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ABSTRACT: High-fidelity computer-aided experimentation is becoming more accessible
with the development of computing power and artificial intelligence tools. The advancement
of experimental hardware also empowers researchers to reach a level of accuracy that was not
possible in the past. Marching toward the next generation of self-driving laboratories, the
orchestration of both resources lies at the focal point of autonomous discovery in chemical
science. To achieve such a goal, algorithmically accessible data representations and
standardized communication protocols are indispensable. In this perspective, we recategorize
the recently introduced approach based on Materials Acceleration Platforms into five
functional components and discuss recent case studies that focus on the data representation
and exchange scheme between different components. Emerging technologies for interoperable
data representation and multi-agent systems are also discussed with their recent applications in
chemical automation. We hypothesize that knowledge graph technology, orchestrating
semantic web technologies and multi-agent systems, will be the driving force to bring data to
knowledge, evolving our way of automating the laboratory.
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■ INTRODUCTION

The automation of the laboratory involves linking the abstract
concepts of chemical processes and the hardware responsible
for the execution.1,2 It can be achieved by creating a fully
connected virtual representation of the physical equipment and
their status, that is, a “digital twin” of the laboratory that
bridges the gap between the virtual and the real world. By
doing so, it enables the orchestration of physical and
computational experimentation in cyberspace, facilitating the
automation of chemical discovery.3 Therefore, it shortens the
time span from making a new chemical in the research
environment to the delivery of its mass production to the end-
users. This presents the opportunity to deliver a significant
level of decarbonization with reduced labor and energy
consumption, making the digitalization of chemical manufac-
turing one of the critical technology paths toward a more
sustainable society.4,5

The first automated hardware for chemistry dates back to
the late 1960s.6 Since then, considerable advances have been
made to expand the potentialities of such a tool, covering the
fields of chemical reactions,7,8 drug discovery,9 and material
discovery for clean energy.10,11 As chemists quest to achieve a
universal organic compound synthesis machine, three key
capabilities were identified,12 that is, access to a database of
chemical reaction knowledge, synthetic steps planning, and
automated execution of a proposed action sequence. For a
detailed historical excursus, the readers may refer to Dimitrov
et al.13 In 2018, Aspuru-Guzik and Persson14 proposed

Materials Acceleration Platform (MAP), a platform-based
approach, as the paradigm to accelerate the material discovery
process, which was further adopted and expanded by Flores-
Leonar et al.15 In line with the three key capabilities that seem
to be required to build a robo-chemist,12 Flores-Leonar et al.15

envisaged integration of machine learning (ML) algorithms
and robotics platforms, with further interfacing between
humans and robots, as the way toward autonomous
experimentation. The current practices of development toward
laboratory automation are seen to be following this trend.
Researchers adopt automation of chemical experiments and
advances in ML to enable functional material discovery,16,17

the discovery of chemical reactions,18 synthesis planning,19,20

and optimization of process conditions.21−23 Despite the great
success demonstrated by the community, the effort required to
incorporate new equipment into an existing platform can be
expensive. Tailored extraction−transformation−loading (ETL)
tools and the specific data exchange scheme for establishing
effective communication are to be developed for each piece of
equipment added. Therefore, these platforms normally face
difficulties in scalability and interoperability due to heteroge-
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neous data formats as an obstacle to holistic integration,
especially when it comes to the vision of a globally integrated
collaboration network.11 As a prerequisite condition toward
digitalization, the absence of standardized data representation
and exchange protocols is seen as one of the critical challenges
faced by the community.8

A way forward may be offered by Semantic Web
technologies,24 which present a vision of a fully linked web
of data, demonstrating interoperability across scales and
domains. It uses ontologies to describe the concepts and
relationships within a given domain for communal under-
standing. In this perspective, we refer to ontologies developed
to describe knowledge in the chemistry domain, and more
importantly, those implemented in a way that is compatible
with the semantic web standards,25 as chemical ontologies.
One prominent example is ChEBI.26,27 An ontology normally
consists of two components: a terminological box (TBox) and
an assertional box (ABox).25 TBox refers to the description at a
conceptual level, while ABox stores the data that is a realization
of the concepts defined by the TBox. Both levels can be
accessed via internationalized resource identifiers (IRIs),
essentially generalized uniform resource identifiers (URIs),
for unambiguous identification. In the context of automating
experiments, this opens up the possibility of developing a fully
linked data representation for the chemical processes and
equipment status as a universal framework to facilitate concrete
data exchange within and between platforms.
Besides the interoperable data representation, an effective

way to communicate and share data must be addressed to
achieve laboratory automation. In this regard, collective
intelligent agents have been used to automate the tasks
involved in crystal-structure phase mapping,28 material
discovery,29 and reaction optimization.30 Considering the
historical discussions of integrating the two technologies,31

we hypothesize that an ontological representation of a
laboratory, linked with different data standards, would enable
the rapid implementation of artificial intelligence (AI) tools for
chemical discovery and development.
This perspective aims to review the potential for arising

technologies to enhance how we approach laboratory
automation. The presentation of this perspective is structured
as follows. First, we review the state-of-the-art in laboratory
automation practice with a focus on data infrastructure. Based

on the limitations of current approaches, we assess community
efforts toward standardized data representation and effective
data exchange. We identify dynamic knowledge graphs, that is,
a combination of ontologies and agents, as an interesting
technology option. This approach allows the intelligent
automation of experiments to be linked with chemical
knowledge resources and aligned with other AI techniques. It
is suggested that this will play a key role in the next generation
of laboratory automation.

■ PLATFORM-BASED APPROACH
Detailed reviews of the applications of the closed-loop
optimization have been published by Cao et al.32 and Coley
et al.7 In this section, we focus on the data flow between the
different components of such an automated experimentation
platform as presented in the state-of-the-art studies. To have a
clearer demonstration of the data flow between different parts,
thus revealing how these functional components can be shifted
into agents as in the knowledge-graph-based approach, we
regroup the five key elements proposed by Flores-Leonar et
al.15 and recast them as illustrated in Figure 1. The receptionist
acts as a human−machine interface that receives, analyzes, and
translates the requests into machine-understandable objects, as
well as enables real-time and interactive communication
between user and data. The coordinator manages the workflow
by locating resources given constraints, requesting data from
the librarian, asking the planner for suggestions over the next
steps, and requesting experiments from the executor. The
planner is a decision making entity that designs the experiment,
plans retrosynthesis steps, and also selects suitable surrogate
models given use-cases. The librarian is responsible for data
management, including maintenance of the database, data
cleaning, data validation, and outlier detection. The executor
performs the computational and physical experiments, both
interfaced with the available experimental resources. We
categorize the selected studies into the realization of functional
components and assess the data communication between each
of them. It should be noted that we do not cover the specific
internal realization of the components, that is, we do not
consider how the planner handles the input historical data and
how it recommends the synthesis route; instead, we focus on
the format of the recommendation output from the planner.
Following the review, we list the limitations of the platform-

Figure 1. Functional components of a platform-based approach toward chemical discovery, annotated with the communications between each
component.
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based approach that lead to the quest for better data
representation and exchange protocols.

Selected Studies

There have been extensive reviews on developing each of the
functional components.15,33−36 In the context of chemical
automation, Mateos et al.37 reviewed the realization of the
components in selected continuous flow platforms. In this
perspective, we selected the studies below to illustrate how the
data is exchanged between the functional components in the
platform-based approach. Specifically, we will review the data
exchange protocols between the coordinator, librarian, planner,
and executor for further investigation on interoperability
within one platform and between different platforms in the
current setups. We identified three main types of data
representation and storage in the automated experimentation
platforms, namely, variables stored in a reserved memory
location of programming languages, data stored in a file on a
hard disk, and data stored in a database. Based on this
classification, three types of data transfer and communication
protocols were identified as assigning in-memory cache values
during software program run-time, file transfer protocol, and
HTTP request/response. It should be noted that although
both of the latter two ways of communication belong to the
application layer in the TCP/IP model, they are distinguished
herein to emphasize the format in which the data is stored and
consequently transferred. To the best of our knowledge, the
complete details are summarized in tables in the Supporting
Information.
Receptionist. The receptionist acts as the human−

machine interface. Among different platforms, multiple ways
of interaction have been reported. Knight et al.38 present a
voice-controlled user interface integrating voice, text, and
visual dashboards. This increased the flexibility for the
experimentalist to communicate and collaborate with the
automated setups without coding experience required. Web
interfaces via HTTP requests/responses21,39,40 is another way
of interaction. The advantage of this approach is that
authorized users can log in to the web page and access the
platform from all over the world.35 Moreover, the natural
language processing (NLP) modules can build on top of the
web interface as chatbots, which can further connect to existing
messaging services such as Gmail, Twitter, Slack, and
Dropbox.16,41 The graphical user interface (GUI) is a more
intuitive way of interaction between the users and the
automated experimental platforms. It can be built through
different coding software, such as Matlab,42 Python,17,19 and
LabVIEW.22,43,44 It should be noted that each receptionist can
only work within its own operating system due to its bonded
communication protocols as well as the coding language.
Coordinator. The coordinator manages the workflow in

the closed-loop system. Among the different programming
languages and tools that have been employed to develop the
coordinator, Python is perhaps the most widely adopted. The
Aspuru-Guzik group proposed ChemOS,16,41 a modular
coordinator orchestrating the learning module (the AI-based
planner), the communication module (server-based reception-
ist), and an operation module for remote control of the robotic
platform. ChemOS demonstrated decision-making capabilities
in managing the workflow for thin-film material discovery16

and increasing the efficiency of organic photovoltaics.45 It has
now been commercialized as Atinary SDLabs46 with a Scientia
version freely available for academics. Zhu’s group presented

MAOSIC,17 a coordinator upgraded from their previous
system MAOS,47 which was applied to the autonomous
discovery of optically active chiral inorganic perovskite
nanocrystals. Experiment Specification, Capture and Labo-
ratory Automation Technology (ESCALATE) has a coor-
dinator acting as a bridge to connect the experimental
workflow.48 Its initial implementation was designed for the
exploratory synthesis of single-crystal metal-halide perovskites.
Further discovery of the formation of two new perovskite
phases was demonstrated.49 Chemputer19 was developed for
organic synthesis optimization in batch reactors. This
coordinator brought together synthesis abstraction, chemical
programming and hardware control, and tested the synthesis of
three small pharmaceutical compounds with similar yields to
those obtained by manual work. Moreover, by using a
standardized format for reporting a chemical synthesis
procedure within the coordinator, Chemputer captures
synthetic protocols as digital code that can be further
published, versioned, and transferred flexibly.
LeyLab39 is a PHP-based coordinator orchestrating multiple

users and equipment in different continents for the develop-
ment of catalysts and process conditions in flow reactors. The
firewall within the coordinator prevents malicious attacks from
unauthorized users.
The Lapkin group presented a Matlab-based coordinator for

multi-objective optimization of the reaction conditions for
SNAr and N-benzylation reactions.50 It demonstrated its
flexibility to a different chemical system with an aldol
condensation reaction optimization.42

There are also coordinators based on LabVIEW. Given the
user-friendly graphical programming interface in LabVIEW,
building a receptionist module is not required in this setup.
However, Matlab43 or Python44 are occasionally paired up with
the LabVIEW to enable the planner module to suggest new
experiments.
Another notable development is C#-based ARES OS,51 an

open-source software released by Air Force Research
Laboratory (AFRL) following their autonomous research
system (ARES). As the first reported autonomous exper-
imentation system for materials development, ARES demon-
strated its capability in carbon nanotube synthesis experi-
ments52,53 and additive manufacturing applications.54

It can be seen that coordinators followed different coding
philosophies in different programming languages. For each
case study, the reported coordinator indeed satisfied the
specific need yet failed to extend to other systems.

Coordinator−Librarian. The interaction between the
coordinator and librarian focuses on reading historical data
and writing new data for data storage. Depending on the
operating system of the coordinator, as well as the structure of
the librarian, in each platform, the data communication
protocols between the coordinator and librarian are various.
An intuitive approach is to store and transfer the data as

variables in the memory of the operating system. Jeraal et al.42

stored and transferred data as Matlab variables. Similarly,
Christensen et al.55 used Python variables for communication.
This approach is lightweight and independent of the database
structure. However, it is vulnerable as there is no backup for
the data obtained. Moreover, the data stored are hard-coded
and picked beforehand, meaning the variables will be
reassigned during the iterations.
File transfer is an approach to overcome this issue. Cao et

al.5,32 used CSV files as the bridge for communication. Other
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studies used MAT files in a similar fashion.22,56 In this
approach, the experimental results were exported and stored as
a file that can be loaded later for suggesting the next
experiments. Compared to storing data as in-memory cache
variables, the file transfer approach gives a way to back up the
data on a separate machine or online server with flexible access
and secure storage. However, the files can still be hard to track
and classify when the number of experiments is high or more
than one type of experiment is run on the platform.
Databases provide a solution to efficiently manage large

amounts of experimental data. Li et al.17 stored long-term data
through SQLAlchemy, which supports a database management
system (DBMS), with databases such as MySQL, Postgres,
Oracle, and SQLite as the back-end. The coordinator
MAOSIC can read and write new entries to the server-based
database via API. In Roch et al.,41 the coordinator ChemOS
was connected to SQLite, and the information was stored in
four distinct databases (requestDB, parameterDB, robotDB,
feedbackDB) on SQLite to better classify the data and retrieve
them in the later stage. Materials Experiment and Analysis
Database (MEAD)57 consists of both raw data and metadata
from high-throughput experimentation. By instantiating an
event-sourced architecture for materials provenances
(ESAMP),58 the MEAD database enabled the ML algorithm
to utilize the material state within its experimental workflow for
accelerating materials discovery.
Coordinator−Planner. To avoid an exhaustive search of

the chemical space, the planner needs to decide which new
experiments should be conducted. Depending on the purpose
of the platform, the planner algorithm can be classified into
discovery and optimization. Detailed reviews of the existing
algorithms for planner have already been published; interested
readers can refer to Garud et al.59 and Clayton et al.60 The
communication between the coordinator and the planner is
mainly done in two ways: variables stored in memory16,22,30

and file transfer.5,19,20,50 It is worth mentioning that the
communication protocols are not necessarily the same over
one platform. Li et al.17 used database queries for the
interaction between the coordinator and librarian, yet they
depend on Python variables for the communication between
the coordinator and planner. It can be seen that the platform-
based approach can adapt to different ways of data exchange,
yet modifications that are case sensitive will be needed.
Coordinator−Executor. The executor runs the experi-

ments, computationally or physically, and sends back the
experimental results. The interaction between the coordinator
and executor module highly depends on the operating system
for the instrument, as the actual experiment resources within
the executor are normally surrounded by a layer of interface.
Therefore, we review the communication protocols of the
physical and computational experimental platforms separately.
Physical Experiment Interface. Robotic platforms have

their origins in instances such as peptide synthesis6 and the
pharmaceutical industry.61,62 Some existing commercially
available semi-automated and fully automated platforms in
chemistry have emerged as powerful tools and can be
embedded into the closed-loop optimization system.15

Commercial platforms provide various high-throughput
workflow solutions, ranging from single benchtop or stand-
alone automated workstations up to complete and integrated
product development workflows for the entire product
development process in chemical material science.63,64 Green-
away et al.65 applied the Chemspeed Accelerator SLT-100

synthesizer platform in the discovery of porous organic cages
and the optimization of the cage formation conditions. This
platform can carry out up to 96 reactions in parallel, highly
speeding up the testing of the proposed experimental
conditions that are sent to the platform via file transfer within
the Chemspeed custom software. The hardware from Chem-
speed is also used by IBM’s RoboRxn,66 a remotely accessible
automated organic synthesis platform utilizing various Trans-
former-based67 ML algorithms for chemical reaction predic-
tion,68 retrosynthetic pathway planning,69 synthesis action
extraction,70 and chemistry grammar extraction.71 Vapourtec
delivers an automated flow reaction platform with multiple
choices for pumps and flow reactors. Successful examples of
using the Vapourtec system in the closed-loop optimization
setup include drug discovery,72 scale-up development,73 and
reaction condition optimization.42,50 It is worth mentioning
that commercially available mobile robots and robotic arms
have been used in complex and multistep operations.20,23

Communication between the coordinator and the robots was
achieved using various communication protocols (TCP/IP
over WIFI/LAN, RS-232, websocket, etc.). Although commer-
cial systems developed by various vendors are easily
implemented with a user-friendly user interface, it limits the
experimental choice across platforms, and it is hard to
configure the platform to the existing workflow architecture
and setups in the lab.
To enable a modular-based plug-and-play platform, single-

board controllers, for example, Raspberry Pi and Arduino, were
used to act as the interface layer connecting the coordinator to
the actual experiment executor, that is, sample preparation,
analytics etc. This is favored by the academic community due
to its flexibility and compatibility with different experimental
instruments at a relatively low cost. The communication
protocols between the coordinator, single-board controller,
and experiment executors are various. A TCP/IP protocol was
used in the cases where Raspberry Pi was applied. Fitzpatrick
et al.21 used a VLAN to control lab equipment and also an SSH
tunnel between the virtual environment and the remote
control server. Similarly, Roch et al.74 controlled the pump
system using Raspberry Pi and interacted via an SCP with the
executor codes. In Chemputer designed by Steiner et al.,19 an
Arduino was designed as the microcontroller. Instances of
experiment executors are created as Python instances at the
initialization stage and the coordinator reads related
information stored in a GraphML file. Li et al.17 conducted
their high-throughput experiments via an Arduino control
board as well but followed the JSON-RPC 2.0 protocol used
for robots and characterization equipment control. A detailed
review of microcontrollers and their applications in automated
experimental systems can be found in Fitzpatrick et al.75 The
in-house built platform can connect to different lab equipment
based on the users’ need and existing lab setup, yet different
communication protocols prevent it from extending to other
labs or systems.
Robot Operating System (ROS)76 is the de facto standard

middleware in the robotics field for orchestrating multi-robot
systems. In 2019, Marquez-Gamez and Maffetton77 proposed a
ROS architecture for laboratory robotics motivated by Burger
et al.,23 envisaging a “cobot” future where human researchers
and robots work collaboratively in the chemistry lab using
modular and reconfigurable lab equipment interfaced via ROS.
A recent paper from Fakhruldeen et al.78 shows proof-of-
concept toward this direction.
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Computational Experiment Interface. With the rapid
development of computational power and simulation methods,
computational experiments are playing a more vital role in
catalyst design and optimization,79 synthesis planning,80 and
catalyst discovery.81 By using theoretical, fully automated
screening methods combining ML and optimization to guide
density functional theory (DFT) calculations, Tran and
Ulissi82 screened across intermetallics for the discovery of
electrocatalysts for CO2 reduction and H2.
The main executor for computational experiments is the

high-performance computer (HPC). However, the interaction
between the HPC and the coordinator on local computers is
different from case to case. The scheduler is the interface for
the users on the login nodes to submit batch jobs to the
compute nodes on the HPC, as the users cannot run their
calculations directly and interactively (as they do on their
personal workstations or laptops). The scheduler stores the
batch jobs, evaluates their resource requirements and priorities,
and distributes the jobs to suitable compute nodes.

There are quite a few open-source scheduling software
depending on the setup of HPC, among which SLURM is
widely used in research computing services.83 Rosen et al.84

developed the PyMOFScreen Python package to manage
automated DFT calculations, leading to new electronic
structure database constructions and accelerating new
materials discovery.85 Multiple software packages were
developed to enable high-throughput screening on the HPC,
such as Python Materials Genomics (pymatgen),86 Fire-
Works,87 custodian,86 Atomate,88 GASpy,81,82 and ChemE-
co.89,90 Depending on the user’s need as well as the DFT
calculation software, the structure and the output file of those
Python packages are different and nontransferable. A notable
effort in addressing this issue is MolSSI QCArchive,91 which
offers open access to millions of quantum chemistry
calculations done with different software, as well as on-demand
computation.

Figure 2. Community landscape toward better data representation and exchange in chemical digitalization. The focus of each category: (a)
Molecule: chemical structure, physicochemical properties, and spectral information on a given species; (b) Reaction: chemical reaction scheme,
conditions, description of procedures, and statistic summary of the reaction outcome; (c) Analytical data and method: analytical data collected and
the methods applied within the experimentation (this is distinct from the spectral information on a given species as this focuses on the data
collection process); (d) Procedure and hardware: the operational procedure in an experiment in the format that can be directly executed by
hardware; (e) Holistic data capture and exchange: the initiatives to capture all the experimental information generated within the experiment and
the exchange of data between different hardware/software. For those on the fence between two categories, we meant they cover both areas.
Chemical Markup Language (CML) was labeled as both semantic and non-semantic since it preserves hard-coded and rule-based semantics but not
ontologies following semantic web standards.25 Basic Formal Ontology (BFO) is an upper-level ontology as the basis of other ontologies, and it
does not capture any domain-specific information.
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Current Limitations

Despite the huge improvements made in the literature, a few
limitations remain to be overcome before it is possible to
achieve a global collaborative network.11 The platform-based
approach presented heavily relies on the coordinator. This
increases the possibility of data loss during transmission, and it
will become unsustainable soon with further expansion of the
ecosystem. Direct communication between functional compo-
nents is one potential approach to mitigate this issue, as
demonstrated by Fitzpatrick et al.21 in letting the planner
directly communicate with lab equipment via TCP/IP.
Another limitation is the ad hoc data representation and

storage. This is particularly important as there is no standard
method of representing results or recipes for chemical
experiments, despite several competing standards of represent-
ing molecules coexisting. The heterogeneous data format lacks
interoperability that precludes the full utilization of the
embedded information. This problem is further exacerbated
when the collaboration between different groups is considered;
potentially data generated from one group will be shared and
tested on the platform of another group for reproducibility and
further experimentations. Moreover, the consequent various
data transfer and communication protocols result in low
extensibility issues as a considerable amount of time is often
required when new hardware or software is integrated, also
noted by Breen et al.92

Unbalanced chemical data is another limitation to be
addressed.8 In ML applications, historical data from reaction
databases are normally applied as the training set to guide the
learning of the planner models. However, only “good”
experiment results are published and stored in these databases,
limiting the opportunity of learning from “bad” examples,93 not
to mention those platforms generating experimental data from
scratch, without utilizing the prior chemical knowledge at all. A
further issue lies in several examples where users are required
to manually input chemical data.42,94 This is error-prone and
limits the potential of full automation.
In brief, improving the interoperability within one platform

and between different platforms is a key step in lowering the
entry barrier of digitalizing chemistry and promoting a fully
automated laboratory. It is thus important for us, as a
community, to know how far we are from meeting the
prerequisite condition − a fully interconnected data
representation capturing the data generated within the
experimentation.

■ DATA REPRESENTATION AND EXCHANGE
PROTOCOLS

As promoted by various researchers,1,8,36,95 the digitalization of
chemistry facilitates the collaboration between research groups.
Figure 2 reviews data representation and exchange from the
different perspectives of a chemical experiment, namely,
molecule, reaction, analytical data and method, procedure
and hardware, and finally holistic data capture and exchange.
Importantly, we distinguish the community efforts into non-
semantic and semantic paradigms depending on whether
chemical ontologies are involved, and we lay out the
connection between them. The agent-based approaches toward
standardized and effective communication between each of the
components involved are discussed.

Non-Semantic Representation

In this review, we broadly distinguish non-semantic efforts into
four parts: a representation of cheminformatics formats, a
schema for constrained encoding of data, a collection of data
stored in a database, and finally a holistic architecture that aims
to capture all data generated within an experiment.
Since the discovery of the periodic table of the elements,

chemical knowledge is built on structures with competing
representations.96 The most commonly used representation is
string and line notation, including SMILES,97 InChI,98

SMARTS,99 SELFIES,100 etc. for molecules, and RInChI,101

SMIRKS,102 etc. for reactions. Chemical table files express
molecules and reactions in terms of x-y-z coordinates of atoms
and bonds. For a more visual representation, molecules and
reactions can be illustrated with 2D line drawings (or 2.5D
including stereochemistry), and 3D conformers. These formats
are interchangeable with the help of cheminformatics tools,
e.g., Open Babel103 and RDKit.104 An ML application normally
starts with encoding structural representations in the form of
high-dimensional vectors to map the implicit chemistry to
either physicochemical properties of one molecule or reactivity
between different molecules.
Popular chemical databases and registry systems normally

store various representations of the above with registry
numbers, for example, IUPAC name, CAS number, and
PubChem CID, for unique and unambiguous identification
within themselves and cross-reference between repositories.
PubChem105 is the largest open-source structural chemical
information repository. For reaction informatics,106 the scale of
open-source databases is much smaller. The USPTO data-
base107 is one of the seminal databases in the community and
contains 3.7 million reactions extracted from US patents. It was
commercialized as Pistachio108 containing more than 13
million reactions with annotated reaction classifications using
named reaction ontology (RXNO109) and expanded coverage
to other patent offices, that is, World Intellectual Property
Organization (WIPO) and European Patent Office (EPO).
Despite the public availability of the USPTO database, its
representation schema, Chemical Markup Language (CML) in
eXtensible Markup Language (XML), requires extra efforts of
format transferring for ML applications. This results in
different versions of the USPTO subset that were derived
and adapted by various researchers for their applica-
tions.68,110−112 As the tailored database can be kept private
to the research group, it could be difficult for bench-marking
new algorithms.
To facilitate the development of ML in chemistry, Open

Reaction Database (ORD)113,114 was formed to encourage
precompetitive data sharing in a standardized format. It
records how the reaction was performed, including reaction
inputs, conditions, outcome, etc. Notably, ORD uses a
protocol buffer as its data structure, instead of the commonly
used XML schema. It deliberately avoids the use of ontologies
due to insufficient ML applications with ontologies seen in the
community.115 Despite ORD storing the operation sequence in
a machine-readable format, the authors declared it a nongoal at
present to make it compatible with programmatic execution on
automated synthesis hardware. For more complex operations,
ORD only supports a free-text description of the procedure. In
terms of the reaction outcome, it focuses more on the
statistical summary of the reaction, for example, conversion
and yield, and unprocessed analytical data if available. At
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present, ORD contains 2 million reactions,115 including part of
the USPTO data set that was converted from CML.
Unified Data Model (UDM)116 is another initiative aiming

at capturing and integrating the experimental information
generated during chemical synthesis. UDM was originally
developed by Roche as a transfer model of MDL RD file
format for integrating data from various sources into Reaxys
database.117 It has since evolved to an XML schema with three
main elements, namely, citations, molecules, and reactions. In
addition to recording the molecule and reaction identifiers,
UDM annotates its data with semantic vocabularies. The
reaction classification is based on the molecular processes
(MOP118) and RXNO ontologies, demonstrated by its sample
data taken from Reaxys. The analytical method and results type
are based on a working draft version of Allotrope Foundation
Ontology (AFO119) where duplicate entries exist. However, it
should be noted that the way UDM integrates the ontologies is
by enumerating the ontological classes as a sub-schema of
UDM and tagging them to the XML elements as attributes.
One general issue with this type of enumeration and
attribution is that the relationships declared in the ontologies
are not retained in the XML schema, for example, class and
subclass relationship between concepts in MOP and RXNO,
and the corresponding relationship between result types and
analytical methods in the AFO. Looking at the publicly
available resources, there are no programmatic constraints over
how ontological axioms are enforced in a UDM file. Moreover,
UDM allows any type of format for analytical data recording, at
least by XML schema itself; tailored tools would be necessary
for better utilization of the data. In its latest release, UDM
extends its support to the SPRESI database.120 Moving
forward, UDM aims to provide fully captured representations
of reaction predictions and optimizations for multistep
reactions. Additional support for environmental health and
safety data is also of interest.121

Similar to ORD, Chemotion122 aims to build a community-
driven repository to better publish reaction data generated
across different laboratories. In practice, despite containing less
data, a key distinguisher of Chemotion is its level of
interoperability in enabling programmatic transfer of raw
analytical measurements for integration of electronic lab
notebook (ELN) from individual laboratories. It does so by
supporting reading and converting analytical data in the widely
used JCAMP-DX format.123 Each published reaction in
Chemotion has a semi-machine-readable format with a digital
object identifier (DOI). It cross-references compound entries
in PubChem. Like UDM, Chemotion incorporates ontologies
(RXNO and chemical methods (CHMO124)) for semantic
annotations at a vocabulary level. On the data validation front,
Chemotion automates curation of some types of analytical
data, for example, plausibility checks of nuclear magnetic
resonance (NMR) data. Human inputs are still required to
ensure data quality for publication. To enable more data
resources, Chemotion is planning to support reactions stored
in a UDM format. Chemotion is also planning to connect ELN
to robotics to establish an automated platform for chemical
synthesis.125

As mentioned, JCAMP-DX is a data standard widely used
for recording and sharing analytical data. However, one
drawback to its utilization is the lack of validation tools
making it difficult for data generated from different software to
adhere to the standard terms.126 One approach to alleviate this
problem is modernizing the standard terms with an XML

schema, such as Analytical Information Markup Language
(AnIML).127 AnIML is partly based on SpectroML128 and
Generalized Analytical Markup Language (GAML)126 and also
draws from JCAMP-DX and ASTM ANDI. On the chemical
structure side, AnIML supports the CML format together with
other commonly used line notations. AnIML aims to provide
vendor-neutral analytical and biological data representations
that are designed for manufacturers to install and maintain. For
the same reason, AnIML provides audit trials and other
metadata for reporting information in regulatory processes. At
present, AnIML supports most common analytical equipment
with detailed documentation for ultraviolet−visible spectro-
photometry (UV/vis), chromatography, and indexing.
Up to this point, reviewed efforts are standardizing the data

generated during the experiment. Initiatives exist to stand-
ardize the instrumentation interface, for example, Stand-
ardization in Lab Automation (SiLA).129 SiLA is a micro-
service architecture using gRPC and HTTP/2 protocols with a
protocol buffer as its payload. It adopts a client/server view to
describe the devices in the lab environment, where entities
expose (multiple) services as SiLA Features accessible to
others. SiLA Features are expressed in a predefined XML-
based schema and stored in an online repository for service
discovery. Each feature is assigned a unique identifier to enable
peer-to-peer interactive communication, status queries, and
reactions to events. As SiLA is a communication protocol for
equipment control, it utilizes AnIML as the medium for the
bidirectional transfer of analytical data between laboratory
information management systems (LIMS) and chromatog-
raphy data systems (CDS) in a file-less fashion.130 The
combination of SiLA and AnIML represents a promising
direction: standardized interfaces for instrumentation and
unified machine-readable data representations. This results in a
complete data package after completion of the analytical
experiment, including all the process steps and the generated
data.
While SiLA standardizes the equipment interface, chemical

recipe file (CRF)20 and chemical description language
(XDL)131 are initiatives to automate experiment execution.
They both focus on translating the operational procedures
from unstructured descriptions to robot execution commands.
CRF20 is a CSV-based schema developed for flow synthesis.

Since the instructions are generated based on batch reaction
data, human modification is required to enable continuous
processes. One notable aspect of their setup is their
modularized reaction hardware, making it robotically self-
reconfigurable, as demonstrated by the back-to-back synthesis
of medicinally relevant small molecules.
XDL131 is an XML schema focusing on batch synthesis. It

contains three main components as the apparatus to be
employed and manually configured, chemicals to be used, and
robotic steps abstracted from operations used by chemists in
the lab. An ontology is proposed to map the command and
hardware executions; however, it is not published in semantic
web standards.25 Before the instructions are sent to execution,
researchers can modify the conditions to benefit human
intuitions.
Both CRF and XDL focused on providing a flexible

framework to conduct synthesis for multiple molecules.
However, neither of them included an automated analysis
step. The statistical summary of the chemical synthesis is thus
not provided in a standardized format as done by other
reaction schemas.
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ESCALATE is an attempt toward holistic data capture and
exchange.48 It proposed an ontological framework for
experimentation, supporting data collection, reporting, and
experiment generation. This framework captures and reports
all the reactions conducted, including “bad reactions”, in line
with the cultural change promoted by the community.95 In its
first release,48 the claimed ontological framework was realized
by implementing template-based files to store the experimental
information, for example, CSV and text files in a file-sharing
folder infrastructure (Google Drive). The authors additionally
acknowledge that the Allotrope Foundation Data Standard
could be incorporated into this data lake. Despite uniform
resource locators (URLs) being employed as pointers to some
data, the data representation remains heterogeneous and only
semi-structured, without the semantic features required by
semantic web standards.25 In a more recent development,132

an ESCALATE REST API133 was made available to showcase
the possibility of retrieving chemical informatics data from
PubChem API, interacting with a Postgres database for
submitting experiment jobs to a laboratory, and querying the
hosted results.
In general, the non-semantic efforts are closely connected to

each other. Multiple representations are normally used within
schemas or databases to meet the needs of different
applications. Databases cross-reference to each other using
registry numbers.
Another notable trend is the adoption of XML schema as

data structures. XML is a machine-readable format for
algorithmic operations. It relies on string parsing when
automating some of the processing steps, for example, the
automated unit conversion provided by XDL, where the case-
insensitive conversion to a standard unit was performed.
However, XML is not designed to host large sets of data as
querying between different files can be challenging. The
linkage between entries in XML is implicit and requires
tailored codes to handle. A solution to this problem could be
hosting data in a database and exposing that as the query
interface. Yet as demonstrated in the platform-based approach,
the same scalability issue would emerge.
It is worth noting the efforts to improve interoperability.

Most of the schemas classify items using annotations based on
ontological taxonomies. There are also works that claim to
have developed ontologies, but that are not however
represented in a formal ontology language, such as Web
Ontology Language (OWL); their data is still file-based. In the
context of this perspective, we consider these outputs to be
taxonomies that formalize the hierarchical relationships,
distinguishing them from the chemical ontologies that are
introduced in the next section. The difficulty of achieving
general interoperability remains an issue to be addressed.

Semantic Representation

Since the landmark publication by Berners-Lee et al.,24 the
semantic web field has envisioned the next generation of the
web in both a human- and machine-readable format for better
data sharing among mankind and faster data processing using
computers. Through ups and downs, the semantic web
community has pivoted from ontologies to linked data, and
further to knowledge graphs, which are gaining attention again
in recent years. For a comprehensive review of developments
in the semantic web field, interested readers are referred to
Hitzler.134 The focus herein is the uptake of such technologies
in the chemistry domain, as illustrated in the right half of

Figure 2. For initiatives where only TBox are available, we
labeled them as “Ontology”, whereas ABox that are published
are labeled “Semantic Web”. Those under “TheWorldAvatar”
will be introduced in the next section.
Chemical informatics has a long history of utilizing semantic

web technologies. The chemical semantic web135−137 is one of
such early attempts by Murray-Rust and co-workers,
contemporaneously to Berners-Lee’s proposal of the semantic
web.24 In their work, CML was employed to host the data,
prior to OWL becoming the semantic web standard. CML
schema covers concepts related to atoms, molecules, computa-
tional chemistry, crystallography, spectra, chemical reactions,
and polymers. It greatly influenced the development of
reaction informatics; especially, it is the molecule representa-
tion implicitly used by various cheminformatics software.138

Since OWL became more and more popular in modeling
ontologies, more activities of ontology development have been
demonstrated in the scientific domain. Despite the authors of
CML holding the view that ontologies following the semantic
web standards25 are “too complex for the chemical community
to take on board, and provides little effective added value”139

compared to their approach, the benefit of semantics
motivated the development of chemical ontologies to a great
extent, especially work at Royal Society of Chemistry
(RSC),140 that is, CHMO,124 RXNO,141 and MOP.118 These
ontologies are sophisticated and carefully curated. As
demonstrated in the non-semantic efforts, they are widely
used for annotating reaction classes and analytical methods.
Another driving force of ontology development in the

chemistry and biology domain is the European Molecular
Biology Laboratory’s European Bioinformatics Institute
(EMBL-EBI). In contrast to RSC ontologies that only provide
concepts, EBI ontologies provide knowledge at both a
terminological and an assertional level, covering small
molecules (ChEBI26) and cheminformatics (CHEMINF142)
in a cross-referenced fashion. CHEMINF supports molecular
structure representations in the CML format; it also partly
transformed data from PubChem into a knowledge base
together with cross-reference to their PubChem entries. ChEBI
deposited its data in PubChem entries and cross-referenced to
Reaxys entries. These ontologies complement other ontologies
in the field. For example, CHMO intends to describe the
physical and practical methods, whereas CHEMINF covers the
computational and theoretical ones.
Ontologizing existing databases was demonstrated in the

community, including ChEMBL RDF,143 and Pub-
ChemRDF,144 the semantic version of the current largest
open-source chemical information repository, PubChem.105

However, the Resource Description Framework (RDF) version
of these databases did not come with officially supported
SPARQL Protocols and RDF Query Language (SPARQL)
endpoint. Galgonek and Vondraśěk145 recently addressed this
issue by integrating PubChem, ChEMBL, and ChEBI data sets
as a PostgreSQL database and exposing that to support
SPARQL queries. This enabled fast access to chemical data
from different sources.
Allotrope Foundation is a collaborative effort from the

pharmaceutical industry.119 Similar to AnIML, it aims to
propose a common data exchange format to unify the
laboratory information technology (IT) landscape. It started
from realizing the vision of Roberts et al.146,147 where an XML
schema was envisaged to provide a holistic data format. It later
decided to store data based on HDF5 and RDF formats that
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were controlled by ontologies for semantic capabilities. The
foundation now contains three ontologies, namely, AFO,
Allotrope Data Format (ADF), and Allotrope Data Model
(ADM). AFO is the ontology at the TBox level representing
the knowledge in the chemistry domain and it borrows heavily
from CHMO. ADF refers to the ontology ABox classified by
AFO, extended with more features on data structure and
provenance for long-term archiving. ADM is the constraint for
how data in ADF should be modeled following AFO. However,
only AFO is freely accessible to the public, with the remaining
resources restricted to community members.
Compared to non-semantic efforts, a key distinguishing

factor of the semantic approach is its fully linked concepts and
data instances. This is particularly true for the ontologies
reviewed above, as their concepts follow the classification of
the Basic Formal Ontology (BFO). The instances stored under
each ontology are inherently linked and consistent in logic.
This enables interoperability between domains and easy access
to data from different sources via SPARQL queries. Moreover,
the linked nature made it possible to reduce duplication of
information by providing unique identification to the entities,
whereas in XML it would be more likely that the same
information would appear in different files, for example, when
the same molecules are involved in different reactions.
The biology community has demonstrated that the

population of data is the key to a broader impact with well-
defined ontologies.148 However, classifying and annotating
data into ontologies while maintaining logical consistency is a
challenging task, especially with complex ontologies. It is costly
to adopt and creates a high entry barrier. This is reflected in
reaction informatics, as ontological data is still very much
limited to chemical species information, and there is currently
no semantic version of reaction data available. This further
exacerbated the problem of insufficient adoption of semantic
web technologies in ML and other practical engineering
applications, as noted by the developers of ORD,115 not to
mention that to actually control the equipment execution and
automate the data exchange framework is even more
challenging. A trade-off between engineering practices and
comprehensive representation is thus important. A potential
solution to this would be to convert existing databases149 into
RDF.
The same issue was acknowledged by the Allotrope

Foundation119 that there is a trend of making simpler data
models for practical applications. One of their partner
companies, TetraScience, developed an Intermediate Data
Schema (IDS)a JSON-based schema of analytical data as the
precursor of the AFO format. Using an agent, data generated
from the analytical equipment was collected and converted to
ADF for further analytics. Despite being proprietary, it
enlightens the way forward to standardize data conversion
and integration while it is generated. A perspective from
Godfrey et al.150 backed this idea, that is, data stored in an
ontological framework would very much facilitate the
proliferation of interoperable standards and also keep the
flexibility of introducing new methodologies.

Agent-Based Approaches

With the ontological data representation, the way of data
generation and consumption is another issue needing to be
addressed. By definition, an agent is a piece of “automated”
software capable of acting toward achieving its objectives.151 In
such a process, agents can communicate and coordinate, that

is, exchange information with each other, in a standardized
format. As aforementioned, TetraScience utilizes agents to
standardize data generation; this section focuses on agent
applications in standardizing data utilization.
In the context of chemical automation, agent-based

approaches can be adapted to replace the functional
components within a platform-based approach. Montoya et
al.29 wrapped different algorithms as agents to suggest the next
experiments for DFT calculations on stable materials
discovery. Gomes et al.28 standardized various tasks as agents
(bots) in a platform for crystal-structure phase mapping.
Caramelli et al.30 applied agent-based model simulations to
showcase the effectiveness of multi-threaded networking
principles in searching for the optimal solution in the chemical
space.
In the above studies, a step was made to turn functional

components into modularized agents and standardize the data
exchange between them. However, the communication was
done by passing in-memory programming variables28,29 or
posting plain-text on a human messaging platform (Twitter).30

As discussed in earlier sections, the same drawbacks such as
lack of scalability and interoperability will emerge when scaling
up the framework and integrating computational and physical
experimentation. A relevant first step toward addressing this
issue is demonstrated by DLHub,152 which allows users to
publish, share, and cite ML models for applications in science.
Following the introduction of ontological data representa-

tions, a natural question is to ask whether the use of agents and
ontologies can be combined to harness the strengths of both
approaches. The challenge of how best to do this has been an
open research question since the 2000s.31 In theory,24 the
ontology can help agents with more flexible operations,
whereas agents can help the ontology for better data
utilization. The Foundation for Intelligent Physical Agents153

(FIPA) proposed a set of specifications focusing on
communication and interoperability between agents. Specifi-
cally, FIPA Ontology Service Specification elaborated the idea
of having an ontology agent to support the message
interpretation between agents in detail. However, it never
made it to the standard stage. In the following years, JADE,154

a Java-based software platform that simplifies the implementa-
tion of FIPA-compatible multi-agent systems, attempted to
provide an ontology in its realization of FIPA standards, but
they only provided the ontology as part of the Java code,
without connecting to a knowledge base. Attempts to merge
the two technologies have been seen in other domains, but not
much in chemistry until very recently. An attempt to do this is
described in the next section.

■ DYNAMIC KNOWLEDGE-GRAPH-BASED
APPROACH

In this section, we explore how a combination of semantic web
technologies and multi-agent systems, a dynamic knowledge-
graph-based approach, might be applied to realize a complete
digital and self-driving laboratory, that is, a chemical digital
twin. We review an attempt to develop such an approach in the
“World Avatar” project. We subsequently outline a conceptual
example of automated closed-loop optimization powered by a
dynamic knowledge graph and assess its potential in achieving
full automation.
Before diving into further details, we also provide a glossary

of terms that are heavily used in this section. We acknowledge
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that the terms may have different meanings in other contexts;
we make no attempt at general definitions here.
Knowledge graph: a collection of data and software agents

expressed as a directed graph controlled by ontologies, where
the nodes and edges refer to concepts and relationships
correspondingly. This has broader coverage than the knowl-
edge graph as commonly used in semantic web studies,134

where only data are modeled as a directed graph. This is also
different from the knowledge graph built based on Reaxys by
Segler and Waller155 for reaction discovery problems, which
expressed molecules as nodes and binary reactions as edges.
Digital twin: a virtual replica of real-world entities in the

form of a knowledge graph. It is usually created for the real-
time monitoring and controlling of real entities and thus
should be synchronous with its physical counterpart.
Autonomous agent: a semantic web service that acts upon

the knowledge graph to achieve predefined goals. Importantly,
agents themselves are part of the knowledge graph and
represented using the ontology for the agent. While active,
agents communicate with each other and interact with the
knowledge graph for data retrieval and operation. In the sense
of a multi-agent system, the knowledge graph is the

“environment” of the agents. The communication between
the active agents is conducted via an HTTP request/response.
They use ontologies to establish a common understanding of
the topic of interest.
Dynamic knowledge graph: a knowledge graph that is

constantly modified by agents with the latest status of the real
world. It controls and influences the real world by updating the
specifications of the digital twin and actuating that with agents.

Current State

The World Avatar (http://theworldavatar.com/) project aims
to develop an all-encompassing framework156 that is capable of
describing any aspect of the world. The World Avatar uses a
dynamic knowledge graph, based on an ontological represen-
tation of physical entities and interoperable agents. The agents
are able to update the knowledge graph with new data, analyze
data, make decisions and control entities in the real world. This
approach has been suggested to offer a suitable design for a
universal digital twin.157

Starting from an industrial perspective, the J-Park Simulator,
a precursor of the World Avatar, developed a framework that
was applied to describe waste energy158 and optimize the

Figure 3. Dynamic knowledge-graph-based approach toward automated closed-loop optimization. The real world layer demonstrates the existing
physical entities, adapting from the experimentation setup of Jeraal et al.42 The dynamic knowledge graph layer hosts all the data generated during
the experimentation and a digital twin of the experimentation apparatus. This layer is dynamic as it reflects and influences the status of the real
world in real time. This synchronization is enforced by the agents in the active agents layer, which are instantiated from their ontological
representation in the knowledge graph.
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operation159 of an eco-industrial park on Jurong Island,
Singapore.160

The World Avatar has also been applied to describe a
number of different types of chemical data and provides
ontologies for quantum chemistry (OntoCompChem161),
chemical reaction kinetics (OntoKin162), chemical species
(OntoSpecies163), and combustion experiments (OntoChe-
mExp164). OntoSpecies links other ontologies to provide
unambiguous identification of the chemicals, enabling trans-
lation of chemical names when integrating chemical data
gathered from different sources.164 The ontologies are
connected to many of those described in previous sections.
For instance, the development of OntoCompChem is partly
based on the CompChem terms as described in the CML and
the Gainesville Core (GNVC) ontology.165 The relationship
between these ontologies and other data representations used
by the community is shown in Figure 2.
To facilitate the automated data utilization within the

knowledge graph, an agent ontology (OntoAgent166) was
developed as the design pattern of interoperable agents. Each
atomic agent is capable of predefined simple tasks with its
input/output (I/O) signature linked to the concepts in the
domain ontologies. This enabled I/O-based service discoveries
to form the agent composition for complex tasks.166 Notably,
by using OntoAgent to express the agents as part of the
knowledge graph, the activities of agents are easily trackable so
that provenance can be recorded to document the changes of
the knowledge graph over time.
Tools and Resources. All outputs from the World Avatar

project are available in the public domain. Various agents were
developed and released on Github to provide service in the
chemistry domain, for example, automated DFT calculations to
address inconsistent thermodynamic data,167 automated
mechanism calibration to improve the alignment between
kinetic models and experimental data,164 and a question
answering system enabling intuitive human data interaction−
natural language queries of chemical data covering data from
different sources.168 Work is in progress to integrate services
provided by agents into the natural language processing system
so that on-demand computations can be invoked when a
question could not be answered with the current knowledge.
Users are welcome to check for more functionalities over time:
https://kg.cmclinnovations.com/explore/marie.
Knowledge Graph Value Proposition. A core strength

of the knowledge graph approach is interoperability. The
knowledge graph provides a mechanism to combine data,
descriptions of software, and hardware interfaces in a
standardized way, facilitating automation and allowing
communication between agents acting on data from different
domains.164,167

Another key feature is the open-world assumption, enabling
the scalability of a knowledge graph system. Once the skeleton
ontology is set, extending knowledge coverage and tailoring
against specific applications is easy to manage. It should work
just like adding new features to a computational library.
Moreover, once the code of conduct is defined for each of

the agents, they can act autonomously and modify the
knowledge graph as time elapses. By doing so, the dynamic
knowledge-graph reflects and influences the ever-evolving
status of the real world.

Automated Closed-Loop Optimization

The characteristics of dynamic knowledge graphs open up the
possibility of a new and powerful approach to closed-loop
optimization. In this section, we explore how to apply a
dynamic knowledge graph to do this in the context of a case
study that was previously automated using a platform-based
approach.42 The case study considers flow chemistry.
However, given suitable ontologies and agents, the underlying
principles are expected to generalize to any practices in
chemistry where a “design−make−test−analyze” loop is
involved.
Figure 3 illustrates the whole framework consisting of three

layers, namely, the real world, the dynamic knowledge graph,
and active agents. Reaction data are expressed in ontologies
and hosted in the knowledge graph, together with the digital
twin of the lab equipment and interoperable agents. Once
activated, these agents act autonomously over the knowledge
graph and keep the cyber and real worlds synchronized. The
update of the digital twin is based on the readings from the
equipment. This is not limited to the reaction and analytical
equipment but includes environmental sensors located in the
laboratory. Each device has its corresponding input agent
transmitting the data into the knowledge graph. The monitor
agent is responsible for monitoring the status of the digital twin
and assessing if further optimization is required. If needed, it
invokes the design of experiment (DoE) agent to suggest new
experiments and update the configurations of the digital twin.
The actuation of such settings is the responsibility of the
execution agent to reflect the changes made in the knowledge
graph. This loop of self-optimization continues until the
monitor agent decides the optimal condition is reached.
Importantly, with agents expressed in the OntoAgent format,
this framework supports agent discovery service to enable
agent-agnostic execution requests.
Compared to the platform-based approach, one distinguish-

ing feature of the dynamic knowledge-graph-based approach is
that everything is connected, scalable, unambiguous, dis-
tributed, multi-domain, interoperable, accessible, and most
importantly evolving in time. As all the digital replicas of the
hardware are expressed in the same way, new equipment can
be immediately accessed by any existing software once it is
instantiated in the knowledge graph. The same applies when
adding new ML algorithms wrapped following OntoAgent
specifications; standardized interactions with data and HPC
services can be established in no time.167 This enables the
rapid integration of the most advanced algorithms and
equipment. Due to the modularized nature, in contrast to
heavily intertwined coding logic within a monolithic
application, the duty of development of each component is
separated, improving the maintainability of the entire system.
Another advantage of this approach is its future-proof

nature, for example, its interoperability when integrating with
other ontological initiatives in the community. At the species
level, OntoSpecies acts like a register system that covers most
of the chemical identifiers, making it possible to match with
PubChemRDF or other molecular databases. In terms of
chemical reactions, OntoKin is already able to describe the
kinetic mechanisms of gas-phase chemistry, with OntoChe-
mExp covering the statistical summary of combustion
reactions. These concepts can be expanded to describe other
chemistry domains of interest. A further opportunity lies in
linking the reactions with concepts as defined in RXNO and
MOP, embracing their full semantic capabilities. Similar
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expansion can be made with CHMO or AFO to describe the
analytical data and method employed in the experimentation.

Toward a Digital Laboratory and Beyond

Beyond closed-loop optimization, various researchers have
pictured the future toward the next-generation of autonomous
l a bo r a t o r i e s a nd a g l ob a l c o l l a bo r a t i v e n e t -
work.1,8,11,15,36,40,66,92,146,147 Jointly, we listed below a few
key challenges and how we see the knowledge-graph-based
approach helping.
Data Generation, Integration, and Sharing. This

challenge lies in the data management practice in the
platform-based approach.8,36 Going toward a full digitalization,
the ability to capture all generated data within an experiment
(even a “bad” reaction), integrate it with literature data, and
share with the community is crucial for navigating in the
chemical space. As aforementioned, the knowledge-graph-
based approach is designed to be a holistic data capture and
exchange framework. With a consensual description of the
experiment, literature data stored in the open-source databases
can be converted into the ontological format, integrated with
the newly generated data.
Roberts et al.147 envisioned a combination of XML and

relational databases to achieve the same goal. However, the
authors acknowledged that a database is difficult for a
nonspecialist to explore without clear documentation. To
enable data-agnostic queries within the knowledge graph,
question answering systems can be of help.168 Researchers can
thus interact with data intuitively from anywhere at any time,
aligning with FAIR principles.169 The semantic-rich nature
incorporates prior knowledge into the data, presenting the
potential to explore informed ML applications.170

Orchestration of Physical and Computational Experi-
ments. This challenge lies in the emerging trend of physically
synthesizing the compounds identified by computational high-
throughput screening.8,65,92,171,172 In a platform-based ap-
proach, this requires a heavy workload on the coordinator to
manage the information flow and to orchestrate the software
and hardware from different vendors. SiLA and AnIML are the
initiatives to provide standardized interfaces and data reporting
for proprietary hardware, adopting a mindset of peer-to-peer
information exchange that is similar to the platform-based
approach.
Whereas in the vision by Roberts et al.146,147 and a dynamic

knowledge-graph, information is promoted to be accessible to
all stakeholders within a laboratory environment, flattening the
structural design. For instance, active agents in the World
Avatar share the same world-view. The communication
between them only serves as a pointer to the correct resources
(IRIs). This enables asynchronous communication to accom-
modate time-consuming activities. Moreover, the communica-
tion itself is stored in the knowledge graph and accessible to all
agents: everything is transparent and FAIR. By further
introducing dependency between different concepts, both
data and instructions to the instrument will act like a flow of
information traveling in the knowledge graph, analogous to an
adaptive organism.
Democratization of Chemical Automation. As pre-

viously discussed, different approaches toward chemical
automation coexist. Choices are to be made for groups
upgrading from a common lab environment. Ideally, an off-the-
shelf solution should be available that is compatible with any

platform to lower the entry barrier. Therefore, interoperability
is key toward the democratization of chemical automation.
By design, the knowledge graph approach is able to connect

to any laboratory. As it is based on ontologies abstracted from
the laboratory entities, it is possible to instantiate a new lab
into the knowledge graph and utilize the framework.
Developing such a usable and reusable ontology is an iterative
process and requires the consensus of the domain. It is
envisioned to be a community effort in developing and
maintaining its life-cycle. As demonstrated by the general
semantic web community134 and particular application
experience in the chemical engineering community (Onto-
CAPE173), trial-and-error will be inevitable in the coming
decade. However, it is reasonable to be positive given the
successful adoption of these technologies by giant IT
companies.174 In that regard, the World Avatar is an open
project with all resources available on Github and welcomes
contributions from the community.

Role of Human Researchers. Despite the advantage of
chemical automation, there has been scepticism that the
automation of chemistry will replace the bench chemist.175 In
our view, the development of a digitalized and automated
laboratory would enhance the capability of human researchers,
enabling them to focus on creative activities, without worrying
about the exact physical steps required to achieve their goals.
This is similar to how the computer changed our way of
working and increased productivity. Since the data in the
knowledge graph is easy to query, researchers can focus on
interpreting the experimental data and finding insights in
historical knowledge generated from mankind.106,176 There
exists an opportunity for researchers to encode their chemistry
intuition into the knowledge graph, essentially making a digital
twin of themselves. It would be possible for researchers from
different laboratories to exchange views and establish
collaborations previously unfeasible. It would be interesting
to see what human intuition can achieve when empowered by
greater computing abilities.
Moreover, the linked nature of semantic web technologies

can bring us further to smart factories, smart buildings, and
smart grids,177 as has already been demonstrated by the
application of the World Avatar in smart city planning,178 and
the UK Digital Twin157 (https://kg.cmclinnovations.com/
explore/digital-twin). By constructing a digital laboratory and
linking it to the wider context, we believe it will facilitate multi-
scale and cross-domain interactions between scientists,
engineers, and policy makers to investigate how research
done in the lab would affect the whole world. Equipped with
scenario analysis, this will help to identify the direction science
advances.

■ CONCLUSIONS AND OUTLOOK

This contribution was motivated by the absence of stand-
ardized data representations and communication protocols,
which precludes further development toward the vision of a
global collaborative research network.
We performed a thorough review of the data flow between

the different functional components within state-of-the-art
studies on chemical automation. We found the common
platform-based approach employs ad hoc data representations
and subsequently different data transfer protocols. This results
in scalability issues when integrating new hardware and
software, and interoperability issues when collaborating
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among different platforms: better data representation and
exchange are desired.
We reviewed both semantic and non-semantic efforts in the

community and outlined the connections between initiatives.
Besides the existence of a pattern to promote semantic
representations of chemical knowledge, studies are emerging to
use agent-based approaches for standardized generation and
consumption of data.
With our past experience in closed-loop optimization and

knowledge-graph development, we conjecture that a dynamic
knowledge-graph-based approach would enable rapid integra-
tion of data and AI-based agents for chemical discovery and
development. By integrating physical entities into the cyber
space, it promotes better utilization of the plethora of
computational power in our efforts toward a sustainable
future.179

In light of the Industry 4.0 revolution, as well as the current
COVID situation, this perspective combines the review of
common practices in data representation/exchange, commun-
ity landscape in the development of better data for reaction
informatics, and also an outlook toward the holistic integration
of automation, AI, and chemistry. The topic of this perspective
is timely, and we believe it will start thought-provoking
conversations over our way toward fully digitalized chemistry
as a community.
Following the knowledge graph approach, hopefully in the

not too distant future, we will see the realization of a global
collaborative research network. We envisage it would allow
more interdisciplinary studies to be conducted for a better
understanding of the research activities of mankind. With such
further advancements to knowledge graph technology, we are
looking forward to a sustainable future in the commencing
decade.
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(128) Rühl, M. A.; Schäfer, R.; Kramer, G. W. Spectro ML-A
Markup Language for Molecular Spectrometry Data. JALA: J. Assoc.
Lab. Autom. 2001, 6, 76−82.
(129) SiLA, SiLA Rapid Integration | Standardization in Lab
Automation. 2021; https://sila-standard.com/, Accessed 27 May
2021.
(130) Schäfer, B. Data Exchange in the Laboratory of the Future - A
Glimpse at AnIML and SiLA. 2018; https://analyticalscience.wiley.
com/do/10.1002/gitlab.17270/full/, Accessed 15 July 2021.
(131) Mehr, S. H. M.; Craven, M.; Leonov, A. I.; Keenan, G.;
Cronin, L. A Universal System for Digitization and Automatic
Execution of the Chemical Synthesis Literature. Science 2020, 370,
101−108.
(132) Noack, M. M.; Sethian, J. A. Autonomous Discovery in Science
and Engineering. 2021; https://www.osti.gov/biblio/1818491, Ac-
cessed 14 November 2021.
(133) ESCALATE, Interacting with the ESCALATE REST API.
https://github.com/darkreactions/ESCALATE/blob/master/
demonstrations/REST_API_DEMO.ipynb, Accessed 15 November
2021.
(134) Hitzler, P. A Review of The Semantic Web Field. Commun.
ACM 2021, 64, 76−83.
(135) Gkoutos, G. V.; Murray-Rust, P.; Rzepa, H. S.; Wright, M.
Chemical Markup, XML, and the World-Wide Web. 3. Toward a
Signed Semantic Chemical Web of Trust. J. Chem. Inf. Comput. Sci.
2001, 41, 1124−1130.
(136) Murray-Rust, P.; Rzepa, H. S.; Tyrrell, S. M.; Zhang, Y.
Representation and Use of Chemistry in the Global Electronic Age.
Org. Biomol. Chem. 2004, 2, 3192−3203.
(137) Coles, S. J.; Day, N. E.; Murray-Rust, P.; Rzepa, H. S.; Zhang,
Y. Enhancement of the Chemical Semantic Web through the Use of
InChI Identifiers. Org. Biomol. Chem. 2005, 3, 1832−1834.
(138) Murray-Rust, P. Chemistry for Everyone. Nature 2008, 451,
648−651.

(139) Murray-Rust, P. CML - Frequently Asked Questions. http://
www.xml-cml.org/documentation/FAQ.html#chemistry, Accessed 31
July 2021.
(140) Batchelor, C.; Corbett, P. Semantic Enrichment of Journal
Articles Using Chemical Named Entity Recognition. Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster Sessions.
Association for Computational Linguistics: 2007; pp 45−48.
(141) EMBL-EBI, Name Reaction Ontology. 2021; https://www.ebi.
ac.uk/ols/ontologies/rxno, Accessed 14 June 2021.
(142) Hastings, J.; Chepelev, L.; Willighagen, E.; Adams, N.;
Steinbeck, C.; Dumontier, M. The Chemical Information Ontology:
Provenance and Disambiguation for Chemical Data on the Biological
Semantic Web. PloS One 2011, 6, e25513.
(143) Willighagen, E. L.; Waagmeester, A.; Spjuth, O.; Ansell, P.;
Williams, A. J.; Tkachenko, V.; Hastings, J.; Chen, B.; Wild, D. J. The
ChEMBL Database as Linked Open Data. J. Cheminf. 2013, 5, 23.
(144) Fu, G.; Batchelor, C.; Dumontier, M.; Hastings, J.;
Willighagen, E.; Bolton, E. PubChemRDF: Towards the Semantic
Annotation of PubChem Compound and Substance Databases. J.
Cheminf. 2015, 7, 34.
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