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ABSTRACT

While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine
distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction.
An SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage
current and future SN Ia data sets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct
a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR (B through H, or
0.35—1.8 pm). We model the SED as a combination of physically distinct host galaxy dust and intrinsic spectral components.
The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components
and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light
curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components and population
hyperparameters. Photometric distances of SNe Ia with NIR data near maximum obtain a total RMS error of 0.10 mag with our
BAYESN model, compared to 0.13-0.14 mag with SALT2 and SNooPy for the same sample. Jointly fitting the optical and NIR
data of the full sample up to moderate reddening (host E(B — V) < 0.4) for a global host dust law, we find Ry = 2.9 4 0.2,

consistent with the Milky Way average.
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1 INTRODUCTION

Type Ia supernovae (SNe Ia) are effective cosmological probes as
‘standardizable candles’: their peak luminosities can be inferred
from their optical light-curve shapes and colours, so their distances
can be estimated from their apparent brightnesses. Precise and
accurate SN Ia distances with small systematic errors are essential
to accurate constraints on the cosmic expansion history, including
local measurements of the Hubble constant (Burns et al. 2018; Riess
et al. 2019), the late-time cosmic acceleration (Riess et al. 1998;
Perlmutter et al. 1999), and the properties of the dark energy driving
it, in particular, its equation-of-state parameter w (e.g. Scolnic et al.
2018; Abbott et al. 2019). Currently, there is a significant 4.40
tension between the value of Hj locally inferred from SNe Ia via the
distance ladder (74.03 % 1.42 kms~' Mpc~!; Riess et al. 2019) and
the value derived from Planck CMB analysis assuming the ACDM
cosmological model (67.4 4 0.5 kms~! Mpc~!; Planck Collaboration
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2020). Since this tension could potentially be a sign of new physics, it
is imperative to test for systematic errors with empirical cross-checks
(e.g. Dhawan, Jha & Leibundgut 2018). With increasing sample sizes,
nearby SNe Ia will be able to constrain the growth of structure as
probes of the peculiar velocity field (e.g. Howlett et al. 2017; Huterer
et al. 2017; Graziani et al. 2020). Further cosmological constraints
can also be derived from strong or weak lensing of SNe Ia (e.g.
Goldstein et al. 2018; Dhawan et al. 2020; Macaulay et al. 2020). In
this paper, we present a new data-driven statistical model, BAYESN,
for SN Ia spectral energy distributions (SEDs) to analyse light curves
and extract more precise and accurate distances from current and
future surveys by exploiting the advantageous properties of SNe Ia
in the near-infrared (NIR).

The current global sample used for cosmology, derived from the
SDSS-II, SNLS, Pan-STARRS (PS1), low-z and HST surveys, has
grown to over a thousand SNe Ia (Pantheon; Scolnic et al. 2018).
Future surveys, such as the Legacy Survey of Space and Time
(LSST, Ivezié et al. 2019) provided by the Vera Rubin Observatory,
will boost that number by orders of magnitude. The constraints on
dark energy with the current sample will soon be limited, not by
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statistical uncertainties from the numbers of SNe, but by systematic
errors. In recent analyses, photometric calibration and SN model
uncertainties dominate the systematic error budget (JLA: Betoule
et al. 2014; PS1: Scolnic et al. 2018; DES: Brout et al. 2019). The
calibration systematics are now being tamed by improved instrumen-
tal calibration (e.g. Regnault et al. 2015), better cross-calibration
between surveys (Scolnic et al. 2015; Currie et al. 2020), better
networks of photometric standards (Narayan et al. 2016, 2019), and
by ongoing efforts to replace the heterogeneous low-redshift sample
with a large, unbiased, homogeneous sample obtained on a precisely
calibrated photometric system (PS1, Foundation Survey; Foley et al.
2018b; Jones et al. 2019). LSST will increase the cosmologically
useful SN Ia sample to ~10° over its 10 yr duration. It will further
diminish cross-survey calibration systematics by replacing previous
high-redshift SN Ia surveys with a single, homogeneous, and large
SN Ia sample taken on a single system. However, systematic errors
due to the statistical models and methods used to analyse SN Ia
light-curve data will remain.

Observations probing the rest-frame near-infrared (NIR, partic-
ularly A 2 1 pm, e.g. YJH bands) are a route to more precise and
accurate distances. NIR observations of SNe Ia significantly improve
their cosmological utility. Unlike in the optical, where they must be
standardized via correlations of optical luminosity with light-curve
shape and colour, SNe Ia are excellent, nearly standard candles in the
NIR, showing little intrinsic luminosity variation (~0.1 mag) at peak
(e.g. Krisciunas, Phillips & Suntzeff 2004c; Wood-Vasey et al. 2008;
Mandel et al. 2009; Contreras et al. 2010; Barone-Nugent et al. 2012;
Kattner et al. 2012; Phillips 2012; Burns et al. 2018; Stanishev et al.
2018; Avelino et al. 2019). The NIR also has significantly reduced
sensitivity to dust extinction relative to the optical (by factors of 4—8,
comparing NIR YJH to optical B). Dhawan et al. (2018) showed how
a small set of SNe Ia, used as NIR standard candles to measure H,,
can replace a much larger optical sample, while still providing a
4.3 per cent measurement (consistent with Riess et al. 2019), without
any light-curve shape or colour corrections as are required in the
optical. We recently compiled a sample of 89 nearby SNe Ia with
optical and NIR light curves passing standard quality cuts (Avelino
et al. 2019). Using 56 SNe Ia with NIR data near peak brightness,
where the luminosity dispersion is minimal, we found a 35 per cent
reduction in Hubble Diagram scatter (i.e. more precise distances)
when using SNe Ia as NIR standard candles, relative to conventional
optical-only fits to the same SNe.

The combination of optical and NIR data better constrains the host
galaxy dust extinction and the shape of the dust law as a function of
A (parametrized by Ry) (Krisciunas et al. 2007; Burns et al. 2014),
and significantly improves the accuracy and precision of SN Ia
distances (Mandel, Narayan & Kirshner 2011). The nature of the
dust in SN Ia host galaxies is fundamental to the largest ‘correction’
in standardizing SNe Ia, that due to colour. Incorrect modelling
interpretation of the SN Ia colour—magnitude relation is therefore
a major source of systematic error in SN distances. However, the
correct values(s) of the Ry parametrizing the dust extinction law has
long been a matter of confusion, and its proper estimation is fraught
with statistical subtleties.

Very early analyses that found unphysically low values Ry < 1
(Branch & Tammann 1992) did not account for correlations between
the luminosity, colour, and light-curve shape (later modelled by
e.g. Phillips 1993; Riess, Press & Kirshner 1996a; Phillips et al.
1999). Riess, Press & Kirshner (1996b) noted that confusing intrinsic
colour—luminosity variation with dust effects would lead to mistak-
enly lower estimated Ry values. Simple linear regression analyses of
SN extinguished absolute magnitudes against apparent colours and
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light-curve shapes have led to apparent colour—magnitude slopes
(e.g. B in the Tripp formula) that have sometimes been interpreted
as low dust Ry values (Tripp 1998; Tripp & Branch 1999; Guy
et al. 2005; Astier et al. 2006; Conley et al. 2007; Freedman et al.
2009). Kessler et al. (2009b) and Scolnic et al. (2014) highlighted
the relevance of colour dispersion to estimating f, the latter finding
a Milky Way dust-like colour-magnitude slope. Mandel et al. (2017)
showed that statistical confounding of the intrinsic colour—luminosity
correlation and dispersion with the extrinsic effects of dust leads
to estimates of B that are biased low relative to the true dust Ry,
and a probabilistic generative model with explicit parameters for
these physically distinct effects led to a Bayesian estimate of Ry =
2.8 + 0.3, consistent with the Milky Way average.

Anomalously low Ry ~ 1.5—1.8 values have been estimated for
a few very highly reddened SNe Ia (E(B — V) > 1) (e.g. Elias-
Rosa et al. 2006, 2008; Wang et al. 2008; Amanullah et al. 2014).!
While the origin of these low Ry estimates is still under investigation
(Wang 2005; Goobar 2008; Amanullah & Goobar 2011; Phillips
et al. 2013; Amanullah et al. 2015; Johansson et al. 2017; Bulla
et al. 2018a; Bulla, Goobar & Dhawan 2018b), these very red SNe
are not present in the cosmological sample, due to the standard
cut on peak apparent SN colour (B — V < 0.3). When only low- to
moderately reddened normal SNe Ia with apparent colours consistent
with the cosmological sample are considered, values of Ry ~ 2.5—3
have generally been estimated in nearby samples, often by utilizing
spectroscopic or NIR data to break the degeneracy between intrinsic
colours and dust in the optical (Folatelli et al. 2010; Chotard et al.
2011; Foley & Kasen 2011; Mandel et al. 2011; Phillips 2012; Burns
et al. 2014; Mandel et al. 2017; Léget et al. 2020).

The excellent properties of the NIR have not been fully integrated
into and leveraged by the statistical models routinely used for SN Ia
cosmology. We have constructed a new, hierarchical Bayesian model,
BAYESN, for time-dependent SN Ia spectral energy distributions
(SEDs) from the optical to NIR wavelengths. With NIR coverage, our
model leverages the low luminosity dispersion in the NIR, while its
wide optical-to-NIR wavelength range enables it to more stringently
constrain the host galaxy dust, and the dust law, affecting the SNe
Ia. These two advantages enable us to more accurately improve our
model of the intrinsic SED coherently across all wavelengths. While
it produces the best distance estimates when fitting complete light
curves across the full wavelength range, as a Bayesian model, it
also makes the most effective use of the observations available in
any partial data set, e.g. optical-only, NIR-only, while marginalizing
over the unobserved parts of the SED.

BAYESN is an important tool, not only for properly analysing
current data sets, but also extracting optimal distances and robust
cosmological constraints from future optical and NIR SNe Ia ob-
servations. Beyond the data sets analysed in this work, the ability
to effectively leverage joint optical and NIR observations is crucial
for fully exploiting a number of recent and current surveys and
forthcoming data sets, including the Carnegie Supernova Project-
II (CSP-1I; Phillips et al. 2019), the Foundation Supernova Survey
(Foley et al. 2018b), and Young Supernova Experiment (YSE; Jones
et al. 2021) with Pan-STARRS, RAISIN (GO-13046, GO-14216)
and SIRAH (GO-15889) with the Hubble Space Telescope (HST),
the ESO VISTA Extragalactic Infrared Legacy Survey (VEILS), and
the DEHVILS Survey using UKIRT. This is also important for LSST,

"However, not all highly reddened SNe Ia have low Ry, e.g. SN2012cu with
E(B — V)~ 1 and Ry ~ 3, compatible with the Milky Way average (Huang
etal. 2017).
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which will observe SNe la in ugrizy, and will therefore probe rest-
frame z or y to redshifts z < 0.3. The Nancy Grace Roman Space
Telescope (RST, formerly WFIRST) will have a dedicated SN survey
and its wide NIR filters will overlap with rest-frame YJH out to
redshifts z < 1, 0.7, 0.4 respectively.

1.1 Comparison to existing models

The models used to analyse SN Ia light curves and estimate distances
are entirely empirical and are learned from the data. The conventional
approach has a number of shortcomings that need to be addressed
to exploit fully the data and to control astrophysical and modelling
systematics. The model most commonly used for fitting optical SN
Ia light curves is SALT2 (Guy et al. 2007, 2010; Betoule et al.
2014). It models the SN Ia SED in phase (rest-frame time since
peak luminosity) and wavelength, as a function of optical light-
curve shape (x;) and apparent colour (¢) at peak. SN Ia light-
curve fits estimate these parameters and the optical peak apparent
magnitude mp. Photometric distances are obtained from a fitted linear
dependence of SN Ia absolute magnitude on light-curve shape and
colour (Tripp 1998):

W, =mps —Mp+ax, —Bcs, (1

where 11, is the distance modulus of an individual SN s, (mp, X1 5, C5)
are parameters obtained from the SALT? fit of the individual SN s,
and (o, B, Mp) are global (or population) parameters describing the
luminosity trends with light-curve shape and colour, and the absolute
magnitude intercept at x; = ¢ = 0, respectively.

Major shortcomings of the conventional approach are:

(i) Residual (‘Intrinsic’)? scatter systematic error: Spectral varia-

tions of SN Ia light-curve data around the best-fitting SED model in
excess of measurement error are accounted for by an error model that
contributes additional covariance to the fitted light-curve parameters.
Even accounting for this, a Hubble residual scatter with o =~ 0.13
mag around equation (1) still remains. Its wavelength-dependence
is accounted for in simulations with an ‘intrinsic scatter model’
(Kessler et al. 2013; Mosher et al. 2014). It is not well constrained,
and currently there are two options: one with 30 per cent chromatic
variation and 70 per cent achromatic variation (Guy et al. 2010),
and the other, based on Chotard et al. (2011), with a 75 per cent:
25 per cent split. Scolnic et al. (2014) showed that both models are
consistent with the cosmological SN Ia data, therefore the current
optical data alone cannot discriminate between the two. However,
the impact of changing the assumed model for the residual scatter in
a cosmological analysis results in a shift Aw ~ 0.04, and thus is a
dominant systematic error.
Employing the correct residual covariances across phase and wave-
length is crucial to the proper quantification of uncertainties and
weighting of the SN data. Our BAYESN SED model coherently esti-
mates the intrinsic residual covariance across phase and wavelength
simultaneously with the training of the entire hierarchical model, and
this covariance is employed when fitting SN light curves to estimate
dust and distance, while marginalizing over the SED residuals.

(ii) Degeneracy between intrinsic versus dust colour—luminosity
variations: The largest ‘correction’ in equation (1) is due to colour, but
the conventional analysis treats it in a simplistic way. Fundamentally,

2The terminology of ‘intrinsic scatter’ here is a confusing misnomer. In the
conventional SALT2 framework that is agnostic about the distinction between
intrinsic and dust effects, there is no reason to attribute all of its residual scatter
to variation intrinsic to the supernovae, even if the model were true.
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intrinsic variation and dust have physically distinct effects on the SN
Ia SED. However, the SALT2 model assumes that all colour variation
can be described by the peak apparent B — V colour parameter ¢ and a
single, effective colour law, CL(A). The conventional approach of fit-
ting a single linear function for extinguished absolute magnitude ver-
sus apparent colour confounds the two effects (Mandel et al. 2017).
In contrast, our BAYESN SED model allows for a probabilistic,
physically motivated combination of different spectral effects from
intrinsic SN variation and dust across time and wavelength.

(iii) Lack of NIR coverage: The most widely used SALT2.4 model

is only specified over rest-frame wavelengths of 0.2—0.9 um, though
the colour law for A > 0.7 um is an extrapolation. Although optical
surveys, such as Foundation (Foley et al. 2018b), routinely obtain z-
band data, they cannot be fit by SALT2 for nearby SNe la. SALT2.4
is incapable of leveraging the useful properties of SNe Ia in the
rest-frame NIR at A 2> 1 pm.
In contrast, our BAYESN SED model is trained on data covering
optical to NIR wavelengths extending from B through H-band
(0.35—1.8 wm) and uses Bayesian inference to combine information
over the full phase and wavelength range for optimal estimates of
dust and distance.

(iv) Lack of SED modelling of astrophysical correlations: an
apparent correlation between Hubble residuals and the host galaxy
stellar mass (Kelly et al. 2010; Sullivan et al. 2010) is conventionally
addressed somewhat simplistically by splitting the scalar absolute
magnitude term Mjp in equation (1) by host mass. However, in
principle, the astrophysical correlation of SN Ia luminosity with
host mass should be accounted for at the fundamental level of the
SED. While we do not address this in this paper, Thorp et al. (2021)
recently demonstrated how BAYESN can be extended to introduce
host-mass dependence.

Although SALT?2 is the most common SN model used in cosmol-
ogy, there are alternatives. SNooPy is an optical-NIR model for SN
Ia light curves defined in discrete rest-frame uBVgriYJH passbands
(Burns et al. 2011). It is not a model for the continuous SED; rather,
for each discrete rest-frame passband it has a template light curve
that varies as a function of a shape parameter (either Am;s(B) or sgy).
It requires the calculation of K-corrections of the photometry from
each observer-frame passband into a corresponding rest-frame model
passband as a preprocessing step. The template light-curve model is
then fit to the K-corrected data in the rest-frame bands. This 1-to-1
mapping is not ideal, as there are redshifts at which, for example,
wide HST WFC3 NIR filters significantly cover two rest-frame model
passbands, so the observed light curves are actually sensitive to
the statistical properties of the underlying SED in both rest-frame
bands. Furthermore, the K-correction calculation employs an ad-
hoc ‘mangling’ procedure to match a spectral template to observed
colours independently at each epoch. This is prone to overfitting, its
uncertainties are difficult to propagate, and is not viable for the noisy,
sparse data typical of high-z light curves, in which the light curves in
different passbands may be irregularly and asynchronously sampled.
We compare the results from BAYESN to those from applying SALT2
and SNooPy to the same SNe Ia in Section 5.

SNEMO (Saunders et al. 2018; Rose et al. 2020) and SUGAR
(Léget et al. 2020) are recent empirical models built from optical
spectrophotometric time series. Whereas SNEMO is a principal
components model for the optical SED, SUGAR models the spectral
dependence on factors composed of spectral line characteristics.
However, they only cover rest-frame 0.33 < A < 0.86 um, and so
they cannot leverage the valuable NIR at A > 1 um.
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1.2 Outline of paper

The outline of this paper is as follows. In Section 2, we describe our
new hierarchical Bayesian model for SN Ia SEDs in the optical to
NIR. In Section 3, we describe the compilation of optical and NIR
SN Ia light-curve data that we analyse. In Section 4, we describe
our computational implementation for training the BAYESN model
and fitting SN Ia light curves. In Section 5, we present our results,
including a Hubble diagram showing the improvement in distances
(to 0.10 mag total RMS error) obtained from BAYESN fits to optical
and NIR data compared to current methods applied to the same
sample. We also describe our inferences about host galaxy dust, for
which we constrain a global value of Ry = 2.9 % 0.2 for our sample
with E(B — V)post S 0.4. In Section 6, we conclude.

In Appendix Section A, we provide some background on Bayesian
functional principal component analysis, and in Appendix Section B,
we describe the extension of our model to a second functional
component.

2 THE STATISTICAL MODEL

To construct and train our SN Ia SED model, we employ a hierar-
chical Bayesian approach. Hierarchical Bayes provides a principled,
coherent framework for modelling multiple uncertain and random
effects underlying the data described via a probabilistic generative
model. It is a natural strategy for probabilistic modelling and
inference of populations as well as their constituent individuals
(Loredo & Hendry 2010, 2019; Gelman et al. 2013). In a hierarchical
model, parameters describing an individual (e.g. the dust extinction
Ay, for a particular SN) are called latent variables, and are modelled
as probabilistic draws from a population distributions (e.g. the
distribution of Aj, values across the SN sample), which are in
turn described by hyperparameters (e.g. the mean parameter 74 of
the population distribution). The prior probability densities placed
on the hyperparameters are called hyperpriors. A fully Bayesian
treatment coherently infers the latent variables of all individuals in
the sample along with the population hyperparameters, conditional
on the observed data and the model assumptions, through the joint
posterior probability density.

The first applications of hierarchical Bayes to supernova analyses
were demonstrated by Mandel et al. (2009, 2011), who developed
probabilistic models for SN Ia optical and NIR light curves in discrete
passbands. Mandel, Foley & Kirshner (2014) constructed a hierar-
chical Bayesian model to disentangle dust reddening from intrinsic
colours in the optical by leveraging the velocity—colour relation
(VCR; Foley & Kasen 2011). Other hierarchical Bayesian models for
SN Ia analysis have focused exclusively on analysing the 3-parameter
output from SALT? fits to SN Ia light curves (March et al. 2011;
Rubin et al. 2015; Shariff et al. 2016b; Mandel et al. 2017; Hinton
et al. 2019), rather than the observed data itself. Since they do not
attempt to directly model the irregularly and asynchronously sampled
multivariate, multiband light curve (time series) data, they are depen-
dent on the internal shortcomings of SALT2 described in Section 1.1.

In contrast, our BAYESN SED model combines the hierarchical
Bayesian strategy with techniques from functional data analysis
(e.g. Ramsay & Silverman 2005) to deal with the full complexity
of observed photometric time series, and to perform probabilistic
inference on the multiple time- and wavelength-dependent latent
functions underlying the observed data. In particular, we model the
modes of variation of the intrinsic SED in terms of a Bayesian
formulation of functional principal components. While principal
components analysis (PCA) is a standard tool for dimensionality re-
duction of multivariate data, in its conventional use, however, it lacks
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a probabilistic framework. Probabilistic and Bayesian formulations
of PCA for multivariate vectorial data were described by Roweis
(1998), Tipping & Bishop (1999), Bishop (1999, 2006). In particular,
Tipping & Bishop (1999) constructed a probabilistic PCA as a special
case of a Gaussian latent variable model for factor analysis, with an
associated likelihood function mapping between a low-dimensional
latent space and the high-dimensional data space, and a prior
distribution over the latent variables. Bishop (1999) further developed
Bayesian PCA by introducing priors on the principal components
and residual variance. These useful probabilistic formulations enable
us to embed a principal components model within our hierarchical
Bayesian framework while simultaneously accounting for multiple
random effects and sources of uncertainty, such as dust, distance, and
measurement error. Thus, we can determine the intrinsic principal
components while marginalizing over the other uncertainties in the
global inference problem.

A primary goal of BAYESN is to model populations of latent SED
functions over time and wavelength, so we extend these concepts
to functional data, by incorporating continuity and smoothness
constraints on the functional principal components, and by modelling
the time- and wavelength-dependent covariance of the residual
functions. In this paper, we deal mainly with photometric flux
data, which are essentially integral constraints (under the passband
throughput and with measurement errors) on, or functionals of,
the latent SED component functions. Embedding the functional
inference within a hierarchical Bayesian structure enables us to solve
the inverse problem by finding a low-dimensional latent function
space for parsimoniously modelling intrinsic variations of the SN
Ia SED distribution, while simultaneously deconvolving it from the
SED effects of the dust distribution, and coherently accounting for
the uncertainties in both. See Appendix Section A for a further
explanation of Bayesian FPCA.

A schematic depiction of the probabilistic forward model of the
SED for a single supernova’s light-curve data is shown in Fig. 1.
We construct a log intrinsic SN SED across time and optical to
NIR wavelengths by modifying a mean intrinsic SED function
with functional principal components scaled by latent SED shape
parameters. This is further modified by the dust extinction law as
a function of wavelength, scaled by the dust extinction parameter.
A random function described by a covariance matrix models the
SED residuals, as a function of time and wavelength, that are not
captured by the previous main modes of variation. The combination
of these effects yields the latent host-reddened SED in the SN rest-
frame. Finally, the effects of distance, redshifting, and time dilation,
integration of the flux under the observer’s filter functions, the
observational cadence of the survey, and photometric measurement
error yields the observed multiband optical and NIR time series (light
curves) of a SN Ia.

2.1 Flux data model

Suppose supernova s with spectroscopic redshift? z; has a distance
modulus p,. The ith photometric observation of SN s is taken at
observer-frame Modified Julian Date (MJD) 7* through a filter with
an effective transmission function T ;(%,) as a function of observed
wavelength X,. The calibration standard has an SED F4(A,), which
defines the reference magnitude in the passband. The calibrated flux
(‘FluxCal’ in SNANA; Kessler et al. 2009a) is the ratio of the SN
flux at the observer through the passband to the flux of the standard

31n Section 2.1, z¢ refers to the observer-frame, heliocentric redshift.
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star through the same passband:
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The passbands used in this analysis are described in Section 3.2. We
define the normalized transmission function as:

-l]rs,i()\o)
IBs,i()"o) = ’ AYY /
J FaaG) Ts i), dA,
Ty (h0) J T, da,

= 3
[T oadn, &

J FaaO) ToiW)A, day,
Z,;is the zeropoint for this observation.* The model flux value can be
converted to an apparent magnitude, on the system of the standard,
like so:

—2.5logo (foi) + Zyi

—2.5log,, / F5 (M) Byi(ho)hg di. 4)

mg i

Now we model the observable flux density F(f,;i()\o) (per unit
wavelength) for observation i of SN s. If the MJD date of B-
band maximum is 7,"%, then we define the rest-frame phase of this
observation as tj = (Tsi — T,"%)/(1 + z,). We denote the effective
SED in the SN rest-frame, extinguished by host galaxy dust, as S(z,
A,). The flux density of the light from SN s at observed wavelength
o and at time 7} at the Earth is:

A . 2
F3i(h) = (14+2,) 1 107%4 0 x 8 (£, 0, = —2
obs(Ao) = (1 + zy) X O | I 1+ 2

x 10704 Anw §GosRvw) (5)

The last term is the attenuation of flux by dust along the line of sight
within the Milky Way Galaxy. The V-band Milky Way extinction
is obtained from the reddening map (Schlafly & Finkbeiner 2011),
Ayw = E(B — V)yw X Ruw, and we adopt Ryw = 3.1 and the
Fitzpatrick (1999) extinction law for &(A,; Rvw).

The range in observed wavelength A, over which the transmission
is effectively non-zero is denoted as [A™", Am®] The effective rest-
wavelength range is then [AM" = AN /(1 + z;), AM® = Amax /(] 4
zy)]. Combining equation (2) with equation (5), we can rewrite the
model flux for the ith observation of SN s as an integral over the

4ZS, i =275+ mi‘?, where m_ﬁt? is the reference magnitude of the reference
standard with SED Fga(Ap) in ‘the passband, and is typically adopted to be
zero for both AB and Vega-based magnitude systems. Each SN survey reports
magnitudes with respect to this standard magnitude, though the reference
standard itself is seldom observed directly. Rather, the surveys calibrate their
photometry using the reported magnitudes of a network of standard stars (e.g.
CALSPEC or Landolt), or local stars, in the same frame as the SN, which have
themselves been calibrated with respect to the reference standard. Formally
then, the comparison of the measured magnitude 7, ; (in equation 15) and
the model magnitude m; ; (equation 4) generated from synthetic photometry
of the model SED surfaces, effectively involves two zeropoints that may be
subtly different (zeropoint error). The 27.5 is a conventional scaling applied
in SNANA files, i.e the flux ratios are multiplied by 104 * 275 = 10'! for
convenience.
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rest-frame wavelength A, = A,/(1 + z;):
Foi = (14 29) 1070415 5 10704xZ0i
y /}»‘nrnax Sj(t;:’ ) x 10704 Anw ECr (14251 Ruw)
X [B:;()»r[l + 2D A, dA,. (0)

This calibrated flux is measured with some photometric noise with a
given variance o2;, and we assume a Gaussian sampling distribution
for the measured flux f; ;:

P(foilf.) = N(foil frivol). M

For all the observations i (across all observation times and filters) of
SN s, the measurement likelihood is

Py =T]P(A1£), ®)

assuming independence of the flux measurement errors.

2.2 Dust and intrinsic supernova SED model

The host-dust-extinguished SED is obtained from the intrinsic SED
Sin(z, A,) in the SN rest-frame via

So(t, Ar) = §7M(1, hy) x 107044V SRV, ©)

where Aj, is the host galaxy dust extinction and &£(A,; Ry) is the
extinction law with parameter Ry. We adopt the extinction law of
Fitzpatrick (1999).

Our model intrinsic SN spectral energy distribution is a function
of rest-frame phase 7 and A,. We decompose it into a global spectral
template modified by individual effects that vary per SN s.

S, ) = Solt, Ay) x 10704M0 5 10704 Wott2r)

X 107048Ms 5 10=04IWs(thr) (10)

where My, = —19.5 is fixed normalization factor,” and the fixed
function Sy(z, X,) is the updated spectral template of Hsiao (2009).
This template spans 0.1 to 2.5 pm from —20d to 4+-85d past B-band
maximum, and was constructed from over 1000 spectra, including
NIR spectra from Marion et al. (2009), using the procedure described
in Hsiao et al. (2007). It is arbitrarily normalized to have a B-band
magnitude of zero at peak phase t = 0.

The terms on the top line altogether describe the global spectral
template. They model the baseline mean intrinsic SED as the Hsiao
(2009) spectral template, normalized and smoothly warped by M, +
Wo(t, A,) to match the inferred mean intrinsic absolute magnitudes
and intrinsic colours of the training sample (c.f. Section 2.4 for
details).

The terms on the bottom line describe the individual effects, the
modifications to the global SED that are specific to each supernova
s. The M term corresponds to an overall shift of the log SED that
is independent of phase and wavelength. The function §W(z, A,)
corresponds to phase- and wavelength-dependent effects. We further
decompose this function as:

K

SWi(t,2,) = [Z 62 Wilt, )

k=1

+ &, A amn

SThis value is chosen for convenience, but is somewhat arbitrary. Any
additional global magnitude normalization is absorbed into Wy(z, 1) during
training. In particular, a global shift in all distance moduli (preserving all
distance ratios) due to a change in the assumed Hy would trivially result in a
constant shift of 5AlogjoHp in Wy(z, A).
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Figure 1. Schematic of the BAYESN forward generative model for the optical and NIR light-curve (time series) data of a single SN. The log SN SED across time
and wavelength comprises a mean intrinsic SED function modified by intrinsic functional principal components scaled by latent SED shape parameters, and
extinguished and reddened by the host galaxy dust law, parametrized by the optical slope Ry and scaled by the visual extinction Ay. Variations not captured by
these major modes are modelled by residual SED functions whose statistical properties across time and wavelength are captured by a covariance function. The
resulting latent host-dust-reddened rest-frame SED undergoes the effects of distance, redshifting and time dilation, integration of the flux under the observer’s
filter functions, the survey cadence, and measurement error to yield the observed multiband optical and NIR time series (light curves) of an SN Ia.

The W(t, A,) functions are the functional principal components
(FPCs) describing the major modes of (¢, A,) variation in the log SED
underlying the light curves of individual SN s. The 6; coefficients are
scores describing the degree of component W (¢, A,) present in SN s.
The functions €(t, A,) describe the phase- and wavelength-dependent
SED residuals that are not captured by the other effects. They source
the remaining time-dependent intrinsic colour variations. The total
residual SED function of an SN la is ny(z, A,) = M + €,(¢, 1,).

In this work, we mainly focus on training a model with K = 1
intrinsic functional principal component. In Appendix B, we describe
the W, (¢, A,) inferred for the K = 2 model. For K > 1, under training,
the Wy (¢, A,) are learned such that the coefficients §; are uncorrelated
in their population distribution (Section 2.5), i.e. Cov[6;, 6,°] = xx'.
When we train the K = 2 model to learn the second FPC, we are
effectively extracting it from the covariance of the residual functions
€,(t, A) under the K = 1 model.

The above equations express a linear model for the logarithm of
the host-dust-extinguished SN SED:

~2.510g,0[S,(t, 1)/ So(t. 1)1 = Mo + Wolt, 2,) + M,

K
>0 Wit h)
k=1
Note that My, Wy(t, A,), SM;, and 8 W,(¢, A,) are in units of magnitude,
like 1, and Aj,. The advantage of modelling the logarithm of the
SED is that we can easily preserve positive flux at all phases and
wavelengths while specifying priors on the functional components

+ + et A) + Ay EQus Ry). (12)
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Wi (2, A,) and the latent principal component scores that span positive
and negative reals.

2.3 Magnitude approximation

For the vast majority of the nearby training set used in this work,
the flux data have high signal to noise. Therefore, it is a good
approximation to convert these data to magnitudes. The magnitude
measurement and the variance of its measurement error are 7, ; =
—2.51log,y(fy.) + Z,,; and

2.5 0,0\’
o2, = i) (13)
o In10 f ;

Transformation of the model flux (equation 6) to the model magni-
tude m;; yields

ms ;i = Hg + MO + 6MS
pmax A
S0 (6, )
)\’;ﬂl"

% 10704 IWolt A+ W, (1L 1)+ A£G 2RV

—2.51og, {(1 + 25)

x 10704 4w EGoiRMW) o B () A, dk,]. (14

Using this, we can change the measurement-likelihood function,
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equation (7), to:
Pt i|myi) = N (vl mgi, o ). (15)

This form is useful since the model magnitude inside the likelihood
is linear in some of the parameters. However, the full flux model
(equation 7) allows us to use low signal to noise, or even negative, flux
measurements which cannot be reliably converted into magnitudes
with Gaussian errors. Hence, we can use the flux model to fit the flux
data of high-redshift SNe Ia with typically lower signal to noise.

2.4 2D SED surface models

We model the unknown functions {W;(t, A,): k =0, ..., K}, and
{es(t, 1) s =1, ..., Nsn} in a flexible, data-driven manner. Each
function is represented as a surface defined by a 2D grid of knots. We
specify a 2D grid as the Cartesian product of a 1D grid in rest-frame
phase, 7, and a 1D grid in rest-frame wavelength /. Each 1D grid can
be irregularly spaced. The essential idea is that a generic, smooth
surface g(z, A,) at any point (¢, A,) in the 2D domain of the SED can
be modelled as g(¢, A,) = s(A; )" G s(t; ), where s(x; &) denotes
the 1D natural cubic spline smoother (column) vector for knots & at
evaluated at point x. The knots matrix G has elements G; = g(t =
7, A, = 1;), which define the values the surface must pass through at
the knot locations, and are parameters for inference. The surface g(z,
X,) is linear in the knots matrix G.

Using this, we model the functions of phase and wavelength

in terms of knot matrices {W;:k=0,...,K} and {E;:s =
1,..., Nsn}, like so. For the global correction to the mean template:
Wo(t, &) = s D) Wos(t; T). (16)
For the functional components (k =1, ..., K),

Wit, A) = s DT Wis(t; T). (17)

For the residual SED functions of each SN s,
et 7)) =50 DT Egs(t; 7). (13)

These latent functions are determined by the unknown matrices { W, :
k=0,...,K}, and {E; : s =1, ..., Nsn}, which are inferred as
hyperparameters and latent variables.

We specify a set of knots on a grid in rest-frame phase and
wavelength. The phase coordinates are T = (—10, 0, 10, 20, 30, 40)
d. The phase spacing is chosen as inspection of the light-curve
data indicates they vary smoothly on ~10 d time-scales. We found
empirically that this spacing works well in practice for our light-curve
fits, and strikes a balance between temporal resolution/regularization
and statistical/computational feasibility. The wavelength coordi-
nates are I. We place a knot at the central wavelengths of
the filters BVriYJH plus two outer knots bracketting these: [ =
(0.3,0.43,0.54, 0.62,0.77, 1.04, 1.24, 1.65, 1.85) um. The purpose
of the first and last knots in wavelength is to ensure that our spline
surfaces are defined throughout the entire first (B) and last (H) broad-
band filters. To avoid degeneracies, we ‘tie down’ the residual knot
matrices at the first and last wavelength knots for every phase knot:
Ej=0ifi=1ori =dim(l),V j.

2.5 Population distributions and hyperpriors

We specify the population distributions on the latent parameters of
individual supernovae.

For the latent functional SED effects, following the probabilistic
PCA formulation (Tipping & Bishop 1999), we adopt an independent
standard Gaussian prior 6; ~ N (0, 1) for the individual score of each
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SN s in each componentk =1, ..., K, i.e.
6° ~ N(O, I](x](). (19)

Thus, the resulting functions Wy(¢, A,) (k > 1) are not scaled to have
unit norm, as they would be in standard PCA. Rather, because the
latent scores 6; are normalized to have a population variance of one,
Wi (t, A,) absorbs a factor of the population standard deviation in that
component. A ‘1o effect of the k-th component on the SED is thus
computed from 6, Wi (t, A,) by varying A9y & 1 around the mean.

For the elements of the W matrix, we adopt improper flat priors
Wo,; ~ U(— 00, 00), as this ensures the global joint probability
density is mathematically invariant under a global shift in all distance
moduli (e.g. a change in SlogoH)), that preserves all relative SN Ia
distance ratios. With this prior, Wy(z, 1) would simply absorb the
constant.

For the W matrices that parametrize our functional components
(k > 1), we use an independent standard normal hyperprior on the
value of each knot: Wy ; ~ N(0, 1). This is a weak constraint, since
we have scaled the problem to expect these variations to be of the
order of a few tenths of a magnitude.

For the residual SED perturbations, we assume a multivariate
Gaussian distribution on the column-wise vectorization of each
residual matrix Ej:

e, = vec[E,] ~ N(0, X.). (20)

A matrix I'(¢, A,; 7, ) can be constructed so that equation (18) can
be written equivalently as,

€@ A) =T, AT, Dey. 2D

While equation (18) and equation (21) are equivalent, equation (18)
is the more compact representation, since I'(¢, A, ; 7, I) tends to a very
large (but sparse) matrix. However, equation (21) is useful, because,
together with the residual distribution equation (20), it implies that
the residual functions €,(z, A,) are realizations of a Gaussian process
(GP; Rasmussen & Williams 2005):

€(t, Ar) ~ GPI0, ke(t, A3 t', A))] (22)

with a zero prior mean and a non-stationary kernel for the covariance
of the residuals at any two coordinates:

ke(t, dpst', 1)) = Covie(t, 1), (1", A,)]
=T, AT, DT T, 2T, DT (23)

We adopt this non-stationary covariance structure rather than the
more popular stationary kernels, such as squared exponential, since
we do not expect the complex physical mechanisms of SN Ia
explosions to generate statistical properties that are invariant to phase
or wavelength shifts.

The covariance matrix X, encodes the variances and correlation
structures of the residual functions: X. = diag(o.) R, diag(o¢).
Following the separation strategy proposed by Barnard, McCul-
loch & Meng (2000), we specify separate priors on the standard
deviation parameters o . and the correlation matrix R.. For each ¢-
th element o, > 0, we adopt a weakly informative half-Cauchy
hyperprior with unit scale (Gelman 2006; Polson & Scott 2012), i.e.
P(ocy) = HC(0c 4| a = 1), with probability density

HC(x|a) x (a®> 4+ x»)7! (24)

for x > 0, and zero otherwise. This hyperprior is proper, and relatively
flat for small x. It is sensible because we have scaled the problem to
expect o, to be less than a magnitude. For the correlation matrix,
we adopt the LKJ hyperprior as implemented in STAN and derived
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from Lewandowski, Kurowicka & Joe (2009),
P(R.) o |R.|""! (25)

with n = 1. This places a uniform prior on positive semidefinite
correlation matrices.

The §M; terms model a phase- and wavelength-independent shift
of the SED in overall log luminosity. Since these shifts are indistin-
guishable from the effect of distance on the apparent light curves,
this propagates into an uncertainty floor on photometric distance
estimates. We model the population of these independent shifts as
Mg ~ N(O, ag) and estimate their variance 002 as a hyperparameter.
We use a weak half-Cauchy prior (equation 24) on o with scale
a = 0.1, since we expect this to be of the order of a tenth of
magnitude. However, we have checked that our posterior estimate of
o is insensitive to the hyperprior scale over the range a = [0.1, 0.5].

We assume that host galaxy extinction Aj, is drawn from an
independent exponential distribution with mean extinction hyper-
parameter T4:

P(Aylta) =1, exp (—A} /14), (26)

for Ay > 0 and zero otherwise. This is a sensible choice, since
the true A}, must be non-negative, and we expect the most lines
of sight through the host galaxies to pass through little dust, with
the probability density decreasing with increasing column density.
This model distribution has been used before by, e.g. Jha, Riess &
Kirshner (2007) and Mandel et al. (2009). The hyperprior we adopt
for t4 is also a unit half-Cauchy, P(t4) = HC(t4, 1), reflecting
our expectations that the typical 74 is on the order of tenths of a
magnitude. For the unknown Ry, we assume a single global value
with a uniform hyperprior Ry ~ U(1, 5) reflecting a wide range of
possible values. Thorp et al. (2021) expands our framework to allow
per-SN variation in R}, by modelling and inferring their population
distribution, as was done previously by Mandel et al. (2011).

2.6 External distance constraints

In the training phase, we use estimates [l , of the SN distance
moduli that are external to the photometric SN data, as described in
Avelino et al. (2019). We assume they have Gaussian errors around
the true distance modulus.

For the vast majority of the training set, we utilize the redshift as an
indicator of distance conditional on the fiducial cosmological model
fexes = Hacpm(zs) with y = 0.28 and 2, = 0.72. However, at
these redshifts z < 0.04, these distances are relatively insensitive to
the cosmological parameters, other than Hy which only sets an overall
scale for all absolute magnitudes, and for which we adopt 73.24
kms™! Mpc~' (Riess et al. 2016). These redshifts are corrected to
the CMB frame and corrected for bulk flows. The distance modulus
uncertainty, due to errors in observed redshift z; as estimates for
the cosmological redshift z$, from redshift and peculiar velocity
uncertainties is

5 2
02%( ) [oe/C® +02,]. 27)

z,1In 10

where we have adopted opec = 150 km s —1 (Carrick et al. 2015).
The external distance constraint can be expressed as P(LL,] z5)
N (foye sl 1, &;m) after marginalizing out the unknown z§.

For eight SNe Ia in our training set at z < 0.01, we use
external distance estimates (1., ; from available redshift-independent
measures (e.g. Cepheids), and their uncertainties 63“7»‘, as listed in

table 4 of Avelino et al. (2019). These external distance constraints
can be expressed as P(HJ ﬁlext,s) X N(ﬁext,s'”s’ 662)(I,S)'
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2.7 The global joint posterior distribution

For an individual SN s, the joint probability density of its flux light
curve data fs and its latent parameters ¢, = (0,, e,, M, A},) and
distance modulus 1, conditional on the population hyperparameters
H = (W():K, Ze’ 00, TA, Rv) and redshift is

P(fs, &5, 1, Hiz)) = P(fyl s, 1 Wok, Ry)
X P(0,)P(e| £)P(8M,| 00) P(AY| T4) P(1t,] Z4), (28)

where Wo.x = {Wy, Wy, ..., Wk} is the collection of matrices
describing the intrinsic mean and K functional components of the
SED, and 0, = (6}, ..., 0%)T are the intrinsic coefficients of SN
s. The first factor on the right-hand side is the data likelihood
defined by equations (6), (8), and (12). For the eight SN with
redshift-independent distance measurements, we replace P (L] zy)
with P(p| fiey, ;). During training, the dates of optical maxima 7"
are fixed to their pre-fitted values, which are very accurate for this
training set of well-sampled light curves.

The global posterior distribution of all the latent variables of
individual supernovae and the population hyperparameters given the
data, external distance constraints, and redshifts is

Nsn
P, wh H [ {fisz) o |[[ P(Fss s 1, [ H 2)
s=1

xP(Wox) P(ae) P(Re) P(op) P(ta) P(Ry). (29)

This global posterior distribution is the objective function for training
our model to learn the population hyperparameters, covariance
structure, and SED components while marginalizing over the latent
variables of individual SNe Ia. It provides a coherent, probabilistic
quantification of uncertainty of over all parameters and hyperparam-
eters.

2.8 Photometric distance estimation

The training process gives us posterior estimates of the hyperpa-
rameters H = (VAV():K, 3., 60, £a, Ry) marginalized over all latent
variables in the sample. For simplicity, we take the posterior means
of these hyperparameters as point estimates. Under distance-fitting
mode, we condition on the hyperparameters, and the posterior density
of the latent parameters ¢; and distance modulus 1, of SN s is

P, | foi ) o< P(fl s, 1 Woke, Ry)
X P(0,) x P(es| £.) x P(8M,|60) x P(A}|%4), (30)

where we omit any external distance constraint. When fitting in-
dividual SN with the trained model, the dates of optical maxima
T"™ are included in ¢, and fit. By sampling this joint posterior, we
can approximate the marginal posterior density of the photometric
distance modulus,

P(u,| fis H) = / P, | f: H)d,, (31)

as well as its posterior summaries such as the mean and variance
via marginalization. However, this distribution is not necessarily
Gaussian, nor is it required to be, since dust effects introduce some
asymmetry.

In principle, instead of fixing the hyperparameters to their posterior
means from training, we could use the samples of the joint posterior
over the hyperparameters (equation 29) to incorporate their uncer-
tainties into the photometric distance estimates. However, this is a
more computationally burdensome process, and we have found the
posterior means to be sufficient for our current goal of evaluating the
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Figure 2. Probabilistic graphical model depicting the hierarchical BAYESN model for optical-NIR SN Ia light-curve data. Each open box presents a set of
unknown parameters or hyperparameters, each grey-shaded box represents observed data, and the arrows indicate relations of conditional probability. Parameters
within the plate, labelled s = 1, ..., NsN, are latent variables or functions sampled for every SN s, whereas parameters outside the plate represent global
or population hyperparameters. This graph is further discussed as a probabilistic generative model in Section 2.9. The hierarchical global posterior density
(equation 29) estimates the unknown latent variables and hyperparameters conditional on the observed data of the entire SN Ia sample.

precision of photometric distances on the Hubble diagram. Neverthe-
less, propagating the joint hyperparameter uncertainties will be rel-
evant for assessing systematic errors in a full cosmological analysis.

2.9 Probabilistic graphical model

Our hierarchical Bayesian model can be depicted with a type of
probabilistic graphical model called a directed acyclic graph, shown
in Fig. 2. The graphical model depicts a probabilistic process for
generating the SN Ia data, via links between the priors, global
or population hyperparameters, latent variables and functions of
individual SNe Ia, and their observed light-curve data. The intrinsic
SED of a single SN Ia s is constructed from the mean SED and
functional principal components Wyx(¢, ,), a draw of the FPC
scores @, from its population distribution, and a draw of an intrinsic
residual SED function from its population distribution described by a
covariance function over time and wavelength. The host galaxy dust
extinction A}, of a SN s is drawn from a population distribution of
extinction values, whereas the unknown Ry, parametrizing the dust
law, is given a wide prior. The effects of dust and distance modulus ji,
on the intrinsic SED combine (with appropriate redshifting and time
dilation) to yield the apparent SN SED. This is observed with some
cadence and noise through the observer’s filter functions to yield the
optical and NIR light-curve data. During training, the distance is con-
strained externally to the light curve by the cosmological redshift and
the fiducial cosmological parameters (fixed in this low-z analysis).

The redshift is observed with some uncertainty due to local peculiar
velocities. Bayesian inference with the hierarchical model solves the
inverse problem through the computation of the posterior probability
density (equation 29) of the unknown latent variables and hyperpa-
rameters conditional on the observed data of the entire SN Ia sample.

3 DATA

3.1 Optical and NIR light curve data

We use the compilation of low-z SNe Ia with joint optical and NIR
light curves described in Avelino et al. (2019). For our purposes,
we define the optical as the BVRI filters and the NIR as the YJH. In
our various analyses below, we fit either the available optical (BVRI)
or optical + NIR (BVRIYJH) for a given SNe la. The selection
criteria and cuts were described in Avelino et al. (2019) and detailed
information on the specific SNe is listed in their tables 2 and 3. In
particular, a colour excess cut E(B — V)yosr < 0.4 was applied for
consistency with the cosmological sample. For each SN Ia, we use
published optical and NIR data only from the same survey; we do
not mix data sources within a single SN. Consequently, SN 2005bo,
SNF20080514-002, SN 2010iw, SN 2010kg, SN 2011ao, SN 2011B,
SN 2011by, SN 201 1df were removed because they had NIR data, but
no published optical data, from the CfA. SN 2006bt was removed
because it is a known peculiar supernova (Foley et al. 2010). We
failed to fit the light curves of SN 2000E (Valentini et al. 2003)
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with our current model (although it was not an outlier in the Hubble
Diagram), so we have omitted it to avoid biasing the training.

The resulting sample comprises 79 SNe Ia with joint optical and
NIR light curves. Avelino et al. (2019) further defined a subset
with NIR data near maximum light (see their table 13). To enter
into this subset, an SN la was required to have at least one NIR
observation at least 2.5 d before maximum light. We have a total of
48 SNe Ia in this cut, which we refer to as ‘NIR@max’. All SNe
Ia in the full sample have some NIR data available regardless of the
phase of the first NIR observation. These SNe Ia and cuts are listed
in Table 1. Additional information can be found in Avelino et al.
(2019). The full data set consists of 22 SN from the CfA Supernova
Program (CfA; Jha et al. 1999; Wood-Vasey et al. 2008; Hicken et al.
2009, 2012; Friedman et al. 2015), 44 from the Carnegie Supernova
Project (CSP; Krisciunas et al. 2017), eight from the Las Campanas
Observatory (K04a,b: Krisciunas et al. 2004a,b), as well as five others
from individual papers in the literature (K03: Krisciunas et al. 2003;
PO8: Pignata et al. 2008; St07: Stanishev et al. 2007; L09: Leloudas
et al. 2009; KO7: Krisciunas et al. 2007).

The statistical characteristics of observations in this sample are as
follows. For each observed (B, Y, J, H) band light curve, there are
on average (3.8, 3.6, 3.2, 2.7) data points at pre-maximum phases
(t < 04d), (8.2, 8.2, 7.1, 6.3) data points during the main post-
maximum decline (0 < ¢ < 20 d), and (5.8, 4.9, 4.7, 4.4) data
points at later phases r > 20 d, respectively. The filter with the
least data is the NIR Y-band, which is covered by only 46 SNe Ia in
our training set (mainly from CSP). The median photometric errors
(0s,;) across all observations in (B, Y, J, H) are (0.016, 0.020, 0.038,
0.053) mag, respectively. The median apparent B — V colour error
among observations near peak is 0.016 mag.

The size of our training set reflects the recent progress of ground-
based surveys in accumulating quality joint optical and NIR SN Ia
light-curve data (Friedman et al. 2015; Krisciunas et al. 2017). The
number of SNe Ia in our current compilation more than doubles those
used to train previous NIR-capable light-curve models. The training
set for the first BAYESN models included 37 SNe Ia with both optical
and NIR coverage (Mandel et al. 2009, 2011), and the training set for
SNooPy comprised <30 SNe la (Burns et al. 2011). Further increases
in the training set will soon be possible with forthcoming data from
CSP-II (Phillips et al. 2019) and the Supernovae in the Infrared avec
Hubble (SIRAH) program (HST GO-15889, P.I. S. Jha).

3.2 Passband throughput

For each observation in the data compilation, we specify a model for
the effective passband throughput. A model passband throughput is
needed to forward model the observed flux, regardless of whether that
flux is reported in the natural system of the telescope or transformed
on to a ‘standard’ system such as SDSS ugriz (Fukugita et al.
1996). For a measurement reported on the natural system of a
telescope, the total passband throughput must include all terrestrial
elements of the measurement chain — site atmospheric transmission,
mirror reflectivity, filter transmission, transmission of camera optics,
and detector quantum efficiency. For measurements reported on a
standard system, the passband throughput must reflect the original
measurement chain used to observe the standard stars that were
employed in calibrating the SN flux, in addition to the measurement
chain of the facility used to observe the SN itself.

For the Carnegie Supernova Project and related objects observed
at Las Campanas Observatory (Krisciunas et al. 2004a,b, 2017),
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we use the total natural system passband throughputs® as defined
in the implementation of the SNooPy (Burns et al. 2011). We take
care to include any changes in the CSP passband throughputs when
a filter was replaced. For the NIR observations by the CfA using
the 1.3m PAIRITEL telescope at Mt. Hopkins (Wood-Vasey et al.
2008; Friedman et al. 2015), we use the natural system passband
throughputs measured by the 2MASS project,” which used the same
facility. Finally, for objects observed by the CfA Supernova Program
(Jha et al. 1999; Hicken et al. 2009, 2012) and remaining literature
objects (K03, K07, St07, P08, and L09) we use the published
standard system photometry and model the passband throughput
using the shifted Bessell filters described in Stritzinger et al. (2005).
While the CfA SN program published both natural and standard
system photometry, and the former is generally preferred as it avoids
some potential systematic errors in transforming the flux, using the
natural system photometry relies on having a good description of the
passband throughput of the natural system. Unfortunately, there are
no determinations of all the elements in the measurement chain for
objects observed by the CfA SN survey, and the current model for
passband throughput included in the SNDATA repository® does not
include any model for the site atmosphere at all. The CfA Supernova
measurements were the result of an extensive effort over almost
two decades with four separate cameras, through a variety of filters,
using a telescope that underwent numerous mirror coatings, and
the provenance of each measurement cannot easily be determined
retrospectively. By contrast, the standard system photometry for CfA
objects is known to be consistent with standard system photometry
measured by the CSP and LOSS (Ganeshalingam et al. 2010). Thus,
we prefer to use the standard system photometry over the natural
system photometry in this work.

Ultimately, we plan on training a version of BAYESN (Thorp et al.
2021) exclusively on SNe Ia observed by the Foundation Survey
and the Young Supernova Experiment, which have well-determined
measurements of the PS1 natural system passband throughput.

4 IMPLEMENTATION

4.1 BayeSN

We have implemented our Bayesian model in the STAN probabilistic
programming language (Carpenter et al. 2017; Stan Development
Team 2021) to specify and sample the global posterior density over
all latent variables and hyperparameters conditional on the training
set data. STAN implements a variant of dynamic Hamiltonian Monte
Carlo (HMC; Neal 2011; Betancourt 2017), originally based on
the No-U-Turn Sampler (NUTS) (Hoffman & Gelman 2014). STAN
utilizes automatic differentiation to compute gradients of the log
posterior (equations 29, 30) and guide efficient exploration and
convergence to the target density in high-dimensional parameter
spaces. We typically run four chains in parallel, each initialized
with random jitter to start at a different point in parameter space. We
follow standard procedures to assess convergence and mixing of the
chains (Gelman & Rubin 1992; Gelman et al. 2013). The first half of
the iterations, which are used for adaptation of the HMC algorithm
and burn-in, are discarded. The algorithm adapts the integration time
to yield samples that are nearly serially uncorrelated, and we run it
long enough so that the effective sample size is approximately 1000.

Ohttps://csp.obs.carnegiescience.edu/data/filters
https://old.ipac.caltech.edu/2mass/releases/second/doc/sec3_1b1 . html#s18
8http://snana.uchicago.edu/downloads/SNDATA_ROOT.tar.gz
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Table 1. Table of supernovae.

SN Source Cut Filters Z&MmB ﬂé’x‘ Aphot (resub)® fphot (cvy?
SN1998bu CfA NIR @max BVRIJH 0.003 30.07 £ 0.20 29.99 £+ 0.10 29.96 + 0.09
SN1999ee K04a NIR @max BVRIJH 0.011 33.33 £ 0.10 33.25+0.10 33.21 +0.09
SN1999¢ek K04b NIR @max BVRIJH 0.018 34.34 £ 0.06 34.18 £0.10 34.18 £ 0.10
SN2000bh K04a - BVRIYJH 0.024 35.00 + 0.05 34.94 + 0.10 34.93 + 0.08
SN2000ca K04a NIR @max BVRIJH 0.024 34.99 +0.05 35.00 £ 0.10 34.99 +0.10
SN2001ba K04a NIR @max BVIJH 0.030 3551 £0.04 35.66 £ 0.09 35.66 £+ 0.09
SN2001bt K04b NIR @max BVRIJH 0.014 33.85 +0.08 33.79 £0.10 33.80 + 0.09
SN2001cn K04b - BVRIJH 0.015 34.03 £ 0.07 33.94 £0.10 33.96 £ 0.10
SN2001cz K04b NIR @max BVRIJH 0.017 34.25 £ 0.06 33.96 £ 0.10 33.95+0.10
SN2001el K03 NIR @max BVRIJH 0.004 31.31 £ 0.05 31.28 = 0.10 31.17 £ 0.09
SN2002dj P08 NIR @max BVRIJH 0.008 32.65 £+ 0.40 32,95 +0.10 32.95+0.10
SN2003du St07 - BVRIJH 0.009 32.92 £ 0.06 32.87 £0.10 32.86 + 0.09
SN2003hv L09 - BVRIYJH 0.005 31.15+0.25 31.30 £ 0.09 31.34 £ 0.10
SN2004S K07 - BVRIJH 0.011 3323 £0.10 33.27 £0.10 3324 £0.10
SN2004ef CSP - BVriYJH 0.030 35.50 £ 0.04 35.52 +£0.09 35.50 +0.08
SN2004e0 CSP NIR @max BVriYJH 0.015 34.00 £ 0.07 33.82 £0.10 33.88 +£0.09
SN2004ey CSP NIR @max BVriYJH 0.015 34.02 +£0.07 34.12 £ 0.10 34.11 +£0.08
SN2004gs CSP - BVriYJH 0.029 35.39 £0.04 35.38 £0.10 35.39 £ 0.09
SN2005¢f CfA NIR @max BVY i JH 0.007 32.26 +£0.10 32.30 £+ 0.09 3231 +£0.10
SN2005el CSP NIR @max BVriYJH 0.015 34.00 £ 0.07 33.98 £ 0.09 34.02 £ 0.09
SN2005iq CSP NIR @max BVriYJH 0.034 35.74 £ 0.03 35.88 + 0.09 35.90 + 0.09
SN2005ke CSP NIR @max BVriYJH 0.015 33.89 +£0.07 33.75 £0.10 33.74 £ 0.09
SN2005ki CSP NIR @max BVriYJH 0.020 34.63 £ 0.05 34.62 £ 0.10 34.62 £+ 0.09
SN20051u CSpP - BVriY 0.032 35.62 £0.03 3571 £0.12 3572 +£0.11
SN2005na CfA - BV i JH 0.027 35.28 + 0.04 3523 +0.11 35.24 +0.11
SN2006D CfA NIR @max BV i JH 0.009 32.84 +£0.12 3291 £+ 0.09 32.89 +0.09
SN2006N CfA - BV¥iJH 0.015 33.89 +£0.08 33.82 £0.10 33.78 £0.10
SN2006ac CfA - BV i JH 0.024 34.98 + 0.05 35.08 £ 0.10 35.06 +0.10
SN2006ax CSP NIR @max BVriYJH 0.018 34.36 £ 0.06 34.31 £0.09 3430 £0.10
SN2006bh CSP NIR @max BVriYJH 0.011 33.24 +0.10 33.34 + 0.09 33.33 +0.10
SN2006¢cp CfA - BVF i JH 0.022 34.84 +0.05 3497 £0.10 3498 +0.12
SN2006ej CSpP - BVriYJH 0.021 34.66 £+ 0.05 34.67 £0.10 34.67 +0.10
SN2006kf CSP NIR @max BVriYJH 0.019 34.53 +£0.06 34.71 £0.10 34.72 +£0.08
SN20061f CfA NIR @max BV¥iJH 0.012 33.49 £ 0.09 33.52 £0.10 33.53 £0.09
SN2007A CSP NIR @max BVriYJH 0.017 34.27 £ 0.06 34.25 +£0.10 34.24 +0.10
SN2007af CSP NIR @max BVriYJH 0.006 31.79 £0.05 31.94 £ 0.09 31.98 +0.09
SN2007ai CSP NIR @max BVriYJH 0.033 35.69 +0.03 35.52 £ 0.09 35.52 +0.09
SN2007as CSP NIR @max BVriYJH 0.018 34.41 £0.08 34.42 £+ 0.09 34.43 +0.09
SN2007bc CSP NIR @max BVriYJH 0.021 34.72 £ 0.05 34.74 £ 0.10 34.73 £ 0.09
SN2007bd CSpP NIR @max BVriYJH 0.031 35.57 £0.04 35.60 £ 0.10 35.57 £0.10
SN2007ca CSP NIR @max BVriYJH 0.015 33.89 +0.08 34.04 £ 0.10 34.04 +0.08
SN2007co CfA - BVr i JH 0.027 35.30 £ 0.04 3543 £0.10 3542 +0.10
SN2007¢cq CfA - BVY i JH 0.025 35.11 £ 0.04 34.87 £ 0.10 34.86 = 0.11
SN2007jg CSP NIR @max BVriYJH 0.038 36.02 +0.03 36.14 £ 0.10 36.16 + 0.09
SN20071e CSp NIR @max BVriYJH 0.006 32.13 £ 0.17 32.20 + 0.09 32.20 £ 0.10
SN2007qe CfA - BV i JH 0.024 34.96 £+ 0.05 35.18 £ 0.10 35.19 + 0.09
SN2007sr CSP - BVriYJH 0.004 3129 £0.11 31.62 £ 0.09 31.63 £0.09
SN2007st CSP - BVriYJH 0.021 34.72 £ 0.05 34.42 £ 0.10 34.40 + 0.09
SN2008C CSP - BVriYJH 0.018 34.31 £0.06 34.37 £0.10 34.39 +0.09
SN2008af CfA - BV i JH 0.034 35.78 £0.03 35.66 £ 0.12 35.63 +£0.11
SN2008ar CSP NIR @max BVriYJH 0.029 3542 +£0.04 35.30 £0.10 3529 +£0.10
SN2008bc CSP NIR @max BVriYJH 0.016 34.05 £+ 0.07 34.14 £+ 0.09 34.12 £+ 0.08
SN2008bf CSP NIR @max BVriYJH 0.025 35.13 £0.05 35.13 £0.09 35.10 £ 0.09
SN2008fl CSP - BVriYJH 0.020 34.59 + 0.06 34.49 + 0.09 34.50 + 0.09
SN2008fr CSP - BVriYJH 0.038 36.04 £0.12 36.10 £+ 0.09 36.08 +0.10
SN2008fw CSP - BVriYJH 0.009 32.76 £ 0.13 33.05 £ 0.10 33.05 + 0.09
SN2008gb CfA NIR @max BVF i JH 0.038 36.03 +£0.03 35.94 £ 0.10 3587 £0.11
SN2008gg CSpP - BVriYJH 0.031 35.58 £0.03 35.66 £ 0.10 35.65 £ 0.09
SN2008gl CSP - BVriYJH 0.033 35.72 £0.03 35.79 £0.10 35.84 +0.09
SN2008gp CSP NIR @max BVriYJH 0.034 35.74 £0.03 35.71 £0.09 35.70 £+ 0.09
SN2008hj CSP NIR @max BVriYJH 0.037 3597 £0.03 36.01 £ 0.10 36.00 + 0.08
SN2008hm CfA - BV¥iJH 0.021 34.70 £ 0.05 34.76 £ 0.10 3475 £0.10
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Table 1 — continued

SN Source Cut Filters ZEMB ﬁcé’xt fiphot (resub)® Aphot %%
SN2008hs CfA NIR@max  BVFiJH 0.019 34474+006  3470+£0.10  34.80 +0.10
SN2008hv CSP NIR@max  BVriYJH 0.014 33.81+0.08 33.85+0.10  33.85+0.09
SN2008ia CSP - BVriYJH 0.022 3486 +0.05 34.84+0.10  34.82+0.09
SN2009D CSP NIR@max  BVriYJH 0.024 35.034+0.04  35.03+0.09 3500+ 0.09
SN2009Y CSP NIR@max  BVriYJH 0.009 32954+0.12  33.014£0.09  32.95+0.09
SN2009aa CSP NIR@max  BVriYJH 0.029 3540 +£0.04 3527+0.10  35.27 £0.09
SN2009ab CSP - BVriYJH 0.010 33.144+0.11  3347+£0.10  33.49+0.08
SN2009ad CSP NIR@max  BVriYJH 0.029 3540 +£0.04 353340.10  3531+0.10
SN2009ag CSP NIR@max  BVriYJH 0.010 33.124+0.11  33.094£0.09  33.07+0.10
SN2009al CfA NIR@max  BVFiJH 0.023 3494 +£0.05 34.84+0.09  34.83 0.0
SN2009an CfA NIR@max  BVFiJH 0.011 3323 +£0.10  33.32£0.09 33.31 £ 0.09
SN2009bv CfA NIR@max  BVFiJH 0.038 36.05+0.03  36.13+£0.10  36.13+0.10
SN2009cz CSP NIR@max  BVriYJH 0.022 34794+ 005 3479+£0.10  34.78 £0.09
SN2009kk CfA - BV i JH 0.012 33514£009 33.96+£0.10  33.97 £0.09
SN2009kq CfA - BVFiJH 0.013 33584+0.09 33.72+0.10  33.75+0.10
SN2010ai CfA NIR@max  BVFiJH 0.024 34994+ 005 3496+0.10  34.9540.10
SN2010dw CfA - BVY i JH 0.039 36.094+0.03  3599+0.10  35.95+0.09

Notes. “Redshift with corrections for local flows and CMB as described in Avelino et al. (2019). For eight nearby SN with
available redshift-independent distance estimates from Cepheids, Tully—Fisher, or surface brightness fluctuations (SNs 1998bu,
2001el, 2002dj, 2003du, 2003hv, 2005cf, 2007af, 2007sr), this is an effective redshift as described in Avelino et al. (2019).
bExternal distance estimate and standard deviation, either from redshift-independent distance estimate or from redshift and
assumed Hy = 73.24 km s ~! Mpc_'. See Avelino et al. (2019) tables 2 and 4.

“Optical + NIR BAYESN photometric distance estimate obtained by resubstitution (c.f. Section 5.3).

40ptical + NIR BAYESN photometric distance estimate obtained by cross-validation (c.f. Section 5.3).

We discretize the integrals over wavelength (equation 6) as
numerical Riemann sums with resolution AA, = 20 A. This provides
sufficient precision for evaluating the model fluxes (with discretiza-
tion error < 0.2 per cent and therefore much smaller than typical
photometric error — across all passbands, the median photometric
error is 0.018 mag).

We validated our training code via simulations. We set values of
the hyperparameters, similar to those found from training on the
real data, and used the forward model to generate simulated SN Ia
light curves with characteristics similar to our real training set. The
training code was then run on the simulated data set and we recovered
all true values of the SED components and hyperparameters within
the posterior uncertainties.

We can employ the model and Bayesian inference code in two
modes. In training mode, we condition on the external distance
estimates and their uncertainties, along with the SN Ia light curves
and redshifts, to sample the joint posterior of all hyperparameters
and latent variables. Trying to find the single optimal point of
the global posterior in the high-dimensional parameter space is
vulnerable to overfitting. Instead, we use the Bayesian approach
to sample the global joint posterior equation (29), which allows
us to marginalize over the posterior uncertainties in the latent
variables when estimating the hyperparameters, including the SED
components. In distance-fitting mode, we use posterior estimates of
the hyperparameters of the already-trained model, and we remove
the external distance constraint. Redshifts are only used to shift
the SED between the rest-frame and observer-frame and to account
for time-dilation. We then compute posterior inference on the latent
parameters of individual SNe, and marginalize to obtain the posterior
the photometric distance from the SN Ia light curve (equation 31).

For BAYESN and SNOOPY we fit the BVRIYJH bands, where RI
includes ri and i filters, where applicable. The version of BAYESN
described here has not been trained on U-band data; preliminary
analysis with a BAYESN prototype including the U-band does not
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show a significant improvement in results on this sample. We apply
our current model either to the available BVRI (optical) or BVRIYJH
(optical + NIR) data.

4.2 SALT2 and SNooPy fitting

We used the SALT2.4 model of Betoule et al. (2014) with the
error model covariance to fit the optical light curves. The specific
implementation of SALT?2 used is available in the sncosmo package
(Barbary et al. 2016). For each object, we initially adopt the Avelino
et al. (2019) estimates of the time of B-band maximum to select
observations between -10d and + 40d in phase with S/N > 3. These
estimates were originally obtained from SNOOPY fits to these well-
sampled light curves, and are very precise. This ensures that the same
observations are used by both SALT2 and BAYESN. SALT2 has a
range of 2000-9000 A and therefore can fit the UBVRI bands, but as
with BAYESN, we do not fit the U-band and restrict the comparison
to BVRI. We compared the SALT?2 results with or without U-band,
and found that the U-band data did not improve the results for our
sample. The limited template range of SALT2 also prevents us from
comparison with BVRIYJH fits. Pierel et al. (2018) created a NIR
extension to the SALT2 model that is suitable for simulations, but
that did not use the same training procedure as that used to create
the SALT2.4 model templates. Therefore, it is not suitable for fitting
real light curves and does not yield calibrated distances.

For each object, we begin with an initial guess for the parameters,
which we refine with Minuit (James & Roos 1975). We use the
result from Minuit to set the initial positions of 32 walkers used
to sample the posterior distribution with the emcee Markov Chain
Monte Carlo package (Foreman-Mackey et al. 2013). We generate
2000 samples per walker after discarding the first 500 steps as burn-
in. We visually inspect the parameter chains and 2D marginalized
posterior distributions. We compute the median value of the samples
as the ‘best-fit’ estimate and use the 16th and 84th percentiles of the
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samples as a credible interval. As these are well-sampled high-S/N
light curves, the parameters are well-constrained. To obtain distances,
we fit the parameters of the Tripp formula (equation 1) using the
full sample, obtaining: MB =—19.01,& =0.117, B = 2.939. For
consistent comparisons, these SALT2 distance estimates are on a
scale of Hy = 73.24 kms ~' Mpc~.

We use the SNOOPY EBV.model2’ to fit the observations
using templates parametrized by the light-curve stretch, sgy. The
EBV_model2 uses the same algorithm as Prieto, Rest & Suntzeff
(2006) to build the templates together with the updated calibration
of 24 CSP supernovae presented in Burns et al. (2011). The resulting
EBV_model2 rest-frame light curves templates cover uBgVriYJH.
To be consistent with our comparison to SALT?2, which is restricted to
modelling only the optical observations, we fit BVRI (optical-only)
as well as BVRIYJH (optical 4+ NIR) data with SNOOPY. We use
the same initial guesses for the SNOOPY fit parameters as used for
the SALT? fits. SNOOPY uses a non-linear least-squares Levenberg-
Marquadt algorithm to minimize the variance weighted residuals to
the model. As with SALT?2, we report the statistical uncertainties on
the fit parameters derived from inverting the Hessian matrix at the
best-fitting parameters, and we have adjusted the SNooPy distance
estimates to a scale of Hy = 73.24 km s ~' Mpc~'. Our low-redshift
SNe have well-sampled light curves with high S/N and thus the
likelihood and posterior are highly Gaussian and peaked around the
best-fitting values. We do not find any significant differences between
the Levenberg-Marquadt results and those using MCMC sampling.
The SNooPy light-curve fitting procedure weights the light-curve fit
only by the photometric errors; there is no residual covariance model.

5 RESULTS AND DISCUSSION

In the following sections (Sections 5.1 and 5.2), we describe results
obtained from our model trained on the optical and NIR light curves
of the full sample of 79 SNe Ia.

5.1 Light-curve inference for individual SNe Ia

As an example, Fig. 3 demonstrates a BAYESN light-curve fit to
optical and NIR observations of SN 2005iq (CSP, z = 0.034). It
also shows the posterior distribution of the latent parameters (6,
Ay, u) obtained under distance-fitting mode. To obtain the marginal
distribution of the photometric distance modulus uPh* the other
latent parameters of the SN (including the residuals e;) are integrated
over. The photometric distance modulus is well constrained to +0.09
mag using the joint optical and NIR data at all phases.

In Fig. 4, we show a visual comparison between the BAYESN and
SALT?2 parameter estimates. In the top panel, we plot the SED shape
parameter 6, which is the score of the first functional component,
against the SALT?2 x; ‘stretch’ parameter for the same SNe Ia. The
sign of 0, has been chosen to be in the same sense as the decline
rate Amis(B) of Phillips (1993), which is the magnitude change in
B-band between B-band peak and 15 d afterwards. Larger values of
6, correspond to faster (larger) post-maximum optical decline rates.

9SNOOPY also has a max_model mode that allows one to fit (K-corrected)
light curve data to a template light curve model in a single rest-frame filter
to find a single magnitude at maximum. We do not compare against this
mode, since the purpose of BAYESN is to fit the SED over the entire phase
and wavelength range covered by the available data in multiple passbands
simultaneously, without using K-corrections to compute a 1-to-1 map between
photometry in observer-frame and rest-frame filters.
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Figure 3. (top) Example BAYESN light-curve fit of optical and NIR BVriYJH
CSP observations of the Type Ia SN 2005iq. (bottom) Posterior distribution of
latent parameters of light-curve fit to CSP observations of SN 2005iq. In the
2D contour plots, the black contours contain 68 per cent and 95 per cent of the
marginal posterior probability, and the mode is indicated. The 1D marginal
plots depict a kernel density estimate applied to the MCMC samples for each
parameter. The SED shape parameter 6 and host galaxy dust extinction Ay
are marginalized over to obtained the posterior distribution of the photometric
distance modulus .

Larger x; values correspond to broader optical light curves, which
have slower (smaller) optical decline rates. There is a fairly tight,
slightly non-linear correlation between 6, and x;, suggesting that
they are capturing the same underlying major mode of variation.

In the bottom panel of Fig. 4, we compare the SALT2 colour
parameter ¢ and the BAYESN fitted value of the apparent B — V colour
at peak ¢ = 0. The latter is determined by evaluating the rest-frame
SED model (at redshift z; = 0) with the fit parameters (6}, A7, e;)
for each SN, and integrating it under reference B and V bandpasses,
which we take to be those of the CSP. There is a strong but not
exactly 1-to-1 correlation between the two. The BAYESN model is
able to leverage the optical and NIR data of the full light curve to
probabilistically decompose the apparent colour into an intrinsic B —
V colour and dust reddening E(B — V). The former is computed from
the light-curve fit by evaluating the rest-frame SED with the light-
curve fit parameters (67, e;) and setting A}, = 0, and integrating it
under the reference passbands, and the latter is determined by E(B —
V)s = A}, /Ry . Our model finds that the apparent colours are the sum
of two different effects and captures these two different sources of
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Figure 4. Comparison of BayeSN and SALT2 parameters. (upper panel)
Strong correlation between the 6 coefficient of the first principal SED com-
ponent and the SALT?2 light-curve shape ‘stretch’ parameter x;. (lower panel,
top) correlation between the peak (f = 0) B — V apparent colour from BAYESN
light-curve fit and the SALT2 colour parameter c. (lower panel, bottom)
BAYESN models the apparent colour as the sum of two latent components:
the intrinsic colour (blue) and the positive reddening due to dust, E(B — V) =
Ay/Ry (red). The inferred population mean (blue solid) and standard deviation
(blue dashed) of the intrinsic B — V colour distribution are indicated. We plot
the SNe with B and V measurements within £5 d of B maximum light.

variation, which are each correlated with the rest of the SED (and
thus luminosity as a function of wavelength) in different ways.

The population standard deviation of the peak intrinsic B — V
colour is estimated to be 0.065 £ 0.005 (blue dashed), consistent
with the previous estimate of 0.067 £ 0.009 of Mandel et al.
(2017). Of course, the attribution of this residual colour scatter to
variation intrinsic to the SNe depends on the model assumptions
being true. Possible misspecifications that might contribute some
non-intrinsic scatter to this variance include colour calibration error
and population variation of the dust law Ry. Burns et al. (2018)
found the typical zeropoint calibration error ~0.02 mag for CSP
(the majority of our data set), and Scolnic et al. (2015) found that
zeropoint errors are typically uncorrelated between bands, so we
expect this contamination to be small. For a population variance o2 in
dust laws around the single Ry of the model, a very rough calculation
shows that the error in dust reddening that may leak into intrinsic
colour scatter, o g —v) ~ (t4/Ry)(0r/Ry) < 0.02 mag even with
moderate variation o g < 0.6 (Thorp et al. 2021) for this range of low-
to-moderate reddening, and thus is also expected to be subdominant.
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5.2 Population inference

The statistical properties of the latent SED, captured by the intrinsic
FPC, residual covariance, and dust distribution, are learned during
the BAYESN model training phase by sampling the global posterior
density, equation (29).

5.2.1 Intrinsic SED components

The baseline intrinsic SED depicted in Fig. 1 is obtained with 6] =
A}, = e, = M, = 0, and is equal to Sp(z, A,)1070-4Mo+Wot.2)1 The
first functional principal component (FPC) W, (z, A) is also shown in
Fig. 1. The top panel of Fig. 5 shows the effect of our first functional
component W,(#, 1) on the baseline intrinsic SED at phases t = 0
and # = 20 as one changes the coefficient 6. In the bottom panel, for
comparison, we show the effect of the dust extinction on the SED.
An interesting difference between the two is the sign flip of the effect
of 0, in the NIR at phase r = 20. Under this effect, SNe Ia that are
dimmer in the optical are actually brighter in the NIR YJ bands at this
later phase. This is an indication of the correlation of dimmer SNe Ia
having earlier rises to the secondary NIR maximum. In contrast, the
effect of dust is to make SNe la dimmer at all phases. This sign-flip
distinction may help break the degeneracy between intrinsic SN and
extrinsic dust effects.

The figure also shows a reference set of filter passband functions
(with arbitrary scaling for visualization purposes). We visualize the
effect of our functional components on rest-frame photometric light
curves by integrating our SED model with various parameter values
under this reference set. The reference set we choose for illustration
are the CSP BVriYJH passbands and the z-band filter from Pan-
STARRS1 (PS1). The rest-frame z-band (at ~ 0.9 um, between i
and Y) region of SN Ia SEDs is regularly probed by low-z surveys
such as Foundation and YSE, but is not modelled by either SALT2
or SNooPy. In Section 5.4, we demonstrate an example of BAYESN
fitting of a rest-frame z-band SN Ia light curve from Foundation DR1
(Foley et al. 2018b).

By integrating the SED model under these reference optical and
near-infrared passbands, we show in Fig. 6 the effect of the 1st FPC
Wi (¢, 1,) on the intrinsic optical and NIR light curves. We see that this
intrinsic component captures the optical width—luminosity relation
(Phillips 1993): intrinsically brighter supernovae have more slowly
declining (or broader) light curves, whereas dimmer ones decline
faster. This effect is seen most clearly in the B and V bands. In the
redder optical bands (7 and i) and into the NIR zYJH bands, we see
that this same effect is also correlated with the timing of the second
peak atr =20—30 d: brighter supernovae tend to have later secondary
NIR peaks, while dimmer SNe Ia have earlier ones, which is a further
reflection of the trend seen in Fig. 5. In iYJH bands, the effect also
correlates to more pronounced second peaks. The empirical relation
we capture correlates strongly with the theoretical models of Kasen
(2006), who found that brighter SNe Ia should have more pronounced
NIR secondary maxima at later phases due to role of the ionization
evolution of iron group elements in the SN ejecta in redistributing
energy from the optical to the NIR. Similar trends have been seen by
Dhawan et al. (2015), and Shariff et al. (2016a) explored the use of
the phase of the secondary NIR maximum for standardizing SN Ia
optical magnitudes.

The first NIR peak typically occurs a few days before the optical
(B) peak (r = 0). Estimation of the 1st FPC at early pre-maximum
phases in the NIR is somewhat limited by the relative scarcity of
quality NIR observations there in the current data set (particularly
in the H-band). Hence, the apparent sensitivity of the early
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Figure 5. (top) Variation in the optical and NIR intrinsic SED captured by the first functional component Wi (z, A) at = 0 and 20 d. We vary the value of 61 by
0, £ 20, holding all other SN parameters to zero. (bottom) The effect of dust extinction on the optical and NIR SED. We apply dust extinction to the baseline
mean intrinsic SED with different combinations of Ay, Ry that produce the same optical colour excess E(B — V) = Ay/Ry.

(t < —5) H-band light curve to 6; W, (¢, A) may be spurious. Future
data releases with greater NIR coverage at early phases will help us
improve the model.

In Fig. 7, we illustrate the dependence of optical and NIR absolute
magnitudes on the SED shape parameter 6, of the FPC. The extin-
guished absolute magnitudes M;*" of an SN s are obtained by eval-
uating the model SED with its fitted parameters (67, e, §M;, A},),
setting ., = 0, and integrating it under the reference passbands in the
SN rest-frame. The intrinsic absolute magnitudes M ™ are obtained in
the same way but by setting A}, = 0. In the optical B-band the average
dust extinction correction is a 0.40 mag shift in absolute magnitude
for the sample. In the NIR Y, H-bands, the mean shiftis 0.10 and 0.06
mag, respectively, which reflects the much diminished effect of dust
extinction in the NIR compared to the optical (Fig. 1). The relatively
steep mean dependence of the B intrinsic absolute magnitude on
0, captures the optical width-luminosity relation (Phillips 1993). In
the NIR, the slopes of the dependence of Y and H intrinsic absolute
magnitudes with 6, are consistent with zero, after marginalizing
over the posterior uncertainties. The scatter about the mean intrinsic

relation due to the SED residual functions is approximately 0.10
mag. We note that the scatter around the mean intrinsic relation
is not necessarily identical to the photometric distance uncertainty
nor the expected scatter in the Hubble diagram. This is because the
SED shape 0, and the dust extinction Ay factors must themselves
be estimated from the data, and their uncertainties are themselves
influenced by the intrinsic residual covariance. Instead, proper
inference of the photometric distance uncertainty comes from the
marginalization in equation (31). However, the diminished effect of
dust Ay and the insensitivity to 6, in the NIR do significantly reduce
their contributions to the derived photometric distance uncertainties.

Colour curves, derived from flux ratios or magnitude differences
between different filters, provide a useful window for understanding
SNe Ia, since they are independent of the distance estimate and its
errors. In the top panel of Fig. 8, we illustrate the effect of the W, (z,
A,) on the intrinsic optical-NIR colour curves by varying 0. At
each epoch 7, these are obtained by integrating the resulting rest-
frame SED under each passband taking the difference with respect
to the V-band magnitude. The general trend is that the intrinsically
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Figure 7. Intrinsic variation and host galaxy dust effects on peak absolute
magnitudes at 7g max (phase ¢+ = 0) in the rest-frame optical B and NIR
Y, H bands. Each point is a posterior realization of the intrinsic absolute
magnitude M;“‘ (blue) or host dust-extinguished absolute magnitude M
(red) of each SN. In each panel, we plot the SNe with data in a given
filter. The solid line indicates the mean effect of the intrinsic Wy (z, ) model
component on the intrinsic absolute magnitude through the coefficient 6.
The slope of this line is indicated as b. The dashed lines indicate £1 standard
deviation captured by the intrinsic residual covariance. The mean effect of
host galaxy dust extinction in each band, quantified by the sample average dif-
ference between each SN’s extinguished and intrinsic absolute magnitude, is
shown.
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brighter, and more slowly declining, SNe Ia (more negative 6,) tend
to have bluer (more negative) colour curves in each of the colours
shown. The first FPC W, (¢, A,) modulates the colour curves in a
time-dependent fashion. While there are fixed points in phase when
particular intrinsic colours are fairly insensitive to 6, at phases 10 <
t < 20 d, there is significant intrinsic colour variation in all optical-
NIR colours relative to V-band.

In the bottom panel of Fig. 8, we compare this with the impact
of host galaxy dust reddening on the optical-NIR colour curves. In
contrast to the intrinsic FPC, the effect of dust on colour curves is
relatively constant in phase,'” and the main effect is across different
colours. We show the mean intrinsic colour curves with no dust Ay =
0 (thin blue), as well as two combinations of the dust parameters [(Ay,
Ry) = (0.75, 3) or (0.50, 2)] that result in the same colour excess
E(B —V)=Ay/Ry = 0.25. The plot demonstrates that, with apparent
colour information in optical BVr data alone, it is very difficult to
distinguish between the two possibilities. In contrast, the optical-NIR
V — YJH colour information helps us to break the degeneracy and
distinguish between the two values of the dust law Ry.

5.2.2 Intrinsic SED residual distribution

The model captures the population distribution of residual SED
variations that are unexplained by the intrinsic FPC, the host

191n principle, it is not exactly time-independent: since the intrinsic SN SED
is time-evolving, even if the amount of dust extinction Ay is truly constant, the
reddening effect on each magnitude has some time-dependence (e.g. Phillips
et al. 1999; Jha et al. 2007). However, this effect is too small to be seen on
the plot.
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Figure 8. (top) Intrinsic variation in optical and NIR colour curves captured by the first functional component W (¢, 1). We vary the value of 8, by ; * 1o,
while fixing Ay and other SN parameters to zero. (bottom) Effect of host galaxy dust extinction on optical and NIR colour curves. We show unreddened, intrinsic
colour curves (blue), and two apparent colour curves with the same amount of optical E(B — V) colour excess due to dust, but two different values of the dust law
Ry =2 or 3. We fix 0 and other SN parameters to zero. The phase-dependence of the W(z, ) component on intrinsic colour curves makes it distinguishable
from dust. The effect of dust reddening on colour curves is approximately constant with phase. (bottom left-hand panel) With optical data only, it is difficult to
distinguish between two different combinations of host dust Ay, Ry that produce the same colour excess E(B — V) = Ay/Ry. (bottom right-hand panel). Since
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Figure 9. Effects of the covariance of phase- and wavelength-dependent intrinsic SED residuals on optical and NIR light curves (top) and colour curves
(bottom). We fix the main effects 61 = Ay = 0. The black solid lines represent the light curves or colour curves generated from the mean intrinsic SED model.
The dashed lines correspond to =1 population standard deviation around the mean curves captured by the intrinsic SED residual covariance. The light curves
or colour curves corresponding to the effects of the inferred intrinsic SED residual functions n,(z, 1) of three example SNe in the training set are shown as blue,
yellow, or red curves. For example, the red curves in all the panels correspond to the effect of the intrinsic SED residual function of a single SN.

galaxy dust extinction, peculiar velocities, or other external distance
uncertainties, or measurement error, through the residual covariance.
The total residual SED function of an SN Ia s is ny(t, A,) = M, +
€4(t, 1,;). An example of an SED residual function is shown in Fig. 1.

Fig. 9 shows the effect of intrinsic SED residuals on rest-frame
optical and NIR light and colour curves. We hold 6, = Ay = 0,
and we compute the impact of the distribution of SED residuals
on the light curves and colour curves by integrating through the
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Figure 10. Correlation matrix of optical-NIR light-curve residuals over
phase for the K = 1 model. (top right-hand panel) The correlation matrix of
magnitude residuals in optical-NIR filters attributed to the total SED residual
functions n(t, 1) = My + €4(t, A,). (bottom left-hand panel) The correlation
matrix of magnitude results in optical-NIR filters attributed to the time- and
wavelength-dependent residual functions €4(t, A,-). For visualization purposes,
the absolute value of the correlation coefficient is plotted.

reference passbands. We compute the £1o range at each epoch
t. We do not unrealistically assume the residuals are statistically
independent at each phase or in each filter; rather the residuals
manifest as continuous perturbations around the main effects. The
model captures continuous residual SED functions correlated across
phase and wavelength. To illustrate this, we show the effect of three
realizations of the intrinsic residual functions on the light curves.
The residual variance is generally narrow at phases around the first
peak. In later phases, particularly in the NIR, there is more intrinsic
residual variation because the 1st FPC does not capture the full range
of variation of the second peak.

Fig. 10 depicts the correlations over phase and wavelength of
the impact of the total residual functions 7,(#, A,) and the time-
and wavelength-dependent part €,4(t, A,) on the rest-frame optical-
NIR light-curve magnitudes. The total residual map (top right-hand
panel) indicates moderate-to-strong correlations between the optical
bands, but weaker cross-correlations between optical and NIR bands.
While this is clearest at peak (z = 0), a similar pattern persists at later
phases, as well as in cross-phase correlations. At late phases (1 =
20, 30), the Y-band residual appears to have low correlation with
other bands; this is likely due to significant variations in the second
peak at these phases, as seen in Fig. 9. When the inferred grey time-
constant scatter is removed, the correlations due to €,(¢, A,) (bottom
left-hand panel) are reduced, but there is still interesting structure. In
particular, there are still moderate correlations between bands in the
post-decline phases (r = 10, 20) as well as intertemporal correlations
(e.g. between ¢ = 10, 20, 30). In Section B, we show that some of the
additional structure there may be captured with higher order FPCs.

5.2.3 Host galaxy dust population

Fig. 11 shows the distribution of posterior mean estimates of the
individual dust extinction Ay values. It is well described by an
exponential distribution with an average value of 74 = 0.329 £ 0.045
mag, consistent with previous estimates in the range of 0.3—0.4
mag found for similar samples (Jha et al. 2007; Mandel et al. 2011,
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Figure 11. Distribution of posterior mean estimates of Ay, for the SNe Ia
sample. The model exponential distribution with the inferred scale (average)
T4 is shown.
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Figure 12. Posterior distribution of the inferred global Ry of the host galaxy
dust law and 74, the population mean Ay. The black contours of the 2D
contour plot contain 68 per cent and 95 per cent of the posterior probability,
and the mode is marked. The 1D marginals are depicted by kernel density
estimates of the MCMC samples.

2014). Fig. 12 shows posterior inferences of the average v, and
the global value of the dust law slope Ry. The posterior constraints
are determined during the training phase, and thus are obtained by
marginalizing over all other components and hyperparameters of the
hierarchical model. These posterior estimates are well constrained
fairly independently. In particular, for this sample with colour excess
EB — V)host S 0.4, the estimated global Ry = 2.89 £ 0.20 is
consistent with the average for normal Milky Way dust. This is
in good agreement with previous analyses of nearby samples, which
have found, at these relatively low-to-moderate values of reddening
(which are similar to those found in the cosmological sample),
average values of the host dust Ry ~ 2.5—3 (Chotard et al. 2011;
Foley & Kasen 2011; Mandel et al. 2011; Burns et al. 2014; Mandel
etal. 2017; Léget et al. 2020).

The hierarchical model constrains Ry by analysing and weighing
the entire distribution of SEDs over phase and optical to NIR
wavelengths using the entire training set of SNe Ia. For visualization
purposes, however, it is useful to inspect a ‘slice’ of this inference
by examining a low-dimensional summary. Multidimensional colour
information is useful as it provides constraints on the dust distribution
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Figure 13. Constraints on the host galaxy dust Ry from the optical and NIR
colour—colour diagram of SNe Ia observed in B, V, and H near peak (t = 0).
(top left-hand panel) Each point is a posterior realization of the peak apparent
colours (red) or intrinsic colours (blue) of an SN, corrected for the inferred
intrinsic colour-shape relation to 61 = 0. The blue ellipses are (68 per cent,
95 per cent) contours of the intrinsic colour population distribution inferred
during the training phase, which estimated a global dust law parameter Ry =
2.89 =£ 0.20. For comparison, the red solid (dashed) lines have the slope of
the reddening vector for Ry = 3 in these colours, and intercept the mean
(are tangent to the 95 per cent contour) of the intrinsic distribution. Nearly all
of the SNe Ia apparent colours should lie within the dashed lines under the
correct dust reddening law. (top right-hand panel) Comparison of the apparent
colour distribution with the inconsistent dust reddening vector for Ry = 2.
(bottom lefthand panel) Comparison of the apparent colour distribution with
the inconsistent dust reddening vector for Ry = 1.5.

while being insensitive to the distance estimate (and its errors). We
exploit the fact that the optical and NIR data allows us to constrain
the dust effects over a much larger wavelength range than is possible
conventionally with the optical data alone. The plot of the dust law in
Fig. 2 shows that the extinction at NIR H-band (=~ 1.6 pm, cf. Fig. 5)
is only 16 per cent of that in optical V-band (= 0.54 um), and very
insensitive to Ry. Thus, the differential extinction (the colour excess)
between V- and H-bands probes a large net dust effect (=~ 0.83 Ay),
while itself being insensitive to Ry. Meanwhile, the colour excess
between B (~ (0.43 um) and H-bands similarly covers a large
wavelength range and therefore a large dust effect, but because of the
high sensitivity of Ag to Ry (for a given Ay), this colour excess is very
sensitive to Ry. The complementary optical B — V colours cover only
a narrow range in the optical, and therefore captures a smaller differ-
ential effect of dust, but is also highly sensitive to Ry. The advantage
of measurements spanning optical to NIR is that we can leverage the
joint colour information in these SNe Ia to constrain and break the
degeneracy between Ay and Ry in the optical-only colours (Fig. 8).

Fig. 13 shows a ‘slice’ of the constraints on Ry in these colours
from training the BAYESN model (equation 29). The top left-hand
panel shows the distribution of peak (¢t = 0) apparent colours and
intrinsic colours inferred by the model, and corrected for the inferred
intrinsic colour-shape relation (Fig. 8) to 8, = 0. The inferred
intrinsic colour distribution is anchored by the SNe Ia with the least
inferred amount of dust. The red arrow indicates the dust reddening
vector for each colour pair for the dust law Ry = 3 and illustrates a
shift corresponding to Ay = 0.57 mag from the centre of the intrinsic
colour distribution. The colour distributions are consistent with an
Ry = 3 dust law (and the posterior estimate Ry = 2.89 £ 0.20).
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The other panels show that the apparent colour distribution in
these colour pairs are inconsistent with the dust reddening vectors
for Ry = 2 or Ry = 1.5. That is, given the apparent colours of the
low-reddening set (low B — H), assuming a low Ry would predict
bluer (more negative) average V — H apparent colours for a given B
— H for more reddened SNe Ia (e.g. B — H > 0.5) than is observed.
Conversely, the apparent colours of the high-reddening set (high B
— H) would imply that the apparent V — H colours of the low-
reddening set ought to be redder (more positive) than is observed,
when assuming a low Ry. For B — V colours, the same inconsistencies
persist but in the opposite sense. The high- and low-reddening ends
of the apparent colour distribution are most consistent with each
other for Ry ~ 3.

Because the estimation of Ry hinges on the comparison of the
colours of high-reddening SNe to those of low-reddening SNe, the
most highly reddened SNe have the most leverage. In our sample, SN
1998bu has the largest extinction estimate (Ay = 1.15 &£ 0.08). To test
that our Ry estimate is not entirely driven by this SN, we retrained
the full hierarchical model omitting SN 1998bu. We found Ry =
2.83 £ 0.19, indicating that our estimate is robust to the reddest SN.

5.2.4 Covariance structure of optical and NIR peak absolute
magnitudes

During the training phase, we estimate the population covariance
structure of SN Ia SEDs. The covariance structure is implied by the
model equation (12) and the population distribution of the latent
parameters. The total population covariance of the log latent SED at
two different rest-frame coordinates (z, A,) and (', 1) is captured by
the model as

Cov[log S(t, 1,), log S(t', A,)] = Var[Ay1&(%,; Rv) §(A5 Ry)

K
+ 1D Wit AW )

i=1

+0d +ke(t, A3t M), (32)

where k(¢, A1, 1) is given by equation (23), and we invoke
the statistical properties of the latent variables: e.g. Cov[6', #/] =
Sijs Cov[#!, sM] = 0 (consequences of the independent prior and
population distributions specified in Section 2.5).!' On the right-
hand side, the top line describes the covariance across rest-frame
wavelength induced by the dust extinction and the dust law £(%),
which depends on Ry. The second line describes covariance across
both phase and wavelength induced by the K intrinsic functional
principal components of the SED. The third line describes the
covariance of the intrinsic residual terms n,(t, A,) = M, + €,(¢, 1,).
Because the absolute magnitude in any one passband at some phase ¢
is obtained by exponentiating equation (12) and then performing an
integral of the SED under the transmission function, the covariance
between any pair of absolute magnitudes in different filters at
different phases is not analytic and must be computed numerically.
The population variance of the time- and wavelength-independent
‘grey’ magnitude offsets 8M, is captured in oZ. Since this mode
is indistinguishable from distance in the light-curve data, this term
sets an uncertainty floor for the photometric distances. At low-z, the

n practice, after training the K = 1 model, we estimate a sample covariance
6(;/[91, 8M] = 0.0013, corresponding to a sample correlation 0.016, both
consistent with zero. For the K = 2 model (Appendix B), we estimate a
sample covariance 6(;/[91 , 021 = 0.01 corresponding to a sample correlation
of 0.01, also consistent with zero.
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Figure 14. Map of population correlations between peak (# = 0) extinguished
absolute magnitudes in optical and NIR passbands. These include all modelled
sources of latent SED variation, including dust extinction, the intrinsic FPC
61 W(t, 1), and the residual SED covariance. Dust effects induce significant
wavelength-dependent correlations in the optical, but have significantly
diminished effect in the NIR. While the optical magnitudes are significantly
correlated with themselves, they are less so with the NIR magnitudes, with
optical-NIR cross-correlations as low as ~ 40 per cent. This indicates there
is additional information in the NIR that helps improve distance estimates.

estimated value of o is sensitive to the assumed value of o ., since
the latter determines how much of the Hubble residual scatter can
be attributed to peculiar velocity uncertainty. On training with our
assumed value of o e = 150km s ~! (Carrick et al. 2015), our model
estimates o¢ = 0.09 % 0.02 mag.'?> However, with a higher value of
Opec =250 km s ~! (e.g. Scolnic et al. 2018), our model estimates
o9 = 0.06 £ 0.02 mag. In the future, a higher redshift optical and
NIR sample would help determine oy more robustly against peculiar
velocities.

The full covariance structure over rest-frame phase and wavelength
learned by the model is complex, and we defer a detailed discussion
to future work. Here, we distill some of its key aspects. Fig. 14
depicts the population cross-correlation structure between peak (at
t = 0) optical and NIR absolute magnitudes. The variation in absolute
magnitudes is generated by the combination of the various latent
component effects on the SED, and is obtained by integrating the
SED through the reference filters. The map shows the correlation
of the peak extinguished absolute magnitudes across optical and
NIR passbands, inclusive of dust, intrinsic §; SED variation, and
residual covariance. The peak absolute magnitudes in the optical have
a very strong total correlation, whereas the cross-correlation between
optical and NIR peak absolute magnitudes is as low as & 40 per cent.
This is caused in part by the strong, coherent wavelength-dependence
of the host galaxy dust extinction. However, the dust extinction is
significantly diminished in the NIR. This reduced cross-correlation
indicates there is additional information in the NIR magnitudes that
helps us to improve distance estimates.

12There is a minor mathematical degeneracy between 8M; and the time- and
wavelength-averaged mean (e (¢, 1,)), so that the full grey time-constant
scatter is the sum of the two. However, this is largely broken via the priors
during training. After training, if we reassign the (€ (¢, A,)) to § Mj, this
merely increases the o by 0.004 mag, five times smaller than the posterior
uncertainty.
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5.3 Hubble diagram analysis

After training the model by sampling equation (29), we obtain
posterlor estimates of the FPC and population hyperparameter

= (WOK, Ze,oo, Ta, RV) We then use these to evaluate the
photometrlc distances, derived from the light curves alone, using
equation (31). We take the posterior mean and standard deviation
of the posterior probability density of the photometric distances.
Table 1 lists the redshifts, external distance estimates, and BAYESN
photometric distance moduli for the sample.

We assess the accuracy and precision of our photometric distance
estimate by comparison to the external distance estimates, via the
Hubble residuals, (iP™ — (1%, We compare them using two summary
statistics, listed in Table 2. Flrst, we report the simple total RMS the
differences between our posterior mean estimate photometric dis-
tance modulus pph"t and the external distance estimate 1. Secondly,
we report a statistic we denote 6.y, obtained by minimizing

&pv = argmaxlog | [ [ N (&2 &, 05, +03.) | - (33)

Opv A

This is a maximum-likelihood estimate of the amount of dispersion
in the Hubble residuals not accounted for by the uncertainties in
the external distance estimate, which is dominated by the peculiar
velocity uncertainty o pec = 150 km s ~! for the vast majority of this
low-z sample.

It is conventional in the SALT2 analysis to compute an ‘intrinsic
dispersion’!® of the Hubble residuals, by estimating the amount of
scatter in the Hubble residuals in excess of the expected contributions
of ‘measurement error’ (which is really the estimated uncertainty on
the fit parameters mg, x1, ¢), and the peculiar velocity uncertainties.
This is necessary because only the light-curve fitting uncertainties
on the SALT2 parameters are propagated through the Tripp formula,
equation (1), to compute the distance modulus uncertainties, and the
results are typically much smaller than the total RMS in the Hubble
diagram. Similarly, SNooPy only uses the photometric measurement
uncertainties in the light curve fit. In contrast, BAYESN produces
distance uncertainties via Bayesian marginalization of the SED fit to
the light-curve data, coherently incorporating 6, and Ay uncertainties
and the residual covariance over phase and wavelength (equation 31).
Since each method has a different way of reporting the distance
errors, we do not ‘subtract’ the reported distance errors from the total
RMS. Instead, to ensure consistent comparisons across methods,
we use 6., to remove from the total RMS only the expected
contribution from external distance errors (e.g. peculiar velocities),
which are the same for each method applied to the same set of
SNe Ia.

Table 2 lists these Hubble residual dispersion measures for
different subsets of the SN Ia sample. The vast majority comes
from two large surveys with homogeneously reduced data, the
CfA (Hicken et al. 2009, 2012; Friedman et al. 2015) and CSP-I
(Krisciunas et al. 2017). We label this set ‘CfA + CSP’. Including
the minority of other SNe la drawn from the more heterogeneous
data sources in the literature results in the ‘All’ sample. Further-
more, a subset of the full ‘AnyNIR’ sample with NIR observations
near maximum light is labelled ‘NIR@max.” We run BAYESN
and SNOOPY on either optical-only (BVRI) or optical + NIR
(BVRIYJH) light-curve data, while SALT?2 is only run on optical
BVRI data.

13But see footnote 2.
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Table 2. Summary of Hubble residuals.

SN source® NIR cut? Nsn A€ Model? Total rms® o _y(1 50)f
CfA + CSP NIR @max 40 BVRIYJH BayeSN-tr 0.096 0.083
CfA + CSP NIR @max 40 BVRIYJH BayeSN-cv 0.108 0.099
CfA + CSP NIR@max 40 BVRIYJH SNooPy 0.141 0.110
CfA + CSP NIR @max 40 BVRI SALT2 0.129 0.112
All NIR @max 48 BVRIYJH BayeSN-tr 0.113 0.091
All NIR @max 48 BVRIYJH BayeSN-cv 0.123 0.107
All NIR @max 48 BVRIYJH SNooPy 0.148 0.110
All NIR @max 48 BVRI SALT2 0.131 0.114
CfA + CSP AnyNIR 66 BVRIYJH BayeSN-tr 0.135 0.109
CfA + CSP AnyNIR 66 BVRIYJH BayeSN-cv 0.145 0.124
CfA + CSP AnyNIR 66 BVRIYJH SNooPy 0.157 0.128
CfA 4 CSP AnyNIR 66 BVRI SALT2 0.147 0.125
All AnyNIR 79 BVRIYJH BayeSN-tr 0.137 0.109
All AnyNIR 79 BVRIYJH BayeSN-cv 0.147 0.123
All AnyNIR 79 BVRIYJH SNooPy 0.161 0.125
All AnyNIR 79 BVRI SALT2 0.148 0.122
CfA + CSP AnyNIR 66 BVRI BayeSN-tr 0.149 0.128
CfA + CSP AnyNIR 66 BVRI BayeSN-cv 0.156 0.140
CfA + CSP AnyNIR 66 BVRI SNooPy 0.158 0.142
CfA + CSP AnyNIR 66 BVRI SALT2 0.147 0.125
All AnyNIR 79 BVRI BayeSN-tr 0.150 0.126
All AnyNIR 79 BVRI BayeSN-cv 0.157 0.137
All AnyNIR 79 BVRI SNooPy 0.158 0.140
All AnyNIR 79 BVRI SALT2 0.148 0.122

Note. *Data Source. ‘All’ = CfA+CSP + Others *The ‘NIR@max’ cut requires NIR data near maximum
light. ‘AnyNIR’ does not. “In optical + NIR fitting, all available data in BVRIYJH is used. In optical-only
fitting, only available data in BVRI is used, where R and I can also include r, r,, and i, i In either case,
the model was trained on optical + NIR data. ¢‘Bayesn-tr’ refers to the error of photometric distances from
resubstitution of the whole training set. ‘BayeSN-cv’ refers to the error of photometric distances from 10-fold
cross-validation. We cannot do equivalent cross-validation with SALT2 or SNooPy. ¢Simple total RMS of the
Hubble residuals. 'Dispersion estimate after removing expected variance due to peculiar velocity uncertainties,

assuming opec = 150 km s7L.

5.3.1 Resubstitution or training error

The resubstitution, or training error, is obtained by training the model
on the optical4+NIR data of the full sample, and then applying it to
fit the optical + NIR or optical-only light curves of SNe Ia in the
training set to determine their photometric distances. In Table 2,
these estimates are labelled ‘BayeSN-tr’. Fig. 15 shows the Hubble
diagram obtained with BAYESN fits of optical and NIR data of
the CfA + CSP NIR@max sample. With joint optical and NIR
data, BAYESN achieves a low total RMS = 0.096 mag on this set.
Removing the expected contribution from external distance error
and peculiar velocities, we obtain 6., = 0.083 mag. Meanwhile,
on the same set of SNe Ia, SNOOPY, and SALT?2 have larger RMS
~ 0.13-0.14 mag, with 6,, ~ 0.11 mag. Notably, the photometric
distance modulus uncertainties of individual SNe Ia from SNOOPY
or SALT2 with the standard procedure are small in comparison to
the total RMS, because they only propagate the photometric light
curve uncertainties (and in SALT?2, the error model covariance). In
Fig. 15, we show these error bars, and, in grey, we have added
to those in quadrature the residual variance needed to make the
total reduced x? of each Hubble Diagram equal to one. In contrast,
the BAYESN photometric distance uncertainties are obtained in a
principled manner by marginalization of the latent components
including the residual covariance (equation 31). The individual
photometric distance uncertainties from BAYESN listed in Table 1
already reflect the scatter in the Hubble diagram.

MNRAS 510, 3939-3966 (2022)

We assess the significance of the difference between the RMS
Hubble residual of distance from our model compared to those
from SALT2 using bootstrap. From the full training set SNe Ia,
we construct a bootstrapped set by sampling with replacement. For
each method, we compute the Hubble residual RMS of the SNe
Ia within the bootstrapped set. We compute the difference in RMS
between the two methods within the bootstrapped set. We repeat
this 1000 times and then compute the variance of the differences
in RMS across the bootstraps. This procedure accounts for the
fact that each method is analysing the same set of SNe Ia, and
therefore the joint sampling distribution of both methods’ RMS over
bootstraps is correlated. For the CfA 4+ CSP NIR@max subset, we
compare SALT2 using optical (which has the lowest RMS of the
alternate methods) versus BAYESN using optical 4+ NIR, and we find
a ARMS = 0.033 £0.012 (2.70).

Avelino et al. (2019) recently obtained RMS scatter of 0.11-0.12
mag for the same SNe in the NIR@max subsets using only NIR
YJHK; light-curve data, and without any host-galaxy dust correction.
Our optical + NIR results are a slight improvement over that. Since
this sample has already been restricted to low-to-moderate reddening
E(B — V)post < 0.4, we expect the NIR extinction corrections to be
small. With the fitted exponential dust distribution and dust law, the
H-band extinction Ay has a population standard deviation ~0.06
mag, a subdominant component of the total variance. However,
when fitting more highly reddened SNe Ia, or light curves with a
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Figure 15. Comparison of Hubble diagrams and Hubble residuals from BAYESN, SNOOPY, and SALT?2, applied to the same set of CfA and CSP SNe Ia with
NIR data near maximum light. (top left-hand panel) Hubble Diagram of photometric distances obtained by fitting the optical and NIR light curves with BAYESN,
compared to the local distance-redshift relation under standard cosmological parameters. (bottom left-hand panel) Hubble residuals for BAYESN. The simple
total RMS is 0.096 mag. After removing the expected variance due to peculiar velocity uncertainty (dashed, o pec = 150 km s —1), the remaining dispersion is
6.pv = 0.083 mag. The distance uncertainties are determined via marginalization accounting for the residual covariance (equation 31). (top right-hand panel)
Hubble residuals from SALT?2 applied to the optical-only data (BVRI) of the same sample. (bottom right-hand panel) Hubble residuals from SNooPy applied to
the optical and NIR data of the same sample. For SALT2 and SNooPy, we show two error bars for each SN: one obtained from the light-curve fit uncertainties,
and, in grey, those augmented in quadrature with the residual variance needed to make the total )(3 = 1 for each Hubble diagram. Y-band data is only available

for CSP objects (c.f. Table 1).

shorter NIR wavelength range, we expect even the NIR extinction
corrections, determined from joint fits with the optical, to become
more important. Current NIR SN Ia light curves are usually ob-
tained as follow-up observations to optical discoveries and BAYESN
is able to also leverage the complementary optical data already
obtained to analyse the full wavelength range in an automated,
consistent way.

Table 2 summarizes of Hubble diagram dispersions of the other
subsets of the SN Ia sample. We find that the addition of the
literature sample to the CfA + CSP sample (to constitute All)
increases the dispersion slightly in nearly all cases, which is to be
expected since these SNe Ia come from more heterogeneous data
sources. BAYESN optical + NIR distances are still more precise
than SNooPy and SALT?2 in the AnyNIR sample, when we do not
require NIR measurements near maximum light, but the advantage
is reduced. This highlights the importance of obtaining the NIR data
near maximum light. On optical-only data (BVRI), all three methods
perform similarly, with total RMS ~0.15—0.16 mag.

5.3.2 Cross-validation

Cross-validation techniques to test the sensitivity of SN Ia models
and their distance estimates to the finite training set have been
previously employed by Mandel et al. (2009, 2011) and Blondin,
Mandel & Kirshner (2011). These procedures address the double
use of the data inherent in resubstitution. We performed 10-fold
cross-validation to assess the out-of-training sample distance error.
We equally divided the full training set into 10 folds, each with a
roughly similar redshift distribution. First, we hold out one fold, and
train a new BAYESN SED model on the optical+NIR data of the
SNe Ia in the other 9 folds. Then we used the new trained model
to estimate the photometric distances of the SNe Ia in the held-
out fold, by fitting either their optical + NIR or optical-only light
curves. We repeated this procedure 10 times, each time holding out
a different fold, training a new model on the complement, and using
it to evaluate the photometric distances of the held-out SNe. The
Hubble residual summaries of the cross-validation out-of-training
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sample photometric distances thus obtained are listed in Table 2 as
‘BayeSN-cv’.

In the best case, for the CfA + CSP NIR@max subset, the total
RMS of the photometric distances relative to the external distances is
0.108 mag. As expected, this is slightly higher than the RMS training
error (0.096 mag) because the cross-validated distance of each SN is
obtained using a model trained on a set that excludes that SN. This
is an overestimate of the true error of the fully-trained model, since
each model under CV is trained on a 10 per cent smaller training set
than the full sample. We expect the difference between the training
and cross-validation error to narrow as more training data becomes
available. Still, the difference between the two numbers is already
small (0.012 mag), so it is reasonable to conclude that the typical
distance error for similar optical and NIR light curves with peak NIR
data is ~0.10 mag.

A large fraction of our training set SNe Ia were also used in the
training sets for both SNooPy (Burns et al. 2011) and SALT2 (Guy
et al. 2010). To our knowledge, there has been no equivalent cross-
validation analysis, including hold-out and iterative retraining, for
these other models. Since we are unable to retrain these other models
on partitions or resampled subsets, it is difficult to make equiva-
lent, direct comparisons of these models to our cross-validation
results.

Our cross-validation runs demonstrate the capability of our train-
ing code to straightforwardly and repeatedly train new models on
different SN Ia data sets automatically without human intervention.
We will be able to use this modularity to train and compare new
BayeSN SED models based on data sets partitioned by survey
or by astrophysical classes (e.g. SN Ia host galaxy properties or
spectroscopic subclasses) to investigate the statistical and physical
differences in the learned SED components and latent variables.

5.4 Application to Foundation SN Ia light curves

The optical and NIR light curves in our training set listed in Table 1
are mainly from the Carnegie Supernova Project and CfA Supernova
Program, which typically measured high-quality light curves with
relatively frequent time sampling (c.f. Fig. 3). However, most SN Ia
light curves used for cosmology are not sampled as well in phase
or wavelength. To test our model on SN Ia light curves outside of
our training set with more typical sampling, we have fit griz light
curves obtained by the Foundation Supernova Survey using the Pan-
STARRSI1 (PS1) telescope (Foley et al. 2018b).

Fig. 16 demonstrates a BAYESN fit to Foundation observations
of the Type Ia SN 2016gou / ATLAS16cxr. It shows the well-
constrained joint posterior distribution of the parameters obtained
from the MCMC fit: the 6, coefficient of the 1st FPC, the dust
extinction Ay, and the photometric distance p. Because BAYESN is
a model for the continuous SED spanning 0.35 to 1.8 um, we are
able to integrate the model SED under the griz PS1 passbands to fit
this data, even though these exact passbands were not used in the
training phase. Our SED model does not require K-corrections to be
computed as pre-processing step to map observer-frame to rest-frame
passbands. Notably, the SALT2.4 model cannot properly fit rest-
frame z-band due to the wavelength limits of its SED template, and
SNooPy lacks a rest-frame z-band light-curve template. However,
proper modelling of the rest-frame z-band is important for fully
utilizing griz data from low-z surveys such as Foundation and the
Young Supernova Experiment. In a companion paper, we present a
full analysis of the Foundation DR1 data set using our new BAYESN
model (Thorp et al. 2021).
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Figure 16. (top) BAYESN light-curve fit of Foundation DR1 griz observations
of ATLAS16c¢xr. (bottom) Posterior distribution of BAYESN parameters from
the light-curve fit.

6 CONCLUSION

6.1 Improvements over current models

We have constructed a new hierarchical Bayesian model, BAYESN,
for SN Ia SEDs from the optical through NIR. This is the first
statistical model for continuous SN Ia SEDs designed for fitting
observed optical and NIR light curve data, and is crucial for
properly analysing NIR observations from current and future SN Ia
surveys. Our model is capable of statistically leveraging the powerful
properties of SN Ia in the NIR, in particular the narrow dispersion
in NIR luminosities at peak, and the much diminished effect of dust
in the SN Ia host galaxies. BAYESN jointly leverages the optical and
NIR data to constrain the dust extinction Ay and the reddening law
Ry more stringently, thereby controlling systematic errors due to the
dust correction. BAYESN coherently estimates the covariance of the
residual SED functions across time and wavelength, and incorporates
them into the dust and distance estimates in a principled, probabilistic
manner.

By generalizing the previous hierarchical Bayesian framework of
Mandel et al. (2009, 2011) from modelling light curves in fixed
discrete rest-frame filters to modelling a continuous SED function in
phase and wavelength, we obviate the need for ad-hoc K-correction
pre-processing procedures to compute 1-to-1 mappings between
observer-frame and rest-frame filters, which is required by SNooPy.
Instead, observed data are compared directly against the model fluxes

220z Jaquiaoa(] | uo Jasn abpuqued 10 AusiaAiun Aq 8/ v8¥9/6E6€/€/0 1 S/3101e/SBIuW/Wod dno olWwapeoe//:sdny WwoJl papeojumoq


art/stab3496_f16.eps

implied by the redshifted SED model integrated under the observer’s
passbands. Redshifting effects are thereby incorporated directly into
the statistical model.

Furthermore, BAYESN has a number of advantages over the
SALT2.4 model conventionally used in cosmological analyses.
Whereas the SALT2.4 spectral template has coverage only up to
rest-frame 0.9 pum (inclusive of rest-frame i-band), our BAYESN
SED model extends to 1.8 wm (i.e. through rest-frame H-band). The
SALT?2 model does not internally discern distinct SED components
separately describing the effects of SN Ia intrinsic variation versus
host galaxy dust extinction. Instead, it uses a single colour law to fit
a single apparent colour parameter, effectively confounding the two
physically distinct sources of spectral variation.

In contrast, our BAYESN SED model internally encodes the
continuous wavelength-dependent host galaxy dust reddening and
extinction at the SN Ia SED level, as effects physically distinct
from the time-dependent intrinsic components of SED variation. Our
model leverages the photometric constraints on the entire continuous
SED to determine the dust properties, fit for the intrinsic modes
of variation, and coherently weigh the uncertainties and combine
information from across phase and wavelength to compute the
probability distribution of the photometric distance modulus. With
the low- z compilation analysed here, BAYESN can determine the
distance moduli for SNe Ia with optical and NIR coverage near
maximum light to ~0.10 mag precision (total RMS), compared
to 0.13-0.14 mag using SALT2 or SNooPy on the same SNe
Ja. Combining optical and NIR data across the entire phase and
wavelength range, we used BAYESN to derive tight constraints on
the host galaxy dust law. For this sample with colour excess E(B —
Whost S 0.4, we found Ry = 2.9 £ 0.2, consistent with the Milky
Way average.

6.2 Applications to current and future data sets

Beyond the data compilation analysed here, our BAYESN SED model
will be broadly applicable for analysing optical and NIR SN Ia
light-curve data from more recent and current surveys. Forthcoming
data from the Carnegie Supernova Project-1I (Phillips et al. 2019)
will enable us to expand our nearby training set with high-quality
optical and NIR light curves of SNe Ia further into the Hubble
flow (limiting the impact of peculiar velocity uncertainties). We are
using Foundation DR1 griz light curves obtained with the well-
calibrated Pan-STARRS telescope for training and analysis with
BAYESN (Thorp et al. 2021).

BAYESN is important for fully analysing data from recent and
ongoing programs that use the Hubble Space Telescope to observe
SNe lain the rest-frame NIR at high-z (RAISIN) and low-z (SIRAH),
in conjunction with optical data from ground-based surveys. The
ESO VISTA Extragalactic Infrared Legacy Survey (VEILS)'* re-
cently concluded a time-domain survey that observed SNe Ia in the
observer-frame J-band up to z & 0.6, in conjunction with the Dark
Energy Survey and the ESO VOILETTE survey in griz.

LSST’s observer-frame y filter will probe the rest-frame NIR z
or y bands to redshifts z < 0.3. The Nancy Grace Roman Space
Telescope (RST)’s wide imaging filters will extend to 2.0 pm (e.g.
Hounsell et al. 2018), and thus will overlap with rest-frame H to
7504,Jt0z < 0.7, and Y to z < 1. The addition of a K-band
filter will extend the NIR coverage further (Rubin 2020). BAYESN
will be crucial for properly leveraging the full wavelength range of

14https://people.ast.cam.ac.uk/~mbanerji/VEILS/index.html
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these surveys both to constrain the host galaxy dust properties and
to produce optimal distance estimates. It will also be important for
fully analysing any potential simultaneous observations of SNe Ia
by LSST and RST (e.g. Foley et al. 2018a) or Euclid (Rhodes et al.
2017).

6.3 Future analyses and model extensions

Our hierarchical Bayesian SED modelling and inference framework
is modular and flexible and will enable us to expand upon the SED
model presented here to explore in greater depth various aspects of
SNe Ia. In Thorp et al. 2021, we investigate dust distributions by
allowing Ry, to vary for each SN Ia within a population governed by
hyperparameters to be inferred, as was done previously by Mandel
etal. (2011). We will also be able to test alternative forms of the dust
extinction law (e.g. Goobar 2008; Amanullah et al. 2015). We will
further probe the statistical properties of the intrinsic SED residuals
over phase and wavelength, through the modelling and assessment
of additional K > 2 functional components and improved estimation
of residual covariance.

A further shortcoming of current SN Ia models is the lack of
incorporation of astrophysical correlations at the fundamental level
of the SED. A ‘host mass step’ captures an apparent correlation
between host galaxy stellar masses and SN Ia optical luminosities
controlling for light-curve shape and colour (Kelly et al. 2010;
Sullivan et al. 2010; Smith et al. 2020). While the astrophysical
nature of this correlation is still under active investigation (Jones et al.
2018; Rigault et al. 2020; Brout & Scolnic 2021; Gonzalez-Gaitan
et al. 2021; Thorp et al. 2021) it is typically addressed simplistically
by correcting derived distances, or equivalently splitting the scalar
absolute magnitude constant in equation (1), according to the host
mass. The correlation of SN Ia NIR absolute magnitudes with host
mass has been investigated recently by Burns et al. (2018), Ponder
et al. (2020), Uddin et al. (2020), and Johansson et al. (2021). Our
current low-z training set has roughly an average log host mass
log1o(M./Mg) ~ 10.3 and approximately 80 per cent lie in the ‘high-
mass’ category logo(M./Mg) > 10. In future work, we will apply
BAYESN to a broader set of SNe Ia to conduct a Bayesian statistical
analysis of this effect.

Similarly, SN Ia ejecta velocities, measured from spectral lines,
are correlated with SN Ia intrinsic colour, and can be used to gain
leverage on dust estimation and improve the accuracy of distances
(Foley & Kasen 2011; Foley 2012; Mandel et al. 2014). Recently,
Siebert et al. (2020) found correlations between ejecta velocity and
SALT2 Hubble residuals. However, these astrophysical correlations
should be accounted for at the fundamental physical level of the
SN Ia SED functions, rather than by correcting derived distances.
In future work, we will expand our BAYESN framework to explore,
estimate, and incorporate the impact of these astrophysical effects
on the full SED function S(¢, A,) in a coherent statistical model. We
will do this by adding functional regression terms proportional to
S (M) Wi (2, 1) or f(v) Wy(t, A,) to our SED model (equation 12),
and by modelling potential correlations with host dust population
parameters.

In this work, we have leveraged joint optical and NIR broad-band
photometry of SNe Ia to learn the statistical properties of the latent
intrinsic and dust components of SN Ia SEDs, while using the Hsiao
(2009) template as a baseline ‘skeleton’ to model spectral features
at finer resolutions than the typical passband. Some of the residual
SED covariance and scatter in the Hubble residuals indeed may be
caused by per-SN variation in spectral features on wavelength scales
much smaller than the typical filter. In future development, we will
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increase the wavelength resolution of our model, so that we can
train simultaneously on spectroscopic sequences and photometric
light curves of SNe Ia to improve the latent SED model. We will be
able to leverage databases of optical spectra (Blondin et al. 2012;
Silverman et al. 2012; Folatelli et al. 2013; Siebert et al. 2019), as
well as forthcoming ground-based NIR spectra from the Magellan
FIRE instrument obtained by the CSP-II and CfA Supernova Group
(Hsiao et al. 2019), and space-based NIR spectra from the ongoing
Hubble Space Telescope SIRAH program (GO-15889).

In future work, our probabilistic inference framework can be
extended to coherently estimate SN Ia SED components and cos-
mological parameters together while accounting for population
drift of intrinsic and dust parameters and survey selection effects.
Our BAYESN SED model will serve as the centrepiece of a fully
hierarchical Bayesian statistical framework for principled supernova
cosmology analysis.
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(eigenvalues) in the data. However, it does not itself explicitly
model measurement error in the data nor quantify uncertainties.
Generalizing PCA with a probabilistic formulation, Tipping &
Bishop (1999) developed probabilistic PCA as a linear Gaussian
latent variable model with an explicit likelihood function and residual
(noise) term. For each individual i,

0, ~N©O,I) (A1)
€ ~ N, cI) (A2)
X =W0,‘+€i, (A3)

where §; € R is the score vector, €; ~ N(0, o2I)is a Gaussian noise
vector, and W € RP*" contains L orthonormal column vectors, and
o2 models an isotropic residual variance. This probabilistic model
has a marginal likelihood x; ~ N(0, WWT + o2I). They proved
that the columns of PPCA’s maximum-likelihood solution Wmle
recovers the classical principal component vectors in the limit of
o — 0. However, a non-zero o2 enables us to explicitly model the
residual variation. (See also Bishop 2006; Murphy 2022).

Bishop (1999) generalized this further as Bayesian PCA by
introducing priors over the components W and o2 to define the
posterior over these unknowns. In BAYESN, we embed Bayesian PCA
within the overall hierarchical framework. The analogous equations
to equations (A1)—(A3) are equations (19), (20), and (11) in our
model. We generalize the isotropic noise covariance from o1 to X,
to capture correlated residual structure (Section 5.2.2) and introduce
hyperpriors on the covariance matrix through equations (24) and
(25). Furthermore, since we use this structure to describe the
joint distribution of spline knots defining continuous SED surfaces
(Section 2.4), it also models the functional principal components and
the residual functions over time and wavelength. Hence, embedding
this Bayesian FPCA in a hierarchical Bayesian framework enables
us to model the distribution of SN SEDs in terms of functional
principal components and scores while simultaneously accounting
for other physical factors (e.g. dust) and their uncertainties, while
expressing the light-curve data as noisy estimates of functionals
of the latent SED sampled irregularly in time. By sampling the
global posterior equation (29), we can then coherently estimate all
these components and quantify their joint uncertainties. Bayesian
formulations of FPCA have also been described by, e.g. van der
Linde (2008), Suarez & Ghosal (2017), Nolan, Goldsmith & Ruppert
(2021).

APPENDIX B: THE W, SED COMPONENT

We describe the second intrinsic functional principal component
Wy (t, M) that is learned when we train the model with K = 2. This
component can be viewed as the first functional PC of the intrinsic
covariance of the residual functions €,(z, A) under the K = 1 model.
In the K = 2 model, we pull out this secondary mode of variation
and parametrize its effect through the coefficient 9,.

In Fig. B1, we show the effect of W,(z, 1) on the intrinsic (Ay =
0) absolute light curves obtained via integration of the SED model
with 0, varying between the mean value and +1o. This component
captures some overall luminosity variation in the optical B and V
bands, while modulating the relative amplitudes of the first peak,
trough, and second peak in the NIR bands. Unlike W,(z, 1), the
second FPC does not significantly change the timing of the second
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NIR peak, except slightly in Y-band. Fig. B2 illustrates the effect of
Wa(t, 1) on the intrinsic optical and optical-NIR colours curves. This

-23 T T T T -23 T T T T
Effect of W2(t A)

-1 -21

—Af, =-1
A7 - A6,=0
—Af,=+1
16 1 1 1 1 16 1 1 1 1
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Rest-Frame Phase Rest-Frame Phase

Intrinsic Abs Magnitude + Constant

Figure B1. Intrinsic variation in optical and NIR light curves captured by
the second functional component W5(z, A). We fix 01 = Ay = 0 and vary the
value of 65 by #> + 1o. This component captures luminosity variation in the
optical that appears to be correlated with the relative amplitudes of the NIR
trough and second peak.
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Figure B2. Variation in optical and NIR intrinsic colour curves captured by
the second functional component W5(z, A). We fix 61 = Ay = 0 and vary the
value of 05 by 6, & lo. This component captures intrinsic colour variation
in the post-maximum phases at  ~ 10 to 30 d.

component captures variation in the post-peak colours from 5 to 25
rest-frame days in phase.

We did not use the K = 2 model including the W,(#, ) component
in the main analysis of the paper, because it did not significantly
improve the precision of distances in the Hubble diagram with the
current data set, compared to the K = 1 model. In future work with
larger data sets, we will further investigate higher order functional
principal components.
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