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Detailed Population Balance Modelling of Titanium Dioxide
Nanoparticle Synthesis

Casper Sebastian Lindberg

This thesis develops and applies a new detailed population balance model to study the aerosol
synthesis of titanium dioxide nanoparticles. It begins by exploring whether the morphological
data captured by a existing detailed particle model can be used in a milling model to relate
particle morphology and ultimately the particle synthesis conditions to the behaviour of particles
in the milling process. The study identifies limitations in the existing particle model and informs
the development of a new detailed particle model.

A new, detailed, geometrical particle model is introduced that tracks the size and position of
individual primary particles and their relationship with neighbouring primaries in an aggregate.
The particle model forms part of a detailed population balance model that can describe the mor-
phological evolution of aggregate particles under inception, coagulation, growth, sintering and
coalescence, while resolving the neck radius, free surface area and volume of each individual
primary, as well as the fractal-like structure of each aggregate. The model removes the need to
assume a fractal dimension and prefactor when calculating the particle gyration and collision
diameters, and permits the visualisation of particles. The process sub-models are tested and the
convergence behaviour is investigated for a simple batch reactor test case. The synthesis of
TiO2 aggregates from TTIP precursor in a lab-scale hot wall reactor is simulated.

A two-step simulation methodology is presented to apply the model to a stagnation flame.
The methodology extends an existing two-step method, where a detailed population balance
model is applied as a post-processing step to flame profiles obtained from a fully-coupled
simulation with gas-phase chemistry, flow dynamics and a simple particle model. The new
methodology addresses a previously unidentified issue in employing the post-processing step
to simulate flames with steep temperature gradients. A corrective sample volume scaling term
is introduced to account for the effect of thermophoresis.

Finally, the new detailed particle model and methodology are used to simulate the synthesis
of titanium dioxide nano-aggregates in a stagnation flame. Model predictions are evaluated
against experimental results by comparing experimental measurements from transmission
electron microscopy (TEM) data with identical, simulated quantities. A parametric sensitivity
study is performed to investigate key model parameters.
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Chapter 1

Introduction

1.1 Motivation

Titanium dioxide (titania, TiO2) particles are an important industrial product, most commonly
used as a white pigment in a wide range application including paints, plastics, paper and
cosmetics. Other important applications include solar cells, optical coatings, in heterogeneous
catalysis and as a photocatalyst [39, 53], used, for example, in the photolysis of water [52] and
in water purification [123].

The production capacity of titania pigment was estimated at 7.66 million tonnes globally
in 2018 [12] via two principal methods: the wet-phase sulphate process and the gas-phase
chloride process. Aerosol, or flame synthesis has been identified as an attractive alternative to
the older, wet-phase process due to advantages in waste management at the production stage
and easier collection of particles [140]. The oxidation of titanium tetrachloride (TiCl4) in a
flame or oxygen plasma is a key route for the industrial manufacture of TiO2 particles. Another
route, more typically used in lab-scale studies, is the hydrolysis or thermal decomposition of
titanium tetraisopropoxide (TTIP, Ti(OC3H7)4).

The functionality of titanium dioxide particles is strongly dependent on the size, morphology
and crystalline phase of the particles. The pigmentary properties are dependent on the refractive
index and crystal size. Titania in the rutile form has a very high refractive index resulting in
greater opacity. The crystal size needs to be carefully controlled to optimise its light scattering
properties and maximise its effectiveness as a pigment [22, 53]; hence, control of the particle
size distribution is important in the production process. However, despite its commercial
importance, a comprehensive understanding of the formation of TiO2 and the mechanisms that
control the particle properties is still lacking. Optimisation of the industrial process remains
largely empirical.
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Modelling studies, combined with experiments, provide a way to understand the complex
processes involved in the formation and growth of titanium dioxide particles. A comprehensive
understanding of these mechanisms provides a means to optimise and tailor particle properties.
The mechanism of particle formation can be considered to consist of gas-phase chemistry
interacting with a particle population. This thesis will focus on modelling the particle population
using numerical methods. The principal goal is to develop a detailed population balance model
that is able to capture the morphological evolution of particles and to develop the necessary
methods to simulate particle synthesis under experimental conditions. This thesis aims to
develop a model framework that can be used to test hypotheses and improve our understanding
of the processes governing the size, morphology and crystalline phase of particles.

1.2 Novel aspects of this thesis

Novel developments in this thesis include:

• The development of particle breakage models that utilise structural information captured
by a detailed particle model and the application of these breakage models to simulate
the post-synthesis milling of titanium dioxide particles. The breakage models are used
to relate the behaviour of particles during milling to their morphology developed under
different reactor conditions.

• The development of a new geometrical particle model that tracks the size and position
of individual primary particles and their relationship with neighbouring primaries. The
particle model is part of a detailed population balance model that can describe the
morphological evolution of aggregate particles under inception, coagulation, growth,
sintering and coalescence processes. The new geometrical particle model has several
advantages:

– It removes the need to make an assumption about the particle fractal dimension and
prefactor. The radius of gyration and collision diameter of an aggregate particle can
be directly calculated.

– The model resolves the neck radius, free surface area and volume of each individual
primary particle.

– The morphology of aggregate particles is resolved throughout a simulation and can
be visualised, for example, in TEM-style images for comparison with experimental
data.
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• The new particle model is combined with a detailed chemical mechanism for the de-
composition of TTIP. Particle inception and growth processes are treated as collision
limited reactions of gas-phase species. This avoids the need to make the assumptions
made in previous studies about the relative rates of inception and growth for a single step
decomposition model of TTIP.

• A post-processing methodology for detailed simulations of particle formation in laminar
flames is extended to stagnation flames by addressing a previously unidentified issue
in applying the methodology to systems with steep temperature gradients. A correc-
tion is introduced to the post-processing step to account for the significant effect of
thermophoresis on the simulated particle number density moments.

• Detailed particle model simulation results are evaluated against experimental data by
comparing experimental measurements with identical, simulated quantities, for example,
the projected area spherical equivalent diameter obtained from TEM image analysis.

1.3 Structure of this thesis

The next chapter covers related work and introduces the model framework and numerical
methods that are used in this thesis. Chapter 3 begins by looking at a pre-existing detailed
particle model and evaluating the quality of structural data it captures. Breakage models are
developed that utilise this structural information and the work attempts to relate the morphology
of titanium dioxide particles to their milling behaviour. The chapter concludes by reviewing
the particle model and suggests areas for development.

A new detailed particle model is introduced in Chapter 4 with the aim of addressing the
limitations identified in Chapter 3. A mathematical description of the population balance
model is given along with the model algorithms. The process sub-models are tested and the
convergence behaviour is investigated for a simple batch reactor test case. Finally, the synthesis
of TiO2 aggregates from TTIP precursor in a lab-scale hot-wall reactor is simulated.

Chapter 5 extends a two-step simulation methodology used to apply a detailed population
balance model as a post-process to flame simulations. The work identifies a previously
unaddressed issue in employing the methodology to simulate flames with strong temperature
gradients, such as a stagnation flame. A thermophoretic correction is introduced in the second
simulation step to account for the significant effect of thermophoresis near the stagnation
surface. The new methodology is evaluated by comparison with results from an established,
fully-coupled method.
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Chapter 6 combines the new detailed particle model and the newly developed methodology
with a detailed chemical mechanism for the thermal decomposition of TTIP to simulate
the synthesis of titanium dioxide nano-aggregates in a stagnation flame. Model predictions
are evaluated against experimental results by comparing experimental measurements from
transmission electron microscopy (TEM) data with identical, simulated quantities. Finally, a
parametric sensitivity study is performed to investigate important model parameters. Chapter 7
concludes this thesis with a critical review, and suggestions for further work and improvements
to the model.



Chapter 2

Background

This chapter is divided into two sections. The first presents an overview of the relevant literature,
while the second describes the pre-existing particle model framework and numerical methods
that are used in this thesis.

2.1 Related work

This section begins with a review of the literature concerning the kinetics of titania formation
and proposed chemical mechanisms for the two main chemical precursors. A short introduction
to the experimental aspects of studying titania nanoparticle synthesis precedes a discussion of
nanoparticle morphology and processes affecting particle structure. The section concludes with
a review of the population balance modelling literature.

2.1.1 Kinetics of titanium dioxide formation

The two main precursors used in the aerosol synthesis of titanium dioxide particles are titanium
tetrachloride (TiCl4) and titanium tetraisopropoxide (Ti(OC3H7)4, TTIP). Particles can be
synthesised by the oxidation or hydrolysis of TiCl4, or the thermal decomposition or hydrolysis
of TTIP. The oxidation of TiCl4 and thermal decomposition of TTIP are discussed here.

Oxidation of TiCl4

An important route for the industrial production of pigmentary titania is the chloride process
involving the gas-phase oxidation of TiCl4. Impure TiO2 is first chlorinated to produce TiCl4,
which is then purified before undergoing oxidation at high temperature (above 1500 K) in a
pure oxygen plasma or flame to produce titania nanoparticles. Finally, the particles may be
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subjected to after-treatments such as milling to achieve the desired properties for the final
product [53]. Research into titania nanoparticle formation is focussed on the oxidation process:

TiCl4 +O2 −−→ TiO2 +2Cl2.

A number of investigations have sought to improve our understanding of the reaction
kinetics. Ghoshtagore [58] used a hot-wire experiment to investigate the surface reaction of
TiCl4 with a TiO2 film at 673–1120 K. The investigation concluded that the reaction proceeds
by an Eley-Rideal mechanism with atomic oxygen as the chemisorbed species and molecular
TiCl4 colliding on the surface from the gas phase. Pratsinis et al. [141] studied the global
kinetics of TiCl4 oxidation in a hot wall reactor at 973–1273 K. The overall reaction was found
to be first-order in TiCl4 and approximately zero-order in O2 up to ten-fold excess O2. Pratsinis
and Spicer [142] attempted to quantify the relative rates of the gas-phase oxidation of TiCl4
and the reaction on the particle surface using reported rates for the overall reaction [141] and
surface reaction [58]. Surface growth was found to have a significant effect on the particle
diameter.

West et al. [183, 184] proposed a detailed thermodynamically consistent gas-phase kinetic
model to describe the oxidation of TiCl4. Subsequent investigations presented an updated
mechanism [185] and considered the role of aluminium trichloride additives [159] and hydro-
carbon species [170]. A comparison of the particle inception behaviour of the mechanisms from
Pratsinis and Spicer [142] and West et al. [185] was performed by Mehta et al. [118]. They
showed that the choice of model caused inception to occur at different locations in simulations
of a turbulent flame. This is consistent with other studies [4, 158]. Mehta et al. [117] later
proposed a reduced version of the detailed mechanism [185] to facilitate the simulation of
TiCl4 oxidation in turbulent methane flames.

Shirley et al. [158] performed a theoretical investigation of the adsorption of TiCl4 on
the [110] surface of rutile TiO2. Their findings were consistent with an Eley-Rideal surface
growth mechanism. The rate parameters of the surface reaction and choice of inception model
were observed to strongly affect simulations of the experiment of Pratsinis et al. [141]. The
experimental data could be reproduced by simulations using the gas-phase chemistry from
West et al. [185] with an inception model based on the collision of any two TixOyClz species
(x,y,z ≥ 1). Several surface growth models were proposed based on a combination of the
calculated activation energies and fitting to the experiment of Pratsinis et al. [141].
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Decomposition of TTIP

The second, commonly used precursor, titanium tetraisopropoxide, is typically seen in labora-
tory investigations because it is less corrosive and easier to handle than TiCl4. Okuyama et al.
[135] performed hot-wall reactor studies at 400–600◦C and proposed a first-order reaction rate
with the following decomposition pathway

Ti(OC3H7)4 −−→ TiO2 +4C3H6 +2H2O.

This has been supported by more recent studies [92, 178]. Many attempts at modelling high
temperature TiO2 formation from TTIP assume a one-step thermal decomposition of TTIP
[131, 153]. Tsantilis et al. [172] combined the one-step reaction with a first-order surface
reaction [11] to model TiO2 formation in a premixed flat flame. A similar reaction model has
also been used in other studies [108, 195, 200].

An experimental and computational study by Shmakov et al. [160] identified intermediate
species in the decomposition of TTIP in a H2/O2/Ar flame and took the first steps in developing
a detailed chemical mechanism describing both hydrolysis and thermolysis reactions. Buerger
et al. [23, 24] later developed a systematically derived and thermodynamically consistent
kinetic mechanism of TTIP decomposition. The work identified three main reaction pathways
with Ti(OH)4 as the final decomposition product. However, more recent experimental and
computational work by Ershov et al. [47] suggests that the mechanism proposed by Buerger
et al. [23] is incomplete and identified another important pathway.

2.1.2 Aerosol synthesis of titanium dioxide

Tubular hot wall reactor experiments are a popular technique for studying the aerosol synthesis
of titania nanoparticles: from understanding the chemical reaction kinetics [135, 141, 178]
and sintering kinetics [34, 153] to investigating the relationship between reaction conditions
and particle size, morphology and crystal phase [3, 131, 132]. The simplicity of the reactor
geometry makes the set-up ideal for modelling studies. For determining reaction rate, the
concentration of TiCl4 is typically measured using infra-red absorption spectroscopy. A variety
of techniques are used to characterise the properties of particles including differential mobility
analysers (DMA) and scanning mobility particle sizers (SMPS) to measure the electrical
mobility size of aggregates. The morphology of aggregates and primary particle size is usually
obtained by analysing transmission electron microscopy (TEM) images and the crystal phase
of particles is characterised by X-ray diffraction (XRD).
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Combustion synthesis of metal oxide nanoparticles in flame experiments has also received
widespread attention due to potential applications in the manufacture of functional nanomateri-
als [103, 157], for example, by the direct deposition of titania nanoparticles onto a substrate
in a stagnation flame set-up [133, 168]. Flame aerosol synthesis has been used to synthesise
and study ultra-fine titania particles. The technique has been shown to achieve highly tunable
particle properties by controlling experimental conditions, including the particle size distribu-
tion [169, 197] and crystal phase content [87, 109, 119]. Experimental investigations have also
synthesised metastable phases of titania in flames [109, 145].

2.1.3 Particle morphology and particulate processes

The structure of particles is important in our understanding of their evolution during synthesis,
for example, the effect of surface shielding on the growth rate [7] and the impact of a fractal-like
structure on the collision cross-section of particles [202]. Furthermore, morphology has a
significant effect on the functional properties of nanoparticles, such as their mechanical and
transport properties [38, 165], and light scattering [48, 164].

Evolution of fractal-like aggregates

Flame made nanoparticle aggregates are generally observed to have fractal-like properties
[75, 93, 113]. The particle radius of gyration rg follows a power law scaling with the number
of constituent primary particles np [107]

np = kf

(
rg

rp,avg

)Df

, (2.1)

where Df is the fractal dimension, kf is the fractal prefactor and r̄p is the average primary radius.
Early computational efforts (a comprehensive review of the early work on fractal aggregates
is presented by Meakin [116]) used Monte-Carlo methods to generate fractal structures from
monodisperse spherical primary particles, both on and off lattice, and studied the effect of
spatial dimensionality and aggregation model on the fractal scaling relations. The main
mechanisms of interest to the study of aerosol synthesis are ballistic cluster-cluster aggregation
(BCCA) [81] in the free molecular regime and diffusion limited cluster aggregation (DLCA)
[82] in the continuum regime. Recent work has also investigated the effect of primary particle
polydispersity on the fractal properties of aggregates. Eggersdorfer and Pratsinis [42] found
that primary polydispersity has a significant effect on estimates of the fractal prefactor and to a
lesser extent the fractal dimension. These results are consistent with a study by Goudeli et al.
[63], who also showed that aggregates composed of polydisperse primaries attain the same
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asymptotic fractal dimension as monodisperse collections of primaries but for a significantly
larger number of primaries.

In addition to coagulation, sintering and surface growth processes are also important in
determining particle morphology and fractal properties [2, 21, 151]. The sphericity of a particle
is governed by the competition between aggregation and rounding processes; namely, sintering
and surface growth. Mitchell and Frenklach [124, 125] modelled a single sterically resolved
collector particle immersed in an environment of primary particles and surface growth species
to investigate the transition from coalescent soot growth to aggregate formation. The work
showed the dependence of morphology on the rates of surface growth and nucleation, and
demonstrated that aggregation is strongly linked to nucleation – contrary to commonly made
assumptions. Further investigations into the evolution of fractal morphology under coagulation
and surface growth have been performed by extending the collector-particle model [126] and
by discrete element modelling (DEM) [85, 86].

Discrete element modelling is an important technique for studying the morphological
evolution of complex aggregates under specific processes because it allows for the incorporation
of a very high level of physical detail. Pratsinis and co-workers have performed a number of
detailed studies of particle process dynamics, including sintering [40, 41], coagulation [63, 64],
coagulation with surface growth [85, 86] and coagulation with sintering [62]. Such studies
prove useful in testing commonly made modelling assumptions, for example, the assumption
of a constant fractal dimension and the relationship between mobility diameter and radius of
gyration [86]. Simple functional relationships for particle properties can be obtained from
detailed DEM studies for use in population balance models [63].

Sintering kinetics of titania

Surface area reduction is the main driving force behind sintering. Early stage sintering is
usually described in terms of the evolution of the neck radius between two particles [36, 56, 70].
Koch and Friedlander [89] obtained the commonly used expression for the late stage decay in
excess surface area from the expression for the neck size obtained by Hiram and Nir [70]. The
phenomenological model of Koch and Friedlander [89] lends itself well to use in modelling
studies, the simplest of which consider the surface area and volume of an aggregate [172, 188],
and also to fitting a characteristic sintering time to experimental data [34, 153] due to the
relationship between the surface area and measured mobility diameter [148].

A number of studies have attempted to obtain the sintering kinetics from experimental data
[34, 153, 187]. Seto et al. [153] performed an experimental investigation into the sintering of
titania aggregates and compared characteristic sintering times obtained from surface diffusion,
grain boundary diffusion and volume diffusion models in the literature. The best agreement
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with experimental data was observed for the surface diffusion based model of Kobata et al.
[88], which is often used in modelling studies on titania [172, 185, 188, 189].

Molecular dynamics (MD) simulations have also been used to investigate the sintering of
titania nanoparticles. Collins et al. [37] identified three stages of sintering – contact, locking
and fusion – and determined that sintering takes place largely by surface diffusion. This is
consistent with results from other MD studies [25, 91]. Buesser et al. [25] performed MD
simulations of 2–4 nm rutile to full coalescence, concluding that while surface diffusion is
the dominant mechanism, sintering by grain boundary diffusion takes place to a lesser extent.
They note that this may explain the conflicting literature on grain boundary versus surface
diffusion. In any case, the characteristic sintering times for both mechanisms have the same
quartic dependence on particle size. The study showed that the late stage sintering behaviour
is in good agreement with the commonly used phenomenological model [89], but observed
significantly faster sintering of very small particles.

2.1.4 Population balance modelling

The time evolution of a system of particles can be described by a population balance equation
(PBE) of the form:

∂n(Pq, t)
∂ t

=
1
2 ∑

Pr,Ps∈E
Pr+Ps=Pq

K(Pr,Ps)n(Pr, t)n(Ps, t)− ∑
Pr∈E

K(Pq,Pr)n(Pq, t)n(Pr, t)

+Rinc(Pq)+ ∑
m∈M

 ∑
Pr∈E

gm(Pr)=Pq

Rm(Pr)n(Pr, t)−Rm(Pq)n(Pq, t)

 (2.2)

where n(Pq, t) is the number density of particles of type Pq at time t. Pq is an element of the
type space E, which describes the internal coordinates (e.g. mass, composition, surface area
etc.) of all possible particles. The first two terms of Eq. (2.2) are the Smoluchowski coagulation
equation [176] with coagulation kernel K. Rinc(Pq) is the rate of inception of particles of type
Pq, and the final terms of Eq. (2.2) give the rate of production of particles of type Pq due
to all single particle (i.e. linear) processes, for example, surface growth, condensation and
sintering. Rm is the rate of process m ∈M, M is the index set of linear processes, and gm(Pr)

is the resulting particle from process m acting on a particle of type Pr. The first term in the
parentheses represents the production of particles of type Pq by a linear process acting on
particles of type Pr, and the second term describes the consumption of Pq by the linear process.
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The PBE can rarely be solved analytically and a variety of numerical methods have been
developed in the literature, some of which are discussed below. The particular approach chosen
for a modelling study will depend on a number of factors. A key consideration is the degree of
detail in the model used to describe the particles and particle processes. More detailed models
will restrict the range of available methods due to computational cost. An equally important
consideration is the complexity of the overall system being modelled; for example, coupling
the PBM to gas-phase chemistry, modelling spatial inhomogeneity and particle transport. More
complex systems typically require the use of computational fluid dynamics and are generally
restricted to particle models with fewer internal coordinates due to computational expense.

Particle models

Univariate models. The simplest, one-dimensional, particle model describes only the mass,
volume or monomer composition of a particle [51]. An assumption of spherical geometry is
usually made so that the particle surface area and radius can be calculated.

Bivariate models. Two-dimensional models, typically describing a particle by its surface area
and volume, can represent a simple aggregate structure and allow internal structural processes
to be modelled, such as sintering [95, 188]. Such models do not resolve the internal primary
particle distribution, but do allow the average primary diameter and number of primaries to be
determined. Equally, an assumption of monodisperse primary particles can be made. Bivariate
models can, however, also incorporate primary particle polydispersity. For example, Heine and
Pratsinis [67] developed a model that resolves the aggregate particle size distribution in one
dimension and use a second dimension to resolve the primary particle size distributions within
the aggregates.

High-dimensional multivariate models. Multivariate particle models are able to incorporate
an arbitrary degree of detail in the particle description and are not restricted to any number
of internal dimensions. Primary particle models are the most detailed in the literature. They
are capable of resolving the mass of individual primary particles [184], their connectivity and
level of sintering with each individual neighbour [150, 156], and even their detailed internal
composition [33].

The most detailed models usually represent an aggregate particle as a union of intersecting
spheres [40, 124, 125, 126], providing a full geometrical description of fractal-like particles.
Morgan et al. [126] extended the single collector particle model of Mitchell and Frenklach
[124, 125] to an ensemble of aggregate particles to simulate the morphological evolution
of soot particles in laminar premixed flames and study the interplay between nucleation,
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coagulation and surface growth rates. Schmid et al. [151] employed a ‘quasi-monodisperse’
model to simulate aggregate morphology under coagulation and sintering. The model tracked
the connections between primaries of equal mass and resolved the aggregate geometry using an
overlapping spheres model.

A different approach was taken by West et al. [184], who extended a surface-volume
description with the addition of a list of one-dimensional primary particles for each aggregate.
This was later extended by Sander et al. [150] to include a description of the connectivity and
level of sintering between neighbouring primaries (this model will be described in more detail
Section 2.2.1). The model was subsequently developed further with the incorporation of a
kinetic Monte Carlo model for polycyclic aromatic hydrocarbon (PAH) growth [31], providing
a detailed description of the PAH composition of individual soot primaries. The high level of
detailed permitted the simulation of properties comparable with experimental observations.
For example, size distributions of particles [33, 102], transmission electron microscopy (TEM)
images, optical band gap [193] and PAH fringe length measurements [194].

Numerical methods

Moment methods. The method of moments describes the evolution of a population of
particles by the moments of the distribution, but does not resolve the particle size distribution
(PSD). One is typically interested in only the first few moments of the population (number
density, mass density etc.); thus, the method is computationally very efficient due to the limited
number of equations to be solved. The equations, however, are unclosed. Various methods
of closure have been developed, including the method of moments with interpolative closure
(MoMIC) [50, 51], quadrature methods [112, 115], and hybrid methods [130].

Due its computational efficiency, the method of moments is often used when simulating
problems involving particle transport and when coupling to computational fluid dynamics
is necessary [4, 112, 167]. However, the method of moments is typically restricted to one-
dimensional [51, 80, 108, 115, 167] and two-dimensional [112, 129, 130, 167, 186] particle
models.

Sectional methods. The sectional method [54, 55] divides the distribution of particle prop-
erties into discrete bins and an equation for the number of particles in each section is solved.
The method was adapted by Hounslow et al. [74] to conserve particle number and mass. Mov-
ing sections were introduced to address issues of numerical diffusion associated with surface
growth [97]. Two dimensional sectional methods have seen widespread use in modelling studies
investigating particle shape and sintering of inorganic nanoparticles [67, 79, 131, 172, 188].
Sectional methods have an advantage over moment methods in that they give some resolution



2.1 Related work 13

of the particle size distribution, but at much greater computational expense. Like moment
methods, sectional methods can be easily coupled to gas-phase chemistry and flow dynamics,
but are also difficult to extend beyond two dimensions in the particle description.

Stochastic methods. The basic principle of a direct simulation Monte-Carlo algorithm
(DSMC), introduced by Bird [18], is to represent the real system of particles by some number of
computational particles in a homogeneous sample volume. The system is treated as a statistical
ensemble and the solution to the population balance equation is then approximated by the ran-
dom generation of events, where the probability of an event is given by a known rate function,
which is dependent on the properties of the system. One early example of the application of the
Monte-Carlo method to the Smoluchowski coagulation equation was presented by Gillespie
[59]. Assuming a stochastic model of the physical coagulation process, Gillespie [59] derives
an exponentially distributed waiting time between successive events, which forms the basis of
the waiting time algorithm. This is sometimes called the event driven method. An alternative
approach, the time driven method, is to explicitly discretise time into fixed intervals and sample
the Poisson distribution to generate the number of events that occurred during each time step
[104].

Numerous enhancements have since been made to the direct simulation algorithm, including
the introduction of majorant kernels and fictitious jumps to reduce the computational expense
associated with coagulation [44, 60]; linear process deferment for the efficient treatment of
single particle processes [137]; and ensemble doubling [104, 106] to reduce statistical error
due to particle depletion. These will be discussed in more detail in Section 2.2.2. Extending the
concept behind ensemble doubling, Smith and Matsoukas [162] proposed a constant number
algorithm that maintains a constant number of computational particles under the net gain and
net loss of particles. Weighted particle methods [45, 90, 139, 147, 199], were introduced to
reduce statistical noise associated with physically rare particles. These differ from the direct
simulation methods in that the number of particles remains constant under coagulation. Instead,
the statistical weights of particles are adjusted.

The main advantage of stochastic methods is that they allow for models with a large
number of internal dimensions and can include a very detailed description of each particle.
Stochastic methods combined with very detailed particle models have been used to simulate
soot [33, 126, 149], silicon [122], silica [150, 156] and titania [184]. However, stochastic
methods can be computationally expensive and spatial inhomogeneity and particle transport
are not easily incorporated. Thus, detailed population balance models have traditionally been
restricted to modelling batch and plug-flow reactors. Nevertheless, attempts have been made to
apply stochastic methods to systems in which transport effects and spatial inhomogeneity are
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important. Xu and Zhao [189] coupled computational fluid dynamics (CFD) to a two and to a
three dimensional [190] population balance model solved by a Monte-Carlo method to simulate
a co-flow diffusion flame. Higher-dimensional models have been applied to flame simulations
using a post-processing methodology [127] – discussed in more detail in Section 2.2.3. This
approach has been used successfully to simulate the internal structure of soot formed in laminar
flames [33, 126, 161, 193]. Another approach, used to model industrial reactors [19, 120],
is to compartmentalise a spatially inhomogeneous system into a network of cells or reactors
[77, 96, 201].

2.2 Model framework and simulation methodology

The purpose of this section is to present a background of the model framework and numerical
methods that are used, but not developed, in this thesis. The particle model of Sander et al.
[150] is applied in Chapter 3 and forms the basic framework from which a new detailed particle
model is developed in Chapter 4, so it is worth describing in some detail. The stochastic
numerical method used to solve the detailed population balance model is also presented along
with the gas-phase coupling methodology. These are referred to throughout the thesis.

2.2.1 Binary tree particle model

The detailed particle model outlined here, termed the binary tree model, was developed
by Sander et al. [150] (a detailed description is also given by Shekar et al. [156]) as an
improvement of the primary particle list model of West et al. [184]. The primary particle list
model extended an earlier two-dimensional surface-volume model [136] by also tracking a list
of polydisperse spherical primary particles for each aggregate. The model, however, did not
track the connectivity of primaries and sintering was only considered at the aggregate level. The
binary tree model improves on this by incorporating primary particle connectivity information
using a binary tree data structure (see Section 2.2.2) and modelling the sintering of every pair
of connected primaries.

Type space

The description of each aggregate in the population balance model (formally known as the type
space) is illustrated in Figure 2.1. An aggregate particle Pq containing np(Pq) primary particles
pi with i ∈ {1, ...,np(Pq)} is represented as

Pq = Pq

(
p1, ..., pnp(Pq),C

)
. (2.3)
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Aggregate composed of 
primary particles

Common surface area around a pair of 
neighbouring primary particles

Fig. 2.1 An illustration of the type space of the binary tree model showing an aggregate particle
composed of polydisperse primary particles (left panel). The level of sintering between primary
particles is resolved by a common surface area (dashed line in right panel) for each pair of
neighbouring primaries.

Each primary particle is described by an internal composition variable ηi,

pi = pi (ηi) . (2.4)

The composition variable can simply store the number of monomer units in the primary, for
example the number of TiO2 units as is done in this work, or it can contain a more detailed
description of the internal structure, such as the crystal phase composition. Shekar et al. [156]
tracked the number of Si, O and OH units in a model for silica nanoparticles and Sander et al.
[149] incorporated a description of individual PAHs into a model for soot. Primary particle
properties, e.g. the mass and volume, are derived from the primary composition.

Neighbouring particles may be in point contact, fully coalesced or anywhere between.
The model resolves the common surface area Ci j between each pair of neighbouring primary
particles (illustrated in the right panel of Figure 2.1). This information is stored in a lower
diagonal connectivity matrix C of dimensions np(Pq)×np(Pq). A matrix element Ci j with j < i
has the following properties:

Ci j =

0, if pi and p j are not neighbouring;

Ssph(pi, p j)≤Ci j ≤ S(pi)+S(p j), if pi and p j are neighbouring.
(2.5)

For neighbouring primaries, Ci j takes a value in the range between the surface area of two
primaries in point contact and the surface area of a single sphere with the combined volume of
the primaries, Ssph(pi, p j).
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Particle processes

Inception. Inception is modelled as a bimolecular collision of two gas-phase precursor
species A and B, creating a particle consisting of a single primary:

A+B→ PN(p1)+gas-phase products. (2.6)

The rate of inception is given by

Rinc =
1
2

KfmN2
ACACB, (2.7)

where Kfm is the free-molecular kernel (Eq. (2.11)), NA is Avogadro’s number, and CA and CB

are the concentrations of species A and B, respectively.

Coagulation. An aggregate is formed when two particles, Pq and Pr, stick together following
a collision:

Pq(p1, ..., pnp(Pq),C(Pq))+Pr(p1, ..., pnp(Pr),C(Pr))→ Ps(p1, ..., pnp(Pq)+np(Pr),C(Ps)). (2.8)

The rate of collision is calculated using the transition regime coagulation kernel [84, 138],
defined as one-half the harmonic mean of the free-molecular and slip-flow kernels

1
Ktr =

1
Ksf +

1
Kfm . (2.9)

The slip-flow and free-molecular kernels [84] are

Ksf(Pq,Pr) =
2kBT
3µ

(
1+1.257Kn(Pq)

dc(Pq)
+

1+1.257Kn(Pr)

dc(Pr)

)
(dc(Pq)+dc(Pr)), (2.10)

and

Kfm(Pq,Pr) = ε

√
πkBT

2

(
1

m(Pq)
+

1
m(Pr)

)
(dc(Pq)+dc(Pr))

2, (2.11)

respectively. Kn is the Knudsen number

Kn(Pq) =
2λ

dc(Pq)
, (2.12)
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where the mean free path and viscosity are approximated as those of air at pressure p and
temperature T :

λ = 2.371×10−5 T
p

m, (2.13)

µ = 1.458×10−6 T
√

T
T +110.4

kgm−1 s−1. (2.14)

ε is the collision enhancement factor, m is the aggregate particle mass and dc is the particle
collision diameter.

The collision diameter is based on the fractal relationship [95, 114, 174]

dc = dp
(
np
)1/Df , (2.15)

=

(
6V
S

)(
S3

36πV 2

)1/Df

, (2.16)

where V is the aggregate volume, S is the surface area of the aggregate and Df is the fractal
dimension. Sander et al. [149] estimate the surface area as

S =
Ssph

savg(1−n1/3
p )+n−1/3

p

, (2.17)

where Ssph is the spherical equivalent surface area of the particle, np is the number of primary
particles, and savg is the average sintering level of the aggregate (discussed below).

After a coagulation event, two primary particles, uniformly selected from each coagulating
particle, are assumed to be in point contact and the connectivity matrix is updated as follows:

C(Ps) =



...
C(Pq) · · · 0 · · ·

...
...

· · · Ci j · · · C(Pr)
...


, (2.18)

Surface reaction. Particles can evolve through reactions between gas-phase species and the
particle surface. The rate of surface reaction for a particle Pq has the general form

Rsg(Pq) = k f (Pq)
I

∏
i=1

Cνi
i , (2.19)
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where f (Pq) is some particle property (e.g. surface area or reactive surface site density), Ci is
the concentration of species i and νi is the order of reaction with respect to the species. k has a
modified Arrhenius form

k = A T n exp
(
− Ea

RT

)
, (2.20)

with prefactor A, temperature exponent n, and activation energy Ea.
During a surface growth event a primary particle within the aggregate is selected for

adjustment. Selection may be uniform or weighted by some primary property such as the
surface area. The primary particle evolves as

pi (ηi)→ pi (ηi +∆η) . (2.21)

and the common surface areas stored in the connectivity matrix C will be updated for matrix
elements where pi and p j are neighbouring:

Ci j→Ci j +∆S(pi). (2.22)

∆S(pi) is the change in surface area of pi:

∆S(pi) = vTiO2∆η
2σ

dp(pi)
, (2.23)

where vTiO2 is the volume of one unit of TiO2 and σ is the surface smoothing factor which can
take a value in the range: 0≤ σ ≤ 2 [149].

Condensation. Particles can also grow by condensation of gas-phase species, modelled as
a free-molecular collision between a single gas-phase molecule and a particle. The rate of
collision (per particle) is based on the free-molecular kernel and assumes that the mass and
diameter of the condensing species are much smaller than those of the particle:

Rcond(Pq) = AcondCANAε

√
πkBT
2mA

(
dc(Pq)

)2
, (2.24)

where Acond is the collision efficiency, and CA and mA are the concentration and mass of the
condensing species A.

The state space is adjusted in the same way as for surface reactions.

Sintering. The sintering model considers the reduction in the excess common surface area
Ci j of a pair of neighbouring primaries pi and p j over that of a volume-equivalent spherical
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particle Ssph(pi, p j). The sintering of each pair of neighbouring primaries is treated individually.
It is assumed that the excess surface area decays exponentially according to the equation [89]:

dCi j

dt
=− 1

τs(pi, p j)

(
Ci j−Ssph(pi, p j)

)
, (2.25)

where τs(pi, p j) is a characteristic sintering time.
Shekar et al. [156] define a sintering level for two primaries pi and p j:

si j =

Ssph(pi,p j)
Ci j

−2−1/3

1−2−1/3 . (2.26)

Note that 0≤ si j ≤ 11. The model assumes that the primaries have coalesced if the sintering
level exceeds 0.95. In this case, the two primary particles pi(ηi) and p j(η j) merge into a single
primary pk(ηi +η j). The connectivity matrix is updated so that the neighbours of pi and p j

become the neighbours of pk and the common surface areas for each pair are re-estimated using
the sintering level.

2.2.2 Stochastic numerical method

Monte Carlo methods lend themselves well to solving high-dimensional population balance
models. In this thesis, a Direct Simulation Algorithm (DSA) is used with various enhancements
to improve efficiency. The direct simulation approximates a real system by an ensemble of
N equally weighted computational particles in a sample volume Vsmpl. The evolution of the
particle ensemble is treated as a Poisson process with exponentially distributed waiting time τ

between events [60]
Prob(τ ≥ t) = exp(−Rtot · t) , (2.27)

where Rtot is the total rate. The probability of a particle process being selected for an event
is dependent on its relative rate. The direct simulation Monte Carlo algorithm is presented in
Appendix B.1 and the enhancements are described in the sections below.

Particle ensemble

The population balance solver uses a variable size particle ensemble with a predefined maximum
number of computational particles Nmax. The particle ensemble represents a real population of

1The sintering level of Shekar et al. [156] is a simplification of an earlier form introduced by Sander et al.
[150]. The two are equivalent for primary particles of equal size and cover the full range s ∈ [0,1]; otherwise, the
lower bound of Eq. (2.26) is greater than 0.
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particles contained in a sample volume

Vsmpl =
N
M0

. (2.28)

The sample volume is adjusted due to gas-phase expansion and contraction, and ensemble
contraction and doubling. Ensemble contractions occur when a new particle is incepted into
an already saturated ensemble. Since the maximum ensemble size Nmax cannot be adjusted
during simulation, a random particle is discarded instead and the sample volume is contracted
proportionately to represent a smaller volume in the real system. Contractions result in a loss of
information and can significantly alter the particle size distribution. Therefore, it is important
to select an appropriate initial sample volume to minimise the number of contractions. This is
done by estimating the maximum value of the particle number density over the course of the
simulation, M0,max, such that initially

Vsmpl =
Nmax

M0,max
. (2.29)

To maintain a statistically significant number of computational particles, the ensemble is
doubled if N(t) < Nmax/2. In this case, each computational particle is duplicated and the
sample volume is doubled. Therefore, during the simulation (except at early times) the actual
number of computational particles lies in the range [Nmax/2,Nmax].

Binary tree data structure

Binary tree data structures are used to improve computational efficiency. A binary tree structure
is employed in two instances: (1) to store information about the stochastic particle ensemble
and (2) to store the primary particle and connectivity information for each individual aggregate
particle. Implementation of the binary tree in the latter instance is illustrated in Figure 2.2 and
discussed in more detail below. In the former, a binary tree is connected to a list which stores
the ensemble of stochastic particles. Each node in the tree stores the sum of the properties of
the particles below it. With this structure, the computational expense of particle selection and
system update steps is O(log(N)), allowing for rapid particle selection and efficient calculation
of ensemble statistics and the total process rate [61].

Sander et al. [150] used a binary tree in their implementation of the detailed particle model
(described in Section 2.2.1) to store the primary particle and connectivity information for each
aggregate. An example of the binary tree representation of a particle is shown in Figure 2.2.
Each non-leaf node connects to two child nodes below it and a parent node above it (except for
the root node). These are illustrated as squares labelled A...E and the connections are shown
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p1 p2

B

p4p3 p6p5

D E

C

A

Fig. 2.2 A binary tree data structure used to store an aggregate particle. Non-leaf nodes are
shown as squares and connections are shown by the solid lines. The leaf nodes (circles)
represent the primary particles. The dashed lines are additional pointers showing the primary
particle connectivity.

by the solid lines. The leaf nodes, drawn as circles, store the primary particles p1...p6. Each
non-leaf node stores the sum of the properties of the (primary) particles below it, enabling
efficient particle selection and updates to particle properties. Consequently, the root node
stores the aggregate particle properties e.g. surface area, volume, number of primaries, etc.
Furthermore, each non-leaf node stores information pertaining to a single connection between
two primaries pi and p j. In this case, the common surface area Ci j is stored and the node
identifies (or points to) the two primaries pi and p j. These pointers are represented by the
dashed lines. The connectivity matrix representation of the binary tree structure in Figure 2.2 is

C =



0 · · · 0
C21 0

0 C32 0
...

0 0 C43 0
0 0 0 0 0
0 0 C63 0 C65 0


. (2.30)

An important consequence of the binary tree data structure is that only branched particles
such as that shown in Fig. 2.3a can be represented. The primaries are labelled p1...p6 and
the necks between primaries are indicated by blue dots labelled A...E, corresponding to the
labelling of the non-leaf nodes in Fig. 2.2. It is worth noting that the particle model of Sander
et al. [150] only tracks which primaries are connected to each other and not their exact spatial
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(a) Branched particle structure.
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(b) Particle with a connectivity cycle be-
tween primaries p3, p5 and p6.

Fig. 2.3 (a): branched particle structure represented by the binary tree data structure in Fig. 2.2.
(b): an additional connection between p3 and p5, creating a connectivity cycle, cannot be
represented.

arrangement. The binary tree fixes the number of connections between primaries at np− 1.
Thus, it is not possible to represent particles with connectivity cycles, for example, a particle
with an additional neck between primaries p3 and p5 shown in Fig. 2.3b. A cycle is a path that
can be taken from a primary that returns to the primary passing through successive neighbours
only once.

Linear process deferment

Linear processes involve a single particle interaction, for example, surface growth and conden-
sation of gas-phase species. For systems in which the rates of linear processes dominate those
of non-linear processes a typical direct Monte-Carlo simulation will spend a significant amount
of computational effort performing single particle events. Patterson et al. [137] introduced the
Linear Process Deferment Algorithm (LPDA) to accelerate simulations by reducing the number
of single particle operations. In the LPDA, linear processes are removed from the main loop of
the stochastic algorithm and instead individual particles are only updated when they take part
in a jump process. The algorithm tracks the elapsed time since the last update. Furthermore, all
particles are updated at regular intervals to ensure no particle is too out of date. Patterson et al.
[137] report up to three orders of magnitude improvement in run times with minimal loss of
accuracy in simulations of soot formation in laminar premixed flames.
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Majorant kernels and fictitious jumps

Calculation of the total coagulation rate requires summation over every pair of particles

Rcg =
1
2

N

∑
q̸=r

K(Pq,Pr) (2.31)

A simple approach to this incurs computational expense of order N2. Eibeck and Wagner [44]
introduced the majorant kernel and fictitious jumps to avoid this cost. A majorant kernel is a
function K̂ ≥ K, for which it is computationally efficient to calculate

R̂cg =
1
2

N

∑
q̸=r

K̂(Pq,Pr). (2.32)

Goodson and Kraft [60] presented a majorant kernel for the free-molecular regime (cf. Eq. (2.11))
of the form

K̂fm(Pq,Pr) = 2ε

√
πkBT

2

(
1

m(Pq)1/2 +
1

m(Pr)1/2

)
(dc(Pq)

2 +dc(Pr)
2), (2.33)

and Patterson et al. [138] extended the approach to the transition regime, defining the majorant
rate

R̂tr
cg = min

(
R̂fm

cg ,R
sf
cg

)
. (2.34)

Due to its simpler form, the slip-flow kernel does not require a majorant. The correct rate is
returned by rejecting events while still advancing time, i.e., performing a fictitious jump, with
probability

1−
K(Pq,Pr)

K̂(Pq,Pr)
. (2.35)

This approach takes advantage of the binary tree data structure, which can store and efficiently
update pre-calculated sums of particle properties.

2.2.3 Coupling the particle population and gas-phase chemistry

It is clear that some particle processes (see Section 2.2.1) involve the consumption and pro-
duction of gas-phase species; namely, inception, surface growth and condensation. Thus,
the gas-phase and particle population are inherently coupled. Two approaches are taken in
this thesis in the treatment of the interaction between the gas and particle phases. The first
approach, used in simple batch or plug flow reactor simulations, is coupling the gas-phase
and particle population balance by operator splitting. The second, used for laminar flame
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simulations, is a two-step methodology where the detailed population balance model is applied
as a post-process to a gas-phase flame profile obtained from a fully coupled simulation with a
simple particle model. The reason for using the two-step approach is the difficulty in coupling
a multidimensional population balance model to flow dynamics.

Operator splitting

Coupling of the particle population balance, solved by a stochastic method, to the gas-phase
chemistry, solved using an ODE solver, is achieved by the Strang operator splitting technique
described in detail by Celnik et al. [29]. The technique employs a refinement introduced
by Strang [166], which staggers the two operators by half a splitting time step. Alternative
methods of coupling are also available, although not considered in this work, for example,
predictor-corrector coupling [30].

Post-processing

The post-processing methodology was developed in order to apply a detailed soot model to
simulations of premixed laminar flames [10, 33, 126, 138, 161], and has also been applied to
simulations of inorganic nanoparticles [127]. The methodology consists of two simulation
steps. In the first step, the flame is simulated as a fully coupled system with one-dimensional
flow, gas-phase chemistry and a simple particle population balance model, which approximately
captures the effect of the particles on the gas-phase. Solving the coupled system to steady state
is computationally expensive. The method of moments with interpolative closure (MoMIC)
[50, 51] is used because it is numerically simple and easy to couple.

In the second step, the resulting gas-phase profile is post-processed with the detailed particle
model, solved using the stochastic numerical method. The flame conditions and gas-phase
species are supplied as input to the stochastic population balance simulation. The simulation
considers the Lagrangian view of particles in a spatially homogeneous control volume and
requires the computed profiles to be expressed in terms of the residence time of a Lagrangian
particle. The spatial coordinates of the computed profiles are transformed into temporal
coordinates using the velocity of the flow field [127]. This two-step methodology is discussed
further in Chapter 5.



Chapter 3

Relating milling behaviour to particle
morphology

This chapter explores whether the morphological data captured by the binary tree model can
be applied in a particle breakage model to relate the structure of aggregate particles to their
size-reduction behaviour in a post-synthesis milling process. This work aims to relate the
reactor conditions under which titanium dioxide particles form to their subsequent milling
performance. Five breakage models that utilise the morphological information in the particle
model type space are developed and their behaviour is examined in a simple milling test case.
Moreover, this work identifies limitations in the type space of the binary tree particle model
and makes recommendations for the development of a new detailed particle model.

3.1 Background

The functionality of titanium dioxide as an industrial product is strongly influenced by the size,
shape and morphology of the particles. Although the chloride process for manufacturing TiO2

is widely used, optimisation remains largely empirical. In many cases, the product is milled in
order to control the final particle size distribution (PSD). This imposes an additional time and
energy cost.

Milling has been widely studied due to the high industrial demand for fine powders with
tightly controlled properties. A lot of research has focused on identifying optimal milling pa-
rameters such as agitation speed, milling media size, filling ratio and suspension concentration.
The effect of operational parameters on the milling performance of titanium dioxide has been
investigated for fine grinding and dispersion of particles in wet stirred mills [14, 76, 134]. Other
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work has studied the substructure and mechanical properties of titania agglomerates [57], and
the changes in fractal morphology of dense aggregates under wet milling [78].

Population balance models have also been used to characterise the milling process, and
identify breakage mechanisms in wet stirred media milling [15, 68, 69, 175] by fitting Kapur’s
approximate first order solution [83] to experimental data. More complex models consider
non-linear effects and time-variant PBMs [16, 17].

Over long milling times and for sub-micron sized particles, more complex phenomena are
typically observed. This includes time delays in breakage [16], and grinding limits due to
a minimum obtainable particle size and agglomeration effects [49, 68, 76, 163]. Modelling
multimodal particle size distributions with statistical laws has been used as an alternative
method for obtaining the grinding kinetics [14, 49].

Most modelling efforts use a very simple particle description, commonly just the particle
mass, and introduce two functions: a size dependent breakage rate and the fragment distribution
function [46]. This work aims to develop a milling model based on the binary tree model
type space [150] described in Section 2.2.1, where the breakage rate and fragment distribution
are both dependent on the morphological properties captured by the particle model. The idea
is to relate the reactor conditions under which particles are synthesised to their subsequent
performance in the milling process. Particle synthesis in a laboratory-scale hot wall reactor is
simulated using the detailed titanium dioxide model outlined in Section 3.2, which describes
the time evolution of the internal structure of the fractal-like TiO2 aggregates. The simulation
results are post-processed using breakage models developed in Section 3.3 to provide proof
of concept that the morphological data in the detailed model can be related to the milling
behaviour of particles.

3.2 Titanium dioxide model

The synthesis of TiO2 particles by the oxidation of TiCl4 is modelled using a detailed particle
population balance model coupled to detailed gas-phase chemistry.

3.2.1 Gas-phase chemistry

The kinetic model for the formation of TiO2 particles from TiCl4 is based on the mechanism
proposed by West et al. [185]. It comprises 28 gas-phase species and 66 reactions.
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3.2.2 Particle model

The binary tree particle model of Sander et al. [150], described in Section 2.2.1, is used.
Particles consisting of primary particles composed of units of TiO2 evolve under inception,
coagulation, surface growth and sintering processes.

Inception

Inception is modelled as per Akroyd et al. [4] and is assumed to result from the bimolecular
collision of gas-phase titanium oxychloride species

Tixα
Oyα

Clzα
+Tixβ

Oyβ
Clzβ
−−→

(
xα + xβ

)
TiO2(s)

+

(
yα + yβ

2
− xα − xβ

)
O2 +

(
zα + zβ

2

)
Cl2, x,y,z≥ 1,

(3.1)

where the molecular collision diameter is taken as 0.65 nm [185]. An inception event creates a
particle consisting of a single primary composed of (xα + xβ ) TiO2 units.

Surface growth

Surface growth is treated as a single-step reaction as in Akroyd et al. [4]

TiCl4 +O2 −−→ TiO2(s)+2Cl2, (3.2)

with the rate expression

d
[
TiO2

]
dt

= ksg Sv
[
TiCl4

][
O2
]
, (3.3)

where Sv is the surface area per unit volume of the TiO2 population and ksg has an Arrhenius
form

ksg = A exp
(
− Ea

RT

)
m
s
· m3

mol
, (3.4)

with activation energy Ea and pre-exponential factor A. One surface growth event adds one unit
of TiO2 to the particle. Equation (3.3) assumes fixed reaction orders with respect to TiCl4 and
O2. Alternative models for the rate of surface growth are discussed by Shirley et al. [158].

Coagulation

Coagulation is treated in the transition regime as described in Section 2.2.1. The collision
enhancement factor for the free-molecular kernel is taken as ε = 2.2 as in previous studies on
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titania [4, 184, 185]. For the purpose of modelling the collision diameter, a fractal dimension
of Df = 1.8 [172] is assumed in Eq. (2.16).

Sintering

The characteristic sintering time is taken from Kobata et al. [88] as per West et al. [185]

τs = 7.4×1016T d4
p exp

(
258kJmol−1

RT

)
s, (3.5)

where dp is the diameter of the smaller primary [150, 191].

3.2.3 Numerical method

The population balance equations are solved using the stochastic numerical method described
in Section 2.2.2. The particle population is coupled to the gas-phase chemistry, solved using an
ODE solver, by Strang operator splitting, described in Section 2.2.3.

3.3 Milling model

In the milling process, particles break due to stresses exerted by the milling media. Kwade
and co-workers [98, 99] describe the process in terms of the frequency of stress events and the
intensity of each stress event. The energy intensity is introduced as a key factor in determining
whether a breakage event occurs. A stress event of sufficient intensity will result in breakage.

Low intensity shear stresses are sufficient for breaking weak agglomerates whereas higher
intensity normal stresses are required to break crystalline material [100]. Normal stresses arise
when a particle is caught in-between milling beads during a collision. The resulting fragment
size distribution is dependent on the properties of the material and the mode of fragmentation.

Three types of breakage mechanism are usually discussed in the literature: abrasion,
cleavage and fracture [13, 16, 71, 72, 144, 175]. Abrasion involves a continuous loss of
mass from the surface of a particle resulting in a bimodal fragment distribution. Cleavage
produces fragments of the same order in size as the original particle, while fracture results in
disintegration of the particle into small fragments. The different modes of fragmentation often
occur simultaneously during milling.

Epstein [46] first introduced population balance equations to the study of milling, modelling
breakage as two successive operations represented by a selection and a breakage function. The
selection function is the probability of a particle of given size breaking and is usually observed
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to increase with particle size [72]. The breakage function describes the shape of the fragment
size distribution and is characterised by the fragmentation mechanism.

The idea of this work is to explore whether the information in the type space of the detailed
population balance model can be related to the observed milling performance of TiO2 particles.
The particle breakage rate and fragment distribution are determined by a breakage model that
utilises the morphological information captured by the detailed particle model.
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Fig. 3.1 A sketched milling curve and a possible concept relating the detailed particle type
space to the shape of the curve. The coloured arrows indicate a possible influence of a particle
property on the shape of the milling curve.

Figure 3.1 shows a sketch of a milling curve. The average particle size is observed
to decrease during the initial part of the milling curve. Eventually the system reaches an
asymptotic state where no further significant decrease is observed.

One possible concept relating the detailed particle model to the milling curve is shown
overlaying Fig. 3.1. The average particle size is obtained from the aggregate size distribution
and the asymptotic particle size is a function of the primary particle size distribution. The
slope of the milling curve depends on the breakage mechanism and is some function of the
aggregate particle structure. Breakage, assumed to occur at the necks between neighbouring
primaries, is related to the neck size distribution and the fractal geometry of the particle. The
particle geometry is responsible for transmitting milling stresses to necks and the neck strength
is related to the neck size.

In this work, we apply a milling model based on Algorithm 1 as a post-process to the
detailed population balance model. The particle breakage rate is given by the breakage models
discussed in Section 3.3.2. Two of the breakage models utilise a neck radius to characterise
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how strongly neighbouring primaries are connected. The neck model is discussed in the next
section.

Algorithm 1: Milling algorithm applied as a post-process to the detailed particle model.

Input: Initial state of the particle ensemble at time t0; Final time tf.
Output: State of the particle ensemble at final time tf.
t← t0.
while t < tf do

Calculate the rate, Rpart(Pq), for each aggregate particle Pq,

Rpart(Pq) = ∑
i< j

Ri j,

where Ri j is the breakage rate for the neck between two primaries pi and p j.
Calculate the total rate, Rtot, for all N particles,

Rtot =
N

∑
q=1

Rpart(Pq).

Calculate an exponentially distributed waiting time ∆t with parameter Rtot,

∆t =
− ln(U)

Rtot
,

where U is a uniform random variate in the interval [0,1].
With probability Rpart(Pq)/Rtot select a particle Pq.
With probability Ri j/Rpart(Pq) select a neck.
Break the neck between primaries pi and p j, and update the particle ensemble:

Pq→ Pr +Ps,

N← N +1.

Increment t← t +∆t.
end

3.3.1 Neck size calculation

A neck between two primary particles is modelled as two overlapping spheres as shown in
Fig. 3.2. An assumption in the particle model for the common surface area is that it is calculated
separately for each pair of neighbouring primaries without considering other neighbours. The
neck size can be calculated from the common surface area Ci j and spherical-equivalent radii ri

and r j of each primary particle. The volume V and surface area S of two overlapping spheres
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Fig. 3.2 Geometry of the neck between two primary particles.

are given
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and
S (R1,R2,d) = 4π

(
R2

1 +R2
2

)
−π

(
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1

)
−π

(
a2 +H2

2

)
, (3.7)

where a is the radius of the neck [180]

a(R1,R2,d) =

1
2d

[
(R1 +R2 +d)(R1 +R2−d)(−R1 +R2−d)(R1−R2−d)

] 1
2
,

(3.8)

and where H1 and H2 are the heights of the spherical caps

Hi = Ri−Ri cos
(

arcsin
(

a
Ri

))
,

and R1 and R2 are the radii of two spheres whose centres are separated by a distance d ∈
[0,R1 +R2]. The final term in Eq. (3.6) is the volume of the three-dimensional lens [180] and
the final terms in Eq. (3.7) are the areas of each spherical cap [181] created by the intersection
of the spheres.

Under the assumption that the volume of the three-dimensional lens is evenly redistributed
over the surface of the particles in an even layer of thickness ∆r, the radius of each sphere in
Fig. 3.2 can be written in terms of the spherical-equivalent radii of the corresponding primary
particles

Ri = ri +∆r. (3.9)
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Equations (3.6) and (3.7) may be reduced to two equations in two unknowns using the substitu-
tions in Eqs. (3.8) and (3.9),

V (∆r,d) = vi + v j,

S (∆r,d) =Ci j,

and can be solved for the values of ∆r and d, and hence the radius of the neck ai j (∆r,d) for each
pair of neighbouring primary particles with corresponding total volume vi + v j and common
surface area Ci j.

3.3.2 Breakage models

Pr

Ps

aij

Pr

NotePq

Ps

pi

pj

Fig. 3.3 A breakage event. An aggregate particle Pq fragments into two daughter particles Pr
and Ps at a neck of radius ai j connecting two primaries pi and p j. The aggregate is represented
as two arms, corresponding to the respective daughter particles, extending from the neck.

Figure 3.3 illustrates a single breakage event where an aggregate particle Pq fragments into
two smaller daughter particles Pr and Ps. Breakage is treated as binary and always occurs at a
neck connecting two neighbouring primary particles. Individual primaries are assumed not to
break.

An aggregate particle is modelled as two arms extending from a neck as depicted by the
dashed arrows in Fig. 3.3. Note that this representation can be applied to any chosen neck
within the aggregate. The composition of the arms is equivalent to that of the two daughter
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fragments formed in the event of breakage. When a particle is caught in a three-body collision
with two milling beads the stresses are transmitted by these arms to the neck. The neck that
breaks during such a collision will depend on a number of factors including the neck size or
strength, and the size, shape and orientation of the respective arms.

The rate of breakage of a neck between two primaries pi and p j is expressed as a function
of the neck and daughter particle (fragment) properties

Ri j = Ri j(Pr(..., pi, ...,Cr),Ps(..., p j, ...,Cs),ai j), (3.10)

where Pr(..., pi, ...,Cr) and Ps(..., p j, ...,Cs) are the daughter particles formed in the breakage
event, ai j is the neck radius, and C is the respective connectivity matrix storing the common
surface areas as defined in Shekar et al. [156]. Five different breakage models are discussed
below. It is assumed that a rate constant k captures the operational parameters of the mill and
that the mill is capable of producing collisions of sufficient intensity to break all particle necks.
The total particle breakage rate for a particle Pq is

Rpart(Pq) = ∑
i< j

Ri j, (3.11)

where we sum over i < j to avoid double counting.

Simple neck model

The breakage rate is assumed to be only a function of the neck radius, calculated as per
Section 3.3.1

Ri j = kaα
i j, (3.12)

for constants k and α .

Total mass model

The probability of breakage is typically observed to increase with particle size. In this model
we assume that the rate of breakage for a neck is proportional to the sum of daughter fragment
masses m(Pr) and m(Ps) or equivalently, the total particle mass m(Pq)

Ri j = k(m(Pr(..., pi, ...,Cr))+m(Ps(..., p j, ...,Cs))) (3.13)

= km(Pq(..., pi, p j, ...,Cq)), (3.14)
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for constant k. Breakage is equally likely for every neck in an aggregate. The rate of breakage
for a single aggregate particle is therefore a function of its total mass and the number of necks.

Rpart(Pq) = k(np(Pq)−1)m(Pq), (3.15)

where np(Pq) is the number of primaries and (np(Pq)−1) corresponds to the number of necks,
which is always one less than the number of primaries.

Fragment mass model

A simple way to characterise the size of a fragment arm is by its mass. More massive arms are
expected to apply greater stresses on a neck due to greater leverage and arms of similar mass
will maximise the applied stress. This is modelled by setting the rate of breakage proportional
to the product of the daughter particle masses

Ri j = k ·m(Pr(..., pi, ...,Cr)) ·m(Ps(..., p j, ...,Cs)), (3.16)

for a constant k and where m(Pr) and m(Ps) are the masses of the two particle fragments joined
at the neck between primaries pi and p j.

Fragment radius model

A better measure of the size of a fragment arm is its radius of gyration, which accounts for the
fractal structure of the aggregate,

rg = dp,avg

(
np

kf

)1/Df

. (3.17)

np is the number of primaries, dp,avg is the average primary diameter, Df is the fractal dimension,
and kf is the fractal prefactor. A typical value of 1.8 is assumed for the fractal dimension [172].
Using the same form for the rate as in Eq. (3.16) the breakage rate for a single neck is

Ri j = k · rg(Pr(..., pi, ...,Cr)) · rg(Ps(..., p j, ...,Cs)), (3.18)

for a constant k and where rg(Pr) and rg(Ps) correspond to the radii of gyration of the two arms
extending from the neck between primaries pi and p j.
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(a) (b)

Fig. 3.4 Two possible breakage events. The selected neck between primaries pi and p j is
indicated by a dashed line and the fragment arms extending from the neck have radii of gyration
rg(Pr) and rg(Ps). (a) Symmetrical breakage produces daughter fragments with similar radii of
gyration while (b) shows an asymmetrical breakage event.

Fragment and neck radius model

The fragment radius of gyration model in Section 3.3.2 assumes that all necks are equally
strong. However, the degree of sintering between primary particles will effect the breakage
rate. By combining the fragment radius model (Section 3.3.2) and the simple neck model
(Section 3.3.2) we can relate the breakage rate to both the geometry of the aggregate particle
and the size of the neck. The rate of breakage is

Ri j = k · rg(Pr(..., pi, ...,Cr)) · rg(Ps(..., p j, ...,Cs)) ·aα
i j, (3.19)

for constants k and α .
Figure 3.4 illustrates two possible breakage events. We expect that breakage is most likely

if both radii of gyration are large and of similar magnitude as shown in Fig. 3.4a. However, in
the case of a very weak neck, an asymmetrical abrasion-like event is also possible as depicted
in Fig. 3.4b.
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3.4 Results and discussion

3.4.1 Hot wall reactor simulations

The hot wall reactor experiment of Pratsinis et al. [141] was simulated to produce particles
for post-processing with the milling models. The reactor was simulated using 8192 stochastic
particles, repeated 4 times. The surface growth rate was fitted for the detailed particle model.
The original investigation measured the reaction of 5:1 (mol/mol) O2:TiCl4 in argon (99% by
volume) in a 1/8-in-I.D. tube heated to 973-1273 K.

Pratsinis et al. [141] estimate an effective rate constant for the overall oxidation kinetics of
TiCl4 vapour

keff =−
ln(Co/Ci)

tres
, (3.20)

assuming the reaction is first-order in TiCl4 with Arrhenius kinetics, and Ci and Co are the
measured inlet and outlet TiCl4 concentrations. tres is the residence time in the isothermal
zone of the reactor held at temperature T . The experiment was simulated using the imposed
temperature profile of Pratsinis et al. [141, Fig. 3] modelled by Akroyd et al. [4]. The
temperature starts at 300 K and rises to the isothermal zone temperature T remaining there for
the residence time tres. At the end of the isothermal zone the temperature falls back to 300 K
and remains at this temperature until the end of the simulation.
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Fig. 3.5 Arrhenius plot of the oxidation rate of TiCl4 at three different residence times. Black
lines terminating in open symbols: fitted simulation results; Shaded symbols: experimental
data [141, Fig. 4].

Figure 3.5 shows good agreement between detailed particle model simulations and the
experimental results of Pratsinis et al. [141, Fig. 4]. The data are presented in the original form
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for ease of comparison. A reaction that is overall first order in TiCl4 would produce a single
straight line through all residence times. The differences observed between the simulation
results for the different isothermal residence times suggests a reaction that is close to but not
exactly first order overall.

The surface growth rate was fitted with activation energy Ea = 60 kJ/mol and pre-exponential
factor A = 1340 m4/(s ·mol) (see Eq. (3.4)). The fitted activation energy is in agreement with
the theoretically calculated value (55±25 kJ/mol) of Shirley et al. [158].

(a) 0.49 s at 1000 K (b) 1.1 s at 1100 K

Fig. 3.6 TEM-style images of titania aggregates produced in the simulated hot wall reactor
under different conditions. The visualisation does not depict the level of sintering between
particles, but this information is captured by the model.

Simulation data is visualised in Fig. 3.6 in the form of TEM-style images showing titania
particles produced in the hot wall reactor under two different isothermal zone residence times
and temperatures. The examples presented in the figure are for two extremes within the
simulated range of reactor conditions showing the greatest difference in particle morphology.

Aggregate particles produced over a longer isothermal residence time at higher temperature
(1.1 s at 1100 K shown in Fig. 3.6b) are composed of a smaller number of larger primaries than
aggregates produced at a lower temperature and shorter isothermal residence time (0.49 s at
1000 K shown in Fig. 3.6a). This is clear from the primary diameter distribution (Fig. 3.7) and
the distribution of the number of primaries per aggregate (Fig. 3.8).

The difference in aggregate particle size is less pronounced. Figure 3.9 shows the distribu-
tion of particle collision diameters calculated as per Sander et al. [149]. The aggregate particle
size is a function of the number of primary particles, their respective diameters, and the level
of sintering between neighbours. This allows for aggregates of comparable size despite the
different primary particle properties. The largest particles are of similar size under both sets
of reactor conditions, but the distribution in Fig. 3.9a extends to smaller collision diameters.
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The smallest particles are composed of a single primary particle and the lower minimum value
arises due to the smaller mean primary diameter.
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(b) 1.1 s at 1100 K

Fig. 3.7 Primary particle diameter distributions produced under two different simulated isother-
mal zone residence times and temperatures. The red line shows the Gaussian kernel density
estimate.
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Fig. 3.8 Distribution of the number of primaries per titania aggregate produced under two
different simulated isothermal zone residence times and temperatures. The red line shows the
Gaussian kernel density estimate.

Figure 3.10 shows the distribution of neck radii for the two cases. The distributions are
truncated at 0.3 nm: of the order of the rutile unit cell size. Below this size, a second peak
was observed in both simulations at a radius of 0.01–0.1 nm: smaller than an atomic diameter.
The neck model (Section 3.3.1) permits the neck radius to take any positive value and does not
account for quantization at very small length scales. Furthermore, molecular dynamics studies
of sintering of nanometre sized titania particles show that the formation of an initial neck is
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Fig. 3.9 Collision diameter distributions of titania aggregates produced under two different
simulated isothermal zone residence times and temperatures. The red line shows the Gaussian
kernel density estimate.

very rapid, of the order of 10 picoseconds [25, 37, 91], whereas in this work sintering is treated
as a continuous process with the same characteristic time at all stages.

The bimodal distribution arises due to the simulated temperature profile in which the
temperature falls to 300 K at the end of the isothermal zone. The stronger temperature
dependence of sintering causes the sintering process to slow faster than coagulation resulting in
the formation of small necks. The 0.49 s isothermal zone residence time simulations spent a
longer time at 300 K than the 1.1 s simulations which created a larger number of small necks.

Up to 5% of necks were calculated to be in point contact (ai j = 0). These necks are
considered to represent primaries bound by weak dispersion forces that have yet to begin
sintering. Larger necks with well defined radii correspond to sintered primaries joined by
strong chemical bonds.

3.4.2 Comparison of breakage models

The breakage models presented in Section 3.3.2 were used to post-process the hot wall reactor
simulation results of Section 3.4.1 using Algorithm 1. The results of post-processing the 0.49 s
at 1000 K simulation are discussed here as a representative case because they display the
general features of the different breakage models also observed in the other reactor simulations.
Under the assumption that necks in point contact (ai j = 0) break apart easily we processed the
data to break these necks prior to milling.
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Fig. 3.10 Neck radius distribution for titania aggregates produced in the simulated hot wall
reactor under two different conditions. Necks smaller than 0.3 nm are not shown.

Milling curves

Typically observed industrial milling curves (from Huntsman Pigments and Additives) are
shown in Fig. 3.11. The volume weighted mean particle size is observed to decrease logarith-
mically over the period covered by the data. The width of the PSD as measured by the volume
weighted geometric standard deviation (GSD) of particle size also exhibits logarithmic decay.
The data set does not contain the initial particle size distribution nor the long time behaviour of
particles under milling.
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Fig. 3.11 Experimental milling curves (Huntsman Pigments and Additives) show logarithmic
decay in both the volume weighted mean particle size and geometric standard deviation. Dashed
line added to guide the eye.

Figure 3.12 shows the corresponding simulated milling curves for the different breakage
models. The time coordinate is non-dimensionalised by defining a characteristic time equal to
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the time taken for the mass weighted geometric mean collision diameter to fall to 90% of its
initial value. The mass weighted geometric mean (GM) and mass weighted GSD are given by

ln(GM) =
∑

N
q=1 m(Pq) ln(dc(Pq))

∑
N
q=1 m(Pq)

, (3.21)

ln(GSD) =

√√√√∑
N
q=1 m(Pq)

[
ln(dc(Pq))− ln(GM)

]2
∑

N
q=1 m(Pq)

, (3.22)

for N particles Pq with mass m(Pq) and collision diameter dc(Pq).
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Fig. 3.12 Milling curves for different breakage models obtained by post-processing hot wall
reactor simulation results for the 0.49 s at 1000 K case. (a) shows the mass weighted geometric
mean collision diameter and (b) shows the mass weighted geometric standard deviation in the
collision diameter. The horizontal dashed line indicates the asymptotic value calculated from
the primary particle distribution.

A value of -1 was selected for the exponent α in the simple neck and the fragment radius
and neck models yielding rates inversely proportional to the neck radius. A negative exponent
implies that larger necks require greater stresses to break. More negative choices of α introduce
a long intermediate period during which the GM and GSD change very little. This is observed
to a small degree in the simple neck model (α = −1 case) in Fig. 3.12b where the gradient
changes at around τ = 100.

Figure 3.12a plots the mass weighted geometric mean collision diameter against non-
dimensionalised time. All models exhibit an intermediate period of approximately logarithmic
decay as seen in the experimental milling curves (Fig. 3.11). The total mass and fragment
radius models have almost identical mean collision diameter curves. The simple neck and
fragment and neck radius models show two distinct phases of size reduction characterised by
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different gradients. The change in gradient arises due to the bimodal nature of the neck size
distribution. The first mode of small necks breaks first followed by the second mode of larger
and stronger necks.

The GSD curves (Fig. 3.12b) offer a clearer way to differentiate between models. Most
display an intermediate period of approximately logarithmic decay. An interesting feature is
the initial increase in GSD seen in the total mass and simple neck models. Such an increase
in the variance has been observed experimentally in the grinding of titanium dioxide [14].
This arises due to the formation of small fragments that cause a widening in the particle size
distribution and can be seen in the mass weighted collision diameter distributions in Fig. 3.13.
The distribution near the maximum GSD for the simple neck model (τ = 4.4 in Fig. 3.13a) is
skewed with more mass density at smaller diameters contributing to a wider, lower peak. In
comparison, the fragment and neck radius model in Fig. 3.13b maintains a more symmetric
distribution due to a preference for symmetrical breakage events.
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Fig. 3.13 Mass weighted collision diameter distributions generated using a Gaussian kernel
density estimate at different non-dimensionalised times for the 0.49 s at 1000 K reactor
simulation post-processed with the (a) simple neck and (b) fragment and neck radius models.

Choice of breakage model

Whilst it is difficult to exclude models based only on the qualitative comparison of milling
curves, the current work illustrates the different features produced by each model, particularly
with regard to the GSD and evolution of the PSD. Of the five breakage models discussed here
only the fragment and neck radius model considers the aggregate particle geometry as well
as the neck strength. The dependence on aggregate geometry favours symmetrical breakage
in a cleavage type mechanism. On the other hand, the neck size dependence favours small
necks allowing for cases of asymmetrical breakage near the particle extremities, similar to an
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abrasion mechanism. Since the model accounts for the detailed particle morphology it serves
as good candidate for further study.

3.4.3 Effect of reactor conditions on milling curves

The fragment and neck radius model was applied to simulations of the hot wall reactor ex-
periment under different conditions. Results are shown in Fig. 3.14. The time coordinate
was non-dimensionalised for all cases using the characteristic time calculated for the 0.49 s at
1000 K case allowing for better comparison along the time axis.
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Fig. 3.14 Milling curves for the fragment and neck radius model obtained by post-processing
hot wall reactor simulation results under different conditions. The horizontal dashed lines show
the asymptotic values calculated from the primary particle distributions.

All simulations take approximately the same time to reach an asymptotic state. Two phases
of approximately logarithmic decay, characterised by different gradients, are observed due to
the bimodal neck size distribution. In the 1.1 s isothermal zone residence time simulations the
first phase is not as well defined. The longer isothermal residence time results show a slower
decrease in the mean particle size and a smaller total change. Both 0.49 s simulations display a
rapid first phase of size reduction followed by a slower second phase.

This model shows that particles synthesised over a short residence time in the high tempera-
ture isothermal zone of the reactor are milled faster and reduced to a smaller asymptotic size.
The GSD has a higher initial value but catches up with the longer isothermal zone residence
time simulations over the first phase of size reduction. The effect of temperature, within the
range used in this study, is less pronounced.
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3.5 Conclusions

A detailed population balance was used to model the formation of titanium dioxide particles in
the hot wall reactor experiment of Pratsinis et al. [141]. The particle model was shown to resolve
morphological differences between particles produced under different reactor conditions.

Breakage models were developed that utilise the morphological information captured by
the detailed particle model and were applied in a post-process to simulate the milling of TiO2

particles produced in the hot wall reactor simulations. The milling curves exhibited features
consistent with experimental observations. The chosen breakage model accounts for the fractal
structure of the aggregate particles as well as the size of necks between neighbouring primaries.
Application of this milling model to particles produced under different residence times and
temperatures showed that the model is sensitive to the reactor conditions under which the TiO2

particles were synthesised.
Further work is needed to compare the model against experimental results and fit the

breakage rate constant. Given the nature of applying the milling model as a post-process,
an obstacle to performing a quantitative comparison with experimental data is the need for
details of the experimental conditions under which the particles were first synthesised as well as
experimental data from the subsequent milling of the particles. Moreover, this work highlights
a number of limitations in the current binary tree model particle description that should be
addressed before making further progress. These are discussed in the following section.

3.5.1 Suggestions for model development

During the course of developing a morphological breakage model, a few observations were
made on the limitations of the binary tree particle model. These are outlined here along with
suggestions for further model development.

An important consideration in developing the breakage model was a measure of the neck
size between two primaries. The neck size is not directly captured by the particle model;
instead, the model treats sintering by considering a common surface area for every pair of
neighbouring primaries. The neck radius was then calculated in a post-processing step with
the assumption of overlapping spherical geometry. Consequently, a number of necks were
predicted to have small, unphysical radii. This suggests that either a different neck model
needs to be considered in the post-process for particles with low levels of sintering or the neck
geometry should be incorporated into the particle type space and sintering model. Molecular
dynamics studies [25, 37, 91] show that the phenomenological sintering model [89] used in
this work does not capture the early stage behaviour of rapid neck growth well – a caveat to the
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model noted by Koch and Friedlander [89] – supporting the latter approach to incorporate a
geometric description of the neck into the particle model.

A second observation is that the model does not account for the effect of a primary having
multiple neighbours. The common surface area is captured and consequently the neck size
is calculated for each pair of neighbours individually, without considering the effect other
neighbours on the primary size. For example, in an overlapping spheres model, increasing the
number of sintered neighbours will necessarily increase the primary size in order to conserve
mass.

Lastly, the model only tracks the connectivity and not the spatial arrangement of primary
particles. Therefore, the collision diameter and radius of gyration of the aggregate are dependent
on an assumed fractal dimension, fractal prefactor and the average sintering level for the
aggregate. This is also a factor in visualising the particle. A breakage model based on the
geometry of the aggregate is limited by the accuracy of these assumptions. Furthermore, the
sintering level is unreliable in the case of neighbouring primaries with very different sizes as
noted in Section 2.2.1.

The above points suggest that there is significant scope to improve the model type space to
give a better representation of aggregate particle morphology. Addressing these limitations and
developing a new detailed particle model that better captures the particle geometry will be the
subject of the next chapter.





Chapter 4

A new detailed particle model

This chapter presents the mathematical description of a new detailed particle model for polydis-
perse aggregate particles. The new particle description is used to model the aerosol synthesis
of TiO2 aggregates from titanium tetraisopropoxide (TTIP) precursor. The new process models
are tested and a numerical study is performed by simulating a simple batch reactor test case to
investigate the convergence behaviour of key functionals. Finally, a lab-scale hot wall reactor is
simulated to examine some features of the model.

4.1 Background

Population balance models incorporating a detailed particle description provide a powerful tool
to investigate the mechanisms that control particle morphology and facilitate the simulation
of quantities that are directly comparable to experimental observations. For example, size
distributions and mass spectra of particles [33, 102], transmission electron microscopy (TEM)
images and optical band gap measurements [193]. Such models also enable the option to
include key physical details in the model. For instance, models where the particle growth
is a function of the aggregate composition [31, 32], or where sintering and neck growth are
resolved for pairs of neighbouring primary particles [128, 149, 150, 182]. Moreover, physical
properties are strongly influenced by particle morphology such as the collision diameter [202],
mobility diameter [43, 165], or optical properties [48]. The degree of model detail can have a
significant impact on the interpretation of simulation results and comparison with experimental
measurements. Models that capture sufficient physical detail also make it possible to further
post-process simulation data to study the post-synthesis treatment of particles – as in the
previous chapter.

In this chapter, we develop a new detailed population balance model for polydisperse
aggregate particles. The new particle description, or type-space, represents an aggregate particle
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as a collection of overlapping spheres. This is based on the approach used by Mitchell and
Frenklach [124, 125] to model aggregation with surface growth for a single collector particle,
and later extended by Morgan et al. [126] to an ensemble of particles. An overlapping spheres
model was also employed by Eggersdorfer et al. [40, 41] to simulate multiparticle sintering. We
utilise the overlapping spheres approach to model surface growth, sintering, primary particle
coalescence and coagulation, incorporating a ballistic cluster-cluster collision model [81] to
determine the particle configuration following a coagulation event. The radius, composition and
position of each individual primary particle are resolved, allowing the morphological evolution
of each aggregate to be simulated.

The new model overcomes some of the limitations identified in the earlier binary tree model
[150, 156], while preserving its efficient data structure. These limitations were discussed in the
previous chapter and are briefly summarised here. The binary tree model resolves sintering by
a common surface area for each pair of neighbouring primaries. While this allows individual
necks to sinter at different rates, the model does not account for the effect of sintering on the
primary diameter, resolving only a spherical equivalent diameter. Furthermore, the geometry
of the neck and presence of other neighbours is not considered. Lastly, the binary tree model
does not track the coordinates of individual primary particles but only their connectivity, which
requires an assumption about the fractal dimension and prefactor when calculating the radius
of gyration and collision diameter, or when visualising a particle in TEM-style image.

The next section introduces the gas-phase chemical mechanism for titanium tetraisopropox-
ide precursor used in this chapter. The mathematical description of a new particle model
is presented in Section 4.3; specifically, the model equations and a description of how the
particle geometry is manipulated under individual processes. The algorithms used to effect
these changes are provided in Appendix B.2. The model is presented in the context of TiO2

synthesised from TTIP with collision limited inception and growth processes. The model,
however, is general and can be easily adapted to different precursors and processes. Section 4.4
presents test cases for each process sub-model, comparing the behaviour of the new detailed
particle model with simpler models in the literature. In Section 4.5, we briefly study the numer-
ical behaviour of the model, investigating the convergence of a number of average properties
for a simple batch reactor test case. Finally, in Section 4.6 we simulate the hot wall reactor
experiment of Nakaso et al. [131].
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4.2 Chemical reaction model1

The chemical reaction model consists of a TTIP decomposition mechanism combined with
hydrocarbon combustion chemistry described by the USC-Mech II model [177]. The TTIP
mechanism contains 25 Ti species and 61 reactions, and describes the decomposition of TTIP to
titanium (IV) hydroxide (Ti(OH)4) through the C3H6 and CH3 abstraction pathways identified
by Buerger et al. [23] as well as dissociation reactions of Ti(OH)4, assumed to be barrierless.
In this work, Ti(OH)4 is treated as the collision species for the particle inception and growth
reactions in the particle model.

4.3 Particle model

In this section, the new detailed particle model is presented. First, the particle type space – the
mathematical representation of a particle – is described, followed by the particle processes.
Particles evolve through: inception, coagulation, growth, sintering and coalescence. Details of
the algorithms implementing the process model are provided in Appendix B.2. In this work,
the inception and growth processes are assumed to be collision limited reactions consuming
Ti(OH)4 from the gas-phase. Relatively simple reactions are chosen to avoid making unneces-
sary assumptions about the interaction between the gas-phase and particles – an area that is
not well understood in the literature. However, the model framework is easy to extend to new
inception and growth processes in future studies.

4.3.1 Type space

The type space is the mathematical description of a particle. The detailed particle type space
is illustrated in Fig. 4.1. An aggregate Pq containing np(Pq) primary particles, modelled as
overlapping spheres [40], is represented by

Pq = Pq(p1, ..., pnp(Pq),C), (4.1)

where a primary particle pi, with i ∈ {1, ...,np(Pq)}, is represented by

pi = pi(ηi,ri,xi). (4.2)

1The combined chemical mechanism used here was put together by Manoel Manuputty and can be found in
the supplementary material of [105].
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Fig. 4.1 An illustration of the detailed particle model type space. An aggregate particle
composed of primary particles (solid lines) modelled as overlapping spheres (indicated by
dashed lines).

ηi is the primary composition and can represent the number of units of TiO2, as in this work,
or could contain a more detailed description of the internal primary structure; for example,
the crystal phase composition. ri is the radius of the primary, and xi is the position of the
primary centre. It is convenient to express the primary coordinates relative to the centre of mass
of the aggregate particle because this simplifies some computations, such as calculating the
radius of gyration or performing rotations of the particle during coagulation. For the purpose
of calculating the aggregate centre of mass we assume that the primaries are point masses. The
degree of overlap between two neighbouring primaries, pi and p j, is resolved by their centre to
centre separation

di j = |xi−x j|. (4.3)

The primary particles are stored in a binary tree data structure as in the binary tree model of
Sander et al. [150], described in Section 2.2.1. The data structure is retained because it enhances
computational performance by allowing very efficient selection of primaries and interrogation
of their properties, but it does impose some constraints on the primary connectivity within a
particle. It would be possible to determine primary connectivity using only the coordinates;
however, for the purpose of performing computations the binary tree connectivity is used.

The binary tree is represented in Eq. (4.1) by the connectivity matrix C. The connectivity
matrix is a binary lower triangular matrix of dimension np(Pq)×np(Pq) with matrix elements

Ci j =

0, if pi and p j are not neighbouring;

1, if pi and p j are neighbouring.
(4.4)

Model assumptions

The following assumptions are made in the model equations:
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Fig. 4.2 Multiple overlapping primary particles.

1. Neck cross-sections are circular;

2. Neighbours are determined by the binary tree connectivity.

The first assumption implies that the effect of multiple overlaps between primaries (as shown
in Fig. 4.2) are not considered. This is also a consequence of the second assumption since
the binary tree does not allow for structures with connectivity cycles. These assumptions
introduce inaccuracies into the the model equations e.g. calculation of the primary volume,
free surface and neck area. Multiple overlaps tend to occur when primaries, that were not
initially in contact, sinter and grow producing a more compact structure such as that shown
in Fig. 4.2. To reduce the likelihood of this occurring, primaries can be merged sufficiently
early to avoid large deviations from circular necks, but at a point at which it is reasonable to
approximate the sintered primaries as a single primary. This is handled by the coalescence
process (Section 4.3.2). Another scenario in which these structures arise is if two branches
overlap. This cannot be avoided through primary coalescence, but the likelihood is reduced for
less compact aggregates.

Derived particle properties

Under the above assumptions, a number of primary particle properties can be derived for the
model of overlapping spheres [40]. The volume of a primary pi is given by the volume of a
sphere of radius ri minus the volume of the caps created by overlaps with its neighbours

vi =Vsph(ri)−∑
j

Vcap(ri,xi j),

=
4
3

πr3
i −

1
3

π ∑
j
(2r3

i + x3
i j−3r2

i xi j), (4.5)
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where we sum over j neighbours of pi, and xi j is the distance from the centre of primary pi to
the neck formed with a neighbour p j

xi j =
d2

i j− r2
j + r2

i

2di j
. (4.6)

Primary particles are assumed to be composed of units of TiO2, so ηi = ηTiO2,i, and the volume
is also given by

vi =
ηTiO2,iMTiO2

ρTiO2NA
, (4.7)

where MTiO2 is the molar mass of TiO2, ρTiO2 is the density of TiO2 (taken here to be that of
anatase, ρTiO2 = 3.9gcm−3), and NA is the Avogadro constant.

The partial derivatives of vi give the area of the neck created by the overlap with a neighbour
p j

An,i j =
∂vi

∂xi j
= π(r2

i − x2
i j), (4.8)

and the free surface area of the primary pi

Ai =
∂vi

∂ ri
= 4πr2

i −2π ∑
j
(r2

i − rixi j). (4.9)

Binary tree data structure

The binary data structure is described in Section 2.2.2 and particular features of its implementa-
tion for the new detailed particle model are described here. An important detail of the model
equations is that they require summation over neighbours of a primary to calculate properties
such as the primary volume, free surface and neck area etc. The binary tree offers an efficient
way to do this. A feature of the binary tree is that two primaries lie below their connecting
node in the tree. For example, in Fig. 4.3, node C represents the neck connecting primaries p3

and p6. Node C could not, for instance, connect primaries p2 and p3; this can only be achieved
by a node above both primaries i.e. node A. Since each neck must be a non-leaf node located
above the primary, it is only necessary to take a path from the primary of interest to the root
node to find the neighbours; the rest of tree does not need to be explored. Figure 4.3 shows an
example of interrogating the binary tree for neighbours of p3. The path taken is shown by the
solid red lines along the route: p3-D-C-A.
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Fig. 4.3 Left panel: Interrogating the binary tree for neighbours of p3 by moving up the tree
from the leaf node to the root node along the path in bold red. The neighbours of p3 and
connections to non-leaf nodes are highlighted. Right panel: Illustration of the primary particle
connectivity with p3 and its neighbours highlighted.

4.3.2 Particle processes

Inception

Inception is modelled as a bimolecular collision of two Ti(OH)4 molecules forming a particle
consisting of a single spherical primary containing two units of TiO2:

Ti(OH)4 +Ti(OH)4 −−→ PN(p1)+4H2O. (4.10)

The rate of inception is calculated using the free molecular kernel:

Kfm
inc = ε

√
πkBT

mTi(OH)4

(2dTi(OH)4)
2 , (4.11)

where mTi(OH)4 and dTi(OH)4 are the mass and diameter of a single Ti(OH)4 molecule, re-
spectively. The collision diameter dTiOH4 = 0.5128nm, is estimated from the geometrical
parameters calculated by Buerger et al. [24]. ε is the size-dependent collision enhancement
factor. Here it is assumed to be size-independent and taken as ε = 2.2 as in previous studies on
titania [4, 184, 185]. This value is the average size-independent enhancement factor due to van
der Waals forces calculated by Harris and Kennedy [66] for spherical soot particles.
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Fig. 4.4 Ballistic cluster-cluster aggregation with a random impact parameter.

An aggregate is formed when two particles stick together following a collision and the rate
is given by the transition kernel presented in Section 2.2.1 (see Eq. (2.9)).

Ballistic cluster-cluster aggregation2 Once two particles are selected for coagulation, the
orientations and point of contact between the colliding particles are determined by ballistic
cluster-cluster aggregation (BCCA) with a random impact parameter [81]. This process is
illustrated in Fig. 4.4. To model a collision three random parameters are generated: the particles
are randomly rotated around their centres of mass using the method described by Arvo [8];
a random direction is generated by uniformly picking a point on a sphere centred on one of
the particles [179]; and, a random impact parameter is applied by placing the second particle
at a random point in the plane perpendicular to the collision trajectory. The random impact
parameter offsets the collision trajectory from the particle centres of mass. The collision
is initialised such that the particle bounding spheres, estimated using the method described
by Ritter [146], do not overlap. A detailed algorithm for performing BCCA is given in
Appendix B.2.1.

Diffusion limited cluster aggregation Ballistic cluster-cluster aggregation is valid in free-
molecular regime. In the slip-flow and continuum regimes, collisions become diffusion limited

2Implementation of BCCA was initiated by Edward Yapp into the old binary tree particle model. The algorithm
was subsequently adopted into the new detailed particle model with minor modifications.
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and a diffusion limited cluster aggregation (DLCA) algorithm should be used. The DLCA
algorithm is computationally more expensive than BCCA due to the simulation of a Brownian
random walk. This increases the number of computational steps and increases the likelihood
of a collision failing when a particle ‘escapes’. With these considerations in mind and the
fact that collisions under typical aerosol synthesis conditions are in the free-molecular regime,
BCCA is chosen to model collisions between particles in this work unless otherwise stated.
A straightforward implementation of both BCCA and DLCA, though not done in this work,
would be to select the appropriate aggregation model for each collision based on the Knudsen
number. An algorithm for performing DLCA is provided in Appendix B.2.2 and a test case is
presented in Appendix C.2.

Connectivity matrix Following the collision, two primaries pi and p j (one from each collid-
ing particle determined by the BCCA algorithm) are assumed to be in point contact and the
connectivity matrix is updated as follows:

C(Ps) =



...
C(Pq) · · · 0 · · ·

...
...

· · · Ci j · · · C(Pr)
...


, (4.12)

where Ci j = 1.

Collision diameter The diameter of gyration dg is commonly used as the collision diameter
dc in both the free-molecular and continuum regimes. The diameter of gyration is given by the
standard fractal relationship

np = kf

(
dg

dp,avg

)Df

, (4.13)

where dp,avg is the average primary diameter, Df is the fractal dimension and kf is the fractal
pre-factor.

A number of studies using bivariate models with monodisperse primaries [95, 114, 174]
and multivariate models [149] (see Section 2.2.1) use the fractal relationship to define the
collision diameter as

dc = dp,avgn1/Df
p . (4.14)

Kruis et al. [95] note that the characteristics of this collision diameter are:

1. For np = 1: the collision diameter is equal to the primary particle diameter.
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2. For np≫ 1: the collision diameter approaches the diameter of gyration of the aggregate.

The drawback of this definition is that the fractal dimension Df is a model parameter,
typically assumed to be Df ≈ 1.8 [152, 172], and does not evolve as particles grow and
sinter. Moreover, the pre-factor is often assumed to be kf ≈ 1 or absorbed into the constant of
proportionality between the collision and gyration diameters. In our new model, the ability to
track individual primary coordinates permits the diameter of gyration of an individual aggregate
to be calculated without assuming a value for kf and Df. This can then be used as the collision
diameter.

The diameter of gyration is defined [101] as

d2
g =

4
∑i m(pi)

∑
i

m(pi)
(
|xi|2 + rg(pi)

2) , (4.15)

where rg(pi) is the radius of gyration of primary pi and |xi| is the distance from the centre of
mass of the aggregate to the centre of the primary. For a sphere rg(pi) =

√
3/5ri; however,

following Filippov et al. [48] we choose rg(pi) = ri, the radius of the primary, so that in the
limit of np = 1 the collision diameter yields the primary diameter. The collision diameter can
then be defined as

d2
c =

4
∑i m(pi)

∑
i

m(pi)
(
|xi|2 + r2

i
)
. (4.16)

In the limit of large np this tends to the diameter of gyration. This definition shares the same
characteristics as Eq. (4.14) as discussed by Kruis et al. [95]. Furthermore, in the case of two
primaries of the same size in point contact the collision diameter (dc = 2

√
2rp) is close to that

obtained by Zurita-Gotor and Rosner [202] (dc = 2.892rp).

Growth

Particles can grow by condensation of gas-phase species and surface reactions. In both cases,
geometrical adjustments to the particle are performed the same way. In the present application,
we consider only a collision limited condensation-like growth process, consuming Ti(OH)4

from the gas-phase and adding TiO2 to surface of a particle. The rate of collision is based on
the free molecular kernel and assumes that the mass and diameter of the condensing species is
much smaller than that of the particle

Kfm
cond = ε

√
πkBT
2mTiO2

(
dc(Pq)

)2
. (4.17)

The mass of the condensing species is assumed to be similar to TiO2.
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Fig. 4.5 A surface growth event. Mass is added to the free surface of primary pi (dark shaded
region). The new particle geometry is shown by the red dashed line. Immediate neighbours of
pi are labelled p j, and neighbours of neighbours are labelled pk.

Fig. 4.5 shows a particle undergoing a growth event. A primary, pi, is selected with
probability proportional to its relative free surface area.The condensing mass is added to the
free surface of pi (shaded region in Fig. 4.5) increasing the primary radius ri. We assume that
the primary positions xi, and all other primary radii r j remain unchanged during the event. The
change in radius given a change in the aggregate particle volume V (Pq) is

dri

dt
=

1
Ai

dV (Pq)

dt
. (4.18)

Following a growth event, the positions of the necks between pi and its neighbours p j will
have changed as illustrated by the red dashed lines in Fig. 4.5. This amounts to a redistribution
of mass between primaries and requires an adjustment to the compositions of pi and its
neighbours p j. The adjustment is performed in discrete units of TiO2, with unit volume

vTiO2 =
MTiO2

ρTiO2NA
. (4.19)

The change in volume of a neighbour p j is

dv j

dt
=

∂v j

∂ r j

dr j

dt
+∑

k

∂vk

∂x jk

dx jk

dt
, (4.20)

where we sum over the neighbours pk of primary p j. Under the assumption that the radius
of p j remains constant and noting that the position of the neck between p j and some other
neighbour pk (k ̸= i) does not change, this is reduced to

dv j

dt
= An, ji

dx ji

dt
, (4.21)
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where we have used Eq. (4.8). Under the same assumptions, differentiating Eq. (4.6), allows
the change in volume of p j to be expressed in terms of the change in the radius of pi:

dv j

dt
=−An,i j

ri

di j

dri

dt
, (4.22)

from which the integer change in composition of p j can be determined:

∆ηTiO2, j =
∆v j

vTiO2

. (4.23)

The surface adjustment algorithm and a discussion of the consequence of limiting the mass
redistribution to discrete unit changes can be found in Appendix B.2.3.

Sintering
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Fig. 4.6 Sintering of a single neck between primaries pi and p j. Neighbours not sintering
are labelled pk. The centre to centre separation decreases by ∆di j. To conserve mass, the
radii of the sintering primaries increase by ∆ri and ∆r j respectively and the separation with
neighbouring primary pk increases by ∆dik.

Sintering is performed on each neck individually. A single sintering event on primaries pi

and p j is shown in Fig. 4.6. The centres of primaries pi and p j approach each other, increasing
their overlap and neck radius. For titania particles the sintering rate is evaluated using a grain
boundary diffusion model [41]. The geometrical model can also accommodate other sintering
mechanisms, such as viscous flow for silica [150, 171]. Mass conservation requires that the
primary radii ri and r j increase. It is assumed that all other neighbours pk and their respective
necks remain unchanged during the event. This requires that the separation dik increases in
response to the change in ri.
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Grain Boundary Diffusion. Following Eggersdorfer et al. [41], the change in distance from
the centre of pi to the neck formed with p j is

dxi j

dt
=−

2πDvCv0δgbγΩ

kBTAn,i j

(
1

ri− xi j
− 1

ai j

)
, (4.24)

where ai j is the neck radius, An,i j is the neck area, and ri is the primary radius. The product of
the vacancy diffusion coefficient, Dv, the equilibrium vacancy concentration, Cv0, and grain
boundary thickness, δgb, is taken from Astier and Vergnon [9],

DvCv0δgb = 1.6×10−14 exp
(
−258kJmol−1

RT

)
m3 s−1. (4.25)

The surface free energy, γ = 0.6Jm−2, and vacancy volume, Ω = 1.57×10−29 m3, are from
Anderson [5].

The rate of change in centre to centre separation is

ddi j

dt
=

dxi j

dt
+

dx ji

dt
,

=
−6.859×10−20

TAn,i j

(
1

ri− xi j
+

1
r j− x ji

− 2
ai j

)
· exp

(
−258kJmol−1

RT

(
1−

dp,crit

min(dp(pi),dp(p j))

))
.

(4.26)

Here we have introduced a critical sintering diameter dp,crit into the exponential term of a
form similar to that first introduced by Tsantilis et al. [171] for silica to allow effectively
instantaneous coalescence of primaries with dp < dp,crit. Rapid coalescence of very small
particles is consistent with findings from molecular dynamics studies [25], and has also been
suggested in other works [153]. Buesser et al. [25] found that primaries with dp < 4 nm sinter
significantly faster than what would be predicted by the models of Kobata et al. [88] and Seto
et al. [153]. In this chapter we use dp,crit = 4 nm.

Conservation of mass. Assuming that the density does not change, mass conservation im-
plies that primary particle volume is conserved. The volume conservation of primary pi is
[40]

dvi

dt
=

∂vi

∂ ri

dri

dt
+∑

k

∂vi

∂xik

dxik

dt
= 0, (4.27)
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where pk is some neighbour of pi. Rearranging and substituting Eqs (4.8) and (4.9):

dri

dt
=
−∑k An,ik

dxik
dt

Ai
. (4.28)

The time derivative of xik, the distance from the centre of pi to the neck with a neighbour pk, is

dxik

dt
=

ri

dik

dri

dt
− rk

dik

drk

dt
+

(
1− xik

dik

)
ddik

dt
. (4.29)

For k ̸= j (i.e. a neighbour that is not sintering)

drk

dt
= 0 and

dxki

dt
= 0. (4.30)

Equation (4.29) can then be reduced to

dxik

dt
=

ri

dik

dri

dt
+

(
1− xik

dik

)
dxik

dt
,

=
ri

xik

dri

dt
for k ̸= j, (4.31)

and Eq. (4.28) becomes

dri

dt
=
−An,i j

dxi j
dt −∑k ̸= j An,ik

ri
xik

dri
dt

Ai
,

=
−An,i j

Bi j

dxi j

dt
,

=
−An,i j

di jBi j + riAn,i j

(
−r j

dr j

dt
+ x ji

ddi j

dt

)
, (4.32)

where

Bi j = Ai + ∑
k ̸= j

An,ik
ri

xik
. (4.33)

A similar expression can be derived for r j

dr j

dt
=

−An,i j

di jB ji + r jAn,i j

(
−ri

dri

dt
+ xi j

ddi j

dt

)
. (4.34)
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Combining Eqs (4.32) and (4.34) gives the change in radius as a function of the change in
centre to centre separation:

dri

dt
=

−r jA2
n,i j− x jiB jiAn,i j

di jBi jB ji + r jAn,i jBi j + riAn,i jB ji

ddi j

dt
. (4.35)

The centre to centre separations of neighbours that are not sintering are adjusted according to
Eq. (4.31). The sintering algorithm is presented in Appendix B.2.4.

Coalescence
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Fig. 4.7 Primary particle coalescence. Primary p j is merged into pi. The neighbour of p j,
labelled pl , is added to pi preserving the neck radius.

The sintering level for a neck is defined as the ratio of the neck radius to the radius of the
smaller primary

si j =
ai j

r j
where r j ≤ ri. (4.36)

Note that 0≤ si j ≤ 1. Both sintering and growth processes increase the sintering level. Once
the sintering level exceeds 0.95, the two primaries are assumed to have coalesced into a single
primary. Two primaries, pi and p j, are shown coalescing in Fig. 4.7. During a coalescence
event the smaller primary, in this case p j, is merged into the larger primary pi. The other
neighbour of p j, labelled pl , is added to the new merged primary preserving the neck radius
such that ail,new = a jl . The primary is translated along the vector xl−xi to its new position.
The other neighbour of pi, labelled pk, also preserves its neck radius.

Following the merger, the radius of pi has changed to ri,new, which requires the neighbour
separations to be recalculated since we assume that the neighbours are unchanged by the merger.
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The volume of the newly merged primary is

vi,new = vi + v j, (4.37)

and expressed in terms of the new radius, the volume (Eq. (4.5)) is

vi,new =
4
3

πr3
i,new−

π

3 ∑
m∈{k,l}

(
2r3

i,new +

(
r2

i,new−
An,im

π

)3/2

−3r2
i,new

(
r2

i,new−
An,im

π

)1/2
)
,

(4.38)
where we sum over all the neighbours, pk and pl , of new merged primary pi,new. Equation (4.38)
is solved for ri,new using the Newton-Raphson method and the new primary separation can be
determined using Eq. (4.6). For more detail on the merger algorithm refer to Appendix B.2.5

4.4 Particle process model evaluation

4.4.1 Ballistic cluster-cluster aggregation

A simple test case was created to determine the average fractal dimension generated by the
BCCA algorithm. A zero-dimensional batch reactor was simulated with an initial population
of 4096 monodisperse spherical particles with diameter dp = 1.81 nm (corresponding to 100
units of rutile). Particles were allowed to coagulate in the free-molecular regime with no other
processes turned on. The simulation was repeated 8 times producing a total of 25794 particles
with a median of 118 primaries per particle.

The fractal dimension Df and prefactor kf were estimated by fitting the standard fractal
relationship to the data, expressed in the following form:

ln
(

dg

dp,avg

)
=

1
Df

ln(np)−
1

Df
ln(kf). (4.39)

The diameter of gyration dg is calculated as per Jullien [81]:

d2
g =

2
n2

p
∑
i, j

(
xi−x j

)2
, (4.40)

which assumes point-like primaries. The data and a least squares fit to a subset of the data
(particles with np ≥ 16) are shown in Fig. 4.8a. Figure 4.8b shows how the fitted values of
Df and kf vary as function of the minimum number of primaries per aggregate included in
the fit, np,min. Both Df and kf show slight sensitivity to small values of np,min and approach
their asymptotic values for np,min > 10, consistent with the findings of Goudeli et al. [64].
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(a) (b)

Fig. 4.8 BCCA with particle selection based on the free-molecular kernel. (a): estimate of
fractal dimension and prefactor by least squares fit to aggregates with np ≥ 16; the result
reported by Eggersdorfer and Pratsinis [42] is included for reference; error bars indicate the
confidence interval with P = 0.999. (b): fractal dimension and prefactor as a function of np,min
with P = 0.999 confidence intervals. The error bars increase with increasing np,min due to the
smaller sample size.

This behaviour is expected since particles are not fractal-like in the small np limit. The values
obtained in Fig. 4.8a (Df = 1.91±0.01 and kf = 1.33±0.04) are in good agreement with the
results reported by Eggersdorfer and Pratsinis [42] (Df = 1.89± 0.03 and kf = 1.36± 0.10)
and Jullien [81] (Df = 1.91±0.03, kf not reported).

BCCA with uniform selection of particles was also examined. Results are presented in
Appendix C.1. The fractal dimension Df obtained by uniform selection (Df = 1.91± 0.01)
is in good agreement with that obtained with particle selection based on the free-molecular
kernel. The fractal prefactor, on the other hand, appears to be sensitive to the method of particle
selection with uniform selection yielding a lower fractal prefactor (kf = 1.19±0.03) than the
free-molecular kernel – which favours collisions between small and large particles.

4.4.2 Surface growth

Three test cases are presented for the growth process model. The first, constant growth model,
evaluates the particle transformation model against two limiting cases. For simplicity, a constant
rate of growth in particle volume is assumed. The next two cases compare the behaviour of
the detailed particle model under collision limited and surface area dependent growth against
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one and two dimensional particle models with different model assumptions. The one and two
dimensional particle model equations are given in Appendix C.3

Constant growth

The detailed particle model is evaluated against the analytical solutions for two limiting cases:
growth of a single sphere with the same initial volume, and growth of the same initial number
of spherical primary particles that remain in point contact.

The test case was initialised with 64 primary particles of radius rp,0 = 0.91 nm in point
contact. In the case of the single sphere model, the initial mass is the same. For the new
detailed particle model, 10 initial configurations were generated using the BCCA algorithm.
Simulations were repeated twice.

Figure 4.9 shows the evolution of the surface area and average primary diameter against
dimensionless time. The dimensionless time is defined as

t∗ =
β t
V0

. (4.41)

The point contact model is a limiting case showing the fastest surface area growth and slowest
growth in average primary diameter. The single sphere model with the same initial mass is the
limiting case of complete rounding, in the long time limit. The detailed model starts in point
contact and tends towards the single sphere due to rounding, as expected.

Collision limited growth

The detailed particle model is compared to three particle models: a spherical particle model,
and a surface-volume model with and without particle rounding. The latter case corresponds
to np,0 primary particles in constant point contact. The model test case was initialised with
64 primary particles of radius rp,0 = 0.91 nm in point contact. The point contact and surface-
volume models assume a constant fractal dimension of Df = 1.9, consistent with initial fractal
dimension of the BCCA generated particles. In the case of the single sphere model, two
different initial conditions were considered: equivalent initial mass

r0 = rp,0n1/3
p,0 , (4.42)

and equivalent initial surface area
r0 = rp,0n1/2

p,0 . (4.43)
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(a) Surface area (b) Average primary diameter

Fig. 4.9 Particle evolution with a constant growth rate. The detailed particle model is compared
two limiting cases: growth of a single sphere, and growth of primaries that remain in point
contact.

For the detailed particle model, 20 initial configurations were generated using the BCCA algo-
rithm. Simulations were repeated twice. The surface-volume model equations (Eqs. C.16 and C.18)
were numerically integrated.

Figure 4.10 shows the evolution of the (aggregate) particle volume, surface area, collision
diameter and average primary diameter as a function of dimensionless time for the test case.
The dimensionless time is defined as

t∗ =
β t

4πrp,0
. (4.44)

The point contact model grows much faster than the other models due to the rapid increase
in collision diameter – a consequence of no rounding. For large t∗ the surface-volume and
detailed particle models converge to the spherical model solution due to particle rounding, as is
expected. The detailed particle model converges from below as a result of slower increase in
the modelled collision diameter (proportional to the gyration diameter). This is a consequence
of maintaining a rigid structure while adding mass uniformly to the surface of the particle.

Surface area dependent growth

The detailed particle model is compared to the same particle models as in the previous case of
collision limited growth. Figure 4.11 shows the evolution of the (aggregate) particle volume,



66 A new detailed particle model

(a) Volume (b) Surface area

(c) Collision diameter (d) Primary diameter

Fig. 4.10 Evolution of particle properties as a function of dimensionless time for different
particle models undergoing collision limited growth. The single sphere cases with equivalent
initial volume and surface area are distinguished by V0 and S0, respectively.

surface area, collision diameter and average primary diameter as a function of dimensionless
time for the test case. The dimensionless time is defined as

t∗ =
β t
rp,0

. (4.45)

Similar to the previous, collision limited growth test case the point contact model displays
significantly faster growth, while the detailed particle and surface-volume models converge
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to the spherical particle model solution at large t∗. The detailed particle model shows faster
growth in particle volume and surface area than the surface-volume model and converges on
the spherical model from above. This is a consequence of adding mass uniformly to the surface
of the particle while maintaining a rigid structure. Meanwhile, the surface-volume model
shows identical behaviour in surface area as a spherical particle with the same initial surface
area, due to the rounding assumption [136] (Eq. (C.15)). The collision diameters show very
similar behaviour. The average primary diameter predicted by the detailed model diverges from
the point contact model at t∗ = 2. The sudden nature of the divergence is due to the discrete
treatment of coalescence events where two primaries are merged if they have sufficient overlap.

4.4.3 Sintering

The detailed particle model is compared to the commonly used model of Koch and Friedlander
[89] that describes the decay in excess surface area of a particle over that of a sphere of the
same mass (referred to as the “K-F model”). The K-F model is implemented using a surface-
volume particle description. Sintering is assumed to progress by grain boundary diffusion. Two
variations of this model are considered: sintering with constant characteristic sintering time
τs = κr4

p,0, where the radius is taken as the initial primary radius, rp,0; and sintering with time
dependent τs = κr4

p(t), where the primary radius evolves with time. The model equations for
the two cases are given in Appendix C.4.

The test case is initialised with 64 primary particles of radius rp,0 = 0.91 nm in point
contact. For the detailed particle model, 15 initial configurations were generated using the
BCCA algorithm.

Figure 4.12 shows the evolution of the normalised surface area and average primary diameter
against dimensionless time. To facilitate comparison of the models, a dimensionless time t∗ is
defined such that the excess surface has decreased by 63% at t∗ = 1, i.e.

S(t∗ = 1)−Ssph

S0−Ssph
= e−1. (4.46)

This is consistent with the characteristic time of an exponential decay commonly used to model
sintering.

The detailed particle model and K-F model with time dependent τs show similar sintering
behaviour, particularly the evolution of the primary diameter. Over long times both cases are
significantly slower than the constant τs model because their sintering rates vary as r−4

p , which
grows as the particles sinter.
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(a) Volume (b) surface area

(c) Collision diameter (d) Primary diameter

Fig. 4.11 Evolution of particle properties as a function of dimensionless time for different
particle models undergoing surface area dependent growth. The single sphere cases with
equivalent initial volume and surface area are distinguished by V0 and S0, respectively.

The average primary diameter tends to the same value in all cases – that of a single
sphere with the same initial volume. The average primary diameter predicted by the detailed
model does not vary smoothly as the particle approaches a single sphere due to the imposed
coalescence threshold, which merges two primaries once their level of sintering reaches 95% –
introducing a step change in the diameter. This also causes the detailed model to approach the
final primary diameter faster than the surface-volume model with time dependent τs. Otherwise,
the two models are in very good agreement.
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Fig. 4.12 Sintering by grain boundary diffusion. The detailed particle model is compared to the
model of Koch and Friedlander [89] with constant and time dependent characteristic time.

4.5 Convergence studies

The numerical behaviour of the model is investigated using a simple test case. A zero-
dimensional batch reactor was simulated with 500 ppm of titanium tetraisopropoxide (TTIP)
precursor in nitrogen gas. The temperature was kept constant at 1200 K and the pressure at
1 atm. The reactor residence time was 0.5 s. These conditions were chosen to yield a reasonable
degree of aggregation and sintering. The gas-phase chemistry (Section 4.2) was coupled to
the particle population balance, solved by DSA (Section 2.2.2), using Strang operator splitting
(Section 2.2.3). Simulations were performed on 2.80 GHz Intel Xeon CPUs.

The numerical parameters that affect the numerical error are:

• Maximum number of computational particles (Nmax);

• Number of runs (L);

• Splitting time step (∆ts).

First, we look at the convergence behaviour with respect to the splitting time step in order to
select an appropriate splitting time for the rest of the study. Then we investigate the convergence
of six macroscopic properties with respect to the maximum number of computational particles
Nmax, while keeping Nmax × L constant. The functionals studied are given in Table 4.1.
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Table 4.1 Functionals studied.

Functional Formula

Zeroth moment M0(t) =
N(t)

Vsmpl(t)

Volume fraction Fv(t) =
1

Vsmpl(t)

N(t)

∑
q=1

V (Pq(t))

V : aggregate volume

Average collision diameter
d̄c(t) =

1
N(t)

N(t)

∑
q=1

dc(Pq(t))

dc defined in Eq. (4.16).

Average number of primaries per particle
n̄p(t) =

1
N(t)

N(t)

∑
q=1

np(Pq(t))

np(Pq): number of primaries in Pq

Average primary diameter
d̄p(t) =

1
N(t)

N(t)

∑
q=1

dp,avg(Pq(t))

dp,avg(Pq): average primary diameter of Pq

Average sintering level
s̄(t) =

1
N(t)

N(t)

∑
q=1

savg(Pq(t))

savg(Pq): mean sintering level of Pq

4.5.1 Error calculations

The systematic and statistical errors can be assessed by generating L independent estimates of
the particle system and comparing the macroscopic quantities of the system ξl(t) for a given
set of parameters. The empirical mean at time t is

µ1(t) =
1
L

L

∑
l=1

ξl(t), (4.47)

and the variance is

µ2(t) =
1
L

L

∑
l=1

[ξl(t)]
2− [µ1(t)]

2 . (4.48)

The half-width of the confidence interval for µ1(t) is calculated using the central limit theorem:

cP(t) = aP

√
µ2(t)

L
. (4.49)



4.5 Convergence studies 71

For a confidence level of P = 0.999, a critical value of aP = 3.29 is obtained from the standard
normal distribution. The confidence interval IP is then given by

IP(t) = [µ1(t)− cP(t),µ1(t)+ cP(t)] . (4.50)

The relative error at time t is
er(t) =

|µ1(t)−ζ (t)|
ζ (t)

(4.51)

where ζ (t) is an approximation for the true solution which is obtained from a high-precision
calculation with a very large number of particles. In this case, Nmax = 217 and L = 10 is used.
The total relative error, averaged over J time steps is

etot =
1

tres

J

∑
j=1

er(t j)∆t j, (4.52)

where

tres =
J

∑
j=1

∆t j. (4.53)

4.5.2 Numerical results

Convergence with respect to splitting time step

The length of the operator splitting time step size ∆ts affects the accuracy and stability of the
coupling between the gas-phase and particle population balance. If the time step is too long,
the operator splitting can cause unphysical oscillations to arise in the concentrations of species
that have source terms in the gas-phase and sink terms in the particle-phase (or vice versa). For
example, Ti(OH)4 is first formed in the gas-phase as a product of the decomposition of TTIP
and then consumed by the particle phase as the inception and growth species. On the other hand,
taking unnecessarily small time steps when species concentrations are varying slowly increases
the computational time due to the cost of initialising the ODE solver. Thus, an appropriate time
step needs to be chosen to maintain adequate coupling while keeping computational cost at a
minimum.

The convergence behaviour with respect to the splitting time step of three key particle
ensemble properties (M0, Fv and d̄c) and the concentration of Ti(OH)4, the collision species,
is investigated. Simulations were performed with a sufficiently large number of particles and
number of runs for convergence: Nmax = 8192 and L = 4. The relative error is measured against
a high precision solution: Nmax = 131072, L = 10 and ∆ts given by the variable splitting time
scheme discussed below.
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(a) Mean Ti(OH)4 concentration. (b) Total relative error in Ti(OH)4 conc.

Fig. 4.13 Mean Ti(OH)4 concentration as a function of time and the total relative error for
different splitting step sizes. The horizontal dashed line indicates the value for the variable
splitting scheme (Eq. (4.54)).

Figure 4.13 shows the time evolution and the total relative error of the concentration of
Ti(OH)4 for different splitting time step sizes. The solution converges rapidly with decreasing
step size and appears converged with ∆ts = 10 µs. Figure 4.13a shows that the collision species
is consumed rapidly and its concentration becomes negligible by t = 0.1 s. This suggests that
a small splitting time step is only necessary during this initial phase of the simulation where
there is a strong coupling between the gas-phase and particle-phase. Once the precursor and
collision species have been consumed a longer time step can be taken. The dashed horizontal
line in Fig. 4.13b shows the total relative error for a variable splitting time scheme in which the
step size is increased after t = 0.1s:

∆ts =

10 µs, t ≤ 0.1s;

100 µs, t > 0.1s.
(4.54)

The variable splitting scheme achieves the same total relative error as ∆ts = 10 µs.
The computational time for one run using each of the different step sizes is shown in

Fig. 4.14. There is a clear increase in computational cost with decreasing step size: almost an
order of magnitude increase in CPU time with an order magnitude decrease in step size. The
CPU time for the variable step size (Eq. (4.54)) is also shown, and demonstrates a significant
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Fig. 4.14 Computational time as a function of simulation time for different splitting time steps.
Variable refers to the splitting scheme given in Eq. (4.54).

reduction in computational cost compared to the ∆ts = 10 µs case for approximately the same
total error.

Figure 4.15 shows the convergence behaviour of M0, Fv and d̄c with respect to splitting step
size. Similar convergence behaviour is observed for these functionals as for the concentration
of Ti(OH)4, with all converging by ∆ts = 10 µs. The variable splitting scheme (Eq. (4.54))
shows similar convergence properties to ∆ts = 10 µs. Due to the computational time advantage,
this splitting scheme was selected for the remaining numerical studies.

Convergence with respect to number of particles

The maximum number of computational particles should be chosen such that systematic error
is sufficiently small. In practice this means choosing the maximum number of computational
particles so that increasing Nmax is not statistically significant. The number of runs is selected
such that the statistical error is acceptable. The convergence behaviour of the functionals given
in Table 4.1 was investigated with respect to the maximum number of computational particles
Nmax, while keeping the product of the number of computational particles and number of runs
constant: Nmax×L = 217.

The time evolution of each of the functionals within their confidence intervals IP(t) is shown
in Fig. 4.16 for three different values of Nmax and the high precision solution. The evolution
of M0 and Fv indicate the rapid conversion of gas-phase precursor to TiO2 in the particle
phase. There is an initial spike in M0 as many small single primary particles are incepted,
followed by a rapid decrease in M0 and corresponding increase in d̄p and d̄c as particles grow



74 A new detailed particle model

(a) Mean number density, M0. (b) Total relative error in M0.

(c) Mean volume fraction, Fv. (d) Total relative error in Fv.

(e) Mean collision diameter, d̄c. (f) Total relative error in d̄c.

Fig. 4.15 Mean functional value as a function of time and the total relative error for different
splitting step sizes. The horizontal dashed line is the variable splitting scheme (Eq. (4.54)).
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(a) Number density, M0. (b) Volume fraction, Fv.

(c) Average collision diameter, d̄c. (d) Average number of primaries, n̄p.

(e) Average primary diameter, d̄p. (f) Average sintering level, s̄.

Fig. 4.16 Time evolution of functionals given in Table 4.1 within their confidence intervals
IP(t) for different values of Nmax, and the high precision solution.
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via condensation and coalescence. Aggregate formation, shown by the increase in n̄p, begins
after Fv has plateaued i.e. the gas-phase precursor has been consumed, and once the primary
size exceeds the critical sintering diameter. At this point primary diameter growth slows and
further growth is due to sintering. The initial sintering level is s̄ = 1: the value assigned to
single primaries. Once aggregates begin to form the average sintering level falls rapidly before
plateauing at around s̄ = 0.886.

The functionals plotted in Fig. 4.16 display different rates of convergence with respect to
the maximum number of computational particles. For example, M0 and Fv show very rapid
convergence to the high precision solution. On the other hand, the average sintering level s̄ and
average number of primaries n̄p both demonstrate a slower rate of convergence.

The rates of convergence with respect to the maximum number of computational particles
of the functionals are investigated further in Fig. 4.17: a plot of the total relative error etot

as a function of Nmax. A first order slope is also plotted as a guide. All the functionals are
observed to converge as Nmax is increased. The volume fraction displays the smallest total
error, likely due to the fact that the gas-phase precursor is consumed rapidly and Fv reaches a
steady value within the first 0.1 s as seen in Fig. 4.16b. The ensemble properties M0 and Fv, and
average collision diameter d̄c are the fastest to converge at Nmax = 2048. The average number
of primaries n̄p shows the slowest convergence at Nmax = 8192.

The computational times for a single run with different values of Nmax are plotted in
Fig. 4.18 together with the total relative error for M0, n̄p and s̄. The total computational
time and computational time of the Monte-Carlo algorithm are shown. The CPU time of the
Monte-Carlo algorithm increases steadily as a function Nmax. The total CPU time, however,
is constant for small Nmax. At low Nmax, changing the number of particles does not affect the
total computational time very much because most of the CPU time is spent on the ODE solver,
which is independent of the number of computational particles. For large Nmax the majority of
the computational time is spent on the Monte-Carlo algorithm. M0 converges the fastest with
Nmax = 2048 in approximately 9 min, while n̄p is the slowest, converging with approximately
Nmax = 8192 in 27 min.

4.6 Hot wall reactor simulations

In this section we simulate the hot wall reactor experiment of Nakaso et al. [131]. The original
investigation produced TiO2 particles from TTIP precursor evaporated into nitrogen carrier
gas in a tubular hot wall flow reactor. In our simulation we impose the temperature profile
modelled by Nakaso et al. [131, Fig. 4] for maximum furnace temperature Tmax = 1200◦C. The
temperature profile is expressed in terms of reactor residence time by assuming constant mass
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(a) Number density, M0. (b) Volume fraction, Fv.

(c) Average collision diameter, d̄c. (d) Average number of primaries, n̄p.

(e) Average primary diameter, d̄p. (f) Average sinteirng level, s̄.

Fig. 4.17 Total relative error as a function of Nmax for the functionals given in Table 4.1.
Nmax×L = 217 is kept constant. A first order slope (dotted line) is plotted as a guide.



78 A new detailed particle model

Fig. 4.18 Total and Monte-Carlo algorithm CPU time per run (RHS), and total relative error for
number density M0, average number of primaries n̄p and average sintering level s̄ (LHS) for
different values of Nmax.

flow and accounting for the thermal expansion of the gas-phase. The initial TTIP mole fraction
was calculated as 18.7 ppm for an initial concentration of 7.679×10−7 mol/l in nitrogen gas
at 24◦C and 1 atm. The total reactor residence time was calculated to be tres = 3.60s. The
numerical parameters used in the simulation are given in Table 4.2.

Table 4.2 Numerical parameters.

Numerical parameter Value

Maximum number of stochastic particles, Nmax 8192

Number of runs, L 4

Splitting time step size, ∆ts
100 µs for t ≤ 1s
10 µs for 1s < t ≤ 1.5s

100 µs for t > 1.5s

4.6.1 Time evolution

Figure 4.19 shows the simulated time evolution of key gas-phase species, the imposed tempera-
ture profile and average particle properties. The simulation was performed using the model
parameters given Section 4.3. In Fig. 4.19a we see the rapid decomposition of TTIP as the
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(a) Gas-phase species. (b) Particle properties.

Fig. 4.19 Time evolution of (a) key gas-phase species and imposed temperature profile, and (b)
particle properties.

temperature increases, accompanied by a spike in the concentration of Ti(OH)4, the collision
species. The Ti(OH)4 concentration has two peaks, a consequence of the different speeds of
the two reaction pathways in the chemical reaction model. The time evolution of average
particle size, plotted in Fig. 4.19b, follows a similar trajectory. An initial peak in particle size
is observed corresponding to the first Ti(OH)4 peak, which causes particle inception followed
by growth through condensation and coalescence. A subsequent decrease in average primary
size is a consequence of the second peak in Ti(OH)4 resulting in the inception of new small
particles. In the high temperature region, the particles remain spherical due to their small size
and the high sintering rate resulting in rapid coalescence of coagulating particles. Only once the
temperature begins to decrease at t ≈ 1.5s do we observe the beginning of aggregate formation.
After this point, primary particle growth stops and aggregate growth proceeds via coagulation
in the low temperature region of the reactor.

Conversion of TTIP to TiO2 particles in the simulation was found to be only 66% with most
of the remainder (31%) as Ti(OH)3OCHCH2 in the gas-phase. This is a consequence of the
chemical mechanism and choice of collision species for particle inception and growth processes
for this particular set of conditions. However, full conversion is expected (cf. different hot
wall reactor study by Nakaso et al. [132]). As noted in Section 2.1.1, recent work by Ershov
et al. [47] suggests that the decomposition mechanism used here [23] is incomplete. Moreover,
the choice of collision species is restricted to Ti(OH)4, the final decomposition product of the
chemical mechanism, and could be extended. While it is not possible to draw meaningful
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(a) Aggregate particle size distribution. (b) Primary particle size distribution.

Fig. 4.20 Sensitivity of simulated aggregate and primary particle size distributions to coagulation
collision efficiency Acg and inception collision efficiency Ainc. Experimental and simulation
data from Nakaso et al. [131, Fig. 9-2] are included for comparison.

conclusions about the parameters from comparison with the experimental results here, we can
nonetheless study the model behaviour and sensitivity with respect to key parameters.

4.6.2 Sensitivity

In Fig. 4.20, we compare our detailed particle model simulations against the experimental and
simulated aggregate and primary particle size distributions of Nakaso et al. [131, Fig. 9-2].
Our base case simulation results, using the parameters given in Section 4.3, are shown by the
solid blue lines. Simulated primary particle diameters, dp,i = 2ri, are compared directly with
the experimental primary diameters obtained from TEM measurements. The experimental
aggregate mobility size measurements are compared to a modelled aggregate mobility diameter
dm for the free-molecular regime, estimated from the projected area Apr [148]:

dm =

√
Apr

π
. (4.55)

Aggregate projected areas of 2048 randomly selected particles were obtained from image
analysis (using the method described in [111]) of projections produced using the algorithm
given in Appendix B.3.

Figure 4.20 shows the sensitivity of the aggregate and primary PSDs to the collision
efficiency of coagulation and inception. The inception and coagulation rates are varied by
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(a) Acg = 1. (b) Acg = 10.

Fig. 4.21 Simulated TEM-style images.

introducing a multiplicative prefactor Ainc and Acg to the respective kernels. Both the aggregate
and primary PSDs are insensitive to an increase in the inception efficiency. Meanwhile,
increasing the coagulation collision efficiency shifts both the aggregate and primary PSDs to
the right and reduces the number density of aggregates and primary particles. The behaviour
of the primary PSD is due to increased coalescence of coagulating primaries in the high
temperature region of the reactor. A substantial increase in the coagulation efficiency improves
the agreement in the aggregate PSD, but this is accompanied by a shift in the primary PSD
away from the experimental data.

The present coagulation model assumes ballistic aggregation of particles. However, near
the end of the reactor the largest aggregates are in the transition regime (Kn ≈ 1), so collisions
may in fact be diffusion limited. The effect of using a different aggregation model was
investigated and simulations of the hot wall reactor with diffusion limited cluster aggregation
(DLCA) showed no appreciable difference to the BCCA results. These results are included in
Appendix C.5.

Simulated TEM-style images produced using the method described in B.3 are presented in
Fig. 4.21 for two cases: Acg = 1 and Acg = 10. Qualitatively, the images show aggregates with
similar numbers of primaries but significantly larger primary particles in the latter case and
correspondingly larger aggregates. This is consistent with the PSDs in Fig. 4.20.

Lastly, we look at the effect of the critical sintering diameter. Figure 4.22 shows the effect
of varying dp,crit on the aggregate and primary PSDs. The aggregate PSD is largely insensitive,
while the primary particle size distribution shows much greater sensitivity. For dp,crit = 0 nm
we observe good agreement with the left hand tail of the experimental data while larger values
shift the distribution towards the right hand tail of the experimental data. The best agreement in
the position of the peak in the distribution is obtained for dp,crit = 4 nm. In all cases the number
density of primaries and width of the primary PSD is underpredicted.
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(a) Aggregate particle size distribution. (b) Primary particle size distribution.

Fig. 4.22 Sensitivity of simulated aggregate and primary particle size distributions to the critical
sintering diameter dp,crit. Experimental and simulation data from Nakaso et al. [131, Fig. 9-2]
are included for comparison.

In summary, the base case model parameters produced reasonably good agreement in the
position of the primary PSD. However, the predicted width was narrower and primary number
density was smaller. This is likely due in part to incomplete conversion to TiO2 and conclusions
with regard to the goodness of fit cannot be made here. The position of the aggregate PSD
was underpredicted, and the number density of aggregates was overpredicted. The sensitivity
of the aggregate and primary PSDs with respect to three parameters was investigated. The
PSDs were relatively insensitive to the collision efficiency of inception. Both the aggregate
and primary size distribution were shown to be sensitive to the coagulation efficiency, while
the critical sintering diameter was observed to only affect the primary PSD. The findings
suggest that primary particle growth is driven by coagulation and sintering/coalescence in the
high temperature region of the reactor with aggregate growth occurring in the subsequent low
temperature region.

Given the observed sensitivity of the system to the coagulation and sintering processes, a
more extensive study should start by exploring the multi-dimensional parameter space for these
processes in order to improve the model. Note that in the present work only one parameter
was varied at a time, while the other parameters took their base case values. Moreover, the
process rates could have additional dependencies that were not considered in the current work.
For example, a recent study by Sharma et al. [155] showed that the coagulation efficiency
of TiO2 nanoparticles is strongly temperature dependent with significantly larger values at
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low temperature. This suggests that the coagulation rate may be underpredicted in the low
temperature region of our simulations. If the rate was higher in this region, agreement in the
aggregate PSD would be expected to improve while leaving the primary PSD unchanged.

4.7 Conclusions

This chapter introduced a new detailed particle model for polydisperse titanium dioxide aggre-
gates with inception, coagulation, condensation, sintering and coalescence processes. The new
particle description resolves the radius, composition and position of each individual primary
particle, representing an aggregate as a collection of overlapping spheres. The detailed geo-
metrical description permits the morphological evolution of each aggregate to be simulated.
The particle model developed in this work was presented in the context of titanium dioxide
synthesised from TTIP precursor. However, the model can be easily adapted to wider applica-
tions such as different precursor chemistry (e.g. TiCl4), materials (e.g. soot or silica) or particle
process models (e.g. viscous flow sintering). Crucially, the model type space incorporates
sufficient physical detail to relate particle processes to specific morphological transformations
and provides a framework suitable for testing and discriminating between different process
models.

The new particle model overcomes some of the limitations identified in previous models
[150, 156] by adding more geometrical detail to the particle description; thereby permitting
more physical detail to be incorporated into the process models. For example, a detailed
description of the aggregate structure obtained by tracking individual primary coordinates
allowed a more physical ballistic collision model to be implemented and avoided the need to
assume fractal dimension in calculations. Most importantly, the detailed geometrical description
allows for better comparison with experimental data. For instance, through visualisation
of particles using TEM images that can be analysed in a similar manner to experimental
TEMs (e.g. projected areas) or by considering the effect of particle morphology on mobility
measurements.

A numerical study was conducted using a simple batch reactor test case to investigate the
convergence behaviour of a number of average properties. The study demonstrated that under
conditions similar to the test case, convergence can be achieved in key properties for a feasible
number of computational particles. Furthermore, the computational time for a converged
solution was shown to be reasonable given an informed choice of operator splitting time step
size.

Lastly, the hot wall reactor experiment of Nakaso et al. [131] was simulated. This was
not intended to be a comprehensive evaluation of the model nor parameter fitting, but to
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briefly examine the model performance and make suggestions for future work. The base case
model parameters produced reasonable agreement with the PSDs of Nakaso et al. [131], but
the current mechanism and choice of collision species resulted in incomplete conversion of
TTIP to TiO2 particles under the simulated conditions. The simulated PSDs were shown to be
sensitive to the coagulation efficiency and critical sintering diameter, suggesting that future
work should investigate these process rates in more detail, paying particular attention to their
size and temperature dependence. Next, it is important to further evaluate the model against
experimental data under different conditions and perform a thorough parametric sensitivity
study.



Chapter 5

Extending the post-processing
methodology to stagnation flames

In this chapter, a two-step simulation methodology is presented that allows a detailed particle
model to be used to resolve the complex morphology of aggregate nanoparticles synthesised in
a stagnation flame. A thermophoretic correction is introduced to the second step post-process
through a simulation volume scaling term to account for thermophoretic transport effects arising
due to the steep temperature gradient near the stagnation surface. The methodology is evaluated
by applying it to a test case: the synthesis of titanium dioxide from titanium tetraisopropoxide
(TTIP) precursor. The thermophoretic correction is shown to improve the ability of the post-
process to recreate the conditions of the first fully-coupled simulation. The methodology is
demonstrated to be feasible for simulating the morphology of aggregate nanoparticles formed
in a stagnation flame, permitting the simulation of quantities that are directly comparable to
experimental observations.

5.1 Background

Premixed stagnation flame experiments have been used to synthesise and study nanoparticles,
including ultra-fine titanium dioxide [119, 169, 197] and soot [1, 27]. The stagnation flame
was introduced to avoid flame perturbations during sampling by embedding the sampling probe
into the stagnation surface. Modelling is facilitated by this configuration since the probe may
be treated as a boundary condition and a pseudo one-dimensional numerical solution to the
flame becomes possible.

Nanoparticles formed in flames are often aggregates composed of polydisperse primary
particles such as those shown in the transmission electron microscopy (TEM) image in Fig. 5.1.
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50 nm

Fig. 5.1 A typical experimental TEM image of stagnation flame synthesised TiO2 (image by
Manoel Manuputty).

A detailed description of the aggregate particle morphology is therefore necessary to simulate
quantities that are directly comparable with experimental observations. Menz and Kraft [121]
emphasise the importance of selecting an appropriate model for the system being simulated,
and warn of using an over-simplified model to interpret experimental data. Moment methods
[112, 129, 130, 167, 186] and sectional methods [67, 131, 172, 173, 188] allow for some
description of aggregate morphology, but are generally limited to tracking only two internal
particle dimensions. Stochastic methods allow for the extension of the particle model to include
a detailed description of each particle and allow key physical details to be included, providing
a powerful tool to investigate the mechanisms that control particle growth and morphology.

Flow dynamics, however, are not easily incorporated into models with a high-dimensional
particle description. Instead of direct coupling, one approach has been to post-process existing
flame data [127]. This technique, introduced in Section 2.2.3, has been used successfully to
simulate soot formation in premixed laminar flames with no stagnation surface [10, 33, 126,
138, 161]. Yapp et al. [192] applied the technique to model soot formation in a stagnation flame,
but found that the simulations did not reproduce the experimental particle size distribution data
well. While some of the differences can be attributed to uncertainties in the models used, the
results also suggest that the post-processing methodology employed is unsuitable in cases with
strong temperature gradients and significant thermophoretic transport effects.

The purpose of this chapter is to formalise and extend the two-step simulation methodology
to allow a detailed particle model to be applied to the modelling of nanoparticle aggregates
synthesised in a stagnation flame. The first step in the method couples detailed gas-phase
chemistry, flow and a spherical particle model solved with the method of moments with
interpolative closure (MoMIC) to simulate the flame profile and particle moments. In the
second step, the flame profile is post-processed with a detailed particle model solved using a
stochastic numerical method to resolve the aggregate particle morphology. We discuss how the
steep temperature gradient at the stagnation surface requires the effect of thermophoresis to
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be accounted for in the post-processing step. To address this, we introduce a correction to the
post-process through a modified simulation sample volume scaling term.

The simulation methodology is applied to the combustion synthesis of TiO2 nanoparticles
from titanium tetraisopropoxide (TTIP) precursor. A detailed particle description facilitates
comparison with experimental observation such as TEM images and allows morphology
dependent processes such as sintering and phase transformation to be studied. The methodology
is evaluated by comparing results from both simulation steps for consistency. Finally, we
simulate the stagnation flame experiment of Tolmachoff et al. [169] to demonstrate the ability
of a detailed description of particles to provide additional insight into experimental results. The
methodology presented in this chapter is not dependent on the specific details of a particular
particle model and can be applied to the study of various nanoparticles formed in stagnation
flames.

5.2 Burner configuration

 

Sampling orifice 

Sampling 

flow 

Burner 

nozzle 

Water cooled plate 

Fig. 5.2 Schematic of experimental set-up being modelled (figure by Manoel Manuputty).

A premixed laminar stagnation flame is modelled in this chapter. The set-up, shown in
Fig. 5.2, is similar to that used in previous studies of titania and soot formation [28, 119, 169].
An aerodynamic nozzle issues a laminar jet of TTIP-doped premixed C2H4/O2/Ar that impinges
on a water-cooled stagnation plate. A thin flame is formed and stabilised by stretch above the
surface. Particles are sampled through an orifice at the centre of the plate.
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5.3 Model detail

5.3.1 Flow model

The flow is assumed to be an axisymmetric stagnation flow and is modelled using a pseudo
one-dimensional approximation. This is described in detail in [108].

5.3.2 Chemical reaction model

The chemical model consists of the TTIP decomposition mechanism combined with hydrocar-
bon combustion chemistry described in Section 4.2.

5.3.3 Particle model

In this chapter we use a spherical and a detailed type space. The dynamics of the particle
population are described by the Smoluchowski coagulation equation with additional terms for
inception, condensation and sintering (detailed model only) [94].

Spherical particle model

The spherical particle model characterises a particle using its number of constituent TiO2

monomers, i. The particle mass is i ·mTiO2 , where mTiO2 is the mass of a single monomer of
TiO2; and, assuming spherical geometry the particle diameter can be calculated. The collision
limited inception and condensation processes are the same in both spherical and detailed
particle models. The particle models differ primarily in their treatment of a coagulation event:
the spherical model effectively assumes instantaneous coalescence following the collision.

Detailed particle model

The detailed particle model was introduced in Chapter 4. In this work, the critical sintering
diameter is set to dp,crit = 0 nm; otherwise, the model is as described in Section 4.3.

5.4 Methodology

5.4.1 Two-step simulation methodology

Figure 5.3 illustrates the two-step simulation methodology. In the first step1, the flame is
simulated with a one-dimensional stagnation flow approximation, coupled with gas-phase

1The first simulation step was performed by Manoel Manuputty.
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Fig. 5.3 Two-step simulation methodology.

chemistry and a spherical particle model solved with method of moments with interpolative
closure (MoMIC). MoMIC is chosen because it is easy to couple, less computationally de-
manding than other moment methods and sufficient to capture the effect of the particles on the
gas-phase. This first step is solved as a boundary-value problem using the kinetics® software
package [35] with the boundary conditions specified according to experimental conditions. A
solution-adapted grid refinement is used in order to achieve convergence with 240–260 grid
points. This first simulation is discussed in detail in [108].

The boundary conditions are consistent with the experimental work of Manuputty et al.
[110]. The burner-surface separation is 1.06 cm, and the burner and plate temperatures are
423.15 K and 503 K respectively. The exit velocity is 436 cm/s, and species mole fractions of
the gas mixture in the nozzle are 3.5% C2H4/30% O2/66.5% Ar (equivalence ratio φ = 0.35)
and 580 ppm TTIP, corresponding to a TTIP loading rate of 12 ml/h (this loading rate is used
in results hereafter unless otherwise specified).

In the second step, the resulting gas-phase profile is post-processed with the detailed particle
model to resolve the aggregate particle morphology, solved using a stochastic numerical method
(DSA introduced in Section 2.2.2). The flame conditions and gas species are supplied as input
to the population balance simulation. The simulation requires the computed profiles to be
expressed in terms of the residence time of a Lagrangian particle travelling from the burner to
the stagnation plate [127]. The combined convective and thermophoretic velocities are used to
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calculate the particle time history as per Abid et al. [1]. Simulation results in this study are an
average of 4 runs with 8192 stochastic particles.

5.4.2 Governing equations

First simulation

In the first simulation, the particle population balance is coupled to the flow and gas-phase
chemistry through the moment transport equations. This step is discussed in detail by Manuputty
et al. [108]. The transport equation for the rth-moment, Mr, is composed of the moment source,
advective, thermophoretic and diffusive transport terms [192]

Ṁr−ρu
d
dz

(
Mr

ρ

)
− d

dz
(vTMr)+

d
dz

(
ρDp,1

d
dz

(
Mr−2/3

ρ

))
= 0, (5.1)

where ρ is the gas-phase density, vT is the thermophoretic velocity, and u is the convective
velocity. Ṁr is the rth moment source term, z is the spatial displacement along the flame and
Dp,1 is the Brownian diffusion coefficient of a TiO2 monomer. As per Manuputty et al. [108],
the thermophoretic velocity and Brownian diffusion coefficient are
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where the thermal accommodation factor αT is 0.9. W̄ is the average molar mass of the gas
mixture, kB is the Boltzmann constant, NA is the Avogadro number and µ is the gas-phase
viscosity. dTiO2 is the diameter of a single TiO2 monomer and is calculated from the bulk
density of anatase (3.84 g/cm3).

Second simulation

In the stochastic simulation, the population balance equations are spatially homogeneous. We
consider a Lagrangian description of an ensemble of particles in a sample volume travelling
from burner to stagnation plate. The particle ensemble evolves in time with the governing
equation:

dn(x)
dt

= R(x)−Γn(x), (5.4)

where n(x) is the number density of particles of type x. R(x) is the rate of production of particles
of type x: a function of the inception, condensation, coagulation and sintering rates given in
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Section 4.3. Γ is the rate of gas-phase expansion: a function of temperature and the rate of
production of gas-phase species. The gas-phase conditions in the sample volume (temperature,
pressure, and species concentrations) are supplied as input from the first simulation and
expressed as a function of the residence time of the Lagrangian sample volume using the
combined convective and thermophoretic velocities [1].

The stochastic method approximates real particles with a collection of computational
particles in a sample volume Vsmpl. The sample volume corresponds to the actual volume in
the real system in which the number of real particles matches the number of computational
particles. Γ adjusts the sample volume in response to gas-phase expansion and contraction:

1
Vsmpl

dVsmpl

dt
= Γ. (5.5)

Thermophoretic correction

In order to perform the post-process we need to impose the same conditions on the particle
population in the second simulation as modelled in the first. Therefore, the governing equations
for both steps of the methodology need to be similar. To compare the governing equations it is
convenient to rewrite Eq. (5.4), the governing equation for the second simulation, in terms of
the number density moments, defined as

Mr =
∞

∑
i=1

irni, (5.6)

where ni is the number density of aggregate particles containing a total i units of TiO2. Ex-
pressed in terms of the moments, the governing equation has the form

dMr

dt
= Ṁr−ΓMr, (5.7)

where Ṁr is the moment source term: a function of the process rates in the second simulation.
It is important to note that the moment source in this case is not identical to the moment source
term for the first simulation step. This is due to (1) the different particle models used in the
two simulations steps, and thus the effect of different particle geometry on process rates, for
example, the calculation of the particle collision diameter; and (2) the different treatment of the
source terms by the numerical method employed, for example, interpolated closure of fractional
order moments by MoMIC. The methodology and analysis here assumes that the source terms
are not significantly different.
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The equation for the stochastic simulation (Eq. (5.7)) does not currently account for ther-
mophoretic and diffusive transport. If, however, the thermophoretic and diffusive transport
effects in the modelled system are small and can be neglected in the post-process it is straight-
forward to show that the governing equation in second simulation (Eq. (5.7)) approximates the
moment transport equation solved in the first simulation (Eq. (5.1)). This is the case for pre-
mixed laminar flames with no stagnation plate such as those simulated in [10, 33, 126, 138, 161].
Neglecting the thermophoretic and diffusive transport terms, the moment transport equation for
the first simulation (Eq. (5.1)) becomes

Ṁr−ρu
d
dz

(
Mr

ρ

)
= 0. (5.8)

Expressing Eq. (5.8) in terms of the residence time of a Lagrangian particle by making the
coordinate transformation dz = udt yields the equation for the second simulation (Eq. (5.7))
with a gas-phase expansion rate

Γ =− 1
ρ

dρ

dt
. (5.9)

Here, the sample volume adjustment corresponds to the change in gas-phase density i.e. the
gas-phase mass contained within the sample volume is conserved (mass transfer to the particle
phase is assumed to be negligible).

In the case of a stagnation flame, as modelled in this work, thermophoresis is significant
near the cooled stagnation plate due to a steep temperature gradient, so the thermophoretic
transport term cannot be neglected. Assuming instead that only the diffusive term is negligible
Eq. (5.1) becomes

Ṁr− (u+ vT)
dMr

dz
+
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u
ρ

dρ

dz
− dvT

dz

)
Mr = 0, (5.10)

Using the convective and thermophoretic velocities, we make the coordinate transformation
dz = (u+ vT)dt to express Eq. (5.10) in terms of the residence time of a Lagrangian particle
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)
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which has the form of the governing equation for the second simulation (Eq. (5.7)) with

Γ =− 1
(u+ vT)

(
u
ρ

dρ

dt
− dvT

dt

)
. (5.12)

Thus, the effect of thermophoresis is now accounted for in the volume adjustment term in
the stochastic population balance where the convective and thermophoretic velocities, and
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gas-phase density are supplied as input. Note that setting vT = 0 returns the earlier relation
(Eq. (5.9)).

The diffusive term cannot be dealt with in the same way because it is a second order
derivative of the moments. A possible method could be to apply a diffusion correction to the
reactor volume for a specific moment order. For example, applying the correction for r = 1
to ensure the system mass remains in agreement between the two simulations. However, the
correction would only be approximate for other moments and is outside the scope of this work.

5.5 Results and Discussion

5.5.1 Transport terms
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Fig. 5.4 Temperature and velocity profiles obtained from the first simulation.

Figure 5.4 shows the simulated temperature and velocity profiles obtained from the first
step. We observe two regions with significant thermophoresis: at the flame front where the
temperature increases steeply; and near the cooled stagnation plate where the temperature
rapidly decreases. The region near the stagnation surface is of particular significance because
the convective velocity is low, so in the Lagrangian view a particle will spend a large fraction of
its residence time here. It is therefore important to correctly account for the effect of transport
processes on the particle population dynamics in this region.

In Fig. 5.5 we compare the relative sizes of the individual terms in the moment transport
equation (Eq.(5.1)) solved in the first simulation step. The advective, thermophoretic, diffusive,
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Fig. 5.5 Moment transport equation terms from the first simulation.

and moment source terms are shown for the first three moments r = 0,1,2. The plots show
that for a stagnation flame the transport terms are significant and need to be considered in the
second step post-process. In particular, the thermophoretic term dominates in the region near
the stagnation surface for the higher order moments, and will influence the PSD near the point
of experimental measurement.

Diffusion is much less significant at the stagnation surface and can be assumed to be
negligible here. However, at the flame front the diffusive term is non-negligible, particularly
in the zeroth moment. Here, the convective velocity is very high so in the Lagrangian view
diffusive effects will occur over a short period of time early in the evolution of the particle
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population; thus, the impact of diffusion on the final PSD is likely to be much less significant
than thermophoresis.

5.5.2 Evaluation of the post-processing method

Evaluation of the post-processing methodology is necessary to ensure that meaningful results
are obtained from the post-processing step; specifically, that the particle population evolves
under similar conditions in the post-process as modelled in the first, fully coupled simulation.
We can evaluate the effect of applying the thermophoretic correction (Eq. (5.12)) to the second
step simulation by post-processing the flame profile with the spherical particle model and
comparing the results of the post-process with the moments calculated in the first simulation.
Using the same particle model in both simulation steps eliminates particle model dependent
effects on the solutions. Therefore, any differences in the moments obtained from the first and
second simulations are either due to (1) the treatment of transport in the governing equations
or (2) assumptions and approximations made in the numerical methods used to solve the
governing equations. For the purpose of comparison, the moments solved by MoMIC in the
first simulation are treated as the reference solution because this is the fully coupled simulation
solved with transport.
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Fig. 5.6 (a) Moments obtained from the first-step MoMIC simulation and from post-processing
with a spherical particle model with and without the thermophoretic correction. The Ti(OH)4
collision species mole fraction is added for reference. (b) The relative difference in the moments
at the stagnation surface measured against the MoMIC solution for the spherical (sph.) and
detailed (det.) particle models.
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Figure 5.6a shows the moments obtained by post-processing using the spherical particle
model with and without thermophoretic correction, together with the MoMIC reference solution.
The Ti(OH)4 collision species mole fraction is included for reference. The thermophoretic
correction was found to significantly improve the agreement between the post-process and the
MoMIC reference solution near the stagnation surface (at z = 0 cm) where thermophoretic
transport effects are most significant.

The large difference in the predicted moments at the flame front is a consequence of the
resolution of the stochastic method. A statistically significant solution only exists once the
concentration of Ti(OH)4, the collision species, is high enough and therefore the particle
inception rate is large enough for particles to be incepted into the simulation sample volume
with reasonable probability.

The relative difference in the moments predicted by the post-process at the stagnation
surface measured against the MoMIC reference solution is plotted as a function of moment
order, r, in Fig. 5.6b. Results from post-processing with the spherical and detailed particle
model are shown, with and without thermophoretic correction. For r≥ 1 a significant reduction
in the relative difference is observed with the introduction of the thermophoretic correction
for both particle models. Naturally, the spherical particle model shows better agreement (for
r ≥ 2) than the detailed model because a spherical model is also used in the first simulation.
The aggregate particle structure described by the detailed model is expected to affect the shape
of the predicted PSD, and thus, the higher order moments.

The zeroth moment shows little to no improvement when the thermophoretic correction
is introduced. Two possible reasons for this are: the greater relative importance of diffusion
on M0 (Fig. 5.5); and differences in the numerical methods, especially in the treatment of
coagulation. A difference between the two solutions is expected because MoMIC introduces a
numerical approximation, while the stochastic method treats coagulation exactly. In particular,
the MoMIC calculation of the M0 source term requires an extrapolated negative order fractional
moment [50], which is prone to numerical error. Furthermore, the divergence in M0 in Fig. 5.6a
does not coincide with extrema in the M0 diffusion term in Fig. 5.5 suggesting that diffusion
is not the cause. At the point of divergence the M0 diffusion term is negligible. This would
suggest that the error arises from differences between the two numerical methods.

Figure 5.7 shows a comparison of the average particle diameter as a function of TTIP loading
for spherical and detailed particle models, with and without the thermophoretic correction.
For the detailed particle model the collision diameter is calculated as per Sander et al. [149]
(Eq. (2.16)). We see that the thermophoretic correction reduces the error substantially for both
spherical and detailed models. However, the difference observed in the zeroth moment in
Fig. 5.6 is carried over into the average particle properties, hence the agreement is not as good
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Fig. 5.7 Relative difference in particle collision diameter measured against the MoMIC ref-
erence solution plotted as a function of TTIP loading. Results from post-processing using a
spherical particle model (sph.) and detailed particle model (det.) are shown with and without
thermophoretic correction.

as for the individual moments. The plots show a general trend of improving agreement with
increased TTIP loading. This is primarily driven by the behaviour of the divergence in M0 and
not an effect of the thermophoretic correction.
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Fig. 5.8 Mole fraction of Ti(OH)4, the collision species, and the average number of primaries
per particle as a function of distance from the stagnation surface.
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The methodology considers two-way coupling between the gas and particle phases only in
the first simulation step. The assumption is that the spherical particle model employed in the
first simulation provides a reasonable approximation of particle morphology when coupling
to the gas-phase is most important. Non-spherical particles would give different process rates
for gas-phase interactions due to different particle morphology affecting properties such as
the collision diameter and free surface area. The mole fraction of the gas-phase collision
species (Ti(OH)4) obtained from the first simulation and the average number of primaries per
particle predicted by the post-process are plotted in Fig. 5.8 as function of the distance from
the stagnation surface. We observe that the collision species is exhausted prior to the formation
of aggregates suggesting that a spherical particle model provides a reasonable description
of particle morphology when Ti(OH)4 is being consumed from the gas-phase and two-way
coupling is most important. Particles remain spherical in this high temperature region due to
rapid coalescence of colliding particles. The detailed model predicts aggregate formation only
after the particle processes have effectively decoupled from the gas-phase chemistry.

5.5.3 Evolution of aggregate particle morphology

50 nm

(a) (b)

Fig. 5.9 (a) An experimental TEM image (unpublished data, Manoel Manuputty) and (b) a
simulated TEM-style image.

Figure 5.9 shows an experimental TEM image of aggregate TiO2 particles synthesised in a
stagnation flame and a simulated TEM-style image produced under similar modelled conditions.
In both images we observe sintered aggregate particles of comparable aggregate and primary
size. This illustrates that resolving the aggregate structure and modelling morphology dependent
processes such as sintering are important for making proper comparison with experimental
results.

In Fig. 5.10 the average number of primaries per aggregate predicted by the post-process as a
function of distance from the stagnation plate is plotted together with the simulated temperature
profile. The formation of aggregates is observed as the temperature decreases substantially
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Fig. 5.10 Simulated temperature profile and average number of primaries per aggregate pre-
dicted by the post-process. Four simulated TEM-style snapshots are shown at different points
along the flame.

near the stagnation surface. This is due to the rate of sintering having a stronger temperature
dependence than coagulation. The TEM-style snapshots generated at different points along the
flame illustrate this change in particle morphology.

5.5.4 Comparison with experimental PSD

In this section we use the methodology presented in this paper to simulate the premixed
stagnation flame experiment of Tolmachoff et al. [169] using a detailed particle model. The
experiment has been previously simulated by Manuputty et al. [108] using a single step TTIP
decomposition model with the overall rate given by Okuyama et al. [135]. In this work, we
simulate the experiment using the gas-phase chemistry described in Section 5.3.2 and collision
limited inception and condensation reactions with Ti(OH)4 as the collision species. Otherwise,
the details of the modelled burner configuration and first simulation step are the same as in
[108].

In the experimental investigation by Tolmachoff et al. [169] a TTIP-doped premixed laminar
flame (3.96% C2H4/26.53% O2/ Ar, φ = 0.45) issued from an aerodynamically shaped nozzle
impinges on a rotating stagnation plate. In the present analysis, as in the previous modelling
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work performed by Manuputty et al. [108], it is important to consider two aspects of this burner
configuration: the stagnation surface temperature and the particle sampling technique.

Cooling jets and convection maintained the stagnation plate temperature at Ts ∼ 400 K for
rotational speeds in the range of 100–600 RPM. Without rotation, the absence of convective
cooling increased the plate temperature as high as Ts ∼ 1000 K. As in [108], other effects of
rotation are not considered here. Tolmachoff et al. [169] suggest that rotation results in little to
no change in flame characteristics due to the thin boundary layer, hence it is reasonable to only
vary the stagnation plate temperature.

Two different particle sampling techniques were used in the experimental study: a scanning
mobility particle sizer (SMPS) with sampling probe mounted in the plate was used for the
non-rotating plate; while TEM image analysis was performed on particles collected by rapid
insertion of a TEM grid fastened to the plate when the plate was rotating.
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Fig. 5.11 Particle size distributions of TiO2 produced at (a) 306 ppm and (b) 1070 ppm TTIP
loadings. Symbols: experimental data from Tolmachoff et al. [169, Fig. 8]; Solid lines: collision
diameter distribution; Dashed lines: primary particle size distribution; Dotted lines: log-normal
PSD from MoMIC results. Simulation results are presented for stagnation plate temperatures
of 400 K and 1000 K.

Simulations were performed using a collision enhancement factor of ε = 2.64 as per
Manuputty et al. [108], and a critical sintering diameter of dp,crit = 2 nm, which was found to
give the best fit of the right tail of the simulated collision diameter distribution to the 0 RPM
experimental case. This value is consistent with the molecular dynamics study of Buesser
et al. [25], who found that small primaries with dp < 4 nm sinter significantly faster than rates
predicted by models developed for larger particles.
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Figure 5.11 shows the simulated particle size distributions for two different TTIP loadings
(306 ppm and 1070 ppm) with the two different plate temperatures (400 K for the rotating
plate and 1000 K for the stationary plate). Gaussian kernel density estimates are plotted for
the collision diameter and primary particle diameter distributions obtained from the detailed
model post-process. Log-normal distributions were generated from the first simulation step
MoMIC data with median particle diameter and geometric standard deviation calculated as per
Manuputty et al. [108]:

⟨d⟩=
dTiO2 µ1/3√
1+

µ2/3−µ2
1/3

µ2
1/3

(5.13)

GSD = exp

√√√√ln

(
1+

µ2/3−µ2
1/3

µ2
1/3

)
, (5.14)

where µr are the fractional reduced moments. The experimental data are from Tolmachoff et al.
[169, Fig. 8].

Our simulations predict a small degree of aggregate formation indicated by the differing
collision diameter and primary diameter distributions; notably, the position of the respective
right hand tails of each distribution. We begin by comparing the aggregate collision diameter
distribution for stagnation temperature Ts = 1000 K (solid red lines) with the 0 RPM SMPS data
(solid symbols) because the instrument measures the aggregate particle size. The 1070 ppm
loading case shows excellent agreement with the experimental data of Tolmachoff et al. [169].
For the lower loading 306 ppm case, however, our simulation predicts a broader distribution
compared to the experimental results. It is worth noting that we are comparing our modelled
collision diameter with SMPS measured mobility diameter and the two are unlikely to be
identical measures of particle size, which may contribute to some of the observed differences.

To compare our simulations with the rotating disc experimental data we use the primary
diameter distribution. In the experimental study [169] measurements of particle size for the
rotating disc were performed using TEM image analysis, in which case the diameters of
individual primaries were measured. Thus, we compare the primary diameter distribution for
Ts = 400 K (dashed blue line) with the experimental results with rotation (open symbols). The
agreement with the experimental data is reasonably good in both cases; although the simulated
median size is slightly larger and the distribution is shifted to the right. On the other hand, the
aggregate collision diameter distributions (solid blue lines) are broader and extend to larger
particle sizes. Tolmachoff et al. [169] attribute the difference in the rotating vs. non-rotating
disc PSDs to the change in disc temperature rather than measurement technique, supported
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by an earlier study showing that diameters measured by SMPS agree with those measured by
TEM analysis in the size range of interest [198]. In contrast, our simulation results suggest that
while some of the difference can be attributed to the stagnation surface temperatures it is also
possible that a small degree of aggregation can result in different measured distributions. In
this case the mean number of primaries per aggregate was n̄p < 2 for all simulations.

It is also worth comparing the detailed model simulation results with the log-normal
distributions obtained from the first step MoMIC simulations (dotted lines) with spherical
particle assumption. The MoMIC results underpredict the median size for the non-rotating
(0 RPM, Ts = 1000 K) disc (dotted red lines vs. solid symbols) while the rotating case (Ts =

400 K) is in better agreement (dotted blue lines vs. open symbols), likely because of the
spherical particle assumption. This would suggest that a simple spherical particle model is
not sufficient and a detailed particle description is needed to model the system and provide
additional insight.

5.6 Conclusions

This chapter introduced a general two-step modelling methodology able to resolve the complex
aggregate morphology of nanoparticles synthesised in a stagnation flame. The methodology was
applied to the combustion synthesis of TiO2 particles from TTIP precursor. A detailed particle
model is necessary to simulate the evolution of aggregate particles observed in experiments.

The first step of the two-step methodology couples detailed gas-phase chemistry, a one-
dimensional flow model and spherical particle model solved with MoMIC. The resulting flame
profile is then post-processed using a detailed particle model capable of tracking individual
primary coordinates to resolve the aggregate structure. The method allows for comparison
with experimental observations such as TEM images and enables the study of morphology
dependent particle processes.

Examination of the magnitude of the terms in the MoMIC equations showed that ther-
mophoretic transport effects are significant near the stagnation surface and must be accounted
for in the second step where the flame profile is post-processed. To do this, a thermophoretic
correction to the simulation sample volume was introduced. Comparison of moments pre-
dicted by the second-step post-process against the first-step MoMIC solution showed that
the thermophoretic correction leads to a significant reduction in the error associated with the
post-process. However, a divergence in the zeroth moment was observed, which has an impact
on the average particle properties. This is suspected to be caused by differences between the
two numerical methods used; in particular, their treatment of coagulation.
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The stagnation flame experiment of Tolmachoff et al. [169] was simulated using the two-step
methodology with detailed particle model to demonstrate the ability of a detailed description
of particles to provide additional insight and explain experimental observations. The detailed
model was better able to reproduce the measured PSDs compared to a simple spherical particle
model. While the model itself was not the subject of this chapter, the methodology presented
here allows it to be applied to a widely used class of flame, and thus provides a means to
evaluate the model against experimental data such as aggregate size, primary size and primary
number distributions. This will be the subject of the next chapter.





Chapter 6

Detailed simulation and parametric
sensitivity study of TiO2 particles
synthesised in a stagnation flame1

This chapter combines the new particle model and the two-step post-processing method intro-
duced in the last two chapters to simulate the formation of titanium dioxide nano-aggregates in a
stagnation flame from TTIP precursor. This work aims to perform a comprehensive comparison
of model prediction with experimental data to evaluate the model and explore the sensitivity
to key model parameters. The stagnation flame allows us to study the choice of sintering
parameters for sub-10 nm particles. The detailed particle model permits direct comparison with
experimental measurements through simulated TEM-style images.

6.1 Background

Development of an accurate model of TiO2 formation relies on a comprehensive description of
the gas-phase chemistry and a particle model that is able to represent the morphology of aggre-
gate particles. Most attempts at modelling high temperature TiO2 formation from TTIP assume
a one-step thermal decomposition [108, 195, 200]. A first-order reaction rate was proposed by
Okuyama et al. [135] and later combined with a surface decomposition reaction by Tsantilis
et al. [172] to model TiO2 formation in a premixed flat flame. Nonetheless, experimental studies
have shown that TTIP decomposition at flame temperature is a complex reaction involving

1The investigation presented in this chapter was performed in collaboration with Manoel Manuputty and
published in [105]. The extent of collaboration and division of work is discussed in Appendix A. The work
presented here focuses on the detailed particle modelling aspect of the investigation, which was performed by the
author.
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many intermediate species [160]. Buerger et al. [23] proposed a systematically derived and
thermodynamically consistent detailed kinetic mechanism of TTIP decomposition.

Previous simulations of the stagnation flame experiment [108] employed a spherical particle
model and used the method of moments with interpolative closure (MoMIC) to solve the
population balance equations. The approach permitted full coupling of the particles to the
gas-phase and flow dynamics. However, the model was constrained to one internal coordinate in
the particle description. Yet, particles are often observed to be aggregate structures composed of
a polydisperse population of primary particles with different levels of sintering. A multivariate
model is needed to fully capture the particle morphology. The new detailed particle model and
two-step simulation methodology developed in this thesis seek to address these limitations.
Combined with the detailed chemistry proposed by Buerger et al. [23], we can now begin to
develop a better model of TiO2 formation in flames.

A detailed particle model allows for the simulation of quantities that are directly comparable
to experimental data, such as particle size measurements from TEM imaging and mobility size
analysis [6, 172, 198]. For example, simulated TEM-style images can be analysed in a similar
manner to experimental data to obtain the aggregate size distribution – as is done in this work.
In addition, a detailed particle description permits the modelling and study of processes that
are fundamental to the evolution of particle morphology, but which cannot be fully captured by
simpler models. For instance, sintering is commonly modelled by considering the evolution of
the surface area of an aggregate with a defined characteristic time [89]; however, these models
often extrapolate late stage behaviour over the entire process. More detailed geometrical models
permit a more complete picture of the evolution of particles during sintering [40, 41, 191].
Furthermore, the sintering behaviour is strongly influenced by the morphological properties of
the particle, particularly at the nano-scale (dp < 10 nm). For example, in a molecular dynamics
study on the sintering of 2–4 nm TiO2 Buesser et al. [25] found the sintering rate to be much
faster than that predicted by extrapolating the characteristic sintering time typically used in
studies on larger particles [88, 153]. The stagnation flame setup, used to synthesise ultra-fine
TiO2 particles, provides an excellent system to study the behaviour of sintering models for very
small particles.

The purpose of this chapter is to evaluate the new detailed particle model for titanium
dioxide nano-aggregates introduced in Chapter 4 against experimental measurements [110],
and perform a parametric sensitivity study to understand the influence of key parameters on
the particle properties. We simulate the synthesis of titanium dioxide nano-aggregates from
TTIP precursor in a stagnation flame using the two-step simulation methodology introduced
in Chapter 5. A detailed chemical mechanism is used to describe the thermal decomposition
of TTIP [23] and the detailed particle model is used to resolve the particle morphology.
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The detailed particle description permits comparison of simulated quantities with equivalent
experimental measurements; namely, the aggregate projected spherical equivalent diameter
distribution (particle size distribution, PSD) and the primary particle size distribution (PPSD),
obtained by TEM image analysis.

6.2 Stagnation flame experiment

In this chapter, we simulate the stagnation flame experiments performed by Manoel Manuputty.
Full details of the experimental investigation are presented in [110], and in the supplementary
material of [105]. A summary of details relevant to the modelling work is given here.

A laminar stagnation flame, stabilised by flow stretch, was used to prepare TiO2 nanoparti-
cles from titanium tetraisopropoxide (TTIP) precursor. The premixed gas was heated to 150◦C
with exit velocity of 436 cm/s. Premixed gas mixtures with two different equivalence ratios (φ )
were used: φ = 0.35, i.e. a lean flame (3.5% C2H4–30% O2–66.5% Ar) and φ = 1.67, i.e. a
rich flame (10.3% C2H4–18.5% O2–71.2% Ar). The TTIP loading rates used were 4, 12 and
30 ml/h, corresponding to 194, 582, and 1454 ppm TTIP respectively.

Particles were sampled through an orifice in the stagnation plate and diluted with nitrogen
gas in the sample line to reduce aggregation. Nanoparticle morphology was characterised by
analysing TEM images and mobility measurements. The experimental investigation found that
the particle morphology was sensitive to the TTIP loading, but was relatively insensitive to the
equivalence ratio. Here we choose five descriptors of particle morphology from the TEM image
analysis for comparison with the simulation results. These are the mean (d̄p) and coefficient of
variation (CVp) of the primary particle diameter; mean (d̄a) and coefficient of variation (CVa)
of the aggregate projected spherical equivalent diameter; and the fraction of aggregates with
circular projection ( fα ). The mean diameter, standard deviation and coefficient of variation are
defined for N aggregate or primary particles as:

d̄ =
1
N

N

∑
i=1

di, (6.1)

SD =

√
1

N−1

N

∑
i=1

(
di− d̄

)2
, (6.2)

CV =
SD
d̄

. (6.3)

The dimensionless coefficient of variation, or the ratio of the standard deviation to the mean,
is used as a measure of the distribution widths in this work to allow for comparison across
all TTIP loading rates, i.e. cases with varying mean sizes. The aggregate projected spherical
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equivalent diameter is

da = 2

√
Apr

π
, (6.4)

where Apr is the aggregate projected area. Manuputty et al. [110] define a parameter αi for
an aggregate as the ratio of projected diameter of gyration, dg,2D, and the projected spherical
equivalent diameter:

α(Pq) =
dg,2D(Pq)

da(Pq)
. (6.5)

The fraction of aggregates with circular projection, fα , is defined as the fraction of particles
with α(Pq)< 0.73.

The uncertainties of the primary particle and aggregate sizes are based on the resolution
limits of the analysed images, estimated by Manuputty et al. [110] as ±4 and ±2 pixels,
respectively. These correspond to ±0.48 nm for the primary sizes (all loadings) and ±0.5 nm
(4 ml/h TTIP), ±0.64 nm (12 ml/h), and ±0.94 nm (30 ml/h) for aggregate sizes.

6.3 Computational detail

The same models and simulation methodology are used here as in the previous chapter. The
flow model is described in [108], the detailed chemistry in Section 4.2, and the detailed particle
model in Section 4.3. In this work, the form of the characteristic sintering time is studied in
more detail – the model equations are discussed below. The stagnation flame is simulated using
a two-step methodology with thermophoretic correction introduced in Chapter 5. Results from
the second simulation step are averaged over 4 runs, each with 8192 stochastic particles. The
model parameters are summarised in Table 6.1.

6.3.1 Characteristic sintering time

Sintering is commonly modelled by considering the excess surface area of an aggregate over that
of a sphere with the same mass [95, 131, 153, 185, 188]. The model of Koch and Friedlander
[89], valid for t≫ τs, describes the evolution of the surface area:

dS
dt

=− 1
τs
(S−Ssph), (6.6)

where S is the surface area of the aggregate, Ssph is the surface area of a sphere with the same
mass and τs is the characteristic sintering time. Multivariate particle models [150, 156] have
extended this approach to consider the surface area of each pair of neighbouring primary
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Table 6.1 Summary of model parameters and sensitivity. The base case value, range studied
and an indication of the sensitivity (++: sensitive; +: slightly sensitive; −: insensitive) are
given. The sintering base case values correspond to sintering model 1.

Parameter Value Range Sensitivity

Sintering:
Prefactor, As 0.25 0.01–10 +
Critical diameter, dp,crit 2.5 nm 1–4 nm ++
Critical exponent, αcrit 7 1–7 ++

Collision limited processes:
Enhancement factor, ε 2.64 2.2–3.0 +
Inception efficiency, γin 1 0.01–1 -
Surface growth efficiency, γsg 1 0.01–1 -

Other:
Density, ρTiO2 3.84 g/cm3 3.84, 4.25 g/cm3 -

particles individually. It should be noted that Eq. (6.6) applies to late stage sintering behaviour,
but is often extrapolated to all stages of sintering.

If the characteristic sintering time τs is constant, Eq. (6.6) yields an exponential decay with
τs corresponding to a 63% reduction in the excess surface area. However, in general τs does not
remain constant, but varies as a function of temperature and particle diameter [153]. Buesser
et al. [25] remark that the characteristic time is the time needed for the neck diameter to reach
83% of the initial primary particle diameter [88], corresponding to a 67% reduction in the
excess surface area and close to the commonly used exponential decay.

Various expressions for the characteristic sintering time of titanium dioxide particles have
been proposed. Kobata et al. [88] proposed a characteristic time based on a surface diffusion
model:

τs = 7.44×1016d4
pT exp

(
258kJmol−1

RT

)
s, (6.7)

where dp is the primary diameter (m), R the ideal gas constant and T is the temperature (K).
Seto et al. [153] considered a grain boundary diffusion based model with

τs = 9.75×1015d4
pT exp

(
258kJmol−1

RT

)
s. (6.8)

Both studies investigated particles larger than 10 nm, with Seto et al. [153] noting that the
sintering behaviour of nano-sized particles may be quite different.
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Buesser et al. [25] performed molecular dynamics simulations to study the sintering of
2–4 nm rutile particles at 1500–2000 K, and found that smaller nanoparticles (dp < 4 nm) sinter
significantly faster than predicted by a d4

p dependence. They fitted a characteristic sintering
time,

τs = 3.7×1016d4
pT exp

(
258kJmol−1

RT

(
1−
(

3.4nm
dp

− T
4100K

)3.76
))

s, (6.9)

which includes a particle size dependence in the exponential term. This is consistent with an
earlier theoretical study by Tsantilis et al. [171] on the viscous flow sintering of silica particles,
in which a particle size dependence was introduced to the activation energy based on the size
dependence of the melting point:

τs ∝ exp
(

Ea

RT

(
1−

dp,crit

dp

))
. (6.10)

The result is effectively instantaneous sintering below a critical diameter dp,crit. This form of
the characteristic time has been used in multivariate particle models for silica [150, 156] and
has also been applied to soot modelling [33, 192].

The preceding models considered the evolution of the surface area of an aggregate. In
contrast, the detailed geometrical description used in this work requires the sintering equations
to be formulated in terms of the primary separations and radii. Following Eggersdorfer et al.
[41] (see Chapter 4 for more details), the rate of change in primary centre to neck distance is

dxi j

dt
=−

d4
p

16θAn,i j

(
1

ri− xi j
− 1

ai j

)
, (6.11)

where xi j is the distance from the centre of primary pi to the neck formed with neighbour
p j, An,i j is the neck area, ai j is the neck radius and ri is the radius of the primary pi. The
characteristic time is

θ = 9.11×1017d4
pTAs exp

(
258kJmol−1

RT

(
1−
(

dp,crit

dp

)αcrit
))

s. (6.12)

where we previously introduced a critical diameter dp,crit, with a similar form to that proposed
by Tsantilis et al. [171]. In this work, we introduce an additional prefactor As and critical
exponent αcrit. The effect of these parameters is discussed in Section 6.4.2. The primary
diameter dp is taken as the smaller of the two primary diameters, dp = min(dp(pi),dp(p j)).

It is important to note that the characteristic time defined in Eq. (6.12) for the centre to
neck separation model is not directly comparable to the characteristic times in Eqs. (6.7)–(6.9),
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which are defined with respect to the change in excess surface area. A method of comparison is
discussed in Appendix D.1.

6.4 Results and discussion

This section focuses on the evaluation of the detailed particle model against experimental
results and the parametric sensitivity study. A discussion of the simulated flame profiles and
associated uncertainties is included in Appendix D.2.

6.4.1 Particle temperature-time history

(a) Lean flame (φ = 0.35). (b) Rich flame (φ = 1.67).

Fig. 6.1 Time evolution of mean primary diameter (dashed lines) and collision diameter (solid
lines) for different TTIP loadings for a the lean and b the rich flames. The simulated temperature
profiles (dotted lines) are included for reference.

Figure 6.1 shows the evolution the mean primary diameter and mean aggregate collision
diameter as a function of particle residence time for the six flames, using the base case model
parameters given in Table 6.1. The collision diameter is defined in Eq. (4.16). It should be
noted that this is not equivalent to the aggregate diameter obtained from image analysis that is
used for comparison with the experimental data.

All flames show rapid growth in particle size as the temperature peaks, followed by slower
growth as the temperature begins to decrease. The particles are initially single primaries
– illustrated by the coincident primary and aggregate collision diameters. The subsequent
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deviation of the collision and primary diameters indicates the onset of aggregate formation as
the sintering rate slows sufficiently relative to the rate of coagulation. This happens once the
temperature falls into the 1500–2000 K range, with lower temperatures correlating with smaller
mean particle size. At high temperature, the rapid sintering kinetics in the model cause near
instantaneous coalescence and liquid-like behaviour of colliding particles. The observed range
of transition temperatures is consistent with the melting point depression of nanoparticles [65].
After this point, primary growth effectively ceases and aggregates grow by coagulation.

We observe that the total residence time decreases with increasing maximum flame temper-
ature, and the trend with respect to TTIP loading reverses between the lean and the rich flames.
Meanwhile, the trends in particle size with respect to TTIP loading are consistent across both
flames. The higher loading cases show faster growth in particle size and larger final particle
diameters. Both 30 ml/h cases show very similar particle evolution. However, the evolution of
particles in the 4 ml/h cases differ substantially between the lean and the rich flames. The lean
flame shows a significantly longer period of aggregate growth and larger final particle size as a
consequence of the longer residence time.

6.4.2 Parametric sensitivity

Base case sintering parameters

The sensitivity of the aggregate and primary particle size distributions to three sintering
parameters is investigated: the critical diameter dp,crit, prefactor As, and critical exponent αcrit

(see Eq. (6.12)). The effect of varying each of the parameters on the sintering time is shown in
Fig. 6.2. The characteristic sintering times τs of Kobata et al. [88], Seto et al. [153] and Buesser
et al. [25] (Eqs. (6.7)–(6.9), respectively) are also plotted. As noted in Section 6.3.1, these three
characteristic sintering times cannot be directly compared to Eq. (6.12) (the characteristic time
θ defined for the model used in this study) because the model equations are different (compare
Eqs. (6.6) and (6.11)). To facilitate comparison, we determine a time τs for the present model,
which is consistent with the typical use of Eqs. (6.7)–(6.9) in modelling work. In this case, τs

is defined as the time needed to reduce the excess surface area of two equal sized primaries by
63% and corresponds to τs = 0.14θ (see Appendix D.1).

The characteristic time τs is plotted as a function of primary diameter for two different
temperatures. The temperatures are the minimum and maximum temperatures used in the
molecular dynamics study of Buesser et al. [25]. The base case sintering parameters for this
work (referred to as “sintering model 1”) are chosen to give the best fit to the characteristic time
of Buesser et al. [25] (Eq. (6.9)). These values are: As = 0.25, dp,crit = 2.5 nm and αcrit = 7.
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(a) Prefactor, As = 0.01–10. (b) Critical diameter, dp,crit = 0–4 nm.

(c) Critical exponent, αcrit = 1–7.

Fig. 6.2 Effect of varying each sintering parameter on the characteristic sintering time. The
base case parameters chosen for this study (dotted lines; As = 0.25, dp,crit = 2.5 nm, αcrit = 7)
are a fit to the characteristic time of Buesser et al. [25]. The shaded regions indicate the range
over which the parameter is varied. The characteristic times of Kobata et al. [88] and Seto et al.
[153] are included for reference. T = 1500 K and T = 2000 K are the minimum and maximum
of the range covered by the MD study in [25].
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The shaded regions indicate the range over which the parameter is varied in this sensitivity
study.

Varying the prefactor results in a vertical shift in the characteristic time as shown by the
shaded regions in Fig. 6.2a. The effect of changing the critical diameter, shown in Fig. 6.2b,
changes the location of the asymptote and only affects the sintering time of small particles.
The critical exponent αcrit affects the sharpness of the transition from large particle sintering
behaviour (τs ∝ d4

p) to near instantaneous sintering of small particles. A small exponent such as
αcrit = 1, the lower bound of the shaded regions in Fig. 6.2c, results in a long transition while
larger values of αcrit create a sharper transition near the critical diameter. The consequence
of a long transition is that the sintering time is reduced for particles significantly larger than
the prescribed critical diameter; thus, near instantaneous sintering occurs for particles larger
than the value of dp,crit suggests. For example, Fig. 6.2c shows that the sintering time begins to
deviate from a linear relationship for values of dp that are an order of magnitude greater than
dp,crit.

Simulated and experimental primary and aggregate particle size distributions are shown in
Fig. 6.3 for the six flame conditions. The experimental particle size data, obtained by TEM
image analysis, are from Manuputty et al. [110, Fig. 11]. In the experimental investigation,
primary particle diameters were measured by manually specifying the centre of a sphere and
a point on the circumference. This measure is directly comparable to dp(pi) = 2ri defined
in the particle model. The aggregate size was obtained by measuring the two-dimensional
projected area of each aggregate in the image to determine a projected spherical equivalent
diameter. In order to directly compare our simulation results to this data, similar analysis
was performed on simulated TEM-style images generated from the simulation data using the
procedure described in Appendix B.3. 100 images were generated for each simulation with an
average of 43 particles per image.

PSDs simulated using sintering model 1 are shown by the blue lines in Fig. 6.3. For
comparison, the red lines show PSDs simulated with the sintering parameters used in Chapter 4:
As = 1, dp,crit = 4 nm and αcrit = 1 (henceforth referred to as “sintering model 2”). The
other simulation parameters are summarised in Table 6.1. The simulated aggregate size
distribution are similar for both sets of sintering parameters and are in good agreement with the
experimental data. On the other hand, the primary particle size distributions are considerably
different. Sintering model 1 yields very good agreement with the experimental data, while
sintering model 2 produces a much wider PPSD at lower TTIP loading.

The effect on the width of the PPSD is also evident in the trend displayed by the coefficient
of variation as a function of TTIP loading, plotted in Fig. 6.4. Sintering model 1 produces a
trend that is consistent with the relatively flat trend shown by the experimental data. Model 2,
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Fig. 6.3 Simulated and measured primary and aggregate size distributions for the base case
sintering parameters used in this work (sintering model 1, blue lines) and parameters from
Chapter 4 (sintering model 2, red lines). The experimental data points [110, Fig. 11] are
normalised particle counts with a bin width of 0.5 nm. The lines are from kernel distribution
fits using 1 nm bandwidth. fα denotes the fraction of spherical particles from TEM image
analysis.

however, displays a decreasing trend with a significantly larger CV at low TTIP loading. The
trends observed in the mean primary and aggregate size, and aggregate CV are consistent across
both simulations and in reasonable agreement with the experimental data.

Another useful descriptor of particle morphology is the fraction of particles with circular
projection fα , defined in [110], and shown in Fig. 6.3. The experimental results show a fairly
constant fraction across both TTIP loading and equivalence ratio. In general, sintering model 1
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Fig. 6.4 The primary and aggregate mean diameters and CVs for sintering model 1 (solid
blue lines) and sintering model 2 (dashed red lines), for lean (φ = 0.35, left panels) and rich
(φ = 1.67, right panels) flames. The shaded areas indicate estimated uncertainty bounds of
the experimental measurements and error bars show the simulation uncertainties (see Ap-
pendix D.2).

slightly underpredicts the fraction of spherical particles (except for the 4 ml/h rich flame
case), while model 2 significantly overpredicts the fraction. Overall, simulations with sintering
model 1 are in much better agreement with the experimental data. The largest discrepancy in
fα is seen in the 4 ml/h rich flame case. Sintering model 1 overpredicts the fraction of spherical
particles by 11 percentage points, while model 2 overpredicts the fraction by 33 percentage
points. The difference in predicted particle morphology is apparent in the TEM-style images
presented in Fig. 6.5. Qualitatively, the TEM image produced with sintering model 1 (Fig. 6.5b)
shows the presence of small aggregated particles, in agreement with the experimental TEM
image for the same conditions [110] (Fig. 6.5a), while the TEM image produced model 2
(Fig. 6.5c) shows mostly fully sintered spherical particles.

This underscores the importance of comparing a range of morphological descriptors when
evaluating simulation data against experiment. On the basis of the mean values alone, plotted in
Fig. 6.4, sintering model 2 may have been preferred; however, the CV and fα suggest otherwise.
The sensitivity to each individual sintering parameter and reasons for the observed trends in the
descriptors will be investigated in the next section.
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50 nm

(a) Experimental TEM. (b) Sintering model 1. (c) Sintering model 2.

Fig. 6.5 Experimental TEM (image by Manoel Manuputty) and simulated TEM-style images
for the rich flame (φ = 1.67) with 4 ml/h TTIP loading.

Sensitivity to sintering parameters

Fig. 6.6 Sensitivity to the sintering prefactor As for lean (φ = 0.35, left panels) and rich
(φ = 1.67, right panels) flames. The shaded areas indicate estimated uncertainty bounds of the
experimental measurements.

The sensitivity of the aggregate and primary mean diameter and CV to the sintering prefactor
As are shown in Fig. 6.6. The base case values of the other parameters used in the simulation
are given in Table 6.1. Overall, the descriptors are not particularly sensitive to the sintering
prefactor, considering that it is varied over three orders of magnitude. Notably, the mean
aggregate diameter shows almost no sensitivity to the sintering prefactor. This is unsurprising
since sintering is an internal structural change and the aggregates are composed of a small
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number of primaries; thus, remain fairly compact in all configurations. The general insensitivity
can to some extent be explained by the proximity of the average primary diameter to the critical
diameter. In this region, the characteristic sintering time rapidly becomes less sensitive to the
prefactor, as seen in Fig. 6.2a.

Increasing the prefactor results in a narrower primary distribution with smaller mean size,
but broader aggregate distribution. The effect is slightly more pronounced at higher TTIP
loading due to the larger average particle size, which is farther from the critical diameter.
Smaller As seems to give better agreement with the experimental data in the mean primary size,
but the width of the distribution is overestimated.

Fig. 6.7 Sensitivity to the critical sintering diameter dp,crit for lean (φ = 0.35, left panels) and
rich (φ = 1.67, right panels) flames. The shaded areas indicate estimated uncertainty bounds of
the experimental measurements.

Figure 6.7 shows the sensitivity of the morphological descriptors to the critical sintering
diameter. The mean primary and aggregate size, and aggregate CV are not particularly sensitive.
In contrast, the primary coefficient of variation is sensitive to the choice of critical diameter,
with larger values of dp,crit producing a smaller CV, indicating a narrower PPSD. This is because
the critical diameter imposes an effective lower bound on the size of a primary in an aggregate
(small primaries can of course exist as single particles). Lower TTIP loadings show greater
sensitivity due to the average primary diameter being closer to the critical value. The results
suggest that a value of dp,crit = 4 nm is a better fit to the experimental data.
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Fig. 6.8 Sensitivity to the critical sintering exponent αcrit for lean (φ = 0.35, left panels) and
rich (φ = 1.67, right panels) flames. The shaded areas indicate estimated uncertainty bounds of
the experimental measurements.

The effect of the critical exponent on the mean primary and aggregate diameter and
coefficient of variation is shown in Fig. 6.8. The greatest sensitivity is observed between
αcrit = 1 and αcrit = 3 for lower TTIP loading. This is notable in both CVs and the mean primary
size. In particular, the decreasing trend in the primary CV as a function of TTIP loading changes
to a relatively flat trend, which is more consistent with the experimental data. The reason for this
is the fact that the mean primary size is close to the critical diameter; thus, the sharpness of the
transition (see Fig. 6.2c) from large particle behaviour to instantaneous sintering has a significant
impact on the evolution of the PPSD. For a large value of αcrit, instantaneous sintering only
occurs at the tail of the distribution, thereby resulting in a narrower size distribution. With
αcrit = 1, the sintering rate of large primaries is also increased significantly; thus, the entire
size distribution evolves. The effect is most pronounced for the low TTIP loading cases due
to their lower mean primary size, so more of the PPSD is located in this intermediate region
around the transition.

The simulation results appear less sensitive to values larger than αcrit = 3; therefore,
αcrit = 3 appears as reasonable a choice as αcrit = 7. In any case, a reasonably sharp transition
near the critical diameter is needed to obtain the correct sintering behaviour of particles near
the transition. This is consistent with the fitted value of 3.76 obtained by Buesser et al. [25].
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Their fitted sintering time also included an additional temperature dependence, which is not
considered here.

Inception and surface growth efficiency

Fig. 6.9 The bimodality of the primary particle distributions in lean flames (φ = 0.35) with
varying γsg.

Sensitivity to the inception and growth efficiencies, γin and γsg respectively, was investigated
over the range γ = 0.01–1. A bimodal primary size distribution, shown in Fig. 6.9, was
observed in the lean flame simulations with small γsg. The minor mode of small primaries is
more pronounced in simulations with smaller γsg and lower TTIP loading. The mode arises
due to inception from unreacted Ti(OH)4 near the stagnation surface, which is still present
in the mixture due to very slow consumption by the growth process (see Ti(OH)4 profiles in
Fig. 6.10). No bimodality was seen in the rich flame simulations, possibly due to the higher
reaction temperature increasing the consumption rates. This would also explain why the mode
is less prominent at higher TTIP loading for γsg = 0.1 (see simulated temperature profiles in
Appendix D.2). The bimodality is not present in the modelled aggregate size distributions due
to the small particles falling below the size threshold for image analysis. Given the mode exists
near the resolution limit of the experimental results, the presence of a small particle mode
cannot be completely ruled out in this study.

Sensitivity to the inception and growth efficiencies are shown in Fig. 6.11a and Fig. 6.11b,
respectively. Note that the small particle mode in the γsg < 1 cases is excluded from this
analysis. The results show no sensitivity to either parameter. This is unsurprising if we consider
how the particle processes compete with each other during the early stages of particle evolution.
A particle is first formed by inception and can then grow either through the surface growth
process or by coagulation with other particles. Sintering is effectively instantaneous in the
high temperature region so the particle remains spherical following coagulation; therefore, the
morphology of the particle is not influenced by the particular route taken (see flame profiles in
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Fig. 6.10 Simulated Ti(OH)4 mole fraction for the lean flame (φ = 0.35, left) and rich flame
(φ = 1.67, right) at 12 ml/h TTIP loading, with γsg = 0.01 and γsg = 1.

Fig. 6.1). Inception and growth are competing for the same gas-phase species so adjusting the
collision efficiency of one process primarily affects the relative rates. The overall rate remains
sufficiently rapid (except for the lean flame with very small γsg) to consume the precursor
before aggregate formation and sintering become significant; thus, the final morphology is
unaffected.

These results appear to contradict observations in earlier modelling studies, which reported
significant sensitivity to the rate of surface reaction [108, 172]. However, the observations
at the stagnation surface do not give the full picture. Figure 6.12 shows the evolution of the
mean primary diameter as a function of particle residence time. In the high temperature region,
the mean primary diameter displays a high degree of sensitivity to both γin and γsg. As the
temperature decreases near the stagnation surface, the different cases begin to converge towards
the same final diameter, explaining the previously observed insensitivity. This is especially
apparent in the rich flame (φ = 1.67) simulations, but not as clear in the lean flame simulations
due to the formation of the small particle mode, which causes a decrease in the mean diameter
near the stagnation surface.

The behaviour seen here is consistent with the findings of Tsantilis et al. [172], who, for a
premixed flat flame, found that the sensitivity to the surface reaction could only be observed
from measurements made near the burner. Further along the flame, the mean primary diameter
was found to be much less sensitive to the surface reaction due to the dominance of coagulation.
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(a) (b)

Fig. 6.11 Sensitivity to the (a) inception efficiency γin and (b) surface growth efficiency γsg
for lean (φ = 0.35, left panels) and rich (φ = 1.67, right panels) flames. A cutoff point of
2.5 nm is applied here for primary particle sizes to remove the first distribution mode observed
for lean flames with γsg < 1. The shaded areas indicate estimated uncertainty bounds of the
experimental measurements.

Summary

A summary of the parameters studied is provided in Table 6.1. The base case value, range
over which the parameter was varied, and an indication of the observed sensitivity are given.
Sensitivity analysis for the collision enhancement factor ε and density ρTiO2 is presented in
Appendix D.3. The base case value for the enhancement factor was taken as ε = 2.64 [196]
and density is that of anatase ρTiO2 = 3.84 g/cm3.

Overall, the particle morphology was found to be most sensitive to the choice of sintering
parameters; in particular, the critical diameter and critical exponent due to the proximity of
the average particle size to the critical size. Furthermore, the analysis suggested a larger value
for the critical diameter dp,crit = 4 nm, and a smaller value for the critical exponent αcrit = 3
would be more appropriate. These are consistent with results from molecular dynamics studies
[25]. The mean aggregate size was not affected by any of the three sintering parameters. This
is unsurprising since the sintering process is an internal structural change.
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(a) Lean flame (φ = 0.35), 12 ml/h TTIP load-
ing.

(b) Rich flame (φ = 1.67), 12 ml/h TTIP load-
ing.

Fig. 6.12 Evolution of mean primary size for different values of γin and γsg as a function of
particle residence time. The temperature profile is included for reference.

The sensitivity analysis of the inception and surface growth parameters suggests that the
final PSD at the stagnation surface is largely insensitive to the reaction mechanisms governing
particle evolution early on in the flame. Experimental measurements from inside the combustion
zone would be needed to discriminate between different models and parameters. A bimodal
distribution at very small γsg was observed in the lean flame simulation; but, the small particle
mode was too near the resolution limit of the experimental results to draw conclusions from the
comparison.

Slight sensitivity was shown to the collision enhancement factor over the range studied, as
expected, but not enough to discriminate between different values. It should be noted that the
collision efficiency of titania nanoparticles has been shown to be strongly size and temperature
dependent [155, 196], and necessitates a more detailed investigation.

6.5 Conclusions

In this chapter, we simulated the synthesis of titanium dioxide nano-aggregates from TTIP
precursor in a premixed stagnation flame using a new detailed population balance model
and two-step simulation methodology. A detailed chemical mechanism was used to describe
the thermal decomposition of TTIP. Six flame cases from the experimental investigation of
Manuputty et al. [110] were simulated: a lean and a rich flame, each at three different precursor
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loadings. The detailed description of particle morphology in the population balance model was
used to make direct comparisons with experimental measurements of primary and aggregate size
distributions. Simulated TEM-style images were analysed in an identical manner to the original
experimental procedure to obtain an aggregate size distribution based on the projected particle
area; and the modelled primary particle size distribution was compared to the corresponding
PPSD obtained from TEM image analysis in the experimental work. The simulated primary
and aggregate particle size distributions were in excellent agreement with the experimental
data.

The ultra-fine particles produced by the stagnation flame provided an excellent test case to
investigate the characteristic sintering time of very small particles. New sintering parameters,
informed by the molecular dynamics simulations of Buesser et al. [25], were introduced into the
model to account for the faster sintering behaviour of nano-sized particles. Three parameters
were considered: a multiplicative prefactor; a critical diameter below which sintering becomes
effectively instantaneous; and a critical exponent to control the transition from the large particle
to small particle sintering behaviour. Simulation results with the new sintering parameters
significantly improved the agreement with the experimental data, compared to parameters used
in a previous work.

A parametric sensitivity study was performed to investigate the importance of individual
model parameters. Particle morphology was found to be most sensitive to the critical sintering
diameter and critical exponent, demonstrating the need to give careful consideration to the
form of the characteristic time when the average particle size is at the transition from large
particle sintering behaviour to the near instantaneous coalescence of nano-sized particles. Other
model parameters, notably the inception and growth efficiencies, were found to not affect the
final particle properties, despite the simulations showing significant sensitivity to these two
parameters in the combustion zone. In a future work, it would be insightful to compare model
prediction with experimental measurements from the combustion zone, and to investigate the
effect of temperature and particle size on the collision efficiency.



Chapter 7

Conclusions

This final chapter presents a review of the findings of this thesis and makes suggestions for
further development of the titanium dioxide model.

7.1 Summary

This thesis began by exploring whether the morphological information captured by an existing
detailed particle model could be used to relate the structure of aggregate particles to their be-
haviour in a post-synthesis milling process. In Chapter 3, five breakage models were developed
and used to post-process hot wall reactor simulation data. Breakage was assumed to occur at the
necks between primary particles with breakage forces applied through the fractal structure of
the aggregate. The work demonstrated that the particle model is able to resolve morphological
differences between particles synthesised under different reactor conditions and the breakage
models exhibited behaviour qualitatively consistent with experimental observations and showed
a degree of sensitivity to particle structure. Further work is needed to compare the model
against experimental results. Given the nature of the post-process, an obstacle to performing a
quantitative comparison is the need for details of both the particle synthesis conditions as well
as the subsequent milling conditions.

More importantly, however, the work identified a number of limitations in the existing
particle model. For example, the lack of geometrical detail about the necks between primaries
and sintering was considered for each pair of neighbouring primaries separately without
accounting for the presence of other neighbours. Furthermore, while the model captured the
connectivity of primary particles in an aggregate it did not track their spatial positions. This
required the introduction of additional assumptions in order to visualise aggregate particles and
calculate their properties e.g. collision diameters.
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A new geometrical particle model was introduced in Chapter 4 to address these limitations.
The overlapping spheres model allows us to track the coordinates of each individual primary
particle and the necks between them, while accounting for the effect of increasing overlap on
the primary diameter. The new model incorporates sufficient physical detail to relate particle
processes to specific morphological transformations and permits the accurate visualisation
of simulated particle morphology, for example in TEM-style images. The implementation
of a ballistic collision model to generate fractal-like structures removed the need to make an
assumption about the fractal dimension and prefactor when calculating the particle radius of
gyration and collision diameter.

A numerical study was conducted using a simple batch reactor test case to investigate
the convergence behaviour of the new model. Convergence was achieved in key ensemble
properties with a feasible number of stochastic particles and in reasonable CPU time. A hot wall
reactor experiment producing TiO2 particles from TTIP precursor was simulated. Under the
simulated conditions, the chosen chemical mechanism and collision species gave incomplete
conversion to TiO2. Nevertheless, the simulated PSD was observed to be sensitive to the
coagulation efficiency and the critical sintering diameter.

In order to develop our understanding of the titania system and evaluate the performance
of the model it is necessary to combine simulations with experiments. The high-dimensional
nature of the model and use of the stochastic method requires a post-processing method to
apply the detailed particle model to flame simulations where particle transport is considered.
An existing post-processing method was found to be inadequate for stagnation flames due to
the strong temperature gradient near the stagnation surface. Inspecting the model equations
showed that the effect of thermophoresis could not be accounted for in the post-processing
methodology. A thermophoretic correction was therefore introduced in Chapter 5 to address
this problem. The thermophoretic correction was shown to improve the agreement between
the particle number moments obtained from the post-processing step with those from a fully
coupled simulation by orders of magnitude.

Finally, the new titanium dioxide particle model and post-processing methodology were
combined with a detailed chemical mechanism for the thermal decomposition of TTIP and used
to simulate a stagnation flame experiment. The experimental investigation included detailed
characterisation of particle morphology. A comprehensive evaluation of the model against
these experimental results and a parametric sensitivity study was performed in Chapter 6. The
particle model permitted comparison of quantities obtained from experimental TEM images
with identical quantities obtained from simulated TEM-style images. The model was found to
give excellent agreement with experimental data and the work identified the importance of the
form of the characteristic sintering time on the formation of nano-aggregates. Most importantly,
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the study demonstrated the benefits of a detailed model framework that are not available with
simpler models. For example, the ability to simulate quantities that are directly comparable
with experimental measurements and the flexibility to study individual process sub-models.

7.2 Review and suggestions for future work

An immediate area for further work is further application of the particle model and stagnation
flame methodology to simulate more experiments in order to improve and calibrate the model.
Extension of the model and application to different systems should also be considered. Work is
already being done in this area. The model was recently extended to investigate the formation
of the anatase and rutile crystal phases in flames [111]. The detailed titania model is also being
applied in simulations of the synthesis of titanium dioxide in industrial reactors [20]. Moreover,
the model framework and post-processing methodology has been used to study formation of
soot in stagnation flames [73].

Over the course of this work and in the process of reviewing it, a few areas for development
of the particle model were identified. The sections below take a critical look at those areas and
make suggestions for further improvement of the model.

7.2.1 Improving the particle model

The new detailed particle model introduced in Chapter 4 is built on two key assumptions:

1. Neck cross-sections are circular;

2. Neighbours are determined by the binary tree connectivity.

In addition, the implementation of the model inherited the binary tree data structure from the
existing framework. This relates to the second assumption. Despite offering computational
efficiencies, it is clear that the binary tree cannot represent all particle structures and a different
method of storing primary connectivity information should be implemented.

Furthermore, exact methods for calculating the volumes and surface areas of a collection
of spheres with multiple overlaps exist [26]. Implementation of such a method would re-
move the first assumption. This is particularly important for dense aggregates composed of
many primaries. However, the computational expense of such a method should be carefully
considered.
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7.2.2 Extending the particle model

The possibility of extending the type space composition variable was briefly discussed in
Section 4.3.1. For instance, to model the crystal phase composition of particles. This could be
as simple as tracking the number of anatase and rutile units in a primary and adding a phase
transformation process to the model. Alternatively, if the importance of oxidation state is being
investigated, as in [111], the primary composition can be further decomposed into the number
of Ti and O atoms in each phase. A similar approach was taken by Shekar et al. [156] to model
silica, where the number of Si, O and OH groups was important.

A potential consideration is further extension of the model to include another layer of
depth, for example, by including a description of the crystal grain structure within each primary
particle. An analogous approach has been taken for soot through the development of the
PAH-PP model by Sander et al. [149], which incorporates a detailed description of the PAH
composition of each primary particle. In the model, the structure and growth of individual
PAHs is described by a kinetic Monte-Carlo aromatic site (KMC-ARS) model [31, 143]. Before
embarking on such an approach, it is first important to improve and calibrate the current model
and build up an understanding of its limitations. The utility of incorporating additional detail
should be determined first with investigations using simple extensions of the type space, as
discussed in the previous paragraph, to avoid incorporating unnecessary complexity.

7.2.3 The value of a detailed model

As well as improving and extending the particle model it is also important to ask how much
detail is enough or even too much. Future work should think carefully about the desired degree
of detail and balance this with a consideration of computational expense and the feasibility of
coupling the particle model to the rest of the system being studied i.e. the chemical, reactor
and flow models. Particularly important is developing an understanding of the actual accuracy
gained from a detailed particle description when considered in conjunction with approximations
necessary to implement it. For instance, Chapter 5 developed a post-processing method to
introduce a detailed particle model to the modelling of nano-aggregates in a stagnation flame.
While this increased the degree of detail in the simulations, it also introduced new sources of
error and uncertainty. Such as the one-way coupling to the gas-phase in the second step, which
assumes that the effect of the particles is already accounted for by the simple particle model
used in the first step, and the inability to account for all transport effects in the second step;
namely, diffusion.

The first, fully-coupled simulation step is also not without uncertainties, for example,
inherent assumptions and approximations in the method of interpolative closure, the pseudo
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one-dimensional flow approximation, and the simple particle model etc. These errors are
propagated into the results of the second simulation. An earlier discussion warned of using
an over-simplified model to interpret experimental data; it also worth warning of the risk
of increasing the apparent level of detail without actually improving accuracy. In certain
circumstances, simpler models, which are easier to apply, may be adequate for a particular
investigation. Future work should focus on further understanding and reducing sources of
uncertainty in the methodology (as was done with the introduction of the thermophoretic
correction in Chapter 5). Equally important is to improve and calibrate the individual sub-
models – the gas-phase chemistry and particle processes – ideally using simple test cases that
reduce the need to introduce approximations and assumptions into the simulation.

Often the application of a model and comparison with experimental data involves some
degree of parameter fitting. This, however, should be done with caution. The uncertainty in a
fitted parameter obtained from a complex simulation, involving many coupled models, can be
substantial. Moreover, the specific value of a fitted parameter may only be appropriate to the
particular system and conditions being simulated. What is more useful, in the author’s opinion,
are sensitivity studies used to understand the influence of model parameters and the importance
of individual processes on particle evolution. Such studies can be used to test hypotheses
and direct subsequent modelling efforts with model refinement or even simplification where
appropriate.

That is not to say that parameter fitting is unnecessary, just that the value assigned to a
parameter be treated with caution. In fact, most important in developing a detailed model for
the formation of titanium dioxide is evaluation and calibration of the process models against
experimental data. A model is of little use if the relative rates of competing processes are
incorrect and do not accurately represent the morphological evolution of a particle. Future work
should attempt to focus on individual processes and ensure that they are correctly calibrated. Of
course, the difficulty is in obtaining experimental data to calibrate against because it is difficult
to study individual processes in isolation.

Gas-phase chemistry

It is worth briefly touching on the gas-phase chemical reaction models used in this thesis.
In particular, the TTIP decomposition model and choice of collision species for particle
inception and growth processes. In this thesis, Ti(OH)4, the main decomposition product in
the mechanism of Buerger et al. [23] was used as the collision species. The stagnation flame
simulations showed near complete conversion of TTIP to TiO2 and the study in Chapter 6
showed that the final PSDs were largely insensitive to the efficiencies of the inception and
growth processes, suggesting that the choice of Ti(OH)4 was appropriate and adequate.
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Recent work by shows Ershov et al. [47] suggests that other pathways, not considered
in [23], are also important. Thus, further investigation and development of the model, in
particular, a study of particle evolution in the combustion zone, should consider updated
chemistry and explore the involvement of other gas-phase species in particle inception and
growth processes. This is particularly important given the incomplete conversion of TTIP to
TiO2 particles observed in the hot-wall reactor simulations of Chapter 4.

One advantage of using detailed chemistry, as opposed to a simple one-step reaction, is
the ability to test a variety of particle inception and growth mechanisms. For example, the
importance of different gas-phase species, as mentioned above, or more complex growth
reactions. The TiCl4 model in Chapter 3 considered a very simple single step growth reaction.
Earlier work by Shirley et al. [158] suggested an Eley-Rideal model is appropriate. The detailed
model framework with detailed chemistry would allow these to be explored.



Appendix A

Collaboration in this thesis

Elements of this thesis form part of a collaborative effort with Manoel Manuputty to investigate
the formation of titanium dioxide nano-aggregates through a combination of experiments
and simulations. Specifically, the aim was to simulate the formation of TiO2 aggregates in a
stagnation flame experiment using a detailed particle model. This is done in Chapter 6 using
the model and methods developed by the author in Chapters 4 and 5.

The investigation presented in Chapter 6 was designed in collaboration. The following
elements of the investigation were performed by Manoel Manuputty:

• The experimental work (previously published in [110]).

• The work associated with the first simulation step i.e. the fully coupled simulation with
gas-phase chemistry, flow model and spherical particle model solved using method of
moments with interpolative closure (MoMIC), based on the framework published in
[108].

• Development of the image analysis script (for the previous experimental investigation
[110]).

• Creation of plotting scripts for figures with experimental data: Fig. 6.3, Fig. 6.4, Fig. 6.6,
Fig. 6.7, Fig. 6.8, Fig. 6.9, Fig. 6.11a, Fig. 6.11b, Fig. D.2, Fig. D.3, Fig. D.4 and
Fig. D.5.

In addition, Manoel Manuputty also performed the first-step simulations used in Chapter 5.
The second simulation (the detailed model post-process), sensitivity study with focus on the
sintering parameters, which are solely a component of the detailed particle model, and the
write-up presented in Chapter 6 were done by the author.
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Algorithms

B.1 Direct simulation Monte-Carlo

The direct simulation algorithm discussed in Section 2.2.2 is presented in Algorithm 2. The
Linear Process Deferment Algorithm (LPDA) [137] is employed for all single particle processes,
for example, sintering, surface growth and condensation. The majorant kernel and fictitious
jumps, and ensemble contractions and doublings are performed as discussed in Section 2.2.2.
The method of selecting particles is discussed by Patterson et al. [138].
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Algorithm 2: Direct simulation Monte-Carlo.

Input: State of system Q0 at t0; Final time tf.
Output: State of system Qf at tf.
begin

Q← Q0;
t← t0;
while t < tf do

Calculate total rate of non-deferred processes:

Rtot(Q) = ∑
m

Rm(Q),

with m ∈ {inc,cg} and where Rcg = R̂cg(Q);
Calculate an exponentially distributed waiting time:

τ =− lnU
Rtot

,

where U is a uniformly distributed random variable, U ∈ [0,1];
Select a process with probability:

P(m) =
Rm(Q)

Rtot(Q)
;

if m = inc then
/* This is an inception event */
Create a new particle PN and add it to the ensemble;
if N > Nmax then

Uniformly remove a particle;
Contract ensemble;

end
else

/* This is a coagulation event */
Select two particles Pq and Pr;
Calculate majorant for two particles: K̂tr

cg(Pq,Pr);
Perform deferred processes for Pq and Pr;
Calculate true kernel for the two particles: Ktr

cg(Pq,Pr);
With probability

P =
Ktr

cg(Pq,Pr)

K̂tr
cg(Pq,Pr)

,

perform BCCA coagulation: Pq +Pr→ Ps;
if N < Nmax/2 then

Double the ensemble;
end

end
t← t + τ;

end
Perform deferred processes for all particles;
return Q

end
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B.2 Detailed particle model algorithms

Algorithms for the particle process models developed in Chapter 4 are described here.

B.2.1 Ballistic cluster-cluster aggregation

The implementation of the ballistic cluster-cluster aggregation with a random impact parameter
(BCCA) described by Jullien [81] is shown in Algorithm 3. Particle rotations are performed
using the method proposed by Arvo [8] and particle bounding spheres are calculated using the
method proposed by Ritter [146]. Sphere point picking is performed as per Weisstein [179].
Note: φ is the azimuthal angle and θ is the polar angle.

B.2.2 Diffusion limited cluster aggregation

The implementation of diffusion limited cluster aggregation is shown in Algorithm 4. Particle
rotations are performed using the method proposed by Arvo [8] and particle bounding spheres
are calculated using the method proposed by Ritter [146]. The Brownian step size is taken as
the average primary diameter dp, and the collision is deemed to fail if the particle separation
exceeds twice the sum of the bounding sphere radii. Sphere point picking is performed as per
Weisstein [179]. Note: φ is the azimuthal angle and θ is the polar angle.

B.2.3 Surface adjustment

A surface adjustment as a results of a condensation event is performed according to Algorithm 5.
Note that we assume a primary is composed solely of discrete units of TiO2. Therefore, a
redistribution of composition (mass) between primaries only takes place if the volume change
of the neighbour is sufficiently large. This can lead to some deviation between the volume
derived from the composition

vi =
ηTiO2,iMTiO2

ρTiO2NA
, (B.1)

and the volume derived from the primary geometry

vi =
4
3

πr3
i −

1
3

π ∑
j
(2r3

i + x3
i j−3r2

i xi j). (B.2)

The system, however, is to some extent self-correcting due to two processes. First, the movement
of a neck during a surface adjustment will to a certain degree be offset by an opposing change
during a possible future surface adjustment to the other primary. Second, the need to redistribute
mass is eliminated by the merger of the two primaries during a coalescence event. Furthermore,
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the likelihood of the primaries coalescing is increased with more surface growth of one primary
at the expense of the other.

B.2.4 Sintering

Sintering is performed on a particle Pq using Algorithm 6. Where two primaries are in point
contact (i.e. their neck area is An,i j = 0 ) the sintering rate is undefined. In this case, we assume
a neck radius of 1% of the smaller primary radius, ai j = min(ri,r j)/100.

B.2.5 Coalescence

Neighbouring primaries pi and p j in a particle Pq are merged according to Algorithm 7, once
the sintering level (Eq. (4.36)) exceeds si j ≥ 0.95. The sintering level is defined while the neck
remains between the primary particle centres and the primaries are merged if the neck leaves
this region.
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Algorithm 3: Ballistic cluster-cluster algorithm with a random impact parameter.

Input: Particles Pq and Pr chosen for coagulation.
Output: Daughter particle Ps.
begin

Randomly rotate Pq and Pr around their centres of mass (using [8])
Calculate the bounding spheres rb(Pq) and rb(Pr) (using [146])
Centre the bounding spheres at the origin
repeat

/* Determine random trajectory */
Uniformly select a point G1(θ ,φ) on a unit sphere (using [179]):

φ = 2πU and θ = arccos(2U−1),

where U is a uniformly distributed random variable;
Construct a rotation matrix R that rotates the vector (0,0,−1) to the point G1;
/* Determine random impact parameter */
Uniformly select a point:

G2 = (R
√

r cosθ ,R
√

r sinθ ,−R),

on a disk of radius R = rb(Pq)+ rb(Pr) centred on (0,0,−R) in the z =−R
plane with r =U , and θ = 2πU , where U is a uniformly distributed random
variable;

/* Set initial positions */
Apply the rotation to G2 giving a new point G3 = RG2 ;
Place particle Pr at point G3;
Place particle Pq at O = (0,0,0);
/* Perform the collision */
while No point of contact do

Translate Pr along a vector parallel to G1O by distance R/100;
Check for contact;
if Pr has passed through the bounding sphere of Pq then

/* This is an unsuccessful collision */
Break;

end
end
if Single point of contact then

/* This is a successful collision */
New particle Ps created by connecting the binary trees of Pq and Pr at a new
head node;

Contacting primaries pi and p j connected at the new head node;
return New particle Ps

end
until Successful collision

end
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Algorithm 4: Diffusion limited cluster aggregation algorithm.

Input: Particles Pq and Pr chosen for coagulation.
Output: Daughter particle Ps.
begin

Randomly rotate Pq and Pr around their centres of mass (using [8])
Calculate the bounding spheres rb(Pq) and rb(Pr) (using [146])
Centre the bounding spheres at the origin
repeat

/* Determine random trajectory */
Uniformly select a point on a sphere G1(R,θ ,φ) (using [179]), with:

φ = 2πU and θ = arccos(2U−1),

where U is a uniformly distributed random variable;
and R = rb(Pq)+ rb(Pr);
/* Set initial position of Pr */
Place Pr at G1(R,θ ,φ);
/* Brownian steps of size dp(Pr) */
while No point of contact do

Generate a random trajectory G2(∆x,∆y,∆z):

∆x = dp cosφ sinθ , ∆y = dp sinφ sinθ , ∆z = dp cosθ ,

with
φ = 2πU and θ = arccos(2U−1);

Translate Pr along the random trajectory G2;
Check for contact;
if Separation of Pr and Pq is greater than 2R then

/* This is an unsuccessful collision */
Break;

end
end
if Single point of contact then

/* This is a successful collision */
New particle Ps created by connecting the binary trees of Pq and Pr at a new
head node;

Contacting primaries pi and p j connected at the new head node;
return New particle Ps

end
until Successful collision

end
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Algorithm 5: Surface growth

Input: Particle Pq; Number of units of TiO2 added ∆η

Output: Particle Pq
begin

Select a primary pi in particle Pq with probability

P(pi) =
Ai

∑
np(Pq)
j=1 A j

;

Save old volume and radius: vi,old← vi and ri,old← ri;
Update primary composition: ηi← ηi +∆η ;
Calculate new volume, vi;
while vi,old < vi do

/* Primary radius increased in 1% increments */
∆r← ri/100;
∆v← Ai∆r;
if vi,old +∆v > vi then

∆r←
(vi− vi,old)

∆v
∆r;

end
Increase radius: ri← ri +∆r;
Update free surface area, Ai;
vi,old← vi,old +∆v;

end
/* Redistribution of composition between neighbours */
foreach Neighbour p j of pi do

Estimate change in volume of p j:

∆v j←−An,i j
ri,old

di j

(
ri− ri,old

)
;

Calculate (integer) change in composition of p j:

∆η j←
∆v j

MTiO2/(ρTiO2NA)
,

rounded down to the nearest integer;
if |∆η j|> 0 then

Update the composition of p j: η j← η j +∆η j;
Update the composition of pi: ηi← ηi−∆η j;

end
end
return Pq

end
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Algorithm 6: Sintering

Input: Particle Pq; Time to sinter particle ts
Output: Particle Pq
begin

foreach Neck between two primaries pi and p j in particle Pq do
∆di j,max← di j/100;
t← 0;
while t < ts do

Calculate sintering rate: ddi j
dt (Eq. (4.26));

Calculate time step:

∆t←
∆di j,max

ddi j
dt

;

if ts > t +∆t then
λ ← 100;

else

λ ← 100
(tsint− t)
∆di j,max

ddi j

dt
;

end
Generate a Poisson random variate X with mean λ ;
Calculate change in separation:

∆di j =−
X

100
∆di j,max;

∆di j =−∆di j
x j−xi

|x j−xi|
;

Adjust centre to centre separation: di j← di j +∆di j;
/* Only need to adjust the coordinates of primaries on one

side of the neck, in this case pi. */
Translate primary pi: xi← xi +∆di j;
Translate neighbours (pi; p j; ∆di j);
Compute change in radii using Eq. (4.35): ∆ri and ∆r j;
Adjust connectivity (pi; p j; ∆ri);
Adjust connectivity (p j; pi; ∆r j);
Update primary radii:

ri← ri +∆ri

r j← r j +∆r j

Update properties of primaries pi and p j;
t← t +∆t;
if Coalescence condition is met then

Merge primaries pi and p j;
Break;

end
end

end
end
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Algorithm 6: Sintering Cont.

/* Translates all the neighbours of a primary pi by ∆di j, except for
neighbour p j */

Function Translate neighbours (Primary pi; Neighbour p j; Translation ∆d)
foreach Neighbour pk of pi, except for primary p j do

Translate pk by ∆d;
xk← xk +∆d;

/* Recursively translate the neighbours of pk, except for
primary pi */

Translate neighbours (Primary pk; Neighbour pi; Translation ∆d);
end

/* Update centre to centre separations and coordinates of
neighbours pk of primary pi except for neighbour p j */

Function Adjust connectivity (Primary pi; Neighbour p j; ∆ri)
foreach Neck between primary pi and neighbour pk, except for primary p j do

Calculate change in separation (Eq. (4.31)):

∆dik =
ri

xik
∆ri;

∆dik = ∆dik
xk−xi

|xk−xi|
;

Translate neighbour to update centre to centre separation:

dik← dik +∆dik;
xk← xk +∆dik;

Translate neighbours (Primary pk; Neighbour pi; Translation ∆dik);
end
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Algorithm 7: Merger

Input: Particle Pq; Primaries pi and p j to merge
Output: Particle Pq with merged primary pi,new
/* We assume that pi is the larger primary: ri > r j */
begin

Solve Eq. (4.38) for the new merge primary radius of ri,new;
Update the composition of pi: ηi,new = ηi +η j;
foreach Neck between pi and neighbour pk except p j do

xki =
d2

ik− r2
i + r2

k
2dik

;

∆dik = max
(

xki±
√

x2
ki− r2

k + ri,new

)
−dik;

∆dik = ∆dik
xk−xi

|xk−xi|
;

Translate neighbour pk:

dik← dik +∆dik;
xk← xk +∆dik;

Translate neighbours (Primary pk; Neighbour pi; Translation ∆dik);
/* The function Translate neighbours is defined in

Algorithm 6 */
end
foreach Neck between p j and neighbour pl except pi do

xl j =
d2

jl− r2
j + r2

k

2d jl
;

∆dil = max
(

xl j±
√

x2
l j− r2

l + ri,new

)
−dil;

∆dil = ∆dil
xl−xi

|xl−xi|
;

Translate neighbour pl:

dil ← dil +∆dil;
xl ← xl +∆dil;

Translate neighbours (Primary pl; Neighbour p j; Translation ∆dil);
end
ri← ri,new;
Remove primary p j and restructure binary tree ;
Update particle properties;
return Pq

end
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B.3 TEM images

A simulated TEM-style image is produced using Algorithm 8.

Algorithm 8: TEM images

Input: Ensemble Q; Frame size 2xmax×2ymax; Particles per frame N; Number of
images nf

Output: nf TEM images
begin

for nf frames do
for N particles do

Uniformly select a particle Pq from ensemble Q;
Randomly rotate Pq around its centres of mass using the method descibed by
Arvo [8];

Generate (x,y) coordinates uniformly in the image plane with
−xmax ≤ x≤ xmax and −ymax ≤ y≤ ymax;

Position Pq in the image plane with its centre of mass at (x,y);
Project Pq into the image plane;
Remove Pq from the ensemble;

end
end

end
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Appendix to Chapter 4

C.1 BCCA with uniform particle selection

A test case was created in which particles are uniformly selected for collision from the particle
ensemble. The test case was initialised with a population of 4096 monodisperse spherical
particles with diameter dp = 1.81 nm. The simulation was repeated 8 times producing a total
of 16667 particles with a median of 172 primaries per particle.

The data and a least squares fit to a subset of the data with np ≥ 16 are shown in Fig. C.1a.
Figure C.1b shows how the fitted values of Df and kf vary as function of the minimum number
of primaries per aggregate np,min. Both Df and kf display similar behaviour with respect to
np,min as the free-molecular case.

The fractal dimension Df obtained in Fig. C.1a (Df = 1.91±0.01) is in good agreement
with the value obtained by free-molecular collisions and the values reported by Jullien [81]
and Eggersdorfer and Pratsinis [42]. The fractal prefactor, however, is lower (kf = 1.19±0.03)
than that obtained by selection based on the free-molecular kernel in Section 4.4.1.

C.2 Diffusion Limited Cluster Aggregation

Diffusion limited cluster aggregation is simulated using the algorithm described in Appendix B.2.2.
A simple test case was created to determine the average fractal dimension generated by the
algorithm. A zero-dimensional batch reactor was simulated with an initial population of 4096
monodisperse spherical particles with diameter dp = 1.81 nm (corresponding to 100 units of
rutile). Particles were allowed to coagulate in the slip-flow regime with no other processes
turned on and the simulation was repeated 8 times.
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(a) (b)

Fig. C.1 BCCA with uniform selection of particles for collision. (a): estimate of fractal
dimension and prefactor by least squares fit to aggregates with np ≥ 16; the result reported by
Eggersdorfer and Pratsinis [42] is included for reference; error bars indicate the confidence
interval with P = 0.999. (b): fractal dimension and prefactor as a function of np,min with
P = 0.999 confidence intervals. The error bars increase with increasing np,min due to the
smaller sample size.
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(a) (b)

Fig. C.2 DLCA with particle selection based on the slip-flow kernel. (a) estimate of fractal
dimension and prefactor by least squares fit to aggregates with np ≥ 16; the result reported by
Eggersdorfer and Pratsinis [42] is included for reference; error bars indicate the confidence
interval with P = 0.999. (b) fractal dimension and prefactor as a function of np,min with
P = 0.999 confidence intervals. The error bars increase with increasing np,min due to the
smaller sample size.
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The fractal dimension Df and pre-factor kf were estimated by fitting the standard fractal
relationship to the data as described for BCCA in Section 4.4.1. The data and a least squares
fit to a subset of the data (particles with np ≥ 16) are shown in Fig. C.2a. Figure C.2b shows
how the fitted values of Df and kf vary as function of the minimum number of primaries per
aggregate np,min included in the fit. Sensitivity to np,min is not observed in Fig. C.2b due to the
tighter clustering of the simulation data compared to the BCCA case. Very few particles with
np < 16 are observed.

The values obtained in Fig. C.2a (Df = 1.81± 0.02 and kf = 1.29± 0.07) are in good
agreement with the results reported by Eggersdorfer and Pratsinis [42] (Df = 1.79±0.03 and
kf = 1.40±0.12) and Jullien et al. [82] (Df = 1.78±0.05, kf not reported).

C.3 Growth model equations for 1D and 2D particle
models

C.3.1 Constant growth

Spherical particle

For a constant rate of growth β , the time evolution of the particle volume is

V (t) = β t +V0, (C.1)

and the surface area and radius of a single sphere are:

S(t) = 4π

(
3

4π
(β t +V0)

)2/3

, (C.2)

r(t) =
(

3
4π

(β t +V0)

)1/3

. (C.3)

Spherical primaries in point contact

np,0 primaries of radius rp,0 are assumed to remain in point contact during growth. The surface
area and primary radius evolve according to:

S(t) = 4πnp,0

(
3

4πnp,0
(β t +V0)

)2/3

, (C.4)

rp(t) =
(

3
4πnp,0

(β t +V0)

)1/3

, (C.5)
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where the initial aggregate volume and surface area are:

V0 =
4
3

πr3
p,0np,0, (C.6)

S0 = 4πr2
p,0np,0. (C.7)

C.3.2 Collision limited growth

Assuming a collision limited, condensation-like growth process in the free-molecular regime,
the growth rate is (cf. Eq. (4.17))

dV
dt

= β r2
c , (C.8)

for some constant β and where rc is the collision radius.
The model equations for three simple models are given below: a spherical particle model,

and a surface-volume model with and without particle rounding. The latter case corresponds to
np,0 primary particles that remain in point contact.

Spherical particle

A spherical particle with collision radius equal to the spherical radius grows as

r = r0 +
β

4π
t, (C.9)

where r0 is the initial radius of the spherical particle.

Surface-volume model without rounding

The initial volume and surface area are given by Eqs. (C.6) and (C.7), and the collision radius
[114] is

rc = rpn1/Df
p . (C.10)

Equation C.8 is integrated to give the time evolution of the primary diameter

rp = rp,0 +
β

4π
n2/Df−1

p t, (C.11)

from which the surface area and volume can be derived.
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Surface-volume model with rounding

A two-dimensional surface-volume model is considered. The average primary radius and
number of primaries are [136]:

rp =
3V
S
, (C.12)

np =
S3

36πV 2 , (C.13)

and the collision radius is given by Eq. C.10, which is expressed in terms of the surface area
and volume:

rc =
3V
S

(
S3

36πV 2

)1/Df

. (C.14)

Rounding is treated as per Patterson and Kraft [136]:

dS
dV

= 4
(

π

S

)1/2
. (C.15)

Finally, the model equations for the particle volume and surface area can be expressed as

dV
dt

= β

(
3V
S

(
S3

36πV 2

)1/Df
)2

, (C.16)

dS
dt

=
dS
dV

dV
dt

, (C.17)

= 4β

(
π

S

)1/2
(

3V
S

(
S3

36πV 2

)1/Df
)2

. (C.18)

C.3.3 Surface area dependent growth

A growth rate proportional to the particle surface area is assumed:

dV
dt

= βS, (C.19)

for some constant β . The model equations are given for the same three particle models as in
the previous case of collision limited growth.
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Single sphere

The radius of single spherical particle evolves as

r = r0 +β t, (C.20)

where r0 is the initial particle radius.

Surface-volume model without rounding

For primary particles in point contact the primary radius evolves as

rp = rp,0 +β t. (C.21)

Surface-volume model with rounding

The average primary radius and number of primaries are given by Eqs. (C.12) and (C.13). The
model equations are

dV
dt

= βS, (C.22)

dS
dt

= 4β
√

πS, . (C.23)

These equations can be solved analytically:

V =
1

6
√

π

(
2
√

πβ t +2
√

πnp,0rp,0

)3
+

4
3

πr3
p,0

(
np,0−n3/2

p,0

)
, (C.24)

S =
(

2
√

πβ t +2
√

πnp,0rp,0

)2
. (C.25)

C.4 Sintering model equations for a 2D particle model

The model of Koch and Friedlander [89] describes the decay in excess surface area over that of
a sphere of the same mass:

dS
dt

=− 1
τs

(
S−Ssph

)
, (C.26)

where S is the surface area of the particle, Ssph is the surface area of a sphere with same mass,
and τs is the characteristic sintering time. The equations for implementation in a surface-volume
particle model are given below. Two variations are considered: a constant and a time dependent
characteristic sintering time. Sintering is assumed to progress by grain boundary diffusion with
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characteristic sintering time
τs = κr4

p. (C.27)

In the time dependent case, the primary radius is allowed to evolve in time.

C.4.1 Surface-volume model with constant characteristic time

If the characteristic sintering time is kept constant τs = κr4
p,0, where the radius is taken as the

initial primary radius rp,0, the surface area evolution is simply an exponential decay

S(t) =
(
S0−Ssph

)
exp
(
− t

τs

)
+Ssph. (C.28)

The initial surface area and volume are

S0 = 4πr2
p,0np, (C.29)

V0 =
4
3

πr3
p,0np, (C.30)

and the final surface area is the area of a single sphere with the same volume

Ssph = 4π

(
3V0

4π

)2/3

. (C.31)

C.4.2 Surface-volume model with time dependent characteristic time

If the particle radius term in the characteristic time is allowed to evolve in time, τs = κr4
p(t),

Eq. (C.26) is expressed as
dS
dt

=− S4

81κV 4
0

(
S−Ssph

)
, (C.32)

where we have used the relationship

rp =
3V0

S
, (C.33)

to determine the primary radius [95]. Equation (C.32) is integrated numerically and the
characteristic time is updated each time step.
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C.5 Hot wall reactor simulations: comparison between BCCA
and DLCA

Figure C.3 shows a comparison of the mobility diameter distributions obtained with a BCCA
(coloured lines) and a DLCA (coloured open squares) collision model in simulations of the
hot wall reactor experiment of Nakaso et al. [131]. Model parameters are the same as those
presented in Section 4.6.2. Note the experimental (closed circles) and simulation results (black
dotted line) from the original work of Nakaso et al. [131] are not relevant to the comparison
made here. Figure C.3 shows no appreciable difference in the mobility diameter distributions
obtained by BCCA and DLCA.

(a) Inception and coagulation efficiency. (b) Critical sintering diameter.

Fig. C.3 Aggregate mobility diameters obtained from projected area analysis of particles from
simulations of the hot wall reactor experiment of Nakaso et al. [131]. Aggregate structures were
formed by either DLCA (coloured open squares) or BCCA (coloured lines). The experimental
(closed circles) and simulation results (black dotted line) from [131] are also shown.





Appendix D

Appendix to Chapter 6

D.1 Comparing characteristic sintering times

Fig. D.1 The normalised excess surface area as a function of dimensionless time for the sintering
of two equal sized primaries evolving according to Eq. (D.1). An exponential decay is plotted
for reference.

The sintering model equation (Eq. (6.11)) is expressed in terms of the dimensionless time:

dxi j

dt∗
=−

d4
p

16An,i j

(
1

ri− xi j
− 1

ai j

)
, (D.1)

where
t∗ =

t
θ
. (D.2)
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The evolution of the normalised excess surface area of two equal sized particles sintering
according to Eq. (D.1) is plotted in Fig. D.1 as a function of t∗. Equation (D.1) was solved
using the Euler method. The solution was found to be insensitive to the choice of initial primary
diameter. An exponential decay, the solution to Eq. (6.6) assuming a constant characteristic
time, is plotted for reference. The two models show quite different behaviour, particularly at
early times. The primary separation based model used in this work predicts a reduction in
excess surface area of 87% over its characteristic time θ compared to the 63% reduction of an
exponential decay.

To facilitate comparison of characteristic sintering times typically used in surface area
based models [89] with the primary separation based model used in this work, a consistent
definition of the characteristic sintering time is needed. In this case, we extract a value for τs

from Fig. D.1 for the sintering model used here. τs is defined as the time needed for the excess
surface area of two equal sized primaries to decrease by 63% – consistent with Eqs. (6.7)–(6.9)
[25, 88, 153]. For the primary separation based model used in this work,

τs = 0.14θ . (D.3)

D.2 Simulated flame profiles1

A full description of the temperature measurements and simulated flame profiles is provided
in [105]. In brief, the temperature measurements were used to estimate the point at which the
temperature rises sharply for the lean (φ = 0.35) flame and to adjust the boundary conditions
in the first simulation (with the energy equation solved) to reproduce this. The comparison
between the simulated temperature profile for this flame and the flame image showed that
the simulated H peak coincides with the point at which the flame intensity is half of the
maximum intensity. An arbitrary assumption is then made to use the same criteria to define the
flame standing distance and to adjust the boundary conditions for all other cases because no
temperature measurements for these cases are available. Furthermore, it is assumed that the
addition of TTIP does not affect the flame standing distance due to the relatively small amount
of TTIP used.
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Fig. D.2 Calculated and imposed temperature profiles for φ = 0.35 flames (a: 4 ml/h, b: 12 ml/h,
c: 30 ml/h TTIP loading). The imposed temperature profile for 4 ml/h case is taken from
experimental measurement (with no TTIP) while those for 12 ml/h and 30 ml/h cases are shifted
by 70 and 200 K, respectively, similar to the shifts in the calculated maximum temperature
profiles (arrows) to account for the additional heat release from TTIP combustion.

D.2.1 Temperature profile shape

Figure D.2 shows the measured and simulated temperature profiles for the lean flame (φ = 0.35).
A significant difference is observed in the profile shape and the maximum temperature. The
origin of the discrepancy in the temperature profiles is unclear but a possible reason is the
deviation from the one-dimensional stagnation flow solution. Another possible source of error
in the temperature measurements is the catalytic reaction on the uncoated thermocouple surface.
Catalytic heating is expected to affect the region near the flame front where there is more
unreacted premixed gas [154]. This will result in artificially higher temperature estimates at
the flame front. This can also explain the measured temperature that is slightly higher than the
calculated adiabatic flame temperature.

D.2.2 Sensitivity to temperature profile and flame location

In order to understand the effect of the temperature profile uncertainties on the simulated
particle properties, three parameters related to the experimental measurements are investigated
in this work. These are the profile shape, flame standing distance, and surface temperature.

1The temperature measurements and temperature profile simulations were performed by Manoel Manuputty
and are described in [105]. Post-processing of the simulation results was performed by the author. A summary is
given here due to its relevance in the quantification of the simulation uncertainties associated with the modelling
work.
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First, the effect of the temperature profile shape is assessed by comparing simulations with
the calculated and the imposed temperature profiles. Figure D.2 shows the temperature profiles
for the lean flames with varying TTIP loading rate. For the 4 ml/h TTIP loading rate case,
the imposed temperature profile is assumed to be the same as the measured profile for the
undoped flame (symbols in Fig. D.2). For the 12 and 30 ml/h cases, the temperature profiles are
shifted upwards by 70 and 200 K, respectively, to account for the effect of TTIP combustion.
These amounts of shift are approximately consistent with the shifts in the corresponding
calculated temperature cases. The temperature profile shape does not seem to affect the flame
standing distance. The imposed temperature simulations are only attempted for the lean flames
(φ = 0.35) because no temperature measurement is available for the rich flame. In addition, the
shape of the rich flame temperature profile is similar to the experimental profile in which the
peak temperature is reached near the upstream edge of the flame.

Second, the effect of the flame distance is assessed by comparing simulations with varying
flame distance (i.e. peak H concentration) by ±0.2 mm. This is approximately the same as
the experimentally observed fluctuation in the flame front. Finally, the effect of the surface
temperature is assessed by comparing simulations with varying stagnation temperature by
±50 K (Ts = 503 K for φ = 0.35 and Ts = 580 K for φ = 1.67 [110]). This uncertainty in the
stagnation plate temperature comes from the fluctuation during experiment as well as a typical
uncertainty for a K-type thermocouple.

Figure D.3 presents the changes in primary particle and aggregate properties for all con-
ditions tested in this work with respect to the uncertainties in the three temperature profile
parameters discussed above. The model parameters used in the simulation will be discussed
further in Section 6.4.2. Several observations are made here. First, all of the particle properties
are insensitive to the shape of the temperature profile (imposed T vs. calculated T ). Second,
the mean primary and aggregate diameters are only sensitive to the flame distance – primarily
the lean flame with high TTIP loading. Meanwhile, the coefficients of variation show very
little sensitivity in all cases. fα shows the greatest degree of sensitivity across the temperature
profile parameters Fd and Ts. Overall, the changes in particle sizes are less than 1 nm, except
for the lean flame with 30 ml/h TTIP loading (less than 2 nm). The maximum changes for CV
and fα are 1% and 3%, respectively. This suggests that the particle properties are relatively
insensitive to the temperature profile parameters. More importantly, the changes in Fig. D.3
give an indication of the degree of model prediction uncertainties carried forward from the
uncertainties in experimental measurements feeding into the simulation, i.e. temperature and
flame distance. These are referred to as the “simulation uncertainties”.
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Fig. D.3 The changes in particle descriptors as the temperature profile shape (refer to text),
flame distance, Fd , and surface temperature, Ts, are varied against the base case (calculated
temperature, flame distance z0, and surface temperature T0) for all cases studied here. The
particle descriptors are: (1) primary mean diameter, ∆d̄p, (2) primary coefficient of variation,
∆CVp, (3) aggregate mean diameter ∆d̄a, (4) aggregate coefficient of variation, ∆CVa, and (5)
fraction of particles with circular projection, ∆ fα . The perturbations ∆z and ∆T are 0.2 mm and
50 K, respectively.

D.3 Sensitivity to particle model parameters

D.3.1 Collision enhancement factor

The sensitivities of the primary and aggregate mean diameter and coefficient of variation
(CV) to the collision enhancement factor ε are shown in Fig. D.4. ε is applied as a multiplicative
factor to the free molecular kernels for all collision processes in the particle model; namely,
inception, surface growth and coagulation. The enhancement factor is varied in the range:
ε = 2.2−3.0. The base case value is taken as ε = 2.64 as per Manuputty et al. [108], based on
the value calculated by Zhang et al. [196]. ε = 2.2 is the size-independent enhancement factor
due to van der Waals forces calculated by Harris and Kennedy [66] for spherical soot particles.
The morphological descriptors are not particularly sensitive over the range of ε studied. The
mean primary and aggregate diameters show a slight increase with increasing ε , as would be
expected from larger collision rates. The primary and aggregate CVs are largely insensitive to
ε .



160 Appendix to Chapter 6

Fig. D.4 Sensitivity of the primary and aggregate mean diameter and coefficient of variation
(CV) to the molecular enhancement factor ε for lean (φ = 0.35, left panels) and rich (φ = 1.67,
right panels) flames. The shaded areas indicate estimated uncertainty bounds of the experimental
measurements.

D.3.2 Titania density

Figure D.5 shows the sensitivity of the primary and aggregate mean diameter and coefficient of
variation (CV) to the particle density: ρTiO2 = 3.84 g/cm3 (anatase) and ρTiO2 = 4.25 g/cm3

(rutile). It is important to note that we are actually imposing an effective ρTiO2 for particles of
all sizes at all stages of evolution. Although the particles collected are anatase and rutile in the
lean and rich flames respectively, the incipient particles are likely to have significantly lower
density, which might affect the results. Overall, the descriptors are not very sensitive to the
choice of density. As expected, a lower density (anatase) yields larger mean diameters.
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TiO2

Fig. D.5 Sensitivity of the primary and aggregate mean diameter and coefficient of variation
to the particle density ρTiO2 = 3.84 g/cm3 (anatase, base case), 4.25 g/cm3 (rutile) for lean
(φ = 0.35, left panels) and rich (φ = 1.67, right panels) flames. The shaded areas indicate
estimated uncertainty bounds of the experimental measurements.
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