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Abstract: In this paper we present a detailed study of the four-body decay B0 →
K+π−`+`−, where tensions with the Standard Model predictions have been observed. Our
analysis of the decay with P- and S-wave contributions to the K+π− system develops a
complete understanding of the symmetries of the distribution, in the case of massless and
massive leptons. In both cases, the symmetries determine relations between the observables
in the B0 → K+π−`+`− decay distribution. This enables us to define the complete set of
observables accessible to experiments, including several that have not previously been iden-
tified. The new observables arise when the decay rate is written differentially with respect
to mKπ. We demonstrate that experiments will be able to fit this full decay distribution
with currently available data sets and investigate the sensitivity to new physics scenarios
given the experimental precision that is expected in the future.

The symmetry relations provide a unique handle to explore the behaviour of S-wave
observables by expressing them in terms of P-wave observables, therefore minimising the
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dependence on poorly-known S-wave form factors. Using this approach, we construct two
theoretically optimized S-wave observables and explore their sensitivity to new physics.
By further exploiting the symmetry relations, we obtain the first bounds on the S-wave
observables using two different methods and highlight how these relations may be used
as cross-checks of the experimental methodology and the parametrization of the B0 →
K+π−`+`− differential decay rate. We identify a zero-crossing point that would be at a
common dilepton invariant mass for a subset of P- and S-wave observables, and explore
the information on new physics and hadronic effects that this zero point can provide.
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1 Introduction and motivation

Recent years have witnessed rising interest in the B-flavour anomalies as potential hints of
New Physics (NP). On the one side quantitatively, due to the observation of an increasing
number of observables deviating from their Standard Model (SM) predictions; and on
the other side, qualitatively, via an enhancement of the statistical significance of the NP
hypotheses in b → s`+`− global analyses. Recent analyses [1, 2] (see also [3–6]), show
that some NP hypotheses exhibit a pull with respect to the SM of more than 7σ and
point to a NP contribution that is dominantly left-handed with a vector (or axial-vector)
coupling to muons that breaks Lepton Flavour Universality. Solutions with additional
small NP contributions from right-handed currents or Lepton Flavour Universal (LFU)
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NP contributions [7] are also compatible with the data. Measurements of B0 → K∗0(→
K+π−)`+`− decays with the K+π− system in a P-wave configuration give rise to several
of the anomalies observed and an improved understanding of these decays is essential
to distinguish between the SM and possible NP scenarios. The LHCb collaboration has
observed the presence of a largeK+π− S-wave component in B0→ K+π−`+`− decays [8, 9].
However, the lack of reliable B → K+π− S-wave form factors means that the physics
potential of this component remains untapped.

In this paper we present the potential of B0→ K+π−`+`− transitions to search for
physics beyond the SM, considering both P- and S-wave contributions to the K+π− sys-
tem. For other works studying the impact of the S-wave contribution we refer the reader
to refs. [10–17]. Key to this work is the identification of the symmetries of the five dimen-
sional decay rate that underpins the complete set of B0→ K+π−`+`− observables and the
relations between them. In particular, we identify new observables related to the interfer-
ence between the S- and P-wave amplitudes of the K+π− system, and use the symmetry
relations to investigate the potential of S-wave observables as precision probes of NP. We
work under the hypothesis of no scalar or tensor NP contributions in our study of the sym-
metries. In addition, we present a new and robust way to extract information on both NP
scenarios and non-perturbative hadronic contributions by studying the common position
in dilepton mass squared at which a subset of P- and S-wave observables cross zero.

Using pseudoexperiments that account for both background and detector effects, we
make the first study of the capability of the LHCb experiment to extract the complete set
of P- and S-wave observables from a single fit to the five-dimensional differential decay
rate of B0→ K+π−`+`− decays. We also investigate the potential of combinations of the
new S-wave observables to separate between relevant NP scenarios, in light of the current
anomalies, for both current and future data sets. The complexities of both experimen-
tal and theoretical techniques to study B0→ K+π−`+`− transitions lend themselves to
systemic errors. We therefore use the symmetry relations to devise stringent and model-
independent cross-checks of the validity of both experiment and theory methodologies.

The paper is organised as follows. In section 2, we discuss the structure of the differ-
ential angular distribution including P- and S-wave contributions. In the case of P-wave
observables with massive leptons, we study the sensitivity of previously identified observ-
ables to new scalar and pseudoscalar contributions. In the case of the S wave, we define new
observables. In section 3 we first perform an analysis of the degrees of freedom required to
fully describe the angular distribution, identify the symmetries of the angular distributions
and derive a set of relations between P- and S-wave observables that are a consequence of
the transformation symmetries of the angular distribution. These relations offer control
tests for both experimental and theoretical analyses. Significantly given the lack of knowl-
edge of S-wave form factors, these relations also enable predictions for some combinations
of S-wave observables in terms of P-wave observables. In section 4, the relations are used
to obtain the first bounds on the complete set of S-wave observables and the potential to
observe NP with some of these observables is discussed. In section 5, a set of P- and S-wave
observables that share a zero at the same position in dilepton invariant mass is highlighted
and the resulting information on both NP scenarios and on hadronic effects is discussed.
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The experimental prospects for determining all of the P- and S-wave observables discussed,
in both massless and massive cases, are presented in section 6. Finally, a summary and
conclusion are presented in section 7.

2 Structure of the differential decay rate: P and S waves

The differential decay rate of the four-body transition B → Kπ`+`− receives contributions
from the amplitude of the P-wave decay B → K∗(→ Kπ)`+`−, as well as from the ampli-
tude of the S-wave decay B → K∗0 (→ Kπ)`+`−, with K∗0 being a broad scalar resonance.
The rate can then be decomposed into:

d5Γ
dq2 dm2

Kπ dΩ
= d5ΓP

dq2 dm2
Kπ dΩ

+ d5ΓS
dq2 dm2

Kπ dΩ
(2.1)

where dΩ = d cos θ`d cos θKdφ and ΓP contains the pure P-wave contribution and ΓS
contains the contributions from pure S-wave exchange, as well as from S-P interference.
Here, q2 denotes the square of the invariant mass of the lepton pair and mKπ the invariant
mass of the Kπ system. The angles θ`, θK describe the relative directions of flight of the
final-state particles, while φ is the angle between the dilepton and the dimeson plane (see
ref. [18] for definitions). The differential rate for a B0 decay to a final state in the P-wave
configuration is

d5ΓP
dq2 dm2

Kπ dΩ
= 9

32π
[
J1s sin2 θK + J1c cos2 θK + J2s sin2 θK cos 2θ`
+ J2c cos2 θK cos 2θ` + J3 sin2 θK sin2 θ` cos 2φ
+ J4 sin 2θK sin 2θ` cosφ+ J5 sin 2θK sin θ` cosφ
+ J6s sin2 θK cos θ` + J6c cos2 θK cos θ`
+ J7 sin 2θK sin θ` sinφ+ J8 sin 2θK sin 2θ` sinφ

+ J9 sin2 θK sin2 θ` sin 2φ
]
× |BWP (mKπ)|2, (2.2)

with a similar form for the B0 rate. The mKπ dependence, denoted by BWP (mKπ), can be
modelled by a relativistic Breit-Wigner amplitude describing the K∗0 resonance, including
the apposite angular momentum and phase-space factors. The Breit-Wigner amplitude is
normalised such that the integral of the modulus squared of the amplitude over the mKπ

region of the analysis is one. For the exact form of the Breit-Wigner functions BWi(mKπ)
we refer the reader to ref. [10].

The differential rate of the S-wave final state configuration is
d5ΓS

dq2 dm2
Kπ dΩ

= + 1
4π
[
(J̃c1a + J̃c2a cos 2θ`)|BWS(mKπ)|2

+ J̃c1b cos θK + J̃c2b cos 2θ` cos θK
+ J̃4 sin 2θl sin θK cosφ+ J̃5 sin θl sin θK cosφ

+ J̃7 sin θl sin θK sinφ+ J̃8 sin 2θl sin θK sinφ
]
.

(2.3)

The coefficients Ji, J̃c1a and J̃c2a are functions of q2. Those for the interference, J̃c1b, J̃c2b
and J̃4−8 depend on both q2 and mKπ. The mKπ amplitude for the S wave, BWS(mKπ)
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may be described with the LASS parameterisation [19, 20]. Similarly to the P wave, the
S-wave mKπ-amplitude is normalised such that the integral of the modulus squared of the
amplitude over the analysed mKπ range is one.

If not explicitly stated otherwise, we will not consider the presence of scalar or tensor
contributions in the following (this implies, in particular, that J6c in eq. (2.2) is taken to
be zero). The decays B → K∗`+`− and B → K∗0`

+`− are described by seven complex
amplitudes AL,R‖,⊥,0, At and three complex amplitudes A′L,R0 , A′t, respectively, where the
upper index L,R refers to the chirality of the outgoing lepton current, while in the case of
the P-wave the lower index ‖,⊥, 0 indicates the transversity amplitude of the K∗-meson.

Since the distribution is summed over the spins of the leptons, the observables Ji and
J̃i are described in terms of spin-summed squared amplitudes of the form AL∗i ALj ±AR∗i ARj .
This structure suggests that the amplitudes can be arranged in a set of two-component
complex vectors:

n‖ =
(
AL‖

AR∗‖

)
, n⊥ =

(
AL⊥
−AR∗⊥

)
, n0 =

(
AL0
AR∗0

)
, nS =

(
A′L0
A′R∗0

)
, n′S =

(
A′L0
−A′R∗0

)
.

(2.4)
Two vectors are needed to parametrize the L and R components of the A′0 amplitude,
and the At and A′t amplitudes are not expressed in terms of two-complex vectors. Except
for the lepton mass terms that mix the L and R components and include the At (or A′t)
amplitudes, one can express the coefficients of the distribution in terms of these vectors.
The expression for the coefficients in the P-wave terms can be found in ref. [18] and [21].
For the S-wave terms we find

J̃c1a = 3
8
[
|A′L0 |2 + |A′R0 |2 + (1− β2)

(
|A′t|2 + 2Re

[
A′L0 A

′R∗
0

])]
,

J̃c2a = −3
8β

2
(
|A′L0 |2 + |A′R0 |2

)
= −3

8β
2|nS |2. (2.5)

Similarly for the P-S (real) interference terms

J̃c1b = 3
4
√

3Re
[(
A′L0 A

L∗
0 +A′R0 A

R∗
0 + (1− β2)

(
A′L0 A

R∗
0 +AL0A

′R∗
0 +A′tA

∗
t

))
BWSBW

∗
P

]
= J̃c, r1b Re(BWSBW

∗
P )− J̃c, i1b Im(BWSBW

∗
P )

J̃c2b = −3
4
√

3β2Re
[(
A′L0 A

L∗
0 +A′R0 A

R∗
0

)
BWSBW

∗
P

]
= J̃c, r2b Re(BWSBW

∗
P )− J̃c, i2b Im(BWSBW

∗
P )

J̃4 = 3
4

√
3
2β

2Re
[
(A′L0 AL∗‖ +A′R0 A

R∗
‖ )BWSBW

∗
P

]
= J̃r4 Re(BWSBW

∗
P )− J̃ i4Im(BWSBW

∗
P )

J̃5 = 3
2

√
3
2βRe

[
(A′L0 AL∗⊥ −A′R0 AR∗⊥ )BWSBW

∗
P

]
= J̃r5 Re(BWSBW

∗
P )− J̃ i5Im(BWSBW

∗
P ) (2.6)
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and finally for the P-S (imaginary) interference terms

J̃7 = 3
2

√
3
2βIm

[
(A′L0 AL∗‖ −A

′R
0 A

R∗
‖ )BWSBW

∗
P

]
= J̃r7 Im(BWSBW

∗
P ) + J̃ i7Re(BWSBW

∗
P )

J̃8 = 3
4

√
3
2β

2Im
[
(A′L0 AL∗⊥ +A′R0 A

R∗
⊥ )BWSBW

∗
P

]
= J̃r8 Im(BWSBW

∗
P ) + J̃ i8Re(BWSBW

∗
P ), (2.7)

where β =
√

1− 4m2
`/q

2 and the superscript indices r and i (here and for the rest of the
paper) refer to the real and imaginary parts of the bilinears, respectively.

The form of the differential decay rate given through eqs. (2.2), (2.3), (2.6), (2.7)
assumes that the q2 andmKπ dependence of the B → Kπ form factor can be factorized [10,
11, 22]. The breaking of this factorization, as presented for instance in the analysis of
generalized S-wave B → Kπ form factors in ref. [15], may be tested through the validity
of the symmetry relations between the observables derived in section 3.

The study of the S-wave observables presented in this paper is the first to consider
the complete set of observables that arise when the decay rate is written differentially with
respect to mKπ. As a consequence, the interference between the S-P-wave mKπ lineshapes
projects out additional bilinear combinations of S- and P-wave amplitudes, giving rise to
the 12 new observables J̃r, ii given in eqs. (2.6) and (2.7). Previous studies, such as those
of ref. [23], only considered the differential decay rate integrated over mKπ. In this case,
one obtains the six well-known S-P interference observables J̃i that can be described by a
single two-dimensional S-wave amplitude vector nS , without the need for n′S . Concerning
possible contributions from D- and higher partial waves, in ref. [12] the authors considered
the role of such terms and concluded that S+P+D contributions correct S+P at the few
permille level, beyond the precision viable at any near-future facility.

2.1 P-wave massive observables

The so-called optimized observables are designed to reduce form factor uncertainties. The
set of such observables that describes the P-wave Kπ system has been discussed at length
in a series of papers [21, 24, 25]. However, due to improvements in experimental precision,
there is increasingly sensitivity to observables that are suppressed by factors of the lepton
mass. For the optimized observables, Pi, the impact that lepton masses have in the very
low q2 region via the kinematical prefactor β is well known.

Our interest here is to explore two further optimized observables M1 and M2, intro-
duced in ref. [21], that can be neglected in the massless limit. These observables are defined
in terms of the coefficients of the distribution as follows:1

M1 = J1s
3J2s

M2 = −J1c
J2c

. (2.8)

1In order to make the comparison with experimental prospects easier, in this work we have slightly
changed the definition of M1,2 by removing the constant terms appearing in ref. [21].
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For this specific type of observable it makes sense to explore the impact from scalar and
pseudoscalar NP contributions. Therefore, we will relax in this section the hypothesis of
no scalar or pseudoscalar contributions.

Even considering a large set of NP scenarios, the observable M1 is found to be practi-
cally insensitive to NP and is not analysed further. By contrast, M2 can potentially provide
information on scalar and/or pseudoscalar NP scenarios. In order to explore reasonable val-
ues of (pseudo)scalar contributions, we constrain the range for the coefficients CP,S by con-
sidering only those values allowed by the experimental measurement of B(Bs → µµ). Thus,
we write the following ratio [26], which is used to define the 1σ region from Bexp(Bs → µµ):

RBs→µµ = B
exp(Bs → µµ)
BSM(Bs → µµ) = |S|2 + |P |2 , (2.9)

where the quantities S, P 2 contain the different NP contributions and are given by:

S =

√√√√1− 4
m2
µ

m2
Bs

m2
Bs

2mbmµ

(
CS − CS′
CSM

10µ

)
, (2.10)

P =
CSM

10µ + CNP
10µ − C10′µ

CSM
10µ

+
m2
Bs

2mbmµ

(
CP − CP ′
CSM

10µ

)
. (2.11)

Figure 1 shows the allowed region for S and P once the latest experimental value for
B(Bs → µµ) = (2.85± 0.34) [27] is included, corresponding to RBs→µµ = (0.78± 0.10). In
this analysis we have not allowed for the presence of right-handed currents.

We perform an analysis of the behaviour of M2 under different hypotheses for
(pseudo)scalar NP contributions that are compatible with figure 1. The case S = 0, P = 1
corresponds to the SM, as can be seen from eqs. (2.10) and (2.11). We consider three other
possible scenarios, corresponding to maximal values of S, P :

i) S = ±0.94, P = 0,

ii) S = P = 0.66,

iii) S = 0, P = −0.94.

These three benchmark cases are: i) only a scalar contribution (with two possible signs)
and no pseudoscalar NP, ii) both S and P contributions present and equal in magnitude and
iii) the opposite sign of the SM case with a negative pseudoscalar contribution. Figure 2
shows the theoretical prediction of the large- and low-recoil bins of M2 in the four scenarios
mentioned above.

It is evident from figure 2 that the rather small sensitivity of M2 to (pseudo)scalar
contributions makes it difficult to get a significant distinction between the different scenar-
ios. This is especially the case in the very low q2 region, where the uncertainties associated
with the theoretical prediction of this observable are larger. Only for the S = 0, P = −0.94

2Not to be confused with the P- and S-wave components of the decay, this S, P refer to Scalar and
Pseudoscalar NP contributions entering RBs→µµ. The latter includes the SM axial-vector contribution.
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Figure 1. Region of allowed values for S, P that fulfill the condition |RSM
Bs→µµ − R

NP
Bs→µµ| ≤ 0.10.

In order to illustrate the sensitivity of this observable to NP contributions, we display its value in
the SM (black star) and in one of the favoured scenario from ref. [2] (blue dot): {CV

9µ = −CV
10µ =

−0.30, CU
9 = −0.92}. Only the dependence on C10µ is displayed in the plot. The tiny difference of

this scenario with the SM illustrates that M2 is an observable with low sensitivity to the preferred
scenarios of present global fits. For this reason we explore its sensitivity under other types of NP,
namely scalars and pseudoscalars.

� � �� �� ��

����

����

����

����

����

����

Figure 2. Binned theoretical predictions for M2 in the SM and in selected NP scenarios including
pseudoscalar and scalar contributions.
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scenario in the large-recoil region is a clean separation between hypotheses possible, given
suitably high precision measurements. The situation is somewhat better in the low-recoil
q2 region, where the theoretical errors are smaller but an even higher experimental resolu-
tion will be required. The experimental prospects for such a separation of NP hypotheses
is outlined in section 6.3.1.

2.2 Definition of S-wave observables: massless and massive case

In this section we define the list of S-wave observables that can be constructed using the
coefficients of the distribution. They follow from the previous section including P and
S waves in the massless case but also taking into account lepton mass terms. The S-
wave observables that were mostly treated as nuisance parameters thus far will become an
interesting target for future experimental analyses.

Our goal here will be to define the S-wave observables but it is beyond the scope of this
paper to provide SM predictions and enter into a discussion of the form factors or other
hadronic uncertainties. Our first interest is to determine how many of the observables are
genuinely independent. The question of the number of degrees of freedom is critical for the
stability of experimental fits and is discussed further in section 3.

As discussed in section 2, the new S-P interference observables defined in eqs. (2.6)
and (2.7), can be defined in terms of the vectors in eq. (2.4) as follows:

SrS1 = −3
4
√

3 1
Γ′β

2Re(n†0 nS) + CP, SiS1 = −3
4
√

3 1
Γ′β

2Im(n†0 n′S) + CP,

SrS2 = 3
4

√
3
2

1
Γ′β

2Re(n†‖ nS) + CP, SiS2 = 3
4

√
3
2

1
Γ′β

2Im(n†‖n
′
S) + CP,

SrS3 = 3
2

√
3
2

1
Γ′βRe(n†⊥ nS) + CP, SiS3 = 3

2

√
3
2

1
Γ′βIm(n†⊥n

′
S) + CP,

SrS4 = 3
2

√
3
2

1
Γ′βRe(n†‖n

′
S) + CP, SiS4 = 3

2

√
3
2

1
Γ′βIm(n†‖nS) + CP

SrS5 = 3
4

√
3
2

1
Γ′β

2Re(n†⊥n
′
S) + CP SiS5 = 3

4

√
3
2

1
Γ′β

2Im(n†⊥nS) + CP (2.12)

where

Γ′ = Γ′P + Γ′S + CP

Γ′P = 3
4(2J1s + J1c)−

1
4(2J2s + J2c) + CP

Γ′S = 2J̃c1a −
2
3 J̃

c
2a + CP. (2.13)

Here the prime stands for the differential distribution. Note that once we include lepton
mass terms, FS should be extracted from J̃c2a and not from the combination with J̃c1a
such that:

FS = |n
†
SnS |
Γ′ = − 8

3β2
J̃c2a
Γ′ . (2.14)

In order not to overload excessively the notation it should be understood that from
eq. (2.14) to eq. (2.23) each explicit J or J̃ is accompanied by its CP -conjugate partner. In
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the case that B0 and B̄0 decays were experimentally separated, a set of CP -asymmetries
corresponding to each J and J̃ observable would also become accessible (see section 6.1).

In terms of these observables, the angular distribution in the massless limit (taking
β → 1 in eq. (2.12)) is given:

1
d(Γ + Γ̄)/dq2

d5(Γ + Γ̄)
dm2

Kπ dq2 d~Ω

∣∣∣∣∣
S+P

= (1− FS)|BWP |2
1

d(Γ + Γ̄)/dq2
d5(Γ + Γ̄)

dm2
Kπ dq2 d~Ω

∣∣∣∣∣
P

+ 1
4π

[3
4FS|BWS |2 sin2 θ`

− 2[SrS1Re(BWSBW
∗
P )− SiS1Im(BWSBW

∗
P )] sin2 θ` cos θK

+ [SrS2Re(BWSBW
∗
P )− SiS2Im(BWSBW

∗
P )] sin 2θ` sin θK cosφ

+ [SrS3Re(BWSBW
∗
P )− SiS3Im(BWSBW

∗
P )] sin θ` sin θK cosφ

+ [SrS4Im(BWSBW
∗
P ) + SiS4Re(BWSBW

∗
P )] sin θ` sin θK sinφ

+ [SrS5Im(BWSBW
∗
P ) + SiS5Re(BWSBW

∗
P )] sin 2θ` sin θK sinφ

]
.

(2.15)

The corresponding angular distribution in the massive case can be obtained from eq. (2.3)
using optimized3 S-wave observables and mass terms defined by:

M ′3 = −β
2J̃c1a − J̃c2a
J̃c2a

, (2.16)

together with the extra S-P interference massive optimized terms:

M ′4 = −β
2J̃c,r1b − J̃

c,r
2b√

J2cJ̃c2a

,

M ′5 = −β
2J̃c,i1b − J̃

c,i
2b√

J2cJ̃c2a

. (2.17)

Then the massive distribution becomes:

1
d(Γ + Γ̄)/dq2

d5(Γ + Γ̄)
dm2

Kπ dq2 d~Ω

∣∣∣∣∣
S+P

= (1− F ′S)|BWP |2
1

d(Γ + Γ̄)/dq2
d5(Γ + Γ̄)

dm2
Kπ dq2 d~Ω

∣∣∣∣∣
P

+ 1
4π

[(3
8FS(1 +M ′3)− 3

8β
2FS cos 2θl

)
|BWS |2

3These observables are considered optimized in the same sense as the P-wave optimized observables but
under the assumption that the q2 and mKπ dependence of the B → Kπ form factor factorizes.
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+
(
− 1
β2 (SrS1 +M ′4NL)Re(BWSBW

∗
P )

+ 1
β2 (SiS1 +M ′5NL)Im(BWSBW

∗
P )
)

cos θK

+ [SrS1Re(BWSBW
∗
P )− SiS1Im(BWSBW

∗
P )] cos 2θl cos θK

+ [SrS2Re(BWSBW
∗
P )− SiS2Im(BWSBW

∗
P )] sin 2θl sin θK cosφ

+ [SrS3Re(BWSBW
∗
P )− SiS3Im(BWSBW

∗
P )] sin θl sin θK cosφ

+ [SrS4Im(BWSBW
∗
P ) + SiS4Re(BWSBW

∗
P )] sin θl sin θK sinφ

+ [SrS5Im(BWSBW
∗
P ) + SiS5Re(BWSBW

∗
P )] sin 2θl sin θK sinφ

]
. (2.18)

We define

NL =
√
J2cJ̃c2a = 1

2

√
3
2β

2Γ′
√

(1− F ′S)FSFL

NT =
√
−J2sJ̃c2a = 1

4

√
3
2β

2Γ′
√

(1− F ′S)FSFT (2.19)

where the definitions of FL and FT can be found in eq. (6.1) and

F ′S = Γ′S
Γ′ = FS − εS εS = 1

4FS(1− β2 − 3M ′3). (2.20)

Notice that in the massless limit (M (′)
i → 0, β → 1) eq. (2.18) reduces to eq. (2.15).

Finally, in order to write the whole distribution with massive terms and optimized
observables, the substitution:

S
r/i
S1 → PS

r/i
1
NL

Γ′ S
r/i
S2−S5 → PS

r/i
2−5

NT

Γ′ (2.21)

is needed, where the optimized observables for the interference terms in all q2 bins are

PS
r/i
1 = J̃

c,r/i
2b√
J2cJ̃c2a

, PS
r/i
2−5 =

J̃
r/i
4−8√
−J2sJ̃c2a

. (2.22)

Using the expressions4

J2s = 1
4N1, J2c = −N2, J3 = 1

2P1N1, J4 = 1
2P
′
4N3, J5 = P ′5N3,

J6s = 2P2N1, J7 = −P ′6N3, J8 = −1
2P
′
8N3, J9 = −P3N1, (2.23)

4One may add to this list another observable, related to the presence of scalars, associated with the
coefficient J6c. Given that in the present paper we only allow for scalars when analyzing the observable
M2, we direct the reader to ref. [21], where this case is discussed.
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where N1,2 = β2FT,LΓ′P , N3 = β2√FTFLΓ′P (and the addition of the CP conjugate in Γ′P
is implicit) and including the definitions of M1,2, one finds:

1
d(Γ + Γ̄)/dq2

d4(Γ + Γ̄)
dq2 d~Ω

∣∣∣∣∣
P

= 9
32π

[3
4 F̂TM1 sin2 θK + F̂LM2 cos2 θK

+
(1

4 F̂T sin2 θK − F̂L cos2 θK

)
cos 2θl + 1

2P1F̂T sin2 θK sin2 θl cos 2φ

+
√
F̂T F̂L

(1
2P
′
4 sin 2θK sin 2θl cosφ+ P ′5 sin 2θK sin θl cosφ

)
+2P2F̂T sin2 θK cos θl−

√
F̂T F̂L

(
P ′6 sin 2θK sin θl sinφ+ 1

2P
′
8 sin 2θK sin 2θl sinφ

)
−P3F̂T sin2 θK sin2 θl sin 2φ

]
. (2.24)

where a global pre-factor β2 has been absorbed inside the re-definition F̂T,L = β2FT,L. In
order to write the angular distribution above including both P- and S-wave contributions
in terms of optimized observables, one would need to make the substitutions given in
eq. (2.21).

3 Symmetries of the distribution

In this section we present the explicit form of the symmetry transformations of the am-
plitudes that leave the full distribution (including P and S wave) invariant, and obtain
explicitly the relations among the observables. The massless and the massive cases are
discussed separately.

The number of symmetries of the distribution is determined by performing an infinites-
imal transformation ~A′ = ~A+~δ, where ~A is a vector collecting the real and imaginary parts
of all the amplitudes entering the distribution (the vector ~A depends on whether the mass-
less or massive hypothesis is taken), and the condition to be a symmetry is that the vector
~δ is perpendicular to the hyperplane spanned by the set of gradient vectors:

∀i ∈ Ji, J̃i : ~∇i ⊥ ~δ . (3.1)

(see, for instance, section 3.1 of ref. [18] for an explicit example). The gradients are defined
then by the derivatives of the coefficients with respect to the real and imaginary parts
of all the amplitudes. The difference between the dimension of the hyperplane that the
gradient vectors span if they are all independent (equal to the number of coefficients of
the distribution) and the dimension of the hyperplane that they effectively span tells us
the number of relations among the coefficients that exist. By relations we will refer only
to non-trivial relations. We will discuss these relations in the following subsections. For
completeness, we first find explicitly the form of the continuous symmetries.

In ref. [21], the massless and massive symmetries were discussed for the P wave. There
it was found that, in the massless case, four symmetries (two phase transformations for the
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left and right components and two “angle rotations") leave the P-wave part of the distri-
bution invariant. Alternatively, using the vectors ni we can implement the four symmetry
transformations by means of a 2×2 unitary matrix, i.e, n′i = Uni with i =⊥, ‖, 0. However,
the inclusion of the S wave that requires two different vectors nS and n′S breaks two of the
symmetries5 and only the two independent phase transformations survive, i.e.,

ALi → eiφLALi , A′L0 → eiφLA′L0 , ARi → eiφRARi , A′R0 → eiφRA′R0 (3.2)

with i = 0,⊥, ‖.
The massive case is relatively similar and again only two phase transformations sur-

vive. However, the existence of interference terms between left and right components fixes
φL = φR = φ, but this is compensated by the independent transformation of the extra
amplitudes A(′)

t :

ALi → eiφALi , ARi → eiφARi ,

A′L0 → eiφA′L0 , A′R0 → eiφA′R0

At → eiϕAt, A′t → eiϕA′t (3.3)

with i = 0,⊥, ‖.6

3.1 Counting degrees of freedom: massive and massless cases

One important question is how many degrees of freedom there are or, in other words,
how many observables in the set discussed in section 2.2 are independent. The number
of independent observables to fully describe the distribution depends on whether massless
or massive leptons are considered. We again work under the hypothesis that there are no
scalar contributions but pseudoscalar ones are allowed in the massive case.

The number of observables that can be constructed out of the complex amplitudes is
given by:

nobs = 2nA − nsym . (3.4)

Each symmetry transformation of the amplitudes that leaves the distribution invariant
reduces the number of independent observables.

In the following, we determine the number of relations for the massless and massive case
and consequently the number of independent observables required to have a full description
of the corresponding distribution.

Massless case: assuming the absence of scalars, we have 11 coefficients for the P-wave
and 14 coefficients for the S-wave distribution. Under the approximation of negligible
lepton masses, there are two trivial relations for the P-wave coefficients:

J1s = 3J2s J1c = −J2c (3.5)
5This is easily shown by simply transforming the sum nS + n′S
6Another example of the convenience of using symmetries but in the semileptonic charged-current b→

c`ν transition can be found in ref. [28].
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and three trivial relations for the S-wave coefficients:

J̃c1a = −J̃c2a J̃c r1b = −J̃c r2b J̃c i1b = −J̃c i2b , (3.6)

reducing the number of coefficients to nc = 20. The vector ~A in the massless case is
given by:

~A =
(
Re(AL⊥), Im(AL⊥),Re(AL‖ ), Im(AL‖ ),Re(AL0 ), Im(AL0 ),Re(AL0

′), Im(AL0
′), (3.7)

Re(AR⊥), Im(AR⊥),Re(AR‖ ), Im(AR‖ ),Re(AR0 ), Im(AR0 ),Re(AR0
′), Im(AR0

′)
)
.

Using eq. (3.1), we find that the dimension of the space spanned by the gradient vectors
(given by the rank of the matrix Mij = ∇iXj with X = J, J̃ and i being the elements of
~A in eq. (3.7)) is nrank = 14. This rank gives the number of independent observables nobs.
According to the discussion above, the number of relations fulfills:

nrel = nc − nrank . (3.8)

Therefore for the massless case nrel = 6. There is one well-known relation among the
coefficients for the P wave (see refs. [18, 29]) and five, previously unknown, relations for
the S wave. An independent cross check of the rank of the matrix is provided by the
fact that the number of degrees of freedom counting amplitudes minus symmetries, or
coefficients minus relations should agree. This implies the equation:

2nA − nsym = nrank = nc − nrel . (3.9)

The number of complex amplitudes nA = 8 and the number of symmetries of the full
distribution (P and S wave) is nsym = 2 (see eq. (3.2)).

The set of 14 independent observables consists of 8 (9 coefficients minus one relation)
independent observables for the P wave and 6 (11 coefficients minus 5 relations) indepen-
dent observables for the S wave. This implies that in the massless case the basis of 20
observables,

Om`=0 = {Γ′, FL, P1, P2, P3, P
′
4, P

′
5, P

′
6, P

′
8,

FS , S
r
S1, S

r
S2, S

r
S3, S

r
S4, S

r
S5, S

i
S1, S

i
S2, S

i
S3, S

i
S4, S

i
S5}, (3.10)

has some redundancy. Among these 20 observables there are 6 relations leading to only
14 independent observables. The set of 6 massless relations can be obtained from the 6
massive expressions given below, after taking the massless limit. Notice that the seventh
relation, given in the appendix, is exactly zero in the massless limit.

Massive case: the counting in this case, following the same steps as in the massless case,
goes as follows. Our starting point is the same number of coefficients 11 (14) for the P
wave (S wave), but now there are no trivial relations, i.e., nc = 25. Here the vector ~A is:

~A =
(
Re(AL⊥), Im(AL⊥),Re(AL‖ ), Im(AL‖ ),Re(AL0 ), Im(AL0 ),Re(AL0

′), Im(AL0
′),

ReAt, ImAt,Re(AR⊥), Im(AR⊥),Re(AR‖ ), Im(AR‖ ),Re(AR0 ), Im(AR0 ),

Re(AR0
′), Im(AR0

′),ReA′t, ImA′t
)
. (3.11)
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Notice that pseudoscalar contributions are included in the amplitude At. Evaluating the
rank of the corresponding matrix Mij , one finds nrank = 18, indicating that in the massive
case the number of independent observables is nobs = 18. Following eq. (3.8), one imme-
diately finds that the number of relations should be 7. These relations are discussed and
presented in the next subsection.

As in the previous case, we can repeat the counting using the amplitudes that build
the observables. The number of complex amplitudes is nA = 10 with the same number
of symmetries nsym = 2 (see eq. (3.3)) as in the massless case, such that we confirm that
there are 18 independent observables.

The set of 18 independent observables in the massive case consists of 10 (11 coeffi-
cients minus one relation) independent observables for the P wave and 8 (14 coefficients
minus 6 relations) independent observables for the S wave. The corresponding basis of 25
observables is:

Om` 6=0 = {Γ′, FL,M1,M2, P1, P2, P3, P
′
4, P

′
5, P

′
6, P

′
8, (3.12)

FS ,M
′
3,M

′
4,M

′
5, S

r
S1, S

r
S2, S

r
S3, S

r
S4, S

r
S5, S

i
S1, S

i
S2, S

i
S3, S

i
S4, S

i
S5} .

Therefore, among this set of 25 observables there are 7 relations and only 18 observables
are independent.

3.2 P-wave and S-wave symmetry relations among observables

In this subsection we present for the first time the full set of symmetry relations of the
P and S wave in the massive case. These complete the previous partial results given in
refs. [18, 21, 23, 29]. It is helpful to express the observables Ji and J̃i in terms of scalar
products n†inj , as shown in eq. (2.12). All the relations found in this section are functions
of Ji and J̃i and an equivalent set of relations in terms of the CP -conjugate partners J̄i
and ¯̃Ji can be written. However, the observables are functions of the coefficients and their
CP partners. This means that when writing one of these relations in terms of observables
the substitution Jj → aPi is strictly speaking Jj → a(Pi + PCPi )/2 (with a being some
normalization factor). The observable PCPi is the CP asymmetry associated with the
observable Pi, defined in refs. [24, 29], and similarly for J̃i. For the following analysis and
for simplicity, we will neglect the CP asymmetries for both the P and S wave. This is
a very good approximation, given that such asymmetries are tiny both in the SM and in
presence of NP models that do not have large NP phases.

Following the strategy in ref. [23], we exploit the fact that a couple of ni vectors (with
i =⊥, ‖, 0, S or i =⊥, ‖, 0, S′) span the space of complex 2-component vectors. We therefore
express the other vectors as linear combinations of these vectors. For instance,

ni = ain‖ + bin⊥, i = 0, S. (3.13)

Contracting with the vectors n‖ and n⊥, we obtain a system of linear equations [23]

n†‖ni = ai|n‖|2 + bi(n†‖n⊥),

n†⊥ni = ai(n†⊥n‖) + bi|n⊥|2, (3.14)
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which can be solved for ai, bi:

ai =
|n⊥|2(n†‖ni)− (n†‖n⊥)(n†⊥ni)

|n‖|2|n⊥|2 − |n
†
⊥n‖|2

, bi =
|n‖|2(n†⊥ni)− (n†⊥n‖)(n

†
‖ni)

|n‖|2|n⊥|2 − |n
†
⊥n‖|2

. (3.15)

Using the decomposition of n0, nS in terms of n‖, n⊥ (eq. (3.13)) to calculate the scalar
products |n0|2, |nS |2, n†0nS , the first three relations are obtained. We leave the expressions
explicitly in terms of Ji to let the reader choose between different bases or conventions to
write the P-wave observables.

I. From i = 0 in eq. (3.13) one finds |n0|2 = a0(n†0n‖) + b0(n†0n⊥) yielding the first
relation:

0 = +J2c(16J2
2s − 4J2

3 − β2J2
6s − 4J2

9 ) + 2(J3(4J2
4 + β2(−J2

5 + J2
7 )− 4J2

8 )
+2J2s(4J2

4 + β2(J2
5 + J2

7 ) + 4J2
8 )

−2(β2(J4J5J6s + J6sJ7J8 + J5J7J9)− 4J4J8J9)) . (3.16)

This first relation was found in the massless case in ref. [18] and in the massive case
in ref. [24] and its consequences discussed in ref. [29] once re-expressed in terms of
optimized observables:

P2 = (P ′4P ′5 + δ1)
2k1

+ 1
2k1β

√
(−1 + P1 + P ′24 )(−1− P1 + β2P ′25 ) + δ2 + δ3P1 + δ4P1

2

(3.17)
where the parameters k1 and δi (with i = 1, . . . 4) are defined in ref. [29].

II. Similarly for i = S in eq. (3.13) one finds |nS |2 = aS(n†Sn‖) + bS(n†Sn⊥) and this
translates to:

0 = −27
16β

4FSJ
2
6s + Γ′

[
− 8(2J2s + J3)Sr 2

S2 − 16J9S
r
S2S

i
S5 + 8(−2J2s + J3)Si 2S5

]
+2β2

(27
8 FS(4J2

2s − J2
3 − J2

9 ) + Γ′
[
(−2J2s + J3)Sr 2

S3 + 2J9S
r
S3S

i
S4

−(2J2s + J3)Si 2S4 + 2J6s(SrS2S
r
S3 + SiS4S

i
S5)
])
, (3.18)

once expressed in terms of S-wave observables.

III. Finally, the scalar product n†0nS leads to the third relation:

0 = 2 [−16J2
2s + 4J2

3 + β2J2
6s + 4J2

9 ]SrS1 + 4[β2J5J6s − 4J8J9 − 8J2sJ4 − 4J3J4]SrS2

+4β2[J4J6s + J7J9 − 2J2sJ5 + J3J5]SrS3 + 4β2[J6sJ8 + J5J9

−2J2sJ7 − J3J7]SiS4 + 4[β2J6sJ7 − 4J4J9 − 8J2sJ8 + 4J3J8]SiS5. (3.19)

Eq. (3.18) and eq. (3.19) are the generalizations of the massless limit (β → 1) expres-
sions found in ref. [23].
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Following the same methodology but using instead the vector n′S yields three new
relations. Expressing n′S in terms of n⊥ and n‖:

n′S = a′Sn‖ + b′Sn⊥, (3.20)

and contracting with n‖ and n⊥ we get a system of linear equations

n†⊥n
′
S = a′S(n†⊥n‖) + b′S |n⊥|2,

n†‖n
′
S = a′S |n‖|2 + b′S(n†‖n⊥). (3.21)

We can determine a′S and b′S :

a′S =
(n†‖n

′
S)|n⊥|2 − (n†⊥n′S)(n†‖n⊥)

|n‖|2|n⊥|2 − |n
†
⊥n‖|2

, b′S =
(n†‖n

′
S)(n†⊥n‖)− (n†⊥n′S)|n‖|2

|n†⊥n‖|2 − |n‖|2|n⊥|2
. (3.22)

Using the properties of the vector n′S we then obtain the following three relations.

IV. From the equality of the modulus of both vectors nS and n′S one obtains

|n′S |2 = |nS |2 = a′S(n′†Sn‖) + b′S(n′†Sn⊥) , (3.23)

which implies the following relation:

0 = +27
16β

2FS(16J2
2s − 4J2

3 − β2J2
6s − 4J2

9 )− 2Γ′
[
− 2(β2J6sS

i
S2S

i
S3 − β2J9S

i
S3S

r
S4

+4J9S
i
S2S

r
S5 + β2J6sS

r
S4S

r
S5) + 4Si 2S2(J3 + 2J2s) + β2Si 2S3(2J2s − J3)

+β2Sr 2
S4(J3 + 2J2s) + 4Sr 2

S5(2J2s − J3)
]
. (3.24)

V. Above we focus on relations constructed from the real part of the product of vectors.
The imaginary parts provide additional new relations:

Im[n†0n′S ] = Im[a′S(n†0n‖) + b′S(n†0n⊥)] , (3.25)

which leads to:

0 = 2 [−16J2
2s + 4J2

3 + β2J2
6s + 4J2

9 ]SiS1

+[4β2J5J6s − 16J8J9 − 16J3J4 − 32J2sJ4]SiS2

+4β2[J4J6s + J7J9 + J3J5 − 2J2sJ5]SiS3

+4β2[−J6sJ8 − J5J9 + J3J7 + 2J2sJ7]SrS4

+[−4β2J6sJ7 + 16J4J9 − 16J3J8 + 32J2sJ8]SrS5. (3.26)

VI. Finally, combining the vectors nS and n′S one finds:

Im[n†Sn
′
S ] = 0 = a′S(n†Sn‖) + b′S(n†Sn⊥) , (3.27)

which corresponds to

0 = β2J6s[−SrS2S
i
S3 − SiS2S

r
S3 + SrS4S

i
S5 + SiS4S

r
S5]

+J9[−β2SiS3S
i
S4 + β2SrS3S

r
S4 + 4SiS2S

i
S5 − 4SrS2S

r
S5]

+2J2s[4SiS2S
r
S2 + β2(SiS3S

r
S3 − SiS4S

r
S4)− 4SiS5S

r
S5]

+J3[4SiS2S
r
S2 − β2(SiS3S

r
S3 + SiS4S

r
S4) + 4SiS5S

r
S5]. (3.28)
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These six relations are common to the massive and massless case, and they reduce to
the massless case when taking the limit β → 1. There is a very long seventh relation that
applies only in the massive case, i.e. it is zero in the limit of massless leptons. For this
reason and given that it is difficult to extract information from such a long relation, we
refrain from writing it explicitly and, instead, provide only the main steps to obtain this
relation in the appendix.

The relations between the observables presented here are based only on symmetries of
the B0 → K+π−µ+µ− differential decay rate, and on the assumption that the coefficients
of the decay rate factorize in terms of q2 dependent amplitudes and terms that contain the
m2
Kπ dependence, as shown in eqs. (2.3), (2.6) and (2.7).
In case there is a sizeable breaking of this factorization, the separation between the S-

wave observables and the modelled BWs may manifest experimentally observing violations,
in particular in relations II and IV that lead to the construction, as discussed in the next
section, of testable S-wave observables.

4 Bounds on S-wave observables and W1,2 observables

Following the strategy of ref. [23], the relations found in the previous section enable bounds
to be placed on the SrSi observables and the newly defined SiSi observables. For instance,
solving for SrS2 and imposing a real solution in relation II gives:

0 ≤ ∆(SrS2) = −β2x(SrS3)2 − 4x(SiS5)2 − β2(2P3S
r
S3 + (1 + P1)SiS4 − 4P2S

i
S5)2

+27
16β

4xFS(1− F ′S)FT (1 + P1) , (4.1)

where
x = 1− P 2

1 − 4β2P 2
2 − 4P 2

3 ≥ 0 (4.2)

(see ref. [23]) and ∆ stands for the discriminant of SrS2 when solved from rela-
tion II (eq. (3.18)). The first three terms are negative definite and each of them separately
has to be smaller than the last positive definite term. In a similar way but solving for SrS3
and imposing a real solution one finds:

0 ≤ ∆(SrS3) = −β2x(SiS4)2 − 4x(SrS2)2 − 4(2P3S
r
S2 − (1− P1)SiS5 + β2P2S

i
S4)2

+27
16β

4xFS(1− F ′S)FT (1− P1) . (4.3)

This implies the following constraints for SrS2,3:

|SrS2| ≤ β2 3
4

√
3
4FS(1− F ′S)FT (1− P1) , |SrS3| ≤ β

3
4

√
3FS(1− F ′S)FT (1 + P1), (4.4)

and for SiS4,5:

|SiS4| ≤ β
3
4

√
3FS(1− F ′S)FT (1− P1) , |SiS5| ≤ β2 3

4

√
3
4FS(1− F ′S)FT (1 + P1) . (4.5)
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Figure 3. Bounds for Sr,iSi binned observables with i = 1, 2, 3, 4, 5. The dashed line corresponds
to the central value of the bound in the SM, while the green regions include the uncertainty of the
observables that define the bound in the SM.
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Figure 4. Illustration of the sensitivity of the central value of the bound to the preferred NP
scenarios for two observables Sr,iS2 and Sr,iS3. We have checked explicitly that the variation of the
bound in the most significant NP scenarios amounts to at most a 20-25% enhancement.
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Similarly using relation IV, one finds

0 ≤ ∆(SrS4) = −β2x(SiS3)2 − 4x(SrS5)2 − 4(2P3S
r
S5 + (1 + P1)SiS2 − β2P2S

i
S3)2

+27
16β

4xFS(1− F ′S)FT (1 + P1) , (4.6)

and

0 ≤ ∆(SrS5) = −β2x(SrS4)2 − 4x(SiS2)2 − β2(4P2S
i
S2 − (1− P1)SiS3 + 2P3S

r
S4)2

+27
16β

4xFS(1− F ′S)FT (1− P1) , (4.7)

which leads to the following bounds:

|SrS4| ≤ β
3
4

√
3FS(1− F ′S)FT (1− P1) , |SrS5| ≤ β2 3

4

√
3
4FS(1− F ′S)FT (1 + P1) , (4.8)

and

|SiS2| ≤ β2 3
4

√
3
4FS(1− F ′S)FT (1− P1) , |SiS3| ≤ β

3
4

√
3FS(1− F ′S)FT (1 + P1) . (4.9)

In summary,

|Sr,iS2| ≤ β
2k1

2 , |Sr,iS3| ≤ βk2, |Sr,iS4| ≤ βk1, |Sr,iS5| ≤ β
2k2

2 , (4.10)

with k1 = 3
4

√
3FS(1− F ′S)FT (1− P1) and k2 = 3

4

√
3FS(1− F ′S)FT (1 + P1). All the bounds

above can alternatively be obtained using the Cauchy-Schwarz inequalities. For the observ-
ables Sr,iS1 this is the only way to obtain the bounds. For instance, from |n†0nS |2 ≤ |n0|2|nS |2

and a corresponding inequality with n′S using the properties of the vectors eq. (2.4) one
arrives at

|Sr,iS1| ≤ β
2 3
4
√

3
√
FS(1− F ′S)FL . (4.11)

All the bounds on the other observables can be re-derived using the four inequalities:

|n†‖n
(′)
S |

2 ≤ |n‖|2|nS |2 , |n†⊥n
(′)
S |

2 ≤ |n⊥|2|nS |2 . (4.12)

We have computed explicitly the bounds of the Sr,iSi observables in the SM in figure 3.
The relatively low sensitivity of the central value of the bound for Sr,iS2,3 on the dominant
NP scenarios is illustrated in figure 4. We work under the approximation of substituting q2

dependent observables by their binned equivalents, where we denote the latter using angu-
lar brackets. This introduces some uncertainty but, as shown in ref. [29], this uncertainty
is negligible, especially for slowly varying observables like those involved in the bounds. To
compute the binned form of the bounds from eq. (4.10) we consider the theoretical predic-
tion for the observables 〈FL,T 〉, 〈P1〉, taking into account the 1σ ranges of such observables.
Therefore figure 3 shows the maximum value allowed for such constraints. For 〈FS〉 we
extract the value from a reduced mKπ resonance window, 0.795 < mKπ < 0.995 GeV. In
figure 4 we evaluate 〈FL,T 〉 and 〈P1〉 in the corresponding NP scenarios, while taking the
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SM prediction for 〈FS〉. The computation of 〈FS〉 is the only place where we use S-wave
form factors. If 〈FS〉 is taken as an experimental input, then no S-wave form factors are
required. Finally, notice that the bounds include a term (1− F ′S). However, in evaluating
these bounds we have neglected a small lepton mass dependent term (see eq. (2.20)) taking
FS instead of F ′S .

The third term in eqs. (4.1), (4.3), (4.6), (4.7) should tend to zero when x(q2
1) → 0,

in order not to violate the condition of a real solution. Indeed, if we repeat the same
procedure using relation II but impose a real solution for ∆(SiS4) and ∆(SiS5) and for
relation IV impose a real solution for ∆(SiS2) and ∆(SiS3), we find respectively:(

(1 + P1)SrS2 − β2P2S
r
S3 − 2P3S

i
S5

)
q2
1

= 0,(
4P2S

r
S2 − (1− P1)SrS3 − 2P3S

i
S4

)
q2
1

= 0,(
4P2S

r
S5 − (1 + P1)SrS4 + 2P3S

i
S3

)
q2
1

= 0,(
(1− P1)SrS5 − β2P2S

r
S4 + 2P3S

i
S2

)
q2
1

= 0. (4.13)

Neglecting quadratically suppressed terms, P3S
i
Sj � P2S

r
Sj with j = 2 . . . 5, the previ-

ous equations can be combined to obtain:

SrS2|q2
1

=
[
β

2

√
1− P1
1 + P1

SrS3

]
q2
1

,

SrS5|q2
1

=
[
β

2

√
1 + P1
1− P1

SrS4

]
q2
1

, (4.14)

and from x(q2
1) = 0, neglecting P 2

3 , one finds at q2
1 that P2 =

√
1− P 2

1 /(2β).
Another example of the information that can be extracted from the relations, neglecting

quadratic terms of the type O(P3S
i
Sj , P

2
3 ), are the following expressions. These are valid for

all q2 and derive from relations II and IV, respectively. They can be tested as a cross-check
of the experimental analyses:

W1 = (2ŜrS2)2 + p(βŜrS3)2 + qŜrS2Ŝ
r
S3 = 3β4 1

1 + P1
x , (4.15)

where
ŜrSi = 4

3
SrSi√

(1− F ′S)FSFT
= β2
√

6
PSri , (4.16)

with i = 2 . . . 5, p = (1− P1)/(1 + P1) and q = −8β2P2/(1 + P1). Similarly,

W2 = (2ŜrS5)2 + p′(βŜrS4)2 + q′ŜrS4Ŝ
r
S5 = 3β4 1

1− P1
x, (4.17)

where p′ = (1 + P1)/(1− P1) and q′ = −8β2P2/(1− P1).
Eq. (4.15) is particularly interesting because at the zero of ŜrS3 (or equivalently PSr3)

one can predict the absolute value of ŜrS2 (or PSr2) as a function of P-wave observables

– 20 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
5

� � � � � � � �
-���

���

���

���

���

���

���

���

� � � � � � � �
-���

���

���

���

���

���

���

���

� � �� ��
-�

�

�

�

�

� � �� ��
-�

�

�

�

�

�

Figure 5. SM and NP predictions for the observables W1 and W2 as continuous functions of q2

and binned in q2.

with no need to rely on any S-wave form factors. In the case of eq. (4.17), at the zero
of ŜrS4 one can predict the absolute value of ŜrS5 at this particular value of q2. These are
valuable tests to compare with future predictions using calculations of the form factors.

Given that eq. (4.15) and eq. (4.17) are functions of P- and S-wave optimized observ-
ables (Pi and PSri ), W1,2 are also optimized observables. The SM and NP predictions
for these two observables can be computed using the second equality in eq. (4.15) and
eq. (4.17), respectively. The experimental measurements of the observables W1 and W2
are obtained from the first equality in eq. (4.15) and eq. (4.17); namely from the direct
measurement of the S-wave observables, and the P-wave observables entering p(′), q(′), and
FT (where the latter three are measured in the presence of the S-wave observables). These
relations then give access to the n⊥,‖,0 components inside the new S-wave observables, can-
celling the dependence on nS and n′S and hence their predictions do not require the S-wave
form factors. The W1,2 observables bring new information that can help to disentangle the
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SM from different NP scenarios, as illustrated in figure 5. From W1 in the region above
4GeV2, the SM and CNP

9µ = −CNP
10µ are not distinguishable but all the other scenarios shown

can in principle be distinguished from the SM. The expected experimental precision for
such measurements is detailed in section 6.

Finally we can use relation III, again neglecting all terms including quadratic products
of observables sensitive to imaginary parts of bilinears (P3, P6′,8′ and SiS3,5), to find:

SrS1 = −1
x

FL√
FLFT

(
2(P ′4(1 + P1)− 2β2P2P

′
5)SrS2 + β2(P ′5(1− P1)− 2P2P

′
4)SrS3

)
, (4.18)

however, this does not give any additional experimental insight.

5 Common zeroes of P- and S-wave observables

The optimized observable P2 can be rewritten in terms of the q2-dependent complex-vectors
n⊥ and n‖ in the following way:

P2 = 1
2β

(
1−

(n⊥ − n‖)†(n⊥ − n‖) + CP

|n⊥|2 + |n‖|2 + CP

)
. (5.1)

In the absence of right-handed currents, the maximum of P2, denoted Pmax
2 , occurs at

a certain value of q2, which we denote q2
1. At the maximum, Pmax

2 (q2
1) ' 1/(2β). To a very

good approximation, this maximum occurs when

n⊥(q2
0) ' n‖(q2

0) , (5.2)

where in principle a different q2 is involved. This is because this expression is in fact four
equations (two for the real and two for the imaginary part) and, moreover, they have to be
combined with their CP conjugated equivalents. Strictly speaking this would require that
real and imaginary parts and left and right handed parts have the zero at the same point
in q2, which is not the case. If we restrict ourselves to only Re(AL⊥(q2

0)) = Re(AL‖ (q2
0))

the obtained position of the zero q2
0 is in very good agreement with the position of the

maximum given by q2
1, as illustrated in table 1.

In the presence of right-handed currents the condition n⊥(q2
0) ' n‖(q2

0) can only be
fulfilled if a very concrete combination of Wilson coefficients is realized in Nature:

C7′ ' −
Ceff

7
C10µ − Ceff

9µ
(C10′µ + C9′µ). (5.3)

One of the NP scenarios that presently has the highest pull with respect to the SM, (C7′ =
0, CNP

9µ , C9′µ = −C10′µ) indeed fulfills this condition. From now on we will refer to this
combination (eq. (5.3)) as conditionR.

In the SM, in the absence of right-handed currents, or in the presence of right-handed
currents that fulfill conditionR, table 1 illustrates that q2

0 and q2
1 are within 1% of each other.

This can be understood due to the small phases entering, but also because the equation:

Re(AR⊥(q2
0)) = −Re(AR‖ (q2

0)), (5.4)
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Hypotheses q2
0 q2

1 q2
2

SM 2.03 2.02 2.02
CNP

9µ 2.31 2.30 2.30
Hypothesis 5: (CNP

9µ , C9′µ = −C10′µ) 2.37 2.37 2.36
LFU Scenario 8: (CV

9µ = −CV
10µ, CU

9 ) 2.43 2.46 2.45
Hypothesis 1: (CNP

9µ = −C9′µ, CNP
10µ = C10′µ) 2.45 2.34 2.18

Table 1. Position of the zero evaluated from: a) Re(A⊥(q2
0)) = Re(A‖(q2

0)), b) position of Pmax
2 (q2

1)
and c) the exact position given by X2(q2

2). This shows that only in the presence of right handed
currents that do not fulfill conditionR, as in Hypothesis 1 [2], do the zero points differ significantly
from one another.

is exactly fulfilled in the large recoil limit in the absence of right handed currents, or if
such currents are present but obey conditionR. Under these conditions, deviations from
this relation then owe to departures from the large recoil limit. We can parametrize these
tiny deviations and the effect of imaginary terms in the following form:7

1
N

(
n⊥ − n‖

)
= 1
N

(
AL⊥(q2

0)−AL‖ (q2
0)

−AR∗⊥ (q2
0)−AR∗‖ (q2

0)

)
=
(

iεL
δ + iεR

)
, (5.5)

where N is the normalization factor defined:

N =

√√√√ G2
Fα

2

3 · 210π5m3
B

λ2
t sλ

1/2

√
1− 4m

2
`

s
. (5.6)

For new physics scenarios with right handed currents that satisfy conditionR or in the
absence of right handed currents, a number of other observables are zero at the same point
in q2 at which P2 is maximal. The relevant observables are formed from pairs of P- and
S-wave angular observables:

X1 = Pmax
2 (q2

1), X2 = βP ′5 − P ′4, X3 = βSrS4 − 2SrS5, X4 = βSrS3 − 2SrS2. (5.7)

In figure 6 the dependence of the position of the zero for several P-wave observables is
shown for different NP scenarios. The observables P3 and P ′6,8 would also in principle

7Besides the fact that we can compute δ, εL and εR, these quantities can be bounded experimentally
using eq. (5.1) and eq. (5.5) and rewriting P2 at the point of its maximum (again, for new physics scenarios
with right-handed currents that satisfy conditionR, or in the absence of right handed currents) as:

P2(q2
0) = 1

2β

(
1−N2 |δ|2 + |εL|2 + |εR|2 + CP

|n⊥|2 + |n‖|2 + CP

)
.

This implies that the tiny difference between 1/(2β) and the maximum imposes a bound on each term |δ|,
|εL| and |εR| separately:

|δ|2, |εL|2, |εR|2 ≤ (1/(2β)− Pmeasured
2 (q2

0))FT (dΓ/dq2)/N2.

However, measuring the difference 1/(2β) − Pmeasured
2 (q2

0) would require an experimental precision that is
presently unattainable.
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give a further zero. However, given that they are numerically small over the entire low-q2

region, they are difficult to determine experimentally. Moreover, the small contribution
coming from the λu = VubV

∗
us piece of the Hamiltonian distorts the position of the zero for

such observables, which motivates their omission from the list above. For the same reason,
the SiSi observables and P1 in the absence of right handed currents are also not included.

The X2,3,4 observables then offer the possibility of looking at the compatibility of mul-
tiple zeros, rather than just the zero of single variables such as AFB. In the presence of
sizeable right handed currents that do not fulfill conditionR, P2 does not reach the maximal
value 1/(2β), and a small difference between the Xi observables should be observed. Mis-
alignment between the zeroes of the Xi observables could then help confirm a right handed
current scenario, although another possible reason for a tiny misalignment is the presence
of scalar or pseudoscalar contributions. The observable X1 is not included in the list above
because it is difficult to identify precisely the position of the maximum experimentally.

The point where P ′5 and P ′4 cross gives the zero of X2, as shown in figure 6. Unfor-
tunately, when including theory uncertainties using the KMPW computation [30] of the
form factors V,A0,1,2, T1,2,3 and long-distance charm, the overlap between the zeroes of
different NP scenarios is as shown in figure 7. This implies that further efforts are required
to improve on the theoretical uncertainty of the observables.

We use the complete perpendicular and parallel amplitudes given by:

AL,R⊥ =N
√

2λ1/2
{

2mb

s

[(
Ceff

7 + C7′ + ms

mb
Ceff

7

)
T1 +

(
1 + r1(s)

)
T⊥

]

+
[
(C9 + C9′)∓ (C10 + C10′) +

(
1 + r1(s)

)
Yt + λu

λt
Yu + clong

⊥ (s)s⊥
]

V

mB +mK∗

}
(5.8)

AL,R‖ = −N
√

2(m2
B −m2

K∗)
{

2mb

s

[(
Ceff

7 − C7′ −
ms

mb
Ceff

7

)
T2 +

(
1 + r2(s)

)
T⊥
(
m2
B − s

)
m2
B

]

+
[
(C9 − C9′)∓ (C10 − C10′) +

(
1 + r2(s)

)
Yt + λu

λt
Yu + clong

‖ (s)s‖
]

A1
mB −mK∗

}
(5.9)

and the longitudinal amplitude:

AL,R0 = − N

2mK∗
√
s

{
2mb

[((
Ceff

7 − C7′ −
ms

mb
Ceff

7

)
T2 +

(
1 + r2(s)

)
T⊥
(
m2
B − s

)
m2
B

)

×
(
m2
B + 3m2

K∗−s
)
−
((
Ceff

7 − C7′ −
ms

mb
Ceff

7

)
T3 +

(
1 + r3(s)

)
T‖ + T⊥

)
λ

m2
B −m2

K∗

]

+
[

(C9 − C9′)∓ (C10 − C10′) +
(
1 + r3(s)

)
Yt + λu

λt
Yu + clong

0 (s)s0

]

×
[
(m2

B −m2
K∗ − s)(mB +mK∗)A1 −

λA2
mB +mK∗

]}
, (5.10)
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where T⊥,‖ are defined in ref. [31], r1,2,3(s) correspond to the different types of non-
factorizable power corrections included in our analysis [32], and clong

⊥,‖,0(s) is a parametriza-
tion of long distance charm contribution (see refs. [33, 34] for the definition of the
parameters):

clong
⊥,‖ (s) =

(
acc̄⊥,‖ + bcc̄⊥,‖(c

cc̄
⊥,‖ − s)s

) 1
(ccc̄⊥,‖ − s)s

clong
0 (s) =

(
acc̄0 + bcc̄0 (ccc̄0 − s)(s+ 1)

) 1
(ccc̄0 − s)(s+ 1) . (5.11)

Finally, the corresponding theoretical position of the zero is the solution of the following
implicit equation:

q2
0

2mb
=
Ceff

7

[
T1(1 + ms

mb
)λ

1
2 + T2(1− ms

mb
)(m2

B −m2
K∗)

]
+ T⊥

[
λ

1
2 + (m2

B −m2
K∗)

m2
B−q

2
0

m2
B

]
(C10 − Ceff

9 (q2
0))( λ

1
2

mB+mK∗
V + (mB +mK∗)A1)

,

(5.12)
where Ceff

9 (q2) collects all pieces and, in order to simplify the expression, we take all non-
factorizable power corrections at their central values but keep long distance charm explicit
inside Ceff

9 (taking clong
⊥ = clong

‖ = clong):

Ceff
9⊥,‖(q

2) = C9 + Yt + λu
λt
Yu + clong

⊥,‖ (s)s⊥,‖. (5.13)

The form factors include soft form factors, αs and power corrections and T⊥ also
includes the non-factorizable QCDF contribution. Eq. (5.12) offers an interesting combined
test of form factors, Wilson coefficients and long-distance charm at a specific point in q2.

5.1 A closer look at the observable X2: from new physics to hadronic contri-
butions

In this section the properties of the observable X2 = βP ′5 − P ′4 are analyzed in detail,
focusing on the q2 bin where the zeroes fall both in the SM and in the NP scenarios consid-
ered [1, 2]. While all the relevant observable information is already included inside global
fits, analyzing particular observables like X2 can provide guidance on how to disentangle
NP effects in the longer term. This observable has a simple structure in terms of Wilson
coefficients when evaluated in the q2 bin [1.8,2.5]:

〈X2〉[1.8,2.5] ∼ −0.14 + 0.22 (CNP
10µ − CNP

9µ ) + ε , (5.14)

where ε in this equation refers to a tiny contribution that is non-zero only in the
presence of right handed currents, in particular contributing to C9′µ, that can be
cast as −0.02 C9′µ(1 + 2(C9′µ − CNP

9µ )). As can be seen immediately from this equation,
〈X2〉SM

[1.8,2.5] ∼ −0.14. Independent of the details of the physics model, almost all NP sce-
narios with CNP

9µ 6= 0 yield 0.88 < CNP
10µ − CNP

9µ < 1.26, implying 0.05 ≤ 〈X2〉[1.8,2.5] ≤ 0.14.
One relevant exception is Scenario 8, corresponding to 〈X2〉[1.8,2.5] = 0.19. This scenario
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Figure 6. Predictions for different Pi observables in (top left) the SM, (top right) Scenario 8,
(bottom left) Hypothesis 5 and (bottom right) Hypothesis 1.

contains a LFU contribution in C9, which would imply a contribution to the electronic
mode too, 〈X2e〉[1.8,2.5] = 〈βP ′5,e − P ′4,e〉[1.8,2.5] ' 0.07.

In summary, given that 〈X2〉[1.8,2.5] is predicted to be approximately −0.1 in the SM
and up to +0.2 in some relevant NP scenarios, an experimental precision of ±0.1 would
allow some of the NP scenarios to be disentangled from the SM. However, as shown above,
with the present theoretical accuracy the theory predictions in q2 bins yield a large overlap,
preventing any clear discrimination. This is not surprising, because the deviation of P ′5
in the [1.8, 2.5] bin is not so large compared to the anomalies in the bins [4,6] or [6,8].
Moreover, given that P ′4 is quite SM-like (see discussion below), it is expected that the
largest deviation for this observable will occur in the [4,6] and [6,8] bins. This is confirmed
in figure 8.

Due to the stability of X2 under most NP scenarios, it is essential to improve on its
theoretical uncertainties. In parallel we can explore the sensitivity that P ′5 and P ′4 may offer
individually in the [1.8, 2.5] bin. For completeness, we provide the relevant expressions here:

〈P ′4〉[1.8,2.5] ' 0.13− 0.22(CNP
10µ − C10′µ) + 0.03(CNP

9µ − C9′µ)2 , (5.15)

〈P ′5〉[1.8,2.5] ' −0.01 + 0.22C10′µ − 0.26CNP
9µ + 0.06CNP

10µC10′µ .

For the most prominent NP scenarios, we find the ranges 0.04 < 〈P ′4〉[1.8,2.5] < 0.33 and
0.10 < 〈P ′5〉[1.8,2.5] < 0.38, with theory uncertainties of ±0.20 and ±0.13 for 〈P ′4〉[1.8,2.5] and
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Figure 7. X2 predictions for the SM, Hypothesis V and Scenario 8, including theory uncertainties.

〈P ′5〉[1.8,2.5], respectively. These show that 〈P ′4〉[1.8,2.5] exhibits a SM-like behaviour (in the
absence of right handed currents) and gets a wider range only if right handed currents are
rather large, as in Hypothesis 1 (see table 1 and refs. [1, 2]). This is different in the case
of 〈P ′5〉[1.8,2.5], which exhibits an enhanced sensitivity to CNP

9µ that drives the wider range.
Moreover, the current size of the theory uncertainty of 〈P ′4〉[1.8,2.5] erases any possibility of
discrimination between the SM and NP scenarios, but in the case of 〈P ′5〉[1.8,2.5] the smaller
size of the error leaves some discrimination power.

In order to discern hadronic contributions, the following strategy can be employed.
The best fit point from a global fit that excludes P ′5 and P ′4 can be used to predict the NP
contributions entering 〈X2〉[1.8,2.5], as well as P ′5 and P ′4 individually. These predictions can
be constrasted with the experimental results in order to assess the SM contributions to P ′5
and P ′4. As noted above, the SM predicts 〈X2〉[1.8,2.5] = −0.14, but 〈P ′5〉[1.8,2.5] = −0.01
and 〈P ′4〉[1.8,2.5] = 0.13. Such values arise from a complex interplay between several SM
sources, among them the hadronic form factors, T⊥, T‖ (these pieces encode, in particular,
the non-factorizable power corrections), the value of the Wilson coefficients in the SM but
also perturbative charm-loop contributions. Here we parametrize the remaining charm loop
long-distance contributions in a manner that matches the non-perturbative computation
from ref. [30]. In practice, when quoting long-distance charm loops we refer to eq. (5.11)
for the transverse and perpendicular components and for the longitudinal one.
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Figure 8. SM and NP predictions for X2 binned in q2.

Using eqs. (5.8)–(5.10) we can write the observables as follows:8

〈P ′4〉SM
[1.8,2.5] = 0.35 + 10.63 ReT⊥ + 1.43 ReT‖ + 49.30 (ReT⊥)2 + 0.01s⊥ − 0.05s0 ,

〈P ′5〉SM
[1.8,2.5] = −0.34− 11.71 ReT⊥ + 1.57 ReT‖ − 55.32 Re(T⊥)2 − 0.01s‖ − 0.05s0 ,

〈X2〉SM
[1.8,2.5] = −0.68− 22.33 ReT⊥ + 0.13ReT‖ − 104.62 (ReT⊥)2 − 0.01s‖ − 0.01s⊥ ,

(5.16)

where in the SM in this particular bin one expects: ReT⊥ ∼ −0.028, ReT‖ ∼ +0.025, and
in refs. [1, 2, 35] s⊥,‖,0 is taken as a nuisance parameter allowed to vary in the range si ∈
[−1, 1]. The constant coefficients of the nuisance parameters in eq. (5.16) are complicated
combinations of masses, Wilson coefficients and form factors in the SM, as they enter at
the level of the transversity amplitudes in eqs. (5.8)–(5.10).

The first point to notice is that both 〈P ′4〉[1.8,2.5] and 〈P ′5〉[1.8,2.5] are dominated by
ReT⊥ and the dominant long distance comes from s0, in both cases with a very similar
magnitude. Subleading contributions arise from T‖ and s⊥,‖. Secondly, 〈X2〉[1.8,2.5] has a

8We neglect tiny contributions from ImT⊥.
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negligible sensitivity to T‖ and s0, and the first long-distance piece enters via subleading
contributions from s⊥,‖. Thus this observable is basically dominated by ReT⊥ and proves
to be quite robust against long-distance charm loop contributions in this bin.

Finally, recalling the stability of 〈X2〉[1.8,2.5] under different NP scenarios, we can
parametrize this observable to a very good approximation as:

〈X2〉[1.8,2.5] = −0.68− 22.33ReT⊥ − 104.62 (ReT⊥)2 + 0.22(CNP
10µ − CNP

9µ ) , (5.17)

where the interplay between NP and the non-factorizable QCDF hadronic contributions
is clearly encoded. This implies that a measurement of 〈X2〉[1.8,2.5] could provide an ex-
perimental constraint on ReT⊥ in [1.8, 2.5], correlated with the NP scenario used, to be
confronted with the SM prediction. The determination of ReT⊥ can be seen as a non-trivial
test of QCDF. Notice also that, as discussed at the beginning of this section, ReT⊥ has a
significant impact on the position of the zero of X2. As soon as T⊥ is experimentally deter-
mined, the correlated measurement of the individual observables 〈P ′4〉[1.8,2.5] and 〈P ′5〉[1.8,2.5]
will provide a handle on s0, the dominant long-distance charm loop in this bin. The size of
such effects should be clearly seen with the precision that should be attained during Run 4
of the LHC.

6 Experimental prospects and precision

The angular observables in B0 → K+π−µ+µ− decays are usually extracted by means of
a maximum likelihood fit of the decay rate in eqs. (2.1), (2.2) and (2.3) to experimental
data in bins of q2 [36]. Practically, such a fit is achieved by the minimisation of a negative
log-likelihood. Section 3 has elucidated that from the combination of the decay amplitudes
not all of the angular observables are independent. In a fit to experimental data however,
each observable is simply the coefficient of an angular term and is therefore an independent
parameter. In the massless lepton case one can impose relations, for example the trivial
S1c = −S2c, where the CP -averaged observables are defined by Si = (Ji + J̄i)/(ΓP + Γ̄P ).
However, these do not apply in the low q2 region where the leptons should be treated
as massive. In principle, the new relations of section 3 may also be used to reduce the
number of free parameters in the fit. However they are too complex to be implemented
in a minimisation procedure, as they cause discontinuities in the negative log-likelihood.
Therefore the full bases of angular observables must be fitted in each of the massive and
massless cases. The symmetry relations may instead be checked after the fit has been
carried out in order to ensure that physically reasonable results have been obtained.

For a given data set there is no guarantee that all observables may be determined
in a single maximum likelihood analysis. There may be large correlations between fit
observables, apparent degeneracies due to the limited sample size, detector resolution effects
and physical boundaries that distort the likelihood. Furthermore, the determination of the
new interference observables that arise in the complete five-dimensional description of the
decay can be distinguished only by making use of the mKπ line shape, which has not been
done experimentally before. All of these effects could impinge on the success of any new
experimental analysis of the five-dimensional decay-rate. In order to study the stability of
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a fit to all the angular observables and to obtain an estimate of the experimental precision,
a simple simulation was used to perform LHCb-like pseudo experiments. As the dominant
effects on the experimental fits are statistical, rather than contingent on the experimental
details, the results presented here will apply equally to future Belle II analyses.

6.1 Experimental setup

Data sets are generated with the expected sample sizes collected by the LHCb collaboration
at various points in time. The data the experiment currently has in hand, referred to as the
Run 2 data set, is the combination of the Run 1 and Run 2 data with integrated luminosity
of 9 fb−1. Projections are made for future LHCb runs: Run 3 with 23 fb−1, Run 4 with
50 fb−1 [37], and Run 5 representing the total data collected by the proposed Upgrade II
with 300 fb−1 [38]. The signal yields are extrapolated from those in ref. [36], scaling for the
integrated luminosity, the B production increase from Run 1 to Run 2, and an enlarged
mKπ window of 0.750 < mKπ < 1.200 GeV that is used to help determine the additional
S-wave terms. The expected combinatorial background yields are similarly scaled. In a real
analysis such a largemKπ window would bring in extra partially-reconstructed backgrounds
as well as more significant contributions from other P- and D- wave transitions, which
would need to be accounted for in the systematic uncertainties. Furthermore, the exact
form of the P- and S-wave lineshapes becomes more important in a wider window as the
interference observables gain greater significance. Careful consideration is required for the
systematic uncertainties associated with both the choice of the mKπ lineshapes and the
neglect of higher D-wave states. The trade-off between these systematic uncertainties and
the statistical precision of the angular observables will define the mKπ window needed to
achieve the best overall precision. However, all of these effects go beyond the scope of
this paper.

The effect of the detector reconstruction and selection criteria is modelled using an
angular acceptance function approximated to that in ref. [39]. For the mKπ window con-
sidered, the acceptance is assumed to be constant with mKπ, following ref. [8].

The q2 bins used are the same as those in ref. [36]. An alternative configuration with
each bin split in half is also trialled. In contrast to previous experimental analyses, the fit is
performed simultaneously with both B flavours, in principle allowing the CP -symmetric and
CP -asymmetric observables9 to be determined from a single fit. In order to fit the complete
set of CP asymmetries (including those for the S-wave and interference observables) one
cannot solely rely on the angular description. The overall scale of the decay rate needs to
be constrained with an extended term in the likelihood. The constraint may be the CP
asymmetry of the total decay rate, or the branching fraction of the average of the B0 and
B0 decays. The latter is preferred. It gives complementary information for use in global
fits to the Wilson Coefficients that describe these decays and is thus of interest in its own
right even when the CP -asymmetries are not being extracted. An angular analysis is the
only way to measure it in a model independent way, as the experimental efficiency can be

9The CP -asymmetries are defined as Ai = J̄i−Ji

ΓP +Γ̄P
for the P-wave observables and ASr/iSi =

¯̃Jr/i
i
−J̃r/i

i

ΓS+ΓP +Γ̄S+Γ̄P

for interference observables.
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corrected over all the kinematic variables of the K+π−µ+µ− system (within a q2 bin these
are the three angles and mKπ).

Measuring absolute branching fractions is difficult due to systematic uncertainties that
are hard to control. Instead the total P+S-wave rate relative to the mode B0 → J/ψK+π−

is taken, with the normalisation decay finishing in the same K+π−µ+µ− final state as the
rare mode signal.10 Using the measured S-wave fractions the P-wave relative branching
fractions in each q2 bin may be readily ascertained.11

The SM values of the angular observables are used in the generation of the pseudo-data,
except where stated. For the P-wave observables (and only for this experimental sensitivity
study), the B → K∗ form factors are taken from ref. [42] and rely on a combination of
Light Cone Sum Rules and Lattice QCD calculations. For the S-wave observables, the
B → K∗0 form factors are taken from ref. [15]. For all observables the non-local charm
contribution is taken from ref. [43], with the longitudinal and S-wave phase difference for
all JPC = 1−− dimuon resonances relative to the rare mode set to zero. The exact choice of
these parameters has no impact on the conclusions of this study. The stability of the fit and
the experimental precision on the P-wave observables is largely independent of the details
of the model. Background events are simulated using a representative PDF constructed as
the product of second order polynomials for each angular fit variable and an exponential
function in mB0 .

As is customary, the observables FL,T are used, here defined by

S2c = −β2FL S2s = β2

4 FT (6.1)

such that in the limit of no CP violation FL is exactly representative of the longitudinal
polarisation fraction divided by the total P-wave rate. The CP asymmetry observable
AFL is defined by (J̄2c − J2c)/(ΓP + Γ̄P ) = −β2AFL. Furthermore the forward-backward
asymmetry is used as a fit parameter, with the customary definition

AFB = 3
4S6s + 3

8S6c. (6.2)

Similarly for the S-wave contribution the observable FS is used, defined by S̃c2a =
(J̃c2a + ¯̃Jc2a)/Γ′ = −3

8β
2FS . Again, FS is a direct representation of the relevant transversity

amplitude (|nS |2), divided by the total P- and S-wave rate. In the massless-lepton limit the
integral of the S-wave component is therefore FS (the S-wave fraction). The corresponding
CP asymmetry observable, AFS is defined by ( ¯̃Jc2a − J̃c2a)/Γ′ = −3

8β
2AFS .

10Making the measurement relative to the B0 → J/ψK+π− mode ensures that, to a large extent, nuisance
production and detection asymmetries cancel. However, in an analysis of real data the normalisation mode
is affected by contributions from exotic J/ψπ− states [40], both in terms of the signal yield and the angular
distribution. Corrections to the fitted results will therefore need to be ascertained to produce the correct
relative P-wave only rate and are beyond the scope of this paper.

11Recent developments in calculations of B0 → K+π− form factors in a P-wave configuration [41] rely on
a model to describe the lineshape of the K+π− system. For a correct comparison between measurements
and predictions of the branching fraction, any differences in the lineshape models used both in theory and
experiment must be taken into account.

– 31 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
5

0.2− 0 0.2 0.4 0.6 0.8 1
LF
1P
2P
3

P

'4P

'5P

'6P

'8P
SF

r

S1
S

r

S2
S

r

S3
S

r

S4
S

r
S5

S

i

S1
S

i

S2
S

i

S3
S

i

S4
S

i

S5
S

2
 < 6 GeV2q4 < 

2 < 6 GeV2q4 < 

pull mean

pull std dev

2
 < 6 GeV2q4 < 

0.2− 0 0.2 0.4 0.6 0.8 1
LF
1P
2P
3

P

'4P

'5P

'6P

'8P
SF

r

S1
S

r

S2
S

r

S3
S

r

S4
S

r
S5

S

i

S1
S

i

S2
S

i

S3
S

i

S4
S

i

S5
S

2
 < 17 GeV2q15 < 

2 < 17 GeV2q15 < 

pull mean

pull std dev

2
 < 17 GeV2q15 < 

Figure 9. Summaries of the (green) means and (blue) standard deviations of the pull distribution
for the optimised P-wave observables and normal interference observables in two bins of q2. The
red lines are references at 0 and 1.

For the q2 bins in which the leptons are considered massless, which are those where
q2 > 1.1 GeV2, there are 19 CP -averaged (8 P-wave, 1 S-wave and 10 interference split into
real and imaginary parts) angular observables to be fitted as listed in eq. (3.10), plus the
total P+S-wave rate. In these bins β2 = 1. For the q2 bins in which the lepton is treated
as massive, where q2 < 1.1 GeV2, there are 24 CP -averaged observables, as per eq. (3.12);
and one may again choose to fit the total rate as well. For these bins q2 is evaluated at the
centre of the bins.

6.2 Results with massless leptons

Initially only the CP -averaged observables are free to vary in the fit; those for the CP
asymmetry are fixed to 0. For both the P (′)

i and Si basis, despite the inclusion of all the
S-P-wave interference terms, > 99% of the pseudoexperiment fits for massless leptons in q2

bins with q2 > 1.1 GeV2 converge and the P -wave CP -averaged observables are determined
without any significant bias (approximately 20% of the statistical uncertainty or less) and
with good statistical coverage. A summary of the distribution of the pulls resulting from
the pseudoexperiment fits of the angular observables in two q2 bins is shown in figure 9,
including fits using the optimised (P (′)

i ) P-wave observable basis. For an observable the
pull is defined as the difference between the fitted value and true value, divided by the
statistical uncertainty estimated in the fit. It should be noted that both the real and
imaginary parts of the interference observables can be determined by the fit.

Furthermore the optimised interference observables, PSi, may also be readily deter-
mined with the data that LHCb already has in hand. Summaries of the fit behaviour with
this configuration are shown in figure 10. The estimated statistical uncertainties for these
new observables as a function of the integrated luminosity collected are shown in figure 11.
The points show the expected luminosity for future LHCb runs.
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Figure 10. Summaries of the (green) means and (blue) standard deviations of the pull distribution
for the optimised P-wave observables and optimised S-wave observables, PSi, in two bins of q2. The
red lines are references at 0 and 1.
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Figure 11. Estimated statistical uncertainty for the (left) real and (right) imaginary optimised in-
terference observables PSi as a function of integrated luminosity for the q2 bin 4.0 < q2 < 6.0 GeV2.

For the alternative narrower q2 binning, the situation is not so ideal; summaries for
two q2 bins are in figure 12. In general, the central fit values for all the variables do not
show biases above 20% of statistical uncertainties. The exception is the two bins in the
region 1.1 < q2 < 2.5 GeV2 (the bins are 1.1 − 1.8 GeV2, shown on the left of figure 12
and 1.8 − 2.5 GeV2), where the predicted values of FL and AFB lie close to the edge of
the physically allowed parameter space. For the narrower bins this boundary distorts the
likelihood close to where the minimum should be. The result is an imperfect determination
of these variables, or P2 in the optimised basis, as the fit crosses into the unphysical region.
However, as the other observables in these bins behave well and all the other bins behave
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Figure 12. Summaries of the (green) means and (blue) standard deviations of the pull distribution
for the optimised P-wave observables, PSi, in two narrow bins of q2. The red lines are references
at 0 and 1.

well, there is motivation to use the finer q2 bins even with the Run 2 data set. As the
uncertainties are shown to be too small by the pull distributions the Feldman-Cousins
method [44] will need to be employed to establish confidence intervals. The problems of
bias and error determination are readily ameliorated with more data and even by the end
of Run 3 the fit behaviour will be much improved.

When including the CP -asymmetry observables as free parameters in the fit it is again
found that the fits converge successfully. These parameters themselves are found to be
unbiased, although the estimated uncertainties are in general too small. Examples are
shown in figure 13. The extracted relative branching fraction is also found to be unbiased.
However, the extra free parameters lead to larger biases in the CP -averaged observables
of up to 40-50% in some cases. With more data the situation will be improved and after
50 fb−1 it will be possible to extract all CP -averaged and CP -asymmetry observables in a
single fit with minimal biases and good coverage.

6.3 Results for massive leptons in 0.1 < q2 < 0.98 GeV2

In the 0.1 < q2 < 0.98 GeV2 bin for massive leptons, the situation is more complex. For
the basis fitting only unoptimised observables (both P- and S-wave) the fit in general gives
unbiased pull distributions. The exception is for the observables FL and S1c which have a
large anticorrelation between them. For the regular optimised P-wave observables the fit
also does not converge well, likely due to the small value of FL in this bin, which appears in
the denominator of the optimised observables. The Feldman-Cousins method will therefore
be required to obtain the correct confidence intervals for all observables in this q2 bin.

For the new optimised P-wave observables in the massive lepton q2 bin, M1 and M2,
good behaviour is only obtained with the integrated luminosities expected from the LHCb
upgrade. These observables are problematic for the fits as they are essentially the ratio
of two angular coefficients with the same mKπ dependence. Therefore they are almost
completely anti-correlated and the fit struggles to converge, as shown in figure 14. However,
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Figure 14. The pull distributions for the optimised P-wave observables (left) M1 and (right)
M2 from pseudoexperiments with the estimated LHCb Run 2 yields. The overlaid red curve is a
reference of the ideal distribution for the pulls, a Gaussian function with σ = 1.

with enough data the fit will improve and even by the end of LHCb Upgrade I reasonable
behaviour for these observables can be expected, as shown in figure 15.

For similar reasons the S-wave only optimised observable M ′3 is poorly behaved. Due
to the small S-wave contribution an even larger data set, such as the 300 fb−1 expected
with LHCb Upgrade II, would be required for its successful extraction. This is shown in
figure 16.

Finally the optimised P- and S-wave interference observables that occur when account-
ing for the lepton mass, M ′4 and M ′5, have been considered. These can be extracted with
the Run 2 data set as displayed in figure 17. The observables are not straightforward ratios
of two other observables, which lessens the correlations in the fit. Furthermore they are
functions of P-wave and S-wave observables, which are likely to be well constrained by the
rest of the angular PDF; in particular they have different mKπ shapes.
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Figure 15. The pull distributions for the optimised P-wave observables (left) M1 and (right)
M2 from pseudoexperiments with the expected LHCb Upgrade I yield from 50 fb−1 integrated
luminosity. The overlaid red curve is a reference of the ideal distribution for the pulls, a Gaussian
function with σ = 1.
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luminosity.
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Figure 18. The expected statistical uncertainty of the observable M2 as a function of q2 for various
future integrated luminosities.

For a judicious choice of observable quantities, future experimental analyses should
therefore be able to use the full angular distribution, including both the additional S-wave
terms, and assuming massive leptons.

6.3.1 Results with a possible scalar amplitude

If one wanted to fit the data without assuming the absence of scalar amplitudes one must
introduce the observables S6c and S1c in all bins. For maximal theoretical reach S1c would
ideally be replaced with its optimised equivalentM2 (see the discussion in section 2.1). The
precision on this has been estimated for various future integrated luminosity scenarios, as
shown in figure 18. Even with 300 fb−1 of data, the expected statistical uncertainty is much
larger than that required to measure significant scalar new physics.

6.4 Symmetry relations

The six symmetry relations may be applied to the results of the binned fits as an indepen-
dent check of the robustness of the experimental methodology. As the fitted observables
are averaged over a q2 bin the relations are not exact in this experimental context. This
is particularly apparent in the lowest q2 bin, where the changes in the variables with q2

are most notable. Furthermore, as only the bins for q2 < 1 GeV2 are treated as having
massive leptons there is some small imprecision in the symmetry relations for the bins im-
mediately above 1 GeV2 due to residual effects of the massless lepton treatment. Example
distributions of the relations are shown in figure 19.

These distributions of the symmetry relations may be used for a ready check by an
experimenter of their fit to real data. If the relation calculated from the data lies outside
these distributions the fit can be discounted and the experimenter invited to check their
method. Care must be taken however as the experimental relations are calculated with q2

averaged observables. This introduces some model dependence in the distributions of the
pseudo-experiments.
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Figure 19. Example distributions of the six symmetry relations for the various q2 bins. The red
line is a reference at 0 for the case when the relations are exact. The spread of the distributions is
a reflection of the statistical precision of the fit.

6.5 Zero points

The zero points of the observables X2, X3 and X4 provide a good test of the SM. From
the experimental results they are found by taking the independent fit results from each q2

bin for the relevant observables. The three observables are plotted in q2 and a χ2 fit of
second-order polynomials is carried out simultaneously for each observable. The point at
which the polynomials are zero is a common fit parameter. The correlations between the
fitted observables within a q2 bin are included in the χ2 fit.
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Figure 20. Example distributions of three observables in q2. Overlaid in red is the result of fits of
second polynomials with a common zero between the three observables. The blue line is a reference
for 0. The observables are taken from pseudo-experiment fits for the estimated LHCb Run 2 yields.
The value of β is taken to be 1.

As the q2 dependence of the observables is of most interest, it makes sense to employ
the half-sized binning, doubling the number of q2 points. The fits are found to behave
well in these finer q2 bins with the expected yield for the LHCb Run 2 data set for those
variables of interest.

Example fits of the q2 distributions for the expected LHCb Run 2 data set are shown
in figure 20. Alternative fits are performed with no common zero between the observables
and the change in χ2 determined in order to test the hypothesis of a common zero crossing
point. Three hypotheses have been tested: the SM and two NP models from the fits to
current experimental results in ref. [2]. The two NP scenarios are: i) ‘Scenario 8’, which
corresponds to only left-handed new physics and includes a LFU new physics contribu-
tion; and ii) ‘Hypothesis 1’, which introduces right handed currents that do not satisfy
conditionR (defined by eq. (5.3)), and should lead to the three X observables not having a
common zero crossing point. See table 1 and figure 5 for the definitions of these scenarios
in terms of the Wilson coefficients. For each scenario, 900 pseudo-experiments are carried
out and the expected ∆χ2 distributions ascertained. It is found that the distribution is
indistinguishable between these three physics simulations with 9 fb−1 of data, as shown in
the left of figure 21. With 300 fb−1, as displayed in the right of figure 21, it can clearly be
seen that the χ2 of the fit with a common zero is worse than that for independent zeroes,
giving discrimination between Hypothesis 1 and the SM.
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Figure 21. ∆χ2 distributions for three physics scenarios for (left) 9 fb−1 and (right) 300 fb−1

of data.

Even if the common-zero χ2 fit is unable to distinguish between the three physics
hypotheses with the available data, the position of the zero may enable them to be sep-
arated. The expected precision on the common zero crossing point with 9 fb−1 of data is
∼ 0.18 GeV2, becoming 0.07 GeV2 with 50 fb−1. For comparison, the estimated uncertainty
on the zero using the regular q2 binning is found to be marginally worse: ≈ 0.19 GeV2

for the Run 2 data set. The uncertainty is completely dominated by the precision with
which the P ′5 − P ′4 observable is determined. The distribution of measured zeros for the
three observables fitted independently is shown in figure 22. It is clear that the S-wave
interference observables are comparatively imprecise, which is to be expected given their
small simulated contributions of ≈ 10%. Figure 22 suggests that with the just the Run 2
data set there is little discrimination between the SM and the trialled NP hypotheses from
the position of the zero point. However, figure 23 demonstrates that with 50 fb−1 there is
clear distinction between the SM and the scenario 8 NP model.

6.6 S wave in the global fits

Equations (4.15) and (4.17) allow us to include S-wave interference observables in Wilson
coefficient fits for new physics without having to calculate the S-wave form-factors. The
expected precision for W1 and W2 with only the P-wave observables, with the interference
observables, and the combination of the two has been assessed. Pseudo-experiments are
run with the SM hypothesis and using the new optimised interference observables, PSr/ii

introduced in section 2.2. For each of the 1000 pseudo experiments used, W1 and W2 are
calculated along with their uncertainties, accounting for the correlations between the fitted
parameters. The correlation between the expressions involving only P-wave observables and
that including the interference observables is assessed for each of W1 andW2. Subsequently
the average and statistical uncertainty when combining the P wave only part with the
interference part is found for each observable.

For the Run 2 data set the narrow bins cannot reliably be used to extract the optimised
observables. Therefore here the wider q2 bins are used. The expected precision of W1 and
W2 is shown in figure 24. It can be seen that the combination of P-wave only with the
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Figure 22. Distributions of measured zero crossing points with 9 fb−1 of data. Shown are the (top
left) common fitted zeros and the independent zeros of (top right) P ′5−P ′4, (bottom left) SrS3−2SrS2
and (bottom right) SrS4 − 2SrS5.

Figure 23. Distribution of the common fitted zero crossing points with (left) 23 fb−1 and (right)
50 fb−1 of data.
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Figure 24. Pseudo-experiment results for (left) W1 and (right) W2 with the LHCb Run 2 data set.

Figure 25. Pseudo-expriment results for (left) W1 and (right) W2 with the expected LHCb Run 4
data set of 50 fb−1.

P- and S-wave observables is only marginally more precise than for the P-wave only alone.
This is to be expected due to the small contribution of the S wave that is simulated and
the presence of P-wave parameters in the combination with the interference observables
such that the contribution of the S wave is not statistically independent.

In the future the size of the data sets will become sufficient for the narrower bins to
be readily used. An example is shown in figure 25 of the putative LHCb Run 4 data set
with 50 fb−1.

7 Summary and conclusions

This paper presents the fully differential decay rate of B0→ K+π−`+`− transitions, with
the K+π− system in a P- or S-wave configuration, which can be used to analyse such
decays in current and future experiments. This work paves the way for the next step in
the analysis of this decay, going beyond previous analyses by identifying and exploring the
experimental prospects of massive and S-wave observables that were previously neglected
or treated as nuisance parameters. Our analysis relies on a complete description of the
symmetries that apply to the full distribution. This enables us to define the complete set
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of observables that describe the decay and the relations between them, excluding only the
presence of NP scalar or tensor contributions.

Our study shows, in particular, that the symmetries of the B0→ K+π−`+`− decay
rate give rise to relations that allow a combination of S-wave observables, W1,2, to be
expressed in terms of P-wave only observables. These combined observables then have no
dependence on the poorly known S-wave form factors and therefore offer genuine probes
of physics beyond the SM. This opens a new seam in the phenomenology and, for the first
time, will allow S-wave events in the data to contribute to global fits for the underlying
physics coefficients.

We also present strong bounds on the set of new S-wave observables using two different
methods, the relations themselves and Cauchy-Schwartz inequalities relying only on the
structure of the observables in terms of 2D complex vectors. They serve as important
experimental cross-checks.

From the point of view of experimental analyses, it has been shown that all of the P- and
S-wave angular observables for the B0 → K+π−µ+µ− decay may be extracted with a five-
dimensional fit to the data sample that the LHCb collaboration already has in hand. Our
analysis includes the complete description of the mKπ dependence of the differential decay
rate for the first time, as well as the treatment of the leptons as massive at low values of
q2. The exploitation of the symmetry relations for the observables will allow an immediate
test of the veracity of the fits to data without resorting to theoretical predictions. Finally,
the common zero crossing point of a set of P-wave and S-wave interference observables may
contribute to the discrimination between the SM and NP independently of global fits, and
can offer insight into the hadronic contributions.
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A The 7th massive relation

In this appendix we will provide the necessary steps to determine the last relation. This re-
lation vanishes in the massless limit and is particularly lengthy. For both reasons, specially
the latter, is of limited practical use. Therefore we will present here the steps to derive
this relation but will not write it out explicitly. The derivation is based on five steps.
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Step 1: our starting point will be a particular combination of the 2D vectors that will
allow us to introduce the structure of the observable M1 for the first time.

(n†‖nS + n†‖n
′
S)× (n†‖nS − n

†
‖n
′
S) + (n†⊥nS + n†⊥n

′
S)× (n†⊥n

′
S − n

†
⊥nS)

= +4(AL∗‖ A
R
‖ +AL∗⊥ A

R
⊥)A′L0 A′R∗0 (A.1)

In order to avoid repeating the coefficient 4m2
`/q

2 of M1, we introduce a reduced
version, that we will call m1 defined by

m1 = q2

4m2
`β

2
`

(β2
` J1s − (2 + β2

` )J2s) = Re(AL⊥AR∗⊥ +AL‖A
R∗
‖ ) . (A.2)

We will use the freedom given by the symmetry (see section 3) to choose the phase
such that A′L0 has only a real component. Then we solve eq. (A.1) for m1 and its imagi-
nary counterpart:

m1 = −b Im[A′R0 ] + aRe[A′R0 ]
4|A′R0 |2Re[A′L0 ]

(A.3)

Im[AL∗‖ A
R
‖ +AL∗⊥ A

R
⊥] = a Im[A′R0 ] + bRe[A′R0 ]

4|A′R0 |2Re[A′L0 ]
(A.4)

where

a = + 1
6β4

(4Γ′

3

)2 (
−β2[(SiS3)2 + (SrS3)2 + (SiS4)2 + (SrS4)2]

+4[(SiS2)2 + (SrS2)2 + (SiS5)2 + (SrS5)2]
)

b = + 2
3β3

(4Γ′

3

)2 (
SrS2S

i
S4 − SiS2S

r
S4 − SrS3S

i
S5 + SiS3S

r
S5
)

(A.5)

Step 2: using n0 = enS + fn′S and multiplying this equation by σ.nS , σ.n′S and σ.n0,
where σ = ((0, 1), (1, 0)) one can show that all terms A(′)L

0 A
(′)R
0 can be written in terms

of A′L0 A′R∗0 .

AL0A
′R∗
0 +A′L0 A

R∗
0 = 2eA′L0 A′R∗0

−AL0A′R∗0 +A′L0 A
R∗
0 = −2fA′L0 A′R∗0

AL0A
R∗
0 = (e2 − f2)A′L0 A′R∗0 (A.6)

where

e =
(n†‖n

′
S)(n†⊥n0)− (n†‖n0)(n†⊥n′S)

(n†‖n
′
S)(n†⊥nS)− (n†‖nS)(n†⊥n′S)

f =
(n†‖nS)(n†⊥n0)− (n†‖n0)(n†⊥nS)

(n†‖nS)(n†⊥n′S)− (n†‖n
′
S)(n†⊥nS)

(A.7)

Both coefficients e and f can be trivially rewritten in terms of P- and S-wave observables,
as in eq. (A.5).

– 44 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
5

Step 3: we define a set of reduced observables related to the corresponding remaining
massive observables:

m2 = |At|2 + 2Re(AL0AR∗0 )
m′3 = |A′t|2 + 2Re(A′L0 A′R∗0 )
m′4 = Re(A′tA∗t ) + Re(A′L0 AR∗0 +AL0A

′R∗
0 )

m′5 = Im(A′tA∗t ) + Im(A′L0 AR∗0 +AL0A
′R∗
0 ) (A.8)

We can combine them in one single equation cancelling the dependence on A(′)
t :

(m2 − 2Re[AL0AR∗0 ])(m′3 − 2Re[A′L0 A′R∗0 ]) = + (m′4 − Re[AL0A′R∗0 +A′L0 A
R∗
0 ])2

+ (m′5 − Im[AL0A′R∗0 +A′L0 A
R∗
0 ])2 (A.9)

and using eqs. (A.6) we can rewrite this equation in terms of only A′L0 A′R∗0 :

(m2 − 2Re[(e2 − f2)A′L0 A′R∗0 ])(m′3 − 2Re[A′L0 A′R∗0 ]) = + (m′4 − Re[2eA′L0 A′R∗0 ])2

+ (m′5 − Im[2eA′L0 A′R∗0 ])2 , (A.10)

giving the desired relation but involving A′L0 and A′R0 amplitudes that still need to be
expressed in terms of observables.

Step 4: using the decomposition n⊥ = gnS + hn′S and after determining g and h by
multiplying by n⊥ and n‖, we find the following relation:

(h∗2 − g∗2)n′S
†
nS = h∗n†⊥nS − g

∗n†⊥n
′
S , (A.11)

where

g =
|n⊥|2(n†‖n

′
S)− (n†‖n⊥)(n†⊥n′S)

(n†‖n
′
S)(n†⊥nS)− (n†‖nS)(n†⊥n′S)

,

h =
|n⊥|2(n†‖nS)− (n†‖n⊥)(n†⊥nS)

(n†‖nS)(n†⊥n′S)− (n†‖n
′
S)(n†⊥nS)

. (A.12)

Then combining the previous equation with the observable FS , one can determine |A′L0 |2

and |A′R0 |2 (remember that AL′0 is taken to be real using the symmetry properties) by
solving the system:

|A′L0 |2 − |A′R0 |2 = h∗n†⊥nS − g∗n
†
⊥n
′
S

h∗2 − g∗2
= ∆ , (A.13)

|A′L0 |2 + |A′R0 |2 ≡ FSΓ′. (A.14)

Now we have all the necessary ingredients to arrive at the relation. If we define

x = Re[A′L0 ]Re[A′R0 ] ,

y = Re[A′L0 ]Im[A′R0 ] , (A.15)
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we have two equations in terms of x and y (using eq. A.3 and eqs. A.13 and A.14):

m1 = −by + ax

4(x2 + y2)

x2 + y2 = 1
4
(
(FSΓ′)2 −∆2

)
(A.16)

These two equations can be solved to determine x and y in terms of observables.

Step 5: finally, the last step consists of trivially expressing A′L0 , A′R0 in eq. (A.10) in
terms of x and y (all other quantities like the mi and the coefficients e and f are already
direct functions of observables). Then after solving the system for x and y using eq. (A.16)
insert the result in eq. (A.10) to get a final lengthly expression written entirely in terms of
observables.

Notice that in order to relate the reduced observables to the measured massive observ-
ables M1,2,3′,4′,5′ one needs to multiply the previous relations involving the mi’s on both
sides by factors of 4m2

`/q
2. For this reason in particular eq. (A.10) vanishes exactly in the

massless limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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