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We study nonaxisymmetric linearized gravitational perturbations of the Emparan-Reall black ring using
numerical methods. We find an unstable modewhose onset lies within the “fat” branch of the black ring and
continues into the “thin” branch. Together with previous results using Penrose inequalities that fat black
rings are unstable, this provides numerical evidence that the entire black ring family is unstable.
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During the golden age of general relativity, four-
dimensional black holes were shown to be remarkably
featureless. The Kerr black hole is the most general asymp-
totically flat black hole solution to the vacuum Einstein
equation [1]. It has spherical topology and depends only on
two parameters: the mass M and the angular momentum J
[2,3]. Moreover, for specific values ofM and J, there is only
one such black hole; i.e., the Kerr black hole is unique.
Additionally, its linear stability has been shown for all modes
[4]. Numerical simulations suggest that Kerr black holes are
also nonlinearly stable, though a complete proof remains
elusive (see, however, [5–7]). These facts have led to the
conjecture that “four-dimensional black holes have no hair”.
There is a natural higher-dimensional extension of the Kerr

black hole—the Myers-Perry black hole [8]. Like the Kerr
black hole, it has spherical topology, depends uniquely on
the mass and angular momenta, and (for sufficiently slow
rotation) has substantial evidence for its stability [9,10].
Nevertheless, after the initial discovery of the black ring

by Emparan and Reall [11,12], it became clear that black
holes in higher dimensions are dramatically different from
those in four dimensions. These black rings are five-
dimensional solutions with topology S1 × S2 and come
in two types described by their shape: “fat” rings and “thin”
rings. The two branches of solutions are distinct except for
a unique ring that is both fat and thin. For every fat ring,
there is a thin ring and a Myers-Perry black hole with the
same mass and angular momentum. Thus, uniqueness is
broken among black rings but also with Myers-Perry black
holes. In light of this, a higher-dimensional no-hair theorem
seems unlikely to hold.
Yet, another surprise in higher dimensions is the exist-

ence of a new type of instability. The so-called Gregory-
Laflamme instability was first found in black strings [13],
but there are analogous instabilities for rapidly rotating
Myers-Perry black holes [10,14–17]. The general picture is
that black objects with extended directions are unstable to
perturbations along those extended directions.
Since many of the solutions that violate uniqueness

have extended directions, there is hope that the spirit of the
no-hair theorems can be restored. That is, there is a unique
stable solution which is a slowly rotating Myers-Perry
black hole—a dynamical no-hair conjecture.

In five dimensions, the (in)stability of the black ring is a
natural setting to test this conjecture. Indeed, black rings
violate uniqueness, but moreover all known solutions in
five dimensions are either Myers-Perry black holes or
contain a topologically S1 × S2 black object as a horizon
component.
Fat rings were conjectured to be unstable in Refs. [18,19]

and confirmed in Ref. [20] by using local Penrose inequal-
ities. However, little is known about the stability of thin
rings, except that very thin rings ought to be unstable to the
Gregory-Laflamme instability, because they resemble
boosted black strings [11–13,21]. Though this argument
is physically sound, it says little about the stability of thin,
but not very thin, rings (which happens to coincide with
where black rings violate uniqueness with themselves and
Myers-Perry black holes.) Our goal is to demonstrate that
such a window of stability does not exist by computing
gravitational perturbations of the black ring.
Numerical approach.—We begin by presenting coordi-

nates for the black ring that we found suitable for numerics:

ds2¼R2

�
−ð1−y2Þ2Fdt2

þk02

h4

�
4

2−y2
f2
g
dy2þy2ð2−y2ÞSðdψ−Ωh4WdtÞ2

þ 4β2

2−x2
f2
f1

dx2þβ2x2ð2−x2Þð1−x2Þ2f1dϕ2

��
; ð1Þ

where the functions f1, f2, g, h, F, S, and W are,
respectively,
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the constants Ω and k0 are, respectively,
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and α ≥ 1, β > 0 are constants that parametrize this family
of solutions (the constant R merely sets a scale). These
parameters are related to the more familiar ones in
Ref. [12] via

ν ¼ β2

2þ β2
; λ ¼ α2β2

2þ α2β2
; ð4Þ

which satisfy 0 < ν ≤ λ < 1. The parameters λ and ν are
more prevalent in the literature, so we will refer to these
rather than α and β. The remainder of the line element in
Ref. [12] can be reproduced by the redefinitions
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where quantities with a tilde refer to those in Ref. [12].
Our coordinates range in x ∈ ½0; 1� and y ∈ ½0; 1� with

the axis of rotation at y ¼ 0, the horizon at y ¼ 1, the outer
axis of the ring at x ¼ 0, and the inner axis at x ¼ 1.
Asymptotic infinity is at x ¼ y ¼ 0, which corresponds to
h ¼ 0. The period of ψ and ϕ are set to 2π, and the
temperature of the horizon is 1=ð2πÞ.
Unless λ ¼ 2ν=ð1þ ν2Þ, there will be a conical singu-

larity at the inner axis. We shall see that the singular
solutions will be useful to us. In particular, there is a static
solution when λ ¼ ν. We are chiefly interested in the
nonsingular family of solutions which we call the “bal-
anced” ring. When the ring is balanced, 0 < ν ≤ 1=2 are
the thin rings, while 1=2 ≤ ν < 1 are the fat rings.
We wish to study gravitational perturbations of (1). We

write the perturbed metric as gab ¼ 0gab þ hab, where 0gab
refers to the background solution (1) and hab is our metric
perturbation. Since we are working with the vacuum
Einstein equation, we are free to impose the transverse-
traceless gauge condition

∇ahab ¼ 0; haa ¼ 0; ð6Þ

where, as elsewhere in this Letter, covariant differentiation
and the raising and lowering of indices are done with
respect to the background 0gab. In this gauge, the linearized
Einstein equation is

ðΔLhÞab ≡ −∇c∇chab − 2Ra
c
b
dhcd ¼ 0; ð7Þ

where ΔL is the Lichnerowicz operator.

Thin rings are extended in the ∂ψ direction, so the
Gregory-Laflamme instability would break the ∂ψ sym-
metry. For simplicity, we preserve the remaining symmetry
∂ϕ. We therefore perform a mode decomposition

hab ¼ e−iωtþimψ ~hab, where ~hab are functions of x and y.
Our background has a fixed temperature T ¼ 1=ð2πÞ, so

the frequency ω is equivalent to the more general dimen-
sionless quantity ϖ ≡ ω=ð2πTÞ. Incidentally, this quantity
is equivalent to ϖ ¼ ðRout − RinÞω, where Rout and Rin are
the outer and inner S1 equatorial horizon radii, respectively.
Since the m ¼ 0 modes do not break the rotation axis

and m ¼ 1 modes were not found to be unstable in other
systems with nonaxisymmetric instabilities [10], we will
for definitiveness and simplicity set m ¼ 2.
Preserving ∂ϕ symmetry lets us set hμϕ ¼ 0 for μ ≠ ϕ.

This leaves 11 functions, one of which can be removed by
imposing tracelessness. After imposing tracelessness, there
are six components of (7) which together with the four
nontrivial components of the transverse condition in (6)
form a set of ten independent equations. The remaining
components of (7) can be derived from this set.
Our task is to solve this set of ten, two-dimensional partial

differential equations in the form of a quadratic eigenvalue
problem inω. As boundary conditions,we impose regularity
on the outer axis and axis of rotation, ingoing boundary
conditions at the horizon, and outgoing boundary conditions
at infinity. On the inner axis, we demand that the conical
excess or deficit does not change, which is equivalent to
regularity when there is no conical singularity.
This problem is complicated by the fact that infinity is at

the coordinate singularity x ¼ y ¼ 0. Because of this
singularity, approaching the point x ¼ y ¼ 0 from different
directions will yield different values for hab. To obtain a
well-posed problem, our remedy is to use a different
coordinate system near infinity given by

ρ ¼ h; ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

βx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p

h

s
; ð8Þ

where the function h was given in (2). In these coordinates,
spatial infinity is at the hyperslice ρ ¼ 0. We divide our
domain into two nonoverlapping coordinate patches: one in
(ρ; ξ) coordinates containing infinity and another in (x; y)
coordinates containing the horizon and the inner axis. Grids
can then be placed on these patches by using transfinite
interpolation. We must also impose additional patching
conditions that require that hab and its first derivatives
match on patch boundaries.
Once the problem is discretized by such a patched grid

(we use pseudospectral collocation on Chebsyshev grids), it
is reduced to a quadratic eigenvalue problem in linear
algebra, which can be solved on a computer. Unfortunately,
because of the size of the matrices required, a direct
computation of the spectrum (reduction to a linear matrix
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pencil followed by QZ factorization) yields a large number
of nonphysical spurious modes. We were unable to extract
the physical modes from such a spectrum.
We must therefore seek an alternate route. Rather than

the entire spectrum, we wish to obtain only the unstable
Gregory-Laflamme mode of the balanced ring. By varying
the parameters of the black ring, it is natural to suspect that
this mode is connected to some Gregory-Laflamme mode
of the static ring, the onset of which is a zero frequency
mode (ω ¼ 0).
Since we suspect that our desired mode is connected to a

zero frequency mode, consider the more general problem
(with the same gauge and boundary conditions)

ΔLhab ¼ −k2hab: ð9Þ

This problem arises in perturbations of the six-dimensional
solution ðblack ringÞ ×R. If there is a zero frequency mode
solution to ΔLhab ¼ 0, then there is also a zero frequency
mode solution to (9) with k ¼ 0. One can find this mode by
setting ω ¼ 0 and solving (9) for k while varying the
parameters until k ¼ 0. Indeed, this method has been used
successfully in the past [14,15].
For our purposes, we need not find the zero frequency

mode of the static ring. We merely observe that there are
solutions of (9) on the static ring with ω ¼ 0 and k ≠ 0 that
are connected to the zero frequency mode of the static ring
and are hence also connected to our desired Gregory-
Laflamme mode of the balanced ring.
Given this, we first solve (9) withω ¼ 0 on the static ring

for k. This problem is much simpler than solving (7)
directly. This is a linear eigenvalue problem in k2. The
static background and ω ¼ 0 introduce extra symmetry and
reduce the number of functions from ten to seven. A
suitable definition of the perturbation functions also yields
matrices for the eigenvalue problem that are purely real.
Furthermore, we know (as we know for black strings) that
the real, positive k2 modes are connected to the zero
frequency mode, significantly reducing our search space
for physical modes. Attempting this problem for a particu-
lar static ring by QZ factorization with several grid
resolutions yielded a single real, positive value of k2.
Having obtained a single solution connected to the

solutions we are after, we can proceed by repeated
application of the Newton-Raphson method on several
grid resolutions. Since the Gregory-Laflamme modes of the
static ring are pure imaginary, we can increase Γ ¼ −iω
until we find that k ¼ 0. This puts us on a solution of (7).
From here, we can solve for ω while varying the ring
parameters. We increase the rotation until the ring is
balanced, and we have thus arrived on a desired solution.
We henceforth take the black ring to be balanced and
present our results as we vary the parameter ν.
As a check, we have evaluated the Geroch-Held-Penrose

scalars constructed in Ref. [22] and found nonzero values,

confirming that this mode cannot be pure gauge. More
details of our calculation and a number of numerical checks
can be found in Supplemental Material [23].
Results.—Figures 1 and 2 present the imaginary and real

parts, respectively, of the dimensionless quantity ϖ ≡
ω=ð2πTÞ as a function of ν. (Recall that thin rings have
0 < ν ≤ 1=2 and fat rings have 1=2 ≤ ν < 1.) Dots and
squares represent different resolutions, where ðN þ NÞ × N
refers to N2 points per patch. The agreement between
resolutions is reassuring. Data points below ν ∼ 0.144 and
above ν ∼ 0.52 were discarded due to lack of numerical
precision. (We discard values where the two resolutions
differ by more than 0.1%.) The vertical dashed line
separates fat and thin rings, with the colored region
corresponding to fat rings.
Our main result can be seen in Fig. 1, where positive

ImðϖÞ indicates an instability. An instability seems to exist
for all values of ν≲ 0.55 (the upper bound is an extrapo-
lation of data with ν > 0.3 using a second-order polynomial
in ν). In particular, this instability extends into a region of
the fat rings with 0.5 ≤ ν≲ 0.55. Since all fat rings are
already unstable to axisymmetric perturbations [18–20],
this would imply that the Emparan-Reall ring is unstable
for all ranges of parameters. We stress that, though we do
not have points below ν≲ 0.144, the Gregory-Laflamme
argument should be valid for small ν, so we expect the
instability to persist down to ν ¼ 0.
We note that the local Penrose inequalities suggest that

the axisymmetric (m ¼ 0) instability should be marginal at
ν ¼ 1=2, so fat rings near ν ¼ 1=2 should have a small
growth rate. Our results therefore suggest that the m ¼ 2
mode is dominant over the m ¼ 0 modes for fat rings near
ν ¼ 1=2. For larger values of ν, the m ¼ 2 modes are no
longer unstable, so the m ¼ 0 modes should dominate.
Finding the transition point would requires data on them ¼ 0
sector of perturbations, which we leave for future work.

FIG. 1 (color online). Imaginary part of the frequency ϖ ≡
ω=ð2πTÞ for nonaxisymmetric perturbations with m ¼ 2 as a
function of ν at two resolutions. The colored region corresponds
to fat rings which have previously been shown to be unstable. The
solid line is a polynomial extrapolation.
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A curious fact about Fig. 2 involves the so-called super-
radiant bound. Based on the results of Refs. [24,25], the
onset of the instability must satisfy 0 ≤ ReðωÞ ≤ mΩ, as we
have verified. Away from the onset at ν≲ 0.305, we find
instead that ReðωÞ > mΩ. Though this is not in conflict
with Refs. [24,25], we do not have many examples where
ImðωÞ > 0 and ReðωÞ > mΩ. The physical significance of
this property is unclear at the moment.
To visualize the horizon evolution under this instability,

we have constructed an isometric embedding of our
perturbations (see Supplemental Material [23] for more
details). The results are depicted in Fig. 3 and are similar to
those obtained in Ref. [26] for the Gregory-Laflamme
instability. This corroborates our claim that these non-
axisymmetric perturbations are similar to that of the black
string. The general shape of the curve in Fig. 1 is also
characteristic of Gregory-Laflamme modes [13,21].

Outlook.—We have given substantial numerical evidence
that the entire Emparan-Reall black ring is unstable. Fat
rings are unstable to axisymmetric perturbations, and thin
rings are unstable to nonaxisymmetric perturbations resem-
bling the Gregory-Laflamme instability of the black string.
There is a competition between these instabilities for fat
rings near ν ¼ 1=2.
We focused our computation entirely on the m ¼ 2

modes. It would be interesting to see how the other modes
behave. A study of the m ¼ 0 modes would elucidate its
competition with the m ¼ 2 modes. There could also be
instabilities corresponding to m ¼ 1, though these were
absent in Myers-Perry black holes [10]. Perturba-
tions with m > 2 correspond to a shorter wavelength
and may have an onset for smaller ν than that of m ¼ 2.
One can also consider perturbations that break the
∂ϕ symmetry.
While we have studied only stability of the Emparan-

Reall black ring, there are many other solutions. In five
dimensions, the black ring can also rotate in the ∂ϕ

direction as in the double-spinning ring [27] and the helical
rings [28]. A study of rotating black strings [15] suggests
that the instability in doubly spinning rings would have a
higher growth rate. There are also multihorizon solutions
(e.g., black Saturns [29], dirings [30,31], and bicycling
rings [32]). These solutions contain black rings as horizon
components and might share many of the same stability
properties. In six and higher dimensions, there are also
black rings [33,34] and their associated multihorizon
solutions, but there are additionally ringoids [28,35] and
lumpy black holes [34,36]. Little is known about the
stability of these solutions, though many of them resemble
an unstable Myers-Perry black hole, or a black ring, and
hence might also share many stability properties. The
addition of matter may add a stabilizing effect, particularly
in supersymmetric setups [37–40].
The end point of these instabilities remains an important

and open problem. Work is in progress [41]. Axisymmetric
instabilities are expected to lead towards Myers-Perry black
holes. For nonaxisymmetric perturbations of very thin
rings, the Gregory-Laflamme instability in the (unboosted)
black string suggests that black rings would develop a
naked singularity and violate cosmic censorship [42]. The
similarity of our results to the Gregory-Laflamme insta-
bility seems to support this idea. It is important to note,
however, that this instability in the black ring emits
gravitational radiation. Even for very thin rings, the
solutions resemble boosted black strings, and it is unclear
what role this would play in the overall time evolution.

We thank Joan Camps, Gary Horowitz, and Donald
Marolf for helpful discussions, Óscar Dias for comments on
a draft of this Letter, and Harvey Reall for comments and
for being such a good sport. B. W. is supported by
European Research Council Grant No. ERC-2011-StG
279363-HiDGR.

FIG. 2 (color online). Real part of the frequency ϖ ≡ ω=ð2πTÞ
as a function of ν. The same color scheme as Fig. 1.

FIG. 3. Isometric embedding of constant ψ slices of the S2

spatial sections of the perturbed black ring horizon (see Supple-
mental Material [23] for more details). This plot corresponds to
ν ¼ 0.2.
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