the old force so that it aligns
with the new bar direction.

In the top left of figure 18, the tension Ta acting in bar a on node 2 has first been rescaled to have the
same length as the bar itself, such that its arrowhead is on node 1. In the next diagram, upper right, the
structure has been flexed into the mechanism m, and node 2 moves to the new location 2’. Node 1, being
a support, does not move. The original force vector Ta no longer aligns with the new bar direction. In the
diagram to the lower left, it is clear that a force −p 2a would reorient the bar tension to lie along the bar. In
the final drawing, lower right, the product force +p 2a is thus applied externally at the displaced node 2’,
and this is such that p 2a +T0

a =Ta. That is, the product force plus the realigned bar tension equal the
original tension.

It is clear from the geometry that the magnitude of the product force p2a = Taθa. The distance which
node 2 moves is the magnitude of the mechanism nodal displacement vector, which is m2 = Laθa. The
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contribution to the total potential energy from the rotation of the force in this bar will equal half the
applied force times the distance travelled, thus

dP ¼ 1
2
p2am2a ¼ 1

2
(Taua)(Laua) ¼ 1

2
(TaLa)u2a : (6:4)

It is often stated that the ‘geometric stiffness’ is given by the tension coefficient T/L. In the
interpretation here, the product TL can be seen as the geometric rotational stiffness, this being the
stiffness against rotation of the bar due to the tension force it carries. The Maxwell–Minkowski
diagram contains rectangles of area TL, and thus one interpretation of such a diagram is that it
displays the geometric rotational stiffnesses of the stressed bars.

That is the key to the geometric understanding of the product forces. The product force at each node is
the sum of the product forces due to each bar connecting at that node, and each individual product force
is the product of the bar tension and the bar rotation as it undergoes the motion associated with the
mechanism.
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To complete the analysis, we consider the other two bars. The geometry for bar b is shown in figure
19a. Again, the product force required to align the original tension Tb with the new bar direction has the
Tθ form, namely p2b = Tbθb, and its direction is m 2 −m 3, the difference in the mechanism displacement
vectors at the two ends of the bar.

The figure 19c–e shows the set of all forces acting at the displaced node 2’ and how they are equivalent
to the original equilibrium set at node 2. The mechanism has the form [1,−2, 1, 2] and the corresponding
product forces have the form [1,−6, 1, 6]W/H. It is interesting that the two shapes differ.

For the geometric construction, it is preferable to leave the product forces in terms of the separate
contributions from each bar. For example, the total product force p 2 = [1,−6]W/H at node 2 will be
kept as the separate contributions p 2a = [1,−2]W/H and p 2b = [0,−4]W/H.

As explained in Pellegrino [5], at equilibrium, the product forces are orthogonal to the compatible
displacements. Orthogonality may be expressed in terms of a dot product and in a manner akin to the
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standard Maxwell–Minkowski diagram, the dot product of the nodal displacements with the product
forces can be calculated graphically by first rotating the product forces by 90°. The dot product then
becomes a cross product, whose magnitude is equal to the area of the parallelogram on the new
unified diagram of mechanism displacement and product force. This is illustrated in figure 20.

At each node, the product forces are broken down into the contribution from each connecting bar, such
that the contribution of each bar to the total summation can be represented by the area of the quadrilateral
having the bar as one diagonal. In this case, the quadrilaterals are parallelograms. The sign of each oriented
area is given by the direction of rotation of the product forces at either end of the bar.

Each parallelogram can be readily decomposed into constituent rectangles whose areas are readily
computed. Orthogonality requires the total oriented area to be zero. Figure 20 shows that this requires
the geometrical condition h = 12t, where h and t are defined in the diagram.

The solution so obtained is presented in figure 21. This agrees with the results of Pellegrino’s matrix
calculations and has been obtained by purely graphical methods. In summary, the displacement diagram
of figure 17 was a qualitative schematic to represent the kinematic constraints, whereas the final diagram,
figure 21, was obtained by graphical analysis of the product forces and is a quantitative representation of
the actual displacements.
pen
Sci.8:201970
7. Summary and conclusion
This paper has shown how the geometric stiffness and prestress stability of pin-jointed trusses possessing
a kinematic freedom may be determined graphically, without recourse to the matrix algebra that
underpins earlier formulations. The paper is thus a further contribution to the recent renaissance of
graphic statics, bringing stiffness and stability considerations within its compass. A key result was that
the rectangular areas TL in the Maxwell–Minkowski diagrams that unify the reciprocal form and force
diagrams of a loaded truss give a powerful pictorial representation of the rotational geometric
stiffness of the truss members that arise due to the forces in those members. Whether or not a given
kinematic freedom is stabilized or destabilized by the presence of the internal forces is determined by
the sign of a weighted sum of these stiffnesses.

The presentation here is restricted to the small displacements of two- or three-dimensional pin-jointed
trusses with axially inextensional bars and with only a single kinematic freedom. The generalizations of
this theory which describe the stiffness of trusses with numerous kinematic freedoms, with extensionable
members and for large displacements are presented in companion papers [15,17,18], including the
example application of the multimodal linearized theory to describe the stability of Robert Maillart’s
iconic design for the shed roof at Chiasso [16].
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