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A B S T R A C T 

While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine 
distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. 
An SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage 
current and future SN Ia data sets from ground- and space-based telescopes including HST , LSST, JWST , and RST . We construct 
a hierarchical Bayesian model for SN Ia SEDs, continuous o v er time and wavelength, from the optical to NIR ( B through H , or 
0 . 35 −1 . 8 μm). We model the SED as a combination of physically distinct host galaxy dust and intrinsic spectral components. 
The distribution of intrinsic SEDs o v er time and wavelength is modelled with probabilistic functional principal components 
and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light 
curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components and population 

hyperparameters. Photometric distances of SNe Ia with NIR data near maximum obtain a total RMS error of 0.10 mag with our 
BAYESN model, compared to 0.13–0.14 mag with SALT2 and SNooPy for the same sample. Jointly fitting the optical and NIR 

data of the full sample up to moderate reddening (host E ( B − V ) < 0.4) for a global host dust law, we find R V = 2.9 ± 0.2, 
consistent with the Milky Way average. 

Key words: methods: statistical – transients: supernovae – distance scale. 
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 I N T RO D U C T I O N  

ype Ia supernovae (SNe Ia) are effective cosmological probes as 
standardizable candles’: their peak luminosities can be inferred 
rom their optical light-curve shapes and colours, so their distances 
an be estimated from their apparent brightnesses. Precise and 
ccurate SN Ia distances with small systematic errors are essential 
o accurate constraints on the cosmic expansion history, including 
ocal measurements of the Hubble constant (Burns et al. 2018 ; Riess
t al. 2019 ), the late-time cosmic acceleration (Riess et al. 1998 ;
erlmutter et al. 1999 ), and the properties of the dark energy driving

t, in particular, its equation-of-state parameter w (e.g. Scolnic et al. 
018 ; Abbott et al. 2019 ). Currently, there is a significant 4.4 σ
ension between the value of H 0 locally inferred from SNe Ia via the
istance ladder (74.03 ± 1.42 kms −1 Mpc −1 ; Riess et al. 2019 ) and
he v alue deri ved from Planck CMB analysis assuming the � CDM
osmological model (67.4 ± 0.5 kms −1 Mpc −1 ; Planck Collaboration 
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020 ). Since this tension could potentially be a sign of new physics, it
s imperative to test for systematic errors with empirical cross-checks 
e.g. Dhawan, Jha & Leibundgut 2018 ). With increasing sample sizes, 
earby SNe Ia will be able to constrain the growth of structure as
robes of the peculiar velocity field (e.g. Howlett et al. 2017 ; Huterer
t al. 2017 ; Graziani et al. 2020 ). Further cosmological constraints
an also be derived from strong or weak lensing of SNe Ia (e.g.
oldstein et al. 2018 ; Dhawan et al. 2020 ; Macaulay et al. 2020 ). In

his paper, we present a new data-driven statistical model, BAYESN ,
or SN Ia spectral energy distributions (SEDs) to analyse light curves
nd extract more precise and accurate distances from current and 
uture surv e ys by e xploiting the advantageous properties of SNe Ia
n the near-infrared (NIR). 

The current global sample used for cosmology, derived from the 
DSS-II, SNLS, Pan-STARRS (PS1), low- z and HST surv e ys, has
rown to o v er a thousand SNe Ia (Pantheon; Scolnic et al. 2018 ).
uture surv e ys, such as the Le gac y Surv e y of Space and Time
LSST, Ivezi ́c et al. 2019 ) provided by the Vera Rubin Observatory,
ill boost that number by orders of magnitude. The constraints on
ark energy with the current sample will soon be limited, not by
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 Ho we ver, not all highly reddened SNe Ia have low R V , e.g. SN2012cu with 
E ( B − V ) ≈ 1 and R V ≈ 3, compatible with the Milky Way average (Huang 
et al. 2017 ). 
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tatistical uncertainties from the numbers of SNe, but by systematic
rrors. In recent analyses, photometric calibration and SN model
ncertainties dominate the systematic error budget (JLA: Betoule
t al. 2014 ; PS1: Scolnic et al. 2018 ; DES: Brout et al. 2019 ). The
alibration systematics are now being tamed by impro v ed instrumen-
al calibration (e.g. Regnault et al. 2015 ), better cross-calibration
etween surv e ys (Scolnic et al. 2015 ; Currie et al. 2020 ), better
etworks of photometric standards (Narayan et al. 2016 , 2019 ), and
y ongoing efforts to replace the heterogeneous low-redshift sample
ith a large, unbiased, homogeneous sample obtained on a precisely

alibrated photometric system (PS1, Foundation Survey; Foley et al.
018b ; Jones et al. 2019 ). LSST will increase the cosmologically
seful SN Ia sample to ∼10 5 o v er its 10 yr duration. It will further
iminish cross-surv e y calibration systematics by replacing previous
igh-redshift SN Ia surv e ys with a single, homogeneous, and large
N Ia sample taken on a single system. Ho we ver, systematic errors
ue to the statistical models and methods used to analyse SN Ia
ight-curve data will remain. 

Observations probing the rest-frame near-infrared (NIR, partic-
larly λ � 1 μm, e.g. YJH bands) are a route to more precise and
ccurate distances. NIR observations of SNe Ia significantly impro v e
heir cosmological utility. Unlike in the optical, where they must be
tandardized via correlations of optical luminosity with light-curve
hape and colour, SNe Ia are excellent, nearly standard candles in the
IR, showing little intrinsic luminosity variation ( ∼0.1 mag) at peak

e.g. Krisciunas, Phillips & Suntzeff 2004c ; Wood-Vasey et al. 2008 ;
andel et al. 2009 ; Contreras et al. 2010 ; Barone-Nugent et al. 2012 ;
attner et al. 2012 ; Phillips 2012 ; Burns et al. 2018 ; Stanishev et al.
018 ; Avelino et al. 2019 ). The NIR also has significantly reduced
ensitivity to dust extinction relative to the optical (by factors of 4 −8,
omparing NIR YJH to optical B ). Dhawan et al. ( 2018 ) showed how
 small set of SNe Ia, used as NIR standard candles to measure H 0 ,
an replace a much larger optical sample, while still providing a
.3 per cent measurement (consistent with Riess et al. 2019 ), without
n y light-curv e shape or colour corrections as are required in the
ptical. We recently compiled a sample of 89 nearby SNe Ia with
ptical and NIR light curves passing standard quality cuts (Avelino
t al. 2019 ). Using 56 SNe Ia with NIR data near peak brightness,
here the luminosity dispersion is minimal, we found a 35 per cent

eduction in Hubble Diagram scatter (i.e. more precise distances)
hen using SNe Ia as NIR standard candles, relative to conventional
ptical-only fits to the same SNe. 
The combination of optical and NIR data better constrains the host

alaxy dust extinction and the shape of the dust law as a function of
(parametrized by R V ) (Krisciunas et al. 2007 ; Burns et al. 2014 ),

nd significantly impro v es the accurac y and precision of SN Ia
istances (Mandel, Narayan & Kirshner 2011 ). The nature of the
ust in SN Ia host galaxies is fundamental to the largest ‘correction’
n standardizing SNe Ia, that due to colour. Incorrect modelling
nterpretation of the SN Ia colour–magnitude relation is therefore
 major source of systematic error in SN distances. Ho we ver, the
orrect values(s) of the R V parametrizing the dust e xtinction la w has
ong been a matter of confusion, and its proper estimation is fraught
ith statistical subtleties. 
Very early analyses that found unphysically low values R V � 1

Branch & Tammann 1992 ) did not account for correlations between
he luminosity, colour, and light-curve shape (later modelled by
.g. Phillips 1993 ; Riess, Press & Kirshner 1996a ; Phillips et al.
999 ). Riess, Press & Kirshner ( 1996b ) noted that confusing intrinsic
olour–luminosity variation with dust effects would lead to mistak-
nly lower estimated R V values. Simple linear regression analyses of
N extinguished absolute magnitudes against apparent colours and
NRAS 510, 3939–3966 (2022) 
ight-curv e shapes hav e led to apparent colour–magnitude slopes
e.g. β in the Tripp formula) that have sometimes been interpreted
s low dust R V values (T ripp 1998 ; T ripp & Branch 1999 ; Guy
t al. 2005 ; Astier et al. 2006 ; Conley et al. 2007 ; Freedman et al.
009 ). Kessler et al. ( 2009b ) and Scolnic et al. ( 2014 ) highlighted
he rele v ance of colour dispersion to estimating β, the latter finding
 Milky Way dust-like colour–magnitude slope. Mandel et al. ( 2017 )
howed that statistical confounding of the intrinsic colour–luminosity
orrelation and dispersion with the extrinsic effects of dust leads
o estimates of β that are biased low relative to the true dust R V ,
nd a probabilistic generative model with explicit parameters for
hese physically distinct effects led to a Bayesian estimate of R V =
.8 ± 0.3, consistent with the Milky Way average. 
Anomalously low R V ≈ 1.5 −1.8 values have been estimated for

 few very highly reddened SNe Ia ( E ( B − V ) > 1) (e.g. Elias-
osa et al. 2006 , 2008 ; Wang et al. 2008 ; Amanullah et al. 2014 ). 1 

hile the origin of these low R V estimates is still under investigation
Wang 2005 ; Goobar 2008 ; Amanullah & Goobar 2011 ; Phillips
t al. 2013 ; Amanullah et al. 2015 ; Johansson et al. 2017 ; Bulla
t al. 2018a ; Bulla, Goobar & Dhawan 2018b ), these very red SNe
re not present in the cosmological sample, due to the standard
ut on peak apparent SN colour ( B − V � 0.3). When only low- to
oderately reddened normal SNe Ia with apparent colours consistent
ith the cosmological sample are considered, values of R V ≈ 2.5 −3
ave generally been estimated in nearby samples, often by utilizing
pectroscopic or NIR data to break the de generac y between intrinsic
olours and dust in the optical (Folatelli et al. 2010 ; Chotard et al.
011 ; F ole y & Kasen 2011 ; Mandel et al. 2011 ; Phillips 2012 ; Burns
t al. 2014 ; Mandel et al. 2017 ; L ́eget et al. 2020 ). 

The excellent properties of the NIR have not been fully integrated
nto and leveraged by the statistical models routinely used for SN Ia
osmology. We have constructed a new, hierarchical Bayesian model,
AYESN , for time-dependent SN Ia spectral energy distributions

SEDs) from the optical to NIR wavelengths. With NIR co v erage, our
odel leverages the low luminosity dispersion in the NIR, while its
ide optical-to-NIR wavelength range enables it to more stringently

onstrain the host galaxy dust, and the dust law, affecting the SNe
a. These two advantages enable us to more accurately impro v e our
odel of the intrinsic SED coherently across all wavelengths. While

t produces the best distance estimates when fitting complete light
urves across the full wavelength range, as a Bayesian model, it
lso makes the most ef fecti ve use of the observations available in
ny partial data set, e.g. optical-only , NIR-only , while marginalizing
 v er the unobserved parts of the SED. 
BAYESN is an important tool, not only for properly analysing

urrent data sets, but also extracting optimal distances and robust
osmological constraints from future optical and NIR SNe Ia ob-
ervations. Beyond the data sets analysed in this work, the ability
o ef fecti vely le verage joint optical and NIR observ ations is crucial
or fully exploiting a number of recent and current surveys and
orthcoming data sets, including the Carnegie Supernova Project-
I (CSP-II; Phillips et al. 2019 ), the F oundation Superno va Surv e y
F ole y et al. 2018b ), and Young Supernova Experiment (YSE; Jones
t al. 2021 ) with Pan-STARRS, RAISIN (GO-13046, GO-14216)
nd SIRAH (GO-15889) with the Hubble Space Telescope ( HST ),
he ESO VISTA Extragalactic Infrared Le gac y Surv e y (VEILS), and
he DEHVILS Surv e y using UKIRT . This is also important for LSST ,
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hich will observe SNe Ia in ugrizy , and will therefore probe rest-
rame z or y to redshifts z � 0.3. The Nancy Grace Roman Space
elescope (RST, formerly WFIRST) will have a dedicated SN surv e y
nd its wide NIR filters will o v erlap with rest-frame YJH out to
edshifts z � 1, 0.7, 0.4 respectively. 

.1 Comparison to existing models 

he models used to analyse SN Ia light curves and estimate distances
re entirely empirical and are learned from the data. The conventional 
pproach has a number of shortcomings that need to be addressed 
o exploit fully the data and to control astrophysical and modelling 
ystematics. The model most commonly used for fitting optical SN 

a light curves is SALT2 (Guy et al. 2007 , 2010 ; Betoule et al.
014 ). It models the SN Ia SED in phase (rest-frame time since
eak luminosity) and wavelength, as a function of optical light- 
urve shape ( x 1 ) and apparent colour ( c ) at peak. SN Ia light-
urve fits estimate these parameters and the optical peak apparent 
agnitude m B . Photometric distances are obtained from a fitted linear 

ependence of SN Ia absolute magnitude on light-curve shape and 
olour (Tripp 1998 ): 

s = m B,s − M B + α x 1 ,s − β c s , (1) 

here μs is the distance modulus of an individual SN s , ( m B , s , x 1, s , c s )
re parameters obtained from the SALT2 fit of the individual SN s ,
nd ( α, β, M B ) are global (or population) parameters describing the
uminosity trends with light-curve shape and colour, and the absolute 
agnitude intercept at x 1 = c = 0, respectively. 
Major shortcomings of the conventional approach are: 

(i) Residual (‘Intrinsic’) 2 scatter systematic error: Spectral varia- 
ions of SN Ia light-curve data around the best-fitting SED model in
xcess of measurement error are accounted for by an error model that
ontributes additional covariance to the fitted light-curve parameters. 
ven accounting for this, a Hubble residual scatter with σ ≈ 0.13 
ag around equation (1) still remains. Its wavelength-dependence 

s accounted for in simulations with an ‘intrinsic scatter model’ 
Kessler et al. 2013 ; Mosher et al. 2014 ). It is not well constrained,
nd currently there are two options: one with 30 per cent chromatic
ariation and 70 per cent achromatic variation (Guy et al. 2010 ),
nd the other, based on Chotard et al. ( 2011 ), with a 75 per cent:
5 per cent split. Scolnic et al. ( 2014 ) showed that both models are
onsistent with the cosmological SN Ia data, therefore the current 
ptical data alone cannot discriminate between the two. Ho we ver, 
he impact of changing the assumed model for the residual scatter in
 cosmological analysis results in a shift �w ∼ 0.04, and thus is a
ominant systematic error. 
mploying the correct residual covariances across phase and wave- 

ength is crucial to the proper quantification of uncertainties and 
eighting of the SN data. Our BAYESN SED model coherently esti-
ates the intrinsic residual covariance across phase and wavelength 

imultaneously with the training of the entire hierarchical model, and 
his covariance is employed when fitting SN light curves to estimate 
ust and distance, while marginalizing o v er the SED residuals. 
(ii) De generac y between intrinsic versus dust colour–luminosity 

ariations: The largest ‘correction’ in equation (1) is due to colour, but 
he conventional analysis treats it in a simplistic way . Fundamentally ,
 The terminology of ‘intrinsic scatter’ here is a confusing misnomer. In the 
onventional SALT2 framework that is agnostic about the distinction between 
ntrinsic and dust effects, there is no reason to attribute all of its residual scatter 
o variation intrinsic to the supernovae, even if the model were true. 

(  

s
c
d
H  

t

ntrinsic variation and dust have physically distinct effects on the SN
a SED. Ho we ver, the SALT2 model assumes that all colour variation
an be described by the peak apparent B − V colour parameter c and a
ingle, ef fecti v e colour la w, CL ( λ). The conv entional approach of fit-
ing a single linear function for extinguished absolute magnitude ver- 
us apparent colour confounds the two effects (Mandel et al. 2017 ). 
n contrast, our BAYESN SED model allows for a probabilistic, 
hysically moti v ated combination of dif ferent spectral ef fects from
ntrinsic SN variation and dust across time and wavelength. 

(iii) Lack of NIR co v erage: The most widely used SALT2.4 model
s only specified o v er rest-frame wav elengths of 0 . 2 −0 . 9 μm, though
he colour law for λ > 0 . 7 μm is an extrapolation. Although optical
urv e ys, such as F oundation (F ole y et al. 2018b ), routinely obtain z-
and data, they cannot be fit by SALT2 for nearby SNe Ia. SALT2.4
s incapable of leveraging the useful properties of SNe Ia in the
est-frame NIR at λ � 1 μm. 
n contrast, our BAYESN SED model is trained on data co v ering
ptical to NIR wavelengths extending from B through H -band 
0 . 35 −1 . 8 μm) and uses Bayesian inference to combine information
 v er the full phase and wavelength range for optimal estimates of
ust and distance. 
(iv) Lack of SED modelling of astrophysical correlations: an 

pparent correlation between Hubble residuals and the host galaxy 
tellar mass (Kelly et al. 2010 ; Sullivan et al. 2010 ) is conventionally
ddressed somewhat simplistically by splitting the scalar absolute 
agnitude term M B in equation (1) by host mass. Ho we ver, in

rinciple, the astrophysical correlation of SN Ia luminosity with 
ost mass should be accounted for at the fundamental level of the
ED. While we do not address this in this paper, Thorp et al. ( 2021 )
ecently demonstrated how BAYESN can be extended to introduce 
ost-mass dependence. 

Although SALT2 is the most common SN model used in cosmol-
gy, there are alternatives. SNooPy is an optical-NIR model for SN
a light curves defined in discrete rest-frame uBVgriYJH passbands 
Burns et al. 2011 ). It is not a model for the continuous SED; rather,
or each discrete rest-frame passband it has a template light curve
hat varies as a function of a shape parameter (either � m 15 ( B ) or s BV ).
t requires the calculation of K -corrections of the photometry from
ach observer-frame passband into a corresponding rest-frame model 
assband as a preprocessing step. The template light-curve model is 
hen fit to the K -corrected data in the rest-frame bands. This 1-to-1

apping is not ideal, as there are redshifts at which, for example,
ide HST WFC3 NIR filters significantly co v er two rest-frame model
assbands, so the observed light curves are actually sensitive to 
he statistical properties of the underlying SED in both rest-frame 
ands. Furthermore, the K -correction calculation employs an ad- 
oc ‘mangling’ procedure to match a spectral template to observed 
olours independently at each epoch. This is prone to o v erfitting, its
ncertainties are difficult to propagate, and is not viable for the noisy,
parse data typical of high- z light curves, in which the light curves in
ifferent passbands may be irregularly and asynchronously sampled. 
e compare the results from BAYESN to those from applying SALT2

nd SNooPy to the same SNe Ia in Section 5. 
SNEMO (Saunders et al. 2018 ; Rose et al. 2020 ) and SUGAR

L ́eget et al. 2020 ) are recent empirical models built from optical
pectrophotometric time series. Whereas SNEMO is a principal 
omponents model for the optical SED, SUGAR models the spectral 
ependence on factors composed of spectral line characteristics. 
o we v er, the y only co v er rest-frame 0 . 33 < λ < 0 . 86 μm, and so

hey cannot leverage the valuable NIR at λ � 1 μm. 
MNRAS 510, 3939–3966 (2022) 
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3 In Section 2.1, z s refers to the observer-frame, heliocentric redshift. 
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.2 Outline of paper 

he outline of this paper is as follows. In Section 2, we describe our
ew hierarchical Bayesian model for SN Ia SEDs in the optical to
IR. In Section 3, we describe the compilation of optical and NIR
N Ia light-curve data that we analyse. In Section 4, we describe
ur computational implementation for training the BAYESN model
nd fitting SN Ia light curves. In Section 5, we present our results,
ncluding a Hubble diagram showing the impro v ement in distances
to 0.10 mag total RMS error) obtained from BAYESN fits to optical
nd NIR data compared to current methods applied to the same
ample. We also describe our inferences about host galaxy dust, for
hich we constrain a global value of R V = 2.9 ± 0.2 for our sample
ith E ( B − V ) host � 0.4. In Section 6, we conclude. 
In Appendix Section A, we provide some background on Bayesian

unctional principal component analysis, and in Appendix Section B,
e describe the extension of our model to a second functional

omponent. 

 T H E  STATISTICAL  M O D E L  

o construct and train our SN Ia SED model, we employ a hierar-
hical Bayesian approach. Hierarchical Bayes provides a principled,
oherent framework for modelling multiple uncertain and random
ffects underlying the data described via a probabilistic generative
odel. It is a natural strategy for probabilistic modelling and

nference of populations as well as their constituent individuals
Loredo & Hendry 2010 , 2019 ; Gelman et al. 2013 ). In a hierarchical
odel, parameters describing an individual (e.g. the dust extinction
 

s 
V for a particular SN) are called latent variables , and are modelled

s probabilistic draws from a population distributions (e.g. the
istribution of A 

s 
V values across the SN sample), which are in

urn described by hyperparameters (e.g. the mean parameter τA of
he population distribution). The prior probability densities placed
n the hyperparameters are called hyperpriors . A fully Bayesian
reatment coherently infers the latent variables of all individuals in
he sample along with the population hyperparameters, conditional
n the observed data and the model assumptions, through the joint
osterior probability density. 
The first applications of hierarchical Bayes to supernova analyses

ere demonstrated by Mandel et al. ( 2009 , 2011 ), who developed
robabilistic models for SN Ia optical and NIR light curves in discrete
assbands. Mandel, F ole y & Kirshner ( 2014 ) constructed a hierar-
hical Bayesian model to disentangle dust reddening from intrinsic
olours in the optical by leveraging the velocity–colour relation
VCR; F ole y & Kasen 2011 ). Other hierarchical Bayesian models for
N Ia analysis have focused e xclusiv ely on analysing the 3-parameter
utput from SALT2 fits to SN Ia light curves (March et al. 2011 ;
ubin et al. 2015 ; Shariff et al. 2016b ; Mandel et al. 2017 ; Hinton
t al. 2019 ), rather than the observed data itself. Since they do not
ttempt to directly model the irregularly and asynchronously sampled
ulti v ariate, multiband light curve (time series) data, they are depen-

ent on the internal shortcomings of SALT2 described in Section 1.1.
In contrast, our BAYESN SED model combines the hierarchical

ayesian strategy with techniques from functional data analysis
e.g. Ramsay & Silverman 2005 ) to deal with the full complexity
f observed photometric time series, and to perform probabilistic
nference on the multiple time- and wavelength-dependent latent
unctions underlying the observed data. In particular, we model the
odes of variation of the intrinsic SED in terms of a Bayesian

ormulation of functional principal components. While principal
omponents analysis (PCA) is a standard tool for dimensionality re-
uction of multi v ariate data, in its conventional use, ho we ver, it lacks
NRAS 510, 3939–3966 (2022) 
 probabilistic framework. Probabilistic and Bayesian formulations
f PCA for multi v ariate vectorial data were described by Roweis
 1998 ), Tipping & Bishop ( 1999 ), Bishop ( 1999 , 2006 ). In particular,
ipping & Bishop ( 1999 ) constructed a probabilistic PCA as a special
ase of a Gaussian latent variable model for factor analysis, with an
ssociated likelihood function mapping between a low-dimensional
atent space and the high-dimensional data space, and a prior
istribution o v er the latent variables. Bishop ( 1999 ) further developed
ayesian PCA by introducing priors on the principal components
nd residual variance. These useful probabilistic formulations enable
s to embed a principal components model within our hierarchical
ayesian framework while simultaneously accounting for multiple

andom effects and sources of uncertainty, such as dust, distance, and
easurement error. Thus, we can determine the intrinsic principal

omponents while marginalizing o v er the other uncertainties in the
lobal inference problem. 
A primary goal of BAYESN is to model populations of latent SED

unctions o v er time and wav elength, so we e xtend these concepts
o functional data, by incorporating continuity and smoothness
onstraints on the functional principal components, and by modelling
he time- and wavelength-dependent covariance of the residual
unctions. In this paper, we deal mainly with photometric flux
ata, which are essentially integr al constr aints (under the passband
hroughput and with measurement errors) on, or functionals of,
he latent SED component functions. Embedding the functional
nference within a hierarchical Bayesian structure enables us to solve
he inverse problem by finding a low-dimensional latent function
pace for parsimoniously modelling intrinsic variations of the SN
a SED distribution, while simultaneously deconvolving it from the
ED effects of the dust distribution, and coherently accounting for

he uncertainties in both. See Appendix Section A for a further
xplanation of Bayesian FPCA. 

A schematic depiction of the probabilistic forward model of the
ED for a single superno va’s light-curv e data is shown in Fig. 1 .
e construct a log intrinsic SN SED across time and optical to
IR wavelengths by modifying a mean intrinsic SED function
ith functional principal components scaled by latent SED shape
arameters. This is further modified by the dust extinction law as
 function of wavelength, scaled by the dust extinction parameter.
 random function described by a covariance matrix models the
ED residuals, as a function of time and wavelength, that are not
aptured by the previous main modes of variation. The combination
f these effects yields the latent host-reddened SED in the SN rest-
rame. Finally, the effects of distance, redshifting, and time dilation,
ntegration of the flux under the observer’s filter functions, the
bservational cadence of the surv e y, and photometric measurement
rror yields the observed multiband optical and NIR time series (light
urves) of a SN Ia. 

.1 Flux data model 

uppose supernova s with spectroscopic redshift 3 z s has a distance
odulus μs . The i th photometric observation of SN s is taken at

bserver-frame Modified Julian Date (MJD) T i s through a filter with
n ef fecti v e transmission function T s,i ( λo ) as a function of observ ed
avelength λo . The calibration standard has an SED F std ( λo ), which
efines the reference magnitude in the passband. The calibrated flux
‘FluxCal’ in SN AN A; Kessler et al. 2009a ) is the ratio of the SN
ux at the observer through the passband to the flux of the standard
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 s,i = 10 0 . 4 ×Z s,i ×
∫ 

F 

s,i 
obs ( λo ) T s,i ( λo ) λo d λo ∫ 

F std ( λo ) T s,i ( λo ) λo d λo 

= 10 0 . 4 ×Z s,i 

∫ 

F 

s,i 
obs ( λo ) B s,i ( λo ) λo d λo . (2) 

he passbands used in this analysis are described in Section 3.2. We
efine the normalized transmission function as: 

 s,i ( λo ) ≡ T s,i ( λo ) ∫ 
F std ( λ′ 

o ) T s,i ( λ′ 
o ) λ

′ 
o d λ

′ 
o 

= 

T s,i ( λo ) ∫ 
T s,i ( λ′ 

o ) λ
′ 
o d λ

′ 
o 

×
∫ 

T s,i ( λ′ 
o ) λ

′ 
o d λ

′ 
o ∫ 

F std ( λ′ 
o ) T s,i ( λ′ 

o ) λ
′ 
o d λ

′ 
o 

. (3) 

 s , i is the zeropoint for this observation. 4 The model flux value can be
onverted to an apparent magnitude, on the system of the standard, 
ike so: 

 s,i = −2 . 5 log 10 

(
f s,i 

) + Z s,i 

= −2 . 5 log 10 

∫ 

F 

s,i 
obs ( λo ) B s,i ( λo ) λo d λo . (4) 

Now we model the observable flux density F 

s,i 
obs ( λ0 ) (per unit

avelength) for observation i of SN s . If the MJD date of B -
and maximum is T max 

s , then we define the rest-frame phase of this
bservation as t i s ≡ ( T i s − T max 

s ) / (1 + z s ). We denote the effective
ED in the SN rest-frame, extinguished by host galaxy dust, as S s ( t ,
r ). The flux density of the light from SN s at observed wavelength
o and at time T i s at the Earth is: 

 

s,i 
obs ( λo ) = (1 + z s ) 

−1 10 −0 . 4 μs × S s 

(
t i s , λr = 

λo 

1 + z s 

)
× 10 −0 . 4 A s MW 

ξ ( λo ; R MW 

) . (5) 

he last term is the attenuation of flux by dust along the line of sight
ithin the Milky Way Galaxy. The V -band Milky Way extinction 

s obtained from the reddening map (Schlafly & Finkbeiner 2011 ), 
 

s 
MW 

= E( B − V ) s MW 

× R MW 

, and we adopt R MW 

= 3.1 and the
itzpatrick ( 1999 ) extinction law for ξ ( λo ; R MW 

). 
The range in observed wavelength λo over which the transmission 

s ef fecti vely non-zero is denoted as [ λmin 
o , λmax 

o ]. The ef fecti ve rest-
avelength range is then [ λmin 

r = λmin 
o / (1 + z s ), λmax 

r = λmax 
o / (1 +

 s )]. Combining equation (2) with equation (5), we can rewrite the
odel flux for the i th observation of SN s as an inte gral o v er the
 Z s,i = 27 . 5 + m 

std 
s,i , where m 

std 
s,i is the reference magnitude of the reference 

tandard with SED F std ( λo ) in the passband, and is typically adopted to be 
ero for both AB and Vega-based magnitude systems. Each SN surv e y reports 
agnitudes with respect to this standard magnitude, though the reference 

tandard itself is seldom observed directly. Rather, the surveys calibrate their 
hotometry using the reported magnitudes of a network of standard stars (e.g. 
ALSPEC or Landolt), or local stars, in the same frame as the SN, which have 

hemselves been calibrated with respect to the reference standard. Formally 
hen, the comparison of the measured magnitude ˆ m s,i (in equation 15) and 
he model magnitude m s , i (equation 4) generated from synthetic photometry 
f the model SED surfaces, ef fecti v ely involv es two zeropoints that may be 
ubtly different (zeropoint error). The 27.5 is a conventional scaling applied 
n SN AN A files, i.e the flux ratios are multiplied by 10 0.4 × 27.5 = 10 11 for 
onvenience. 
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est-frame wavelength λr = λo /(1 + z s ): 

 s,i = (1 + z s ) 10 −0 . 4 μs × 10 + 0 . 4 ×Z s,i 

×
∫ λmax 

r 

λmin 
r 

S s ( t 
i 
s , λr ) × 10 −0 . 4 A s MW 

ξ ( λr [1 + z s ]; R MW 

) 

×B s,i ( λr [1 + z s ]) λr d λr . (6) 

his calibrated flux is measured with some photometric noise with a
i ven v ariance σ 2 

s,i , and we assume a Gaussian sampling distribution
or the measured flux ˆ f s,i : 

 ( ˆ f s,i | f s,i ) = N 

(
ˆ f s,i | f s,i , σ 2 

s,i 

)
. (7) 

or all the observations i (across all observation times and filters) of
N s , the measurement likelihood is 

 ( ˆ f s | f s ) = 

∏ 

i 

P 

(
ˆ f i s | f i s 

)
, (8) 

ssuming independence of the flux measurement errors. 

.2 Dust and intrinsic superno v a SED model 

he host-dust-extinguished SED is obtained from the intrinsic SED 

 

int 
s ( t, λr ) in the SN rest-frame via 

 s ( t, λr ) = S int 
s ( t, λr ) × 10 −0 . 4 A s 

V 
ξ ( λr ; R V ) , (9) 

here A 

s 
V is the host galaxy dust extinction and ξ ( λr ; R V ) is the

 xtinction la w with parameter R V . We adopt the e xtinction la w of
itzpatrick ( 1999 ). 
Our model intrinsic SN spectral energy distribution is a function 

f rest-frame phase t and λr . We decompose it into a global spectral
emplate modified by individual effects that vary per SN s . 

 

int 
s ( t, λr ) = S 0 ( t, λr ) × 10 −0 . 4 M 0 × 10 −0 . 4 W 0 ( t,λr ) 

×10 −0 . 4 δM s × 10 −0 . 4 δW s ( t,λr ) , (10) 

here M 0 ≡ −19.5 is fixed normalization factor, 5 and the fixed 
unction S 0 ( t , λr ) is the updated spectral template of Hsiao ( 2009 ).
his template spans 0.1 to 2.5 μm from −20d to + 85d past B -band
aximum, and was constructed from o v er 1000 spectra, including
IR spectra from Marion et al. ( 2009 ), using the procedure described

n Hsiao et al. ( 2007 ). It is arbitrarily normalized to have a B -band
agnitude of zero at peak phase t = 0. 
The terms on the top line altogether describe the global spectral

emplate. They model the baseline mean intrinsic SED as the Hsiao
 2009 ) spectral template, normalized and smoothly warped by M 0 +
 0 ( t , λr ) to match the inferred mean intrinsic absolute magnitudes

nd intrinsic colours of the training sample (c.f. Section 2.4 for
etails). 
The terms on the bottom line describe the individual effects, the
odifications to the global SED that are specific to each supernova

 . The δM s term corresponds to an o v erall shift of the log SED that
s independent of phase and wavelength. The function δW s ( t , λr )
orresponds to phase- and wavelength-dependent effects. We further 
ecompose this function as: 

W s ( t, λr ) = 

[ 

K ∑ 

k= 1 

θs 
k W k ( t, λr ) 

] 

+ εs ( t, λr ) . (11) 
 This value is chosen for convenience, but is somewhat arbitrary. Any 
dditional global magnitude normalization is absorbed into W 0 ( t , λ) during 
raining. In particular, a global shift in all distance moduli (preserving all 
istance ratios) due to a change in the assumed H 0 would trivially result in a 
onstant shift of 5 � log 10 H 0 in W 0 ( t , λ). 

MNRAS 510, 3939–3966 (2022) 
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Figure 1. Schematic of the BAYESN forward generative model for the optical and NIR light-curve (time series) data of a single SN. The log SN SED across time 
and wavelength comprises a mean intrinsic SED function modified by intrinsic functional principal components scaled by latent SED shape parameters, and 
extinguished and reddened by the host galaxy dust law, parametrized by the optical slope R V and scaled by the visual extinction A V . Variations not captured by 
these major modes are modelled by residual SED functions whose statistical properties across time and wavelength are captured by a covariance function. The 
resulting latent host-dust-reddened rest-frame SED undergoes the effects of distance, redshifting and time dilation, integration of the flux under the observer’s 
filter functions, the surv e y cadence, and measurement error to yield the observed multiband optical and NIR time series (light curves) of an SN Ia. 
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he W k ( t , λr ) functions are the functional principal components
FPCs) describing the major modes of ( t , λr ) variation in the log SED
nderlying the light curves of individual SN s . The θs 

k coefficients are
cores describing the degree of component W k ( t , λr ) present in SN s .
he functions εs ( t , λr ) describe the phase- and wavelength-dependent
ED residuals that are not captured by the other effects. They source

he remaining time-dependent intrinsic colour variations. The total
esidual SED function of an SN Ia is ηs ( t , λr ) = δM s + εs ( t , λr ). 

In this work, we mainly focus on training a model with K = 1
ntrinsic functional principal component. In Appendix B, we describe
he W 2 ( t , λr ) inferred for the K = 2 model. For K > 1, under training,
he W k ( t , λr ) are learned such that the coefficients θs 

k are uncorrelated
n their population distribution (Section 2.5), i.e. Cov [ θs 

k , θ
′ s 
k ] = δk k ′ .

hen we train the K = 2 model to learn the second FPC, we are
f fecti v ely e xtracting it from the covariance of the residual functions
s ( t , λ) under the K = 1 model. 

The abo v e equations e xpress a linear model for the logarithm of
he host-dust-extinguished SN SED: 

2 . 5 log 10 [ S s ( t , λr ) /S 0 ( t , λr )] = M 0 + W 0 ( t , λr ) + δM s 

+ 

[ 

K ∑ 

k= 1 

θs 
k W k ( t, λr ) 

] 

+ εs ( t, λr ) + A 

s 
V ξ ( λr ; R V ) . (12) 

ote that M 0 , W 0 ( t , λr ), δM s , and δW s ( t , λr ) are in units of magnitude,
ike μs and A 

s 
V . The advantage of modelling the logarithm of the

ED is that we can easily preserve positive flux at all phases and
avelengths while specifying priors on the functional components
NRAS 510, 3939–3966 (2022) 
 k ( t , λr ) and the latent principal component scores that span positive
nd ne gativ e reals. 

.3 Magnitude approximation 

or the vast majority of the nearby training set used in this work,
he flux data have high signal to noise. Therefore, it is a good
pproximation to convert these data to magnitudes. The magnitude
easurement and the variance of its measurement error are ˆ m s,i =
2 . 5 log 10 ( ˆ f s,i ) + Z s,i and 

2 
m,s,i = 

(
2 . 5 

ln 10 

σs,i 

ˆ f s,i 

)2 

. (13) 

ransformation of the model flux (equation 6) to the model magni-
ude m s , i yields 

 s,i = μs + M 0 + δM s 

− 2 . 5 log 10 

[
(1 + z s ) 

∫ λmax 
r 

λmin 
r 

S 0 
(
t i s , λr 

)
× 10 −0 . 4 [ W 0 ( t i s ,λr ) + δW s ( t i s ,λr ) + A s 

V 
ξ ( λr ; R V )] 

× 10 −0 . 4 A s MW 

ξ ( λo ; R MW 

) × B s,i ( λo ) λr d λr 

]
. (14) 

sing this, we can change the measurement-likelihood function,

art/stab3496_f1.eps
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quation (7), to: 

 ( ̂  m s,i | m s,i ) = N 

(
ˆ m s,i | m s,i , σ

2 
m,s,i 

)
. (15) 

his form is useful since the model magnitude inside the likelihood 
s linear in some of the parameters. Ho we ver, the full flux model
equation 7) allows us to use low signal to noise, or even negative, flux
easurements which cannot be reliably converted into magnitudes 
ith Gaussian errors. Hence, we can use the flux model to fit the flux
ata of high-redshift SNe Ia with typically lower signal to noise. 

.4 2D SED surface models 

e model the unknown functions { W k ( t , λr ): k = 0, . . . , K } , and
 εs ( t , λr ): s = 1, . . . , N SN } in a fle xible, data-driv en manner. Each
unction is represented as a surface defined by a 2D grid of knots. We
pecify a 2D grid as the Cartesian product of a 1D grid in rest-frame
hase, τ , and a 1D grid in rest-frame wavelength l . Each 1D grid can
e irregularly spaced. The essential idea is that a generic, smooth 
urface g ( t , λr ) at any point ( t , λr ) in the 2D domain of the SED can
e modelled as g( t, λr ) = s ( λr ; l ) T G s ( t ; τ ), where s ( x; ξ ) denotes
he 1D natural cubic spline smoother (column) vector for knots ξ at 
 v aluated at point x . The knots matrix G has elements G ij = g ( t =
j , λr = l i ), which define the values the surface must pass through at

he knot locations, and are parameters for inference. The surface g ( t ,
r ) is linear in the knots matrix G . 
Using this, we model the functions of phase and wavelength 

n terms of knot matrices { W k : k = 0 , . . . , K} and { E s : s =
 , . . . , N SN } , like so. For the global correction to the mean template: 

 0 ( t, λr ) = s ( λr ; l ) T W 0 s ( t ; τ ) . (16) 

or the functional components ( k = 1, . . . , K ), 

 k ( t, λr ) = s ( λr ; l ) T W k s ( t ; τ ) . (17) 

or the residual SED functions of each SN s, 

s ( t, λr ) = s ( λr ; l ) T E s s ( t ; τ ) . (18) 

hese latent functions are determined by the unknown matrices { W k : 
 = 0 , . . . , K} , and { E s : s = 1 , . . . , N SN } , which are inferred as
yperparameters and latent variables. 

We specify a set of knots on a grid in rest-frame phase and
avelength. The phase coordinates are τ = ( −10 , 0 , 10 , 20 , 30 , 40)
. The phase spacing is chosen as inspection of the light-curve 
ata indicates they vary smoothly on ∼10 d time-scales. We found 
mpirically that this spacing works well in practice for our light-curve 
ts, and strikes a balance between temporal resolution/regularization 
nd statistical/computational feasibility. The wavelength coordi- 
ates are l . We place a knot at the central wavelengths of
he filters BVriYJH plus two outer knots bracketting these: l = 

0 . 3 , 0 . 43 , 0 . 54 , 0 . 62 , 0 . 77 , 1 . 04 , 1 . 24 , 1 . 65 , 1 . 85) μm. The purpose
f the first and last knots in wavelength is to ensure that our spline
urfaces are defined throughout the entire first ( B ) and last ( H ) broad-
and filters. To a v oid degeneracies, we ‘tie down’ the residual knot
atrices at the first and last wavelength knots for every phase knot:
 s , ij = 0 if i = 1 or i = dim ( l ) , ∀ j . 

.5 P opulation distrib utions and hyperpriors 

e specify the population distributions on the latent parameters of 
ndi vidual supernov ae. 

For the latent functional SED ef fects, follo wing the probabilistic 
CA formulation (Tipping & Bishop 1999 ), we adopt an independent 
tandard Gaussian prior θs 

k ∼ N (0 , 1) for the individual score of each
N s in each component k = 1, . . . , K , i.e. 

s ∼ N (0 , I K×K 

) . (19) 

hus, the resulting functions W k ( t , λr ) ( k ≥ 1) are not scaled to have
nit norm, as they would be in standard PCA. Rather, because the
atent scores θs 

k are normalized to have a population variance of one,
 k ( t , λr ) absorbs a factor of the population standard deviation in that

omponent. A ‘1 σ ’ effect of the k -th component on the SED is thus
omputed from θk W k ( t, λr ) by varying �θ k ± 1 around the mean. 

For the elements of the W 0 matrix, we adopt improper flat priors
 0, ij ∼ U ( − ∞ , ∞ ), as this ensures the global joint probability

ensity is mathematically invariant under a global shift in all distance
oduli (e.g. a change in 5log 10 H 0 ), that preserves all relative SN Ia

istance ratios. With this prior, W 0 ( t , λ) would simply absorb the
onstant. 

For the W k matrices that parametrize our functional components 
 k ≥ 1), we use an independent standard normal hyperprior on the
alue of each knot: W k , ij ∼ N (0, 1). This is a weak constraint, since
e have scaled the problem to expect these variations to be of the
rder of a few tenths of a magnitude. 
For the residual SED perturbations, we assume a multi v ariate

aussian distribution on the column-wise vectorization of each 
esidual matrix E s : 

 s = vec [ E s ] ∼ N ( 0 , � ε) . (20) 

 matrix � ( t, λr ; τ , l ) can be constructed so that equation (18) can
e written equi v alently as, 

s ( t, λr ) = � ( t, λr ; τ , l ) e s . (21) 

hile equation (18) and equation (21) are equi v alent, equation (18)
s the more compact representation, since � ( t, λr ; τ , l ) tends to a very
arge (but sparse) matrix. Ho we ver, equation (21) is useful, because,
ogether with the residual distribution equation (20), it implies that 
he residual functions εs ( t , λr ) are realizations of a Gaussian process
GP; Rasmussen & Williams 2005 ): 

s ( t, λr ) ∼ GP [ 0 , k ε( t , λr ; t 
′ , λ′ 

r )] (22) 

ith a zero prior mean and a non-stationary kernel for the covariance
f the residuals at any two coordinates: 

 ε( t, λr ; t 
′ , λ′ 

r ) ≡ Cov [ εs ( t, λr ) , εs ( t 
′ , λ′ 

r )] 

= � ( t, λr ; τ , l ) � ε � ( t ′ , λ′ 
r ; τ , l ) T . (23) 

e adopt this non-stationary covariance structure rather than the 
ore popular stationary kernels, such as squared exponential, since 
e do not expect the complex physical mechanisms of SN Ia

xplosions to generate statistical properties that are invariant to phase 
r wavelength shifts. 
The covariance matrix � ε encodes the variances and correlation 

tructures of the residual functions: � ε = diag ( σ ε) R ε diag ( σ ε). 
ollowing the separation strategy proposed by Barnard, McCul- 

och & Meng ( 2000 ), we specify separate priors on the standard
eviation parameters σ ε and the correlation matrix R ε . For each q -
h element σ ε, q ≥ 0, we adopt a weakly informative half-Cauchy 
yperprior with unit scale (Gelman 2006 ; Polson & Scott 2012 ), i.e.
 ( σε,q ) = H C( σε,q | a = 1), with probability density 

 C ( x | a) ∝ ( a 2 + x 2 ) −1 (24) 

or x ≥ 0, and zero otherwise. This hyperprior is proper, and relatively
at for small x . It is sensible because we have scaled the problem to
xpect σ ε, q to be less than a magnitude. For the correlation matrix,
e adopt the LKJ hyperprior as implemented in STAN and derived
MNRAS 510, 3939–3966 (2022) 
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rom Le wando wski, Kuro wicka & Joe ( 2009 ), 

 ( R ε) ∝ | R ε | η−1 (25) 

ith η = 1. This places a uniform prior on positive semidefinite
orrelation matrices. 

The δM s terms model a phase- and wavelength-independent shift
f the SED in o v erall log luminosity. Since these shifts are indistin-
uishable from the effect of distance on the apparent light curves,
his propagates into an uncertainty floor on photometric distance
stimates. We model the population of these independent shifts as
M s ∼ N (0 , σ 2 

0 ) and estimate their variance σ 2 
0 as a hyperparameter.

e use a weak half-Cauchy prior (equation 24) on σ 0 with scale
 = 0.1, since we expect this to be of the order of a tenth of
agnitude. Ho we v er, we hav e checked that our posterior estimate of
0 is insensitive to the hyperprior scale over the range a = [0.1, 0.5].
We assume that host galaxy e xtinction A 

s 
V is dra wn from an

ndependent exponential distribution with mean extinction hyper-
arameter τA : 

 

(
A 

s 
V | τA 

) = τ−1 
A exp 

(−A 

s 
V /τA 

)
, (26) 

or A V ≥ 0 and zero otherwise. This is a sensible choice, since
he true A 

s 
V must be non-ne gativ e, and we e xpect the most lines

f sight through the host galaxies to pass through little dust, with
he probability density decreasing with increasing column density.
his model distribution has been used before by, e.g. Jha, Riess &
irshner ( 2007 ) and Mandel et al. ( 2009 ). The hyperprior we adopt

or τA is also a unit half-Cauchy, P ( τA ) = HC ( τA , 1), reflecting
ur expectations that the typical τA is on the order of tenths of a
agnitude. For the unknown R V , we assume a single global value
ith a uniform hyperprior R V ∼ U (1, 5) reflecting a wide range of
ossible values. Thorp et al. ( 2021 ) expands our framework to allow
er-SN variation in R 

s 
V by modelling and inferring their population

istribution, as was done previously by Mandel et al. ( 2011 ). 

.6 External distance constraints 

n the training phase, we use estimates ˆ μext ,s of the SN distance
oduli that are external to the photometric SN data, as described in
velino et al. ( 2019 ). We assume they have Gaussian errors around

he true distance modulus. 
For the vast majority of the training set, we utilize the redshift as an

ndicator of distance conditional on the fiducial cosmological model
ˆ ext ,s = μ�CDM 

( z s ) with �M 

= 0.28 and �� 

= 0 . 72. Ho we ver, at
hese redshifts z < 0.04, these distances are relatively insensitive to
he cosmological parameters, other than H 0 which only sets an o v erall
cale for all absolute magnitudes, and for which we adopt 73.24
ms −1 Mpc −1 (Riess et al. 2016 ). These redshifts are corrected to
he CMB frame and corrected for bulk flows. The distance modulus
ncertainty, due to errors in observed redshift z s as estimates for
he cosmological redshift z c s , from redshift and peculiar velocity
ncertainties is 

ˆ 2 ext ,s ≈
(

5 

z s ln 10 

)2 [
σ 2 

pec /c 
2 + σ 2 

z,s 

]
, (27) 

here we have adopted σ pec = 150 km s −1 (Carrick et al. 2015 ).
he external distance constraint can be expressed as P ( μs | z s ) ∝
( ̂  μext ,s | μs , ̂  σ 2 

ext ,s ) after marginalizing out the unknown z c s . 
For eight SNe Ia in our training set at z < 0.01, we use

xternal distance estimates ˆ μext ,s from available redshift-independent
easures (e.g. Cepheids), and their uncertainties ˆ σ 2 

ext ,s , as listed in
able 4 of Avelino et al. ( 2019 ). These external distance constraints
an be expressed as P ( μs | ˆ μext ,s ) ∝ N ( ̂  μext ,s | μs , ̂  σ 2 

ext ,s ). 
NRAS 510, 3939–3966 (2022) 
.7 The global joint posterior distribution 

or an individual SN s , the joint probability density of its flux light
urve data ˆ f s and its latent parameters φs ≡ ( θ s , e s , δM s , A 

s 
V ) and

istance modulus μs conditional on the population hyperparameters
H ≡ ( W 0: K 

, � ε, σ0 , τA , R V ) and redshift is 

 ( ˆ f s , φs , μs | H ; z s ) = P ( ˆ f s | φs , μs ; W 0: K 

, R V ) 

×P ( θ s ) P ( e s | � ε) P ( δM s | σ0 ) P ( A 

s 
V | τA ) P ( μs | z s ) , (28) 

here W 0: K 

≡ { W 0 , W 1 , . . . , W K 

} is the collection of matrices
escribing the intrinsic mean and K functional components of the
ED, and θ s ≡ ( θs 

1 , . . . , θ
s 
K 

) T are the intrinsic coefficients of SN
 . The first factor on the right-hand side is the data likelihood
efined by equations (6), (8), and (12). For the eight SN with
edshift-independent distance measurements, we replace P ( μs | z s )
ith P ( μs | ˆ μext ,s ). During training, the dates of optical maxima T max 

s 

re fixed to their pre-fitted values, which are very accurate for this
raining set of well-sampled light curves. 

The global posterior distribution of all the latent variables of
ndi vidual supernov ae and the population hyperparameters given the
ata, external distance constraints, and redshifts is 

 ( { φs , μs } ; H | { ˆ f s ; z s } ) ∝ 

[ 

N SN ∏ 

s= 1 

P ( ˆ f s , φs , μs , | H ; z s ) 

] 

×P ( W 0: K 

) P ( σ ε) P ( R ε) P ( σ0 ) P ( τA ) P ( R V ) . (29) 

his global posterior distribution is the objective function for training
ur model to learn the population hyperparameters, covariance
tructure, and SED components while marginalizing o v er the latent
 ariables of indi vidual SNe Ia. It provides a coherent, probabilistic
uantification of uncertainty of o v er all parameters and hyperparam-
ters. 

.8 Photometric distance estimation 

he training process gives us posterior estimates of the hyperpa-
ameters ˆ H ≡ ( ˆ W 0: K 

, ˆ � ε, ̂  σ0 , ̂  τA , ˆ R V ) marginalized o v er all latent
ariables in the sample. For simplicity, we take the posterior means
f these hyperparameters as point estimates. Under distance-fitting
ode, we condition on the hyperparameters, and the posterior density

f the latent parameters φs and distance modulus μs of SN s is 

 ( φs , μs | ˆ f s ; ˆ H ) ∝ P ( ˆ f s | φs , μs ; ˆ W 0: K 

, ˆ R V ) 

×P ( θ s ) × P ( e s | ˆ � ε) × P ( δM s | ̂  σ0 ) × P ( A 

s 
V | ̂  τA ) , (30) 

here we omit any external distance constraint. When fitting in-
ividual SN with the trained model, the dates of optical maxima
 

max 
s are included in φs and fit. By sampling this joint posterior, we
an approximate the marginal posterior density of the photometric
istance modulus, 

 ( μs | ˆ f s ; ˆ H ) = 

∫ 

P ( φs , μs | ˆ f s ; ˆ H ) d φs , (31) 

s well as its posterior summaries such as the mean and variance
ia marginalization. Ho we ver, this distribution is not necessarily
aussian, nor is it required to be, since dust effects introduce some

symmetry. 
In principle, instead of fixing the hyperparameters to their posterior
eans from training, we could use the samples of the joint posterior
 v er the hyperparameters (equation 29) to incorporate their uncer-
ainties into the photometric distance estimates. Ho we ver, this is a

ore computationally burdensome process, and we have found the
osterior means to be sufficient for our current goal of e v aluating the
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Figure 2. Probabilistic graphical model depicting the hierarchical BAYESN model for optical-NIR SN Ia light-curve data. Each open box presents a set of 
unknown parameters or hyperparameters, each grey-shaded box represents observed data, and the arrows indicate relations of conditional probability. Parameters 
within the plate, labelled s = 1, . . . , N SN , are latent variables or functions sampled for every SN s , whereas parameters outside the plate represent global 
or population hyperparameters. This graph is further discussed as a probabilistic generative model in Section 2.9. The hierarchical global posterior density 
(equation 29) estimates the unknown latent variables and hyperparameters conditional on the observed data of the entire SN Ia sample. 
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recision of photometric distances on the Hubble diagram. Neverthe- 
ess, propagating the joint hyperparameter uncertainties will be rel- 
 v ant for assessing systematic errors in a full cosmological analysis.

.9 Probabilistic graphical model 

ur hierarchical Bayesian model can be depicted with a type of
robabilistic graphical model called a directed acyclic graph, shown 
n Fig. 2 . The graphical model depicts a probabilistic process for
enerating the SN Ia data, via links between the priors, global 
r population hyperparameters, latent variables and functions of 
ndividual SNe Ia, and their observed light-curve data. The intrinsic 
ED of a single SN Ia s is constructed from the mean SED and
unctional principal components W 0: K ( t , λr ), a draw of the FPC
cores θ s from its population distribution, and a draw of an intrinsic
esidual SED function from its population distribution described by a 
ovariance function over time and wavelength. The host galaxy dust 
xtinction A 

s 
V of a SN s is drawn from a population distribution of

xtinction values, whereas the unknown R V , parametrizing the dust 
a w, is giv en a wide prior. The effects of dust and distance modulus μs 

n the intrinsic SED combine (with appropriate redshifting and time 
ilation) to yield the apparent SN SED. This is observed with some
adence and noise through the observer’s filter functions to yield the 
ptical and NIR light-curve data. During training, the distance is con- 
trained externally to the light curve by the cosmological redshift and 
he fiducial cosmological parameters (fixed in this low- z analysis). 
he redshift is observed with some uncertainty due to local peculiar
elocities. Bayesian inference with the hierarchical model solves the 
nverse problem through the computation of the posterior probability 
ensity (equation 29) of the unknown latent variables and hyperpa- 
ameters conditional on the observed data of the entire SN Ia sample.

 DATA  

.1 Optical and NIR light cur v e data 

e use the compilation of low- z SNe Ia with joint optical and NIR
ight curves described in Avelino et al. ( 2019 ). For our purposes,
e define the optical as the BVRI filters and the NIR as the YJH . In
ur various analyses below, we fit either the available optical ( BVRI )
r optical + NIR ( BVRIYJH ) for a given SNe Ia. The selection
riteria and cuts were described in Avelino et al. ( 2019 ) and detailed
nformation on the specific SNe is listed in their tables 2 and 3. In
articular, a colour excess cut E ( B − V ) host ≤ 0.4 was applied for
onsistency with the cosmological sample. For each SN Ia, we use
ublished optical and NIR data only from the same surv e y; we do
ot mix data sources within a single SN. Consequently, SN 2005bo,
NF20080514-002, SN 2010iw, SN 2010kg, SN 2011ao, SN 2011B, 
N 2011by, SN 2011df were remo v ed because they had NIR data, but
o published optical data, from the CfA. SN 2006bt was remo v ed
ecause it is a known peculiar supernova (F ole y et al. 2010 ). We
ailed to fit the light curves of SN 2000E (Valentini et al. 2003 )
MNRAS 510, 3939–3966 (2022) 
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ith our current model (although it was not an outlier in the Hubble
iagram), so we have omitted it to avoid biasing the training. 
The resulting sample comprises 79 SNe Ia with joint optical and

IR light curv es. Av elino et al. ( 2019 ) further defined a subset
ith NIR data near maximum light (see their table 13). To enter

nto this subset, an SN Ia was required to have at least one NIR
bservation at least 2.5 d before maximum light. We have a total of
8 SNe Ia in this cut, which we refer to as ‘NIR@max’. All SNe
a in the full sample have some NIR data available regardless of the
hase of the first NIR observation. These SNe Ia and cuts are listed
n Table 1 . Additional information can be found in Avelino et al.
 2019 ). The full data set consists of 22 SN from the CfA Supernova
rogram (CfA; Jha et al. 1999 ; Wood-Vasey et al. 2008 ; Hicken et al.
009 , 2012 ; Friedman et al. 2015 ), 44 from the Carnegie Supernova
roject (CSP; Krisciunas et al. 2017 ), eight from the Las Campanas
bservatory (K04a,b: Krisciunas et al. 2004a , b ), as well as five others

rom individual papers in the literature (K03: Krisciunas et al. 2003 ;
08: Pignata et al. 2008 ; St07: Stanishev et al. 2007 ; L09: Leloudas
t al. 2009 ; K07: Krisciunas et al. 2007 ). 

The statistical characteristics of observations in this sample are as
ollows. F or each observ ed ( B , Y , J , H ) band light curve, there are
n average (3.8, 3.6, 3.2, 2.7) data points at pre-maximum phases
 t < 0 d), (8.2, 8.2, 7.1, 6.3) data points during the main post-
aximum decline (0 < t < 20 d), and (5.8, 4.9, 4.7, 4.4) data

oints at later phases t > 20 d, respectively. The filter with the
east data is the NIR Y -band, which is co v ered by only 46 SNe Ia in
ur training set (mainly from CSP). The median photometric errors
 σ s , i ) across all observations in ( B , Y , J , H ) are (0.016, 0.020, 0.038,
.053) mag, respectively. The median apparent B − V colour error
mong observations near peak is 0.016 mag. 

The size of our training set reflects the recent progress of ground-
ased surv e ys in accumulating quality joint optical and NIR SN Ia
ight-curve data (Friedman et al. 2015 ; Krisciunas et al. 2017 ). The
umber of SNe Ia in our current compilation more than doubles those
sed to train previous NIR-capable light-curve models. The training
et for the first BAYESN models included 37 SNe Ia with both optical
nd NIR co v erage (Mandel et al. 2009 , 2011 ), and the training set for
NooPy comprised � 30 SNe Ia (Burns et al. 2011 ). Further increases

n the training set will soon be possible with forthcoming data from
SP-II (Phillips et al. 2019 ) and the Supernovae in the Infrared avec
ubble (SIRAH) program ( HST GO-15889, P.I. S. Jha). 

.2 Passband throughput 

or each observation in the data compilation, we specify a model for
he ef fecti ve passband throughput. A model passband throughput is
eeded to forward model the observ ed flux, re gardless of whether that
ux is reported in the natural system of the telescope or transformed
n to a ‘standard’ system such as SDSS ugriz (Fukugita et al.
996 ). For a measurement reported on the natural system of a
elescope, the total passband throughput must include all terrestrial
lements of the measurement chain – site atmospheric transmission,
irror reflectivity, filter transmission, transmission of camera optics,

nd detector quantum efficienc y. F or measurements reported on a
tandard system, the passband throughput must reflect the original
easurement chain used to observe the standard stars that were

mployed in calibrating the SN flux, in addition to the measurement
hain of the facility used to observe the SN itself. 

For the Carnegie Supernova Project and related objects observed
t Las Campanas Observatory (Krisciunas et al. 2004a , b , 2017 ),
NRAS 510, 3939–3966 (2022) 
e use the total natural system passband throughputs 6 as defined
n the implementation of the SNooPy (Burns et al. 2011 ). We take
are to include any changes in the CSP passband throughputs when
 filter was replaced. For the NIR observations by the CfA using
he 1.3m PAIRITEL telescope at Mt. Hopkins (Wood-Vasey et al.
008 ; Friedman et al. 2015 ), we use the natural system passband
hroughputs measured by the 2MASS project, 7 which used the same
acility . Finally , for objects observed by the CfA Supernova Program
Jha et al. 1999 ; Hicken et al. 2009 , 2012 ) and remaining literature
bjects (K03, K07, St07, P08, and L09) we use the published
tandard system photometry and model the passband throughput
sing the shifted Bessell filters described in Stritzinger et al. ( 2005 ).
hile the CfA SN program published both natural and standard

ystem photometry, and the former is generally preferred as it a v oids
ome potential systematic errors in transforming the flux, using the
atural system photometry relies on having a good description of the
assband throughput of the natural system. Unfortunately, there are
o determinations of all the elements in the measurement chain for
bjects observed by the CfA SN surv e y, and the current model for
assband throughput included in the SNDATA repository 8 does not
nclude any model for the site atmosphere at all. The CfA Supernova

easurements were the result of an e xtensiv e effort o v er almost
wo decades with four separate cameras, through a variety of filters,
sing a telescope that underwent numerous mirror coatings, and
he pro v enance of each measurement cannot easily be determined
etrospectively. By contrast, the standard system photometry for CfA
bjects is known to be consistent with standard system photometry
easured by the CSP and LOSS (Ganeshalingam et al. 2010 ). Thus,
e prefer to use the standard system photometry o v er the natural

ystem photometry in this work. 
Ultimately, we plan on training a version of BAYESN (Thorp et al.

021 ) e xclusiv ely on SNe Ia observ ed by the F oundation Surv e y
nd the Young Superno va Experiment, which hav e well-determined
easurements of the PS1 natural system passband throughput. 

 I MPLEMENTATI ON  

.1 BayeSN 

e have implemented our Bayesian model in the STAN probabilistic
rogramming language (Carpenter et al. 2017 ; Stan Development
eam 2021 ) to specify and sample the global posterior density o v er
ll latent variables and hyperparameters conditional on the training
et data. STAN implements a variant of dynamic Hamiltonian Monte
arlo (HMC; Neal 2011 ; Betancourt 2017 ), originally based on

he No-U-Turn Sampler (NUTS) (Hoffman & Gelman 2014 ). STAN

tilizes automatic differentiation to compute gradients of the log
osterior (equations 29, 30) and guide efficient exploration and
onvergence to the target density in high-dimensional parameter
paces. We typically run four chains in parallel, each initialized
ith random jitter to start at a different point in parameter space. We

ollow standard procedures to assess convergence and mixing of the
hains (Gelman & Rubin 1992 ; Gelman et al. 2013 ). The first half of
he iterations, which are used for adaptation of the HMC algorithm
nd burn-in, are discarded. The algorithm adapts the integration time
o yield samples that are nearly serially uncorrelated, and we run it
ong enough so that the ef fecti ve sample size is approximately 1000.

https://csp.obs.carnegiescience.edu/data/filters
https://old.ipac.caltech.edu/2mass/releases/second/doc/sec3_1b1.html#s18
http://snana.uchicago.edu/downloads/SNDATA_ROOT.tar.gz
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Table 1. Table of supernovae. 

SN Source Cut Filters z a CMB ˆ μb 
ext ˆ μphot (resub) c ˆ μphot (CV) d 

SN1998bu CfA NIR@max BVRIJH 0.003 30.07 ± 0.20 29.99 ± 0.10 29.96 ± 0.09 
SN1999ee K04a NIR@max BVRIJH 0.011 33.33 ± 0.10 33.25 ± 0.10 33.21 ± 0.09 
SN1999ek K04b NIR@max BVRIJH 0.018 34.34 ± 0.06 34.18 ± 0.10 34.18 ± 0.10 
SN2000bh K04a – BVRIYJH 0.024 35.00 ± 0.05 34.94 ± 0.10 34.93 ± 0.08 
SN2000ca K04a NIR@max BVRIJH 0.024 34.99 ± 0.05 35.00 ± 0.10 34.99 ± 0.10 
SN2001ba K04a NIR@max BVIJH 0.030 35.51 ± 0.04 35.66 ± 0.09 35.66 ± 0.09 
SN2001bt K04b NIR@max BVRIJH 0.014 33.85 ± 0.08 33.79 ± 0.10 33.80 ± 0.09 
SN2001cn K04b – BVRIJH 0.015 34.03 ± 0.07 33.94 ± 0.10 33.96 ± 0.10 
SN2001cz K04b NIR@max BVRIJH 0.017 34.25 ± 0.06 33.96 ± 0.10 33.95 ± 0.10 
SN2001el K03 NIR@max BVRIJH 0.004 31.31 ± 0.05 31.28 ± 0.10 31.17 ± 0.09 
SN2002dj P08 NIR@max BVRIJH 0.008 32.65 ± 0.40 32.95 ± 0.10 32.95 ± 0.10 
SN2003du St07 – BVRIJH 0.009 32.92 ± 0.06 32.87 ± 0.10 32.86 ± 0.09 
SN2003hv L09 – BVRIYJH 0.005 31.15 ± 0.25 31.30 ± 0.09 31.34 ± 0.10 
SN2004S K07 – BVRIJH 0.011 33.23 ± 0.10 33.27 ± 0.10 33.24 ± 0.10 
SN2004ef CSP – BVriYJH 0.030 35.50 ± 0.04 35.52 ± 0.09 35.50 ± 0.08 
SN2004eo CSP NIR@max BVriYJH 0.015 34.00 ± 0.07 33.82 ± 0.10 33.88 ± 0.09 
SN2004ey CSP NIR@max BVriYJH 0.015 34.02 ± 0.07 34.12 ± 0.10 34.11 ± 0.08 
SN2004gs CSP – BVriYJH 0.029 35.39 ± 0.04 35.38 ± 0.10 35.39 ± 0.09 
SN2005cf CfA NIR@max BVr 

′ 
i 
′ 
JH 0.007 32.26 ± 0.10 32.30 ± 0.09 32.31 ± 0.10 

SN2005el CSP NIR@max BVriYJH 0.015 34.00 ± 0.07 33.98 ± 0.09 34.02 ± 0.09 
SN2005iq CSP NIR@max BVriYJH 0.034 35.74 ± 0.03 35.88 ± 0.09 35.90 ± 0.09 
SN2005kc CSP NIR@max BVriYJH 0.015 33.89 ± 0.07 33.75 ± 0.10 33.74 ± 0.09 
SN2005ki CSP NIR@max BVriYJH 0.020 34.63 ± 0.05 34.62 ± 0.10 34.62 ± 0.09 
SN2005lu CSP – BVriY 0.032 35.62 ± 0.03 35.71 ± 0.12 35.72 ± 0.11 
SN2005na CfA – BVr 

′ 
i 
′ 
JH 0.027 35.28 ± 0.04 35.23 ± 0.11 35.24 ± 0.11 

SN2006D CfA NIR@max BVr 
′ 
i 
′ 
JH 0.009 32.84 ± 0.12 32.91 ± 0.09 32.89 ± 0.09 

SN2006N CfA – BVr 
′ 
i 
′ 
JH 0.015 33.89 ± 0.08 33.82 ± 0.10 33.78 ± 0.10 

SN2006ac CfA – BVr 
′ 
i 
′ 
JH 0.024 34.98 ± 0.05 35.08 ± 0.10 35.06 ± 0.10 

SN2006ax CSP NIR@max BVriYJH 0.018 34.36 ± 0.06 34.31 ± 0.09 34.30 ± 0.10 
SN2006bh CSP NIR@max BVriYJH 0.011 33.24 ± 0.10 33.34 ± 0.09 33.33 ± 0.10 
SN2006cp CfA – BVr 

′ 
i 
′ 
JH 0.022 34.84 ± 0.05 34.97 ± 0.10 34.98 ± 0.12 

SN2006ej CSP – BVriYJH 0.021 34.66 ± 0.05 34.67 ± 0.10 34.67 ± 0.10 
SN2006kf CSP NIR@max BVriYJH 0.019 34.53 ± 0.06 34.71 ± 0.10 34.72 ± 0.08 
SN2006lf CfA NIR@max BVr 

′ 
i 
′ 
JH 0.012 33.49 ± 0.09 33.52 ± 0.10 33.53 ± 0.09 

SN2007A CSP NIR@max BVriYJH 0.017 34.27 ± 0.06 34.25 ± 0.10 34.24 ± 0.10 
SN2007af CSP NIR@max BVriYJH 0.006 31.79 ± 0.05 31.94 ± 0.09 31.98 ± 0.09 
SN2007ai CSP NIR@max BVriYJH 0.033 35.69 ± 0.03 35.52 ± 0.09 35.52 ± 0.09 
SN2007as CSP NIR@max BVriYJH 0.018 34.41 ± 0.08 34.42 ± 0.09 34.43 ± 0.09 
SN2007bc CSP NIR@max BVriYJH 0.021 34.72 ± 0.05 34.74 ± 0.10 34.73 ± 0.09 
SN2007bd CSP NIR@max BVriYJH 0.031 35.57 ± 0.04 35.60 ± 0.10 35.57 ± 0.10 
SN2007ca CSP NIR@max BVriYJH 0.015 33.89 ± 0.08 34.04 ± 0.10 34.04 ± 0.08 
SN2007co CfA – BVr 

′ 
i 
′ 
JH 0.027 35.30 ± 0.04 35.43 ± 0.10 35.42 ± 0.10 

SN2007cq CfA – BVr 
′ 
i 
′ 
JH 0.025 35.11 ± 0.04 34.87 ± 0.10 34.86 ± 0.11 

SN2007jg CSP NIR@max BVriYJH 0.038 36.02 ± 0.03 36.14 ± 0.10 36.16 ± 0.09 
SN2007le CSP NIR@max BVriYJH 0.006 32.13 ± 0.17 32.20 ± 0.09 32.20 ± 0.10 
SN2007qe CfA – BVr 

′ 
i 
′ 
JH 0.024 34.96 ± 0.05 35.18 ± 0.10 35.19 ± 0.09 

SN2007sr CSP – BVriYJH 0.004 31.29 ± 0.11 31.62 ± 0.09 31.63 ± 0.09 
SN2007st CSP – BVriYJH 0.021 34.72 ± 0.05 34.42 ± 0.10 34.40 ± 0.09 
SN2008C CSP – BVriYJH 0.018 34.31 ± 0.06 34.37 ± 0.10 34.39 ± 0.09 
SN2008af CfA – BVr 

′ 
i 
′ 
JH 0.034 35.78 ± 0.03 35.66 ± 0.12 35.63 ± 0.11 

SN2008ar CSP NIR@max BVriYJH 0.029 35.42 ± 0.04 35.30 ± 0.10 35.29 ± 0.10 
SN2008bc CSP NIR@max BVriYJH 0.016 34.05 ± 0.07 34.14 ± 0.09 34.12 ± 0.08 
SN2008bf CSP NIR@max BVriYJH 0.025 35.13 ± 0.05 35.13 ± 0.09 35.10 ± 0.09 
SN2008fl CSP – BVriYJH 0.020 34.59 ± 0.06 34.49 ± 0.09 34.50 ± 0.09 
SN2008fr CSP – BVriYJH 0.038 36.04 ± 0.12 36.10 ± 0.09 36.08 ± 0.10 
SN2008fw CSP – BVriYJH 0.009 32.76 ± 0.13 33.05 ± 0.10 33.05 ± 0.09 
SN2008gb CfA NIR@max BVr 

′ 
i 
′ 
JH 0.038 36.03 ± 0.03 35.94 ± 0.10 35.87 ± 0.11 

SN2008gg CSP – BVriYJH 0.031 35.58 ± 0.03 35.66 ± 0.10 35.65 ± 0.09 
SN2008gl CSP – BVriYJH 0.033 35.72 ± 0.03 35.79 ± 0.10 35.84 ± 0.09 
SN2008gp CSP NIR@max BVriYJH 0.034 35.74 ± 0.03 35.71 ± 0.09 35.70 ± 0.09 
SN2008hj CSP NIR@max BVriYJH 0.037 35.97 ± 0.03 36.01 ± 0.10 36.00 ± 0.08 
SN2008hm CfA – BVr 

′ 
i 
′ 
JH 0.021 34.70 ± 0.05 34.76 ± 0.10 34.75 ± 0.10 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/3/3939/6448478 by U
niversity of C

am
bridge user on 14 D

ecem
ber 2022
MNRAS 510, 3939–3966 (2022) 



3950 K. S. Mandel et al. 

Table 1 – continued 

SN Source Cut Filters z a CMB ˆ μb 
ext ˆ μphot (resub) c ˆ μphot (CV) d 

SN2008hs CfA NIR@max BVr 
′ 
i 
′ 
JH 0.019 34.47 ± 0.06 34.70 ± 0.10 34.80 ± 0.10 

SN2008hv CSP NIR@max BVriYJH 0.014 33.81 ± 0.08 33.85 ± 0.10 33.85 ± 0.09 
SN2008ia CSP – BVriYJH 0.022 34.86 ± 0.05 34.84 ± 0.10 34.82 ± 0.09 
SN2009D CSP NIR@max BVriYJH 0.024 35.03 ± 0.04 35.03 ± 0.09 35.00 ± 0.09 
SN2009Y CSP NIR@max BVriYJH 0.009 32.95 ± 0.12 33.01 ± 0.09 32.95 ± 0.09 
SN2009aa CSP NIR@max BVriYJH 0.029 35.40 ± 0.04 35.27 ± 0.10 35.27 ± 0.09 
SN2009ab CSP – BVriYJH 0.010 33.14 ± 0.11 33.47 ± 0.10 33.49 ± 0.08 
SN2009ad CSP NIR@max BVriYJH 0.029 35.40 ± 0.04 35.33 ± 0.10 35.31 ± 0.10 
SN2009ag CSP NIR@max BVriYJH 0.010 33.12 ± 0.11 33.09 ± 0.09 33.07 ± 0.10 
SN2009al CfA NIR@max BVr 

′ 
i 
′ 
JH 0.023 34.94 ± 0.05 34.84 ± 0.09 34.83 ± 0.09 

SN2009an CfA NIR@max BVr 
′ 
i 
′ 
JH 0.011 33.23 ± 0.10 33.32 ± 0.09 33.31 ± 0.09 

SN2009bv CfA NIR@max BVr 
′ 
i 
′ 
JH 0.038 36.05 ± 0.03 36.13 ± 0.10 36.13 ± 0.10 

SN2009cz CSP NIR@max BVriYJH 0.022 34.79 ± 0.05 34.79 ± 0.10 34.78 ± 0.09 
SN2009kk CfA – BVr 

′ 
i 
′ 
JH 0.012 33.51 ± 0.09 33.96 ± 0.10 33.97 ± 0.09 

SN2009kq CfA – BVr 
′ 
i 
′ 
JH 0.013 33.58 ± 0.09 33.72 ± 0.10 33.75 ± 0.10 

SN2010ai CfA NIR@max BVr 
′ 
i 
′ 
JH 0.024 34.99 ± 0.05 34.96 ± 0.10 34.95 ± 0.10 

SN2010dw CfA – BVr 
′ 
i 
′ 
JH 0.039 36.09 ± 0.03 35.99 ± 0.10 35.95 ± 0.09 

Notes. a Redshift with corrections for local flows and CMB as described in Avelino et al. ( 2019 ). For eight nearby SN with 
available redshift-independent distance estimates from Cepheids, Tully–Fisher, or surface brightness fluctuations (SNs 1998bu, 
2001el, 2002dj, 2003du, 2003hv, 2005cf, 2007af, 2007sr), this is an ef fecti ve redshift as described in Avelino et al. ( 2019 ). 
b External distance estimate and standard deviation, either from redshift-independent distance estimate or from redshift and 
assumed H 0 = 73.24 km s −1 Mpc −1 . See Avelino et al. ( 2019 ) tables 2 and 4. 
c Optical + NIR BAYESN photometric distance estimate obtained by resubstitution (c.f. Section 5.3). 
d Optical + NIR BAYESN photometric distance estimate obtained by cross-validation (c.f. Section 5.3). 
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We discretize the integrals over wavelength (equation 6) as
umerical Riemann sums with resolution �λr = 20 Å. This provides
ufficient precision for evaluating the model fluxes (with discretiza-
ion error < 0 . 2 per cent and therefore much smaller than typical
hotometric error – across all passbands, the median photometric
rror is 0.018 mag). 

We validated our training code via simulations. We set values of
he hyperparameters, similar to those found from training on the
eal data, and used the forward model to generate simulated SN Ia
ight curves with characteristics similar to our real training set. The
raining code was then run on the simulated data set and we reco v ered
ll true values of the SED components and hyperparameters within
he posterior uncertainties. 

We can employ the model and Bayesian inference code in two
odes. In training mode, we condition on the external distance

stimates and their uncertainties, along with the SN Ia light curves
nd redshifts, to sample the joint posterior of all hyperparameters
nd latent variables. Trying to find the single optimal point of
he global posterior in the high-dimensional parameter space is
ulnerable to o v erfitting. Instead, we use the Bayesian approach
o sample the global joint posterior equation (29), which allows
s to marginalize o v er the posterior uncertainties in the latent
ariables when estimating the hyperparameters, including the SED
omponents. In distance-fitting mode, we use posterior estimates of
he hyperparameters of the already-trained model, and we remo v e
he external distance constraint. Redshifts are only used to shift
he SED between the rest-frame and observer-frame and to account
or time-dilation. We then compute posterior inference on the latent
arameters of individual SNe, and marginalize to obtain the posterior
he photometric distance from the SN Ia light curve (equation 31). 

For BAYESN and SNOOPY we fit the BVRIYJH bands, where RI
ncludes ri and r 

′ 
i 
′ 
filters, where applicable. The version of BAYESN

escribed here has not been trained on U -band data; preliminary
nalysis with a BAYESN prototype including the U -band does not
a  

NRAS 510, 3939–3966 (2022) 
how a significant impro v ement in results on this sample. We apply
ur current model either to the available BVRI (optical) or BVRIYJH
optical + NIR) data. 

.2 SALT2 and SNooPy fitting 

e used the SALT2.4 model of Betoule et al. ( 2014 ) with the
rror model covariance to fit the optical light curves. The specific
mplementation of SALT2 used is available in the sncosmo package
Barbary et al. 2016 ). For each object, we initially adopt the Avelino
t al. ( 2019 ) estimates of the time of B -band maximum to select
bservations between -10d and + 40d in phase with S / N > 3. These
stimates were originally obtained from SNOOPY fits to these well-
ampled light curves, and are very precise. This ensures that the same
bservations are used by both SALT2 and BAYESN . SALT2 has a
ange of 2000–9000 Å and therefore can fit the UBVRI bands, but as
ith BAYESN , we do not fit the U -band and restrict the comparison

o BVRI . We compared the SALT2 results with or without U -band,
nd found that the U -band data did not impro v e the results for our
ample. The limited template range of SALT2 also prevents us from
omparison with BVRIYJH fits. Pierel et al. ( 2018 ) created a NIR
xtension to the SALT2 model that is suitable for simulations, but
hat did not use the same training procedure as that used to create
he SALT2.4 model templates. Therefore, it is not suitable for fitting
eal light curves and does not yield calibrated distances. 

For each object, we begin with an initial guess for the parameters,
hich we refine with Minuit (James & Roos 1975 ). We use the

esult from Minuit to set the initial positions of 32 w alk ers used
o sample the posterior distribution with the emcee Markov Chain

onte Carlo package (F oreman-Macke y et al. 2013 ). We generate
000 samples per w alk er after discarding the first 500 steps as burn-
n. We visually inspect the parameter chains and 2D marginalized
osterior distributions. We compute the median value of the samples
s the ‘best-fit’ estimate and use the 16th and 84th percentiles of the
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Figure 3. (top) Example BAYESN light-curve fit of optical and NIR BVriYJH 

CSP observations of the Type Ia SN 2005iq. (bottom) Posterior distribution of 
latent parameters of light-curve fit to CSP observations of SN 2005iq. In the 
2D contour plots, the black contours contain 68 per cent and 95 per cent of the 
marginal posterior probability, and the mode is indicated. The 1D marginal 
plots depict a kernel density estimate applied to the MCMC samples for each 
parameter. The SED shape parameter θ1 and host galaxy dust extinction A V 

are marginalized o v er to obtained the posterior distribution of the photometric 
distance modulus μs . 
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amples as a credible interval. As these are well-sampled high-S/N 

ight curves, the parameters are well-constrained. To obtain distances, 
e fit the parameters of the Tripp formula (equation 1) using the

ull sample, obtaining: ˆ M B = −19 . 01 , ̂  α = 0 . 117 , ˆ β = 2 . 939. For
onsistent comparisons, these SALT2 distance estimates are on a 
cale of H 0 = 73.24 km s −1 Mpc −1 . 

We use the SNOOPY EBV model2 9 to fit the observations 
sing templates parametrized by the light-curve stretch, s BV . The 
BV model2 uses the same algorithm as Prieto, Rest & Suntzeff 
 2006 ) to build the templates together with the updated calibration
f 24 CSP supernovae presented in Burns et al. ( 2011 ). The resulting
BV model2 rest-frame light curves templates co v er uBgVriYJH .
o be consistent with our comparison to SALT2 , which is restricted to
odelling only the optical observations, we fit BVRI (optical-only) 

s well as BVRIYJH (optical + NIR) data with SNOOPY . We use
he same initial guesses for the SNOOPY fit parameters as used for
he SALT2 fits. SNOOPY uses a non-linear least-squares Levenberg- 

arquadt algorithm to minimize the variance weighted residuals to 
he model. As with SALT2 , we report the statistical uncertainties on
he fit parameters derived from inverting the Hessian matrix at the 
est-fitting parameters, and we have adjusted the SNooPy distance 
stimates to a scale of H 0 = 73.24 km s −1 Mpc −1 . Our low-redshift
Ne have well-sampled light curves with high S/N and thus the 

ikelihood and posterior are highly Gaussian and peaked around the 
est-fitting values. We do not find any significant differences between 
he Levenberg-Marquadt results and those using MCMC sampling. 
he SNooPy light-curve fitting procedure weights the light-curve fit 
nly by the photometric errors; there is no residual covariance model. 

 RESULTS  A N D  DISCUSSION  

n the following sections (Sections 5.1 and 5.2), we describe results
btained from our model trained on the optical and NIR light curves
f the full sample of 79 SNe Ia. 

.1 Light-cur v e inference for individual SNe Ia 

s an example, Fig. 3 demonstrates a BAYESN light-curve fit to 
ptical and NIR observations of SN 2005iq (CSP, z = 0.034). It
lso shows the posterior distribution of the latent parameters ( θ1 , 
 V , μ) obtained under distance-fitting mode. To obtain the marginal 
istribution of the photometric distance modulus μphot 

s , the other 
atent parameters of the SN (including the residuals e s ) are integrated 
 v er. The photometric distance modulus is well constrained to ±0.09
ag using the joint optical and NIR data at all phases. 
In Fig. 4 , we show a visual comparison between the BAYESN and

ALT2 parameter estimates. In the top panel, we plot the SED shape
arameter θ1 , which is the score of the first functional component, 
gainst the SALT2 x 1 ‘stretch’ parameter for the same SNe Ia. The
ign of θ1 has been chosen to be in the same sense as the decline
ate � m 15 ( B ) of Phillips ( 1993 ), which is the magnitude change in
 -band between B -band peak and 15 d afterwards. Larger values of
1 correspond to faster (larger) post-maximum optical decline rates. 
 SNOOPY also has a max model mode that allows one to fit ( K -corrected) 
ight curve data to a template light curve model in a single rest-frame filter 
o find a single magnitude at maximum. We do not compare against this 

ode, since the purpose of BAYESN is to fit the SED o v er the entire phase 
nd wavelength range covered by the available data in multiple passbands 
imultaneously, without using K -corrections to compute a 1-to-1 map between 
hotometry in observer-frame and rest-frame filters. 

e
a  

p
V  

t  

c  

u
V  

o  
arger x 1 values correspond to broader optical light curves, which 
ave slower (smaller) optical decline rates. There is a fairly tight,
lightly non-linear correlation between θ1 and x 1 , suggesting that 
hey are capturing the same underlying major mode of variation. 

In the bottom panel of Fig. 4 , we compare the SALT2 colour
arameter c and the BAYESN fitted value of the apparent B − V colour
t peak t = 0. The latter is determined by e v aluating the rest-frame
ED model (at redshift z s = 0) with the fit parameters ( θs 

1 , A 

s 
V , e s )

or each SN, and integrating it under reference B and V bandpasses,
hich we take to be those of the CSP. There is a strong but not

xactly 1-to-1 correlation between the two. The BAYESN model is 
ble to leverage the optical and NIR data of the full light curve to
robabilistically decompose the apparent colour into an intrinsic B −
 colour and dust reddening E ( B − V ). The former is computed from

he light-curve fit by e v aluating the rest-frame SED with the light-
urve fit parameters ( θs 

1 , e s ) and setting A 

s 
V = 0, and integrating it

nder the reference passbands, and the latter is determined by E( B −
 ) s = A 

s 
V /R V . Our model finds that the apparent colours are the sum

f two dif ferent ef fects and captures these two different sources of
MNRAS 510, 3939–3966 (2022) 
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Figure 4. Comparison of BayeSN and SALT2 parameters. (upper panel) 
Strong correlation between the θ1 coefficient of the first principal SED com- 
ponent and the SALT2 light-curve shape ‘stretch’ parameter x 1 . (lower panel, 
top) correlation between the peak ( t = 0) B − V apparent colour from BAYESN 

light-curve fit and the SALT2 colour parameter c . (lower panel, bottom) 
BAYESN models the apparent colour as the sum of two latent components: 
the intrinsic colour (blue) and the positive reddening due to dust, E ( B − V ) = 

A V / R V (red). The inferred population mean (blue solid) and standard deviation 
(blue dashed) of the intrinsic B − V colour distribution are indicated. We plot 
the SNe with B and V measurements within ±5 d of B maximum light. 
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ariation, which are each correlated with the rest of the SED (and
hus luminosity as a function of wavelength) in different ways. 

The population standard deviation of the peak intrinsic B − V
olour is estimated to be 0.065 ± 0.005 (blue dashed), consistent
ith the previous estimate of 0.067 ± 0.009 of Mandel et al.

 2017 ). Of course, the attribution of this residual colour scatter to
ariation intrinsic to the SNe depends on the model assumptions
eing true. Possible misspecifications that might contribute some
on-intrinsic scatter to this variance include colour calibration error
nd population variation of the dust law R V . Burns et al. ( 2018 )
ound the typical zeropoint calibration error ≈0.02 mag for CSP
the majority of our data set), and Scolnic et al. ( 2015 ) found that
eropoint errors are typically uncorrelated between bands, so we
xpect this contamination to be small. For a population variance σ 2 

R in
ust laws around the single R V of the model, a very rough calculation
hows that the error in dust reddening that may leak into intrinsic
olour scatter, σ E ( B − V ) ≈ ( τA / R V )( σ R / R V ) � 0.02 mag even with
oderate variation σ R � 0.6 (Thorp et al. 2021 ) for this range of low-

o-moderate reddening, and thus is also expected to be subdominant.
NRAS 510, 3939–3966 (2022) 
.2 Population inference 

he statistical properties of the latent SED, captured by the intrinsic
PC, residual covariance, and dust distribution, are learned during

he BAYESN model training phase by sampling the global posterior
ensity, equation (29). 

.2.1 Intrinsic SED components 

he baseline intrinsic SED depicted in Fig. 1 is obtained with θs 
1 =

 

s 
V = e s = δM s = 0, and is equal to S 0 ( t, λr )10 −0 . 4[ M 0 + W 0 ( t,λr )] . The
rst functional principal component (FPC) W 1 ( t , λ) is also shown in
ig. 1 . The top panel of Fig. 5 shows the effect of our first functional
omponent W 1 ( t , λ) on the baseline intrinsic SED at phases t = 0
nd t = 20 as one changes the coefficient θ1 . In the bottom panel, for
omparison, we show the effect of the dust extinction on the SED.
n interesting difference between the two is the sign flip of the effect
f θ1 in the NIR at phase t = 20. Under this effect, SNe Ia that are
immer in the optical are actually brighter in the NIR YJ bands at this
ater phase. This is an indication of the correlation of dimmer SNe Ia
aving earlier rises to the secondary NIR maximum. In contrast, the
ffect of dust is to make SNe Ia dimmer at all phases. This sign-flip
istinction may help break the de generac y between intrinsic SN and
xtrinsic dust effects. 

The figure also shows a reference set of filter passband functions
with arbitrary scaling for visualization purposes). We visualize the
ffect of our functional components on rest-frame photometric light
urv es by inte grating our SED model with various parameter values
nder this reference set. The reference set we choose for illustration
re the CSP BVriYJH passbands and the z-band filter from Pan-
TARRS1 (PS1). The rest-frame z-band (at ≈ 0 . 9 μm, between i
nd Y ) region of SN Ia SEDs is regularly probed by low- z surv e ys
uch as Foundation and YSE, but is not modelled by either SALT2
r SNooPy. In Section 5.4, we demonstrate an example of BAYESN
tting of a rest-frame z-band SN Ia light curve from Foundation DR1
F ole y et al. 2018b ). 

By integrating the SED model under these reference optical and
ear-infrared passbands, we show in Fig. 6 the effect of the 1st FPC
 1 ( t , λr ) on the intrinsic optical and NIR light curves. We see that this

ntrinsic component captures the optical width–luminosity relation
Phillips 1993 ): intrinsically brighter supernovae have more slowly
eclining (or broader) light curves, whereas dimmer ones decline
aster. This effect is seen most clearly in the B and V bands. In the
edder optical bands ( r and i ) and into the NIR zYJH bands, we see
hat this same effect is also correlated with the timing of the second
eak at t = 20 −30 d: brighter supernovae tend to have later secondary
IR peaks, while dimmer SNe Ia have earlier ones, which is a further

eflection of the trend seen in Fig. 5 . In iYJH bands, the effect also
orrelates to more pronounced second peaks. The empirical relation
e capture correlates strongly with the theoretical models of Kasen

 2006 ), who found that brighter SNe Ia should have more pronounced
IR secondary maxima at later phases due to role of the ionization

volution of iron group elements in the SN ejecta in redistributing
nergy from the optical to the NIR. Similar trends have been seen by
hawan et al. ( 2015 ), and Shariff et al. ( 2016a ) explored the use of

he phase of the secondary NIR maximum for standardizing SN Ia
ptical magnitudes. 
The first NIR peak typically occurs a few days before the optical

 B ) peak ( t = 0). Estimation of the 1st FPC at early pre-maximum
hases in the NIR is somewhat limited by the relative scarcity of
uality NIR observations there in the current data set (particularly
n the H -band). Hence, the apparent sensitivity of the early

art/stab3496_f4.eps
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Figure 5. (top) Variation in the optical and NIR intrinsic SED captured by the first functional component W 1 ( t , λ) at t = 0 and 20 d. We vary the value of θ1 by 
θ̄1 ± 2 σ , holding all other SN parameters to zero. (bottom) The effect of dust extinction on the optical and NIR SED. We apply dust extinction to the baseline 
mean intrinsic SED with different combinations of A V , R V that produce the same optical colour excess E ( B − V ) = A V / R V . 
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 t < −5) H -band light curve to θ1 W 1 ( t , λ) may be spurious. Future
ata releases with greater NIR co v erage at early phases will help us
mpro v e the model. 

In Fig. 7 , we illustrate the dependence of optical and NIR absolute
agnitudes on the SED shape parameter θ1 of the FPC. The extin- 

uished absolute magnitudes M 

ext 
s of an SN s are obtained by e v al-

ating the model SED with its fitted parameters ( θs 
1 , e s , δM s , A 

s 
V ),

etting μs = 0, and integrating it under the reference passbands in the
N rest-frame. The intrinsic absolute magnitudes M 

int 
s are obtained in 

he same way but by setting A 

s 
V = 0. In the optical B -band the average

ust extinction correction is a 0.40 mag shift in absolute magnitude 
or the sample. In the NIR Y , H -bands, the mean shift is 0.10 and 0.06
ag, respectively, which reflects the much diminished effect of dust 

xtinction in the NIR compared to the optical (Fig. 1 ). The relatively
teep mean dependence of the B intrinsic absolute magnitude on 
1 captures the optical width–luminosity relation (Phillips 1993 ). In 

he NIR, the slopes of the dependence of Y and H intrinsic absolute
agnitudes with θ1 are consistent with zero, after marginalizing 
 v er the posterior uncertainties. The scatter about the mean intrinsic
elation due to the SED residual functions is approximately 0.10 
ag. We note that the scatter around the mean intrinsic relation

s not necessarily identical to the photometric distance uncertainty 
or the expected scatter in the Hubble diagram. This is because the
ED shape θ1 and the dust extinction A V factors must themselves 
e estimated from the data, and their uncertainties are themselves 
nfluenced by the intrinsic residual covariance. Instead, proper 
nference of the photometric distance uncertainty comes from the 
arginalization in equation (31). Ho we ver, the diminished ef fect of

ust A V and the insensitivity to θ1 in the NIR do significantly reduce
heir contributions to the derived photometric distance uncertainties. 

Colour curv es, deriv ed from flux ratios or magnitude differences
etween different filters, provide a useful window for understanding 
Ne Ia, since they are independent of the distance estimate and its
rrors. In the top panel of Fig. 8 , we illustrate the effect of the W 1 ( t ,
r ) on the intrinsic optical-NIR colour curves by varying θ1 . At
ach epoch t , these are obtained by integrating the resulting rest-
rame SED under each passband taking the difference with respect 
o the V -band magnitude. The general trend is that the intrinsically
MNRAS 510, 3939–3966 (2022) 
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Figure 6. Intrinsic variation in optical and NIR intrinsic absolute light curves captured by the first functional component W 1 ( t , λ). We vary the value of θ1 by 
θ̄1 ± 1 σ , while fixing A V and other SN parameters to zero. Variation in θ1 W 1 ( t , λ) captures the width–luminosity relation in the optical (Phillips 1993 ). Variation 
in this component simultaneously modulates the amplitude and timing of the second peak in the near-infrared. For visual clarity, the absolute light curves have 
been shifted vertically by arbitrary constants ( B : 0, V : −1, r : −2.5, i : −4, z: 0.5, Y : −1, J : −3, H : −4). 

Figure 7. Intrinsic variation and host galaxy dust effects on peak absolute 
magnitudes at T B,max (phase t = 0) in the rest-frame optical B and NIR 

Y , H bands. Each point is a posterior realization of the intrinsic absolute 
magnitude M 

int 
s (blue) or host dust-extinguished absolute magnitude M 

ext 
s 

(red) of each SN. In each panel, we plot the SNe with data in a given 
filter. The solid line indicates the mean effect of the intrinsic W 1 ( t , λ) model 
component on the intrinsic absolute magnitude through the coefficient θ1 . 
The slope of this line is indicated as b . The dashed lines indicate ±1 standard 
deviation captured by the intrinsic residual covariance. The mean effect of 
host galaxy dust extinction in each band, quantified by the sample average dif- 
ference between each SN’s extinguished and intrinsic absolute magnitude, is 
shown. 
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righter, and more slowly declining, SNe Ia (more ne gativ e θ1 ) tend
o have bluer (more ne gativ e) colour curv es in each of the colours
hown. The first FPC W 1 ( t , λr ) modulates the colour curves in a
ime-dependent fashion. While there are fixed points in phase when
articular intrinsic colours are fairly insensitive to θ1 , at phases 10 <
 < 20 d, there is significant intrinsic colour variation in all optical-
IR colours relative to V -band. 
In the bottom panel of Fig. 8 , we compare this with the impact

f host galaxy dust reddening on the optical-NIR colour curves. In
ontrast to the intrinsic FPC, the effect of dust on colour curves is
elatively constant in phase, 10 and the main effect is across different
olours. We show the mean intrinsic colour curves with no dust A V =
 (thin blue), as well as two combinations of the dust parameters [( A V ,
 V ) = (0.75, 3) or (0.50, 2)] that result in the same colour excess
 ( B − V ) = A V / R V = 0.25. The plot demonstrates that, with apparent
olour information in optical BVr data alone, it is very difficult to
istinguish between the two possibilities. In contrast, the optical-NIR
 − YJH colour information helps us to break the de generac y and
istinguish between the two values of the dust law R V . 

.2.2 Intrinsic SED residual distribution 

he model captures the population distribution of residual SED
ariations that are unexplained by the intrinsic FPC, the host
0 In principle, it is not exactly time-independent: since the intrinsic SN SED 

s time-e volving, e ven if the amount of dust extinction A V is truly constant, the 
eddening effect on each magnitude has some time-dependence (e.g. Phillips 
t al. 1999 ; Jha et al. 2007 ). Ho we ver, this ef fect is too small to be seen on 
he plot. 
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Figure 8. (top) Intrinsic variation in optical and NIR colour curves captured by the first functional component W 1 ( t , λ). We vary the value of θ1 by θ̄1 ± 1 σ , 
while fixing A V and other SN parameters to zero. (bottom) Effect of host galaxy dust extinction on optical and NIR colour curves. We show unreddened, intrinsic 
colour curves (blue), and two apparent colour curves with the same amount of optical E ( B − V ) colour excess due to dust, but two different values of the dust law 

R V = 2 or 3. We fix θ1 and other SN parameters to zero. The phase-dependence of the W 1 ( t , λ) component on intrinsic colour curves makes it distinguishable 
from dust. The effect of dust reddening on colour curves is approximately constant with phase. (bottom left-hand panel) With optical data only, it is difficult to 
distinguish between two different combinations of host dust A V , R V that produce the same colour excess E ( B − V ) = A V / R V . (bottom right-hand panel). Since 
the dust extinction in the NIR is smaller and less dependent on R V , the optical-NIR colour curves help to break this degeneracy. For visual clarity, the colour 
curv es hav e been shifted v ertically by arbitrary constants ( B − V : 0, V − r : 1.3, V − i : 2.5, V − z: 3.5, V − Y : 0.25, V − J : 2.25, V − H : 3.25). 
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Figure 9. Effects of the covariance of phase- and wavelength-dependent intrinsic SED residuals on optical and NIR light curves (top) and colour curves 
(bottom). We fix the main effects θ1 = A V = 0. The black solid lines represent the light curves or colour curves generated from the mean intrinsic SED model. 
The dashed lines correspond to ±1 population standard deviation around the mean curves captured by the intrinsic SED residual covariance. The light curves 
or colour curves corresponding to the effects of the inferred intrinsic SED residual functions ηs ( t , λ) of three example SNe in the training set are shown as blue, 
yellow, or red curves. For example, the red curves in all the panels correspond to the effect of the intrinsic SED residual function of a single SN. 
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alaxy dust extinction, peculiar velocities, or other external distance
ncertainties, or measurement error, through the residual covariance.
he total residual SED function of an SN Ia s is ηs ( t , λr ) = δM s +
s ( t , λr ). An example of an SED residual function is shown in Fig. 1 .
NRAS 510, 3939–3966 (2022) 
Fig. 9 shows the effect of intrinsic SED residuals on rest-frame
ptical and NIR light and colour curves. We hold θ1 = A V = 0,
nd we compute the impact of the distribution of SED residuals
n the light curves and colour curves by integrating through the

art/stab3496_f9.eps
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Figure 10. Correlation matrix of optical-NIR light-curve residuals o v er 
phase for the K = 1 model. (top right-hand panel) The correlation matrix of 
magnitude residuals in optical-NIR filters attributed to the total SED residual 
functions η( t , λr ) = δM s + εs ( t , λr ). (bottom left-hand panel) The correlation 
matrix of magnitude results in optical-NIR filters attributed to the time- and 
wavelength-dependent residual functions εs ( t , λr ). For visualization purposes, 
the absolute value of the correlation coefficient is plotted. 
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Figure 11. Distribution of posterior mean estimates of A 

s 
V for the SNe Ia 

sample. The model exponential distribution with the inferred scale (average) 
τA is shown. 

Figure 12. Posterior distribution of the inferred global R V of the host galaxy 
dust law and τA , the population mean A V . The black contours of the 2D 

contour plot contain 68 per cent and 95 per cent of the posterior probability, 
and the mode is marked. The 1D marginals are depicted by kernel density 
estimates of the MCMC samples. 
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eference passbands. We compute the ±1 σ range at each epoch 
 . We do not unrealistically assume the residuals are statistically 
ndependent at each phase or in each filter; rather the residuals

anifest as continuous perturbations around the main effects. The 
odel captures continuous residual SED functions correlated across 

hase and wavelength. To illustrate this, we show the effect of three
ealizations of the intrinsic residual functions on the light curves. 
he residual variance is generally narrow at phases around the first
eak. In later phases, particularly in the NIR, there is more intrinsic
esidual variation because the 1st FPC does not capture the full range
f variation of the second peak. 
Fig. 10 depicts the correlations o v er phase and wavelength of

he impact of the total residual functions ηs ( t , λr ) and the time-
nd wavelength-dependent part εs ( t , λr ) on the rest-frame optical- 
IR light-curve magnitudes. The total residual map (top right-hand 
anel) indicates moderate-to-strong correlations between the optical 
ands, but weaker cross-correlations between optical and NIR bands. 
hile this is clearest at peak ( t = 0), a similar pattern persists at later

hases, as well as in cross-phase correlations. At late phases ( t =
0, 30), the Y -band residual appears to have low correlation with
ther bands; this is likely due to significant variations in the second
eak at these phases, as seen in Fig. 9 . When the inferred grey time-
onstant scatter is remo v ed, the correlations due to εs ( t , λr ) (bottom
eft-hand panel) are reduced, but there is still interesting structure. In
articular, there are still moderate correlations between bands in the 
ost-decline phases ( t = 10, 20) as well as intertemporal correlations
e.g. between t = 10, 20, 30). In Section B, we show that some of the
dditional structure there may be captured with higher order FPCs. 

.2.3 Host galaxy dust population 

ig. 11 shows the distribution of posterior mean estimates of the 
ndividual dust extinction A V values. It is well described by an 
xponential distribution with an average value of τA = 0.329 ± 0.045 
ag, consistent with previous estimates in the range of 0.3 −0.4 
ag found for similar samples (Jha et al. 2007 ; Mandel et al. 2011 ,
014 ). Fig. 12 shows posterior inferences of the average τA and
he global value of the dust law slope R V . The posterior constraints
re determined during the training phase, and thus are obtained by
arginalizing o v er all other components and hyperparameters of the

ierarchical model. These posterior estimates are well constrained 
airly independently. In particular, for this sample with colour excess 
 ( B − V ) host � 0.4, the estimated global R V = 2.89 ± 0.20 is
onsistent with the average for normal Milky Way dust. This is
n good agreement with previous analyses of nearby samples, which 
ave found, at these relatively lo w-to-moderate v alues of reddening
which are similar to those found in the cosmological sample), 
verage values of the host dust R V ≈ 2.5 −3 (Chotard et al. 2011 ;
 ole y & Kasen 2011 ; Mandel et al. 2011 ; Burns et al. 2014 ; Mandel
t al. 2017 ; L ́eget et al. 2020 ). 

The hierarchical model constrains R V by analysing and weighing 
he entire distribution of SEDs o v er phase and optical to NIR
avelengths using the entire training set of SNe Ia. For visualization
urposes, ho we ver, it is useful to inspect a ‘slice’ of this inference
y examining a low-dimensional summary. Multidimensional colour 
nformation is useful as it provides constraints on the dust distribution
MNRAS 510, 3939–3966 (2022) 
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Figure 13. Constraints on the host galaxy dust R V from the optical and NIR 

colour–colour diagram of SNe Ia observed in B , V , and H near peak ( t = 0). 
(top left-hand panel) Each point is a posterior realization of the peak apparent 
colours (red) or intrinsic colours (blue) of an SN, corrected for the inferred 
intrinsic colour-shape relation to θ1 = 0. The blue ellipses are (68 per cent, 
95 per cent) contours of the intrinsic colour population distribution inferred 
during the training phase, which estimated a global dust law parameter R V = 

2.89 ± 0.20. For comparison, the red solid (dashed) lines have the slope of 
the reddening vector for R V = 3 in these colours, and intercept the mean 
(are tangent to the 95 per cent contour) of the intrinsic distribution. Nearly all 
of the SNe Ia apparent colours should lie within the dashed lines under the 
correct dust reddening law. (top right-hand panel) Comparison of the apparent 
colour distribution with the inconsistent dust reddening vector for R V = 2. 
(bottom lefthand panel) Comparison of the apparent colour distribution with 
the inconsistent dust reddening vector for R V = 1.5. 
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11 In practice, after training the K = 1 model, we estimate a sample covariance 
̂ Cov [ θ1 , δM] = 0 . 0013, corresponding to a sample correlation 0.016, both 
consistent with zero. For the K = 2 model (Appendix B), we estimate a 
sample co variance ̂ Co v [ θ1 , θ2 ] = 0 . 01 corresponding to a sample correlation 
of 0.01, also consistent with zero. 
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hile being insensitive to the distance estimate (and its errors). We
xploit the fact that the optical and NIR data allows us to constrain
he dust effects o v er a much larger wavelength range than is possible
onventionally with the optical data alone. The plot of the dust law in
ig. 2 shows that the extinction at NIR H -band ( ≈ 1 . 6 μm, cf. Fig. 5 )

s only 16 per cent of that in optical V -band ( ≈ 0 . 54 μm), and very
nsensitive to R V . Thus, the differential extinction (the colour excess)
etween V - and H -bands probes a large net dust effect ( ≈ 0 . 83 A V ),
hile itself being insensitive to R V . Meanwhile, the colour excess
etween B ( ≈ 0 . 43 μm) and H -bands similarly co v ers a large
avelength range and therefore a large dust effect, but because of the
igh sensitivity of A B to R V (for a given A V ), this colour excess is very
ensitive to R V . The complementary optical B − V colours co v er only
 narrow range in the optical, and therefore captures a smaller differ-
ntial effect of dust, but is also highly sensitive to R V . The advantage
f measurements spanning optical to NIR is that we can leverage the
oint colour information in these SNe Ia to constrain and break the
e generac y between A V and R V in the optical-only colours (Fig. 8 ). 
Fig. 13 shows a ‘slice’ of the constraints on R V in these colours

rom training the BAYESN model (equation 29). The top left-hand
anel shows the distribution of peak ( t = 0) apparent colours and
ntrinsic colours inferred by the model, and corrected for the inferred
ntrinsic colour-shape relation (Fig. 8 ) to θ1 = 0. The inferred
ntrinsic colour distribution is anchored by the SNe Ia with the least
nferred amount of dust. The red arrow indicates the dust reddening
ector for each colour pair for the dust law R V = 3 and illustrates a
hift corresponding to A V = 0.57 mag from the centre of the intrinsic
olour distribution. The colour distributions are consistent with an
 V = 3 dust law (and the posterior estimate R V = 2.89 ± 0.20). 
NRAS 510, 3939–3966 (2022) 
The other panels show that the apparent colour distribution in
hese colour pairs are inconsistent with the dust reddening vectors
or R V = 2 or R V = 1.5. That is, given the apparent colours of the
ow-reddening set (low B − H ), assuming a low R V would predict
luer (more ne gativ e) av erage V − H apparent colours for a giv en B

H for more reddened SNe Ia (e.g. B − H > 0.5) than is observed.
onversely, the apparent colours of the high-reddening set (high B

H ) would imply that the apparent V − H colours of the low-
eddening set ought to be redder (more positive) than is observed,
hen assuming a low R V . For B − V colours, the same inconsistencies
ersist but in the opposite sense. The high- and low-reddening ends
f the apparent colour distribution are most consistent with each
ther for R V ≈ 3. 
Because the estimation of R V hinges on the comparison of the

olours of high-reddening SNe to those of low-reddening SNe, the
ost highly reddened SNe have the most leverage. In our sample, SN

998bu has the largest extinction estimate ( A V = 1.15 ± 0.08). To test
hat our R V estimate is not entirely driven by this SN, we retrained
he full hierarchical model omitting SN 1998bu. We found R V =
.83 ± 0.19, indicating that our estimate is robust to the reddest SN.

.2.4 Covariance structure of optical and NIR peak absolute 
agnitudes 

uring the training phase, we estimate the population covariance
tructure of SN Ia SEDs. The covariance structure is implied by the
odel equation (12) and the population distribution of the latent

arameters. The total population covariance of the log latent SED at
wo different rest-frame coordinates ( t , λr ) and ( t ′ , λ′ 

r ) is captured by
he model as 

ov [ log S( t, λr ) , log S( t ′ , λ′ 
r )] = Var [ A V ] ξ ( λr ; R V ) ξ ( λ′ 

r ; R V ) 

+ 

[ 

K ∑ 

i= 1 

W i ( t, λr ) W i ( t 
′ , λ′ 

r ) 

] 

+ σ 2 
0 + k ε( t, λr ; t 

′ , λ′ 
r ) , (32) 

here k ε( t, λr ; t ′ , λ′ 
r ) is given by equation (23), and we invoke

he statistical properties of the latent variables: e.g. Cov[ θ i , θ j ] =
ij , Cov[ θ i , δM ] = 0 (consequences of the independent prior and
opulation distributions specified in Section 2.5). 11 On the right-
and side, the top line describes the covariance across rest-frame
avelength induced by the dust extinction and the dust law ξ ( λ),
hich depends on R V . The second line describes covariance across
oth phase and wavelength induced by the K intrinsic functional
rincipal components of the SED. The third line describes the
ovariance of the intrinsic residual terms ηs ( t , λr ) = δM s + εs ( t , λr ).
ecause the absolute magnitude in any one passband at some phase t

s obtained by exponentiating equation (12) and then performing an
ntegral of the SED under the transmission function, the covariance
etween any pair of absolute magnitudes in different filters at
ifferent phases is not analytic and must be computed numerically. 
The population variance of the time- and wavelength-independent

grey’ magnitude offsets δM s is captured in σ 2 
0 . Since this mode

s indistinguishable from distance in the light-curve data, this term
ets an uncertainty floor for the photometric distances. At low- z, the
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Figure 14. Map of population correlations between peak ( t = 0) extinguished 
absolute magnitudes in optical and NIR passbands. These include all modelled 
sources of latent SED variation, including dust extinction, the intrinsic FPC 

θ1 W 1 ( t , λr ), and the residual SED cov ariance. Dust ef fects induce significant 
wavelength-dependent correlations in the optical, but have significantly 
diminished effect in the NIR. While the optical magnitudes are significantly 
correlated with themselv es, the y are less so with the NIR magnitudes, with 
optical-NIR cross-correlations as low as ≈ 40 per cent . This indicates there 
is additional information in the NIR that helps impro v e distance estimates. 
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stimated value of σ 0 is sensitive to the assumed value of σ pec , since
he latter determines how much of the Hubble residual scatter can 
e attributed to peculiar velocity uncertainty. On training with our 
ssumed value of σ pec = 150 km s −1 (Carrick et al. 2015 ), our model
stimates σ 0 = 0.09 ± 0.02 mag. 12 Ho we ver, with a higher value of
pec = 250 km s −1 (e.g. Scolnic et al. 2018 ), our model estimates
0 = 0.06 ± 0.02 mag. In the future, a higher redshift optical and
IR sample would help determine σ 0 more robustly against peculiar 
elocities. 

The full covariance structure over rest-frame phase and wavelength 
earned by the model is complex, and we defer a detailed discussion
o future work. Here, we distill some of its key aspects. Fig. 14
epicts the population cross-correlation structure between peak (at 
 = 0) optical and NIR absolute magnitudes. The variation in absolute
agnitudes is generated by the combination of the various latent 

omponent effects on the SED, and is obtained by integrating the 
ED through the reference filters. The map shows the correlation 
f the peak extinguished absolute magnitudes across optical and 
IR passbands, inclusive of dust, intrinsic θ1 SED variation, and 

esidual covariance. The peak absolute magnitudes in the optical have 
 very strong total correlation, whereas the cross-correlation between 
ptical and NIR peak absolute magnitudes is as low as ≈ 40 per cent .
his is caused in part by the strong, coherent wavelength-dependence 
f the host galaxy dust extinction. Ho we ver, the dust extinction is
ignificantly diminished in the NIR. This reduced cross-correlation 
ndicates there is additional information in the NIR magnitudes that 
elps us to impro v e distance estimates. 
2 There is a minor mathematical de generac y between δM s and the time- and 
a velength-a veraged mean 〈 ε s ( t , λr ) 〉 , so that the full grey time-constant 

catter is the sum of the two. Ho we ver, this is largely broken via the priors 
uring training. After training, if we reassign the 〈 ε s ( t , λr ) 〉 to δ M s , this 
erely increases the σ 0 by 0.004 mag, five times smaller than the posterior 

ncertainty. 

n
a  

(
B

1

.3 Hubble diagram analysis 

fter training the model by sampling equation (29), we obtain 
osterior estimates of the FPC and population hyperparameter 
ˆ H ≡ ( ˆ W 0: K 

, ˆ � ε, ̂  σ 2 
0 , ̂  τA , ˆ R V ). We then use these to e v aluate the

hotometric distances, derived from the light curves alone, using 
quation (31). We take the posterior mean and standard deviation 
f the posterior probability density of the photometric distances. 
able 1 lists the redshifts, external distance estimates, and BAYESN 

hotometric distance moduli for the sample. 
We assess the accuracy and precision of our photometric distance 

stimate by comparison to the external distance estimates, via the 
ubble residuals, ˆ μphot 

s − ˆ μext 
s . We compare them using two summary 

tatistics, listed in Table 2 . First, we report the simple total RMS the
ifferences between our posterior mean estimate photometric dis- 
ance modulus ˆ μphot 

s and the external distance estimate ˆ μext 
s . Secondly, 

e report a statistic we denote ˆ σ-pv , obtained by minimizing 

ˆ -pv = arg max 
σ-pv 

log 

[ ∏ 

s 

N 

(
ˆ μphot 

s | ˆ μext 
s , σ 2 

ext ,s + σ 2 
-pv 

)] 

. (33) 

his is a maximum-likelihood estimate of the amount of dispersion 
n the Hubble residuals not accounted for by the uncertainties in
he external distance estimate, which is dominated by the peculiar 
elocity uncertainty σ pec = 150 km s −1 for the vast majority of this
ow- z sample. 

It is conventional in the SALT2 analysis to compute an ‘intrinsic
ispersion’ 13 of the Hubble residuals, by estimating the amount of 
catter in the Hubble residuals in excess of the expected contributions
f ‘measurement error’ (which is really the estimated uncertainty on 
he fit parameters m B , x 1 , c ), and the peculiar velocity uncertainties.
his is necessary because only the light-curve fitting uncertainties 
n the SALT2 parameters are propagated through the Tripp formula, 
quation (1), to compute the distance modulus uncertainties, and the 
esults are typically much smaller than the total RMS in the Hubble
iagram. Similarly, SNooPy only uses the photometric measurement 
ncertainties in the light curve fit. In contrast, BAYESN produces 
istance uncertainties via Bayesian marginalization of the SED fit to 
he light-curve data, coherently incorporating θ1 and A V uncertainties 
nd the residual covariance over phase and wavelength (equation 31). 
ince each method has a different way of reporting the distance
rrors, we do not ‘subtract’ the reported distance errors from the total
MS. Instead, to ensure consistent comparisons across methods, 
e use ˆ σ-pv to remo v e from the total RMS only the expected

ontribution from external distance errors (e.g. peculiar velocities), 
hich are the same for each method applied to the same set of 
Ne Ia. 
Table 2 lists these Hubble residual dispersion measures for 

ifferent subsets of the SN Ia sample. The vast majority comes
rom two large surv e ys with homogeneously reduced data, the
fA (Hicken et al. 2009 , 2012 ; Friedman et al. 2015 ) and CSP-I

Krisciunas et al. 2017 ). We label this set ‘CfA + CSP’. Including
he minority of other SNe Ia drawn from the more heterogeneous
ata sources in the literature results in the ‘All’ sample. Further-
ore, a subset of the full ‘AnyNIR’ sample with NIR observations

ear maximum light is labelled ‘NIR@max.’ We run BAYESN 

nd SNOOPY on either optical-only ( BVRI ) or optical + NIR
 BVRIYJH ) light-curve data, while SALT2 is only run on optical 
VRI data. 
3 But see footnote 2. 
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Table 2. Summary of Hubble residuals. 

SN source a NIR cut b N SN λc Model d Total rms e σ -pv (150) f 

CfA + CSP NIR@max 40 BVRIYJH BayeSN-tr 0.096 0.083 
CfA + CSP NIR@max 40 BVRIYJH BayeSN-cv 0.108 0.099 
CfA + CSP NIR@max 40 BVRIYJH SNooPy 0.141 0.110 
CfA + CSP NIR@max 40 BVRI SALT2 0.129 0.112 

All NIR@max 48 BVRIYJH BayeSN-tr 0.113 0.091 
All NIR@max 48 BVRIYJH BayeSN-cv 0.123 0.107 
All NIR@max 48 BVRIYJH SNooPy 0.148 0.110 
All NIR@max 48 BVRI SALT2 0.131 0.114 

CfA + CSP AnyNIR 66 BVRIYJH BayeSN-tr 0.135 0.109 
CfA + CSP AnyNIR 66 BVRIYJH BayeSN-cv 0.145 0.124 
CfA + CSP AnyNIR 66 BVRIYJH SNooPy 0.157 0.128 
CfA + CSP AnyNIR 66 BVRI SALT2 0.147 0.125 

All AnyNIR 79 BVRIYJH BayeSN-tr 0.137 0.109 
All AnyNIR 79 BVRIYJH BayeSN-cv 0.147 0.123 
All AnyNIR 79 BVRIYJH SNooPy 0.161 0.125 
All AnyNIR 79 BVRI SALT2 0.148 0.122 

CfA + CSP AnyNIR 66 BVRI BayeSN-tr 0.149 0.128 
CfA + CSP AnyNIR 66 BVRI BayeSN-cv 0.156 0.140 
CfA + CSP AnyNIR 66 BVRI SNooPy 0.158 0.142 
CfA + CSP AnyNIR 66 BVRI SALT2 0.147 0.125 

All AnyNIR 79 BVRI BayeSN-tr 0.150 0.126 
All AnyNIR 79 BVRI BayeSN-cv 0.157 0.137 
All AnyNIR 79 BVRI SNooPy 0.158 0.140 
All AnyNIR 79 BVRI SALT2 0.148 0.122 

Note. a Data Source. ‘All’ = CfA + CSP + Others b The ‘NIR@max’ cut requires NIR data near maximum 

light. ‘AnyNIR’ does not. c In optical + NIR fitting, all available data in BVRIYJH is used. In optical-only 
fitting, only available data in BVRI is used, where R and I can also include r , r 

′ 
, and i , i 

′ 
. In either case, 

the model was trained on optical + NIR data. d ‘Bayesn-tr’ refers to the error of photometric distances from 

resubstitution of the whole training set. ‘BayeSN-cv’ refers to the error of photometric distances from 10-fold 
cross-validation. We cannot do equivalent cross-validation with SALT2 or SNooPy. e Simple total RMS of the 
Hubble residuals. f Dispersion estimate after removing expected variance due to peculiar velocity uncertainties, 
assuming σpec = 150 km s −1 . 
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.3.1 Resubstitution or training error 

he resubstitution, or training error, is obtained by training the model
n the optical + NIR data of the full sample, and then applying it to
t the optical + NIR or optical-only light curves of SNe Ia in the

raining set to determine their photometric distances. In Table 2 ,
hese estimates are labelled ‘BayeSN-tr’. Fig. 15 shows the Hubble
iagram obtained with BAYESN fits of optical and NIR data of
he CfA + CSP NIR@max sample. With joint optical and NIR
ata, BAYESN achieves a low total RMS = 0.096 mag on this set.
emoving the expected contribution from external distance error
nd peculiar velocities, we obtain ˆ σ-pv = 0 . 083 mag. Meanwhile,
n the same set of SNe Ia, SNOOPY , and SALT2 have larger RMS

0.13–0.14 mag, with ˆ σ-pv ≈ 0 . 11 mag. Notably, the photometric
istance modulus uncertainties of individual SNe Ia from SNOOPY

r SALT2 with the standard procedure are small in comparison to
he total RMS, because they only propagate the photometric light
urve uncertainties (and in SALT2, the error model covariance). In
ig. 15 , we show these error bars, and, in grey, we have added

o those in quadrature the residual variance needed to make the
otal reduced χ2 of each Hubble Diagram equal to one. In contrast,
he BAYESN photometric distance uncertainties are obtained in a
rincipled manner by marginalization of the latent components
ncluding the residual covariance (equation 31). The individual
hotometric distance uncertainties from BAYESN listed in Table 1
lready reflect the scatter in the Hubble diagram. 
NRAS 510, 3939–3966 (2022) 
We assess the significance of the difference between the RMS
ubble residual of distance from our model compared to those

rom SALT2 using bootstrap. From the full training set SNe Ia,
e construct a bootstrapped set by sampling with replacement. For

ach method, we compute the Hubble residual RMS of the SNe
a within the bootstrapped set. We compute the difference in RMS
etween the two methods within the bootstrapped set. We repeat
his 1000 times and then compute the variance of the differences
n RMS across the bootstraps. This procedure accounts for the
act that each method is analysing the same set of SNe Ia, and
herefore the joint sampling distribution of both methods’ RMS o v er
ootstraps is correlated. For the CfA + CSP NIR@max subset, we
ompare SALT2 using optical (which has the lowest RMS of the
lternate methods) versus BAYESN using optical + NIR, and we find
 � RMS = 0 . 033 ± 0 . 012 (2 . 7 σ ). 

Avelino et al. ( 2019 ) recently obtained RMS scatter of 0.11–0.12
ag for the same SNe in the NIR@max subsets using only NIR
JHK s light-curve data, and without any host-galaxy dust correction.
ur optical + NIR results are a slight impro v ement o v er that. Since

his sample has already been restricted to low-to-moderate reddening
 ( B − V ) host < 0.4, we expect the NIR extinction corrections to be
mall. With the fitted exponential dust distribution and dust law, the
 -band extinction A H has a population standard deviation ≈0.06
ag, a subdominant component of the total v ariance. Ho we ver,
hen fitting more highly reddened SNe Ia, or light curves with a



BayeSN 3961 

Figure 15. Comparison of Hubble diagrams and Hubble residuals from BAYESN , SNOOPY , and SALT2 , applied to the same set of CfA and CSP SNe Ia with 
NIR data near maximum light. (top left-hand panel) Hubble Diagram of photometric distances obtained by fitting the optical and NIR light curves with BAYESN , 
compared to the local distance-redshift relation under standard cosmological parameters. (bottom left-hand panel) Hubble residuals for BAYESN . The simple 
total RMS is 0.096 mag. After removing the expected variance due to peculiar velocity uncertainty (dashed, σ pec = 150 km s −1 ), the remaining dispersion is 
ˆ σ-pv = 0 . 083 mag. The distance uncertainties are determined via marginalization accounting for the residual covariance (equation 31). (top right-hand panel) 
Hubble residuals from SALT2 applied to the optical-only data ( BVRI ) of the same sample. (bottom right-hand panel) Hubble residuals from SNooPy applied to 
the optical and NIR data of the same sample. For SALT2 and SNooPy, we show two error bars for each SN: one obtained from the light-curve fit uncertainties, 
and, in grey, those augmented in quadrature with the residual variance needed to make the total χ2 

ν = 1 for each Hubble diagram. Y -band data is only available 
for CSP objects (c.f. Table 1 ). 
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horter NIR wavelength range, we expect even the NIR extinction 
orrections, determined from joint fits with the optical, to become 
ore important. Current NIR SN Ia light curves are usually ob- 

ained as follow-up observations to optical disco v eries and BAYESN 

s able to also leverage the complementary optical data already 
btained to analyse the full wavelength range in an automated, 
onsistent way. 

Table 2 summarizes of Hubble diagram dispersions of the other 
ubsets of the SN Ia sample. We find that the addition of the
iterature sample to the CfA + CSP sample (to constitute All) 
ncreases the dispersion slightly in nearly all cases, which is to be
xpected since these SNe Ia come from more heterogeneous data 
ources. BAYESN optical + NIR distances are still more precise 
han SNooPy and SALT2 in the AnyNIR sample, when we do not
equire NIR measurements near maximum light, but the advantage 
s reduced. This highlights the importance of obtaining the NIR data 
ear maximum light. On optical-only data ( BVRI ), all three methods
erform similarly, with total RMS ≈0.15 −0.16 mag. 
.3.2 Cross-validation 

ross-validation techniques to test the sensitivity of SN Ia models 
nd their distance estimates to the finite training set have been
reviously employed by Mandel et al. ( 2009 , 2011 ) and Blondin,
andel & Kirshner ( 2011 ). These procedures address the double

se of the data inherent in resubstitution. We performed 10-fold 
ross-validation to assess the out-of-training sample distance error. 
e equally divided the full training set into 10 folds, each with a

oughly similar redshift distribution. First, we hold out one fold, and
rain a new BAYESN SED model on the optical + NIR data of the
Ne Ia in the other 9 folds. Then we used the new trained model

o estimate the photometric distances of the SNe Ia in the held-
ut fold, by fitting either their optical + NIR or optical-only light
urves. We repeated this procedure 10 times, each time holding out
 different fold, training a new model on the complement, and using
t to e v aluate the photometric distances of the held-out SNe. The
ubble residual summaries of the cross-validation out-of-training 
MNRAS 510, 3939–3966 (2022) 
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Figure 16. (top) BAYESN light-curve fit of Foundation DR1 griz observations 
of ATLAS16cxr. (bottom) Posterior distribution of BAYESN parameters from 

the light-curve fit. 
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ample photometric distances thus obtained are listed in Table 2 as
BayeSN-cv’. 

In the best case, for the CfA + CSP NIR@max subset, the total
MS of the photometric distances relative to the external distances is
.108 mag. As expected, this is slightly higher than the RMS training
rror (0.096 mag) because the cross-validated distance of each SN is
btained using a model trained on a set that excludes that SN. This
s an o v erestimate of the true error of the fully-trained model, since
ach model under CV is trained on a 10 per cent smaller training set
han the full sample. We expect the difference between the training
nd cross-validation error to narrow as more training data becomes
v ailable. Still, the dif ference between the two numbers is already
mall (0.012 mag), so it is reasonable to conclude that the typical
istance error for similar optical and NIR light curves with peak NIR
ata is ≈0.10 mag. 
A large fraction of our training set SNe Ia were also used in the

raining sets for both SNooPy (Burns et al. 2011 ) and SALT2 (Guy
t al. 2010 ). To our knowledge, there has been no equivalent cross-
alidation analysis, including hold-out and iterative retraining, for
hese other models. Since we are unable to retrain these other models
n partitions or resampled subsets, it is difficult to make equiva-
ent, direct comparisons of these models to our cross-validation 
esults. 

Our cross-validation runs demonstrate the capability of our train-
ng code to straightforwardly and repeatedly train new models on
ifferent SN Ia data sets automatically without human intervention.
e will be able to use this modularity to train and compare new
ayeSN SED models based on data sets partitioned by surv e y
r by astrophysical classes (e.g. SN Ia host galaxy properties or
pectroscopic subclasses) to investigate the statistical and physical
ifferences in the learned SED components and latent variables. 

.4 Application to Foundation SN Ia light cur v es 

he optical and NIR light curves in our training set listed in Table 1
re mainly from the Carnegie Supernova Project and CfA Supernova
rogram, which typically measured high-quality light curves with
elatively frequent time sampling (c.f. Fig. 3 ). Ho we ver, most SN Ia
ight curves used for cosmology are not sampled as well in phase
r wavelength. To test our model on SN Ia light curves outside of
ur training set with more typical sampling, we have fit griz light
urves obtained by the Foundation Supernova Survey using the Pan-
TARRS1 (PS1) telescope (F ole y et al. 2018b ). 
Fig. 16 demonstrates a BAYESN fit to Foundation observations

f the Type Ia SN 2016gou / ATLAS16cxr. It shows the well-
onstrained joint posterior distribution of the parameters obtained
rom the MCMC fit: the θ1 coefficient of the 1st FPC, the dust
xtinction A V , and the photometric distance μ. Because BAYESN is
 model for the continuous SED spanning 0.35 to 1.8 μm, we are
ble to integrate the model SED under the griz PS1 passbands to fit
his data, even though these exact passbands were not used in the
raining phase. Our SED model does not require K -corrections to be
omputed as pre-processing step to map observer-frame to rest-frame
assbands. Notably, the SALT2.4 model cannot properly fit rest-
rame z-band due to the wavelength limits of its SED template, and
NooPy lacks a rest-frame z-band light-curve template. Ho we ver,
roper modelling of the rest-frame z-band is important for fully
tilizing griz data from low- z surv e ys such as Foundation and the
oung Supernova Experiment. In a companion paper, we present a

ull analysis of the Foundation DR1 data set using our new BAYESN
odel (Thorp et al. 2021 ). 
NRAS 510, 3939–3966 (2022) 
 C O N C L U S I O N  

.1 Impro v ements o v er current models 

e have constructed a new hierarchical Bayesian model, BAYESN ,
or SN Ia SEDs from the optical through NIR. This is the first
tatistical model for continuous SN Ia SEDs designed for fitting
bserved optical and NIR light curve data, and is crucial for
roperly analysing NIR observations from current and future SN Ia
urv e ys. Our model is capable of statistically leveraging the powerful
roperties of SN Ia in the NIR, in particular the narrow dispersion
n NIR luminosities at peak, and the much diminished effect of dust
n the SN Ia host galaxies. BAYESN jointly leverages the optical and
IR data to constrain the dust extinction A V and the reddening law
 V more stringently, thereby controlling systematic errors due to the
ust correction. BAYESN coherently estimates the covariance of the
esidual SED functions across time and wavelength, and incorporates
hem into the dust and distance estimates in a principled, probabilistic

anner. 
By generalizing the previous hierarchical Bayesian framework of
andel et al. ( 2009 , 2011 ) from modelling light curves in fixed

iscrete rest-frame filters to modelling a continuous SED function in
hase and wavelength, we obviate the need for ad-hoc K -correction
re-processing procedures to compute 1-to-1 mappings between
bserver-frame and rest-frame filters, which is required by SNooPy.
nstead, observed data are compared directly against the model fluxes

art/stab3496_f16.eps


BayeSN 3963 

i
p
t

S
W  

r
S  

S
s
h  

a
p

c
e
f
m
S
o
i
p
t
d  

m
t
I
w
t
V  

W

6

B
w
l
d
w
o  

fl
u
c
B

o
S  

i
E  

c  

o  

E

o  

T  

H  

z  

fi
w  

1

t  

t  

f
b  

2

6

O
i  

m  

S  

a  

h
e  

e  

f
o  

o  

o
 

i
o  

b
c  

S  

n  

2  

e  

b
a
m  

m  

e  

c  

l  

m  

B  

a

a  

l
(  

S  

S
s  

S
I  

e
o  

w
f  

a
p

 

p  

i  

(  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/3/3939/6448478 by U
niversity of C

am
bridge user on 14 D

ecem
ber 2022
mplied by the redshifted SED model integrated under the observer’s 
assbands. Redshifting effects are thereby incorporated directly into 
he statistical model. 

Furthermore, BAYESN has a number of advantages o v er the 
ALT2.4 model conventionally used in cosmological analyses. 
hereas the SALT2.4 spectral template has co v erage only up to

est-frame 0.9 μm (inclusive of rest-frame i -band), our BAYESN 

ED model extends to 1.8 μm (i.e. through rest-frame H -band). The
ALT2 model does not internally discern distinct SED components 
eparately describing the effects of SN Ia intrinsic variation versus 
ost galaxy dust extinction. Instead, it uses a single colour law to fit
 single apparent colour parameter, ef fecti vely confounding the two 
hysically distinct sources of spectral variation. 
In contrast, our BAYESN SED model internally encodes the 

ontinuous wavelength-dependent host galaxy dust reddening and 
xtinction at the SN Ia SED level, as effects physically distinct 
rom the time-dependent intrinsic components of SED variation. Our 
odel leverages the photometric constraints on the entire continuous 
ED to determine the dust properties, fit for the intrinsic modes 
f variation, and coherently weigh the uncertainties and combine 
nformation from across phase and wavelength to compute the 
robability distribution of the photometric distance modulus. With 
he low- z compilation analysed here, BAYESN can determine the 
istance moduli for SNe Ia with optical and NIR co v erage near
aximum light to ≈0.10 mag precision (total RMS), compared 

o 0.13–0.14 mag using SALT2 or SNooPy on the same SNe 
a. Combining optical and NIR data across the entire phase and 
avelength range, we used BAYESN to derive tight constraints on 

he host galaxy dust la w. F or this sample with colour excess E ( B −
 ) host � 0.4, we found R V = 2.9 ± 0.2, consistent with the Milky
ay average. 

.2 Applications to current and future data sets 

eyond the data compilation analysed here, our BAYESN SED model 
ill be broadly applicable for analysing optical and NIR SN Ia 

ight-curve data from more recent and current surveys. Forthcoming 
ata from the Carnegie Supernova Project-II (Phillips et al. 2019 ) 
ill enable us to expand our nearby training set with high-quality 
ptical and NIR light curves of SNe Ia further into the Hubble
ow (limiting the impact of peculiar velocity uncertainties). We are 
sing Foundation DR1 griz light curves obtained with the well- 
alibrated Pan-STARRS telescope for training and analysis with 
AYESN (Thorp et al. 2021 ). 
BAYESN is important for fully analysing data from recent and 

ngoing programs that use the Hubble Space Telescope to observe 
Ne Ia in the rest-frame NIR at high- z (RAISIN) and low- z (SIRAH),

n conjunction with optical data from ground-based surv e ys. The 
SO VISTA Extragalactic Infrared Le gac y Surv e y (VEILS) 14 re-
ently concluded a time-domain surv e y that observ ed SNe Ia in the
bserver-frame J -band up to z ≈ 0.6, in conjunction with the Dark
nergy Surv e y and the ESO VOILETTE surv e y in griz . 
LSST’s observer-frame y filter will probe the rest-frame NIR z 

r y bands to redshifts z � 0.3. The Nancy Grace Roman Space
elescope ( RST )’s wide imaging filters will extend to 2.0 μm (e.g.
ounsell et al. 2018 ), and thus will o v erlap with rest-frame H to
 � 0.4, J to z � 0.7, and Y to z � 1. The addition of a K -band
lter will extend the NIR coverage further (Rubin 2020 ). BAYESN 

ill be crucial for properly leveraging the full wavelength range of
4 ht tps://people.ast .cam.ac.uk/∼mbanerji/VEILS/index.html 

S  

c
m  
hese surv e ys both to constrain the host galaxy dust properties and
o produce optimal distance estimates. It will also be important for
ully analysing any potential simultaneous observations of SNe Ia 
y LSST and RST (e.g. F ole y et al. 2018a ) or Euclid (Rhodes et al.
017 ). 

.3 Future analyses and model extensions 

ur hierarchical Bayesian SED modelling and inference framework 
s modular and flexible and will enable us to expand upon the SED
odel presented here to explore in greater depth various aspects of
Ne Ia. In Thorp et al. 2021 , we investigate dust distributions by
llo wing R 

s 
V to v ary for each SN Ia within a population go v erned by

yperparameters to be inferred, as was done previously by Mandel 
t al. ( 2011 ). We will also be able to test alternative forms of the dust
 xtinction la w (e.g. Goobar 2008 ; Amanullah et al. 2015 ). We will
urther probe the statistical properties of the intrinsic SED residuals 
 v er phase and wavelength, through the modelling and assessment
f additional K > 2 functional components and impro v ed estimation
f residual covariance. 
A further shortcoming of current SN Ia models is the lack of

ncorporation of astrophysical correlations at the fundamental level 
f the SED. A ‘host mass step’ captures an apparent correlation
etween host galaxy stellar masses and SN Ia optical luminosities 
ontrolling for light-curve shape and colour (Kelly et al. 2010 ;
ulli v an et al. 2010 ; Smith et al. 2020 ). While the astrophysical
ature of this correlation is still under active investigation (Jones et al.
018 ; Rigault et al. 2020 ; Brout & Scolnic 2021 ; Gonz ́alez-Gait ́an
t al. 2021 ; Thorp et al. 2021 ) it is typically addressed simplistically
y correcting derived distances, or equivalently splitting the scalar 
bsolute magnitude constant in equation (1), according to the host 
ass. The correlation of SN Ia NIR absolute magnitudes with host
ass has been investigated recently by Burns et al. ( 2018 ), Ponder

t al. ( 2020 ), Uddin et al. ( 2020 ), and Johansson et al. ( 2021 ). Our
urrent low- z training set has roughly an average log host mass
og 10 ( M ∗/ M �) ≈ 10.3 and approximately 80 per cent lie in the ‘high-

ass’ category log 10 ( M ∗/ M �) > 10. In future work, we will apply
AYESN to a broader set of SNe Ia to conduct a Bayesian statistical
nalysis of this effect. 

Similarly, SN Ia ejecta velocities, measured from spectral lines, 
re correlated with SN Ia intrinsic colour, and can be used to gain
everage on dust estimation and improve the accuracy of distances 
F ole y & Kasen 2011 ; F ole y 2012 ; Mandel et al. 2014 ). Recently,
iebert et al. ( 2020 ) found correlations between ejecta velocity and
ALT2 Hubble residuals. Ho we ver, these astrophysical correlations 
hould be accounted for at the fundamental physical level of the
N Ia SED functions, rather than by correcting derived distances. 
n future work, we will expand our BAYESN framework to explore,
stimate, and incorporate the impact of these astrophysical effects 
n the full SED function S ( t , λr ) in a coherent statistical model. We
ill do this by adding functional regression terms proportional to 
 ( M ∗) W M ∗ ( t, λr ) or f ( v) W v ( t, λr ) to our SED model (equation 12),
nd by modelling potential correlations with host dust population 
arameters. 
In this work, we have leveraged joint optical and NIR broad-band

hotometry of SNe Ia to learn the statistical properties of the latent
ntrinsic and dust components of SN Ia SEDs, while using the Hsiao
 2009 ) template as a baseline ‘skeleton’ to model spectral features
t finer resolutions than the typical passband. Some of the residual
ED covariance and scatter in the Hubble residuals indeed may be
aused by per-SN variation in spectral features on wavelength scales 
uch smaller than the typical filter. In future development, we will
MNRAS 510, 3939–3966 (2022) 
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ncrease the wavelength resolution of our model, so that we can
rain simultaneously on spectroscopic sequences and photometric
ight curves of SNe Ia to impro v e the latent SED model. We will be
ble to leverage databases of optical spectra (Blondin et al. 2012 ;
ilv erman et al. 2012 ; F olatelli et al. 2013 ; Siebert et al. 2019 ), as
ell as forthcoming ground-based NIR spectra from the Magellan
IRE instrument obtained by the CSP-II and CfA Supernova Group
Hsiao et al. 2019 ), and space-based NIR spectra from the ongoing
ubble Space Telescope SIRAH program (GO-15889). 
In future work, our probabilistic inference framework can be

xtended to coherently estimate SN Ia SED components and cos-
ological parameters together while accounting for population

rift of intrinsic and dust parameters and surv e y selection effects.
ur BAYESN SED model will serve as the centrepiece of a fully
ierarchical Bayesian statistical framework for principled supernova
osmology analysis. 
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vezi ́c Ž. et al., 2019, ApJ , 873, 111 
ames F., Roos M., 1975, Comput. Phys. Commun. , 10, 343 
ha S. et al., 1999, ApJS , 125, 73 
ha S., Riess A. G., Kirshner R. P., 2007, ApJ , 659, 122 
ohansson J. et al., 2017, MNRAS , 466, 3442 
ohansson J. et al., 2021, preprint ( arXiv:2105.06236 ) 
ones D. O. et al., 2018, ApJ , 867, 108 
ones D. O. et al., 2019, ApJ , 881, 19 
ones D. O. et al., 2021, ApJ , 908, 143 
asen D., 2006, ApJ , 649, 939 
attner S. et al., 2012, PASP , 124, 114 
elly P. L., Hicken M., Burke D. L., Mandel K. S., Kirshner R. P., 2010, ApJ ,

715, 743 
essler R. et al., 2009a, PASP , 121, 1028 
essler R. et al., 2009b, ApJS , 185, 32 
essler R. et al., 2013, ApJ , 764, 48 
risciunas K. et al., 2003, AJ , 125, 166 
risciunas K. et al., 2004a, AJ , 127, 1664 
risciunas K. et al., 2004b, AJ , 128, 3034 
risciunas K., Phillips M. M., Suntzeff N. B., 2004c, ApJ , 602, L81 
risciunas K. et al., 2007, AJ , 133, 58 
risciunas K. et al., 2017, AJ , 154, 211 
 ́eget P. F. et al., 2020, A&A , 636, A46 
eloudas G. et al., 2009, A&A , 505, 265 
e wando wski D., Kuro wicka D., Joe H., 2009, J. Multi v ariate Anal. , 100,

1989 
oredo T. J., Hendry M. A., 2010, in Hobson M. et al., ed., Bayesian Methods

in Cosmology. Cambridge Univ. Press, Cambridge, p. 245 
oredo T. J., Hendry M. A., 2019, preprint ( arXiv:1911.12337 ) 
acaulay E. et al., 2020, MNRAS , 496, 4051 
andel K. S., Wood-Vasey W. M., Friedman A. S., Kirshner R. P., 2009, ApJ ,

704, 629 
andel K. S., Narayan G., Kirshner R. P., 2011, ApJ , 731, 120 
andel K. S., F ole y R. J., Kirshner R. P., 2014, ApJ , 797, 75 
andel K. S., Scolnic D. M., Shariff H., F ole y R. J., Kirshner R. P., 2017,

ApJ , 842, 93 
arch M. C., Trotta R., Berkes P., Starkman G. D., Vaudre v ange P. M., 2011,

MNRAS , 418, 2308 
arion G. H., H ̈oflich P., Gerardy C. L., Vacca W. D., Wheeler J. C., Robinson

E. L., 2009, AJ , 138, 727 
osher J. et al., 2014, ApJ , 793, 16 
urphy K. P., 2022, Probabilistic Machine Learning: An introduction. MIT 

Press, Cambridge, MA. Available at: probml.ai 
arayan G. et al., 2016, ApJ , 822, 67 
arayan G. et al., 2019, ApJS , 241, 20 
eal R. M., 2011, Brooks S., Gelman A., Jones G., Meng X.-L., eds,

Handbook of Markov Chain Monte Carlo, vol. 54. CRC Press, Boca
Raton, FL, p. 113 

olan T. H., Goldsmith J., Ruppert D., 2021, preprint ( arXiv:2104.00645 ) 
erlmutter S. et al., 1999, ApJ , 517, 565 
hillips M. M., 1993, ApJ , 413, L105 
hillips M. M., 2012, Publ. Astron. Soc. Aust. , 29, 434 
hillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza

J., 1999, AJ , 118, 1766 
hillips M. M. et al., 2013, ApJ , 779, 38 
hillips M. M. et al., 2019, PASP , 131, 014001 
ierel J. D. R. et al., 2018, PASP , 130, 114504 
ignata G. et al., 2008, MNRAS , 388, 971 
lanck Collaboration, 2020, A&A , 641, A6 
olson N. G., Scott J. G., 2012, Bayesian Anal. , 7, 887 
onder K. A., Wood-Vasey W. M., Weyant A., Barton N. T., Galbany L.,

Garnavich P., Matheson T., 2020, preprint ( arXiv:2006.13803 ) 
rieto J. L., Rest A., Suntzeff N. B., 2006, ApJ , 647, 501 
amsay J., Silverman B., 2005, Functional Data Analysis, Springer Series in

Statistics. Springer, Berlin 
asmussen C. E., Williams C. K. I., 2005, Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press, 
Cambridge, MA 

egnault N. et al., 2015, A&A , 581, A45 
hodes J. et al., 2017, ApJS , 233, 21 
iess A. G., Press W. H., Kirshner R. P., 1996a, ApJ , 473, 88 
iess A. G., Press W. H., Kirshner R. P., 1996b, ApJ , 473, 588 
iess A. G. et al., 1998, AJ , 116, 1009 
iess A. G. et al., 2016, ApJ , 826, 56 
iess A. G., Casertano S., Yuan W., Macri L. M., Scolnic D., 2019, ApJ , 876,

85 
igault M. et al., 2020, A&A , 644, A176 
ose B. M. et al., 2020, ApJ , 890, 60 
oweis S., 1998, in Jordan M. I., Kearns M. J., Solla S. A., eds, Advances in

Neural Information Processing Systems 10. MIT Press, Cambridge, MA, 
p. 626 

ubin D., 2020, preprint ( arXiv:2010.15112 ) 
ubin D. et al., 2015, ApJ , 813, 137 
aunders C. et al., 2018, ApJ , 869, 167 
chlafly E. F., Finkbeiner D. P., 2011, ApJ , 737, 103 
colnic D. M., Riess A. G., F ole y R. J., Rest A., Rodney S. A., Brout D. J.,

Jones D. O., 2014, ApJ , 780, 37 
colnic D. et al., 2015, ApJ , 815, 117 
colnic D. M. et al., 2018, ApJ , 859, 101 
hariff H., Dhawan S., Jiao X., Leibundgut B., Trotta R., van Dyk D. A.,

2016a, MNRAS , 463, 4311 
hariff H., Jiao X., Trotta R., van Dyk D. A., 2016b, ApJ , 827, 1 
iebert M. R. et al., 2019, MNRAS , 486, 5785 
iebert M. R., F ole y R. J., Jones D. O., Davis K. W., 2020, MNRAS , 493,

5713 
ilverman J. M. et al., 2012, MNRAS , 425, 1789 
mith M. et al., 2020, MNRAS , 494, 4426 
tan Development Team, 2021, Stan Modelling Language Users Guide and 

Reference Manual v.2.27. Available at: https://mc-stan.org 
tanishev V. et al., 2007, A&A , 469, 645 
tanishev V. et al., 2018, A&A , 615, A45 
tritzinger M., Suntzeff N. B., Hamuy M., Challis P., Demarco R., Germany

L., Soderberg A. M., 2005, PASP , 117, 810 
uarez A. J., Ghosal S., 2017, Bayesian Anal. , 12, 311 
ulli v an M. et al., 2010, MNRAS , 406, 782 
horp S., Mandel K. S., Jones D. O., Ward S. M., Narayan G., 2021, MNRAS ,

508, 4310 
ipping M. E., Bishop C. M., 1999, J. R. Stat. Soc. B , 61, 611 
ripp R., 1998, A&A, 331, 815 
ripp R., Branch D., 1999, ApJ , 525, 209 
ddin S. A. et al., 2020, ApJ , 901, 143 
alentini G. et al., 2003, ApJ , 595, 779 
an der Linde A., 2008, Comput. Stat. Data Anal. , 53, 517 
ang L., 2005, ApJ , 635, L33 
ang X. et al., 2008, ApJ , 675, 626 
ood-Vasey W. M. et al., 2008, ApJ , 689, 377 

PPENDI X  A :  BAYESI AN  F U N C T I O NA L  PCA  

lassical PCA is an oft-used procedure for dimensionality reduction 
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D } N i= 1 by finding the leading L eigenvec-
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eigenvalues) in the data. However, it does not itself explicitly
odel measurement error in the data nor quantify uncertainties.
eneralizing PCA with a probabilistic formulation, Tipping &
ishop ( 1999 ) developed probabilistic PCA as a linear Gaussian

atent variable model with an explicit likelihood function and residual
noise) term. For each individual i , 

i ∼ N ( 0 , I ) (A1) 

i ∼ N ( 0 , σ 2 I ) (A2) 

x i = W θ i + εi , (A3) 

here θ i ∈ R 

L is the score vector, εi ∼ N (0 , σ 2 I ) is a Gaussian noise
ector, and W ∈ R 

D×L contains L orthonormal column vectors, and
2 models an isotropic residual variance. This probabilistic model
as a marginal likelihood x i ∼ N ( 0 , W W 

T + σ 2 I ). They proved
hat the columns of PPCA’s maximum-likelihood solution ˆ W mle 

eco v ers the classical principal component vectors in the limit of
→ 0. Ho we ver, a non-zero σ 2 enables us to explicitly model the

esidual variation. (See also Bishop 2006 ; Murphy 2022 ). 
Bishop ( 1999 ) generalized this further as Bayesian PCA by

ntroducing priors o v er the components W and σ 2 to define the
osterior o v er these unknowns. In BAYESN , we embed Bayesian PCA
ithin the o v erall hierarchical framework. The analogous equations

o equations (A1)–(A3) are equations (19), (20), and (11) in our
odel. We generalize the isotropic noise covariance from σ 2 I to � ε

o capture correlated residual structure (Section 5.2.2) and introduce
yperpriors on the covariance matrix through equations (24) and
25). Furthermore, since we use this structure to describe the
oint distribution of spline knots defining continuous SED surfaces
Section 2.4), it also models the functional principal components and
he residual functions o v er time and wavelength. Hence, embedding
his Bayesian FPCA in a hierarchical Bayesian framework enables
s to model the distribution of SN SEDs in terms of functional
rincipal components and scores while simultaneously accounting
or other physical factors (e.g. dust) and their uncertainties, while
xpressing the light-curve data as noisy estimates of functionals
f the latent SED sampled irregularly in time. By sampling the
lobal posterior equation (29), we can then coherently estimate all
hese components and quantify their joint uncertainties. Bayesian
ormulations of FPCA have also been described by, e.g. van der
inde ( 2008 ), Suarez & Ghosal ( 2017 ), Nolan, Goldsmith & Ruppert
 2021 ). 

PPENDIX  B:  T H E  W 2 SED  C O M P O N E N T  

e describe the second intrinsic functional principal component
 2 ( t , λ) that is learned when we train the model with K = 2. This

omponent can be viewed as the first functional PC of the intrinsic
ovariance of the residual functions εs ( t , λ) under the K = 1 model.
n the K = 2 model, we pull out this secondary mode of variation
nd parametrize its effect through the coefficient θ2 . 

In Fig. B1 , we show the effect of W 2 ( t , λ) on the intrinsic ( A V =
) absolute light curves obtained via integration of the SED model
ith θ2 varying between the mean value and ±1 σ . This component

aptures some o v erall luminosity variation in the optical B and V
ands, while modulating the relative amplitudes of the first peak,
rough, and second peak in the NIR bands. Unlike W 1 ( t , λ), the
econd FPC does not significantly change the timing of the second
NRAS 510, 3939–3966 (2022) 
IR peak, except slightly in Y -band. Fig. B2 illustrates the effect of
 2 ( t , λ) on the intrinsic optical and optical-NIR colours curves. This

igure B1. Intrinsic variation in optical and NIR light curves captured by
he second functional component W 2 ( t , λ). We fix θ1 = A V = 0 and vary the
alue of θ2 by θ̄2 ± 1 σ . This component captures luminosity variation in the
ptical that appears to be correlated with the relative amplitudes of the NIR
rough and second peak. 

igure B2. Variation in optical and NIR intrinsic colour curves captured by
he second functional component W 2 ( t , λ). We fix θ1 = A V = 0 and vary the
alue of θ2 by θ̄2 ± 1 σ . This component captures intrinsic colour variation
n the post-maximum phases at t ≈ 10 to 30 d. 

omponent captures variation in the post-peak colours from 5 to 25
est-frame days in phase. 

We did not use the K = 2 model including the W 2 ( t , λ) component
n the main analysis of the paper, because it did not significantly
mpro v e the precision of distances in the Hubble diagram with the
urrent data set, compared to the K = 1 model. In future work with
arger data sets, we will further investigate higher order functional
rincipal components. 
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