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Abstract.

The high-Tc superconducting (HTS) dynamo exploits the nonlinear resistivity of

an HTS tape to generate a DC voltage when subjected to a varying magnetic field.

This leads to the so-called flux pumping phenomenon and enables the injection of DC

current into a superconducting coil connected to the dynamo without current leads.

In this work, the process of charging a coil by an HTS dynamo is examined in detail

using two numerical models: the Minimum Electromagnetic Entropy Production and

the segregated H-formulation finite element model. The numerical results are compared

with an analytical method for various airgaps and frequencies. Firstly, the I-V curves

of the modeled HTS dynamo are calculated to obtain the open-circuit voltage, short-

circuit current and internal resistance. Afterward, the process of charging a coil by the

dynamo including the charging current curve and its dynamic behavior are investigated.

The results obtained by the two models show excellent quantitative and qualitative

agreement with each other and with the analytical method. Although the general

charging process of the coil can be obtained from the I-V curve of the flux pump, the

current ripples within a cycle of dynamo rotation, which can cause ripple AC loss in

the HTS dynamo, can only be captured via the presented models.
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1. Introduction

High-Tc superconducting (HTS) flux pumps employ a source of varying magnetic field

relative to an HTS tape to generate a DC voltage (with a large ripple) and inject DC

current into a superconducting coil connected to it. In HTS dynamo-type flux pump,

this source of varying magnetic field is a permanent magnet(s) that rotates around an

axis and transits past a stationary superconducting tape(s). The working mechanism of

an HTS dynamo is similar to traditional dynamos, but without the need for commutator

and brushes. Indeed, in the HTS dynamo, the nonlinear resistivity of superconductor

serves as a natural rectifier to generate a DC voltage within each cycle.

The HTS dynamo has drawn much attention in the last decade, since it was

proposed and designed by Hoffman et al. in 2011 [1]. It has a simple structure and

low maintenance compared to other types of flux pumps. They can inject DC current

into superconducting magnets [2,3] or the rotor winding of electrical machines without

the need for brushes or bulky current leads and their associated thermal loss. This will

reduce the maintenance of electrical machines and increase the efficiency of cryogenic

systems [4–14]. Such flux pumps can be also useful to charge no-insulation coils [15,16].

Many articles have reported experimental investigations into the process of charging

a superconducting coil using an HTS dynamo, starting with [1]. In [17], it was shown

that the maximum output current is limited by the dynamic resistance, which can be

minimized by optimizing key design parameters of the flux pump. In [18], the impact

of airgap and in [6, 7, 10], the impact of using a ferromagnetic circuit with varying

yoke width, airgap and frequency on the charging performance of an HTS dynamo were

studied. In [9], the impact of stator wire width and in [19] impact of HTS wire type

and frequency on charging of HTS coil were investigated. The dynamic charging current

curve of a flux pump is not smooth as it contains ripples within each cycle. The source

of these ripples were analyzed and discussed by experiments in a transformer-rectifier

HTS flux pump in [20] and in a pulse-type magnetic flux pump in [21]. However, there

is no experimental work regarding the source of the current ripple in an HTS dynamo.

Although several experimental studies have been carried out to explore the impact

of various design parameters of an HTS dynamo on the charging process of an HTS

coil, there is still a need for efficient models to fully examine the details and optimize

this process. In recent years, several numerical models have been developed, which

can be categorized into two groups. The first group models the open-circuit mode,

where the output current is zero [22–28]. All of these models could explore the essential

mechanism of the flux pump to deliver a DC voltage by the assumption of constant

critical current density Jc for the HTS tape characteristic. However, only some of

them considered Jc(B, θ) dependency, which enable the models to generate an output

voltage much closer to reality and comparable to experiments [22, 23, 25]. The second

group presented in [29] and [30] are capable of also modeling the HTS dynamo with an

imposed DC transport current; using these models, the I-V curves of the flux pump

and the associated effective resistance at different frequencies could be obtained.
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Proper modeling of the dynamic behavior of an HTS dynamo while charging a coil

is important because the ripples within each cycle can generate AC loss in the coil. In

addition, some applications such as motors and generators can be sensitive to ripple

currents and their ripple magnetic fields.

In this work, we model the charging process of a coil by an HTS dynamo-type

flux pump. We perform these calculations using both the minimum electromagnetic

entropy production (MEMEP) method and the segregated H-formulation finite element

method, benchmarking the two techniques. The numerical results are also compared to

analytical results. The models allows us to study the current ripples and their resultant

AC loss in an HTS dynamo during the charging process.

2. Problem Configuration

Fig. 1 shows the configuration of the studied problem. The permanent magnet with

width w, height h and remanent flux density Br rotates in the xy-plane in the

counterclockwise direction with its magnetization facing outwards. θM is the magnet

angle of rotation and the airgap is defined as the minimum distance between the magnet

outer surface and the tape surface at θM = 180◦. The HTS tape has width b, thickness

a and critical current density Jc, and the temperature assumed to be constant. The

tape effective length (depth) l is defined as the length of the tape and magnet in the z

direction, which is used to calculate the voltage, as per Equation (5).

In our study, a constant Jc equal to Jc0 = Ic0/(b · a) has been assumed for

simplicity. Although this will reduce the charging efficiency of the flux pump as discussed

in [22, 29, 31, 32], it does not have any effect on the essential behavior of the flux pump

to deliver a DC voltage. As discussed in [22, 26], the stronger the dependence of Jc of

the HTS tape on magnetic field, the higher the resultant DC voltage of the HTS flux

pump is. The use of a realistic field-dependent Jc also leads to DC voltages closer to

experiments [22, 23, 25, 29], as described in the Introduction. In addition, for simplicity

and increasing the calculation speed, only the superconducting layer of the HTS tape

was considered, which has a negligible effect on the performance of the flux pump at

low frequencies [27, 33, 34]. In our calculations, we assume an ideal HTS coil without

considering its critical current or its dynamic effects due to screening currents. It is

modeled as lumped parameter elements including the inductance L = 0.24 mH and the

joint resistance Rc = 0.88µΩ. These values were derived based on the experimental

values presented in [17]. However, for faster charging of the coil, the inductance L was

chosen as 1/10th of its real value. The characteristics of the permanent magnet, the

HTS tape and the HTS coil are summarized in Table 1, which are based on the HTS

dynamo benchmark problem presented in [24] and are derived from the experimental

study performed in [8].
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Table 1: Problem configuration parameters

Permanent Magnet

Width, w 6 mm

Height, h 12 mm

Effective length (Depth), l 12.7 mm

Remanent flux density, Br 1.25 T

HTS Tape

Width, b 12 mm

Thickness, a 1 µm

Critical current Ic 283 A

n-value 20

Charging Circuit
Inductance, L 0.24 mH

Joint Resistance, Rc 0.88 µΩ

Rotor external radius, Rrotor 35 mm

Airgap 1, 2, 3.7 mm

Rotation frequency, f 4.25, 25, 50 Hz

Figure 1: Configuration of the studied problem in the xy-plane .

3. Calculation Methods

3.1. General Definitions

We assume an isotropic E-J power law to define the non-linear characteristic of the HTS

tape:

E(J) = Ec

(
|J|
Jc

)n
J

|J|
, (1)

where Ec = 10−4 V/m is the critical electric field, Jc is the critical current density and

n defines the steepness of the transition between the superconducting state and the

normal state. In this article, we assume that both tape and magnet are infinitely long

along the z axis in a Cartesian 2D coordinate system. Therefore, the current density J,

vector potential A, and electric field E, satisfy J(r2) = J(x, y) ez, A(r2) = A(x, y) ez
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and E(r2) = E(x, y) ez, where r2 is the 2D position vector in the cross-section and ez is

the unit vector along the z axis, corresponding to the assumed infinitely long direction

of the tape.

The relation between the current density and the vector and electrostatic scalar

potentials is:

E(J) = −∂A

∂t
−∇ϕ, (2)

and the current conservation equation:

∇ · J = 0, (3)

where ∂A/∂t is the change of vector potential with respect to time and ϕ is the scalar

potential. For Coulomb’s gauge (∇ · A = 0), the vector potential A in Equation (2)

includes the contributions from the applied field AM and the current density in the

superconductor AJ . In addition, ϕ in this gauge becomes the electrostatic potential

(see the appendix of [35]).

The cross-sectional average of the electric field E(J) is:

Eav(t) =
1

S

∫
SS

d2r2 ρ[J(r2)]J(r2), (4)

where Ss is the cross-section of superconducting tape, d2r2 is the surface differential

in the cross-section and ρ is the nonlinear resistivity of the HTS tape, which can be

obtained from Equation (1).

The total output voltage of the flux pump V (t) is comprised of three components:

V (t) = −l ·∂zϕ = l · [Eav(J)+∂tAav] = l · [Eav(J) + ∂tAM,av + ∂tAJ,av] , (5)

where ϕ is the electrostatic scalar potential, Eav is obtained by Equation (4), AM,av

and AJ,av are the average magnetic vector potential in Coulomb’s gauge (∇ · A) over

the tape cross-section due to the permanent magnet and the screening current in the

superconducting tape, respectively. Since ∂zϕ is uniform within the superconductor,

E(J) and ∂tA can be written as the average over the tape cross-section, Eav(J) and

∂tAav, respectively [22].

Among these three terms, only Eav is not periodic within a cycle leading to a DC

voltage value and thus the pumping phenomenon. The two other terms AM,av and AJ,av
are periodic within a cycle and do not have any effect on the DC voltage value [22,23].

However, they cause a significant ripple in the voltage and current, resulting in AC loss

in the superconducting coil.

The cumulative total output voltage, Vcumul(t), is:

Vcumul(t) =

∫ t

0

V (t′) dt′. (6)

The DC output voltage of the dynamo, VDC , is:

VDC =
1

T

∫ t+T

t

V (t′) dt′, (7)

as the time average value of the induced voltage over one period of rotation, T , in the

steady-state.
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3.2. MEMEP 2D method

The MEMEP 2D method is a variational method, which the solution minimizes the

entropy production made by electromagnetic fields [36, 37]. It works based on the

calculation of the current density J, which only exists inside the superconducting (or

normal conducting) region, thus, the discretization of mesh is only needed inside this

region. For solving the problem, a functional needs to be minimized containing all the

variables of the problem such as the magnetic vector potential A, current density J, and

scalar potential ϕ. In this article, we extend the numerical method in [36, 37] in order

to take lumped circuit elements such as inductances and resistances into account.

As detailed in [37], solving equation (2) in Coulomb’s gauge is the same as

minimizing the following functional:

F =

∫
Ω

d3r
[1

2

∆AJ

∆t
·∆J +

∆AM

∆t
·∆J + U(J0 + ∆J)

+∇ϕ · (J0 + ∆J)
]
, (8)

where Ω is the superconducting or normal conducting region in the 3D space, ∆J, ∆AJ ,

∆AM are the change of the variable between two consecutive time steps, ∆t is the time

difference between two time steps, and J0 is the current density at the previous time

step. In addition, U in this functional is the dissipation factor, defined as [37]

U(J) =

∫ J

0

E(J′) · dJ′. (9)

This dissipation factor can include any E-J relation for superconductors or normal

conductors. The first term of equation (8) is related to the self-energy or the newly

induced currents, or inductive effects, and the U term is related to the dissipation of

the newly induced currents [36].

When the superconducting tape of the dynamo is connected in series with a coil,

we can still use the functional of Equation (8). In that case, Ω includes all parts: the

superconducting tape, the coil and any series connected resistance (joints, coil resistance

and so on). If the coil, resistance and tape are far away from each other, the magnetic

field and vector potential from each component does not influence the other. Then

F = FS + FL + FR, (10)

where FS, FL, FR are the terms (of a single functional) for the superconducting tape,

coil, and resistance, respectively. The expression of these is the same as in Equation (8)

but replacing Ω by ΩS, ΩL and ΩR, being the 3D regions for each part.

Next, we take several assumptions to simplify the 3D formulation of these

functionals.

With the assumptions of section 3.1, J(r2) = J(x, y) ez, A(r2) = A(x, y) ez and

E(r2) = E(x, y) ez, where r2 is the 2D position vector in the cross-section, r2 = xex+yey.

In addition, ∇ϕ(r) is uniform with value ∇ϕ(r) = −(V/l)ez, where ez is the unit vector

along the z axis and l is the tape effective length. The voltage V is conventionally



Modeling the charging process of a coil by an HTS dynamo ... 7

defined as in a passive circuit element V = ϕ(z = −l/2) − ϕ(z = +l/2). With these

assumptions, we simplify the superconducting tape functional into

FS = l

∫
SS

d2r2

[1

2
∆J

∆AJ
∆t

+ ∆J
∆AM

∆t
+ U(J)

]
− VSI, (11)

where SS is the cross-section of the superconducting tape and I is the net current in

the tape. The non-uniform applied magnetic field BM caused by the rotating magnet

appears in the functional in the form of AM . As well, in the infinitely long geometry,

the AJ contribution of the vector potential in Coulomb’s gauge is [35]

AJ(r2) =
µ0

2π

∫
SS

d2r′2J(r2) ln |r2 − r′2|. (12)

Equation (11) is valid not only for superconductors but also for any non-linear or

linear conductor. Regarding the functional term for the inductance in equation (10),

we take the lump element assumption into account. Thus, we neglect eddy currents or

skin effects, as well as inductive interaction between all three elements (superconductor,

inductance and resistance). Under these assumptions and following the same steps as

in [38], equation (8) reduces to

FL =
1

2
L

(∆I)2

∆t
+

∫ I

0

dI ′RL(I ′)I ′ − VLI, (13)

where L is the inductance and the voltage of the inductance VL, is conventionally defined

as the difference in electrostatic potential between the entry and exit of current I at the

coil terminal. Above, RL is the DC non-linear resistance of the coil, enabling to model

a superconducting coil. For simplicity, in this work we assume RL ≈ 0, which is valid

for I below the critical current of the conductor at any section of the coil.

Using also the lumped element assumption for the series linear resistance, R, we

can obtain FR of equation (10) from equation (13), being

FR =
1

2
RI2 − VRI (14)

The voltage VR is, again, the drop in the electrostatic potential as defined in a passive

circuit element.

Since all elements are connected in series, the sum of the voltage terms of all three

functionals is I(VS +VL+VR). Since the sum of the voltage drops are in a closed circuit,

they follow VS + VL + VR = 0; being Kirchhoff’s second law. Thus, the whole system

minimizes the following functional

F = l

∫
SS

d2r2

[1

2
∆J

∆AJ
∆t

+ ∆J
∆AM

∆t
+ U(J)

]
+

1

2
L

(∆I)2

∆t
+

1

2
RI2. (15)

Here, we have used the same voltage definition for all elements, as a passive circuit

element, for consistency. However, if we consider the HTS dynamo as a voltage source,

the voltage is defined with opposite sign. The latter definition is used in the analysis of

section 4.



Modeling the charging process of a coil by an HTS dynamo ... 8

3.3. Segregated H-formulation Finite Element Method

The segregated H-formulation (SEG-H) finite-element model, implemented in COMSOL

Multiphysics, consists of a magnetostatic permanent magnet model and a time-

dependent H-formulation HTS wire model. The former is coupled unidirectionally to

the latter using electromagnetic boundary conditions and a rotation operator to mimic

the movement of the magnet [39–41]. This avoids the need for modeling moving parts

(e.g., using a moving mesh) and significantly reduces the number of mesh elements,

resulting in a fast and efficent model [42].

The HTS wire model implements the 2D H-formulation [24, 42–46], where the

independent variables are the components of the magnetic field strength H, and the

governing equations are derived from Ampere’s and Faraday’s laws. On the outer

boundary of the H-formulation model, the sum of the applied field Hext, and the self-

field Hself , is applied as a Dirichlet boundary condition. Hext is obtained by rotating the

field of a static permanent magnet [24] and Hself , created by the supercurrent flowing

in the HTS wire, is obtained at each time step by numerical integration of the 2D

Biot-Savart law over the HTS wire subdomain [39,41].

The contribution, AJ , the vector potential due to the superconducting current, is

calculated using COMSOL’s Poisson’s Equation interface (one of the ’Classical PDEs’

available in the Mathematics module), where

∇ · (−∇AJ) = µ0J (16)

and an appropriate Dirichlet boundary condition is set, on the outer boundaries of the

HTS wire model, such that Equation (12) is satisfied.

The contribution, AM (see Equation (5) ), the vector potential due to the permanent

magnet, is calculated using Az from the magnetostatic magnet model with the same

rotation operator applied, as described earlier for the magnetic field, to mimic the

movement of the magnet.

The total output voltage derived from the HTS wire model, including the

contributions from Eav, ∂tAJ,av and ∂tAM,av, as defined by Equation (5), is then

coupled to COMSOL’s Electrical Circuit interface (AC/DC module) consisting of the

voltage source (implemented using COMSOL’s ’External I vs.V’ node) in series with the

inductance L and resistance R. An ammeter (’Ampére Meter’ node) is also connected

in series and the current flowing through this, Icir, is coupled unidirectionally back to

the HTS wire model with a constraint, such that

I(t) =

∫
S

J(t) · dS = Icir, (17)

3.4. Analytical Method

For many configurations [29, 30], the I − V curve of the flux pump is linear, and hence

it can be modeled as a DC voltage source in series with an effective resistance, Reff , as
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L

Rc

Reff Voc

Flux Pump

I

Figure 2: Equivalent electrical circuit model of an HTS dynamo connected to a coil via

soldered joints.

shown in Fig. 2. The value of the voltage source is equal to the DC open-circuit voltage

of the dynamo Voc. During the operation, a coil with inductance L is connected via the

circuit resistance Rc (resistance of soldered joints) to the dynamo. Therefore, the coil

can be treated as an independent LR circuit, which is charged by the voltage source.

The current in the electrical circuit of Fig. 2 can be obtained using the following

equation obtained by solving the governing equation of the circuit [17]

i(t) = Isat
[
1− e−t/τ

]
, (18)

where Isat = Voc/(Rc +Reff) is the saturation current, which is the maximum value

of current that the flux pump can deliver and τ = L/(Rc + Reff) is the time constant

of the circuit, determining the charging rate of the flux pump. The flux pump reaches

99.3 % saturation of the final value, Isat, after 5τ .

4. Results

The results of calculations using the MEMEP and SEG-H methods along with analytical

results are presented and discussed in this section.

For both methods, we have used 60 mesh elements across the width and one mesh

element along the thickness of the tape. We have limited the number of mesh elements

as much as possible up to a point that does not affect the accuracy of the results. The

reason was to reduce the calculation time in order to be able to calculate up to millions

of time steps in a reasonable time.

4.1. I-V Curve

To obtain the I-V curve of the HTS dynamo, we impose different transport DC currents

in the dynamo and calculate the corresponding DC voltage values. Using the I-V curve,

the HTS flux pump can be described as a current-controlled voltage source, as shown

in Fig. (2).
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Figure 3: I-V curves of the modeled HTS dynamo calculated by the MEMEP and SEG-

H methods for three frequencies of 4.25, 25 and 50 Hz and for airgaps of (a) 3.7 mm, (b)

2 mm, (c) 1 mm.

For our calculations, the transport current varies over the range [0, Isc], which

outputs a DC voltage in the range of [Voc, 0]. Isc is the transport current when the

DC value of the output voltage is zero, i.e. short-circuit current and Voc is the output

voltage when the transport current is zero, i.e. the open-circuit voltage. As mentioned

before, we assumed an ideal superconducting coil. This indicates that in here, unlike

experimental work where maximum current can be restricted by Ic of the HTS coil,

the maximum applied transport current here is Isc, where the flux pump DC voltage

becomes negligible.

Fig. 3 shows the I-V curves of the modeled HTS dynamo calculated by the two

numerical methods for three frequencies of 4.25, 25 and 50 Hz and three airgaps of 1,

2 and 3.7 mm. The results verify the fact already shown by experiments and modeling

in [29,30] that Reff for a fixed rotation frequency and superconducting operating regime
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Table 2: Effective resistances (in µΩ) calculated from the slope of the I-V curves in Fig.

3

Method
Airgap

Frequency
4.25 Hz 25 Hz 50 Hz

MEMEP
1 mm

0.803 4.289 8.138

SEG-H 0.808 4.313 8.291

MEMEP
2 mm

0.528 2.808 5.409

SEG-H 0.528 2.807 5.34

MEMEP
3.7 mm

0.324 1.723 3.336

SEG-H 0.324 1.724 3.347

has a constant value and is not a function of the current, which depends on the

characteristic of the flux pump. In addition, the open-circuit voltage Voc and the slope of

the I-V curves, which describe the effective resistances of the dynamo, increase directly

proportional to the frequency. The calculated effective resistances are summarized in

Table 2. The maximum percentage differences between the effective resistances of the

models are only 0.6 %, 0.55 % and 1.8 % for the frequencies of 4.25 Hz, 25 Hz and 50

Hz, respectively, thus increasing with frequency. This difference increases slightly also

by decreasing airgap. The values in the Table 2 show that regardless of the airgap

value, the two compared methods have excellent agreement at low frequencies and with

increasing the frequency, this agreement deteriorates slightly.

4.2. Dynamic Charging of the HTS Dynamo

In this section, we estimate and discuss the instantaneous output voltage components,

the dynamic charging current curve of the coil and the resultant ripple AC loss.

4.2.1. Instantaneous voltage Fig. 4 (a) shows a comparison of the three voltage

components for the two numerical models for the first two cycles of the case with a

3.7 mm airgap and a frequency of 25 Hz including the average electric field multiplied

by the tape effective length l ·Eav, l · (Eav + ∂tAJ,av), and the total output voltage V (t).

Fig. 4 (b) is the magnified version of Fig. 4 (a) for the time period between 1.4 and 1.6

cycle number. It is clear that the two models have very good agreement.

4.2.2. Instantaneous current Fig. 5 shows the dynamic charging of the coil for the first

five cycles of the case with a 3.7 mm airgap and a frequency of 25 Hz for the two studied

models, which again have excellent agreement. The charging current curve contains

ripples that resemble the ripples of the cumulative total output voltage Vcumul(t) of

the HTS dynamo (Equation (6) ). The reason is that the total cumulative voltage

corresponds to the magnetic flux in an ideal inductor, being φ = L · I, and hence it is

proportional to the coil inductance L and current I.
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Figure 4: (a) Comparison of l ·Eav (l ·Equation (4) ), l ·[Eav+∂tAJ,av] (l · [Equation (4) +

∂tAJ,av]) and the total output voltage V (t) (Equation (5) ) of the two studied methods

for the first two cycles of the case with a 3.7 mm airgap and a frequency of 25 Hz (b)

The magnified version of Fig. 4 (a) for the time period between 1.4 and 1.6 cycles.

Figure 5: Dynamic charging current curve of the modeled coil over the first five cycles

for the two studied models. The cross symbol refers to the extracted data points at the

end of each cycle used for plotting Fig. 8. The case belongs to 3.7 mm airgap and 25

Hz frequency.
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Figure 6: Comparison between the 2nd cycle (almost open-circuit mode, I = 0) and the

5001st cycle (close to I ≈ Isat) of distribution of the current density normalised to Jc0,

J/Jc0 (top row), and the electric field, E (bottom row), across the width of the tape

for two key magnet positions for the two studied methods: (a) and (b) J/Jc0 and E

distribution as the magnet approaches the tape at θM = 166◦, (c) and (d) J/Jc0 and E

distribution when the magnet is on the top of the tape at θM = 180◦.

Fig. 6 shows a comparison between the 2nd cycle (almost open-circuit mode, I = 0)

and the 5001st cycle (close to saturation, I ≈ Isat) of the current density distribution

normalised to Jc0, J/Jc0, and electric field distribution, E, across the width of the tape

for two key magnet positions for the two studied methods. The key positions include

θM = 166◦, as the magnet approaches the tape, and θM = 180◦, when the magnet is on

the top of the tape. As it is clear from the figure, the current density J and electric field

E distributions are mostly similar between theses two cycles and there are only small

shifts of current density and electric field. These results agrees well with the modeling

results presented previously in [29] for different values of imposed transport current in

the tape.

4.2.3. Ripple AC loss The changing magnetic field from the magnet and the ripples of

the charging curve shown in Fig. 5 generate AC loss in the HTS tape of the dynamo,

which is shown in Fig. 7. We calculated the average AC loss in the first five charging

cycles (ignoring the first transient cycle) for the MEMEP method as 135.4 mW and

for SEG-H method as 135.7 mW. The average AC loss of the 5001st cycle, close to

saturation of pumping, for the MEMEP method is 135.7 mW and for SEG-H method

is 135.9 mW. This suggests that for a given frequency, the calculated ripple AC loss in

the HTS dynamo is almost constant during the whole charging period of the coil. This
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Figure 7: Ripple AC loss in the HTS tape of the modeled dynamo over the second and

third cycles for the two studied models. The case belongs to the 3.7 mm airgap and

25 Hz frequency.

can be understood from the results presented in Fig. 6 showing that the current density

and electric field distributions do not change significantly between I = 0 and Isat and

thus, the AC loss remains largely the same, which agrees with the measurement results

presented in [14] for a multi-stator squirrel cage HTS dynamo.

4.3. Charging Behavior

Fig. 8 shows the calculated transport currents as a function of time for airgaps of

(a) 3.7 mm, (b) 2 mm and (c) 1 mm with rotation frequencies of 4.25, 25 and 50 Hz,

comparing the results of the two numerical methods with the analytical ones. To obtain

a smooth charging curve in Fig. 8 and to compare adequately with the analytical results,

we extracted only the last data point of each cycle, where the magnet has returned to

its starting position.

Different number of cycles were required for each frequency to reach the saturation

current Isat, which is a function of the time constant τ . For this reason, we used

2125, 5000 and 7000 calculated cycles for the frequencies of 4.25 Hz, 25 Hz and 50 Hz,

respectively, which correspond to durations of 500 s, 200 s and 140 s. For the analytical

calculations of the charging current, as given by the Equation (18), we have used the

information in Table 1 for the values of Rc and L, the average values of Reff obtained

by the two numerical methods in Table 2 and also data obtained from Fig. 3 for the

values of Voc.

Fig. 8 shows that for a given frequency, the coil current saturates at a higher value

and faster as the airgap decreases. The shorter saturation time is due to the increase

in Reff , since the time constant τ = L/(Reff + Rc) decreases with Reff . Therefore, τ

decreases with decreasing airgap, leading to faster charging of the coil. In the case of

the saturation current, as shown in Equation (18), for t� τ , Isat = Voc/(Reff +Rc). As

a consequence, with decreasing airgap, both Voc (from Fig. 3) and Reff increases, but

Voc increases comparatively more, leading to a resulting increase in Isat.

For a given airgap, the coil current saturates faster with a higher value of Isat as
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Figure 8: The calculated charging current curves of the coil, comparing the results from

the analytical equation (18) and the MEMEP and SEG-H methods, for three frequencies

of 4.25, 25 and 50 Hz for airgaps of (a) 3.7 mm, (b) 2 mm, (c) 1 mm.

the frequency increases. Reff increases linearly with frequency, thus the time constant

τ decreases with increasing Reff . We also observe that Isat increases with increasing

frequency, which suggests that Voc increases faster than Reff as the frequency increases.

By considering the last calculated data point of each current curve in Fig. 8 as

the criterion, we investigated the agreement between the models and the analytical

method. The maximum percentage difference between MEMEP and SEG-H method at

frequencies of 4.25 Hz, 25 Hz and 50 Hz was only 0.7 %, 0.4 % and 0.96 %, respectively.

The maximum percentage difference between SEG-H and the analytical method at
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frequencies of 4.25 Hz, 25 Hz and 50 Hz was 1.7 %, 1.2 % and 1.6 % and between MEMEP

and the analytical method were 2.1 %, 1.65 % and 2.13 %, respectively. Therefore, we

conclude that there is a good agreement between both numerical models and with

the analytical model. In addition, the charging current curves have good qualitative

agreement with the curves obtained by experiment presented in [17, 18]. It is worth

noting that in these studies, the time axes have been presented using a log scale, since

the inductance of superconducting coil L, and thus the time period τ , were 10 times

larger than the assumed inductance in our models.

While the voltage signals in Fig. 4 look quite different, the DC component is the

same and this leads to our ability to estimate the charging behavior per cycle based on

average values, leading to the derivation of the I-V curves in Fig. 3 and the ability to

use the analytical equation presented earlier.

4.4. Discussion

One may question why such complications are needed to analyze the charging process

of an HTS dynamo, when it can be modeled simply by the analytical considerations

presented in Section 3.4. For this purpose, only the I-V curve of the flux pump

(including the effective resistance of the flux pump, which is still obtained from numerical

models) and the characteristics of the coil would be needed. However, the analytical

model cannot capture the dynamic behavior of the flux pump and the output voltage.

This can be important and is only possible when the HTS dynamo is coupled with the

coil circuit, as it has been performed in these models. In addition, our models have the

potential to be coupled with other multiphysics analyses, as well as with a MEMEP

or finite-element model of the superconducting coil in more detail. Furthermore, the

models allow investigations on HTS dynamos with nonlinear I-V characteristics and

their influence on the dynamics of the charging process [30], which is not possible to

study via the analytical method.

Crucially, the current ripple shape in each cycle reflects the dynamic operation of

the HTS dynamo while the magnet transits past the tape, resulting in the two peaks

of the current. Since these ripples can generate AC loss and subsequent thermal loss in

the coil, accurate calculations of these ripples are important.

5. Conclusion

In this work, two novel numerical methods for simulating the charging process of a coil

by an HTS dynamo were presented: The Minimum Electromagnetic Entropy Production

(MEMEP) and the segregated H-formulation (SEG-H). They were compared together

and with an analytical method through nine different cases including three airgaps of

1, 2 and 3.7 mm and three frequencies of 4.25, 25 and 50 Hz. Firstly, the I-V curves

of the modeled HTS dynamo and thus the effective resistances were calculated and

compared together. The maximum percentage difference between the efective resistances
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of the two models was less than 2 %, which occurred at the highest frequency and

the smallest airgap. Then, the instantaneous voltage components and the dynamic

charging current curve of the coil for the two models were calculated and compared

together, which showed excellent quantitative and qualitative agreement. It was found

that the current charging curve contains ripples within each cycle, which cannot be

captured via the analytical method. Such ripples cause ripple AC loss in the HTS

dynamo, which was shown to be almost constant during the whole charging process.

Afterwards, the charging process of a coil by the dynamo was investigated and there

was again excellent quantitative and qualitative agreement between the two models and

the analytical method. In all, the two presented numerical methods showed promising

performance to describe the charging process of an HTS dynamo over thousands of

cycles, as well as capturing the current ripple within a cycle. In addition, the flexibility

of the numerical modeling frameworks presented here have the potential to be coupled

with other multiphysics analyses, as well as with a MEMEP or finite-element model of

an HTS coil. Besides, the models are capable of studying HTS dynamos with nonlinear

I-V characteristics and their influence on dynamics of the charging process.
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