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ABSTRACT 

Emotional communication between parents and children is crucial during early life, 

yet little is known about its neural underpinnings. Here, we adopt a dual connectivity 

approach to assess how positive and negative emotions modulate the interpersonal neural 

network between infants and their mothers during naturalistic interaction. Fifteen mothers 

were asked to model positive and negative emotions toward pairs of objects during social 

interaction with their infants (mean age 10.3 months) whilst the neural activity of both 

mothers and infants was concurrently measured using dual electroencephalogram (EEG). 

Intra-brain and inter-brain network connectivity in the 6-9 Hz range (i.e. infant Alpha band) 

during maternal expression of positive and negative emotions was computed using directed 

(partial directed coherence, PDC) and non-directed (phase-locking value, PLV) connectivity 

metrics. Graph theoretical measures were used to quantify differences in network topology as 

a function of emotional valence. We found that inter-brain network indices (Density, Strength 

and Divisibility) consistently revealed strong effects of emotional valence on the parent-child 

neural network. Parents and children showed stronger integration of their neural processes 

during maternal demonstrations of positive than negative emotions. Further, directed inter-

brain metrics (PDC) indicated that mother to infant directional influences were stronger 

during the expression of positive than negative emotional states. These results suggest that 

the parent-infant inter-brain network is modulated by the emotional quality and tone of 

dyadic social interactions, and that inter-brain graph metrics may be successfully applied to 

examine these changes in parent-infant inter-brain network topology.  

      (241 words) 

 

Keywords: EEG hyperscanning, network connectivity, graph theory, emotional 

expression, mother-infant interaction 
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1 INTRODUCTION  

 

1.1 Intra-individual neural networks for emotional processing 

Emotional processing and regulation involve both ‘top-down’ and ‘bottom-up’ 

processes of control and regulatory feedback that engage the fronto-limbic network (FLN) 

(Ochsner et al., 2009). Within the FLN, it is the dorsolateral, ventrolateral and medial 

prefrontal cortices along with limbic structures, such as the amygdala and hippocampus that 

have been most commonly implicated in emotion processing and regulation (Ochsner et al., 

2009) . The basal ganglia are also implicated in the processing of facial (Adolphs, 2002) and 

vocal (Kotz et al., 2003) emotional expressions. For example, deep brain stimulation of the 

basal ganglia causes impairment of emotion perception from facial and vocal expressions 

(Péron et al., 2010).  

More recent approaches have used connectivity-based measures to examine how these 

networks of brain regions coordinate their activity dynamically during emotion processing. 

Previous research has shown that all types of emotional faces enhance amygdala functional 

integration with premotor cortices compared to neutral faces (Diano et al., 2017), and studies 

using Dynamic Causal Modelling have shown directed effective connectivity from the 

amygdala to the neocortex during emotional processing (Sato et al., 2017). Extensive 

previous research has also examined how these intra-individual neural networks become 

disrupted during atypical emotion processing. For example, Lu et al showed reduced effective 

connectivity between DLPFC and amygdala, and increased effective connectivity from 

amygdala to ACC in patients with Major Depressive Disorder (Lu et al., 2012). Other studies 

have similarly demonstrated atypical connectivity between the amygdala and regions of the 

orbitofrontal cortex in patients in remission from major depressive disorder (Goulden et al., 

2012) and with posttraumatic stress disorder (Nicholson et al., 2017).   
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Although the aforementioned studies have used fMRI, other research has also 

examined intra-individual neural networks using electroencephalography (EEG). Neural 

oscillations (which are measurable using scalp EEG) reflect rhythmic fluctuations in the 

synchronization of neuronal populations at a millisecond timescale (Hirsch et al, 1985). 

Power in the EEG Alpha (6-9 Hz for infants, 8 to 13 Hz for adults) band is strongly 

implicated in the processing of emotional stimuli and social cognition in adults and infants 

(Allen et al., 2018; Coan & Allen, 2004). Studies with normal adults indicate that Alpha 

power over the left and right frontal brain regions respond differentially to emotional valence 

(Davidson, 1984, 1998). Increased relative left-frontal (i.e. decreased relative right-frontal) 

Alpha power is commonly associated with the experience of positive emotions such as joy or 

interest, whereas decreased relative left-frontal (i.e. increased relative right-frontal) Alpha 

EEG power is associated with disgust, crying and sadness. Further, individuals who 

experience mood disorders such as depression exhibit atypical patterns of EEG asymmetry, 

commonly showing higher relative right-frontal EEG Alpha (8 to 13 Hz) power activity than 

controls (Gotlib et al., 1998). Recent research has also started to examine intra-individual 

network topology during emotion processing using graph-theoretic measures. For example, a 

recent study with adults showed that EEG graph-theoretic features performed better than 

traditionally used EEG features (such as spectral power and asymmetry) on the automatic 

classification of affective neural states (Gupta et al. , 2016). 

Behavioral and neuroimaging studies into early development suggest that the neural 

architecture for the detection and prioritized processing of emotional expressions, such as 

fear, emerges sometime during the first year of life (Hoehl, 2013; Hoehl et al., 2019; 

Leppänen & Nelson, 2009). It is during this time that infants’ visual system is sufficiently 

developed to support the discrimination of most facial expressions (Leppänen & Nelson, 

2006), and that infants begin to exhibit a reliable attentional bias towards fearful facial 
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expressions (Nelson & De Haan, 1996). For example, 7-month-old infants look longer at 

fearful than happy facial expressions (Nelson et al., 1979) and are slower to disengage their 

attention from a fearful face than happy or neutral faces  (Leppänen et al., 2010). Recordings 

using EEG responses to facial expressions in 7-month-old infants have shown that particular 

event-related potential (ERP) components are enhanced when infants view fearful facial 

expressions (Hoehl & Striano, 2008; Leppänen et al., 2007). Influences of the early 

environment on infants’ neural processing of emotion have also been shown to modulate 

EEG spectral power: whereas typically-developing infants exhibit greater left>right frontal 

Alpha spectral power (measured in the infant Alpha band of 6-9 Hz), infants of depressed 

mothers exhibit greater right>left frontal Alpha power instead (Dawson et al., 1992; Field et 

al., 1995). Understanding the early development of emotion processing is considered 

essential, in particular, for helping to identify and intervene in cases of atypical development.  

1.2 Inter-individual neural networks for emotional processing 

The research described above is increasingly moving from approaches that emphasise 

localised structure-function correspondences towards a more distributed, network-based 

approach that studies how activity is coordinated across multiple brain regions on an intra-

individual basis (Bullmore & Sporns, 2009). Less well established, however, is research into 

how network-based patterns of brain activity subsist between individuals during human 

interactions – i.e. on an inter-individual basis (Redcay & Schilbach, 2019; Schilbach et al., 

2013; Wheatley et al, 2019). Inter-individual dynamics play an essential role in many forms 

of human interaction – particularly so during early development (Feldman, 2007; Jaffe et al., 

2001). Social co-ordination between parents and their offspring engenders early learning 

across multiple domains of social and cognitive development (Csibra & Gergely, 1998; 

Feldman, 2007; Rogoff, 1990). The behaviour of human infants and their adult caregivers is 

closely co-ordinated, and adult-infant temporal contingencies occur across behavioural, 
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physiological and neural domains. For example, adults’ and children’s gaze patterns (Kaye & 

Fogel, 1980), vocalisations (Jaffe et al., 2001), emotional states (Cohn & Tronick, 1988), 

autonomic arousal (Skoranski et al, 2017;  Wass et al., 2019) and hormonal fluctuations 

(Spangler, 1991) all show mutual temporal dependencies of different forms.  

Considerable previous research with adults has examined interpersonal synchrony in 

adults using methods including fMRI (Redcay & Schilbach, 2019), fNIRS (Gvirts & 

Perlmutter, 2019; Jiang et al., 2012) and dual EEG (Dumas et al., 2010; Liu et al., 2018). 

Some of this research has examined how interpersonal synchrony is modulated by emotional 

valence. For example, using fMRI and seed-voxel-based correlation analyses, Nummenmaa 

and colleagues suggested that emotional content synchronises neural activity between 

individuals in brain areas supporting emotional processing, with synchronisation particularly 

marked during the viewing of movies with negatively-valenced emotion (Nummenmaa et al., 

2012, 2014). Conversely, dual EEG studies with adults have shown increased inter-individual 

phase-locking during the observation of positive- relative to negatively-valenced stimuli (Zhu 

et al., 2018). Differences were observed across different frequency bands for each subject in 

response to positive and negative emotional stimuli, with group-level increases observed in 

the Gamma band (31-50 Hz). Using a different approach (examining dyadic correlations in 

average power across different frequency bands, irrespective of time), another study also 

observed greater Gamma band synchrony between couples than strangers, which was 

anchored in moments of social gaze and positive affect (Kinreich et al, 2017).  

Other recent research has also started to examine interpersonal synchrony during 

adult-child social interaction. For example, one study (Reindl et al, 2018) used fNIRS to 

demonstrate that prefrontal regions showed synchronisation between children and their 

parents, but not between children and an unfamiliar adult, during conditions of social co-

operation (this was not observed during competition). The degree of parent-child neural 
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synchronisation also mediated the relationship between parent’s and children’s emotional 

regulation abilities, as assessed via questionnaires. Other studies using fNIRS have reported 

comparable results (e.g. Piazza et al., 2018). Dual EEG research involving infants has also 

shown that neural synchronicity develops during social interaction between adults and infants 

in the Theta (3 -6 Hz) and Alpha (6-9 Hz) bands, and that bidirectional Granger-causal 

influences (infant->adult and adult->infant) are stronger during direct compared to indirect 

gaze (Leong et al., 2017). Other research has shown that, during joint play between parents 

and their infants, parental Theta (4-6 Hz) power closely tracks and responds to changes in 

infants’ attention. Instances of greater maternal Theta responsivity are positively associated 

with longer infant sustained attention (Wass et al., 2018). However, no previous work has 

examined how emotional valence modulates interpersonal neural synchrony during adult-

child interaction.  

1.3 Graph connectivity in two-person neuroscience  

The interpersonal neural network contains crucial information with regard to 

teamwork/co-ordination (Babiloni et al., 2011; Dikker et al., 2017), communicative efficacy 

(Hasson et al., 2012; Jiang et al., 2012), and social status (e.g. leader-follower relationships; 

Jiang et al., 2015; Sänger et al, 2012, 2013), and the field of two-person neuroscience is only 

just beginning to explore exactly how such information is encoded within the structure of 

social neural networks. Traditional measures of connectivity quantify the strength of 

association between two (or more) nodes. Yet interpersonal neural networks – like intra-

individual neural networks – can also vary in structure and topology (i.e. how information 

flows between partners). To capture these more complex hierarchical features, network 

science offers theories and methods that can capture the richness of interconnection patterns 

and pinpoint important local network nodes that influence global function (Bullmore & 

Sporns, 2009; Falk & Bassett, 2017). It is also the case that socioemotional factors may 
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modulate the structure of a neural network without necessarily changing its mean strength or 

activation level. For example, Betzel et al (2017) showed that individual variations in mood 

and surprise were correlated with changes in intra-individual neural network flexibility (that 

is, the reconfiguration of network community structure over time). Positive moods were 

associated with higher levels of network flexibility whereas increased levels of surprise were 

associated with lower network flexibility. Given that interpersonal neural networks may also 

respond to social stimuli by changing in structure (rather than, or in addition to, changes in 

strength), the field of two-person neuroscience may derive significant benefit from the 

adoption graph network metrics. In fact, it has recently been suggested that these network 

metrics may be usefully applied to multilayer network models in order to understand how 

information is shared across social neural networks both within, and between, individuals 

(Falk & Bassett, 2017). However, graph metrics are not commonly adapted for use with 

inter-personal neural networks (although see Astolfi et al., 2010, 2015). Accordingly, a 

secondary aim of this study is to assess the utility of graph network metrics in detecting 

emotion-related topographical changes in the parent-infant neural network. 

1.4 Study overview  

Here, we use graph theoretical indices to assess the topology of parents’ and infants’ 

intra- and inter-brain neural networks during emotional processing. To study emotional 

processing, we used a classic social referencing task (Walden & Ogan, 1988) that involved 

maternal demonstrations of positively- and negatively-valenced emotion. During social 

referencing, the partner’s social interpretation of events is used to form one’s own 

understanding of a situation (Feinman, 1982). This is also relevant in the wider context of 

social learning (Csibra & Gergely, 2011), which refers to the acquisition of information 

through second-person knowledge transmission (e.g. observation or instruction), rather than 

through direct experience. Social referencing develops over the first year of life, and by 10-12 
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months of age, infants will seek information from others in novel situations and will use this 

information to regulate their own affect and behaviour (Feinman et al, 1992). For example, 

infants at this age will avoid crossing a short visual cliff (Sorce et al., 1985), show less 

interaction with toys (Gunnar & Stone, 1983; Hornik et al., 1987) and be less friendly to 

strangers when their mothers model negative emotions as compared to neutral or happy 

emotions (Feinman & Lewis, 1983; Feinman & Roberts, 1986).  

Research has shown that, even in young infants, the brain responds differentially to 

objects as a function of how other people are reacting to them (Hoehl et al., 2008). Infants' 

neural processing of novel objects is enhanced by a fearful, but not a positive, face gazing 

toward the object (Hoehl & Striano, 2010)  – influence that may be enhanced or reduced by 

infants’ temperamental predisposition (Aktar et al., 2016). However, little is known about the 

dynamic, inter-personal neural mechanisms that support social referencing and emotional co-

ordination between parents and their children.  

As we were particularly interested in the direction of information flow between 

parents and their children, we assessed network connectivity using both directed (partial 

directed coherence, PDC) and non-directed (phase-locking value, PLV) indices. We were 

primarily interested in whether, and how, the topology of inter-brain and intra-brain networks 

would be influenced by emotional valence. As reviewed previously, several adult dyadic 

studies have now established that interpersonal neural synchrony is significantly modulated 

by emotional valence (Nummenmaa et al., 2012, 2014; Zhu et al., 2018). Of particular 

relevance to the current study, Kinreich et al (2017) reported that during naturalistic 

interaction, neural synchrony between male-female adult couples was increased during 

moments of positive affect and social gaze. Accordingly, here we hypothesise that parent-

infant neural connectivity will increase during positive as compared to negative affect.  
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2 METHODS 

2.1 Participants  

 Fifteen1 mother-infant dyads participated in the study (8 male, 7 female infants). 

Infants were aged 315.6 days on average (standard error of the mean, SEM = 9.42 days). All 

mothers reported no neurological problems and normal hearing and vision for themselves and 

their infants.  

This study was carried out in accordance with the recommendations of Cambridge 

Psychology Research Ethics Committee with written informed consent from all subjects. 

Parents gave written informed consent on behalf of their children in accordance with the 

Declaration of Helsinki. The protocol was approved by the Cambridge Psychology Research 

Ethics Committee (PRE.2016.029). Parents were reimbursed for their travel expenses.  

2.2 Materials  

Four pairs of ambiguous novel objects were used. Within each pair, objects were 

matched to be globally similar in size and texture, but different in shape and colour. 

Ambiguous novel objects were chosen to ensure that infants would not have previous 

experience with these objects. See supplementary materials S.6 for the complete set of 

objects used.  

 2.3 Task protocol 

A classic social referencing task was used, which involved positive and negative 

maternal emotional demonstrations toward novel toy objects (Hirshberg & Svejda, 1990; 

Hornik et al., 1987; Walden & Ogan, 1988). Infants were seated in a high chair, and a table 

                                                           
1 To detect a large effect sized (f=0.4) difference between conditions with 0.8 power at α=.05, a total sample 

size of N=15 is required. 
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was positioned immediately in front of them (see Figure 1). Parents were seated on the 

opposite side of the table, directly facing the infant. The width of the table was 65cm. Each  

experimental trial comprised a maternal demonstration phase involving one pair of novel 

objects, and a response phase. Trials began when the mother attracted her infant’s attention 

by saying “Look”, or by holding one of the objects up. During the demonstration phase, 

mothers were instructed to show positive affect toward one object and negative affect toward  

the other object, as illustrated in Figure 1. Mothers were instructed to limit their speech to 

simple formulaic verbal statements per object (which they repeated for each object), and to 

model positive or negative emotions in a prescribed manner (e.g. smiling versus frowning) 

(see Figure 1).  

The order of object presentation (positive or negative first) was counterbalanced 

across trials and the side of the object presentation (e.g. positive on the left or right) was also 

randomised and counterbalanced across trials within each participant. That is, the last object 

presented was positive 50% of the time and negative 50% of the time. Similarly, positive 

objects were presented on the left 50% of the time, and on the right 50% of the time (and vice 

versa for negative objects). Further, the order and side of presentation were changed for each 

successive trial (while retaining the valence marking within object pairs) to ensure that 

 

Figure 1 Illustration of experimental setup and task. (Left) Negative object demonstration by adult; 

(middle) Positive object demonstration by adult; (right) Infant’s interaction with objects. Written 

informed consent was obtained for the publication of this image.  
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perseveration effects would not systematically bias the learning data. Finally, the order of 

presentation of the four pairs of objects was counterbalanced across participants.  

Each of the four pairs of objects was presented four times to each infant, yielding four 

sets of four trials and a maximum of sixteen possible trials in total. The task was discontinued 

if infants showed prolonged fussiness or inattention.  On average, infants completed 9.5 trials 

(std: 3.6). The start (onset) of each trial was determined as the point when the mother began 

speaking about either the positive or negative object, and the demonstration phase was 

completed when maternal utterances ended. Both points were determined by manual video 

coding (see also Section 2.5). The data from demonstration phase of each trial was segmented 

into 2s segments (with 50% overlap) for analysis (see also Methods 2.7).  

The period of positive emotion modelling will be referred to as the “Pos” condition, 

and the period of negative emotion modelling will be referred to as the “Neg” condition. 

Across participants, the mean duration of the Pos condition was 2.75 seconds (std: 1.26) and 

the mean duration of the Neg condition was 2.48 seconds (std: 1.14). There was no significant 

difference in the duration between conditions (p=0.40, Hedges’g=0.10). Further, as detailed 

in the Supplementary Materials (S3), there was no significant difference in the mean pitch of 

maternal utterances between conditions (p=0.10, Hedges’g=0.47). However, there was a 

significant difference in loudness (p=0.001, Hedges’g=1.61), where maternal utterances 

during the Pos condition were louder than during the Neg condition. In the Supplementary 

Materials (S3) we provide further analyses controlling for the effect of these acoustic 

differences on our neural connectivity analyses.  

After observing the maternal emotional demonstrations, infants were allowed to 

interact briefly with the objects before they were retrieved. An experimenter was present 

throughout the session, but positioned out of the line of sight of both participants, to ensure 

that participants were interacting as instructed. The experimenter provided new pairs of 
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objects as required and informed the parent regarding the side and order (pos/neg) of 

presentation for each pair of items prior to the start of each trial, but explicitly avoided 

making prolonged social contact with either participant.  

2.4 Baseline task 

Each mother-infant dyad also performed a baseline task that did not involve emotional 

modelling or social interaction. During this baseline task, they were seated in the same 

configuration as for the main task (across a table from each other), but with a 40 cm high 

screen in place, so that the infant and adult could see one another, but not the object with 

which the other was interacting. Mother and infant played with their own toy objects (which 

were different from the main task). The task started when both mother and infant had made 

visual contact with their respective objects. For comparability to the main experimental task, 

a 2-second artifact-free period was selected for analysis. The baseline task was completed 

either before or after the main task, in a counterbalanced order across participants. 

2.5 Video recordings   

To record the actions of the participants (e.g. start and end of teaching periods), two 

Logitech High Definition Professional Web-cameras (30 frames per second) were used, 

directed at the adult and infant respectively. Afterwards, each video recording was manually 

coded to identify the periods of interest (i.e. start and end of demonstration phase), based on 

the onset and offset of maternal utterances.  

2.6 EEG acquisition and pre-processing 

EEG acquisition. A 32-channel BIOPAC Mobita mobile amplifier was used with an 

Easycap electrode system for both infant and adult. Electrodes were placed according to the 

10-10 international system for electrode placement. Data were acquired using AcqKnowledge 
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5.0 software, at a 500 Hz sampling rate. The ground electrode was affixed to the back of the 

neck as this location is the least invasive for infants (Georgieva et al, 2017; Noreika et al, 

2019). The impedance of the electrodes for infants was under 10KΩ and for mothers under 

20KΩ. The amplifiers for both participants were synchronized through a push button trigger 

signal that was sent simultaneously to both EEG systems and also simultaneously delivered a 

LED signal that was visible on both video recordings (for video-EEG synchronisation).  

We selected a subset of 16 frontal, central and parietal channels for further analysis 

(see Figure 2). This sub-selection was done to reduce the computational cost of the analysis, 

and also because previous research has shown that the contribution of speech myogenic 

artifacts is relatively stronger at peripheral electrodes (Porcaro et al., 2015; Brooker & 

Donald, 1980). The selected channels were: F3, Fz, F4, FC1, FC2, C3, Cz, C4, CP5, CP1, CP2, 

CP6, P3, Pz, P4, and POz.  

  EEG pre-processing for motion-related artifacts. EEG signals were band-pass 

filtered in the range of 1 to 16 Hz in order to suppress line noise as well as minimise as far as 

possible the effect contamination by muscular (e.g. speech and facial) artifacts which are 

 

Figure 2. Electrode map of selected channels 

 



15 
 

most prominent at frequencies over 20 Hz (Whitham et al., 2007). Filtering was done on the 

continuous data to avoid unwanted edge effects. Additionally, to avoid unwanted distortion 

effects, band pass filtering was done in separate high pass (FIR filter, Hamming window, 

1652 points, zero-phase) and low pass (FIR filter, Hamming window, 415 points, zero-phase) 

filtering stages. Next, a threshold criterion (± 80μV) was applied to remove high-amplitude 

artifacts. Finally, visual inspection of the data was performed to eliminate residual artifacts. 

Only EEG segments that were artifact-free across all electrodes for both mother and infant 

within each dyad were used for further analysis (on average 83.62% of the data were used for 

further analysis). In order to assess the effect of trial rejection on our data, we conducted a 

supplementary analysis where the number of trials rejected was added as a co-variate to our 

main analyses (see Supplementary Materials S4). 

Baselining. Prior to conducting connectivity analysis, and in order to reduce 

differences in amplitude across participants in the dataset, and between infants and parents, 

two normalisation steps were applied. First, the main task data from each participant were z-

normalised according to their corresponding baseline task data. That is, the mean of the 

baseline task data was subtracted from the main task data, and the result was then divided by 

the standard deviation of the baseline task data. Second, the main task data from each dyad 

were z-normalised relative to one another. 

2.7 Connectivity metrics (6-9 Hz, infant Alpha band) 

Two sets of connectivity calculations were performed. First, we examined intra-brain 

connectivity, between the individual electrodes in the infant and the adult recordings 

considered separately. Second, we examined inter-brain connectivity, between the infant 

electrodes and the adult electrodes. Our analyses focused on assessing network connectivity 

in the infant Alpha frequency band (6-9 Hz; Marshall et al., 2002) for several reasons. First, 
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because Alpha activity is strongly implicated in the processing of emotional stimuli and 

social cognition in adults and infants (Allen et al., 2018; Coan & Allen, 2004). Second, 

because we had previously observed adult-infant neural synchronicity in this frequency range 

(Leong et al., 2017). Third, because our previous research and that of others has shown that 

this frequency range is least affected by facial myogenic and speech artifacts (Ganushchak & 

Schiller, 2008; Georgieva et al., 2017; Goncharova et al, 2003; Laganaro & Perret, 2011; 

Muthukumataswamy, 2013). Fourth, because activity in this frequency bands shows the 

highest test-retest reliability in infants and global Alpha network characteristics can be 

reliably assessed even in 10 month infants (Velde et al., 2019). Finally, previous research has 

suggested that activity in this frequency band plays a crucial role in internally controlled 

attention  (Orekhova et al, 2001). 

We contrasted two measures of neural connectivity: one non-directed measure (Phase 

Locking Value, PLV) and one directed measure (Partial Directed Coherence, PDC). Both 

connectivity measures were computed on 6-9 Hz band pass filtered data, using 2s sliding 

windows from the start of the trial with a 50% overlap. All computations were performed 

using in-house adaptations of functions from publicly available Matlab© based toolboxes (He 

et al., 2011; Niso et al., 2013).  

A flowchart of the whole process, from EEG pre-processing to the calculation of brain 

connectivity metrics is provided as Supplementary Materials S.7. 

Phase Locking Value (PLV) measures frequency-specific transients of phase locking 

independent of amplitude (Lachaux et al., 1999). The instantaneous phase of the signal was 

calculated using the Hilbert transform. Two signals x(t) and y(t) with instantaneous phases 

𝜑𝑥(𝑡) and 𝜑𝑦(𝑡) are considered phase synchronised if their instantaneous phase difference is 

constant: 
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 𝜃(𝑡) = 𝜑𝑥(𝑡) − 𝜑𝑦(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (1) 

To calculate phase synchronisation, we used PLV defined as: 

 𝑃𝐿𝑉 = |
1

𝑇
∑ 𝑒𝑖𝜃(𝑡)𝑇

𝑗=1 | , (2) 

where T is the number of time samples. PLV is a value within the range [0, 1], where values 

close to 0 indicate random signals with unsynchronised phases and higher values indicate 

stronger synchronization between the two signals (here, pairs of electrodes).  

Partial Directed Coherence (PDC) is based on the concept of Granger Causality 

(Granger, 1969). It is a spectral estimator and provides the directed influences between each 

pair of signals in a multivariate data set (Baccala & Sameshima, 2001). If a multivariate data 

set is understood as an ensemble of simultaneously recorded signals (channels), for a k-

channel set the model is defined by: 

 𝑋(𝑡) = ∑ 𝐴(𝑗)𝑋(𝑡 − 𝑗) + 𝐸(𝑡)𝑝
𝑗=1   (3) 

where E(t) is a vector of k white noise values for each time point t. A is a square k x k matrix 

representing the model parameters and p is the model order. Transforming the given 

multivariate model into frequency domain we obtain: 

𝐸(𝑓) = 𝐴(𝑓)𝑋(𝑓) → 𝑋(𝑓) = 𝐴−1(𝑓)𝐸(𝑓), 𝑤ℎ𝑒𝑟𝑒 𝐴(𝑓) = ∑ 𝐴(𝑚)𝑝
𝑚=0 𝑒−2𝜋𝑖𝑚𝑓∆𝑡 . (4) 

From the transformed model coefficients, A(f), the PDC can be calculated as: 

 𝑃𝐷𝐶𝑗→𝑖 =
𝐴𝑖𝑗(𝑓)

√𝑎:𝑗
∗ (𝑓)𝑎:𝑗(𝑓)

 . (5) 

PDC is a normalised measure that can distinguish between direct and indirect 

connectivity flows better than other Granger causality based metrics such as Direct Transfer 

Function or its versions (Astolfi et al., 2007). 

The application of multivariate models for connectivity analysis requires the 
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estimation of the model order p. In this study we implement the Schwarz Bayesian 

information criterion (SBIC) (Schwarz, 1978) and the Akaike information criterion (AIC) 

(Akaike, 1974), where the value of the model order was selected based on the measure 

providing the lowest values across both methods. Under this criterion a model order of 5 was 

used, which explained the highest proportion of data (91.39% of infants’ data and 81.30% of 

adults’). To ensure that the implemented model was able to capture the essential dynamics of 

the data we applied two different techniques to validate the fitted model. First, we calculated 

the percentage of consistency of the model using the Ding method (Ding et al., 2000). This 

test provides the percentage of the correlation structure in the data that is captured by the 

fitted model. 100% of the dataset achieved a consistency of =>80%, which is considered to 

be the acceptable lower limit. Second, the coefficient of determination or r-squared was 

calculated. This test indicates the percentage of the data that is explained by the model. 

Again, the entire dataset obtained an r-squared value of over 30%, indicating good model 

estimation (Seth, 2010). The same procedures were used to calculate inter-subject 

connectivity, where one autoregressive model was created based on the EEG data from the 

infant-mother dyad.  

2.8 Statistical validation of connectivity results 

Intra-brain connectivity. To assess whether the intra-brain connectivity values were 

significantly above chance, a surrogate data analysis was performed which controlled for 

spurious (random) connections (Toppi et al., 2016). To achieve this, a Fourier transform was 

applied to each data epoch for each channel, and a random permutation of phase values was 

performed in the frequency domain. Finally, an inverse Fourier transform was used to 

recreate the surrogate data in the time domain. This process retained the original spectral 

profile of the data whilst selectively disrupting phase relationships across channels, thereby 

removing genuine phase-based connectivity patterns. A total of 100 surrogate datasets were 
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created for each participant, channel and epoch, to generate a distribution of connectivity 

values for the purpose of significance testing. To perform this test, the neural connectivity 

indices obtained for the real data were compared against those for the surrogate data, epoch-

by-epoch. The significance level of the real connectivity data was determined with reference 

to the surrogate distribution (e.g. if the real data was greater than the 95th-centile value of the 

surrogate distribution) (Niso et al., 2013). This raw p-value was then corrected for multiple 

comparisons using Tukey’s honestly significant difference criterion (Tukey, 1949). For each 

epoch, the neural connections between EEG channels that were not significantly different 

from their respective surrogates were set to zero (and disregarded for subsequent statistical 

analyses of differences between conditions). See Supplementary Materials S5 for a 

breakdown of the number of connections rejected by this surrogate analysis. 

Inter-brain connectivity. To assess whether the measured inter-brain connectivity 

results were significantly above chance, two validation steps were performed. First the 

analysis using phase-randomised surrogates was performed in an identical fashion to that 

described above (see Supplementary Materials S5 for a breakdown of the number of 

connections rejected by this surrogate analysis). Second, the neural connectivity values 

obtained from the real data were compared to a pair-randomised dataset generated by 

randomly pairing mothers and infants from different sessions whose brain data was non-

matching (210 new couples). For this pair-randomised data, any connectivity that existed 

between the random pairings would h3ave occurred purely by chance (e.g. due to participants 

experiencing similar environmental conditions during the experiment). As the duration of 

trials varied across participants, the longer dataset was cropped to the same length as the 

shorter dataset for each random pair (Reindl et al., 2018). For each condition and EEG 

channel, a two-sample t-test (significance level of 5%, corrected for multiple comparisons 

using Tukey’s honestly significant difference criterion) was performed between the real 
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dataset and the pair-randomised dataset. Connections between each pair of electrodes (per 

subject) that did not reach significance after the first (surrogate) data step were not included 

in this second validation step.  

2.9 Thresholding  

Thresholding is necessary to remove spurious connections and to obtain sparsely 

connected networks, which is a pre-requisite for the computation of many graph metrics 

(Deuker et al., 2009). Different approaches are used to select an appropriate threshold value. 

Thresholds can be selected based on the statistics of the data distribution or by taking into 

account the sparsity of the resulting matrix (Philips et al., 2017). Here, we adopt the most 

widely used method where a proportional threshold is imposed on all the links within the 

network. This means that the density of the adjacency matrix, defined as the percentage of 

existing connections with respect to all possible connections in the network, is fixed. 

Proportional thresholding is expected to lead to more stable networks metrics (Garrison et al., 

2015) and is the most widely used technique for studies that compare between experimental 

conditions or groups (Nichols et al., 2017; Toppi et al., 2012). 

 

Figure 3. Effect of applying different thresholds to maternal grand average 6-9 Hz PLV matrices. The first 

row shows the Pos condition and the second row shows the Neg condition. From left to right the threshold 

values for each column are: 17, 15, 13, 8 and 5% of the strongest links preserved. The threshold of 15% 

was selected as being the most optimal.  
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To determine the appropriate threshold, we first conducted a visual inspection of the 

connectivity patterns resulting from thresholding at a range of values (0.17, 0.15, 0.10, 0.08 

and 0.05). Figure 3 shows the results that were obtained when different thresholds were 

applied to the adult grand averaged PLV dataset. By visual inspection of Figure 3, the 

strongest connections appear to be concentrated within fronto-central scalp regions. As 

thresholds are relaxed (e.g. above 15%), this pattern becomes increasingly obscured as 

weaker connections from other regions begin to be included. The same threshold criterion of 

15% was applied to the PLV metric as to the PDC data. These selected thresholds offered the 

most optimal balance between data retention (increased with lower threshold values), 

readability of connectivity patterns (optimal for higher values) and computational cost (Filho 

et al., 2016). Section S1 in the Supplementary Materials shows the effect of applying 

different thresholds for both infant and adult data, and for PDC and PLV metrics, which 

yielded similar effects to the data shown here.  

2.10 Graph theoretical indices of network topology 

A graph consists of a series of nodes (EEG electrodes) and a set of edges 

(connections) showing the relationships between the nodes. To define a graph, it is necessary 

to construct an adjacency matrix A which captures the connectivity structure of the graph. An 

adjacency matrix is constructed by comparing the link between each pair of nodes in the 

connectivity matrix against a corresponding threshold. Edges whose values are larger than the 

threshold (here, the top 15% as described in the previous section) remained in the adjacency 

matrix, whilst those with values under the limit were set to 0.  

2.10.1 Intra-brain metrics 

The indices that define the topology of a network can be broadly divided into four 

groups: individual metrics (degree, density, strength), functional segregation metrics 
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(clustering coefficient, transitivity, modularity or local efficiency), functional integration 

metrics (global efficiency, characteristic path length, radius and diameter), and centrality 

metrics such as betweenness centrality (Rubinov & Sporns, 2010). Here, we selected one 

metric from each group to provide an overview of these different network properties. As we 

used a fixed network density (15%), the density and the average degree of the networks 

would be the same for each experimental condition, hence these indices were not used. 

Rather, the following indices are reported here: 

Individual metrics. Strength (S) is the weighted variant of degree. This is typically 

defined as the sum of neighbouring link weights. In this case, we report the highest value of 

neighbouring link weights. This is likely to be more informative than mean strength as 

network density was fixed to retain only the most strongly connected links. 

Functional segregation. Transitivity (T) is the overall probability for the network to 

contain interconnected adjacent nodes, revealing the existence of tightly connected 

communities. In simple terms of network topology, this index represents the mean probability 

that two vertices that are network neighbours of the same other vertex will themselves be 

neighbours (Newman, 2003). 

Functional integration. Global Efficiency (GE) is inversely related to the topological 

distance between nodes and is typically interpreted as a measure of the capacity for parallel 

transfer and integrated processing. It is based on the inverse of the shortest path length, which 

is an indicator of the ease with which each node can reach other nodes within the network 

using a path that is composed of only a few edges. Hence, the global efficiency is an indicator 

of the degree to which a network can share information between distributed regions (Kabbara 

et al., 2018) 

Centrality. Betweenness centrality (BC) is a measure of centrality. These measures 

identify central nodes that connect various brain regions. The betweenness centrality of a 



23 
 

node is defined as the fraction of all shortest paths in the network that pass through the given 

node. Nodes with a larger betweenness centrality value will participate in a higher number of 

shortest paths.  

Graph analysis was performed separately for PLV and PDC measures, and for each  

condition using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). The resulting 

intra-brain graph indices were assessed separately for parents’ and infants’ data using 

Repeated Measures ANOVAs, taking Condition (Pos and Neg teaching) as a within-subjects 

factor. Results were corrected for multiple comparisons using Tukey’s honestly significant 

difference criterion (Matlab©). 

2.10.2 Inter-brain metrics 

Due to the difference in format between individual and inter-brain adjacency matrices, 

an adaptation process was needed before inter-brain graph indices could be computed. Each 

dual-brain adjacency matrix comprises of four different sections; the first section of the first 

N rows and N first columns describes the intra-brain connections for the first member of the 

dyad (here, the mother). The first N rows and last N columns represent the connectivity 

between the first and second member of the dyad (mother to infant). The last N rows and the 

last N columns represent the intra-brain connectivity values for the second member (infant) 

and the last N rows and first N columns represent connectivity between the second and first 

member of the dyad (infant to mother). For non-directional indices (e.g. PLV), mother-to-

infant and infant-to-mother connectivity patterns are symmetric. 

Two inter-brain-adapted graph metrics were used here: Strength and Divisibility. 

These graph metrics were computed for each dyad and experimental condition using only 

significant inter-brain connections. To maintain an equal density across experimental 

conditions, the least number of significant connections across both conditions was used in the 
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inter-brain graph analysis – this was 10 connections.  

Strength: is the sum of neighbouring link weights as described previously. The 

adapted version for inter-brain connectivity was calculated as follows: 

𝑆𝑃𝐷𝐶 = ∑ ∑ 𝑤𝑖𝑗 + ∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

2𝑁
𝑖=𝑁+1

2𝑁
𝑗=𝑁+1

𝑁
𝑖=1 , 

𝑆𝑃𝐿𝑉 = ∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

2𝑁
𝑖=𝑁+1 = ∑ ∑ 𝑤𝑖𝑗

2𝑁
𝑗=𝑁+1

𝑁
𝑖=1 . 

where N is the number of channels for each subject and 𝑤𝑖𝑗 is the weight of the connection 

between node i of subject 1 and node j of subject 2. As PLV is a non-directed metric, the 

connectivity matrix from subject 1 to subject 2 is identical to the matrix from subject 2 to 1.  

For PDC however, separate calculations were performed to assess the directed strength from 

mothers to infants (MtoI) and vice versa, from infants to mothers (ItoM): 

𝑆𝑀𝑡𝑜𝐼 = ∑ ∑ 𝑤𝑖𝑗

2𝑁

𝑗=𝑁+1

𝑁

𝑖=1

 

𝑆𝐼𝑡𝑜𝑀 = ∑ ∑ 𝑤𝑖𝑗

𝑁

𝑗=1

2𝑁

𝑖=𝑁+1

 

Divisibility: is a measure of how well the entire connectivity network (including intra- 

and inter-brain connections) can be divided into two sets of nodes, corresponding to the brain 

of each member of the dyad (Astolfi et al, 2015; 2010; De Vico et al, 2010). It is defined as:  

𝐷 =
𝑊

∑ 𝑤𝑖𝑗[1 − 𝛿(𝐶𝑖 , 𝐶𝑗)] + 𝑊
 

where W is the total weight of the network (including within and inter-brain subnetworks), Ci 

and Cj indicate the community (which brain) the nodes i and j belong to respectively. The 

function δ is binary with values 0 or 1 (1 if vertices i and j are in the same community and 0 

otherwise). The resulting values of D (divisibility) range between [0,1]. For example, in a 

fully connected network (where all possible links are connected with a value of 1), the 
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resulting value D is 0.67. When the network is fully disconnected (all possible links are set to 

0), the resulting D value is 0. A value of D=0.5 is obtained when all inter-brain connections 

are fully connected (=1), but all within brain connections are disconnected (=0), since in this 

case the index reduces to D=W/(W+W)=0.5. Conversely, a value of D=1 is obtained when all 

inter-brain connections are disconnected (=0), but all within-brain connections are fully 

connected (=1), in which case D=W/(0+W)=1. Therefore, if 0.5 < D < 0.67, it may be 

inferred that interbrain connections are stronger than within brain connections. For values of 

0.67 < D < 1, interbrain connections are weaker than within brain connections.  

Directed Divisibility: For PDC, similarly to the directed strength, separate 

calculations were performed for incoming and out-going directions of connectivity. This 

would highlight which partner was “leading” the neural integration process during each 

condition under study. In order to calculate directed divisibility, one of the inter-brain 

matrices was set to zero each time. For instance, to calculate the directed divisibility from 

mothers to infants the quadrant corresponding to connections from infants to mothers was set 

to zero. Therefore, the total weight W from the previous equation was transformed to: 

𝑊𝑀𝑡𝑜𝐼 = 𝑊𝐼𝑛𝑓𝑎𝑛𝑡 + 𝑊𝑀𝑜𝑡ℎ𝑒𝑟 + 𝑊𝑀𝑡𝑜𝐼, 

𝑊𝐼𝑡𝑜𝑀 = 𝑊𝐼𝑛𝑓𝑎𝑛𝑡 + 𝑊𝑀𝑜𝑡ℎ𝑒𝑟 + 𝑊𝐼𝑡𝑜𝑀. 

Resulting in the following directed divisibility equations: 

𝐷𝑀𝑡𝑜𝐼 =
𝑊𝑀𝑡𝑜𝐼

∑ 𝑤𝑖𝑗[1−𝛿(𝐶𝑖,𝐶𝑗)]+𝑊𝑀𝑡𝑜𝐼
, 

𝐷𝐼𝑡𝑜𝑀 =
𝑊𝐼𝑡𝑜𝑀

∑ 𝑤𝑖𝑗[1−𝛿(𝐶𝑖,𝐶𝑗)]+𝑊𝐼𝑡𝑜𝑀
. 

The resulting Strength and Divisibility inter-brain graph indices were subjected to a 

Repeated Measures ANOVA analysis (significance level of 5%) to assess statistically 

significant differences in inter-brain connectivity between conditions (Pos and Neg). 
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2.11 Intra- and inter-brain density 

In addition to the graph metrics of network topology, we also computed measures of 

intra- and inter-brain network density. 

Intra-brain density. Intra-brain density was calculated as the ratio of existing 

(significant) edges to the total number of possible connections. This index was computed 

using the non-thresholded data (since thresholds impose a fixed ratio).  

Inter-brain density: Here, we defined inter-brain density as an extension of the 

established within-brain density metric: the ratio of existing (significant) inter-brain edges to 

the total number of possible interbrain connections. The inter-brain density metric is therefore 

a measure of neural integration between parents and infants. Calculations were computed 

over the statistically validated inter-brain connectivity matrices (i.e. to identify significant 

connections) without any further thresholding. For computation of PLV-based inter-brain 

density, only one of the inter-brain connectivity matrices was used as mother-to-infant and 

infant-to-mother matrices are identical. PLV inter-brain density was computed as: 

𝐷𝑃𝐿𝑉 =
∑ ∑ 𝑎𝑖𝑗

2𝑁
𝑗=𝑁+1

𝑁
𝑖=1

(
𝑁2

4 )
 

Where N is the total number of channels, and a represents the existence (or not) of a link 

between two nodes in the adjacency matrix.  

For the PDC measure, both inter-brain connectivity matrices were included and total 

inter-brain density was computed as the sum of the individual directed densities: 

𝐷𝑃𝐷𝐶 = 𝐷𝑀𝑡𝑜𝐼 + 𝐷𝐼𝑡𝑜𝑀 =
∑ ∑ 𝑎𝑖𝑗

2𝑁
𝑗=𝑁+1

𝑁
𝑖=1

(𝑁2/4)
+

∑ ∑ 𝑎𝑖𝑗
𝑁
𝑗=1

2𝑁
𝑖=1+𝑁

(𝑁2/4)
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3 RESULTS 

 

3.1. Intra-brain connectivity 

Effective connectivity networks were estimated at the single subject level for each 

condition (Pos and Neg) using both non-directed (PLV) and directed (PDC) connectivity 

metrics.  

3.1.1 Intra-brain connectivity by experimental condition 

Figures 4 and 5 depict adults’ and infants’ respective grand average intra-brain 

connectivity patterns for the 6-9 Hz Alpha band in Pos and Neg conditions, obtained using 

PLV (top row) and PDC (bottom row) measures respectively. Stronger connectivity between 

electrode pairs is indicated with thicker and darker lines. 

For adults, significant within-brain connections were strongest in temporal-parietal 

regions for both connectivity metrics (Figure 4). However, whereas PDC-derived networks 

emphasised interhemispheric (left-right) connections, PLV links frequently connected a node 

to its closest neighbours, perhaps reflecting volume conduction effects.  

Infants’ topographies were characterised by strong connections in central and tempo-

parietal regions. Similar to what was observed for adults, infants’ PDC intra-brain network 

also showed strong interhemispheric patterns of connectivity. This pattern is consistent with 

the early emergence of interhemispheric functional connectivity between primary brain 

regions, which has been demonstrated to exist even in the fetal brain (Anderson & Thomason, 

2013; Fransson et al., 2007). 
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Paired t-tests of intra-brain network density (computed separately for each participant 

set (adult and infant) and metric (PLV and PDC)) revealed that there were no significant 

differences between Pos versus Neg conditions, for either metric or participant set (mean 

Pos-Neg density: PLV adult = 0.0, p=1.00; PLV infant = -0.01, p=1.00; PDC adult = 0.02, 

p=0.20; PDC infant = -0.01, p=0.99; p-values corrected for multiple comparisons, Tukey 

HSD). 

 

Figure 4. Adult intra-brain connectivity patterns for the 6-9 Hz band using PLV (top row) and PDC (bottom 

row). The left column shows the Pos condition and right column shows the Neg condition. For each subplot, 

the colour and size of each node is proportional its degree, where hotter colours indicate higher values and 

cooler colours indicate lower values. The weight of the edges in the networks is represented by line thickness. 

For the PDC measure, arrows represent the directionality of connections, ending in the node receiving the 

information flow. 
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Figure 5. Infant within brain connectivity patterns for the 6-9 Hz band using PLV (top row) and PDC 

(bottom row). The left column shows the Pos condition and right column shows the Neg condition. For each 

subplot, the colour and size of each node is proportional its degree, where hotter colours indicate higher 

values and cooler colours indicate lower values. The weight of the edges in the networks is represented by 

line thickness. For the PDC measure, arrows represent the directionality of connections, ending in the node 

receiving the information flow. 
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3.1.2 Intra-brain graph indices 
 

Next we assessed the topology of adults’ and infants’ networks to see if these 

properties differed across Pos and Neg experimental conditions. Recall that four graph 

indices were computed to represent different aspects of network topology for intra-brain 

measures (individual or basic metrics, measures of segregation, integration and centrality). 

Table 1 provides a summary of the Strength (S), Global Efficiency (GE), Transitivity (T) and 

Betweenness Centrality (BC) values obtained for PLV and PDC intra-brain connectivity 

measures, for each experimental condition.  

For adults, we observed limited differences in network topology as a function of 

emotional valence. Namely, PDC Transitivity decreased and PLV Betweenness Centrality 

increased (p=.02 for both; Hedges’g=-0.861 and 0.936 respectively) for the Pos condition 

with respect to Neg condition. For infants however, no statistically significant differences 

were observed between conditions for any graph metric (p>.25 for all indices).  
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(b) Adult   

PDC PLV 

Index F(1,28) p 
Means 

diff 
F(1,28) p 

Means 

diff 

Strength (S) 0.53 0.47 -0.05 2.17 0.15 -0.38 

Transitivity (T) 5.87 0.02* -0.01 0.79 0.37 -0.03 

Global Efficiency (GE) 8.5E-2 0.77 +0.001 2.94 0.09 +0.39 

Betweenness Centrality (BC) 0.08 0.77 +0.14 6.47 0.02* +6.21 

 
 

 

(b) Infant 

PDC PLV 

Index F(1,28) p 
Means 

diff 
F(1,28) p 

Means 

diff 

Strength (S) 1.31 0.26 -0.06 0.14 0.71 +0.05 

Transitivity (T) 0.94 0.34 -0.004 0.007 0.93 +0.002 

Global Efficiency (GE) 1.8E-5 0.99 +0.04 0.47 0.49 -0.20 

Betweenness Centrality (BC) 0.01 0.90 -0.37 1.40 0.25 -4.03 

Table 1. Results of Repeated Measures ANOVAs for (a) Adult and (b) Infant networks assessing the effect of 

experimental Condition (Pos/Neg) on the four graph indices (strength [S], transitivity [T], global efficiency 

[GE], and betweenness centrality [BC]) computed from PDC and PLV measures. Statistically significant 

differences (*p<0.05) are highlighted in bold and shaded. Means differences are calculated as Pos-Neg. 
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3.2 Inter-brain connectivity  

3.2.1 Inter-brain connectivity by experimental condition 

Figures 6 and 7 show the significant inter-brain connections (relative to surrogate 

data, see Methods Section 2.8) that were observed between mothers and infants during Pos 

and Neg conditions for PLV and PDC metrics respectively.  

 
 

Figure 6. Grand average inter-brain connectivity PLV matrices for Positive (a) and Negative (b) conditions in 

the 6-9 Hz band. On the left side is the connectivity matrix; rows correspond to infants’ EEG channels and 

columns correspond to mothers’ channels. Statistically significant inter-brain connections are shown in colour 

(yellow colours indicate higher PLV values) and non-significant connections are shown in light grey. On the 

right size, topographical head plots of significant inter-brain connections for Pos condition (top) and Neg 

condition (bottom) are shown. In both cases infants are shown on the left and mothers on the right. The weight 

of edges in the inter-brain network is represented in the same scale, with thicker lines indicating stronger 

connections. For clarity only the 10 highest connections are plotted in the topographies, whereas in the 

matrices all significant connections are indicated.  
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For the PLV metric (Figure 6, left), the Pos condition (first row) suggested a denser 

connection between mothers and infants than the Neg condition (second row). To statistically 

assess this difference, we computed the inter-brain density (IBD) of the network in each 

condition (see Figure 8). The results of the ANOVA indeed revealed a significant effect 

(F(1,28)=234.09, p<.001, mean difference=+0.101), confirming that IBD was significantly 

higher during the Pos than the Neg condition.   

A similar IBD analysis was carried out using the PDC metric (Figure 8b), where the 

inter-brain density for each direction of sending (from infant to mother [ItoM] and from 

mother to infant [MtoI]) was estimated in addition to the total density (sum of infant to 

 

 

Figure 7. Grand average inter-brain connectivity PDC matrices for Positive (a) and Negative (b) conditions in 

the 6-9 Hz band. On the left side are the connectivity matrices for each direction of ‘sending’: (infant to 

mother (left matrix) and mother to infant (right matrix)). Connections which are not statistically significant 

are marked in grey (yellow colours indicate higher PDC values). On the right side (third column) 

topographical head plots of significant connections for Pos (top) and Neg (bottom) conditions are shown. In 

both cases infants are shown on the left and mothers on the right. For both directions of sending, thicker lines 

indicate stronger connections. For clarity only the 5 highest connections in each direction (10 in total) are 

plotted in the scalp topographies, whereas in the matrices all significant connections are indicated.  
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mother and mother to infant IBD). The ANOVA results indicated that for total IBD, there 

was no significant difference between conditions (F(1,28)=0.42, p=0.52, mean 

difference=+0.009). However, analysis of directed IBD (Repeated Measures ANOVA with 

Condition and Direction as within-subjects factors) revealed a significant main effect of 

sending Direction (F(1,14)=30.05, p<.0001, η2p = .68) where the ItoM network was more 

densely connected than the MtoI network overall (Figure 8b, right subplot). Further, a 

significant interaction was observed between Condition and Direction (F(1,14) = 326.13, 

p<.0001, η2p = .96). Post hoc analysis revealed that for MtoI (Mothers ‘sending’ to Infants), 

inter-brain density was significantly higher for Pos > Neg (p<.001). But for ItoM, inter-brain 

density was higher for Neg > Pos (p<.001).  

  

 

Figure 8. Inter-brain density (IBD) for (A) PLV and (B) PDC. For PDC two different metrics were 

obtained: total IBD (B), calculated as for PLV, and directed IBD (B.1) (mother to infant [MtoI] and infant 

to mother [ItoM]). ***p<0.001. 
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3.2.2 Inter-brain graph indices 

To quantify topological differences in the pattern of inter-brain connectivity between 

experimental conditions, two inter-brain graph indices were computed on the thresholded 

connectivity matrices: Strength and Divisibility (see Section 2.10.2 for full descriptions).   

 

Overall Strength. Across both PLV and PDC metrics, Figure 9 shows that the mother-

infant inter-brain network had significantly greater strength during the Pos condition as 

 

Figure 9. Strength (top) and divisibility (bottom) inter-brain graph connectivity indices for (A) PLV and (B) 

PDC, for positive and negative conditions. ** p<0.01, *p<0.05 (false discovery rate corrected) 
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compared to the Neg condition (PLV Pos = 0.096 (±0.026), PLV Neg = 0.047 (±0.011); 

p<0.01, Hedges’ g=2.34). The same was true for PDC when both directions of influence 

(MtoI and ItoM) were averaged (PDC Pos = 0.24 (±0.006), PDC Neg = 0.17 (±0.07); p<.05, 

Hedges’ g=0.87).  

Overall Divisibility. Across both PLV and PDC metrics (see Figure 9), we 

consistently observed significantly reduced divisibility in the Pos condition as compared to 

the Neg condition (PLV Pos=0.837±0.02, PLV Neg=0.906±0.02, p<0.01, Hedges’ g = -2.66; 

PDC Pos=0.762±0.04, PDC Neg=0.806±0.05, p=0.02, Hedges’ g = -0.84). These results 

indicate greater integration between mothers’ and infants’ sub-networks during the Pos 

condition.  

Finally, taking advantage of the property of directionality for the PDC metric, directed 

Strength and Divisibility were calculated for each participant and condition. Figure 10 shows 

the average directed strength and directed divisibility for mother to infants (MtoI) and infants 

to mothers (ItoM), for each condition (Pos and Neg). For directed Strength, a Repeated 

Measures ANOVA revealed a significant main effect of Condition (F(1,14) = 6.56, p<.05, 

η2p = .32, Pos> Neg), a significant main effect of Direction (F(1,14) = 11.18, p<.01, η2p = 

 
Figure 10. Directed Strength (left) and Divisibility (right) for PDC inter-brain connectivity, for mothers to 

infants (MtoI) and infants to mothers (ItoM). **p<0.01. 
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.44, MtoI > ItoM) and a significant interaction between Condition and Direction 

(F(1,14)=8.72, p<.05, η2p = .38). Post hoc analysis of the interaction revealed that whereas 

MtoI sending was significantly higher for Pos > Neg (p<.01), there was no significant 

difference between conditions for ItoM sending (p=.99).  

A complementary pattern was observed for directed Divisibility (Figure 10, right). 

The Repeated Measures ANOVA revealed significant main effects of Condition (F(1,14) = 

6.06, p<.05, η2p = .30, Neg> Pos) and Direction (F(1,14) = 10.50, p<.01, η2p = .43, ItoM > 

MtoI), as well as a significant interaction between Condition and Direction (F(1,14)=7.29, 

p<.05, η2p = .34). This pattern is consistent with the results showed for Strength (where 

values were higher for the Pos condition), as both metrics are inversely related (Ciaramidaro 

et al., 2018; De Vico et al., 2010; Toppi et al., 2016). Post hoc analysis of the interaction 

revealed that whereas MtoI divisibility was significantly higher for Neg > Pos (p<.01), there 

was no significant difference between conditions for ItoM sending (p=.90).  

3.2.3 Control for acoustic differences across conditions 

Finally, we were concerned that the observed inter-brain connectivity differences 

between Pos and Neg conditions could have arisen from sensorimotor differences in the 

production or perception of Pos versus Neg maternal utterances, rather than from emotional 

valence effects per se. Accordingly, we sought to establish (1) whether there were significant 

differences in the acoustic properties of maternal Pos and Neg utterances, and if so (2) 

whether these acoustic differences accounted for our observed results. As reported in the 

Supplementary Materials (S3), these control analyses showed that the addition of loudness 

(which differed across conditions) as a covariate in our statistical analyses did not introduce 

any major systematic changes to the previously-reported results on inter-brain connectivity. 
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4 DISCUSSION 

This study aims to describe changes in parent-infant intra- and inter-brain network 

topology as a function of the valence of emotions displayed by mothers during social 

interaction with their infants. Social interaction and cooperative communication are of great 

importance in our daily lives. Previous studies have reported changes in adult-adult 

interpersonal neural connectivity during cooperative-competitive games (Astolfi et al., 2015; 

Astolfi et al., 2010; Ciaramidaro et al., 2018; Filho et al., 2016; Sinha et al., 2017), imitation 

(Delaherche et al., 2015), cooperative action (Müller et al., 2013; Sciaraffa et al., 2017) and 

verbal spoken communication (Tadić et al., 2016). However, such dyadic electrophysiology 

studies have usually involved adult participants, and it is not known if, and how, infants’ 

connectivity with their parents is also modulated by the emotional quality of social 

interaction.  

Here, we find that emotional valence during social interaction (positive or negative) 

significantly modulates the inter-brain network topology of mother-infant dyads. For both 

non-directed (phase-locking value, PLV) and directed (partial directed coherence, PDC) 

measures of connectivity, the inter-brain network showed significantly higher Strength and 

lower Divisibility for positive as compared to negative emotional states. Our findings are 

consistent with the previous literature on adult-adult dyads, which has also revealed 

modulation of interpersonal neural synchrony by emotional valence (Kinreich et al., 2017; 

Nummenmaa et al., 2012, 2014) . However, whilst Kinreich et al (2017) reported higher EEG 

gamma band synchrony between adult couples during naturally-elicited moments positive 

affect, Nummenmaa et al. (2012) found that negative valence in movie stimuli reliably 

elicited higher fMRI-measured intersubject correlation (ISC) in participants’ emotion-

processing network (including the thalamus, ventral striatum and insula). However, it should 

be noted that the emotional intensity of the task differed greatly across both studies – 
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participants in (Kinreich et al., 2017) task were engaged in spontaneous positive interaction 

(e.g. planning a fun day to spend together) whereas participants in (Nummenmaa et al., 2012) 

study watched video stimuli that had been selected for strong positive or negative emotional 

content, and were highly-arousing (indeed, participants’ arousal was also associated with 

increased ISC in somatosensory and attention networks). Since the paradigm used in the 

current study involved naturalistic playful interactions between parents and infants, it is not 

surprising that our main results were more consistent with the findings of (Kinreich et al., 

2017) indicating higher interpersonal neural synchrony for positive emotional displays. 

However, future studies should investigate whether highly-arousing or negative parent-infant 

interactions are also modulated by interpersonal neural synchrony, and the developmental 

sequelae of such events. 

When considering the direction of information flow within the dyad (PDC only), 

mothers’ influence on and connectedness to their infant was consistently higher during 

positive than negative emotional states across all directed indices. Conversely, infant-to-

parent directed inter-brain density (IBD) was higher during negative emotions, although 

network Strength and Divisibility showed no significant difference. These results highlight 

the contrasting role of mothers and infants in modulating the strength and integration of 

dyadic neural connections during different emotional states. This valence selectivity may be 

due to infants’ stronger responses to negative than positive maternal affect, which is known 

to trigger an increase in infants’ own visual scanning and attention solicitation behaviour 

(Toda & Fogel, 1993; Weinberg et al., 1999; 1996).  

By contrast, we observed no emotional valence differences in the intra-brain network 

topology of infants for all graph metrics assessed. Further, intra-brain density did not differ 

across conditions for either mothers or infants, using both directed and non-directed metrics. 

However, some emotional valence differences in maternal network organisation were 
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observed: maternal Transitivity (for PDC) was decreased and Betweenness Centrality (for 

PLV) was increased during positive emotions. Betweenness centrality is a measure of the 

“importance” of each node to the transit of information across the network. Nodes with high 

Betweenness act as centralised hubs in a network. Hence, if a network has high Betweenness 

new information can spread more easily throughout the network, facilitating functional 

integration. This is congruent with lower Transitivity, which is a measure of segregated 

neural processing. Accordingly, during the communication of positive as compared to 

negative emotions, maternal neural networks were more strongly integrated, permitting more 

efficient neural communication (van den Heuvel & Sporns, 2013). It was surprising that no 

significant differences in infants’ network topology were observed across conditions, for all 

metrics assessed, especially given that global Alpha network characteristics can be reliably 

assessed in 10 month infants (Velde et al., 2019). One possible explanation could be that 

infants’ neural networks for processing positive and negative emotions may (at this point in 

development) not yet be structurally differentiated, as compared to adults’. For example, 

previous work has demonstrated that in adults’ brains, structural maturational changes occur 

during which inefficient connections are pruned to conserve energy (Boersma et al., 2011; 

Bullmore & Sporns, 2009; Rotem-Kohavi et al., 2017). Further, although structural hubs 

emerge relatively early during brain development, many of these are still in a relatively 

immature functional state, with those in visual and motor regions most functionally active 

(Fransson et al., 2011). 

It is important that these null results are not misinterpreted as indicating that there are 

no differences in neural activation per se within the brains of infants with respect to positive 

and negative emotions. In fact, when we directly contrasted the neural activation levels for 

individual connections (without considering network organisation or topology), our 

supplementary analysis revealed extensive activation differences between Positive and 
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Negative conditions for both mothers and infants (see Supplementary Materials Section S2). 

These differences in neural activation were observed particularly in terms of hemispheric 

lateralisation, which is consistent with prior literature (Coan & Allen, 2004; Davidson, 1984, 

1998). Rather, our current findings add to the existing literature by showing that emotional 

valence modulates the topology of the inter-brain network (that is, how information flows 

between mothers’ and infants’ brains) even more strongly than it modulates to the topology 

of infants’ intra-brain network (i.e. how information flows within the infant’s brain). 

4.1 Limitations  

One limitation of the current work is that the study included a relatively small sample 

size of N=15 dyads. As a result, individual differences in dyadic emotional processing could 

not be examined. A second limitation is that a semi-naturalistic experimental design was used 

in order to facilitate social interaction between mothers and their infants. However, the 

ecological setting increased the complexity of data analysis, for example in terms of the 

number and variation in myogenic artifacts contained in mothers’ and infants’ EEG data. This 

necessitated more stringent data rejection and baselining pre-processing steps in order to 

account for potentially spurious effects arising from these artifacts (see also Sections S3 and 

S4 of the Supplementary Materials for an evaluation of the effect of maternal speech 

acoustics – and by extension, speech articulation effects – and muscular artifacts on our main 

results). Future studies using non-interactive paradigms could additionally explore effects in 

other frequency bands (such as Theta or Gamma), which could not be examined here due to 

concerns regarding motion artifact contamination. A final consideration was with regard to 

how volume conduction effects could have affected our connectivity analyses. For example, 

we noted that volume conduction effects could have biased infants’ intra-brain network 

topography as computed by the PLV metric (Section 3.1.1). However, the main comparison 

of interest here was between experimental conditions. Since volume conduction effects would 
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be expected to affect both conditions in a similar way, we did not expect volume conduction 

to confound the interpretation of our main results.  

4.2 Conclusion 

Here, we adopted a dual connectivity approach to assess the effect of emotional 

valence on the topology of the parent-infant joint neural network. We found that inter-brain 

network indices (density, strength and divisibility) consistently revealed strong effects of 

emotional valence on the parent-child connection, whereby parent and child showed stronger 

integration of their neural processes during positive than negative emotional states. By 

contrast, only weak valence effects were detected for intra-brain connectivity. Further, 

directed inter-brain metrics (PDC) revealed that mothers had a stronger directional influence 

on the dyadic network during positive emotional states, whereas infants had a stronger 

influence on the network during negative emotional states. These results suggest that the 

parent-infant inter-brain network is strongly modulated by the emotional quality and tone of 

dyadic social interactions, and that inter-brain graph metrics may be successfully applied to 

elucidate these effects.  
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