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Abstract

The growing demand for learning English as a second lan-
guage has increased interest in automatic approaches for assess-
ing and improving spoken language proficiency. A significant
challenge in this field is to provide interpretable scores and in-
formative feedback to learners through individual viewpoints of
learners’ proficiency, as opposed to holistic scores. Thus far,
holistic scoring remains commonly applied in large-scale com-
mercial tests. As a result, an issue with more detailed evaluation
is that human graders are generally trained to provide holis-
tic scores. This paper investigates whether view-specific sys-
tems can be trained when only holistic scores are available. To
enable this process, view-specific networks are defined where
both their inputs and structure are adapted to focus on specific
facets of proficiency. It is shown that it is possible to train
such systems on holistic scores, such that they provide view-
specific scores at evaluation time. View-specific networks are
designed in this way for pronunciation, rhythm, text, use of
parts of speech and grammatical accuracy. The relationships
between the predictions of each system are investigated on the
spoken part of the Linguaskill proficiency test. It is shown that
the view-specific predictions are complementary in nature and
capture different information about proficiency.
Index Terms: automatic assessment of spoken language profi-
ciency, computer assisted language learning

1. Introduction
Automatic scoring of language proficiency is becoming a point
of growing interest and importance in the field of second lan-
guage assessment because the number of English-as-a-second-
language (ESL) learners has been steadily increasing world-
wide [1]. Internationally recognized language tests, such as In-
ternational English Language Testing System (IELTS) and Test
of English as a Foreign Language (TOEFL), are often composed
of sections specifically dedicated to the assessment of speak-
ing, listening, writing and reading skills, that are evaluated by
human experts according to certain sets of criteria. The intro-
duction of automatic graders for spoken language assessment
would be beneficial for examiners and learners for formal set-
tings and also for practice situations in Computer Assisted Lan-
guage Learning (CALL). In fact, compared to human graders,
automatic graders can ensure greater consistency and speed at
a lower cost, since the recruitment and training of new human
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experts is expensive and can offer only a small increase in per-
formance [2].

Despite some limitations [3], established standards such as
the Common European Framework of Reference for languages
(CEFR) [4] are recognized throughout the world as effective
measures for grading the proficiency of second language (L2)
speakers. The CEFR scales are structured according to ’can-
do’ descriptors of language proficiency outcomes, especially in
relation to communicative competence. Therefore, these guide-
lines expect graders to grade proficiency by means of holistic
assessments rather than separated facets. Nonetheless, it has
been demonstrated that such holistic evaluations do have a mod-
ularizable structure, which can be divisible into single facets of
proficiency, such as phonetic pronunciation, intonation, speed
of speech, vocabulary and grammar, each of which is assigned a
score that strongly correlates with the holistic grade [5]. In light
of this, automatic grading can be a valuable resource a fortiori,
as it has been suggested that it might be used to make consis-
tent assessments of specific linguistic phenomena, whereas hu-
man grading focuses on more global aspects of performance, as
shown in [6] for written and in [7] for spoken proficiency. Fur-
thermore, although the CEFR descriptors mainly target com-
municative competence, it has been proven that even learner
errors can be connected to CEFR proficiency levels [8] and can
be considered as criterial features for each level, together with
other linguistic features, as illustrated in [9].

CALL applications also distinguish between different
facets of proficiency during teaching, with different systems
used to separately teach specific linguistic skills, such as pro-
nunciation [10], prosody [11], and vocabulary [12]. As a result,
the ability to analytically assess a learner’s progress according
to each of these facets should be useful for feedback and in or-
der to inform further teaching in an adaptive fashion.

In automatic assessment of L2 spoken language proficiency,
input sequential data from a learner is used to predict a holis-
tic grade and/or a grade representing proficiency with respect
to a particular facet (single-view grading). The input may con-
sist, as needed, of acoustic features, recognised words, phones
and/or time-alignment information, or other information, such
as fundamental frequency, extracted directly from the audio
or from automatic speech recognition (ASR) output. Most
approaches in the literature extract sets of hand-crafted fea-
tures to capture views including fluency [13], pronunciation
[14], prosody [15] and text complexity [16], which are then
fed into graders, trained with human-annotated single-view
scores, to predict single-view scores. Since CEFR descriptors
do not provide accurate information regarding the use of ana-
lytic scores, annotated data containing such human-annotated
single-view scores are hard to obtain and are likely to suffer
from inconsistency between and within human raters. This ap-
proach can be used for holistic grading by concatenating multi-



ple view-specific hand-crafted features targeting more than one
facet in order to produce holistic feature sets, which are then
passed through graders, to predict holistic grades, as shown
in [17, 18, 19, 20], with the grader trained on human assigned
holistic scores. The efficacy of hand-crafted features for either
view-specific or holistic grading relies heavily on their particu-
lar underlying assumptions and they risk discarding potentially
salient information about proficiency. This issue for holistic
grading has been addressed by replacing hand-crafted features
with automatically derived features for holistic grading predic-
tion, either through an end-to-end system [21] or in multiple
stages [22, 23]. However, neither can be used for multi-view
assessment.

This paper investigates whether view-specific systems can
be trained when only holistic scores for a test-taker are avail-
able. Section 2 presents a framework for multi-view assess-
ment using graders trained on only holistic grades. Section 3
describes the single-view graders used in this work, while Sec-
tion 4 illustrates the experimental setup and data. Finally, the
experimental results are analysed and discussed in Section 5.

2. View-Specific Training
As previously discussed, for most spoken language assessment
training data sets only overall holistic scores are available.
Thus, the training data set comprises D = {x(i), y(i)} where
x(i) is the set of features, or sequence of features, extracted
from the audio and ASR system, and y(i) the associate refer-
ence score. This section motivates how this training data can be
used to train view-specific models.

The assessment process can be split into two distinct stages.
where initially the features x are mapped to view-specific fea-
tures v, and then fed into the score-prediction network. Thus,
for a particular view

ŷ(i)
v = Fv(x

(i)) = fv(gv(x
(i))) = fv(v

(i)) (1)

where the desired training data comprises Dv = {x(i), y
(i)
v }.

Unfortunately, there are no view-specific reference grades, y(i)
v ,

associated with each of the training observations, x(i), just
overall holistic grades, y(i). To address this problem, the form
of the feature extractor gv(x

(i)) is constrained so that only in-
formation about a specific view is contained within v(i) (see
Figure 1).

Figure 1: View-specific training.

For example, if only information about the text spoken is
in v(i), irrespective of the pronunciation of the words1, then the
same feature vector v can be obtained from the different values
of x.

Training the model parameters, θ, on the holistic training
data, D, aims to minimise the loss L(θ)

L(θ) =
N∑
i=1

L(y(i),Fv(x
(i))) =

Ñ∑
j=1

∑
i∈S(j)

L(y(i), fv(v
(j))) (2)

1There will be some influence of pronunciation on the performance
of the ASR system and associated confidence scores.

where S(j) is the set of samples such that gv(x(i)) ≈ v(j)

and Ñ is the number of distinct values of v. In this work, a
least-squares cost function, L(y, ŷv), is used. When training
the model it is not necessary for the loss function to be ”cor-
rect” provided the gradients for training the model parameters
are suitable. Thus

∂L(θ)
∂θ

∝
Ñ∑

j=1

∑
i∈S(j)

(
fv(v

(j))− y(i)
) ∂fv(v

(j))

∂θ
(3)

=

Ñ∑
j=1

|S(j)|

(
fv(v

(j))−
∑

i∈S(j) y
(i)

|S(j)|

)
∂fv(v

(j))
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Thus, the gradient, and associated minima, will be consistent
with training against view specific training data Dv provided

y(j)
v ≈

∑
i∈S(j) y

(i)

|S(j)|
(4)

Here it is assumed that the view score contributes to the overall
holistic score. By averaging over samples with similar view-
specific features, v, the resulting scores should be biased to the
view-specific grades even if (4) is not exactly satisfied.

In this analysis the precise concept of how the set S(j) is
derived has not been strictly specified. Assuming that there is
sufficient data and the gv() is a smooth function, the standard
training, the LHS expression in (2), can be run. The model
implicitly smooths the view-specific predictions.

3. Single-view graders
In the present study, we implement 5 grading models for as
many views of proficiency, namely pronunciation, rhythm, text,
GEC edit sequences and POS tag sequences. For all graders, an
ensemble of 10 models was trained.2

Pronunciation: the pronunciation model is described in detail
in [24]. Sequences of acoustic observations corresponding to
phone instances are projected to fixed-length phone instance
representations, with those corresponding to a specific phone
label attended over to obtain an overall representation for that
phone. Euclidean distances between phone representations are
then passed through a feed-forward layer to predict the score.
The objective is for information from the observation vectors to
only be preserved insofar as it characterises the way the speaker
pronounced each phone in relation to the pronunciation of the
other phones.
Rhythm: we implement the rhythm grader as described in [25].
In this case, the grader is constrained in a way that the input
only consists of durations of phones and silences, grouped into
consonant and inter-consonant intervals, such that the grader
can only exploit duration patterns for scoring.
Text: we use the text grader presented in [26], which consists
of an LSTM with attention over its hidden representation. The
inputs are word embeddings obtained by passing the words of
each utterance through a trained BERT language model [27].

Finally, we introduce two novel graders for the specific
views of grammatical accuracy and use of parts of speech. For
brevity, we refer to them as es (edit sequence) and pos (part-of-
speech) respectively.

2Note that the text, es and pos graders consist in turn of multiple
graders trained on the scores of the 5 parts that compose the exam,
whereas the pronunciation and rhythm graders have been trained on the
overall scores of the exam.



Grammatical accuracy: the es grader is a transformer-
based [28] model that takes GEC edit sequences as inputs. Prior
to the grader, a GEC model is run on the ASR output, after re-
moving hesitations and partial words. Both corrected and orig-
inal ASR texts are passed through ERRANT [29] to yield the
GEC edit sequences.
Use of parts of speech:the pos grader has the same tranformer-
based architecture as the es grader, but takes POS tag sequences
as inputs. These sequences are generated with spaCy3.

In addition to a comparative analysis of the single-view
graders, we investigate a possible combination by means of an
OLS (Ordinary Least Squares) multiple linear regression model
using the 5 graders’ predictions ŷ(i)

v as predictors and setting the
reference holistic score ŷ(i) as target:

ŷ(i) = β0 + βpr ŷ
(i)
pr + βry ŷ

(i)
ry + ...+ βps ŷ

(i)
ps + ϵ (5)

where β0 represents the intercept and βv is the coefficient for
a specific view prediction ŷv and ϵ is the model’s residual (see
Table 1 for notation). The linear model is trained on the devel-
opment set. The performance of the single-view graders is com-
pared against a baseline assessment system. This is is a Deep
Density Network (DDN) trained on a set of hand-crafted fea-
tures across different views [30]. These features include: grade
dependent language model and word level statistics; statistics
of phone duration; statistics to capture rhythm; fluency metrics;
and fundamental frequency statistics are used to represent into-
nation. As for the other graders, the baseline predictions are the
result of an ensemble of 10 models. Further information about
the features employed and about the ensemble approach can be
found in [19, 31].

4. Data and experimental setup
The data used in our experiments are obtained from candidate
responses to the spoken components of the Linguaskill exami-
nations for L2 learners of English, provided by Cambridge En-
glish Language Assessment [32]. Each speaker is graded on a
scale of 1-6 based on the CEFR holistic criteria, i.e. A1, A2,
B1, B2, C1 and C2. Non-overlapping datasets of 31475 and
1033 speakers are used respectively as the training and devel-
opment/calibration set. For evaluation, we consider two test
sets, LinGen and LinBus, of 1049 and 712 speakers respec-
tively. LinGen contains learners’ answers to questions on Gen-
eral English, whereas LinBus includes answers to questions on
Business English. Each test set is balanced for gender and pro-
ficiency and features around 30 L1s.

The first step before passing the data through each auto-
marking system is recognising the text being spoken and, for
the pronunciation and rhythm systems, aligning the audio to a
sequence of phones. Both of these tasks are performed using
a Kaldi-based ASR system, specifically the TDNN-F acoustic
model and Kneser-Ney language model described in [33]. The
average word error rate (WER) is 19.5%.

For the es grader, a transformer-based GEC system [28] is
trained on the CLC [34] and BEA-19 GEC shared task [35] cor-
pora. It is a base-sized model [28] with 512D hidden states, 6
encoder, and 6 decoder layers. The vocabulary is derived from
CLC and Switchboard [36]. Model parameters are averaged
over 5 best checkpoints, and greedy decoding is used. Train-
ing uses the Adam optimiser [37] with batch size 256, dropout
0.2, and learning rate 1e-3. The GEC edit sequences are de-
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rived from ERRANT run on the original and automatically cor-
rected ASR hypotheses. These sequences are fed into our es
model which consists of an embedding layer with size 128, a
transformer-block with hidden layer size 128 and 8 heads, a
dense layer of 128 nodes, and finally the output layer. Training
uses the Adam optimiser with batch size set at 32 and learning
rate at 2e-6. The pos grader model has the same structure.

The performance of each grading system is evaluated us-
ing root-mean-square error (RMSE), whilst further comparisons
also include Pearson’s correlation coefficient (PCC), Spear-
man’s rank correlation coefficient (SRC), and the percentage
of the predicted scores that are equal to or lie within 0.5 (i.e.
within half a grade) of the actual score (% ≤ 0.5).

5. Experimental results and analysis
Table 1 shows the performance of the 5 single-view graders and
the baseline in terms of RMSE, considering both the individ-
ual models and the ensembles. As can be seen, the ensemble
approach gives a significant improvement on all the graders, in-
cluding the baseline.

Model LinGen LinBus
Indiv. Ens. Indiv. Ens.

baseline 0.578±0.011 0.412 0.522±0.009 0.406
pron (pr) 0.455±0.004 0.452 0.454±0.003 0.451
rhythm (ry) 0.571±0.036 0.508 0.551±0.037 0.490
text (tx) 0.402±0.005 0.400 0.409±0.007 0.409
es (es) 0.547±0.001 0.547 0.497±0.001 0.495
pos (ps) 0.550±0.001 0.550 0.499±0.003 0.497

Table 1: Performance of the single-view graders and baseline
in terms of RMSE. Individual models VS ensembles.

In order to examine the differences between and the com-
plementarity of each single-view grader, we only consider Lin-
Bus. In Table 2, we report the performance of various com-
binations of the single-view graders through the OLS multiple
linear regression model introduced in Section 3. For each com-
ponent we report the respective β coefficient. It is observed
that the combination of all the graders improves on the perfor-
mance of their component graders, and this is consistent with
the single-view graders extracting complementary information
to each other. Specifically, among the 5 graders, the text grader
affects the linear model most, as can be inferred from its high
β coefficient and from the drop in performance of the combina-
tion that excludes it. Based on the β coefficients, the pronunci-
ation and rhythm graders always contribute equally to the linear
model, but the presence of the first appears to have a more posi-
tive impact on the overall performance. The es grader seems to
have a relatively smaller impact, except when the combinations
exclude the pos or the text graders. We continue our analysis

Combination βpr βry βtx βes βps RMSE
prrytxesps 0.14 0.14 1.30 -0.05 -0.39 0.386
prrytxes 0.14 0.14 1.30 -0.31 — 0.405
prrytx ps 0.14 0.14 1.30 — -0.47 0.384
prry esps 0.45 0.45 — 0.28 -0.05 0.432
pr txesps 0.29 — 1.30 -0.05 -0.39 0.385
rytxesps — 0.29 1.30 -0.05 -0.39 0.392

Table 2: RMSE and β coefficients of linear regression model
with different combinations.



focusing on each grader’s performance across proficiency level.
Figure 2 shows the RMSE variation of the 5 graders across the
5 proficiency levels. The es and pos graders follow very simi-
lar trends as expected, since ERRANT labels are based on POS
tags. In particular, the case of es is consistent with what the au-
thors of [9] call ’inverted U patterns’ in written proficiency, i.e.
errors increase after B1 and then decline again by C2. In this
regard, it is also interesting to note that there is a correspon-
dence between oral and written proficiency when it comes to
grammatical accuracy. Compared to the other graders, the pro-
nunciation grader has the lowest RMSE on the lowest grade (1),
which gradually decreases until grade 4 and then rises again af-
ter grade 5. On the other hand, the rhythm grader shows its best
performance for grade 5, and this is consistent with the findings
shown in [38], in which English speech rhythm is described as
one of the most difficult aspects for learners to acquire. Finally,
the text grader shows the lowest RMSE, in both absolute and
relative terms, for the middle grades (3-4).

Figure 2: RMSE variation across proficiency levels.

Furthermore, we investigate the relationships between
single-view graders through a repeated measures design. Ar-
guably, the most well-known repeated measures design is re-
peated measures analysis of variance (rANOVA). However,
since our data violate both the sphericity and normality assump-
tions required for rANOVA, we must opt for the Friedman test
[39], which is considered the non-parametric equivalent of rA-
NOVA and determines whether there are any statistically signif-
icant differences in ranks between the distributions of multiple
paired groups. As we obtain a significant p-value, we find that
there are significant differences among the graders.

In order to determine exactly which graders are signifi-
cantly different, we perform post-hoc multiple comparisons us-
ing the Nemenyi test [40]. We report the test results in Fig-
ure 3. All paired comparisons, even those with the reference
score, show significant differences (p-value<0.05), with the ex-
ception of the pairs es-pos and text-rhythm. As regards the first
pair, we have already commented on the almost overlapping
trends shown in Figure 2. As for the latter, we might argue that
the non-significant p-value reflects the analogous trends of the
RMSE variation curves followed by the text and rhythm grader,
despite a remarkable gap between them.

Finally, in Table 3 we report a comparison of the baseline,
our best performing single-view model i.e. the text grader, and
the linear regression model considering the evaluation metrics
mentioned in Section 4. The combination of the single-view

Figure 3: Heatmap of the results of the post-hoc Nemenyi test.

graders outperforms both the baseline and the text grader across
all metrics.

Model PCC SRC RMSE %≤0.5
baseline 0.910 0.915 0.406 79.1
text (tx) 0.920 0.925 0.409 78.9
prrytxesps 0.920 0.926 0.386 80.5

Table 3: Comparison of the performance of the baseline, text
grader and linear regression model.

6. Conclusions and future work
In order for CALL and automatic spoken language assessment
systems to give learners interpretable scores and informative
feedback on their speaking ability, specific aspects of their profi-
ciency should be assessed, but for many real-world tasks single-
view scores are not available or are often inconsistent for train-
ing automatic systems. This paper considers whether view spe-
cific systems can be trained when only holistic scores are avail-
able. Single-view graders are developed for views of pronun-
ciation, rhythm, text, grammatical accuracy and use of parts
of speech. The predictions made by these graders are seen to
be complementary to all the others for the task of predicting
holistic grades. Furthermore, we investigate a combination of
the 5 graders by means of a multiple linear regression model
and we find that it generally improves on the performance of
each single-view grader. Since the single-view scores are also
available, this multi-view system enables the holistic score to
be significantly more interpretable enabling useful feedback to
learners who need specific indications on how to improve their
speaking skills. This is even more true for users of business
English, as the ones represented in the LinBus test set. Further
work should be undertaken in order to improve the performance
of spoken grammatical error annotation, since current systems
are generally designed for written texts and are not ideal for
speech. Future work will also include other types of combina-
tions, considering both shallow and deep fusion methods.
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