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The Rohde–Schramm theorem, via the Gaussian free field
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Abstract

The Rohde–Schramm theorem states that Schramm–Loewner Evolution with parameter κ (or SLEκ

for short) exists as a random curve, almost surely, if κ 6= 8. Here we give a new and concise proof of the
result, based on the Liouville quantum gravity coupling (or reverse coupling) with a Gaussian free field.
This transforms the problem of estimating the derivative of the Loewner flow into estimating certain
correlated Gaussian free fields. While the correlation between these fields is not easy to understand, a
surprisingly simple argument allows us to recover a derivative exponent first obtained by Rohde and
Schramm [14], subsequently shown to be optimal by Lawler and Viklund [17], which then implies the
Rohde–Schramm theorem.

1 Introduction

1.1 Main result

We start by recalling some basic definitions and notations. Let (ξt)t≥0 be a real-valued continuous function.
Define the family of conformal maps (gt)t≥0 as the maximal solution to Loewner’s equation:

dgt(z) =
2

gt(z)− ξt
dt (1.1)

for each z ∈ H := {z ∈ C : ℑ(z) > 0}, the upper-half plane. The maximal solution is defined up to some
maximal time t = ζ(z) such that that |gt(z)− ξt| → 0 as t→ ζ(z). Set

Ht = {z ∈ H : t < ζ(z)} .

The complement of Ht in the upper half plane, Kt = H \ Ht, is a compact H-hull. It is easy to see that
gt is a conformal isomorphism from Ht to H, which maps out the hull Kt. Deterministic Loewner theory
(see [1,3,8]) implies that Kt is a growing sequence satisfying the local growth property; and (ξt)t≥0 is called
the Loewner transform or driving function of the hulls process (Kt)t≥0.

We say that the hulls (Kt)t≥0 are generated by a curve if there exists a curve (γt)t≥0 ⊂ H̄ such
that, for all t > 0, Ht is the (unique) unbounded component of H \ γ[0, t]. The following, which appears as
Theorem 4.1 in [14], gives a condition for the hulls (Kt)t≥0 to be generated by a curve.

Theorem 1.1. Let ξ : [0,∞) → R be continuous, and let gt be the corresponding Loewner flow, i.e., the
solution of Loewner’s equation (1.1). Assume that

γ(t) := lim
y→0

g−1
t (iy + ξt)

exists for all t ∈ [0,∞) and is continuous. Then g−1
t extends continuously to H and Ht is the unbounded

connected component of H \ γ[0, t], for every t ∈ [0,∞).

∗The first author’s research was supported in part by EPSRC grants EP/L018896/1 and EP/I03372X/1. The second author
was a PhD student while this work was taking place, funded by EPSRC grant EP/H023348/1.
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By definition, the (chordal) SLEκ process is the growing process of hulls whose Lowener transform
is given by ξt =

√
κBt, t ≥ 0, where κ > 0 and (Bt)t≥0 is a standard (linear) Brownian motion. We will

assume throughout that (ξt)t≥0 has this form. We also introduce the following notation:

ft := g−1
t and f̂t(z) := ft(z + ξt) = g−1

t (z + ξt). (1.2)

The celebrated Rohde–Schramm theorem [14, Theorem 3.6], shows that the assumption in Theorem
1.1 is satisfied for κ 6= 8, and so SLEκ is generated by a curve for those values of κ:

Theorem 1.2 (Rohde–Schramm). With the same notations as above, define

H(y, t) := f̂t(iy) for (y, t) ∈ (0,∞)× [0,∞).

If κ 6= 8, then almost surely H(y, t) extends continuously to [0,∞)× [0,∞).

A natural approach for proving convergence of f̂t(iy) as y → 0 is to show that it is Cauchy and hence,
together with fairly standard distortion estimates (see Lemma 4.32 in [8]), it is sufficient to control the

derivative f̂ ′
t(iy). In particular, the heart of the proof of Theorem 1.2 is the following bound on the tail of

|f̂ ′
t(iy)|:

Theorem 1.3. Let κ 6= 8, and let f̂t be the centred inverse of the Loewner flow as defined in (1.2). Then
for all ε > 0, there exist constants ε > 0, δ > 0 and C > 0 such that

P

[

|f̂ ′
t(iy)| > y−(1−ε)

]

≤ Cy2+δ

for all t ∈ [0, 1] and y ∈ (0, 1).

The main result of this paper is a new proof of the following more precise bound:

Theorem 1.4. For any κ 6= 8, and for any δ > 0 there exist C > 0 and ε > 0 such that for all t ∈ [0, 1] and
y ∈ (0, 1),

P

[

|f̂ ′
t(iy)| > y−(1−ε)

]

≤ Cyq−δ, where q =
4

κ
+

κ

16
+ 1.

Up to a change of notation, this exponent is the same as the one derived in [14] (and note that q > 2 unless
κ = 8). See also Theorem 7.4 in [8] which summarises the argument of [14] (keeping in mind that a = 2/κ in
Lawler’s notations). This exponent was subsequently shown to be sharp by Lawler and Viklund [17]: see e.g.
(4.2), observing that the set of times such as |f ′

t(iy)| ≈ y−1 corresponds in their notations to Θβ with β = 1,
in which case the value of ρ is precisely what we call q here. The main theorem of Lawler and Viklund is to
compute the Hausdorff dimension of Θβ. The case β = 1 is of course excluded from that theorem, since in
fact the set of such times is empty, but formally the dimension is 1− q/2. In fact it is likely that the method
of our proof could be used to compute the upper bound on the Hausdorff dimension of Θβ for general values
of β, but we have not tried in order to keep the paper as short and self-contained as possible. (It’s also likely
that a more elaborate version of this argument would also give the corresponding lower bound.)

We recall that it is also the case that SLE8 is a.s. generated by a curve, but this follows from results
of [9] where it is shown that the SLE8 is the scaling limit of the contour line of a uniform spanning tree with
appropriate boundary condition.

1.2 Main idea of proof

We present a simplified overview of the argument used to prove Theorem 1.3. The main idea for the proof
of the paper is to exploit the coupling between reverse SLE and Neumann Gaussian free field (also known
as Liouville quantum gravity coupling, see [2]) discovered by Sheffield [16]. These objects will be
introduced more precisely in the next section. In this coupling we find that if ft : H → Ht is the conformal
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map from the half-plane to the complement of the hull, if h is a GFF (with Neumann boundary conditions
on H) and h0 = h+ (2/

√
κ) log | · |, then

ht := h0 ◦ ft +Q log |f ′
t |, (1.3)

viewed as a distribution in H modulo constants, has the same law as h0. (This can be interpreted as
expressing the domain Markov property of a certain quantum surface, see e.g. [2]). (1.3) allows us to write
the logarithm of the derivative as the difference of two GFFs:

Q log |f ′
t | = ht − h0 ◦ ft (1.4)

We wish to estimate moments of |f ′
t|. Hence we would like to exponentiate (1.4). While the correlation

between the two fields is poorly understood (indeed, this encodes all of SLE!) we can use Hölder’s inequality
and optimise over the choice of powers. It turns out that, despite being an incredibly simple and naive
strategy, this is essentially enough to obtain the derivative exponent of Theorem 1.3.

There are a couple of additional points one needs to take care of in order to make this idea precise. First,
the fields appearing in the right hand side of (1.4) are too rough to be made sense of pointwise. However,
since the left hand side is a harmonic function, we can replace the fields in the right hand side by the
harmonic extension of their boundary data on the real line. This replaces two rough fields by two nice
harmonic functions. (That considering the harmonic extension should be sufficient for proving the result
should not be too surprising: indeed, by Sheffield’s quantum zipper theorem [16], the SLE curve can be
obtained by conformally welding the upper half-plane to itself along the boundary, hence the boundary data
of h0 encodes all there is to know about SLE). Second, the equality (1.3) (and hence (1.4) too) is only valid
as distribution modulo constants, so one needs to track down the possibly random constant that one needs to
add to make (1.4) true pointwise as harmonic functions. This is done by carefully choosing the normalisation
of the GFF.

1.3 Relation to other works

The Liouville quantum gravity or reverse coupling has already been used in order to study SLE and in
particular to obtain derivative estimates. This was first used by Miller and Sheffield in [12] to show that the
boundary of a QLE (quantum Loewner evolution) defines a Hölder domain and it is pointed out there that
the same argument applies for SLE. It is also used in a paper by Gwynne, Miller and Sun [6] on the almost
sure multifractal spectrum of SLE to estimate the behaviour of the derivative of the reverse Loewner flow
for an SLEκ(ρ) process near the force point. Lastly it was used by Miller and Sheffield in their remarkable
work [13] on the relation between the Brownian map and Liouville quantum gravity, where it was the main
ingredient to show that the QLE metric (in the case γ =

√

8/3) is a.s. homeomorphic to the Euclidean
metric.

In all those works the difficulty is to handle the correlation between the Gaussian free fields coming from
the LQG coupling. In [12] and [13] this is done by considering the worst case scenarios for one or both fields,
essentially replacing one of the field by its maximum. Clearly this is not optimal and one cannot hope to
obtain sharp derivative exponents (as is the case here) from this technique. In [6], the LQG coupling is used
as a step to obtain very precise estimates, but the actual application of the LQG coupling is only used to
determine the expected behaviour of the derivative map in a reverse SLEκ(ρ) near the force point, hence the
problem of correlation does not arise as such. Compared to those works, the main innovation of the present
paper is to obtain an efficient way to handle the correlation between the fields, based on using Hölder’s
inequality, and looking at the harmonic extensions of the fields rather than the fields themselves. However
simple, this naive idea is enough to recover sharp derivative exponents, which is perhaps surprising. It is
likely that this idea could be useful in more complicated contexts.

We also point out that a more analytic approach to the Rohde–Schramm theorem, based on rough paths
theory, was also recently proposed by Friz and Shekhar in [5]. Their argument has the advantage that it
is more robust to perturbations in the driving Brownian motion, allowing in particular non constant values
of κ. There is also a substantial literature on establishing deterministic versions of the Rohde–Schramm
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theorem (where one assumes some deterministic regularity condition on the driving function, which however
is typically only satisfied by Brownian motion in an average sense, and not almost surely), using different
techniques based on quasiconformal maps. See for instance [11], [10] and e.g. [15] for recent developments
trying to unify the techniques for deterministic and random driving functions.

Acknoweldgements. We express our thanks to Christophe Garban, Jason Miller, James Norris and
Fredrik Viklund for some enlightening discussions. We thank Huy Tran for pointing out a minor mistake in
an earlier version and for calling our attention to the results in [15].

2 Preliminaries

We now define carefully the objects needed to prove the theorem. We start with the reverse SLE flow, and
follow up with some elementary properties of the Neumann GFF. These will be well known to experts in the
area; however we have not found a place where they are written carefully. Also some of these depend subtly
on the choice of normalisation (additive constant) for the Neumann GFF, so we spend some time writing
them precisely.

2.1 Reverse SLE

The time reversibility of the driving Brownian motion in (1.1) allows us to give a meaning to growing a SLE
“backwards”. Unlike in (1.1), the hull will grow not from the tip but from the “root”, so unusual increments
in the driving Brownian motion will be reflected by an unusual geometry of the hull near the “root”. In
order to follow the notation of [16] it will be useful to fix the “root” of the hull to be at the origin. This
differs slightly from the definitions and notations given in say [8] (we will only consider what Lawler calls
centered maps).

Definition 2.1 (Reverse SLE). Fix (ξt)t≥0 a continuous function with ξ0 = 0. For each z ∈ H let ft(z) be
the solution to

dft(z) = − 2

ft(z)
dt− dξt (2.1)

with f0(z) = z.

It is easy to check (see e.g. Lemma 2.3 below) that for a fixed z ∈ H, ℑ(ft(z)) is now an increasing
function of time which remains finite at any time t > 0 and hence (unlike in the forward case) the solutions
to (2.1) are well defined for all times t > 0, and ft(z) exists as a strong solution (Theorem 2.5 in [7]). We will
call the collection of conformal maps (ft) a reverse Loewner flow driven by ξ. When ξ is a Brownian
motion with diffusivity κ we will call the resulting family of conformal maps a reverse SLEκ flow. We will
also use the notation Ht = ft(H) and Kt = H \Kt in this case, and will call Kt the hull generated by the
reverse Loewner flow.

We now show how Definition 2.1 relates to the maps (f̂t) defined in (1.2).

Lemma 2.2. Fix a time T > 0. Let (gt) be a (forward) Loewner flow with driving function (ξt), and let

f̂t(z) := g−1
t (z + ξt).

Let (ft) denote a reverse Loewner flow driven by ξ̂s = ξT = ξT−t. Then

f̂T = fT .

In particular, in the SLE case, if gt is the forward SLE flow and f̂t(z) = g−1
t (z + ξt) is the centered inverse

map, and if (ft) is a reverse SLE flow, we have for a fixed time T > 0, fT = f̂T in distribution.

Note that the equality in distribution holds for a single fixed time T , not for the range of times t ∈ [0, T ].
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Proof. This is largely well known, see e.g. Section 5.1 in [17]. Fix T > 0 and for 0 ≤ s ≤ T , set

rs = gT−s ◦ g−1
T ,

where (gt) is the (forward) Loewner flow driven by (ξt), as in (1.1). In words, the conformal map rs builds
gt−s(Kt \ Ks), and maps H to the complement of gt−s(Kt \ Ks). Note that r0 = gT ◦ g−1

T is the identity,
while rT = g−1

T . Applying the change of variable t 7→ T − t in (1.1), we see that rs solves the equation

drs =
−2ds

rs(z)− ξT−s
,

so that if r̂s(z) = rs(z + ξT )− ξT−s, and ξ̂s = ξT − ξT−s, we have

dr̂s(z) =
−2

r̂s(z)
ds− dξ̂s, 0 ≤ s ≤ T ; r̂0(z) = z.

In other words, (r̂s)0≤s≤T is the reverse Loewner flow driven by (ξ̂s)0≤s≤T . In the case where ξ has the

law of a Brownian motion with diffusivity κ, so does ξ̂ by time-reversibility of Brownian motion, and hence
(r̂s)0≤s≤T has the law of a reverse SLEκ. But since r̂T = f̂T , the lemma is proved.

The following (well known) bounds will be useful for us later on.

Lemma 2.3. Let κ ≥ 0 and let (ft) be a reverse SLEκ. Then, for any fixed y > 0, the imaginary part of
ft(iy) increasing but bounded above for all t ≥ 0 by

ℑ(ft(iy)) ≤
√

4t+ y2.

Proof. Fix y > 0 and write ft(iy) = Zt = Xt + iYt. Then we know that Zt satisfies the SDE (2.1) with
Z0 = iy. Taking the imaginary part of the equation we get

dYt =
2Yt

X2
t + Y 2

t

dt,

with Y0 = y. Since y > 0, we can see that the right hand side stays positive. In particular Yt is increasing.
Moreover, since X2

t ≥ 0, dYt ≤ (2/Yt)dt. Hence d(Y
2
t ) ≤ 4dt. Integrating gives us the result.

Corollary 2.4. Let κ ≥ 0 and let (ft) be a reverse SLEκ. Then, for any fixed y > 0, the absolute value of
the derivative, |f ′

t(iy)|, is bounded above by

|f ′
t(iy)| ≤

4

y

√

4t+ y2.

Proof. As ft is a reverse SLE flow we know that ft : H → Ht for Ht = H \ Kt. By Koebe’s 1/4 theorem
(Theorem 3.17 in [8]),

|f ′
t(iy)| dist(iy, ∂H) ≤ 4 · dist(ft(iy), ∂Ht). (2.2)

We know that dist(iy,H) = y and

dist(ft(iy), ∂Ht) ≤ dist(ft(iy),H) = ℑ(ft(iy)).

Therefore we can use the bound from Lemma 2.3 along with (2.2) to see

|f ′
t(iy)|y ≤ 4

√

4t+ y2.

Rearranging gives the result.
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Lemma 2.5. Let κ ≥ 0, let (ft) be a reverse SLEκ, and let (ξt) be its driving process. Then, for any fixed
y > 0, the absolute value of the real part of ft(iy) is bounded above by the absolute value of ξt, i.e.

|ℜ(ft(iy))| ≤ 2 sup
s≤t

|ξs|.

Proof. As before, we write ft(iy) = Zt = Xt + iYt so that ℜ(ft(iy)) = Xt. Note that

dXt = − 2Xt

X2
t + Y 2

t

dt− dξt,

with X0 = 0. The drift term is always towards the origin (i.e. has a sign which is opposite of Xt). Consider
the last time S before t such that XS = 0, so the sign of X remains constant on [S, t]. Say without loss of
generality that X is nonnegative on that interval. Then

Xt =

∫ t

S

−2Xs

X2
s + Y 2

s

ds− (ξt − ξS) ≤ 2 sup
s≤t

|ξs|,

as desired.

Remark 2.6. The factor 2 can be removed in the above upper bound, see Lemma 2.1 in [15]. Also, a more
elaborate argument based on Yamada’s comparison theorem for solutions of stochastic differential equations
(Theorem 1.1 in [18]) can be used to show that X2

t ≤ ξ̃2t a.s. for every t ≥ 0, where ξ̃t =
∫ t

0 sgn(Xs)dξs. In

particular, in the case of reverse SLE, ξ̃t has the law of a Brownian motion and in particular, (|ξs|, s ≥ 0) is
stochastically dominated by (

√
κ|Bs|, s ≥ 0).

We also note for further reference the following elementary upper bound on the height of a compact
H-hull in terms of its half-plane capacity:

Lemma 2.7. Let K be a compact H-hull with height(K) > 2
√
α. Then hcap(K) ≥ α.

Proof. An elementary argument (based on a reflection trick) is given in [3] which we include here for com-
pleteness. Since both the height of a hull and its half-plane capacity are translation invariant along the real
line, and height(K) > 2

√
α, we can assume that 2i

√
α ∈ K. Let K ′ be the reflection of K in the imaginary

axis. Further, let K̃ be the complement of the connected component of H \ (K ∪K ′) which contains infinity.
By construction, K̃ contains the line segment (0, 2i

√
α] and therefore we know that hcap(K̃) ≥ 2α. Now

recall that
hcap(K) = lim

y→∞
yEiy(ℑ(BτK ))

where under Piy, B is a Brownian motion started from iy and τK is its first hitting time of ∂H .
Note that by symmetry, and since ∂K̃ ⊂ ∂K ∪ ∂K ′,

Eiy

[

ℑ(BτK̃
)1{BτK̃

∈ ∂K̃}
]

≤ 2Eiy

[

ℑ(BτK̃
)1{BτK̃

∈ ∂K}
]

. (2.3)

Observe further that if BτK̃
∈ ∂K then also BτK̃

= BτK ∈ ∂K. Hence we get hcap(K̃) ≤ 2hcap(K), and in
turn hcap(K) ≥ α, as desired.

2.2 Dirichlet GFF

Before introducing the Gaussian free field (GFF) with free (or Neumann) boundary conditions, we first recall
a few basic facts about the GFF with zero (or Dirichlet) boundary conditions. This is by now a classical
object, and there are several introductions where standard properties can be found, see e.g., Chapter 1 of [2].

Let C∞(D) be the set of smooth functions on D with compact support. The set C∞(D) is made into a
locally convex topological vector space in which convergence is characterised as follows. A sequence fn → 0
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in C∞(D) if and only if there is a compact set K ⊂ D such that Suppfn ⊂ K for all n and fn and all its
derivatives converge to 0 uniformly.

A distribution on D is a continuous linear map T : C∞(D) → R. The set of distributions on D is
denoted D′(D) and is given the weak-⋆ topology. Thus, Tn → T in D′(D) if and only if (Tn, f) → (T, f) for
all f ∈ C∞(D). The Borel σ-algebra on D′(D) then coincides with that generated by the evaluation maps
T 7→ (T, f) for f ∈ C∞(D).

Definition 2.8 (Dirichlet Inner Product). Let D ⊂ C be a proper simply connected domain. Let C∞
0 (D)

be the set of smooth, compactly supported functions on D. For f, g in C∞
0 (D), define the Dirichlet inner

product as

〈f, g〉∇ =
1

2π

∫

D

∇f(z) · ∇g(z)dz.

This defines an inner product on C∞
0 (D), whose completion is by definition the Soboloev space H1

0 (D).

More generally, the Sobolev space Hs(D) of index s ∈ R is defined as follows. Let (en)n≥1 be an
orthonormal basis of L2(D) (with respect to the L2 inner product), and let {λn}n≥1 be the eigenvalues of
−∆ with Dirichlet boundary conditions ordered so that 0 < λ1 < λ2 ≤ . . .. We define Hs(D) to be the
completion of C∞(D) with respect to the scalar product (f, g)s =

∑∞
n=1(f, en)

2λsn.
The point of view which we adopt for defining the Dirichlet GFF is the following series expansion in

H1
0 (D).

Definition 2.9 (Zero boundary Gaussian free field). Let {fi} be an orthonormal basis of H1
0 (D) with respect

to the Dirichlet inner product. The GFF with Dirichlet boundary conditions is the series

h =

∞
∑

i=1

Xifi, (2.4)

where the {Xi} are i.i.d. standard Normal random variables.

An eigenvalue calculation (more precisely, Weyl’s law for Dirichlet eigenvalues) shows that when D is
bounded, if λn are these eigenvalues, then

∑

nX
2
nλ

−1+s
n <∞ as soon as s < 0. Since en =

√
λnfn forms an

orthonormal basis of L2(D) (using the Gauss Green formula, or integration by parts), we deduce that the
sum (2.4) converges a.s. in Hs(D) for any negative index s < 0, and hence in the space of distributions D′(D).
An argument of conformal invariance shows that this remains true for arbitrary proper simply connected
domains of C. See [2] for details. Alternatively, h can be defined as a stochastic process indexed by signed
measures ρ = ρ+−ρ− such that

∫∫

GD(x, y)ρ±(dx)ρ±(dy) <∞, where GD denote the Green function (with
Dirichlet boundary conditions) on D, such that (h, ρ) is a centered Gaussian random variable with variance
Var(h, ρ) =

∫∫

GD(x, y)ρ(dx)ρ(dy). In that case there exists a modification of h which is also a distribution
on D almost surely and which coincides with (2.4). Again, we refer to [2] for details.

2.3 Neumann GFF

We now discuss the Neumann GFF case, which has a few additional complications due to the fact that it is
only defined up to a global additive constant.

We introduce the equivalence relation T1 ∼ T2 on distributions T1, T2 ∈ D′(D) if T1 − T2 is the constant
distribution λ for some λ ∈ R (i.e., (T1, f) = (T2, f) +λ

∫

f for all f ∈ C∞(D) ). We call the quotient space
D̄′(D) = D′(D)/ ∼ the space of distribution modulo constants.

Equivalently, let C̃∞(D) be the set of smooth functions f ∈ C∞(D) with mean zero, i.e., having the
property that

∫

D f = 0. Then C̃∞(D) is also a locally convex topological vector space with the topology of

C∞(D), and it is easy to see that D̄′(D) can be identified with continuous linear forms over C̃∞(D). Indeed,
if T̄ ∈ D̄′(D) and f ∈ C̃∞(D) then (T̄ , f) is unambiguously defined. This allows us to equip D′(D) with the
quotient topology of D′(D) or, equivalently, with the weak-⋆ topology inherited from C̃∞(D). Thus T̄n → T̄
if and only for all f ∈ C̃∞(D), we have (T̄n, fn) → (T̄ , f).
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Introduce on C∞(D) the equivalence relation f ∼ g if and only if f − g is a constant. Let C̄∞(D) =
C∞(D)/ ∼ be the quotient space. Note that 〈·, ·〉∇ still defines an inner product on C̄∞(D) (and also on
C̃∞(D) but this won’t be relevant here). We let H̄(D) be the Hilbert space completion of C̄∞(D) with
respect to ‖ · ‖∇. Note that if D has a smooth boundary and if N̄(D) denote the set of smooth functions
(up to and including the boundary, with bounded support) which have Neumann boundary conditions, i.e.,
∇f · n = 0 where n is a normal vector to ∂D, then N̄(D) is dense in C̄∞(D) with respect to ‖ · ‖∇, hence
the Hilbert space completion of N̄(D) is the same as that of C̄∞(D) and thus also H̄(D).

Definition 2.10 (Neumann boundary Gaussian free field). Let {f̄i}i≥0 be an orthonormal basis of H̄(D)
under the Dirichlet inner product. The Neumann boundary Gaussian free field is the series

h =
∞
∑

i=0

Xif̄i, (2.5)

where the {Xi} are i.i.d. standard Normal random variables.

It is not immediately clear, but true, that the series (2.5) converges in the space of distribution-modulo-
constants. When D is smooth and bounded, this follows from the fact that the Weyl law also holds under
these assumptions for Neumann eigenvalues {µn}n≥0 (where 0 = µ0 < µ1 ≤ µ2 . . .); see Courant and
Hilbert, [4, VI.4, Theorem 16]. Hence we deduce that

∑

nX
2
nµ

−1+s
n < ∞ a.s for all s < 0, just as in

the Dirichlet case. Hence if we take (fn)n≥0 to be an orthonormal basis of Neumann eigenfunctions then
en =

√
µnfn is also an orthonormal basis of L2(D) (again by the Gauss Green formula) hence, since λn ∼ µn

as n→ ∞ (indeed both families satisfy Weyl’s law), the series
∑

nXnfn (which is a particular representative
of h) converges in Hs(D). This in turn implies convergence in the space of distributions modulo constants.
(See [2] for details.) A conformal invariance argument implies, just as in the Dirichlet case, that the series
(2.5) converges in D̄′(D) for arbitrary simply connected domains, since orthonormal basis of H̄(D) are
conformally invariant.

We deduce the following lemma, which allows us to talk about the harmonic extension of the boundary
data of h.

Lemma 2.11. Let h be a Neumann GFF on a domain D. Then we can write

h = h̃+HarmD(h), (2.6)

where h̃ is a zero boundary GFF on D and HarmD(h) is an independent harmonic function on D, defined
up to an additive constant. We call HarmD(h) the harmonic extension of h in D from ∂D.

Proof. Let Harm(D) denote the set of harmonic functions on D, up to constants. The proof comes from
the fact that the space H1

0 (D) and the space of harmonic functions defined up to additive constants on D,
Harm(D), are orthogonal complementary subsets of H̄(D), which can be proved exacty in the same way as
the standard Markov property of the Dirichlet GFF (see e.g. Theorem 1.17 in [2]). We can therefore find
an orthonormal basis {φi} of H1

0 (D), and an orthonormal basis {ψ̄i} of Harm(D), such that together they
form an orthonormal basis of H̄(D). We can then decompose the Neumann boundary GFF, h, in terms of
this basis:

h =

∞
∑

i=1

Xiφi +

∞
∑

i=1

Yiψ̄i,

where {Xi} and {Yi} are i.i.d. standard Normal random variables. The first sum is exactly the one in
(2.4), i.e. it defines a zero boundary GFF, and hence that series converges a.s. as a distribution. Since
the sum of the two series must converge as a distribution modulo constants by the above, and there is a
representative for which the series converges as a distribution (as discussed above), the second series

∑

i Yiψ̄i

must also converge as a distribution modulo constants and we can find representative ψi such that the sum
∑∞

i=1 Yiψi converges as a distribution. Hence the infinite sum is harmonic as a distribution. Standard elliptic
regularity arguments then imply that it is then a function which is harmonic in the classical sense; hence
∑

Yiψ̄i ∈ Harm(D).
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Occasionally it will be convenient to fix the free additive constant of h, i.e., to pick a particular represen-
tative of h. Equivalently, this amounts to choosing a representative for HarmD(h) in the decomposition (2.6),
since we will always insist that h̃ has zero boundary conditions. We then say that we fix a normalisation for
h. With an abuse of notation, we will still call h the chosen representative, and HarmD(h) the corresponding
harmonic part.

Remark 2.12. It is important to note that when we fix a normalisation of h, it can be the case that h̃ and
HarmD(h) in the decomposition (2.6) are no longer independent. (For example, if we normalise the GFF h
by specifying that its average value on some set is equal to zero, there will be some interaction between h̃
and HarmD(h).)

We will always normalise by specifying the value of HarmD(h) at a point. This will ensure that we still
have independence between the harmonic and zero boundary condition parts, despite the above remark:

Lemma 2.13. Let h be a Neumann boundary GFF on a domain D, and let z0 ∈ D. If we normalise h so
that HarmD(h)(z0) = 0 in the decomposition of Lemma 2.11, then h̃ and the corresponding harmonic part
HarmD(h) are independent.

Proof. This is immediate from Lemma 2.11 since if we write h = h̃+ ū where h̃ is a Dirichlet GFF and ū is
an independent harmonic function up to constants, then the unique representative u of ū such that u(z0) = 0
depends only on ū (i.e., is a measurable function of ū) and is thus still independent of h̃.

We will need some quantitative bounds on the variance of the harmonic part of the Neumann boundary
GFF when it is pinned at a certain point. We will use the following, which is easy to deduce from Lemma 2.11
as well as the expressions for the Green function of the Neumann GFF and the Dirichlet GFF (see (5.8)
in [2], and see also Lemma 2.9 in [6] for a different proof of this result):

Lemma 2.14. Let HarmD(h) be the harmonic part of a Neumann boundary GFF on the unit disc D, nor-
malised so that HarmD(h)(0) = 0. Then, for any z, w ∈ D, HarmD(h)(z) and HarmD(h)(w) are jointly
Gaussian with mean zero and covariance

E [HarmD(h)(z)HarmD(h)(w)] = −2 log |1− zw|.

We can use a coordinate change from the upper half plane to the unit disc, along with conformal invariance
of Gaussian free field, to get the following bound on the variance of the harmonic part of the Neumann
boundary GFF on the upper half plane.

Lemma 2.15. Let HarmH(h) be the harmonic part of a Neumann boundary GFF on the upper half plane
H, normalised so that HarmH(h)(iy0) = 0 for some (fixed) y0 > 0. Then, for any z = x+ iy ∈ H,

E
[

HarmH(h)(z)
2
]

= −2 log
4y0y

x2 + (y + y0)2
.

Proof. Let h′ be a Neumann boundary GFF on the unit disc, D, normalised so that HarmD(h
′)(0) = 0, and

let my0
be the Möbius transformation

my0
(z) =

z − iy0
z + iy0

.

Then my0
: H → D so that my0

(iy0) = 0. Therefore, if we set h = h′ ◦my0
, then h is a Neumann boundary

GFF on H and, by conformal invariance of the GFF and harmonic extensions, we see that for z ∈ H,

HarmH(h)(z) = HarmH(h
′ ◦my0

)(z) = HarmD(h
′)(my0

(z)).
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Therefore, with z = iy0, we see that HarmH(h)(iy0) = HarmD(h
′)(my0

(iy0)) = 0. So, h is normalised in
the way that we want. We can now calculate its variance using the coordinate change and Lemma 2.14, as
follows. Let z = x+ iy ∈ H with y ∈ (0, y0). By Lemma 2.14,

E
[

HarmH(h)(x+ iy)2
]

= E
[

HarmD(h
′)(my0

(x+ iy))2
]

= −2 log |1 − |my0
(x+ iy)|2|. (2.7)

Expanding the term inside the log in (2.7), we find

1− |my0
(x+ iy)|2 = 1− x2 + (y − y0)

2

x2 + (y + y0)2
=

4y0y

x2 + (y + y0)2
. (2.8)

Substituting (2.8) into (2.7), we obtain the desired result.

Corollary 2.16. Let HarmH(h) be the harmonic part of a Neumann boundary GFF on the upper half plane H,
normalised so that HarmH(h)(iy0) = 0 for some (fixed) y0 > 0. Then, for any purely imaginary z = iy ∈ H

with y ∈ (0, y0), we see that
E
[

HarmH(h)(iy)
2
]

≤ 2 log y0 − 2 log y.

Proof. Note that if y < y0 in Lemma 2.15 then E(HarmH(h)(z)
2) ≤ −2 log y − 2 log 4y0 + 2 log

(

x2 + 4y20
)

.
In particular setting x = 0 gives the result.

Let K be a compact hull, and let H = H \ K. Let h be a Neumann boundary GFF on H with some
normalisation. By Lemma 2.11 we can consider write h = h̃+ u where u is a harmonic function, and h̃ is a
Dirichlet GFF. Applying the domain Markov property to h̃ inside H , we can write h̃|H = h′ + v where v is
harmonic in H and h′ is a Dirichlet GFF on H . We then call v+ u =: HarmH(h) the harmonic extension of
h from ∂H to H , so that

h|H = h′ +HarmH(h),

where h′ is a Dirichlet GFF on H ′ and note that h′ is independent from HarmH(h) viewed as a function up
to constant. If we normalise h so that HarmH(h)(z) = 0 at some z, then HarmH(h) (now viewed as a proper
harmonic function) is independent of h′.

Lemma 2.17. Let h,K be as above and assume that h is normalised so that its harmonic part vanishes at
iy0 for some fixed y0 > 0. Then for any z = x+ iy ∈ H with y < y0, letting HarmH(h) be the corresponding
harmonic function,

E
[

HarmH(h)(z)2
]

≤ −3 log(dist(z, ∂H)) + 2 log(x2 + 4y20) + C,

where C is a constant which depends on y0 only.

Proof. Write h|H = h′ + HarmH(h) as above, where the two terms are independent and h′ is a Dirichlet
GFF on H , and we also write h = h̃+HarmH(h). Let ε < dist(z, ∂H). Then we can take the circle average
of h in both expressions to see that

h′ε(z) + HarmH(h)(z) = h̃ε(z) + HarmH(h)(z).

By independence of both terms on the left hand side as well as on the right hand side, taking the variance,
we have:

Var(HarmH(h)(z)) ≤ Var(h̃ε(z)) + Var(HarmH(h)(z)). (2.9)

Now it is well known (see Lemma 2.2 in [2]) that Var(h̃ε(z)) = − log ε+ logR(z;H) where R(z;D) denotes
the conformal radius of a point z in a simply connected domain D. Using 2.15 and the fact that y < y0 we
obtain

Var(HarmH(h)(z)) ≤ − log ε+ logR(z;H)− 2 log y + 2 log(x2 + 4y20)− 2 log 4y0.
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Clearly, logR(z;H) is uniformly bounded above for all z = x + iy with y ∈ [0, y0]. Let us write this upper
bound along with the −2 log 4y0 term as the constant C, so

Var(HarmH(h)(z)) ≤ − log ε− 2 log y + 2 log(x2 + 4y20) + C.

Now let us take ε as large as we can, i.e. ε = dist(z, ∂H). Noting also that, as H is a subset of H,
dist(z, ∂H) = y ≥ dist(z, ∂H), we find

Var(HarmH(h)(z)) ≤ −3 log dist(z, ∂H) + 2 log(x2 + 4y20) + C,

as desired.

2.4 Coupling reverse SLE and Neumann boundary GFF

We now set out the coupling between reverse SLE and the Neumann boundary GFF, discovered by Sheffield

in [16]. Throughout, fix κ > 0 and Q = 2√
κ
+

√
κ
2 .

Theorem 2.18 (Liouville quantum gravity coupling, or reverse coupling). Let (ft) be the reverse SLEκ flow
as defined by (2.1). Let h be a Neumann boundary GFF on H, independent of (ft). For t > 0, let

ht = h ◦ ft +
2√
κ
log |ft|. (2.10)

Then
ht +Q log |f ′

t |
d
= h0

where the equality is in distribution for the two sides of the identity, viewed as (Schwartz) distributions
modulo constants.

The proof is a fairly simple application of Itô’s formula, see Theorem 6.1 in [2]. (There the statement
is interpreted as expressing a domain Markov property for certain random surfaces explored along an SLE
interface.)

Corollary 2.19. In the same setting as Theorem 2.18, there exists a constant (in space) bt such that if h
is normalised so that its harmonic part vanishes at iy0 for some fixed y0 > 0,

|f ′
t(iy)| =

(

y

|ft(iy)|

)
2

Q
√

κ

exp

(

1

Q
(HarmH(h

′)(iy)−HarmH(h ◦ ft)(iy) + bt)

)

,

where h′
d
= h (viewed as distributions with a normalisation).

Proof. Theorem 2.18 tells us that ht + Q log |f ′
t |

d
= h0 modulo an additive constant. Hence if we fix the

normalisation of h so that its harmonic part vanishes a iy0, we can write

ht +Q log |f ′
t | − bt

d
= h0 (2.11)

for some constant bt, where ht = h ◦ ft+(2/
√
κ) log |ft| as in (2.10), and here the equality is as distributions.

Let
h′0 = ht +Q log |f ′

t | − bt (2.12)

so that h′0
d
= h0, that is, h

′
0 = h′ + 2√

κ
log |z| where h′ is a Neumann boundary GFF on H normalised so that

its harmonic part vanishes at iy0.
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Rearranging (2.12) gives us for z ∈ H,

Q log |f ′
t(z)| = (h′0 − ht)(z) + bt

= (h′ − h ◦ ft)(z) +
2√
κ
log |z| − 2√

κ
log |ft(z)|+ bt

= (h′ − h ◦ ft)(z) +
2√
κ
log

|z|
|ft(z)|

+ bt. (2.13)

The left hand side of (2.13) is harmonic in H, as are the last two terms on the right hand side. The terms h′

and h ◦ ft are not defined pointwise, but their difference is. Furthermore, since all other terms are harmonic,
the difference h′ − h ◦ ft must also be harmonic.

Integrating with respect to the Poisson kernel on the real line lets us look at the harmonic extensions of
these function from R to H. As both sides of the equation are harmonic already, this has no effect on the
functions. However, linearity of integration against the Poisson kernel lets us say that

Q log |f ′
t(z)| = HarmH(h

′)(z)−HarmH(h ◦ ft)(z) +
2√
κ
log

|z|
|ft(z)|

+ bt, (2.14)

so that taking the exponential, we get

|f ′
t(iy)| =

(

y

|ft(iy)|

)
2

Q
√

κ

exp

(

1

Q
(HarmH(h

′)(iy)−HarmH(h ◦ ft)(iy) + bt)

)

,

as desired.

3 Proof of Theorem 1.4

By Lemma 2.2, it suffices to prove the following:

Proposition 3.1. Let (ft) be a reverse SLEκ for κ > 0 and κ 6= 8, coupled with a Neumann boundary GFF
as in Corollary 2.19 and let (bt)t≥0 be the coupling constants. Then for all δ > 0, there exist ε > 0 and
C > 0 such that, for all t ∈ [0, 1] and y ∈ [0, 1]

P

[

|f ′
t(iy)| > y−(1−ε)

]

≤ Cyq−δ,

where as before, q = 4/κ+ κ/16 + 1.

Proof. Let (ξt)t≥0 be the driving function of the reverse SLEκ flow. Let us fix ε for now. Then note that

P

[

|f ′
t(iy)| > y−(1−ε)

]

≤ P

[

|f ′
t(iy)| > y−(1−ε), bt ≤ −ε log y, sup

t∈[0,1]

|ξt| ≤ y−ε

]

+ (3.1)

+ P [bt > −ε log y] + P

[

sup
t∈[0,1]

|ξt| > y−ε

]

. (3.2)

The bulk of the work consists in showing that the first term (3.1) decays as Cyq−δ, which is carried in Section
3.2, Proposition 3.3 in particular.

We separately show that the coupling constant bt has sub-exponentially decaying tail in Section 3.1,
giving us the arbitrary polynomial decay that we need here. Finally, the reflection principle implies that
the supremum and the infimum of a Brownian motion over a finite time interval both have Gaussian and
hence sub-exponential tails, and so the third term decays faster than any polynomial as y → 0. These two
arguments therefore imply that (3.2) decays faster than any polynomial as y → 0.
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3.1 Bounding the coupling constant

The aim of this section is to prove the upper bound that we need for the coupling constant bt that was
introduced in Corollary 2.19. We want to show that it has the following polynomial upper tail:

Proposition 3.2. Suppose y0 > 2
√
2. Then the constant bt from Corollary 2.19 has sub-exponential decay

i.e. for any λ > 0 there exists some constant Cλ depending only on λ (and on the choice of y0 > 2
√
2) such

that, for all x > 0 and all 0 ≤ t ≤ 1, we have:

P [bt > x] ≤ Cλe
−λx.

Proof. Let λ > 0. By Markov’s inequality it suffices to check that E
[

eλbt
]

is finite for all λ > 0, with a
uniform bound for t ∈ [0, 1]. We can rearrange (2.14) to see that, for z ∈ H,

bt = HarmH(h ◦ ft)(z)− HarmH(h
′)(z) +Q log |f ′

t(z)|+
2√
κ
log

|ft(z)|
|z| .

Taking z = iy0, the point where HarmH(h
′) vanishes (which is how bt is chosen), we can see that

bt = HarmH(h ◦ ft)(iy0) +Q log |f ′
t(iy0)|+

2√
κ
log

|ft(iy0)|
y0

.

Exponentiating and recalling that ft is independent of h, we find that

E
[

eλbt |ft
]

= |f ′
t(iy0)|λQ

( |ft(iy0)|
y0

)
2λ√
κ

E [exp (λHarmH(h ◦ ft)(iy0)) |ft] . (3.3)

We can use Lemma 2.17 to bound the conditional expectation E [exp (λHarmH(h ◦ ft)(iy0)) |ft], using the
fact that HarmH(h ◦ ft)(iy0) = HarmHt

(h)(ft(iy0)), as follows:

E [exp (λHarmH(h ◦ ft)(iy0)) |ft] ≤

≤ exp

(

λ2

2

(

−3 log(dist(ft(iy0), ∂Ht)) + 2 log(ℜ(ft(iy0))2 + 4y20) + C
)

)

. (3.4)

Now we can use the fact that ℑ(ft(iy0)) is nondecreasing and Lemma 2.7, to deduce

dist(ft(iy0), ∂Ht) ≥ ℑ(ft(iy0))− height(Kt) ≥ y0 − 2
√
2t ≥ y0 − 2

√
2,

and by choosing any y0 > 2
√
2 the right hand side positive.

Consequently, we obtain

E
[

eλbt |ft
]

≤ |f ′
t(iy0)|λQ

( |ft(iy0)|
y0

)
2λ√
κ

(y0 − 2
√
2)−

3λ2

2 (ℜ(ft(iy0))2 + 4y20)
λ2

e
λ2C
2 . (3.5)

Corollary 2.4 lets us bound the first term in (3.5) by

|f ′
t(iy0)| ≤

4

y0

√

y20 + 4.

Lemma 2.3 lets us bound the second term in (3.5) by

|ft(iy0)| ≤
√

ℜ(ft(iy0))2 + 4t+ y20 ≤
√

ℜ(ft(iy0))2 + 4y20,

where the final inequality comes from the fact that we know 4t ≤ 4 ≤ 3y20. We obtain:

E
[

eλbt |ft
]

≤ 4λQy
−λQ− 2λ√

κ

0 e
λ2C

2

(y0 + 4)λQ/2

(y0 − 2
√
2)3λ2/2

(

ℜ(ft(iy0))2 + 4y20
)λ2+ λ√

κ .
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We now take expectations and using Lemma 2.5 ,

E[eλbt ] ≤ C(λ, y0, κ)E
[

(

ℜ(ft(iy0))2 + 4y20
)λ2+ λ√

κ

]

≤ C(λ, y0, κ)E

[

(

4κ sup
s≤t

B2
s + 4y20

)λ2+ λ√
κ

]

≤ C′(λ, y0, κ), (3.6)

where the final line is an easy consequence of the reflection principle for Brownian motion. This finishes the
proof of Proposition 3.2.

3.2 Bound on the main term (3.1)

We now deal with the main term (3.1) in the proof of Proposition 3.1. Throughout, we need to fix a point
iy0 for some y0 > 0 that we use to normalise the Neumann boundary GFF used in the coupling arguments.
In order to apply Lemma 2.17 we need to ensure that any complex point that we consider, especially those
of the form ft(iy), have imaginary parts smaller than y0. Happily, we need consider only times t ∈ [0, 1] and
the starting points iy with y ∈ [0, 1]. Therefore, Lemma 2.3 guarantees that

ℑ(ft(iy)) ≤
√

4t+ iy ≤
√
5, (3.7)

for all t ∈ [0, 1] and y ∈ [0, 1]. Since 2
√
2 >

√
5, it will suffice to assume that y0 > 2

√
2 for the arguments in

this section and in Proposition 3.2 to hold.

Proposition 3.3. Consider the setup of Proposition 3.1. Then for all ε > 0, there exists δ > 0 and C > 0
such that, for all t ∈ [0, 1] and y ∈ [0, 1] we have

P

[

|f ′
t(iy)| > y−(1−ε), bt ≤ −ε log y, sup

t∈[0,1]

|ξt| ≤ y−ε

]

≤ Cyq−δ.

We fix ε > 0, 0 ≤ t ≤ 1, and 0 ≤ y ≤ 1, and introduce the events

A = A(t, y, ε) = {|f ′
t(iy)| > y−(1−ε)} ∩ { sup

t∈[0,1]

|ξt| ≤ y−ε}

as well as
Ā = A ∩ {bt ≤ −ε log y}. (3.8)

Hence the goal of Proposition 3.3 is to control P(Ā) (note that A depends only on the reverse SLE flow).
We can use Koebe’s 1/4 theorem to get a bound on the variance of HarmH(h ◦ ft) on A:

Lemma 3.4. Let (fs) be a reverse SLEκ process with driving function (ξt). Let h be an independent
Neumann boundary GFF, normalised so that its harmonic part vanishes at the point iy0. Then, for fixed
ε > 0 and all t ∈ [0, 1], and y ∈ [0, 1], if Ft = σ(fs)s≤t and F = F1, on the event A = A(t, y, ε):

E
[

HarmH(h ◦ ft)(iy)2|F
]

≤ C′ − 7ε log y,

where C′ is a constant depending on the pinned point y0 >
√
5 only.

Proof. By conformal invariance of harmonic functions,

HarmH(h ◦ ft)(·) = HarmHt
(h)(ft(·)).

Since y0 >
√
5 (recall (3.7)), we can apply Lemma 2.17 to see that

E
[

HarmH(h ◦ ft)(iy)2|F
]

≤
(

−3 log(dist(ft(iy), ∂Ht)) + 2 log(ℜ(ft(iy))2 + 4y20) + C
)

.
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Now, by Koebe’s 1/4 theorem,

dist(ft(iy), ∂Ht) ≥ (1/4)|f ′
t(iy)| dist(iy, ∂H) = (|y|/4)|f ′

t(iy)|. (3.9)

Hence on A, using Lemma 2.5, we get

E
[

HarmH(h ◦ ft)(iy)2|F
]

≤ −3 log

(

yε

4

)

+ 2 log
(

4y−2ε + 4y20
)

+ C

≤ −3 log(yε) + 2 log(8y−2ε) + 2 log(8y20) + C

≤ −7ε log y + C, (3.10)

where C depends only on y0, as desired.

Lemma 3.5. Consider the setup of the Liouville quantum gravity coupling in Corollary 2.19, and for a > 1
let b = a/(a− 1) be its Hölder conjugate. Then on Ā,

|f ′
t(iy)|a ≤ Cy

2a

Q
√

κ
−C′ε

E

[

exp

(

a

Q
(HarmH(h

′)(iy) + bt)

)

|F
]

,

where h = h′ in law as distributions (they are both normalised to have zero harmonic part at iy0), and the
constants C,C′ depend only on κ, the power a and the pinned point y0 used in the coupling.

Proof. Recall that by Corollary 2.19,

|f ′
t(iy)| =

(

y

|ft(iy)|

)
2

Q
√

κ

exp

(

1

Q
(HarmH(h

′)(iy)−HarmH(h ◦ ft)(iy) + bt)

)

. (3.11)

We already know from Koebe’s 1/4 theorem (see (3.9)) that

dist(ft(iy), ∂Ht) ≥ (|y|/4)|f ′
t(iy)|.

On the other hand,
dist(ft(iy), ∂Ht) ≤ dist(ft(iy), ∂H) = ℑ(ft(y)) ≤ |ft(iy)|

so that on Ā, |ft(iy)| ≥ yε/4. Consequently, y/|ft(iy)| ≤ 4y1−ε. Furthermore by definition of Ā, bt ≤ −ε log y,
hence

exp

(

1

Q
bt

)

1Ā ≤ y−ε/Q. (3.12)

Substituting into (3.11) gives the inequality, on Ā:

|f ′
t(iy)| ≤ (4y1−ε)

2

Q
√

κ · y−ε/Q exp

(

1

Q
(HarmH(h

′)(iy)−HarmH(h ◦ ft)(iy))
)

We take the conditional expectation given F and use Hölder’s inequality (conditionally), taking care where
we put the indicator function, and obtain:

|f ′
t(iy)|1Ā ≤

(

4y1−Cε
)

2

Q
√

κ E

[

exp

(

a

Q
(HarmH(h

′)(iy))|F
)]

1

a

E

[

exp

(

− b

Q
HarmH(h ◦ ft)(iy)

)

1Ā|F
]

1

b

.

(3.13)

Now we know that, conditionally on F , HarmH(h ◦ ft)(iy) is Gaussian, with a variance that can be bounded
by Lemma 3.4. Hence

E

[

exp

(

− b

Q
HarmH(h ◦ ft)(iy)

)

1Ā|F
]

≤ exp

(

b2

2Q2
· (C′ − 7ε log y)

)

= e
b2C′

2Q2 y
−ε 7b2

2Q2 . (3.14)
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Substituting (3.14) into (3.13) gives

|f ′
t(iy)|1Ā ≤

(

4y1−Cε
)

2

Q
√

κ e
bC′

2Q2 y
−ε 7b

2Q2 E

[

exp

(

a

Q
(HarmH(h

′)(iy))

)

|F
]

1

a

= Cy
2

Q
√

κ
−C′ε

E

[

exp

(

a

Q
(HarmH(h

′)(iy))

)

|F
]

1

a

We finish the proof by raising everything to the power a.

Lemma 3.6. In the same setting as Lemma 3.5, we have for any a > 1,

P
[

Ā
]

≤ Cy
a
(

1+ 2

Q
√

κ
− a

Q2

)

−C′ε
,

where C,C′ are constants which depend only on κ, the Hölder exponent a and the pinned point iy0.

Proof. We proceed as in Markov’s inequality, using Lemma 3.5:

P
[

Ā
]

≤ E

[

ya(1−ε)|f ′
t(iy)|a1Ā

]

≤ E

[

ya(1−ε)Cy
2a

Q
√

κ
−C′ε

E

[

exp

(

a

Q
HarmH(h

′)(iy)

)

|F
]]

= Cy
a
(

1+ 2

Q
√

κ

)

−ε(C′+a)
E

[

exp

(

a

Q
HarmH(h

′)(iy)

)]

. (3.15)

Now, we use Corollary 2.16 to bound the variance of HarmH(h
′)(iy) (since h and h′ have the same law as

normalised distributions), and get

E

[

exp

(

a

Q
HarmH(h

′)(iy)

)]

≤ exp

(

a2

2Q2
(2 log y0 − 2 log y)

)

= y
a2

Q2

0 y
− a2

Q2 . (3.16)

So, substituting (3.16) into (3.15) we find

P

[

|f ′
t(iy)| > y−(1−ε), bt ≤ −ε log y, sup

t∈[0,1]

|ξt| ≤ y−ε

]

≤ Cy
a
(

1+ 2

Q
√

κ
− a

Q2

)

−C′ε
,

as desired.

To conclude the proof of Proposition 3.3 it remains to optimise over a > 1.

Proof of Proposition 3.3. We focus on the exponent of y in Lemma 3.6, which is

f(a) = a

(

1 +
2

Q
√
κ
− a

Q2

)

. (3.17)

This is a quadratic in a, with roots at a = 0 and a = Q2
(

1 + 2
Q
√
κ

)

, and so achieves its maximum at the

average of these two, at amax = Q2

2

(

1 + 2
Q
√
κ

)

(note that Q > 2 so amax > 1.) Substituting amax into (3.17)

gives

f(amax) = amax

(

1 +
2

Q
√
κ
− amax

Q2

)

=
Q2

4

(

1 +
2

Q
√
κ

)2

=
4

κ
+

κ

16
+ 1 = q (3.18)

after some elementary computations. Hence by Lemma 3.6, we get

P(Ā) ≤ Cyq−C′ε.

which finishes the proof of Proposition 3.1, and thus Theorem 1.4.

16



References

[1] Lars V Ahlfors. Complex analysis: an introduction to the theory of analytic functions of one complex
variable. New York, London, 1953.
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