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Abstract

Bacteriophage (phage) are viruses which infect and replicate within bacteria cells.
Phages replicate by finding a host bacteria cell, adsorbing to it, injecting their DNA,
hijacking the host machinery to produce more phage, and finally lysing the cell to
release the new phage. The evolutionary dynamics of phage populations are therefore
strongly tied to their interactions with the host bacteria. In a spatial context, I was
able to show that unavoidable physical interactions between the virus and host hinder
viral dispersal, leading to a phage population in which stochastic fluctuations are
much weaker. This allows beneficial mutations to establish more easily and deleterious
ones to be purged, making the phage population more adaptable to changes in the
environment. To facilitate better comparisons between theory and experiment in spatial
contexts, I also developed a variety of new experimental techniques. These were aimed
at addressing shortcomings of existing techniques, which are almost exclusively based
on population averages and are carried out in well-mixed liquid cultures, making their
applicability to spatial settings challenging. Finally, phages are also able to interact
with each other via their host, by encoding superinfection-exclusion mechanisms which,
after initial infection, prevent subsequent phage from successfully infecting that host.
Using stochastic simulations, I show that in the long term such mechanisms limit the
adaptive potential of the phage, by limiting the genetic diversity in the population
and reducing the efficiency of selection. In the short term however, having such a
mechanism provides a very large advantage over other phage in the population which
lack such a mechanism, possibly explaining the ubiquity of such mechanisms in nature.
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But Mousie, thou art no thy-lane,
In proving foresight may be vain:
The best laid schemes o’ Mice an’ Men

Gang aft agley,
An’ lea’e us nought but grief an’ pain,

For promis’d joy!

from To A Mouse, by Robert BurnsChapter 1

Introduction

Starting from some unknown initial life form, the process of evolution has created all
of the biological diversity we see in the world today. At a basic level, evolution is
the change of heritable characteristics or traits (such as morphology, physiology and
behaviour) over time. The extent of such changes and the timescales involved can vary
enormously, from the rapid increase in bacteria strains resistant to antibiotics, to the
many million year evolution of mammals [1].

The traits of an individual are controlled by genes, which can come in different
variants, known as ‘alleles’. Each gene corresponds to a section of the genome, which
consists of a nucleotide sequence of DNA.1 During cell division the DNA is replicated,
but this is an imperfect process, and errors can be introduced. These errors, or
‘mutations,’ could be a change to a single nucleotide, or could be the insertion, removal,
or swapping of longer stretches of DNA. Crucially, these mutations are heritable, i.e. a
cell with a mutated gene will pass this version of the gene on to its offspring.

The impact of mutations on the observable characteristics, or ‘phenotype,’ of
an organism varies significantly. Some will be lethal, some will have a negative (or
‘deleterious’) effect on the ability to survive and reproduce, some will have a positive
(or ‘beneficial’) effect, while most will be neutral, i.e. they do not affect one’s ability to
survive and reproduce (known as ‘fitness’) [2].

The effect of a mutation will often be dependent on the environment in which the
individual carrying it lives. As much as physicists might wish it so, organisms do not
live in a vacuum.2 They live in an environment that contains different quantities and
types of resources, which they must utilise to survive and reproduce. If, for instance,

1or RNA, in the case of RNA viruses, but for now we will ignore this distinction.
2nor are they spherical . . .

1
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a mutation occurs which allows the individual to make use of a previously untapped
resource, that mutation would likely3 be beneficial in an environment where that
resource is abundant, but not in an environment where that resource was absent. Not
only that, but the environment almost always contains other organisms that must
use the same resources to ensure their own survival, leading to competition between
organisms.

The way organisms interact with each other and with their environment will
therefore shape their evolution, and indeed evolution will shape the way in which they
interact. This is perhaps most true of viruses, which lack their own metabolism and
so require a host to be able to reproduce. While many might argue that viruses are
therefore not “alive,” like organisms they replicate, posses genes, and undergo evolution.

Exploring how viral evolution is tied to the interactions the virus has with its
host will be the overarching theme of this thesis. In particular, this thesis will focus
on bacteriophage (phage), which are viruses that infect bacteria. Phage, alongside
bacteria, offer a great model system to observe evolutionary dynamics at work in real
time. A continuous four week experiment of phage growth will see the evolution of
over 2000 generations of phage, owing to their reproduction time of approximately 20
minutes. To give this a human context, assuming an average age of 20 years to birth
of first offspring, 2000 generations would take us far back enough to see the extinction
of the Neanderthals [3].

In addition to the experimental and theoretical insights gained, this work also has
important practical implications. For instance, anti-microbial resistance is acknowl-
edged as a major clinical threat to humans, with deaths due to drug-resistant bacterial
infections estimated to reach 10 million each year by 2050 [4]. Phage therapies offer
a potential route out of this crisis, although one clear difference between phages and
antibiotics is that phages are replicating, evolving entities. The safe and effective use
of phages in treating bacterial infections will therefore require an understanding of
how they will evolve in different settings that might be more representative of clinical
environments.

3I say likely, because in principle the ability to utilise this new resource might come at some other
cost, like the ability to utilise the original resources. If the original resource was even more abundant,
or nutrient rich, then the net effect could be negative.
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1.1 Key Concepts in Evolution

To understand the findings discussed throughout this thesis, it is first necessary to
understand some key, fundamental concepts in evolution. As mentioned previously, at
its core, biological evolution is the change in the heritable characteristics of a population
over time. Such changes initially occur within a single individual, and the long term
shift in frequency of that change is then (in asexual reproducing populations) governed
by two main evolutionary processes: natural selection and genetic drift.

1.1.1 Natural Selection

The theory of natural selection was famously set out in detail by Charles Darwin in his
book On the Origin of Species in the mid 19th century [5].4 As was outlined earlier,
broadly Darwin argues that some of the genetic variation that arises in a population
will give rise to phenotypic differences that alter an individual’s ability to survive and
reproduce (known as fitness).5 In each generation, successful parents may therefore
differ from the population as a whole. He also posits that there is likely to be a
heritable component to this, so that the offspring’s phenotype matches its parents (i.e.
heritable fitness). As this process is repeated over many generations, the characteristics
of the population will gradually change, with the frequency of beneficial characteristics
(i.e. those that increase one’s ability to survive and reproduce) increasing, and the
frequency of deleterious characteristics (i.e. those that decrease one’s ability to survive
and reproduce) decreasing. This is the basis of natural selection.

1.1.2 Genetic Drift

Genetic drift is the evolutionary process whereby the frequency of a given allele changes
over time through random sampling (i.e. chance). To study genetic drift we often rely
on idealised models that capture some biological aspects such as reproduction and
death, while simplifying many of the specific details [6], for instance death could occur
for various reasons that may be distinct in different demographics.

One of the most widely used models of genetic drift is known as the Wright-Fisher
model. The Wright-Fisher model consists of discrete, non-overlapping generations,

4More completely, the work is titled On the Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life

5There are many other aspects to fitness, for instance, as outlined previously, the fitness benefit of
a given allele is not absolute, but depends on the environmental conditions.
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Fig. 1.1 An illustration of genetic drift. The balls represent organisms in a population,
with the colours representing 2 selectively neutral alleles. Each bag represents successive
generations of the population, with the frequency of the alleles fluctuating due to
genetic drift. The process depicted here, and described in the main text is an example
of the Wright-Fisher model of genetic drift [6].

where reproduction occurs via random sampling of the parent generation [7–9]. This
concept is often illustrated by analogy with a bag of balls (Fig. 1.1). In this analogy,
there is a bag which contains 12 balls, representing N = 12 haploid (where the cells
contain one set of chromosomes) organisms in a population.6 Initially, in the starting
generation, half of the balls are red, and half are blue, representing two different alleles
in the population. These alleles are selectively neutral with respect to each other,
i.e. being red or blue does not impact that individual’s chance of reproducing. In
each new generation, the organisms reproduce at random. To represent this process,
a ball is chosen at random from the original bag, and a ball of the same colour is
deposited into a new bag (i.e., the ball is chosen with replacement). The new ball is
meant to represent the offspring of the original organism. This process is then repeated
until there are 12 balls in the second bag, representing the second generation of the
population. Unless exactly 6 red balls and 6 blue balls were chosen, a random shift will
have occurred in the frequency of the two variants. More formally, if we say that the
frequency of one allele (red) is p and the frequency of the other allele (blue) is 1− p,
then in a population of N individuals the probability that k copies of a given allele (in

6For most of this discussion we will focus on haploid organisms as it should be simpler to explain,
and will be more relevant to the phage studied throughout this thesis.
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this case red) survive until the next generation can be determined from the binomial
distribution

N !

k!(N − k)!
pk(1− p)N−k. (1.1)

Alternative models of genetic drift exist, most notably the Moran model [10]. Unlike
the Wright-Fisher model, the Moran model has overlapping generations. In the Moran
model, in each timestep one individual is chosen to reproduce and one individual is
chosen to die, thereby creating a population with constant size in which the number
of copies of a given allele (like red or blue balls) can go up or down by one, or stay
the same. For now, we will continue with the Wright-Fisher model as our illustrative
example as it is computationally faster, since each new generation requires only one
computational timestep, rather than many in the Moran model. It is worth noting,
however, that in practice both models produce very similar results [6–10].

As the process of random sampling is repeated over many successive generations, the
frequency of each allele (colour) will fluctuate, with these fluctuations being the essence
of genetic drift. Multiple realisations of this process illustrate that the fluctuations are
much higher in smaller populations (Fig. 1.2). It can also be seen that, particularly
when fluctuations are high, it is possible that in one generation either no blue or red
balls are selected to reproduce. In this instance, one of the alleles has gone extinct,
and cannot be present in future generations, whereas the other allele is said to have
reached fixation. This can happen very quickly in small populations because a small
difference in the number of offspring corresponds to a large change in frequency. If no
new mutation occurs, genetic drift will always eventually lead to the fixation of one
allele and the extinction of the others.

0 100 200 300

Generations

0

0.2

0.4

0.6

0.8

1

B
lu

e
 F

ra
c
ti
o

n

0 100 200 300

Generations

0

0.2

0.4

0.6

0.8

1

B
lu

e
 F

ra
c
ti
o

n

0 100 200 300

Generations

0

0.2

0.4

0.6

0.8

1

B
lu

e
 F

ra
c
ti
o

n

N=100 N=1,000 N=10,000

Fig. 1.2 An illustration of different realisations of the situation shown in Fig. 1.1,
where the fraction of blue balls is plotted as a function of time. Each line represents one
independent realisation of the algorithm described. Each panel represents a different
population size N . It can be clearly seen that fluctuations are reduced as the population
size increases.
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A quantitative method of characterising the genetic diversity in such a population
is through the heterozygosity (Fig. 1.3). In a biallelic population (i.e. a population
with two alleles) like we have here, the heterozygosity H is defined as [6–10]

H = 2⟨f(1− f)⟩, (1.2)

where f and (1−f) represent the frequencies of the two neutral alleles in the population
(i.e. the frequency of the red and blue balls respectively), and ⟨. . . ⟩ indicates the average
over independent simulations. H(t) can be understood to be the time-dependent
probability that two balls chosen from the population have different colours.
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Fig. 1.3 Plots of the average heterozygosity H as a function of time for three different
population sizes N . It can be seen that the diversity declines faster when the population
size N is smaller. Data is taken as the average of 500 individual simulations, and dashed
lines represent exponential decay with decay rate 1/Ne. In this instance N = Ne.

We can then ask the question, how do we expect H(t) to behave? In our set up we
have a haploid population of N individuals, and say at time t we have a heterozygosity
Ht. Assuming there are no mutations, what do we expect Ht+1 to be? If we randomly
sample two individuals with replacement in generation t+ 1, the probability that they
will have the same parent will be 1/N , and the probability they will have the different
parents will be (1− 1/N). In the case where their parents are different, what then is
the probability that those two parents will carry different alleles? This is simply given
by the heterozygosity at time t, i.e. Ht. The heterozygosity in generation t+ 1 will
then be given by

Ht+1 =
1

N
× 0 +

(
1− 1

N

)
×Ht. (1.3)
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It follows from this that, if at time t = 0 the heterozygosity is H0, we can write that

H(t) =

(
1− 1

N

)t

H0. (1.4)

If we then assume that our population is large, i.e. 1/N ≪ 1, at long times we can
approximate this decay as

H(t) = H0e
−t/N . (1.5)

It can be seen in Fig. 1.3 that the heterozygosity H decays exponentially at long
times due to genetic drift so that H(t) = H0e

−t/Ne as expected, with the decay rate in
units of generations being expressed in terms of an effective population size 1/Ne [6–10].
The effective population size can be considered to be the number of individuals in the
population that on average are able to contribute to the next generation. In the Wright-
Fisher model the effective population size is equal to the size of the actual population
N = Ne, although this doesn’t need to be the case. Indeed, in nature the effective
population size is often much smaller than the size of the actual population [7, 8, 11].
An alternative way of thinking about the effective population size is therefore that it
describes the size of an idealised population (e.g. a Wright-Fisher type population)
in which the genetic drift occurs at the same rate as in the real population under
consideration.

There are various reasons that the effective population size is often smaller than
the actual population size, such as individuals in the population which are unable to
reproduce, or individuals whose progeny are unable to survive. To illustrate how this
might be the case with a perhaps unrealistic but more concrete example, imagine a
population of N = 1000 deer, where there is Nf = 1 female and Nm = 999 males.7

In this scenario, the number of deer that contribute to the next generation, i.e. the
effective population size Ne, will clearly be smaller than 1000, as the female cannot
carry the offspring of all 999 of the males.

In addition to heterozygosity, there are other properties and statistics that can be
used to monitor the genetic diversity in populations. One of the more common is the site
frequency spectrum, which summarises the distribution of allele frequencies of a given
set of loci in the population. This approach has been employed to experimentally study
the spatial growth of yeast colonies [12], and to theoretically study the genealogical

7I appreciate that sexual reproduction adds an extra layer of complexity compared to previous
analogies, and changes the mathematics of genetic drift slightly, but I think it is an easier example to
illustrate why the effective population size might be smaller than the actual population size.
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structure of pulled and pushed waves [13]. In this thesis we will focus on heterozygosity
as it is a simpler summary statistic, which will be useful for building a baseline
understanding of viral evolutionary dynamics. It is also a useful measure to consider
for simple experimental setups, particularly in a spatial context. As we shall see in
Chapter. 3, we can label two strains with different fluorescent markers (representing
two different alleles) that can be tracked using fluorescence microscopy to measure the
heterozygosity, without the need to sequence the full genome.

1.1.3 Spatial Range Expansions

In biology, the spatial range of a population refers to that population’s geographic,
or spatial, limits. When a population expands and colonises new areas it is therefore
said to undergo a spatial range expansion. This is a concept which has been studied
extensively within the context of ecology, from the expansion of invasive plant species,
to the range shifts of many organisms to higher altitudes and latitudes due to climate
change [14–21]. However, spatial range expansions can also have a profound impact on
the evolution of populations.

Individuals in a population undergoing a range expansion experience different
conditions depending on their location, whereas individuals in a “well-mixed” setting
(such as bacteria in liquid culture) experience the same conditions regardless of position.
This is because, in a range expansion where dispersal is limited, pioneering individuals
near the expansion front benefit from access to new territory, where there is a higher
concentration of resources and lack of competition relative to the region behind the
front [22]. This same benefit is then afforded to the progeny of these individuals
who, by virtue of their initial location, are more likely to be the pioneers of the next
generation. As a result, the population’s genetic diversity declines at the front more
rapidly than in an equivalent well-mixed population, as the gene pool at the front is
dominated by the few individuals that happened to be there first, in what is known as
the founder effect [22, 23].

For similar reasons, the genes of the pioneering individuals are also more likely to
be carried along in the expansion front, in a phenomenon known as gene surfing [24].
The legacy of such effects can be observed in the world today, where the historical
migration of humans out of the African continent is reflected in the approximately
linear decrease in genetic diversity, as distance from the continent is increased [18, 20,
21]. Similarly, an observed latitudinal gradient in genetic diversity of multiple species
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in the northern hemisphere is thought to reflect migration events prompted by repeated
ice ages [16, 17].

The most widely used model to describe a species’ colonisation of new habitats is
the generalised Fisher-Kolmogorov (FKPP) equation [25–27]:

∂n

∂t
=

∂

∂t

(
D(n)

∂n

∂x

)
+ nr(n) +

√
γn(n)n η(x, t) (1.6)

where n(x, t) is the population density, D(n) is the density-dependant rate of dispersal
and r(n) is the density-dependent growth rate. The final term accounts for demographic
fluctuations, with η(x, t) being a Gaussian noise term, and γn(n) controlling the strength
of the fluctuations.8

In travelling population waves, the dynamic of the colonisation front has generally
been split into two distinct classes: “pulled” waves and “pushed” waves (see Fig. 1.4)
[29] . Pulled waves occur when the growth rate r(n) is maximal at small n, such as
when growth is logistic [29, 30]:

r(n) = r0

(
1− n

N

)
(1.7)

In the above, r0 is the growth rate at low densities, and N is the carrying capacity,
which defines the population density behind the front. Such waves are characterised by
high growth rates at the leading edge of the front which pull the front forward. This is
because the leading edge of the front is where the population density is lowest, and so
individuals have better access to resources and unobstructed access to virgin territory.
In this case, the speed of the front is independent of the form of r(n), and is given by
the Fisher velocity vF = 2

√
D(0)r(0), which is defined for any model where r(0) > 0

and D(0) > 0, even those which are not pulled [25–27].
It should be noted that, when considering a discrete population of Ndis individuals,

rather than the mean-field population density n, the speed of the front v is lower than
vF , even in pulled waves, and approaches vF as Ndis → ∞ (i.e., as the mean-field limit
is approached) [31]. The speed correction is proportional to 1/log2Ndis.

Contrasting with pulled waves, in pushed waves, maximal growth occurs at in-
termediate population densities, meaning it occurs behind the leading edge of the

8In much of the cited literature (e.g., [25, 28]) the n-dependence of the strength term is specified
twice because they discuss demographic fluctuations γn and frequency fluctuations γf (i.e., genetic
drift), both of which depend on the population density n, hence γn(n) and γf (n). While γf (n) does
not appear here, I opt to keep both n dependencies to minimise confusion for the reader if transitioning
to the cited literature.
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Fig. 1.4 This figure and its caption are reproduced from the Supplemental Information
of Ref. [25]. “The three panels compare the spatial distribution of growth, ancestry,
and diversity among pulled, semi- pushed, and fully-pushed waves. The color gradient
shows how the per-capita growth rate changes along the wave front. The ancestry curve
shows the distribution of the most recent common ancestor of the entire population
at the front, which is the same as the probability of a neutral mutation arising at a
particular location and then reaching fixation. The diversity curve shows the spatial
distribution of the most recent common ancestor of two individuals sampled randomly
from the front. In other words, this curve shows the probability that two ancestral
lineages coalesce at a specific location at the front. Thus, the maximum of the diversity
curve corresponds to the location that contributes most to the rate of diversity loss.
The colored dots show the positions of foci of growth (green), ancestry (red), and
diversity (purple). In both pulled and pushed waves these foci are colocalized, but
they are spatially separated in semi-pushed waves. As a result of this, semi-pushed
waves posses characteristics of both pulled and pushed waves.”

front, and pushes the front forward. Pushed waves often result from a cooperative
benefit at intermediate population densities, known as Allee effect [32], which can
occur for a variety of reasons, such as anti-predator vigilance, reduction of inbreeding
or co-operative feeding [33, 34].

The Allee effect that causes pushed waves is usually accounted for by modifying
the equation for r(n) to include a cooperative term [25]

r(n) = r0

(
1− n

N

)(
1 +B

n

N

)
, (1.8)

where B quantifies the strength of the cooperativity. For this model, exact solutions
are known for the expansion speed and front profile [25]. Expansions are pulled for
B ≤ 2, and the speed is given by vF , i.e. it is independent of B. For B > 2, expansions
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are pushed, with the speed being given by [25]:

v =

√
r0DB

2

(
1 +

2

B

)
. (1.9)

For B > 2, this expression is always greater than vF , and increases with increasing
B. No matter the form of r(n), it is always true that pushed waves have a speed
greater than vF . It is therefore worth explicitly highlighting that cooperativity does
not always increase the expansion speed (i.e. lead to pushed waves), even though it will
lead to increased growth at high densities. It has recently been shown that not only
co-operative growth, but also co-operative dispersal can lead to a density-dependent
behaviour that results in the transition from pulled to pushed waves [28].

Because the dynamics of pulled waves are dominated by the very tip of the expan-
sion, where the number of individuals is low, they are very susceptible to stochastic
fluctuations (i.e. genetic drift). In pushed waves, however, genetic drift is reduced,
due to the larger effective population that contributes to the dynamics [35]. Recent
work has also identified the existence of two sub-classes within the pushed regime:
“semi-pushed” and “fully pushed” (see Fig. 1.4) [25]. In semi-pushed waves, both the
bulk of the wave and the leading edge contribute to the dynamics, resulting in a wave
that has the kinetics of a fully pushed wave, but is highly susceptible to fluctuations,
similar to pulled waves. The transitions between pulled, semi-pushed and fully pushed
have been found to occur at specific wave speeds. Pulled expansions spread with a speed
equal to the speed of the corresponding linearised system clinear - the speed determined
solely by the linear dynamics at the tip of the front - while pushed expansions spread
faster [29]. The transition between semi-pushed and fully pushed occurs at a speed of
3/2

√
2× clinear, with waves below this speed being semi-pushed, and above this speed

being fully pushed [25]. These thresholds have been shown to be robust to the details
of the population dynamic, suggesting that they can be used as universal conditions to
distinguish between the different wave classes.

The existence and properties of pushed waves have been well studied experimentally
with regard to single species expansions. In nature, Allee effects have been shown
to explain key aspects observed in the invasions of both Eurasian gypsy moths and
house finches in North America [36, 37], and spatial sorting, where traits that enhance
dispersal accumulate at the front, resulted in a five-fold increase in invasion speed
of cane toads in Australia [38, 39]. In the laboratory, studies have shown that the
expansion dynamics in populations of the budding yeast Saccharomyces cerevisae
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transition from pulled to pushed as growth becomes more cooperative [40], with a
corresponding preservation of genetic diversity [41].

1.2 Bacteriophage

Now that we have introduced the general evolutionary principles which will govern our
population, we need to introduce what our population is. As outlined at the start of
this Chapter, this thesis will focus on bacteriophage (phage) - viruses that infect and
replicate within bacteria. Phage are as ubiquitous as bacteria, and are thought to be
the most plentiful and diverse organisms on Earth [42]. The discovery of phages is
usually attributed to independent work carried out by Frederick W. Twort in 1915,
and Félix d’Herelle in 1917 [43, 44]. Twort observed an agent that infected and killed
bacteria, but it was only after the work by d’Herelle that Twort’s observations were
recognised as dealing with phage.

Since their discovery, phage have been considered as a potential method of treating
bacterial infections in humans. Early applications included the treatment of acute
intestinal diseases and skin infections [45, 46]. Interest in phage generally declined in
the western world with the advent of antibiotics, although this interest has now been
revived due to the growing concern surrounding drug resistant bacteria, with renewed
focus on human phage therapies, alongside other applications in areas such as food
production [47, 48].

Effectively utilising phage in any application is challenging, however, because an
understanding of how phage grow and evolve in settings with explicit spatial structure
(such as the human gut, or the surface of plants) is currently lacking. As has been
highlighted in the previous section, the differing conditions experienced by individuals in
a spatially structured population result in unique selective pressures on the population,
which can drastically change the evolutionary dynamics of the population.

This thesis is therefore generally motivated by a desire to better understand how
spatial structure alters the interactions between the phage and its host, and in turn
how these interactions shape their evolution. As will be outlined in greater detail later
in this Chapter, that means that there will be particular focus in this thesis on the
growth of phage in plaques (clearings formed in lawns of bacteria by repeated cycles of
phage infection). Later, we will also look at the impact of multiple phage infecting
the same host cell. Such a process is likely common during spatial growth, due to
the high local concentrations of phage relative to the number of available hosts, and
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is particularly interesting in this context since phage in plaques are more likely to
be in competition with clonal phage in their local vicinity than they would be in a
well-mixed population where competition is global.

1.2.1 Replication

Phage typically replicate either through the lytic life cycle or the lysogenic life cycle.
The lytic life cycle (Fig. 1.5) can be split into several stages. Initially, phage particles
diffuse freely and are not yet attached to a host cell. The length of time phage spend
in this state is determined by several environmental factors, such as host cell density,
the rate of phage diffusion and the rate of phage adsorption [49]. Next, the phage
adsorbs to the surface of the host cell, and injects its genetic material into the host.
This process is highly specific, with phage only binding to certain receptor sites on the
host’s surface, such as oligosaccharides, lipopolysaccharides, or proteins [50].

HostE. coli

Phage

Host chromosome

Phage chromosome

Fig. 1.5 The lytic life cycle. Initially, the phage is not attached to a host cell and is
diffusing freely. The phage then adsorbs to the surface of the host cell and injects its
genetic material, which then hijacks the internal machinery of the host cell. New phage
are then produced and assembled inside the cell. The new phage are then released in
the final step when the cell bursts, known as lysis.

Then follows the eclipse period, where infection has occurred but no progeny have
yet been produced, as the phage is in the process of hijacking the host’s cellular
machinery. At the end of the eclipse period, new phage production starts inside the cell,
with the production having been shown experimentally in an array of isogenic λ-phage
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to be linear in time [51]. While the phage produced inside are fully constructed, they
remain inside the cell until the final stage of the cycle, known as lysis.

Lysis is controlled by two components: a lysin (an enzyme capable of cleaving a key
bond in the peptidoglycan matrix that forms the cell wall) and a holin (a protein which
forms pores in the inner membrane to facilitate the lysin’s access to the peptidoglycan
matrix) [50]. Lysis occurs when the cell wall is breached, releasing the new phage
progeny which are now free to diffuse onward to new hosts. Thus, the cycle is complete,
and the infection spreads.

In the lysogenic cycle, instead of the host’s cellular machinery being hijacked, the
phage nucleic acid either forms an extra-chromosomal plasmid, or is integrated into
the host’s genome [50]. This phage genome (known as a prophage) remains dormant,
and allows the host bacteria to live and replicate as normal. The prophage can then
be passed on to future bacterial generations, where certain environmental stressors
such as UV light or low nutrient conditions can cause it to be released, resulting in
continued infection through the lytic cycle [50]. It should thus be noted, that phage
which are capable of undergoing the lysogenic life cycle, known as temperate phage,
remain capable of undergoing the lytic cycle. For this reason, the common equating
of lytic phage with virulent phage should be avoided. This work instead follows the
convention laid out by S. Abedon [42], which opts to refer to phage only capable of
undergoing replication through the lytic life cycle as obligately lytic.

There also exists another type of phage known as filamentous phage. These phage
are named for their long, thin filamentous shape. Unlike most phage which are
pathogens, and kill their host bacteria, filamentous phage live in more co-operative
relationships with their host bacteria [52]. Filamentous phage impose little burden on
the host cell, and replicate without the need to lyse the host, instead being extruded
out through the membrane. Filamentous phage can also offer benefits to their hosts,
such as aiding the creation of biofilms, or modifying behaviours to provide motile
activity to their hosts [52].

1.2.2 Bacteriophage T7

In this work, we will focus on phage T7 and its host Escherichia coli as a model system.
Bacteriophage are classified by the International Committee on Taxonomy of Viruses
(ICTV) according to morphology and nucleic acid. The phage used in this study is
bacteriophage T7, a double stranded DNA virus of the order Caudovirales (tailed
bacteriophage), and the family Podoviridae (short, non-contractile tail). Phage T7
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consists of an icosahedral head structure, known as the capsid, which is connected to
a short non-contractile tail. Contained within the capsid is the almost 40 kbp viral
genome, which codes for 55 proteins [53]. Phage T7 is an obligately lytic phage.

(a)

(b)

Fig. 1.6 (a): A schematic of the structure of bacteriophage T7, taken
from Ref. [54]. (b): An annotated bacteriophage T7 genome, taken from
https://viralzone.expasy.org/518?outline=all_by_species.

1.2.3 Plaques

It is possible to observe the spread of phage infection through susceptible host bacteria
with the naked eye. When a small quantity of phage is inoculated onto a bacterial
lawn (a mat of bacteria grown on an agar plate), the process of infection, reproduction
and diffusion described previously results in a growing clearing of lysed (dead) cells.
This clearing is known as a plaque (Fig. 1.7). Plaque based assays have long been used
as a reliable and accurate method for determining the concentration of infective units
in a viral suspension [55], as well as more recently a measure of viral fitness [56].

Alongside virus characterisation, the study of plaques also provides an interesting
medium to study the growth (and evolution) of viruses. Previous work on plaques has
typically centred on how virus-host interactions affect the speed at which the plaque
grows. Many models of plaque growth exist, the oldest and simplest of which was
proposed by Koch [57], who estimated that the speed of the spread was proportional
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Bacterial

lawn
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2 mm

Fig. 1.7 An image of a T7 plaque. The plaque is visible as a clearing in the middle of
a bacterial lawn, on an agar plate.

to
√
D/τ , where D is the diffusion coefficient of the phage and τ is the latent period

(the time in which phage are immobile inside the cell).

Yin and McCaskill Model

Later, Yin and McCaskill [58] constructed a reaction-diffusion system for the spread of
phage T7 through host E. coli, and obtained the speed from travelling wave solutions.
This system is laid out in Eq. 1.10:

∂[B]

∂t
= − k1[V ][B]︸ ︷︷ ︸

adsorption

+ k−1[I]︸ ︷︷ ︸
desorption

(1.10a)

∂[I]

∂t
= k1[V ][B]︸ ︷︷ ︸

adsorption

− k−1[I]︸ ︷︷ ︸
desorption

− k2[I]︸︷︷︸
lysis

(1.10b)

∂[V ]

∂t
= D

∂2[V ]

∂r2︸ ︷︷ ︸
diffusion

− k1[V ][B]︸ ︷︷ ︸
adsorption

+ k−1[I]︸ ︷︷ ︸
desorption

+Y k2[I]︸ ︷︷ ︸
lysis

(1.10c)

where [B], [I] and [V ] denote the concentrations of uninfected host bacteria, infected
bacteria and phage at the leading edge of the front respectively. Rate constants of
phage adsorption, desorption and host lysis are given by the parameters k1, k−1 and k2
respectively, while D represents the diffusion coefficient of the phage, and Y represents
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the burst size (i.e. the quantity of new phage released at each lysis event). These
equations are based on the assumptions that the host bacteria are immobilised in the
agar, and that adsorption of phage to infected hosts is negligible.

It is worth taking a brief pause here to discuss the later of these assumptions.
Some bacteriophage do indeed have mechanisms that prevent adsorption to already
infected cells, usually by blocking receptor sites post-infection [59]. For instance,
Bacteriophage T5 produces a lipoprotein (Llp) that is expressed at the beginning of
infection, preventing superinfection by blocking its own receptor site (FhuA protein),
and protecting newly produced phage from inactivation by binding to free receptors
released by lysed cells [60, 61]. This mechanism is not universal however. Indeed,
bacteriophage T7 - used both in this thesis and in Ref. [58] - has no such mechanism.
The justification for this assumption must instead come from the fact that the speed
estimates obtained from the model come from linearising the system of reaction-diffusion
equations about the front of the expansion, where the number of infected cells tends to
zero.9 A further discussion on the use of the solution to the linearised model will come
later in Sec. 1.4.

Density-Dependent Diffusion Coefficient

Yin and McCaskill also attempted to correct the free diffusion coefficient D, to take
account of the hindrance that is posed by the bacterial cells. This manifests in the model
as the free diffusion coefficient being replaced with an effective diffusion coefficient Deff

given by [58]:

Deff =
1− f

1 + f
x

D (1.11)

where f = B0/Bmax is the density of bacteria relative to the density at which diffusion
is completely prohibited. The parameter x is a shape factor of the bacteria cells, which
Yin and McCaskill assumed to equal 2 (i.e. spherical) [58], and Fort and Méndez later
calculated from theory, based on the size of the cells along their axes of symmetry,
to be equal to 1.67 [62]. The free diffusion coefficient D in the absence of bacteria is
taken to be approximately the same for phage T7 as it is for phage P22, as they are
of similar size and shape, and so takes a value of D = 4 µm2/s in 1% agar [63, 64].

9No justification for this assumption is actually provided in Ref. [58], however this is the only
sensible justification I can think of.
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Equation 1.11 is based on Fricke’s equation [65], which describes the diffusion of a
solute through a suspension of diffusionally impermeable spheroids.

In Equation 1.11, it can be seen that when f = 0, i.e. when there is no bacteria,
we have the simple case that Deff = D. As the bacterial fraction is increased, Deff is
reduced until it reaches a value of 0 when f = 1, i.e. when all of the available space is
occupied by bacteria and so the phage is unable to diffuse. Despite some observations
that the diffusion coefficient is reduced in the presence of bacteria [66], the effective
diffusion coefficient has yet to be robustly demonstrated experimentally, as noted by
Abedon and Culler in a review of the topic [67].

Fig. 1.8 A comparison of Koch’s model (dashed line) and Yin and McCaskill’s model
(solid line) to experimental data. Yin and McCaskill’s model accounts for hindered
diffusion while Koch’s does not. In addition, both models are fit to the data using two
additional fitting parameters. Figure adapted from Ref. [58].

Nevertheless, Yin and McCaskill found that the inclusion of this density-dependent
diffusion coefficient was necessary to qualitatively capture an observed reduction in the
plaque expansion speed at high density (Fig. 1.8) [58]. It was also found that, in the
limit where adsorption and desorption processes are fast relative to the death rate of
infected cells, the effect of desorption on the speed is negligible. For this reason, future
models do not include the terms in Eq. 1.10 which are proportional to k−1.

You and Yin Model

You and Yin [68] subsequently supported the claim of travelling wave solutions through
numerical simulations, although the speeds obtained by both this work and the work
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by Yin and McCaskill were much larger than those observed experimentally [58]. It is
important to note that in this study, the linearisation assumption was shown to break
down in the limit of fast adsorption (again, this will be discussed further in Sec. 1.4).

Fort and Méndez Model

Subsequent work by Fort and Méndez [62] tried to resolve the discrepancy between
prediction and experiment by taking account of the latent period, i.e. the “delay time
between the moment when a virus adsorbs into a cell and that in which the cell dies and
the new generation of viruses begins to spread [62].” This was achieved by modifying
Eq. 1.10c to its hyperbolic generalisation given by:

∂[V ]

∂t
+
τ

2

∂2[V ]

∂t2
= D

∂2[V ]

∂r2
+ FV +

τ

2

∂FV

∂t
. (1.12)

This modification attempts to account for the latent period by delaying the diffusion
of phage after lysis. FV is the virus growth function given by:

FV = −k1[V ][B] + Y k2[I]

(
1− [I]

[I]max

)
(1.13)

It should be noted here that another key difference between this model and that of
Yin and McCaskill is the use of the logistic growth term to describe the growth in the
absence of uninfected cells - the final term in Eq. 1.13. In this model, the equivalent
term in the equation governing the concentration of infected cells is modified in the
same way:

∂[I]

∂t
= k1[V ][B]− k2[I]

(
1− [I]

[I]max

)
. (1.14)

The intuition behind the use of the hyperbolic generalisation is perhaps better
understood in the context in which it was originally implemented, namely the neolithic
transition from hunter-gatherer to agricultural economies in Europe [69]. Based on
archaeological data, it had been concluded that European farming originated in the
Near East, and then spread across Europe in a wave of expansion driven by human
migration. In Ref. [69], it is assumed that there is a well-defined time scale between
two successive migrations. In other words, they assume that families will have travelled
to a new location, which may have taken some days or weeks, and then remained in
that location for a period of “residence,” which the authors assume to be about the
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length of one generation, before moving again. In this context, the delay period τ

should be understood to be approximately the time of residence.
While this description seems readily applicable to human migrations, I think it

is perhaps less relevant to viral expansions. By modelling the delay in this way, the
authors are equating the time which phage are incubated inside immobilised bacteria
with the residence period between migrations. A key difference between the two
scenarios, however, is that while humans are in residence at a given location they can
and do reproduce (increase in population density), whereas while incubated inside
bacteria, phage should not be capable of infecting new bacteria. The description of
plaque growth in this model seems to imply that some host bacteria lyse immediately
following infection, releasing new phage, and while those phage are unable to diffuse
away from that location for a time τ , they are capable of immediately infecting other
cells at that location, which is unrealistic.

Jones Model

Later, work by Jones et al. [70] adopted a different approach to this issue, and described
a perfect delay model where all of the cells lyse at exactly the same time after infection.
This was achieved by replacing the k2[I] term in the Yin and McCaskill model with
k1[V ](t− τ)[B](t− τ), where the concentrations are considered at time (t− τ). This is
perhaps a more intuitive description of the delay, in that phage and uninfected bacteria
are converted into infected cells, and after the incubation period τ , these infected cells
are converted back into free phage that are able to diffuse onward and infect new hosts.
In this description, there is no delay to the diffusion of the phage, because during
incubation there effectively are no phage, only infected cells which by definition do not
move.

de Rioja Model

Most recently work by de Rioja et al. [71] proposed a new model which combines both
of the two previously discussed aspects: firstly, the model takes into account the higher
order corrections proposed by Fort and Méndez, and adopted by several subsequent
models (terms proportional to τ in Eq. 1.12) [62, 72, 73]. Secondly, a description of the
cell death process, that takes into account the concentrations at time t− τ , instead of
through the use of logistic growth functions is used. This results in the terms k2[I] in
Equation 1.10 being replaced with the term k2[I](t− τ). Irrespective of my misgivings
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about the approach taken by Fort and Méndez [62] compared to Jones et al. [70]
when it comes to modelling the delay time τ , the adoption of both approaches in the
same model is surely redundant. This would seem to imply that phage and uninfected
bacteria will be converted to infected cells, there will be a delay time τ before the
infected cells are converted to free phage, and then for a further period τ those phage
will be unable to diffuse.

1.2.4 Multiple Infections

When phage are in a setting such that there are relative few bacteria compared to the
number of phage, competition for viable host can lead to different strains or even species
of phage superinfecting or co-infecting the same bacterial cell, ultimately resulting in
the production of more than one type of phage [74–76]. In the following, we define
infection terminology in line with Turner & Duffy [77], such that co-infection occurs
when two or more phage have successfully infected a single bacteria, and superinfection
occurs when there is a delay between infection by the first and second phage. Therefore,
all cells which have been successfully superinfected can be said to be co-infected [77].
To account for different usages throughout the literature and across fields, we also refer
to multiple infections, to indicate any case where multiple viruses exist within a single
host simultaneously.

Interestingly, several phages have evolved mechanisms that prevent superinfection,
known as superinfection-exclusion (Fig. 1.9). This can be achieved at the early stage of
infection, by preventing further adsorption of phage, or at a later stage, by preventing
the successful injection of subsequent phage DNA [59, 78]. For instance, as mentioned
earlier bacteriophage T5 encodes a lipoprotein (Llp) that is synthesised by the host
at the start of infection and prevents further adsorption events by blocking the outer
membrane receptor site (FhuA protein) [60, 61]. Bacteriophage T4 encodes two
proteins, Imm and Sp, that prevent superinfection by other T-even phages (including
T4) by inhibiting the degradation of bacterial peptidoglycan, whose presence hinders
the DNA transfer across the membrane [79, 80]. Bacteriophage T7 also possesses a
superinfection exclusion mechanism, which acts to exclude superinfection by either
T7 or T3 phage after adsorption, but before the genome becomes available for gene
expression or replication [81, 82].
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Superinfection

Exclusion (SX)
Superinfection (S)

Fig. 1.9 An illustration of the difference between superinfection and superinfection-
exclusion. When superinfection-exclusion occurs, on the first phage to infect is produced,
while if superinfection occurs, both types of phage are produced when the host lyses.

1.3 The Impact of Virus-Host Interactions on Evolution

1.3.1 Life-History Parameters

The question of how virus-host interactions affect the evolution of bacteriophage has
often been studied in the context of how changes to these interactions affect the fitness
of the phage. In particular, much attention has been focused on the timing of lysis.
Intuition might suggest that shorter lysis times would be favourable, as phage could
more rapidly continue on to a new host and grow the population. This is borne out
by experiments which have shown that in well-mixed liquid cultures, if the bacteria
density is high, phage populations evolve to have shorter lysis times [83].

When bacteria density is low, however, it has been shown that phage can evolve to
have longer lysis times [84, 85]. The intuition behind this stems from the fact that
there is a positive linear relationship between lysis time and burst size [51], meaning
that a reduction in lysis time generally results in the production of fewer phage. In the
high bacteria density case, when fresh hosts are very abundant, this reduction in phage
output is not significant, as the few phage that are produced are able to quickly find
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new hosts to continue the infection. However, lysing hosts faster is not particularly
useful if the phage are released into an environment where they will struggle to find
new hosts, as in the case of low bacteria density cultures. In this scenario, it is more
useful to release lots of phage, thereby increasing the chances that at least one of them
finds a host quickly, even if it means taking longer to lyse the hosts. In essence, there’s
no point in lysing a host quickly if the new phage can’t find a host to continue the
infection. This tradeoff between lysis time and burst size has been shown to lead to an
‘optimum’ lysis time which depends on host density and other environmental conditions
[86].

As with the well-mixed case, the linear correlation between lysis time and burst
size has been shown to impose an optimum selection criteria during plaque growth
[87]. This optimum is not always entirely predictable however. It has been shown, for
instance, that when wild-type T7 are grown on a lawn of E. coli which expresses an
essential early enzyme of the phage infection (T7 RNA polymerase), phage populations
evolved with large deletions from the genome (up to 11%), including the gene for their
own RNA polymerase [88]. These phage were able to outcompete the wild-type, and
were shown to have both shorter lysis times and larger burst sizes, as they were able to
more efficiently use the host’s resources without the need to produce their own RNA
polymerase.

Similar to the well-mixed case, in the spatial context of plaques intuition suggests
that shorter lysis times, larger burst sizes, and faster adsorption rates should all be
beneficial [67]. Spatial structure, however, can impose selection criteria that may
initially seem counter-intuitive. For instance, spatial growth of phage can actually
favour lower adsorption rates, due to a tradeoff between adsorption and dispersal i.e.,
the longer a phage goes without adsorbing to a host the further it is able to spread [89].
Such differences are perhaps not surprising given that spatial and well-mixed settings
fundamentally select for different things: in simple terms, growth in well-mixed settings
selects for greater ability to increase in number, whereas growth in plaques selects for
greater ability to spread through space [67].

Even in more ‘artificial’ spatial settings with imposed migration schemes similar
results can occur, albeit for different reasons. Kerr et al. employed a setup where
phage T4 and its host E. coli were embedded in a 96-well plate, which imposed a
meta-population structure that was perpetuated by serial transfer every 12 hours [90].
At each transfer, migration also occurred between wells, with this migration either
being ‘restricted,’ meaning that migration could only occur between neighbouring
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wells, or ‘unrestricted,’ meaning that migration could occur between all wells. Kerr
et al. found that the two migration patterns selected for different viral strategies,
termed ‘prudent’ and ‘rapacious.’ Rapacious phage are able to out-compete their
prudent counterparts when in competition, but prudent phage are more productive
in isolation. Restricted migration selects for prudent phage, while rapacious phage
dominate when migration is unrestricted. The intuition behind this is in the fact that
in the unrestricted case, all spatial structure is essentially destroyed every 12 hours. As
a result, the rapacious type can limit the access of other phage to hosts by infecting
and lysing them quickly, meaning prudent phage do not have a chance to grow. In the
restricted case competition and resource availability is local, and so prudent use leads
to higher productivity. For instance if phage increase their lysis time, the uninfected
hosts have more time to replicate, thereby increasing availability of the resource and
ultimately phage growth in the long run.

1.3.2 Intracellular Interactions

The question of how phage compete for hosts, and the evolutionary consequences of
this competition, is of course also extremely relevant when multiple phage attempt
to infect the same host, i.e. superinfection. Given that populations which allow and
prevent superinfection both exist in the wild, it is natural to wonder what impact
either strategy has on the evolution of viral populations.

This question has been studied in various viral systems (including those beyond
bacteriophage) from the perspective of intracellular interactions and competition [91–
99]. Multiple infections allow for the exchange of genetic material between viruses
through recombination, which can increase diversity, but may also decrease fitness by
promoting the presence of deleterious mutants at low frequencies [100–102]. Addition-
ally, in RNA viruses with segmented genomes, multiple infections can lead to hybrid
offspring containing re-assorted mixtures of the parental segments (reassortment). This
mechanism can in principle improve selection efficiency (i.e., deleterious mutations
are more likely to be purged, and beneficial ones are more likely to reach fixation),
as re-assorted segments may generate highly deleterious variants that will be easily
out-competed by the rest of the population [103]. Multiple infections can also lead
to viral complementation, where defective viruses can benefit from superior products
generated by ordinary viruses inside the host [103–107]. This process increases the
diversity of the population, but also allows cheating individuals to persist in the viral
population for long times [103, 104].
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The likelihood of multiple infections occurring increases with the number of free
phage available per viable host - multiplicity of infection (MOI) - and several experi-
mental systems have been used to study the impact of MOI on viral dynamics [105,
106, 108–112]. For instance, high MOI in RNA phage ϕ6 has been shown to result
in a behaviour conforming to the Prisoner’s Dilemma strategy in game theory, and
a reduction in viral diversity [108–111, 113]. Theoretically, the same question has
been investigated in different scenarios [114], in particular in the context of human
immunodeficiency virus (HIV) infections [100, 101, 115–120]. These studies have fo-
cused on determining whether multiple infections preferentially occur simultaneously or
sequentially, in an effort to explain experimental data, and on the role of recombination
in the acquisition of drug resistance, showing that its impact depends on the effective
population size. The role of MOI has also been studied in terms of diversity and
evolution of the viral population [100, 101, 117, 121–126], with theoretical predictions
suggesting that multiple infection favours increased virulence, and that within-host
interactions can lead to a more diverse population.

1.4 Open Questions

While much work has been done on the role of virus-host interactions, both on properties
like the rate of plaque growth, as well as on the fitness and consequent evolution of
phage populations, there remain several key, open questions. In the remainder of this
section, I will outline some of these questions, which will form the basis of the work
presented in the rest of this thesis.

1.4.1 Are Plaque Fronts Pulled or Pushed?

It is crucial to appreciate that, as mentioned previously, regardless of the differences
between each of the plaque models described in Sec. 1.2.3, the speed estimates obtained
in each case come from linearising the system of reaction-diffusion equations. As
described in Sec. 1.1.3, using the solution to the linearised system equates to assuming
that the viral dynamic is correctly described by a pulled wave. No justification is given
for this assumption, and indeed it was demonstrated by You and Yin to be invalid in
the limit of fast adsorption [68]. The failure of the linearised solution however, occurred
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at rates of adsorption far higher than those found in the original measurements made
with phage T7 [58], and so this line of inquiry was not pursued further.10

In addition to this observation, other key aspects of the current models could
potentially challenge this assumption. For instance, the models assume that the
diffusion coefficient of the phage is reduced depending on the concentration of bacteria
according to Eq. 1.11. However, because the models are generally only concerned with
the solution to the linearised model, they implement a constant diffusion coefficient
that is set only by the concentration of bacteria at the expansion front. This therefore
does not take into account the fact that the phage behind the expansion front, in
the centre of the plaque, will diffuse faster relative to those phage at the tip of the
expansion, due to the lack of bacteria in the plaque centre. It seems natural to think
that this relative increase in diffusion could afford phage behind the front a better
ability to catch up to the front and influence the expansion dynamics. By only using
the bacterial concentration at the front to set a constant diffusion coefficient, however,
it is impossible to tell if this density-dependent reduction in phage diffusion could lead
to pushed waves [28].

1.4.2 How To Compare Plaque Models to Experiments?

Primarily, each of the models discussed in Sec. 1.2.3 was created and examined with
the goal of accurately reproducing plaque speeds observed in experiments. To achieve
this comparison the authors make use of independent measurements of the system’s
properties (e.g. bacteria density, phage burst size, lysis time, etc . . . ). A comparison
of various models, reproduced from Ref. [71], can be seen in Fig. 1.10.

Briefly for context, the model by Gourley and Kuang shown in Fig. 1.10 is very
similar to the model by Jones et al., but additionally assumes a natural death process
for only infected cells at rate µI that is unrelated to virus infection and decreases the
number of infected cells after time τ by a factor of e−µIτ [70, 71, 127]. No biological
reason is given for the inclusion of an additional death process that affects infected
and not uninfected cells. Additionally, the reason that this model was not discussed
in more detail above is that it is not actually a plaque model, but a model of phage
infection in marine environments. The full model presented in Ref. [127] also includes
the diffusion of both infected and uninfected hosts, bacterial growth and the decay of

10The nature of these measurements themselves will also be discussed shortly.
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Fig. 1.10 Front propagation speeds for three T7 mutants (wild, p001 and p005). The
mutants vary in their lysis time and burst size, and their adsorption rate is assumed to
be unchanged [71, 88]. Black squares refer to experimental data obtained in Ref. [88].
White symbols refer to various theoretical models: triangles for the classical Yin and
McCaskill model [58], circles for the “new model” by de Rioja et al., stars for a simplified
version of this model [71], rhombuses for the model by Jones et al. [70], and white
squares for a model by Gourley and Kuang [127]. This figure is reproduced without
adaptation from Ref. [71].

free phage. All of these processes, and their corresponding mathematical descriptions,
are neglected when calculating the speeds shown in Fig. 1.10 [71, 127].

Secondly, the “simplified model” referred to is a version of the model by de Rioja et
al. with fewer terms. The author’s removed terms from their model one at a time to
evaluate their contribution to the speed calculated. Through this process, it was found
that terms relating to the adsorption of virus to host (i.e. k1[V ][B]) could be removed
in the viral equation (but not in the equations describing infected and uninfected
bacteria) with only a 4% alteration to the speeds calculated. Additionally, many of
the higher-order terms could be removed without a significant alteration to the speeds
obtained. It’s worth quickly reiterating here that transitions to fully pushed waves
occur at 3/2

√
2× clinear, and so can be as little as 6% faster than pulled waves. While

removing terms may not significantly impact the speed, they may significantly impact
the population dynamic.
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With that aside, it can be seen in Fig. 1.10 that the classic model by Yin and
McCaskill, which does not take into account the incubation period, results in speeds
significantly higher than those observed experimentally. The other models shown
here show better agreement with the experiments, although the Jones and Gourley
models appear to overestimate the speeds, while the de Rioja model is more inclined
to underestimate the speeds (with the exception of the wild type).

While much effort has been devoted to examining the impact of all of the many
possible terms in the model, essentially no attention has been given to the suitability
of the actual parameter values used in them. I think there are various issues with
this. For one thing, in experiments originally performed in Yin and McCaskill’s work,
the host fraction f = B/Bmax was assumed to be proportional to the concentration
of nutrient broth used in the experiments [58]. The basis for this assumption is not
entirely clear, and it appears no effort was made to test its veracity. The authors go
on to say that this “implies that a critical nutrient concentration (∼ 50 g/l in this
work) corresponding to a host fraction of unity exists.” Again, how this value was
reached is not discussed. de Rioja et al. use these assertions to conclude that the
experiments carried out by Yin in Ref. [88], which they use as the point of comparison
for their model, must be at a density of f = 0.2, based on the fact that the nutrient
concentration was 10 g/l [71].11

While it does seem likely that the final bacteria density will in some way be related
to the nutrient concentration, I think that to say that they are directly proportional
across a wide range of concentrations is a very big assumption. It seems perfectly
possible that the final density of bacteria is in part determined by the density of the
agar or other factors, and that the nutrient concentration impacts the time taken for the
bacteria to reach this density, particularly at very high or low nutrient concentrations.
Also implicit in this is the assumption that varying nutrient concentration has no effect
on the phage life-history parameters. I think it is very possible, if not likely, that the
host’s access to nutrients will impact the production of new phage. For instance, varied
availability of nutrients may promote alterations to burst size [128] and lysis time [84].

11They also go on to state that Bmax = 107 ml−1 and therefore B0 = 2 × 106 ml−1. Ref. [58] is
cited as their source for the value that Bmax = 107 ml−1. Again, this is simply not what Ref. [58]
says. In fact, Ref. [58] states that bacteria were plated with initial concentrations of 107 ml−1 and 108

ml−1, and were then left to grow for 12 h before any plaque measurements were taken. This is so that
the bacteria had time to grow to the relevant concentration B0, which is not known precisely, but is
assumed to be proportional to the nutrient concentration. Common sense however, would suggest
that it will clearly be larger than 2× 106 ml−1.
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Another, arguably more significant issue, is that the phage adsorption rate, burst
size, and lysis time are all determined by experiments carried out in a well-mixed liquid
cultures of exponentially growing bacteria, despite the fact that plaques by definition
occur in bacteria immobilised in solid agar [62, 71, 88].12 It is perfectly possible that
these parameters could take significantly different values when the infection occurs in
spatially structured environments. Moreover, the plaque growth measurements are
taken over the course of 24 hrs, over which time the bacteria will almost certainly
enter stationary phase, which could also significantly impact these parameters [88, 129].
Any such change would also be difficult to observe in the data underlying Fig. 1.10,
given that the speed of each plaque was determined from size measurements at only 3
timepoints (13, 18 and 23 hours) [88].

Having said all of this, I do think it is important to attempt to compare predictions
from a model with experimental observations to determine if the model is physically
realistic. From that point of view, all of the models which in some way incorporate a
time delay show some level of quantitative agreement with the experimental observations
(i.e. the models predict speeds that are within 25% of the experimental values), and
the models show good qualitative agreement with the behaviours observed (e.g. speeds
are reduced at high bacteria density, increased at large burst sizes, reduced at large
lysis times etc). Beyond this however, I think that saying model X is better than
model Y because model X predicts a speed 10% lower while model Y predicts a speed
15% higher is perhaps not very useful at present given the uncertainty surrounding the
underlying parameters used to make the predictions.

1.4.3 What is the Impact of Multiple Infections Absent of Intracellular

Interactions?

Despite the active work in the area, several fundamental questions on the role of super-
infection exclusion on viral dynamics remain unanswered. First, while decreasing MOI
in viral populations that allow superinfection decreases the likelihood of superinfection,
it does not introduce a superinfection exclusion mechanism that prevents superinfection
altogether, making it difficult to draw conclusions about the (dis)advantages of this

12de Rioja et al. claim that the burst size data “have been obtained for cells in agar-immobilized
microcolonies containing many cells [71],” however this is not accurate. This can be verified by reading
the method described in Ref. [88], which is the stated source of their data. I believe the confusion
arises from the fact that to measure the concentration of phage, it is necessary to plate an aliquot of
the phage with host bacteria immobilised in agar, but this is simply the measurement technique, not
the environment of the actual experiment.
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viral strategy. Second, little is known about how the occurrence of superinfection
alone, before even accounting for the additional effects of any intracellular interactions,
impacts the evolution of viral populations, particularly when it comes to fundamental
evolutionary outcomes such as mutant fixation probabilities. A quantitative under-
standing of this baseline behaviour is necessary to evaluate the impact of the many
additional intracellular interactions that can occur (recombination, defective viruses,
etc.). The limited work in this area has shown that in the absence of intracellular
interactions, high MOI in superinfecting viral populations can promote the presence
of disadvantageous mutants in the “short term,” and obstruct it in the “long term”
[130, 131], but how the evolutionary outcomes in each case depend on the parameters
describing the viral life-cycle (adsorption rate, lysis time and burst size) and the
(dis)advantages of either strategy remain unclear. Addressing these knowledge gaps in
a well-mixed setting must also occur before we can draw any firm conclusions about
whether either strategy becomes more or less useful in a spatial context.

1.5 Thesis Outline

In Chapter 2 I will address the question of whether plaque fronts are pulled or pushed.
In particular, I will (i) experimentally determine whether and how the rate of phage
diffusion depends on the density of surrounding bacteria, (ii) under what conditions, if
any, transitions to semi-pushed and fully pushed expansions can occur, and (iii) what
role density-dependent diffusion plays in this.

I will follow this up in Chapter 3 by developing an image analysis pipeline for the
identification of large monoclonal sectors that occur during phage range expansions,
which can be used to measure the strength of genetic drift as a function of bacterial
density and other parameters.

In Chapter 4 I will present a variety of novel experimental techniques for working
with phage in settings with spatial structure, with a view to facilitating better com-
parison between theory and experiment. This includes protocols to measure phage
adsorption rate and lysis time on solid media rather than in liquid cultures, as well as
design and demonstration of agar plates with subsurface macrofluidic channels for the
controlled delivery of nutrients.

In Chapter 5 I will present a computational exploration of the evolutionary impact
of superinfection absent of any intracellular interactions. This will particularly focus on
the (dis)advantages of the choice to allow or exclude superinfection. This will include a
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discussion of the impact on both the neutral dynamics and the fixation probabilities of
non-neutral mutants, as well as looking at the benefits of either allowing or preventing
superinfection when both strategies are competed directly.

This will be followed in Chapter 6 by some initial observations of phage infection at
a single-cell level in microfluidic mother machine devices. This aims to characterise the
level of cell-to-cell variability when it comes to infection parameters such as the lysis
time, with the ultimate goal of understanding the impact of phenotypic heterogeneity
on viral evolution.

Finally in Chapter 7 I will conclude by summarising the key findings presented in
this thesis, as well as discussing the many directions future research in this area may
take, and my opinion on the promises and challenges ahead.





‘There is no safety in numbers, or in
anything else.’

James Thurber

‘Defer no time, delays have dangerous
ends.’

William ShakespeareChapter 2

Density-dependent diffusion alters dynamics
of viral range expansions

This chapter is based on results presented in

M. Hunter, N. Krishnan, T. Liu, W. Möbius, and D. Fusco, Virus-Host Interactions
Shape Viral Dispersal Giving Rise to Distinct Classes of Traveling Waves in Spatial
Expansions, Phys. Rev. X 11, 21066, (2021)

I performed all experiments, analysis and interpretation of results, with the exception
of the stochastic simulations used to measure the rate of decay of genetic diversity,
which were performed by Dr. Nikhil Krishnan.

2.1 Introduction

Spatial range expansions are ubiquitous in nature, from the expansion of invasive plant
species, through the migration of ancient human populations, to the range shifts of
many organisms to higher altitudes and latitudes due to climate change [14–21]. One
of the hallmarks of spatial expansions is the rapid loss of genetic diversity due to the
enhanced fluctuations at the front [22, 24]. This effect can, however, be significantly
mitigated in the presence of density-dependent growth [29, 35], such as an Allee effect
[32], or density-dependant dispersal, where individuals in highly dense patches tend
to disperse more quickly [28]. In particular, it has recently been shown theoretically
that the ratio between the deterministic speed of the front and that of its linearised
approximation is sufficient to classify the expansions in three distinct types of travelling

33
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waves, nominally pulled, semi-pushed and fully-pushed, which respectively exhibit
qualitatively distinct behaviors in the decay of heterozygosity, the stochastic wandering
of the front position, and the probability distribution of the most recent common
ancestor [25, 28].

Because density-dependent growth can play such a crucial role in the evolutionary
dynamic of a population, it has been extensively investigated in both naturally occurring
range expansions in animals, such as the invasions of both Eurasian gypsy moths and
house finches in North America [36, 37], and in laboratory microbial model systems,
where the expansion dynamics in populations of the budding yeast Saccharomyces
cerevisae transition from pulled to pushed as growth becomes more cooperative [40], with
a corresponding preservation of genetic diversity [41]. In comparison, relatively little is
known about the population dynamic of experimental systems that exhibit density-
dependant dispersal, even if it has been documented in several natural populations [132]
and the transition to pushed waves has been theoretically predicted [28].

One laboratory system that has been hypothesized to undergo density-dependent
dispersal is bacteriophage expanding in a bacterial lawn. The crowded bacterial
environment is thought to hinder phage diffusion because of steric interactions, resulting
in a density-dependent diffusion coefficient due to the coupling between the host and
the viral population densities [58]. Direct experimental quantification of this density-
dependent diffusion is, however, limited [66], and its consequence on the front population
dynamic mostly unknown.

Here, we address the open questions of (i) whether and how the rate of phage
diffusion depends on the density of surrounding bacteria, (ii) under what conditions
transitions to semi-pushed and fully-pushed expansions can occur, and (iii) what role
density-dependent diffusion plays in this. We first design an experimental protocol to
measure the effect of steric interactions between phage and the surrounding bacteria
on phage dispersal. We then construct a system of reaction-diffusion equations to
determine the phage front speed, demonstrating that transitions to both semi-pushed
and fully-pushed waves can occur. We find that the presence and location of these
transitions are controlled by two independent effects that alter the density-dependent
diffusion of the virus: the first is associated with the excluded-volume interactions
with the surrounding bacteria, while the second spontaneously emerges from the viral
infection dynamic, which prevents a viral particle from diffusing during infection of the
host. Using stochastic agent-based simulations, we show that even the second effect
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alone, which applies to viruses beyond phage, can lead to a significant reduction in the
rate of diversity loss in the viral population.

Taken together, our results identify bacteriophages as a controllable laboratory
model system to investigate the role of density-dependent dispersal in evolution and
provide a quantitative explanation of the physical mechanisms that control the phage
population dynamic during a range expansion. Going beyond phages, our findings
suggest that a broad range of viruses may expand via pushed travelling waves and,
consequently, may be much more adaptable then previously thought.

2.2 Experimental Measurements of Density Dependent Dis-

persal in Coliphage T7

Starting with Yin and McCaskill [58], it is usually recognized that bacteria can act
as a barrier to phage diffusion, resulting in a diffusion coefficient that depends on the
bacterial density. This dependence is indeed necessary in phage expansion models
to correctly reproduce the non-monotonicity of front speed observed as a function of
bacterial density [58, 62, 68, 72]. While it has been shown that phage diffuses faster
in the bulk of a plaque than at the edge [66], the dependence of the phage diffusion
coefficient on bacterial density has never been quantitatively measured.

To address this need, we designed an experimental setup where (i) host density
can be quantified and maintained uniform in space and constant in time, and (ii) the
effect of steric interactions is decoupled from the viral infection dynamic. To this end,
we moved away from classic plaque-in-agar assay, which exhibit a fragmented host
distribution at the microscopic level, and built a uniform bacterial lawn by directly
pouring an E. coli liquid culture of known density on top of 2% agar LB plates
containing chloramphenicol (background bacteria in Fig. 2.1b). These bacteria are
susceptible to the antibiotic, which prevents their growth ensuring a constant host
density during the experiment, and are engineered to prevent phage adsorption [133,
134], so as to serve as passive barrier to phage dispersal. Phage droplets were then
inoculated across the lawn (grey in Fig. 2.1b) at different distances from droplets of a
second E. coli strain, susceptible to phage and resistant to chloramphenicol (black in
Fig. 2.1b). The time ∆t required by the phage to travel the distance r between a viral
droplet and a close-by susceptible bacteria droplet was monitored in vivo by tracking
the appearance of clearings in the susceptible droplets (Fig. 2.1a and b).
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Fig. 2.1 (a): The basis of the experimental set-up, consisting of a droplet of phage and
host bacteria, separated by a distance r. After time ∆t, a plaque begins to form in the
host bacterial droplet (starred region). (b): The full experimental set-up, consisting
of many phage-host droplet pairs on top of a lawn of phage resistant bacteria of
variable density. The presence of chloramphenicol in the plate media ensures that
the background bacterial density is constant over the course of the experiment (see
Sec. 2.8.7). An example plot of r2 against ∆t data, with linear fit, for a resistant
bacteria density of 0.36 µm−2 is shown.

By gathering statistics over many droplet-droplet pairs, we were able to first confirm
that the relationship between distance travelled and mean first passage time is consistent
with diffusive behavior for the whole range of background densities tested (Fig. 2.1b),
and then calculate the rate of phage diffusion D as a function of background bacterial
density (Fig. 2.2). Additionally, in Sec. 2.2.1 we apply a correction to these measured
diffusion rates that arises due to the geometry and number of phage used in our
set-up, however in the remainder of this Section we report the experimental results
without that correction. Additional tests were also performed to confirm that phage
did not significantly diffuse out of the plane and into the agar during the course of the
experiment (Sec. 2.2.2).

Building on previous efforts to account for density-dependence in plaque models
[58], we fit our data using Fricke’s Law [62, 65], which describes the diffusion of a solute
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Fig. 2.2 Experiments show how rate of phage diffusion is reduced by surrounding
bacteria. The diffusion rate obtained as a function of resistant bacteria density (i.e.
for several instances shown in Fig. 2.1(b)), fit with Fricke’s Law (Eq. 2.1).

through a suspension of spheroids [135]:

D =
1− b

1 + b
η

D0 ; b =
B

Bmax

, (2.1)

where b indicates the fraction of bacteria B relative to a maximum value Bmax and η
accounts for the shape of the cells: spherical cells correspond to η=2, while E. coli cells
have previously been determined to correspond to η=1.67 [62]. Our experimental data
allow for the first time to estimate the two fitting parameters required by Frickes’s law
in this context: the free diffusion coefficient D0 (i.e. the diffusion coefficient in the
absence of surrounding bacteria), and the bacterial density Bmax at which diffusion is
expected to be completely halted. We estimate D0 = 4.13 ± 0.19µm2/s, which is in
good agreement with the rate of 4 µm2/s previously determined by Ouchterlony double
immunodiffusion1 in 10 g/l agar of phage P22 (similar size and shape of T7) [63, 64];
and Bmax = 2.16± 0.19 µm−2, which is consistent with the typical dimensions of an E.

1This technique involves cutting wells into an agar plate. One well contains a sample of interest (in
this case phage), and while the other well contains purified antibodies. Antigens from the sample and
the antibodies then diffuse outward through the agar from their respective wells, eventually meeting,
and binding to form an immune complex which precipitates, forming a band in the gel which can be
seen. The geometry of the wells and the band can then be used to determine the diffusion rate.
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coli cell (assuming E. coli cells are approximately 0.5 × 2 µm, we would expect a 1
µm2 cross section to contain between 1 and 4 closely packed cells, depending on their
orientation and deformation). Note that while we will use the expression in Eq. 2.1 to
account for the effect of steric interactions on phage dispersal in a uniform bacterial
lawn, this relationship can be applied to any scenario in which the bacterial density
distribution is known, even if it is non-uniform.

2.2.1 Correction to Measurements of Phage Diffusion

Given that there is more than one phage in the droplets in our experimental set-up, we
consider that there may be a correction to our calculated diffusion rate that depends
on the initial number of phage. As the number of phage increases, the time taken
for one of them to reach the bacteria droplet should decrease, thereby increasing the
diffusion coefficient calculated. On the other hand, the bacteria do not form a ring
around the initial droplet of phage, so we are unable to truly measure the first time a
phage travels a distance r, rather, we are measuring the first time for a phage to travel
a distance r in a specific direction. Additionally, the phage are not all initially located
in precisely the same spot, but are spread randomly throughout a circular droplet that
is large relative to diffusion scales. If the phage which first reaches the bacteria droplet
does not originate at the edge of the droplet closest to the bacteria, then we would be
underestimating the distance travelled, and therefore the diffusion rate.

To determine how these aspects alter our diffusion rate measurements, we perform
a 2D simulation of the diffusive process in our experimental set-up (see Sec. 2.8.10).
Through these simulations, we are able to determine the ‘true’ diffusion rate Dtrue of
the phage from their mean-squared displacement r2 as a function of time t (Fig. 2.3a),
along with the ‘experimental’ diffusion rate Dexperiment that we would determine using
our experimental approach (Fig. 2.3b).

Fig. 2.3c shows the comparison of Dtrue with Dexperiment. It can be seen that our
experimental procedure systematically overestimates the diffusion rate of the phage.
Heuristically, we fit a straight line to Dtrue as a function of Dexperiment (blue dotted
line in Fig. 2.3c), which yields a gradient of 0.65± 0.04 and an intercept of −0.2± 0.2.
This indicates that on average the ‘true’ diffusion rate is ∼2/3 of the rate measured in
our experiments, at least in the range of diffusion rates observed.

Using the heuristic fit from Fig. 2.3c, we adjust the data collected through our
experimental procedure (Fig. 2.3d). It can be seen that while the bacterial density Bmax

at which diffusion is expected to be completely halted does not change substantially -
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Fig. 2.3 (a) The mean-squared displacement r2 of 1000 tracers as a function of time
t. A linear fit yields a ‘true’ diffusion rate of Dtrue = 2.082 ± 0.002. (b) Simulated
experimental data of for the first time ∆t that one of the tracers reaches the target region,
and the distance r separating the initial and target region, as would be measured in the
experiment. A linear fit yields an ‘experimental’ diffusion rate of Dexperiment = 3.6±0.3.
(c) Dtrue as a function of Dexperiment. It can be seen that Dtrue < Dexperiment. A
heuristic linear fit to the data yields a gradient of 0.65 ± 0.04 and an intercept of
−0.2± 0.2. (d) The experimental data presented in Fig. 2.2 re-scaled according to the
relationship determined from (c). Our data now yields D0 = 2.50± 0.12 µm2s−1 and
Bmax = 1.94± 0.16 µm−2.

1.94 ± 0.16 µm−2 now vs 2.16 ± 0.19 µm−2 before - the free diffusion rate D0 drops
significantly from 4.13 ± 0.19 µm2s−1 to 2.50 ± 0.12 µm2s−1. It should be noted,
however, that this change has no impact on our ability to use the expression in Eq. 2.1
to account for the effect of steric interactions on phage dispersal in a uniform bacterial
lawn.
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2.2.2 Phage Remain On Agar Surface

To verify that phage are not diffusing out of the approximately 2D plane and into the
agar during the course of the diffusion experiments, additional tests were carried out.
If significant diffusion into the agar was occurring, we would expect the number of
phage at the surface to be reduced over time. As with the measurements of diffusion
coefficient (see Sec. 2.8.7), 35 ml omni-plates of 20 g/l (2%) agar, with LB and 15 µg/ml
chloramphenicol were prepared. Similarly, overnight liquid cultures of susceptible host
(E. coli eMTH43) were grown from single colonies at 37 °C in LB with 15 µg/ml
chloramphenicol.

Then, 1.5 ml of stock bacteriophage T7 diluted in LB was spread across the plate
with glass beads, such that the plate should contain a countable (order of tens) number
of phage.
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Fig. 2.4 Plaques counted on the surface of a 2% agar plate as a function of time after
the phage were originally added to the plate. Data for the four time points measured
(black) and their corresponding errors are calculated from three replicates (grey). The
dashed line indicates the mean number of plaques counted across time-points. It can
be seen that the data is consistent with a constant number of phage being recovered
over time, indicating that phage diffusing into the agar is very limited.

After a set time period (approximately 1.5, 4, 19 or 23 hours), 100 µl of overnight
eMTH43 was mixed with 10 ml of molten 7 g/l (0.7%) agar and poured over the surface
of the plate and left on a lab bench overnight. Any phage that were located on the
surface of the 2% agar at the time that the 0.7% agar and susceptible eMTH43 was
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poured on top is expected to be able to infect the susceptible host and result in a
plaque. By counting the number of plaques visible in the 0.7% agar the following
morning, we are able to determine whether a significant amount of phage diffuses into
the 2% agar plate over a 24 hour period as these phage would not be able to form a
plaque.

The results from this test (Fig. 2.4) clearly show that there is no significant reduction
in the number of phage recovered from the surface of the plate over a roughly 24 hour
period (the period over which diffusion measurements were gathered). We believe
that this is because the pore size of our 2% agar is small enough to significantly limit
diffusion. Indeed, similar 2% agarose substrates have been shown to have a pore size
of under 80 nm [136], which is comparable with the size of T7.

2.3 Modelling Plaque Growth: Density-Dependent Diffusion

and Adsorption to Infected Cells

To investigate whether the phage expansion on a bacterial lawn occurs as a pulled or
a pushed wave, and to uncover the role of host density-dependence, we compare the
actual front speed with the speed cF of the corresponding linearised system, as their
ratio has been shown to be sufficient to determine the wave class in single species range
expansions [25]. To this end, we develop a mathematical model that accommodates
the density-dependent diffusion we have experimentally measured.

We model the spatial dynamics of bacteriophage plaque growth by considering the
interactions between three populations: viruses (phage) V , uninfected host bacteria B
and infected host bacteria I, similar to [58, 62, 68, 70–73, 137]. The process may be
summarised as

V +B
rate−−→
α

I
delay−−−→
τ

βV, (2.2)

where β is the burst size, α is the rate of adsorption, and τ is the lysis time.
As the model is deterministic, without loss of generality, we describe these popula-

tions with a set of reaction-diffusion equations in 1D, similar to those examined by
Jones et al. [70]:

∂B

∂t
= −αV B, (2.3a)

∂I

∂t
= αV B − αVt−τBt−τ , (2.3b)
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∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
− αV B − α∗V I + βαVt−τBt−τ , (2.3c)

where V , B and I indicate the concentration of the population as a function of space
and time. The subscript is used to indicate that those terms are evaluated at time
t− τ . D is the density-dependent diffusion coefficient of the phage, determined from
fitting Fricke’s law to experimental results in the previous section (Eq. 2.1). α∗ = α

or α∗ = 0, depending on whether adsorption to previously infected hosts is allowed
or prevented, respectively. We assume that the host bacteria are motionless and that
adsorption to uninfected hosts always leads to successful infection while neglecting
desorption.

Our model introduces two ingredients that are biologically and physically relevant,
and that are expected to affect the front dynamic. First, in contrast to previous
work [58, 62, 68, 71–73, 137], where the diffusion coefficient D only depends on the
initial bacterial density B0 (b = B0

Bmax
in Eq. 2.1), we allow D to vary in time and

space according to the local bacterial density (b = B+I
Bmax

in Eq. 2.1), resulting in faster
diffusion inside the phage clearing (Fig. 2.5). Secondly, we allow for the possibility
that phage can adsorb to previously infected cells (−α∗V I term in Eq. 2.3c), as is the
case for phage T7. The presence or absence of these two effects generates four model
variants that are summarized in Fig. 2.5: Uniform vs. Variable Diffusion model (UDM
vs. VDM), and adsorption vs. non-adsorption to infected cells (+ vs. -).

In line with previous studies, we cast the equations using dimensionless variables.
We measure concentrations in terms of the initial bacterial density B0, time in units
of τ , and length in units of L =

√
D(B0)τ (spatial scale of diffusion at the front

within the lysis time). This results in the following set of dimensionless variables:
B ≡ B/B0, I ≡ I/B0, V ≡ V/((β − 1)B0), t ≡ t/τ , x ≡ x/L and K ≡ ατB0.
Consequently, c = c

√
τ/D, where c and c are the dimensionless and dimensional speed

of the expansion front, respectively (Fig. 2.5).
In these units, the UDMs are characterized by a constant dimensionless diffusion

coefficient D = Dτ/L2 = D/D(B0) = 1 by definition, while the VDMs exhibit a
dimensionless density-dependent diffusion coefficient of the form:

D =
D

D(B0)
=

1− f(B + I)

1 + f(B + I)/η
.
1 + f/η

1− f
, (2.4)

where f = B0/Bmax is the initial fraction of bacteria. Note that D corresponds to the
phage diffusion coefficient relative to the diffusion coefficient at the very front of the
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Fig. 2.5 A sketch of the population concentrations B, I and V as a function of
location at the expansion front (the precise location is not important here, as the
qualitative shape of the fronts remain constant during the expansion). The front is
propagating with dimensionless speed c to the right. The dimensionless width ∆xI ,
characterising the width of the infected region is given by the difference in position of
the uninfected (B) and infected fronts (B + I). The differing diffusion and adsorption
behaviours explored lead to four different model variants in this work. Variants either
have a Uniform or Variable diffusion rate (UDM or VDM respectively, black line), and
adsorption to previously infected cells either does (+), or does not (-) occur, leading to
the four model variants (UDM+, UDM-, VDM+ and VDM-).

expansion, where host density is maximal. As a consequence, D from Eq. 2.4 is always
greater than or equal to 1, and can therefore be interpreted as a “boost” in diffusion
that the VDMs exhibit in the bulk of the plaque in comparison to the corresponding
UDMs. This boost mathematically describes the decrease in steric interactions between
phage and bacteria due to the lysis of the host as the viral infection proceeds (black
line in Fig. 2.5).

In terms of these variables, our model (Eqs. 2.3) becomes:

∂B

∂t
= −K(β − 1)V B, (2.5a)

∂I

∂t
= K(β − 1)V B −K(β − 1)V t−1Bt−1, (2.5b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
−KV B −K∗V I + βKV t−1Bt−1, (2.5c)

where K = ατB0 and K∗ = α∗τB0.
As our goal is to determine whether the travelling waves are either pulled or pushed,

we will require the solution to the linearised approximation of the model. To achieve
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this we expand the model (Eqs. 2.5) about the tip of the front where (V , B, I) ≈ (0,
1, 0), keeping only linear terms. This results in the following set of equations:

∂B

∂t
= −K(β − 1)V , (2.6a)

∂I

∂t
= K(β − 1)V −K(β − 1)V t−1, (2.6b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
−KV + βKV t−1. (2.6c)

From Eqs. 2.5 three natural parameters emerge: the dimensionless adsorption
coefficient K = ατB0, the burst size β and the dimensionless diffusion coefficient D.
In the UDMs, D = 1, leaving K and β as the only two parameters of the model. By
contrast, in the VDMs, D is a function of B0 (Eq. 2.4), which entangles the effect
of initial bacterial density on K and D. To decouple adsorption and diffusion, we
define a set of three new independent parameters that we will use in the following to
analyse the model variants: the initial fraction of bacteria f = B0/Bmax, the maximum
dimensionless adsorption coefficient Kmax = ατBmax (K = fKmax), and the burst size
β. In the linearised approximation (Eqs. 2.6) cF is the same for all four model variants
and, therefore, depends only on the dimensionless adsorption coefficient K = fKmax

and the burst size β - see Sec. 2.8.12.

2.4 From Pulled, to Semi-Pushed to Fully Pushed

By numerically solving the PDE system in Eqs. 2.5, we obtain the front speed c and
compare it with the speed cF of the linearised approximation of the model (Eqs. 2.6,
see Sec. 2.8.11 and Sec. 2.8.12 for details). In addition to front speed, we also determine
the characteristic width of the infection region ∆xI (Fig. 2.5), which we will discuss
later on.

The transitions between different types of travelling wave are then determined from
the ratio c

cF
according to Ref. [25]: (i) pulled waves for c

cF
= 1, (ii) semi-pushed wave

for 1 < c
cF
< 3

2
√
2
, (iii) fully pushed waves for c

cF
≥ 3

2
√
2

- see Sec. 2.8.11. We point
out here that the transition between semi-pushed and fully pushed waves has been
uncovered and investigated only for single species range expansions, so far. The viral
model presented here is more complex because of the coupling between the dynamics of
different populations (bacterial and viral) and because of the presence of a time delay.
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Fig. 2.6 Dimensionless front speed c as a function of bacteria fraction f , with shaded
regions indicating the different expansion types. Error bars on the speeds are smaller
than the symbols. Inset also shows the dimensional speed c. Model parameters are
chosen to represent typical T7 expansions with β = 50, τ=18 mins, and αBmax=0.1
min−1 [58, 70, 71], corresponding to Kmax = 1.8 in our model.

As a result, the demographic noise in our model may differ from that in Ref. [25]. While
this does not affect the transition between pulled and pushed waves, the distinction
between semi-pushed and fully pushed waves might, in principle, be different.

The location of these transitions in the different model variants for a set of infection
parameters typical of T7 is shown in Fig. 2.6. Under these conditions, we observe that
the UDM+ exhibits a pulled wave for the full range of initial bacterial fraction, while
the UDM-, the VDM+ and the VDM- waves become increasingly more pushed as f
increases. In terms of dimensional speed, the difference between the model variants is
minimal (inset in Fig. 2.6), justifying why these effects have gone unnoticed in past
theoretical work that aimed at predicting experimental phage front speeds.

2.4.1 Wave Transitions are Very Sensitive to Virus-Host Interactions

To generalise our findings and fully characterise the origin and nature of the transitions
in front dynamic for the different model variants, we extend our investigation to a
broader range of parameter values, by varying Kmax (and β, see Sec. 2.5.1) about the
parameters used in Fig. 2.6.
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Fig. 2.7 Phase diagrams showing the expansion types for the four model variants as a
function of bacterial density f and maximum dimensionless adsorption coefficient Kmax -
burst size β=50 throughout. Lines in the UDMs, and data points in the VDMs indicate
the parameter combinations for which numerical integration was performed, and
speeds calculated. These values are interpolated to estimate the transition boundaries
between different classes of travelling waves (yellow lines). In the UDM+, we do not
observe pushed transitions, while in the VDM+ transitions occur at approximately
constant bacteria fractions. In the UDM-, as K and β are the only free parameters,
transitions occur at specific values of K. In the VDM-, the transitions are heuristically
approximated as linear relationships with gradient m and intercept a (f = mKmax+a).

Fig. 2.7 shows the type of expansion that occurs in each of the models as a function
of f and Kmax. The results clearly indicate that the presence or absence of density-
dependent diffusion and adsorption to infected cells can dramatically alter the type of
travelling wave undergone by phage, with the UDM+ being the only model resulting
in a pulled population wave for the whole range of parameters explored.

In the following, we will provide a physical interpretation for these observations,
by identifying two independent mechanisms that alter phage dispersal in a density-
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dependent fashion. The first (Sec. 2.4.2), which we name the ‘explicit’ effect, is caused
by steric interactions between phage and the bacterial host, and represents the effect
measured in our experiments (Fig. 2.2). The second (Sec. 2.4.3), which we name the
‘implicit’ effect, arises spontaneously from the infection dynamic due to the fact that
during incubation, phage are trapped inside the host cells, unable to diffuse, thereby
resulting in a density-dependent effect on phage diffusion (Fig. 2.8).

2.4.2 Decreased Steric Effects due to Host Lysis Promote the Transition

to Pushed Waves at High Bacterial Densities

The effect of virus-host steric interactions can be best appreciated by comparing the
phase diagram of the UDM+ to that of the VDM+, and is a direct consequence of the
variable diffusion coefficient that our model explicitly introduces in Eq. 2.4.

In the VDM+, transitions to semi-pushed and fully pushed waves occur at high
values of f with very weak dependence on Kmax. This results from the boost in phage
diffusion that occurs in the bulk of the plaque as host cells lyse and steric effects
decrease. Because the boost increases with increasing difference in bacterial density
between the front (B = B/B0 = 1) and the back (B = 0), higher initial bacterial
density f will lead to a stronger boost. We find empirically that, beyond a given
point controlled exclusively by f , the phage behind the propagating front will disperse
sufficiently fast to be able to catch up with the front and generate a semi-pushed or
even a fully-pushed wave. For what follows, it is useful to name this explicit boost
to diffusion Dexp, which is mathematically identical to the dimensionless diffusion
coefficient in Eq. 2.4, and reaches its maximum in the bulk of the plaque where no
bacteria are left (Fig. 2.5 and dashed red line in Fig. 2.9).

2.4.3 A Second “Implicit” Density-Dependent Diffusion Emerges from

the Viral Infection Dynamics

Since the UDMs lack the explicit density-dependent diffusion, the appearance of
transitions to pushed regimes in the UDM- may seem surprising (Fig. 2.7). To
understand the origin of these transitions, it is helpful to consider the effects of
the parameter K = ατB0 that controls the transition. Adsorption and incubation
(quantified by the parameter K) are not only key for the effective growth rate of the
phage population, but also for the effective dispersal rate of the phage, as they control
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the time and the probability that phage particles are “trapped" in a host cell, unable
to disperse. As K increases, either more phage adsorb to host cells per unit of time
(increased adsorption rate), or they are trapped in the host for longer (increased lysis
time), resulting in a hampered dispersal of the phage (Fig. 2.8). The strength of this
effect, by which phage is kept prisoner by the host cell, has to depend on the number
of host available to infect, and thus be the strongest at the edge of the expansion,
where there is plenty of uninfected host, and the weakest in the bulk, where all the
host has been removed. Beyond a certain point, we therefore expect phage diffusion to
be sufficiently hindered at the front to allow the phage in the back to catch up and
generate a pushed wave.

Explicit

Implicit t=0

RMSD

Free

t=0

t=0 t=T

t=T

t=T

Fig. 2.8 An illustration of both explicit and implicit effects to phage diffusion. Due to
the explicit effect, phage diffusion is hindered by steric interactions with bacterial hosts,
while the implicit effect hinders phage diffusion by trapping the virus for a period τ
during which it cannot disperse. Colour gradients on the phage trajectories indicate
the passage of time.

To quantify the reduced dispersal resulting from viral infection, we consider a
system of point-like phage particles diffusing across a field of completely permeable
“sticky” obstacles, mimicking host bacteria that trap phage for a time τ . A simple
mean-field analytical argument (see Sec. 2.8.13), demonstrates that the particles in this
system exhibit a hindered diffusion D compared to their free diffusion D0 = D(B = 0),
such that

D

D0

= D̂imp =
1

1 + bKmax

, (2.7)

where b is the local density of host that can be infected by phage relative to the density
Bmax at which diffusion is completely prevented. We note here that, by definition, D̂
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is the phage diffusion coefficient relative to the bulk of the expansion, in parallel to
D = D/D(B0), defined earlier, which is the phage diffusion coefficient relative to the
front of the expansion.

When adsorption to infected cells occurs (UDM+), infected cells trap phage as much
as uninfected cells (b = (B + I)/Bmax in Eq. 2.7) resulting in a diffusion coefficient in
the dimensionless model of the form

Dimp+ =
D̂imp+

D̂imp+(B0)
=

1 +K

1 + (B + I)K
. (2.8)

Because of the shape of the bacterial density profile during the expansion, phage
diffusion will then be highest in the bulk and slowest at the front (black line in Fig. 2.9).
Yet, fast diffusing phage appear too far from the front to contribute to the expansion,
resulting in pulled waves across parameter space (Fig. 2.7).

By contrast, when adsorption to infected cells is prevented (UDM-), phage can no
longer become trapped in the infected region behind the front (b = B/Bmax in Eq. 2.7),
so that

Dimp− =
D̂imp−

D̂imp−(B0)
=

1 +K

1 +BK
, (2.9)

and fast diffusing phage emerge much closer to the expansion front (blue vs. black lines
in Fig. 2.9, Sec. 2.8.15). Preventing adsorption to infected cells is therefore equivalent
to a boost in implicit diffusion in the infected region just behind the front, which can
be approximated to

Dimp−

Dimp+

= 1 + ψ ≈ 1 +
IK

1 +BK
, (2.10)

(blue dashed line in Fig. 2.9). This boost is sufficient to shift the fast diffusing phage
closer to the expanding front and, if K is sufficiently large, to generate a transition to
pushed waves.

It is important to point out that this implicit density-dependent diffusion emerges
spontaneously from the viral infection dynamics (common to many viruses), where
infecting viruses trapped in the host cannot contribute to the advancement of the front
until they are released from the host. As a consequence, unlike the explicit density-
dependent diffusion, this effect cannot be easily accommodated into the diffusion
coefficient of our model, as it does not act independently of the infection and growth
processes. Indeed, an alternative interpretation for this mechanism can be provided by
a density-dependent death rate. In our model, adsorption to previously infected hosts
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Fig. 2.9 Proxies for the diffusive behaviour in each of the model variants plotted as a
function of position across the expansion front. The base diffusion rate Dimp+ (Eq. 2.8)
in the UDM+ (black solid line) is modified either by the term 1 + ψ (blue arrow and
blue dashed line) in the UDM- (blue solid line), which accounts for the now unhindered
diffusion in the region of infected cells, or by an additional term Dexp (red arrow and
red dashed line) in the VDM+ (red solid line) which accounts for the hindrance due
to steric effects. Both modifications occur in the VDM- (magenta line). Faint grey
lines indicate the different front profiles from the model variants used to calculate the
diffusion rate profiles (see Sec. 2.8.16).

is equivalent to phage ‘death’, as it results in the permanent loss of these phage. Going
from the case where adsorption to infected cells occurs to the case where it does not
(from + to - models) will then lead to an increase in net growth rate in the region of
infected cells, which lies at intermediate viral density (Fig. 2.5). The result is a higher
net growth rate at intermediate population densities similar to what an Allee effect
would generate in a mono-species expansion [32, 35].
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2.4.4 Implicit and Explicit Density-Dependent Diffusions Act Indepen-

dently with Multiplicative Effects

Because the implicit and explicit boosts to diffusion discussed above have different
physical origins and are controlled by different parameters (K and f , respectively),
they play significant roles in different regions of parameter space. The implicit boost
that results from a lack of adsorption to infected cells, encoded in (1 + ψ), is stronger
at large Kmax, where more phages are trapped by hosts for a longer period of time.
Instead, the explicit boost caused by steric interactions, encoded in Dexp, is dominant
at low Kmax. The ratio of the two effects over parameter space is shown in Fig. 2.10.
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Fig. 2.10 The ratio of the explicit boost to diffusion Dexp to the implicit boost to
diffusion (1 + ψ), as a function of f and Kmax. This is obtained by determining the
strength of each effect at the front position where the phage population is 3/4 times
the steady state population V max. It can be seen that the implicit boost is dominant
at large Kmax, while the explicit boost dominates at low Kmax.

Extending the analytical argument with which we defined the implicit boost to
diffusion, we can show that, to a first approximation, explicit and implicit effects act
independently over a basal diffusion coefficient (see Sec. 2.8.14). As a consequence,
preventing adsorption to infected cells corresponds to multiplying the diffusion coeffi-
cient by 1 + ψ (from + to - models, blue arrows in Fig. 2.9 and Fig. 2.11). Similarly,
including steric effects corresponds to multiplying the diffusion coefficient by Dexp

(from UD to VD models, red arrows in Fig. 2.9 and Fig. 2.11). As a result, we can
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write the dimensionless diffusion coefficient of the VDM-, which exhibits both effects,
as

DV DM− = (1 + ψ)DexpDimp+, (2.11)

where all the terms are calculated with respect to B and I from the VDM- simulations.
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Fig. 2.11 Diffusion profiles for three representative cases are shown, all highlighted in
comparison to the semi-pushed transition boundaries for the models shown in Fig. 2.7
(dotted lines in central panel). Red and blue arrows highlight the shift from the
UDM+ to the VDM+ and UDM- respectively at the position where the viral profile is
approximately 3/4 times its steady-state. (i) A region of parameter space with high
Kmax and low f , where the UDM- and VDM- are pushed (note that the blue arrow
is much larger than the red arrow, indicating a much greater boost to diffusion from
the implicit effect). (ii) A region of parameter space with intermediate f and Kmax,
where only the VDM- is pushed (note similar sizes of both blue and red arrows) (iii) A
region of parameter space with low Kmax and high f , where the VDM+ and VDM-
are pushed (note that the red arrow is much larger than the blue arrow, indicating a
much greater boost to diffusion from the explicit effect).

In contrast to the other models, this function depends non-trivially on Kmax

and f , making it challenging to find a simple parameter combination that controls
the transitions to pushed waves. Nonetheless, we see that the diffusion coefficient
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determined at 3/4 times the steady state phage population is able to qualitatively
capture the behavior of the transition lines in all models (Fig. 2.12) and it explains
why the transition lines in the VDM- approaches the transition lines in the UDM-
and the VDM+ at high and low Kmax, respectively, where either effects dominate
(Fig. 2.7 and Fig. 2.11). While the phage diffusion at a specific population density is, in
principle, insufficient to predict whether the expansion is pushed, which by definition
depends on the whole wave dynamic, Fig. 2.12 illustrates that regions in parameter
space with similar effective diffusion within a model correspond to similar types of
expansions. This supports the idea that the density-dependent diffusion, whether
implicit or explicit, is the key ingredient that leads to transitions to pushed waves.
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Fig. 2.12 Dimensionless diffusion rates in each of the models determined at the front
position where the phage population is 3/4 times the steady state population V max,
plotted as a function of both f and Kmax. Contour lines indicate levels of constant D.
The behaviour of the contours qualitatively matches that of the transition boundaries
in Fig. 2.7.
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2.5 Transitions are Robust to Other Model Factors

2.5.1 Burst Size

Fig. 2.7 illustrates the transition to pushed expansions for a fixed burst size β. Because
burst size affects the growth rate of the phage and, consequently, its expansion speed,
it is natural to wonder whether it also has any effect on the transitions between
expansion types. In Fig. 2.13 we present phase diagrams such as in Fig. 2.7, but
for a burst size β=20 instead of β=50. It can be seen by comparing both Figures
that the qualitative behaviour of the transitions remains unchanged: in the UDM-,
transitions are characterised by constant values of Ks and Kp; in the VDM-, transitions
are approximately straight lines characterised by gradients ms and mp, and intercepts
as and ap (f = ms,pKmax + as,p); in the VDM+, transitions are largely independent of
Kmax, and occur at critical values fs and fp.
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Fig. 2.13 Phase diagrams showing the expansion types for the four model variants as a
function of f and Kmax, β=20 throughout. As can be seen by comparison to Fig. 2.7,
the qualitative behaviour of the transitions in each of the models remains the same,
and can be characterised using the same parameters: Ks,p for the UDM-; fs,p for the
VDM+; ms,p and as,p for the VDM-. As before, lines in the UDMs, and data points in
the VDMs indicate the parameter combinations for which numerical integration was
performed, and speeds calculated. Transition boundaries (yellow lines) are inferred
from the data points calculated.
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As it seems the behaviour can be characterised in the same manner when burst size
is changed, we simplify our examination by focusing only on how the burst size alters
these specific characteristic parameters. Rather than attempting to produce the whole
phase diagram for each of the models at various β, as this is very computationally
intensive when β is either small or large, we instead choose a specific Kmax value, and
for various values of β, we vary f at this Kmax value. From this, the parameters Ks,p

and fs,p as a function of β can be easily obtained (i.e. the parameters describing the
UDM- and VDM+ transitions respectively).

To simplify our investigation of the behaviour in the VDM-, and limit the number of
computationally intensive calculations required, we assume that ms,p are constant with
burst size, and using data from one specific Kmax value we calculate how as,p vary as a
result. In the two cases where the full phase diagrams were computed, the transition gra-
dients were calculated as ms = −0.125(5),−0.091(11) and mp = −0.097(5),−0.101(2)

for β = 50, 20, indicating agreement to within 2σ and 1σ respectively.
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Fig. 2.14 Behavior of the critical parameters describing the location of the transitions
(Fig. 2.7 and Fig. 2.13) as a function of burst size β. (a): Critical values Ks and Kp

in the UDM-. (b): Critical values as and ap in the VDM-, calculated from transition
locations at Kmax=2.2, assuming the gradients of the transitions ms and mp are
approximately constant when varying β, to maintain computational feasibility. (c):
Critical values fs and fp in the VDM+, similarly calculated from transition locations
at Kmax=2.2. For β > 50 we did not observe transitions to fully pushed waves in
the parameter regime of f ≤ 0.95 investigated. Extending the parameter regime was
computationally unfeasible. In each case, to determine the error bars, we assume a 1%
error in the model speeds as before, and shift the speeds accordingly, to determine the
resultant shift in the transition parameters.

We find that while the general shape of the transitions for the model variants
does not depend on β (Fig. 2.13), the exact location of the transitions are affected
(Fig. 2.14). The dependence of all of the transition parameters on β is similar across
models. Above β ≈ 40, the parameters exhibit only a weak dependence on burst size,
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whereas when β decreases below this value, the transition parameters also decrease,
increasing the parameter range of Kmax and f in which we observe a pushed wave.
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Fig. 2.15 Spreading speed of the linearised model for K = 1.0 as a function of burst
size β (in the linearised model, K and β are the only independent parameters).

This behaviour qualitatively matches the dependence of the spreading speed of the
linearised model cF on burst size (Fig. 2.15). While f and Kmax determine the ability
of phage in the bulk to catch up to the front and contribute to the dynamics, either due
to explicit or implicit hindrance to diffusion, β only contributes to the phage growth
rate and, as a result, the speed of the front. At lower values of β, the spreading speed
is greatly reduced as the limited number of phage released at the tip after each lysis
event struggle to clear the host cells around them, allowing the phage in the back to
catch up more easily, regardless of the mechanism, and contribute to the expansion.
As burst size is increased however, the opposite is true, although the speed gains that
come with increased β become increasingly marginal, as the uninfected host within the
vicinity of recently lysed cells become saturated with newly released phage.

2.5.2 Bacterial Growth

Our model thus far assumes that the host bacteria are not growing. While this certainly
can be the case, it is by no means always true, and so it is natural to ask how our results
are affect by a growing host population. To this end, we modify our reaction-diffusion
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model to include a logistic growth term:

∂B

∂t
= −αV B + r0B

(
1− B+ I

B0

)
, (2.12a)

∂I

∂t
= αV B − αVt−τBt−τ , (2.12b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
− αV B − α∗V I + βαVt−τBt−τ , (2.12c)

where terms in bold indicate new terms, and r0 is the growth rate of the bacteria at low
densities. We estimate this growth rate by assuming a doubling time of bacteria equal
to 30 mins (typical of T7 host E. coli), resulting in r0 = ln(2)/30 min−1. Note, that in
each case the carrying capacity is equal to the initial bacterial density B0, meaning
that growth only occurs across the front region. This represents the situation that
would occur in natural environments where bacteria far from the front have grown
to a stationary density (set by B0) by the time the front arrives. Additionally, we
assume that the replication of infected hosts is negligible due to the burden caused by
producing new phage.
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Fig. 2.16 Dimensionless front speed c as a function of bacteria fraction f , with shaded
regions indicating the different expansion types, when bacteria grow logistically as
described in Eqs. 2.12. As in Fig. 2.6, parameters are chosen to represent typical T7
expansions with β = 50, τ=18 mins, and αBmax=0.1 min−1 [58, 70, 71], corresponding
to Kmax = 1.8 in our model. Additionally, a doubling time of 30 mins has been assumed
to calculate the growth rate of the host bacteria. By comparison to the results obtained
in the absence of bacterial growth (as in Fig. 2.6), it can be seen that bacterial growth
has no effect on the transition to pushed expansions.
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It can be seen in Fig. 2.16 that the introduction of this bacterial growth term
has no discernible effect on the type of expansion that occurs in the parameter space
describing typical T7 expansion through host E. coli.

2.5.3 Cell Debris

Another aspect of the system which our model thus far neglects is the possibility that
some of the debris from lysed cells could trigger phage adsorption. If this were the
case, it would likely result in a reduction of the parameter space corresponding to
pushed waves, as there would be fewer phage in the bulk that were able to catch up to
the front. To explore this prospect further, we modify our reaction-diffusion model to
account for this possibility:

∂B

∂t
= −αV B, (2.13a)

∂I

∂t
= αV B − αVt−τBt−τ , (2.13b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
− αV (B + I) + βαVt−τBt−τ − αV(B0 − (B+ I))df , (2.13c)

where terms in bold indicate new terms, and df controls the fraction of lysed cells that
are capable of adsorbing phage (or alternatively, how able the cell debris is to adsorb
phage in comparison to the cells which generated it). Note that we have limited the
model to the case where adsorption to infected hosts occurs, as it seems unlikely that
phage would be unable to adsorb to infected hosts but would be able to adsorb to the
debris from those hosts (VDM+).

It can be seen in Fig. 2.17a that while the introduction of adsorbing cell debris does
not qualitatively change the behaviour of the model (i.e. that transitions to pushed
waves occur at high bacterial fractions in the VDM+), it does have a slight impact on
the location of these transitions (Fig. 2.17b). As the fraction of cell debris capable of
adsorbing phage df increases, the critical bacteria fractions fs and fp where transitions
occur also increase. This result confirms our intuition: a larger df will cause a greater
reduction in free phage in the bulk of the plaque, thereby reducing the number of
phage available to catch up to the front and contribute to the expansion dynamics.

While increasing the rate at which cell debris adsorbs phage does result in ‘less
pushed’ expansions, we can see in Fig. 2.18 that the resulting depletion of free phage
in the bulk of the expansion is even more significant. Indeed, after an expansion of
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Fig. 2.17 (a): Dimensionless front speed c of the VDM+ as a function of bacteria
fraction f and debris fraction df , with shaded regions indicating the different expansion
types. As in Fig. 2.6, parameters are chosen to represent typical T7 expansions with
β = 50, τ=18 mins, and αBmax=0.1 min−1 [58, 70, 71], corresponding to Kmax = 1.8
in our model. (b): How the critical bacteria fractions fs and fp where transitions occur
change with df . The dashed line indicates the upper bound of f for which results
were computed. We expect fully pushed transitions to continue to occur above this
threshold for some time as df is increased.
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Fig. 2.18 Population concentrations B, I and V at time t = tmax for a debris fraction
df=0.25. The front is propagating with dimensionless speed c to the right. It can be
seen that behind the expansion front the density of the viral population is quite low.
Inset shows the density of the viral population at x=0 and t = tmax as a function of df
(i.e. it indicates the viral density in the centre of the plaque).
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50 lysis times (15 hours if τ=18 mins) we find that there are approximately 105 fewer
phage in the bulk than would be found at the expansion front when df=0.25, and
approximately 1010 when df=0.6. These values are clearly unrealistic for T7, as in
the laboratory phage can be easily recovered from the centre of a plaque by simply
stabbing with a needle. Therefore, if we assume that the steady state phage population
at the front is approximately βB0=100 µm−2 (β=100, B0=1 µm−2), and then very
conservatively assume that easy recovery would require at least a phage density of 103

mm−2, then we can conclude that any df leading to a central density reduction of more
than 105 is physically unrealistic (i.e. df ≥ 0.25).

Given that transitions to both semi-pushed and fully-pushed waves occur in our
model up to a debris fraction df=0.25 (which we believe to be the very upper bound of
physically realistic behaviour) with only a minor shift in the bacterial fractions where
these transitions occur, we can conclude that this effect, should it occur, has only a
minor impact on our results.

2.6 Rate of Genetic Diversity Loss

The simulations in this section were performed by Dr. Nikhil Krishnan. Single-species
populations expanding via pushed waves have been theoretically and experimentally
shown to retain genetic diversity much longer than their pulled counterparts [22, 25,
35, 41]. To test whether this property is maintained in viral populations and determine
the effect of virus-host interactions on the rate of diversity loss, we developed an
agent-based stochastic implementation of one of our numerical models and tracked the
viral heterozygosity H as a function of time (Fig. 2.19, Sec. 2.8.18). The heterozygosity
H in a viral biallelic population is given by

H =
1

M

M∑
i

2fi(1− fi), (2.14)

where M is the total number of demes in the simulation box, and the fraction of the
two alleles in deme i are fi and 1 − fi. We focus on the UDM- as it is the simplest
of our models that exhibits pushed waves, and it is also relevant for viruses beyond
phage T7.

Analogously to previous studies on single-species, we find that the heterozygosity
decays exponentially over time, so that we can define an effective population size Ne

as the inverse of the decay rate in units of generations (Fig. 2.19b, see Sec. 2.8.18
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Fig. 2.19 (a): Simulation algorithm of stochastic simulations of plaque growth. Each
deme contains two labelled phage populations (yellow and red circles) and bacteria
that can be dead (grey), uninfected (light blue) or infected with one type of phage
(red/yellow). At each step, phage can migrate to neighboring demes with probability
m/2 (right/left curved arrows), infect an uninfected cell with probability α (downwards
arrow), and after τ time steps, introduce β phage into the deme upon cell lysis (upwards
arrow). Dashed lines indicate the analogous density profile, similar to those shown
in Fig. 2.5. (b): Example of linear fit to log transformed heterozygosity data, shown
for αB0 = 0.077 min−1, B0 = 100 cells/deme, and a range of τ values. Heterozygosity
data represents the average of ∼1000 simulations. Slope of fit, 1/Ne, is the calculated
decay rate for the given parameter values. (c,d): Effective population size Ne for
B0 = 75, normalized by the steady state population in the bulk of the population Vss
as a function of K (c) and τ (d), over a range that could be expected in various viral
populations. Colors indicate specific values of αB0. Errors in (c) and (d) due to linear
fit of heterozygosity decay over time are negligibly small and not shown.

for details). To account for the fact that adsorption rate, lysis time and bacterial
density also change the density profile of the viral population, we normalize the effective
population size by the steady-state value of the viral population in the bulk of the wave
Vss. This normalization aims at providing a direct comparison between our system and
previous theoretical studies where the carrying capacity of the population was held
constant (see Fig. 2.20 for data without normalization). It should be noted, however,
the parameters in those studies (including carrying capacity) could be independently
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controlled, whereas in our system the steady state population size is an emergent
property that depends both on the phage infection parameters, and the given aspects
of the model variant in question. Therefore the phage population size behind the
expansion front will not always be directly comparable to the carrying capacity as used
in these previous studies - take for example the case where phage can adsorb to cell
debris (Sec. 2.5.3), resulting in the depletion of phage behind the front over time.
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Fig. 2.20 Effective population size Ne over a range of B0 values shown: (a) unnormalised
and as a function of K; (b) unnormalised and as a function of τ ; (c) normalised by
Vss and as a function of K; (d) normalized by Vss and as a function of τ . Color
indicates αB0 in min−1. B0 and αB0 were varried as they are the quantities one would
measure independently in experiments. Effective population size is mainly controlled
by τ as in Fig. 2.19d, over the range parameters examined. Errors due to linear fit of
heterozygosity over time curve are negligibly small and not shown.

Our results show that the level of pushedness of the wave, controlled by K in
the UDM-, can signficantly increase the normalized effective population size (two-
fold increase between a pulled wave, K = 1.5, and just above the pushed transition,
K = 3, Fig. 2.19c). However, we also find that, not surprisingly, K alone is not
sufficient to determine the value of the effective population size of the expansion.
Similar observations have been made before in single-species expansions, where distinct
cooperativity models, all displaying transitions between pulled and pushed waves, were
found to be characterised by different values of Ne [28]. Remarkably, we find that an
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excellent predictor for the value of Ne in the UDM- is the lysis time τ (collapse of
datasets in Fig. 2.19d and Fig. 2.20). A possible reason behind this observation is
the different effects that lysis time and adsorption rate have on the steady-state viral
density profile (one broadens it, while the other narrows it), which, in turn, impacts
Ne [22, 25, 28]. Further analyses are necessary to pin-point the exact mechanisms that
link virus-host interactions and viral diversity, urging for future theoretical work to
investigate viral genetic diversity in spatial settings.

2.7 Discussion

In this work, we first experimentally quantify how the diffusion of phage in a bacterial
lawn is hindered by steric interactions with the host bacterial cells, resulting in a
density-dependent diffusion coefficient. Going beyond current descriptions of plaque
growth, which have considered host density-dependence only for setting a constant
diffusion coefficient parameter, we construct a reaction-diffusion model of the phage-
bacteria system that explicitly incorporates a diffusion coefficient that depends on
local host density, and therefore varies in time and space. We show that, in contrast to
current thinking which assumes that viral expansions are always pulled, this ‘explicit’
effect can lead to a transition from pulled to pushed waves at high host densities.
We also show that a second, independent density-dependence in diffusion emerges
implicitly from the underlying viral dynamics, whereby phage are unable to disperse
during replication within the host. We find that when adsorption to infected host
cells is prevented, this ‘implicit’ effect can also lead to the transition to pushed waves.
Together, this indicates that bacteriophage offer an excellent experimental system to
study the effect of density-dependent diffusion on expansion dynamics.

The transition from a pulled wave to a pushed wave has traditionally been associated
with increased co-operativity between individuals, quantified by density-dependent
growth, or more recently, density-dependent dispersal [25, 28, 32]. By analogy, the
density-dependence in phage diffusion can be interpreted as an emergent co-operativity,
which stems from the fact that as phage work together towards cell lysis, they remove
bacterial obstacles, indirectly favouring the dispersal of neighboring phage. The fact
that the diffusion is dynamically changed as phage replicate could lead to interesting
ecological feedback. Ecological feedback on diffusion has been theoretically shown in
other contexts to lead to pattern formation, and in some cases help maintain genetic
diversity and mitigate the risk of extinctions [138]. Indeed, density-dependent dispersal



64 Density-dependent diffusion alters dynamics of viral range expansions

has been identified as a key ingredient in a generic route to pattern formation in
bacterial populations [139].

We find that the transition to a pushed wave can occur due to two separate effects:
an explicit density-dependent diffusion coefficient, caused by steric interactions between
the phage and the host bacteria, which is dominant in crowded host environments,
and an implicit hindrance to the diffusion of the phage population at the front caused
by the viral infection dynamics. We therefore expect that the pushed dynamics will
be strongest in populations that experience both effects, and where adsorption to
infected host is absent (VDM-). Some bacteriophage have mechanisms that prevent
adsorption to already infected cells, usually by blocking receptor sites post-infection
[59]. Bacteriophage T5 produces a lipoprotein (Llp) that is expressed at the beginning
of infection, preventing superinfection by blocking its own receptor site (FhuA protein),
and protecting newly produced phage from inactivation by binding to free receptors
released by lysed cells [60, 61]. Similar mechanisms are also well documented in several
temperate phage. Phage ΦV10 possesses an O-acetyltransferase that modifies the
specific ΦV10 receptor site (the O-antigen of E. coli O157:H7) to block adsorption [140].
Similarly, Pseudomonas aeruginosa prophage D3 modifies the O-antigen of LPS on the
host surface to prevent adsorption of the many phage that bind to the O-antigen [141].
This is similar to other Pseudomonas prophage which encode for twitching-inhibitory
protein (TiP) that modifies the type IV pilus on the P. aeruginosa, preventing further
adsorption [78, 142].

Mechanisms that prevent superinfection by forbidding adsorption to infected cells
have been observed in viruses beyond bacteriophage [143]. For instance, cells recently
infected with Vaccinia virus VacV (the live vaccine used to eradicate smallpox) express
two proteins that repel super-infecting virions, resulting in plaques that grow four-fold
faster than predicted by replication kinetics alone [144]. Our results show that even
in the absence of explicit steric effects, pushed expansions can occur if adsorption
to infected hosts is prevented (UDM-), as is the case for VacV, simply due to the
fact that viruses are unable to disperse during incubation, suggesting that pushed
waves might be far more widespread than previously thought among different viral
systems. A further example can be found in plant viruses, which spread through a host
population that is fixed in place, and so are unable to disperse whilst inside infected
cells. Additionally, a wide range of plant viruses are known to prevent superinfection,
making them good candidates for pushed expansions, although the precise nature of
the exclusionary mechanism is often poorly understood at present [145–147].
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Pushed dynamics in range expansions have been shown to have significant conse-
quences for the evolution of the population. In pulled expansions, the high susceptibility
to stochastic fluctuations results in inefficient selection, as beneficial or deleterious
mutations can effectively behave as neutral due to the small number of individuals
contributing to the dynamics [148–150], and leading, for instance, to the accumulation
of deleterious mutations, known as expansion load [151, 152]. In fully pushed waves,
stochastic fluctuations are much weaker as more individuals contribute to the advance-
ment of the population, allowing beneficial mutations to establish more easily and
deleterious mutations to be purged [28, 35]. Our stochastic simulations show that even
the implicit density-dependent diffusion alone can slow down the rate of diversity loss
up to 5-fold under reasonable phage infection parameters (Fig. 2.19). Remarkably, we
find that the rate of diversity loss strongly depends on the lysis time, but only weakly
on adsorption (αB0), even if the two parameters are expected to contribute equally to
the level of “pushedness” of the wave. This observation reveals a rich and non-trivial
evolutionary dynamic displayed by our viral model that distinguishes it from classic
mathematical descriptions of pushed waves, where dispersal, growth and cooperativity
are controlled by independent parameters.

Going forward, three clear avenues emerge as a result of our work. Firstly, the
complex dependence of the expansion dynamics on the infection parameters that we
observe indicates that viral expansions offer a currently untapped ground for further
theoretical studies. Our model provides a framework to investigate the evolutionary
dynamics of an expanding viral population in terms of the realistic processes that
occur therein. Within this framework, future work is required to fully characterise the
complex interplay that each of the infection processes exhibit, and ultimately determine
what impact they have on the viral evolutionary dynamics.

Secondly, while this work provides theoretical predictions and physical insights
regarding the transition from pulled to pushed waves in viral expansions, it also points
at phage plaques as a well-controlled model system to experimentally investigate
these theories in a laboratory setting. We have shown (Fig. 2.6 and Fig. 2.7) that
pushed waves can occur during plaque growth in conditions easily achievable in the
laboratory. While it is challenging in a laboratory setting to fully replicate the complex
environments found in nature, we believe that plaques offer an alternative and possibly
more realistic environment to study these dynamics than the environments typically
used thus far, such as cultures in a 96-well plate, where dispersal is achieved by artificial
migration schemes [40, 41, 90].
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Lastly, our experiments have shown that the rate of phage diffusion strongly depends
on the host environment and, in particular, can dramatically differ from liquid culture
measurements, where even at high overnight densities of ∼ 109 cells/ml, the volume
fraction occupied by the cells is ∼ 0.001, and so diffusion is effectively unhindered.
This realisation raises the more general question of whether other phage life history
parameters also depend strongly on the surrounding host environment. This question
will be addressed further in Chapter. 4.

2.8 Methods

2.8.1 Bacterial Strains

Five strains of E. coli were involved in this work. The first strain, E. coli BW25113
(CGSC# 7636), is susceptible to phage infection. This strain was transformed previously
with a plasmid expressing venus YFP to create the second strain, E. coli eWM43 [133].
This strain was further transformed (see Sec. 2.8.5) with plasmid pAK501 (Addgene#
48107) [153], which confers resistance to chloramphenicol, to create the third strain,
E. coli eMTH43. The fourth strain used, E. coli ∆waaC (JW3596-1, CGSC# 11805),
is resistant to phage infection through deletion of the waaC gene, the product of
which is involved in the production of lipopolysaccharide, the recognition of which is
essential for the adsorption of phage [134]. This strain was transformed previously
with a plasmid expressing mCherry to yield the final strain E. coli eWM44 [133]. A
summary of these details can be found in Appendix A.

2.8.2 Bacteriophage T7

The phage used in the study is the obligately lytic bacteriophage T7. The wild-type
phage was originally obtained as an aliquot from the wild-type stock of the Richardson
lab (Harvard Medical School, Boston, MA).

2.8.3 Media Preparation

The E. coli media used throughout this work is 25 g/l Luria Broth (henceforth LB),
prepared in distilled water from powder (Invitrogen - 10 g/l NaCl) and autoclaved.
For growth solid media, LB-agar was prepared in concentrations of 7 g/l and 20 g/l
agar (VWR Chemicals), henceforth referred to as 0.7% and 2% agar. If required, 15
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µg/ml chloramphenicol (Sigma-Aldrich) or 100 µg/ml ampicillin (Sigma-Aldrich) were
added to either the LB or agar after autoclaving.

2.8.4 Culturing

E. coli were streaked from freezer stocks on 2% agar plates and incubated overnight at
37 °C. These plates were then stored at 4 °C for up to 2 weeks.

Liquid cultures of bacteria were prepared by picking single colonies from the streaked
plates and depositing in a culture tube with 2-3 ml of LB. These cultures were then
incubated overnight under shaking at 37 °C to allow the bacteria to grow - henceforth
referred to as an overnight culture.

To prepare phage cultures and stocks, 10 µl of an overnight culture of host E. coli
(most often BW25113) was diluted in 990 µl of LB and incubated under shaking at
37 °C for approximately 2 hours to generate an exponentially growing culture. Phage
were then added to this culture, and re-incubated until clear (usually approximately 1
hour) to create the phage lysate. To create phage stocks, this lysate was then mixed
with NaCl to a final concentration of 1.4 M, and centrifuged to remove any cell debris.
The resulting supernatant was stored at 4 °C and used as stock phage.

2.8.5 Creating Strain eMTH43

To create strain eMTH43, the previous strain eWM43 was transformed with plasmid
pAK501 to confer resistance to chloramphenicol. Chloramphenicol is a bacteriostatic
antibiotic, that inhibits protein synthesis through interactions with the 50S subunit of
the ribosome [154]. Resistance is most commonly conferred by the enzyme chloram-
phenicol transacetylase, that acetylates hydroxyl groups of chloramphenicol, rendering
it unable to bind to the 50S subunit [154].

To achieve the transformation, first a stock of competent eWM43 cells was produced.
The bacteria were grown overnight in LB under shaking at 37 °C to generate an overnight
culture. The following day, this culture was diluted in fresh LB to achieve a density of
OD600=0.01-0.05. This diluted culture was then incubated at 37 °C with shaking until
it reaches exponential phase (OD600=0.6-0.8). This culture was then centrifuged at
13,000 rpm for 10 mins at 4 °C. From this point onward the bacteria were not allowed
to warm up. The supernatant was removed, and the bacteria resuspended in cold TSS
buffer (LB, 10% PEG MW8000, 20 mM MgSO4, 5% DMSO, 0.22 µm filter sterilised)
in a 1:10 ratio. The cells were then split into 100 µl aliquots and stored at -80 °C.
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The competent cells were then transformed by thermal shock. One of the 100 µl
aliquots was allowed to thaw on ice. Also on ice, an eppendorf tube was filled with 70
µl of distilled water, 10 µl of plasmid pAK501 and 20 µl of KCM buffer 5× (0.5 M
KCl, 0.15 M CaCl2, 0.25 M MgCl2, 0.22 µm filter sterilised). The aliquot of competent
cells were then added, and mixed gently by pipetting up and down. They were then
incubated in the ice for 20 mins, and then at 37 °C for 5 mins. 750 µl of fresh LB was
then added, and the cells were incubated at 37 °C for a further 45 mins. 100 µl of this
culture was then plated using glass beads on plates containing 2% LB-agar and 15
µg/ml chloramphenicol. The remainder of the culture was then spun down at 13,000
rpm for 1 minute, and the cells resuspended in 100 µl LB, which was then plated in a
similar fashion. The plates were then incubated overnight at 37 °C. The following day,
colonies that had grown on the plate must have been successfully transformed with
the plasmid pAK501, as otherwise they would not have resistance to chloramphenicol.
These colonies were picked, and grown in LB plus 15 µg/ml chloramphenicol, and used
to create freezer stocks.

2.8.6 Determining Phage Concentration

The oldest but still most commonly used technique for the quantification of viral
concentration relies on the ability of phage to form plaques in a lawn of bacteria [74].
When a single phage encounters a susceptible host bacteria, it will infect and later
lyse this cell, releasing many new phage progeny. When this process occurs in some
kind of lawn of bacteria, repeated cycles of infection, lysis and diffusion will result in a
growing clearing in the lawn, known as a plaque.

To utilise this feature to determine the concentration of phage in a culture, a plating
assay is performed. To do this, the phage culture is first ten-fold serial diluted in LB.
Next, 20 µl of each serial dilution is mixed with 100 µl of overnight bacteria and 3-5
ml of molten 0.7% agar, gently vortexed, plated, and left on a bench-top overnight. In
the plates where the serial dilutions contained no phage, the bacteria will have grown
in the 0.7% agar, generating a slightly opaque layer of agar. In the plates where the
serial dilutions contained many phage (≥ 1000), the bacteria will have all been lysed,
resulting in a transparent layer of agar. In plates where the serial dilutions contained
approximately 1-300 phage, each of the phage will have resulted in a visible, distinct
plaque in the otherwise slightly opaque bacterial layer. By counting these plaques, the
concentration of phage in the original culture can be estimated.
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It should be noted that each phage that gives rise to a plaque is known as plaque
forming unit (PFU). This procedure therefore estimates the phage concentration in
terms of PFUs, which gives a count of the viable phage (i.e. those capable of infecting
hosts), but not necessarily the absolute number of phage.

It should also be noted that the number of phage in each dilution will be Poisson
distributed [50], and so to a first order approximation, the error in the number of
plaques n counted in each plated will be given by

√
n. It is therefore preferable to

estimate the phage concentration from plates containing a larger number of plaques,
as the relative error scales with n−0.5.

An alternative method for estimating phage concentration is known as the spotting
assay. In this assay, 100 µl of overnight bacteria and 3-5 ml of molten 0.7% agar are
mixed, gently vortexed, and plated with no phage. Serial dilutions of the phage culture
are prepared as before, and 2 µl droplets of each dilution are placed separately on the
surface of the plate. Again, the plates are then left overnight on the bench-top, and
an order of magnitude estimate for the phage concentration can be drawn from the
presence or absence of a plaque at each dilution. This method is less accurate than the
plating assay, as only an order of magnitude estimate is gained, but it is simpler to
perform, and less time consuming. Despite the lower accuracy, it can still be useful if
the precise concentration is not needed, and it can be particularly useful if a rough
estimate of the phage concentration is not known beforehand.

2.8.7 Diffusion Experiment Sample Preparation

To measure the diffusion coefficient of phage, 96 well plate sized omni-plates, containing
35 ml of 20 g/l agar (VWR Chemicals), with LB (Invitrogen) - NaCl concentration 10
g/l - and 15 µg/ml chloramphenicol (Sigma-Aldrich) were prepared and kept at room
temperature for 2 days. The presence of chloramphenicol in the plate prevents growth
of the background strain eWM44, so to maintain its density constant over the course
of the experiment. Plates were then refrigerated if they were to be used at a later
date. Overnight liquid cultures of E. coli were grown from single colonies at 37 °C in
LB with either 100 µg/ml ampicillin (Sigma-Aldrich) or 15 µg/ml chloramphenicol
(Sigma-Aldrich) for eWM44 and eMTH43 respectively.

To create the background lawn of bacteria, the optical density at 600 nm (OD600)
of the eWM44 culture was measured, and diluted into LB to obtain the desired density
(calculated on the basis that OD600 = 0.1 equates to ∼ 108 cells/ml [155]). A 500 µl
droplet of this culture was then spread with glass beads (radius 4 mm) across the
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surface of the agar until dry. This process (a 500 µl droplet spread with fresh beads)
was repeated a further two times to achieve as uniform a distribution as possible. The
plate was then left for a further 10 minutes before proceeding to the next step.

10 ml of eMTH43 overnight culture was spun down and re-suspended in fresh LB,
so as to give an OD600 reading of 0.50 if diluted hundredfold. 2 µl droplets of the
concentrated culture were then pipetted onto the lawn of eWM44 in a grid like pattern,
spaced approximately 1 cm apart, and left to dry (approximately 15 mins after the
last droplet was pipetted). Each plate contained approximately 60 host droplets. The
plate was then incubated at 37 °C for 1 hour.

10 µl of stock T7 phage (107 pfu/ml) was diluted in 100 µl of black food dye. 1
µl droplets of this dilution were pipetted onto the surface of the agar, in the gaps
between the previously pipetted droplets of eMTH43, and left to dry. A schematic of
the resulting set-up can be seen in Fig. 2.1.

2.8.8 Data Acquisition

The plates were imaged using a Zeiss Axio Zoom.V16 stereo microscope equipped with
a Zeiss PlanApo Z 0.5x/0.125 FWD 114 mm objective. Images of the sample were
taken every 20 minutes for a period of 24 hours. During the imaging period, the sample
was kept with its lid on at 37 °C using an ibidi Multi-Well Plate Heating System.

2.8.9 Data Analysis

All of the images were analysed using Fiji (v1.52h), an open source distribution of
ImageJ focused on scientific image analysis [156, 157].

The time ∆t necessary for a clearing to appear in the droplets of eMTH43, and the
separation r between the point at which a clearing forms and the edge of the nearest
phage droplet was recorded (Fig. 2.1). By measuring r and ∆t over many droplet-
droplet pairs, we can calculate the rate of phage diffusion by fitting the relationship
[158]:

r2 = 4D∆t+ constant, (2.15)

where D is the diffusion coefficient, and the constant arises due to the delay between
the arrival of the phage and the formation of a visible plaque. The diffusion rates
determined from this method are then corrected in Sec. 2.2.1 to account for the
geometry and number of phage used in our experimental set-ups (i.e., to account for
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the fact that phage may not originate at the edge of the droplet, and the fact that we
are not measuring the first passage time for a single phage).

2.8.10 Simulations of Phage Diffusion

Firstly, 1000 point-like tracers2 i (representing phage) are generated with random
co-ordinates (xi, yi) within a circle of radius rV (representing the initial droplet of
phage) on a 2D plane (representing the agar surface). The tracers then diffuse in
discrete steps, by moving in each timestep to a new random co-ordinate within a
circular region of radius rstep around their current positions. The simulation proceeds
in this fashion for 103 steps, with the mean-squared displacement r2 of all of the tracers
from their initial co-ordinates being recorded at each step. A simple linear fit to r2

as a function of t is then used to determine the ‘true’ diffusion coefficient Dtrue (the
gradient of the fit line is equal to 4Dtrue). Different values of Dtrue can be achieved by
altering rstep.

Next, we determine the diffusion coefficient that would be found using our experi-
mental set-up. In our simulations the division of space and time are made such that
∆x = ∆y = 1 ≡ 1µm and ∆t = 1 ≡ 1 s. In addition to the 1000 tracers, a circular
target region with radius rB (representing the initial droplet of bacteria) is defined in
the 2D plane, with an edge-to-edge distance rseparation from the initial bounding circle
of tracers. To represent our experimental set-up, we set rV = 2000 and rB = 4000, and
rseparation is chosen randomly in the range [0, 1000].

The tracers are then allowed to diffuse as before, until one of them crosses the
boundary of the target region. At this point the simulation ends, and the time elapsed
∆t is recorded. In addition, the distance r between the point at which the tracer
entered the target region and the closest point on the edge of the initial bounding circle
of tracers is recorded. These two measurements represent the measurements that were
made using our experimental set-up. As in our experiments, if no tracer has entered
the target region after a time t = 8.64× 104 ≡ 24 hours then the simulation ends and
no data is recorded.

This process is then repeated 100 times (to represent the ∼100 droplet-droplet pairs
we have in each experiment) with a new value of rseparation chosen each time. The data
generated is comparable to the data collected through our experiments, and allows us

2i.e., the same number of phage as in the droplets in our experimental set-up.
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to determine the ‘experimental’ diffusion rate Dexperiment in the same fashion as in the
actual experiments.

2.8.11 Numerical Solutions of Reaction-Diffusion Model

We consider the scaled reaction-diffusion equations describing free phage V , uninfected
bacteria B and infected bacteria I

∂B

∂t
= −K(β − 1)V B, (2.16a)

∂I

∂t
= K(β − 1)V B −K(β − 1)V t−1Bt−1, (2.16b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
−KV B −K∗V I + βKV t−1Bt−1, (2.16c)

on a finite interval of length LD with homogeneous Neumann boundary conditions.
Throughout we used LD = 120 and a maximum possible time of tmax = 50. Initially,
we set B = 1 over the whole interval, V = 1 for x ≤ 2, and V = 0 elsewhere. There are
initially no infected bacteria (I = 0). Solutions are determined on a mesh of uniform
space and time, with divisions of dt = 0.1, and dx = 0.1 or dx = 0.2 to give the best
balance between precision and compute time for a given parameter set.

A sketch of the fronts during the expansion can be seen in Fig. 2.5. The dimensionless
spreading speed c of the front is determined by tracking the midpoint of the bacterial
wave (i.e. B = 0.5) over time. For pulled fronts, the spreading speed is known to
demonstrate a power law convergence to an asymptotic value [159]. In the case where
a steady spreading speed was not reached, the spreading speed was given by the
asymptotic value which produced the best power law fit to the data.

The transitions between pulled, semi-pushed and fully pushed have been found to
occur at specific wave speeds with respect to the linearised (Fisher) speed cF - the
speed determined solely by the linear dynamics at the tip of the front [25]. Pulled
expansions spread with a speed equal to the speed of the linearised model c = cF , while
pushed expansions spread faster [29]. The transition between semi-pushed and fully
pushed occurs at a speed of c

cF
= 3

2
√
2
, with waves below this speed being semi-pushed,

and above this speed being fully pushed [25]. These thresholds have been shown to be
robust to the details of the population dynamics [28], though their appropriateness for
multi-species expansions requires further investigations. We here use the same values
for illustration purposes.
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Even though strictly speaking pulled expansions occur when the spreading speed
is equal to the speed of the linearised model (c = cF ), due to errors in determining
the speed over a finite time (i.e. errors due to the power law fit when determining the
asymptotic speed), we conservatively consider speeds within 1% of the linearised speed
as corresponding to pulled expansions.

A length scale characterising the width of the infected region ∆xI was also computed
by tracking the separation between the midpoint on the wave of uninfected bacteria
(B = 0.5), and the midpoint on the wave of infected bacteria (B + I = 0.5) over time.
An average was taken over the final 20 time points for the reported value of ∆xI .

2.8.12 Linearised Solution of Reaction-Diffusion Model

To determine the transition between pulled, semi-pushed and fully pushed regimes, the
solution to the linearised model is required. To achieve this, we first look for travelling
wave solutions to Eq. 2.16 in the co-moving co-ordinate z ≡ x − ct where c is the
dimensionless front speed.

As the components approach their limiting concentrations at the leading edge of the
front, the linearised form of the model becomes valid, and so, following previous work [58,
62], we assume the concentrations take the form V = a1exp(−λz), B = 1−a2exp(−λz)
and I = a3exp(−λz) where λ is a dimensionless width parameter, and a1, a2 and a3

are positive constants.
Substituting into the linearised version of the model

∂B

∂t
= −K(β − 1)V , (2.17a)

∂I

∂t
= K(β − 1)V −K(β − 1)V t−1, (2.17b)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
−KV + βKV t−1, (2.17c)

and writing in matrix notation yields K(β − 1) −λc 0

K(β − 1)(1− e−λc) 0 −λc
λ
2 − λc+K(βe−λc − 1) 0 0


a1a2
a3

 = 0. (2.18)
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To find non-trivial solutions the determinant of the matrix is set to zero, leading to
the characteristic equation:

λ
2 − λc+K(βe−λc − 1) = 0. (2.19)

As we are assuming here that the front is pulled, and that the initial conditions are
sufficiently steep3, the front propagates with the minimum possible speed [159]:

c = minλ>0[c(λ)]. (2.20)

By implicitly differentiating Eq. 2.19 with respect to λ, and setting dc/dλ = 0 according
to Eq. 2.20, this leads to the second characteristic equation:

2λ− c−Kβce−λc = 0. (2.21)

The dimensionless spreading speed c is given as the unique solution to both Eq. 2.19
and Eq. 2.21 which we solved numerically for each set of parameters.

2.8.13 Analytical Model of “Implicit” Density Dependence

To develop a simple mean-field analytical model to describe the effect of the underlying
viral dynamics on the phage diffusion, we imagine phage diffusing across a lawn of
“sticky” penetrable disks. These disks are used to represent host bacteria cells that
are able to adsorb phage for a period equivalent to the lysis time, after which the
phage desorb and continue to diffuse. The disks do not pose a hindrance to the phage
through steric interactions.

In this set-up, phage diffuse through a series of discrete steps, where phage move a
certain distance with each step. In any given step, the probability that a phage will
become adsorbed to one of the host bacteria is pαϕ, where pα represents the probability
of adsorbing when a phage encounters a host, and ϕ represents the fraction of all space
occupied by the host bacteria. This is analogous to a Poisson point process, where
events (adsorption) occur continuously and independently. Therefore, the number of

3The sufficiently steep initial condition is limx→∞ ϕ(x, 0)eλ
∗x = 0, where ϕ(x, t) denotes a generic

spreading field. If the initial conditions are such that the front is not sufficiently steep (λ > λ∗), then
it will propagate with a speed greater than the minimum spreading speed [159]. As noted in Ref. [29],
however, while in such fronts one can intuitively describe the expansion tip as ‘pulling’ the front
along, to distinguish them from the pulled front solutions that emerge from sufficiently steep initial
conditions it is better to refer to these dynamics as ‘leading edge dominated’ dynamics.



2.8 Methods 75

steps that a phage takes before becoming adsorbed to a host is exponentially distributed
with mean tads = 1

pαϕ
. Consequently, over the period of time T = tads + τs, where τs is

the lysis time (in steps), the phage will only have on average actually moved for tads of
that time.

For long times (over many adsorption/desorption events), this process can be
thought of as a hindered diffusion process with relative diffusion coefficient equal to

D

D0

= D̂imp =
tads

tads + τs
=

1

1 + pατsϕ
, (2.22)

where D0 is the free diffusion coefficient, and D̂imp is the relative density-dependent
diffusion coefficient resulting from the hindrance posed by the underlying viral dynamics,
which we have termed the “implicit” density-dependence.

This can be re-written in terms of the parameters used in the main text as

D

D0

= D̂imp =
1

1 + pατsϕ
=

1

1 + AbKmax

, (2.23)

where A is a scaling parameter given by:

A =
pατsϕ

ατBmaxb
. (2.24)

To compare the parameters used in the two descriptions, we can consider that in our
mean-field model ϕ = b. We can then use the fact that the term αBmax determines
the rate at which phage are adsorbed when in contact with bacteria (as all space is
filled with bacteria at Bmax), and so, like pατs, the term αBmaxτ measures the total
probability that phage will be adsorbed over a lysis time, assuming that the phage are
always in contact with bacteria (i.e. pατs = αBmaxτ). This leads to a value for A of:

A =
pατsϕ

ατBmaxb
=

pατs
ατBmax

= 1. (2.25)

Consequently, the implicit density dependence can be written equivalently in terms of
either parameters as:

D

D0

= D̂imp =
1

1 + pατsϕ
=

1

1 + bKmax

. (2.26)
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2.8.14 Analytical Model Predicts Multiplicative Effects of Steric Inter-

actions and Infection Dynamic

The model introduced above can be modified to account for the presence of steric
effects. In the absence of adsorption i.e., if excluded-volume interactions were the only
hindrance to diffusion, the average fraction of steps successfully “jumped” by phage
compared to the total attempted would be 1− ϕ, and we can define a relative diffusion
coefficient D̂exp = 1− ϕ. Although this is an approximation as it does not take into
account the fact that jumps may be correlated, which is why it deviates from the
more precise Fricke’s equation, it helps extending the analytical model in the previous
section.

If we now introduce adsorption, as explained in the previous section, the average
number of steps taken by phage before adsorbing to an obstacle will be tads = 1

pαϕ
. In

the presence of steric interactions, only a fraction 1−ϕ of these steps will be successful,
so that tsucc = 1−ϕ

pαϕ
. Thus, on average, the success rate of jumping if both adsorption

and steric interactions are taken into account will be:

D

D0

= D̂exp+imp =
tsucc

tads + τs
=

1− ϕ

1 + pατsϕ
, (2.27)

which is equivalent to the product D̂expD̂imp, indicating that when both implicit and
explicit effects are present, the total behaviour can be expressed as the product of both
effects individually. Because in our model the functional form is explicitly input into
the PDE system, the same argument holds if we replace the simplified D̂exp = 1− ϕ

with the more precise Fricke’s law parameterised by our experiments, resulting in
Eq. 2.11.

2.8.15 Implicit ‘Boost’ to Diffusion

This section will derive how the implicit diffusion coefficient in the UDM- can be
thought of as a boost to the implicit diffusion coefficient in the UDM+. Here, let the
implicit slow-down to diffusion in the UDM+ and UDM- be denoted by D̂imp+ and
D̂imp−, respectively. Following our previous derivations, these rates are given by:

D̂imp+−
=

1

1 + b+
−
Kmax

, (2.28)
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where b+ = B+I
Bmax

and b− = B
Bmax

, owing to the fact that infected cells are either
adsorbing or non-adsorbing in the two models.

So as to compare to the dimensionless set of parameters used in the model (where
D = 1 at the expansion front), we re-scale the implicit coefficients as:

Dimp+−
=

D̂imp+−

D̂imp+−
(f)

=
1 + fKmax

1 + ρ+
−
fKmax

, (2.29)

where ρ+ = B + I and ρ− = B.
If we then compare the ratio of the two coefficients, it can be seen that

Dimp−

Dimp+

≈ 1 + fKmax

1 +BfKmax

1 + (B + I)fKmax

1 + fKmax

(2.30)

=
1 + (B + I)fKmax

1 +BfKmax

(2.31)

= 1 +
IfKmax

1 +BfKmax

. (2.32)

The approximation arises from the assumption that the bacterial curves B and I are
the same in both expansions. This is supported by the observation that the density
profiles for B and I are very similar when compared across models (Fig. 2.9). Therefore
we can see that we can write Dimp− in terms of Dimp+ as

Dimp− ≈ (1 + ψ)Dimp+ ; ψ =
IfKmax

1 +BfKmax

. (2.33)

2.8.16 Diffusion Profiles

Fig. 2.9, shows the proxy diffusion coefficients of each of the model variants as a function
of position across the expansion front. To generate this, the population profiles V , B
and I of each of the model variants were taken at the final time step of the numerical
solution (so as to be as close to the steady state as possible), and then aligned so that
the half max points of the density profiles of uninfected bacteria (B = 0.5) coincide.
These population curves were then used to determine the proxy dimensionless diffusion
coefficients:

DUDM+ = Dimp+, (2.34a)

DUDM− = (1 + ψ)Dimp+, (2.34b)
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DV DM+ = DexpDimp+, (2.34c)

DV DM− = (1 + ψ)DexpDimp+. (2.34d)

2.8.17 Stochastic Simulations

Our simulation algorithm is carried out on a one-dimensional lattice (Fig. 2.19a). A
finite number of lattice sites (demes), denoted by i, are distributed along a line, with
each containing a fixed number of bacteria Bi = B0. Each deme is also initialized with
Vi = 100 phage. In each time step, there is: a migration step in which a proportion
of phage from each deme i, binomially sampled with Vi trials and probability m/2

(m = 0.25), are exchanged with each of its neighbors; an adsorption step in which
the number of adsorbing phage is sampled in each deme from a binomial distribution
with BiVi number of trials, with success probability α; and a lysis step in which each
infected bacteria’s state is advanced by one, and bacteria with state τ are labeled as
lysed, and β new phage are inserted into the deme. The simulation box is periodically
shifted with uninfected bacteria placed ahead of the population and demes with a
steady state number of phage omitted and recorded. In this way the simulation box
stays in the co-moving frame of the population.

When the traveling wave is established, verified by convergence of the expansion
speed, all of the free and adsorbed phage are randomly labeled with one of two neutrals
labels. The proportion of the population with each allele selected during the migration
and adsorption step is found by binomial sampling with probability equal to the current
allele fractions and the total number of events as described above. Upon lysis, all of
the new phage released are labelled with the same marker as the phage which infected
that bacteria.

2.8.18 Decay in Heterozygosity

The average heterozygosity H in the simulation box is given by

H =
1

M

M∑
i

2fi(1− fi), (2.35)

where M is the total number of demes in the simulation box, and the fraction of the
two alleles in deme i are fi and 1− fi. Timesteps in our simulation are converted to
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generation time T by noting that T = 1/αB0 + τ timesteps is equal to the average
time for an individual virus to be adsorbed and the infected bacterial cell to lyse.

It is expected that heterozygosity decays due to genetic drift in our simulations [25,
28]. We expect that heterozygosity the H(t), within a certain range of t ∈ (ts, tf ),
will approximately satisfy the relation H(t) = Ae−Λ(t+B) + C, where A, B, and C are
constants, and Λ is the decay rate. With variable transient periods, A and B are
unknown, but we assume C to be 0 (the heterozygosity will always decay to 0 as one of
the alleles fixes). To estimate Λ, we simply take the natural log of our data, which we
expect to be approximated by lnH(t) = lnA− Λ(t+B). Combining constant terms,
we can find Λ by simply performing a linear fit to lnH(t):

lnH(t) = −Λt+ const. (2.36)

We can alternatively express Λ in terms of an effective population size, Ne, where
Ne ≡ 1/Λ [22]. Following [25, 28], the fit was performed for the average of 1000
simulations, with ti chosen such that H(ti) was as close to 0.1 as possible, and tf was
chosen such that at least 5% of simulations had non-zero values of H(tf ) (Fig. 2.19b).
Calculated Ne was normalized by the measured average steady state viral population
per deme Vss in the bulk of the established traveling waves to account for variable
carrying capacity.

2.8.19 Time- and Length-Scales in Stochastic Simulations

To express the τ and αB0 in our stochastic simulations in terms of real time units,
we defined a spatial scale L in our model such that L2 = Bs

0/B
r
0 = 115 µm2

deme
, where

Bs
0 and Br

0 is the initial bacterial density in the simulations and in our experimental
data, respectively. With the spatial scale fixed, we can find the equivalence between
simulation timesteps and minutes T using the viral diffusion constant in our simulations
and our experimental data, Ds and Dr respectively. We first note that Ds = m/2

which is 0.125 in all our simulations, and Dr is function of Br
0 = Bs

0/L
2, in accordance

to our fitted values in (Fig. 2.2). We then have that

T =
DsL2

Dr
=

mL2

120Dr(Bs
0/L

2)

min

timestep
, (2.37)

where Dr is in units of µm2

s
. Given a value of Bs

0, we can use this equivalence to convert
αB0 and τ to minutes.





‘Not everything that can be counted
counts, and not everything that counts
can be counted.’

William Bruce Cameron (and maybe
Albert Einstein)Chapter 3

Identification of Monoclonal Sectors in
Phage Range Expansions

All of the analysis presented in this Chapter is my own. The images of sectoring in
phage range expansions analysed were collected by Dr. Racha Majed.

3.1 Introduction

The impact of spatial growth on the evolution of an expanding population has been
discussed at length in Chapter 1, and in Chapter 2 a reaction-diffusion model was used
to make theoretical predictions about the transition from pulled to pushed waves in
viral expansions. Our model predicts that as bacterial density is increased, genetic
drift and the rate of decline of genetic diversity should be reduced. A natural next
step then is to attempt to measure the strength of genetic drift during such expansions
experimentally.

In microbial expansions, one previously adopted approach to this problem is through
the quantification of the properties of large monoclonal sectors that form during the
growth of colonies [160–162]. An example of this can be seen for E. coli colonies in
Fig. 3.1. Here we can see that cells in colonies initially inoculated with a mixture of
YFP (green) and CFP (red) labelled cells quickly segregate into single coloured regions.
This segregation occurs due to random number fluctuations in a thin band of ‘pioneers’
at the expansion front. Due to the spatial structure of the colony, only the cells
which are in this band are able to pass on their genes to the outwardly growing cells.
Additionally, because this band is so thin (estimated to be ∼30 µm in the expansions

81
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shown in Fig. 3.1 [160]), the number of cells in it is very small, meaning that alleles
can quickly reach local fixation due to random number fluctuations.

Fig. 3.1 An example of the spatial segregation of alleles into large monoclonal sectors
during the expansion of E. coli. Colonies were inoculated with a mixture of YFP and
CFP labelled cells, false coloured as green and red respectively. Figure taken from
Hallatschek et al. (2007) [160].

It has been shown previously that, at long times, the number of sectors will reach a
steady asymptotic value n∞ because the random wandering of the sector boundaries
is negligible in comparison to the increasing separation between sector boundaries,
caused by the colony expansion due to radial inflation. Under the assumption that the
two alleles are neutral with respect to each other, the asymptotic number of sectors is
given by [161, 162]

n∞ =
2πH0v∥
Dg

+H0

√
2πR0v∥
Ds

. (3.1)

In the above, R0 represents the initial radius of the inoculum, v∥ indicates the radial
expansion velocity of the colony, Ds is the spatial diffusion coefficient of the sector
boundary, Dg controls the strength of genetic drift and H0 represents the initial
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heterozygosity, given by H0 = 2f0(1− f0) where f0 and (1− f0) represent the initial
fraction of the two alleles [161, 162].

In bacteria, this relationship has been used to measure the strength of genetic drift
in expanding populations. Since a plot of n∞ against

√
R0 will yield a straight line

with gradient H0

√
2πv∥
Ds

and y-intercept 2πH0v∥
Dg

, values for Ds and Dg can be extracted
by measuring n∞(R0).

Here, we can adopt a similar approach to our viral expansions, with the previously
stated goal of exploring the impact of various properties of the system (such bacterial
density and lysis time) on the strength of genetic drift, in an attempt to confirm our
predictions of Chapter 2. Since Dg controls the strength of genetic drift (i.e. Dg ∝ 1/Ne

[162]), we would expect that as expansions shift from pulled to pushed, such as when
bacteria density or lysis time are increased, we should see a reduction in Dg (large
increase in Ne).

Our approach will different slightly from the approach taken for bacteria however,
since we are not able to observe the full sectors like those shown in Fig. 3.1. This is
because, if a fluorescently labelled phage was used in a similar fashion to Fig. 3.1 the
continued diffusion of the phage in the plaque centre would likely result in a significant
blurring of the sector boundaries. Instead, we opt to image a time-lapse of what the
sectors looks like at the very edge of the plaque, using phage which are genetically
engineered to induce the expression of fluorescent proteins in infected bacteria cells.
By inoculating a lawn of bacteria with a mixture of two such phage, each inducing
the expression of distinguishable fluorescent proteins, we can in principle measure the
number of sectors during the course of an expansion, based on how many fluorescent
regions there are on the plaque boundary.

The actual experiments were performed by Dr. Racha Majed, and the methods are
described in Sec. 3.2. To be clear at the outset, my contribution to this project was only
to develop an automated image analysis pipeline that is able to quickly and reliably
identify the number of sectors in such images. To illustrate why this is important,
imagine that in one such experiment, you can fit 12 individual plaques on a single
agar plate at one time (or in the wells of a 12-well plate for instance). Each of these
plaques will then be imaged for ≈7 hours, with images being taken every 20 mins. This
means that in a single experiment one can expect to capture 12×7×3=252 images (not
including multiple channels). This means that if you were to run such an experiment
four times in a week, you would have generated over 1000 images. Even if it took
only a couple of minutes to open each image and count the number of sectors, that
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would correspond to approximately 33.5 hours a week, which is not far off a standard
37.5 hour working week. Counting the number of sectors in these images by hand is
therefore at best laborious, if not completely infeasible.

3.2 Experimental Methods

As stated at the outset of this Chapter, these experiments were performed by Dr. Racha
Majed.

3.2.1 Bacteriophage T7 Modification

We use phage modified to induce infected cells to produce fluorescent proteins prior
to lysis, in this case mEYFP or mCherry. The procedure for producing these phage
follows that set out in Ref. [163]. Briefly, recombinant T7 phage were engineered
using the T7select415-1 phage display system (Millipore) with standard molecular
biology techniques. The fluorescent gene was cloned under control of the strong T7
phi10 promoter downstream of the T7select415-1 10B capsid gene (the inserted DNA
contains a copy of the promoter). Infected host cells produce the fluorescent protein
rapidly enough to clearly fluoresce in the relevant channel before subsequently lysing
and releasing a cohort of viable progeny phages. Henceforth, these two strains inducing
expression of mEYFP and mCherry will be referred to as T7mEYFP and T7mCherry

respectively.

mEYFP

Fig. 3.2 Insertion of the fluorescent mEYFP gene under control of the strong phi10
promoter downstream of the T7select415-1 10B capsid gene. Figure adapted from
Ref. [163].

3.2.2 Imaging Sectoring During Plaque Growth

To image bacteriophage sectoring, 96 well plate sized omni-plates (a plate with one single,
large well), containing 35 ml of 7 g/l agar (VWR Chemicals), with LB (Invitrogen)
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- NaCl concentration 10 g/l - and 100 µg/ml trimethoprim (Sigma-Aldrich) were
prepared. The presence of trimethoprim in the plate prevents growth of the bacteria,
so to maintain its density constant over the course of the experiment. Plates were then
refrigerated if they were to be used at a later date.

Overnight liquid cultures of E. coli BW25113 were grown from single colonies at
37 °C in LB. To create the bacterial lawns through which the phage would expand,
12 separate 100 µl droplets of overnight culture were pipetted onto the agar surface
and left to dry. Next, 1 µl of T7mEYFP was mixed with 1 µl of T7mCherry, both at a
concentration of 103 pfu/µl, and this 2 µl droplet was then pipetted onto the surface of
the bacterial droplets. To investigate the impact of initial droplet radius, the volume
of the phage droplet was varied over a range from 0.5 - 7 µl.

The plates were imaged using a Zeiss Axio Zoom.V16 stereo microscope equipped
with a Zeiss PlanNeoFluar Z 2.3x/0.57 FWD 10.6 mm objective objective. Images of
the sample were taken every 20 minutes for a period of 7 hours. During the imaging
period, the sample was kept with its lid on at 37 °C using an ibidi Multi-Well Plate
Heating System.

3.3 Image Analysis Pipeline

An example of the type of images collected during the sectoring experiments are shown
in Fig. 3.3. One can see that there are several bright patches at the boundary of the
plaque in the YFP channel. These bright patches correspond to regions where cells are
currently infected with T7mEYFP which is inducing expression of YFP. These patches
therefore correspond to T7mEYFP sectors. In the mCherry channel, the whole plaque
appears fluorescent, meaning it is not possible to identify sectors of T7mCherry from
these images.1

At its most basic level, the pipeline that I have developed has two key components:
(i) finding the fluorescent intensity profile along the boundary of the plaque and (ii)
identifying sectors from this intensity profile. This is obviously an incredibly course
overview, although I think for the more detailed description that follows it will be

1I’m not entirely sure why this happens. It is possible that, owing to the relatively long maturation
time of mCherry, it fails to mature before the cell lyses. However, I would expect this to result in a
very week, diffuse signal, rather than what appears to be a strong signal throughout all of the plaque.
Further controls would be required to accurately assess this, however, as fluorescence intensity is not
easily compared across channels.
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Fig. 3.3 An example set of images collected showing sector patterns during phage
plaque growth. On the left are the brightfield images, which shows the plaque in the
bacterial lawn. In the middle are the fluorescent images in the YFP channel, in which
several bright patches can be seen at the boundary of the plaque. These bright patches
show sectors where bacteria are infected by T7mEYFP. On the right are the fluorescent
images in the mCherry channel, in which the whole plaque appears quite fluorescent,
meaning it cannot easily be used to find sectors. The top row shows the ‘raw’ images,
whereas the bottom row shows images where the brightness and contrast have been
manually adjusted to help the reader.

helpful to have in mind that this is ultimately the direction that I have taken. All of
the analysis that follows is conducted in MATLAB.

Before we start the analysis, we first have to do some image prep. You will notice
in Fig. 3.3, that each of the images has the four corner tiles ‘missing,’ i.e. they are
completely white or black. The first step of the pipeline is to fill-in these tiles with the
average pixel value of the image (Fig. 3.4).

This is because the next step is to automatically threshold the brightfield image,
such that the plaque is completely white, and almost everything else is completely
black (Fig. 3.4). This is performed by the MATLAB function imbinarize using Otsu’s
method [164], which “chooses the threshold value to minimize the intraclass variance
of the thresholded black and white pixels.” At this point the centre of the plaque is
estimated by calculating the centre of mass of all of the white pixels. Additionally an
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Fig. 3.4 An illustration of the first steps of the image analysis pipeline, which show
how the boundary of the plaque is identified. (1) The original brightfield image. (2)
The white tiles in the corner of the image are filled in. (3) An automatic threshold is
set on the image. At this point, the centre of the plaque is estimated using the centre
of mass of all of the white pixels, and a radius r is calculated assuming that all white
pixels are contained in a circle. (4) Edges are detected in the image. (5) Edge points
that are identified with a distance < rl or > ru from the centre of the plaque, where
rl = 0.8r and ru = 1.2r, are removed. (6) The fluorescent intensity at the remaining
edge points is plotted, representing the fluorescent profile around the boundary of the
plaque.

average plaque radius r is calculated by assuming that all white pixels are distributed
in a perfect circle.

The next step is to identify the edges between white and black pixels in this
thresholded brightfield image, which will indicate the boundary of our plaque (Fig. 3.4).
This is done using the MATLAB function edge, which uses the Sobel edge detection
method. This works by finding “edges at those points where the gradient of the image I
is maximum, using the Sobel approximation to the derivative.” Due to various imaging
artefacts, this process will inevitably find some edge points that do not correspond to
the boundary of the plaque. Examples of this can be seen in Fig. 3.4 point (4), where
irregularities in the agar surface as well as the boundary of the bacteria droplet in
the corner of the image are identified as edge points. A very basic filtering method is
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therefore applied where any edge points with a distance from the centre of the plaque
outside the range [rl, ru] are removed (rl = 0.8r, ru = 1.2r).

The edge points are then sorted by angle (according to some reference direction).
In the fluorescent image, the intensity is then determined at these edge points, and a
moving mean is taken with an angular size of 1 degree, so as to reduce the impact of
noise in the values of individual pixels. We now have the fluorescent intensity profile
around the boundary of the plaque.

The final step in the analysis is to determine the number of sectors from this
intensity profile. This is done using the signal processing function findpeaks which
finds local maxima in the input signal vector (i.e. fluorescent intensity as a function
of angle in our case). What is considered a “peak” is controlled by a set of optional
inputs including maximum number of peaks, minimum peak height, minimum height
difference between neighbouring peaks, minimum peak separation, minimum peak
width, maximum peak width and minimum peak prominence, amongst others.

The options that I have used as they seem to give reasonable results (more on this
in the next section) are: (i) minimum peak distance pd, which sets a minimum angular
separation between sectors (ii) minimum peak width pw, which sets a minimum angular
sector width and (iii) minimum peak prominence pp, which measures how much a peak
stands out relative to its surrounding landscape (Fig. 3.5). An example of the output
of findpeaks can be seen in Fig. 3.6 for a given set of input parameters, where the
sectors identified by the function are shown in relation to the sectors in the actual
fluorescent image.

3.4 Optimising Sector Detection

As you might imagine, the images used in the previous section to illustrate the pipeline
represent a relatively cherry-picked case, that results in a nice fluorescent profile where
peaks can easily be seen, found by the code, and mapped to sectors in the original
image (Fig. 3.6). Often, the images and the results are not so clean (Fig. 3.7). In
some cases, the images contain artefacts such as bubbles in the agar, or the lighting is
non-uniform, which can make it difficult to accurately identify the plaque boundary. In
others, the fluorescent signal is either weak or diffuse, which makes it difficult to get an
accurate count of the number of sectors even by hand. Finally, the input parameters
to findpeaks that work well for one image may not work well for another, and might
result in over/under counting the number of sectors.
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Fig. 3.5 An illustration of peak prominence. Each of the peaks 1-9 are shown, with their
prominence height indicated by the coloured shading below that peak. To measure the
peak prominence: (i) place a marker on the peak; (ii) extend a horizontal line to the left
and right of the peak until it either crosses the signal because there is a higher peak or
reaches the end of the signal; (iii) find the minimum of the signal in the two intervals just
identified; (iv) determine which of these minima is higher to define a reference level. The
prominence of the peak is then its height above that reference level. Figure and measure-
ment procedure taken from https://uk.mathworks.com/help/signal/ref/findpeaks.html.

To try to find a combination of settings that worked well across a broad range of
images, I opted to compare 100 randomly selected images across a range of timepoints
and initial conditions with manual counts of the number of sectors in those same
images. These 100 images were then split up between myself, my supervisor Dr. Diana
Fusco and my fellow PhD student Dr. Nikhil Krishnan to count the number of sectors
by hand. The reason that multiple people were used was partly to try to account for
the fact that what I consider to be a sector may be slightly different to what someone
else considers to be a sector. As it is difficult to tell the number of sectors in many of
the images very precisely, for every image we provided a ‘best estimate’ for the number
of sectors nperson, along with an upper and a lower bound of the number of sectors we
thought could be in the image (nu and nl respectively).
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3 mm

Fig. 3.6 A “good” example of a fluorescent intensity profile that relatively clearly maps
to sectors that can be seen in the actual fluorescent image. For a given set of options,
findpeaks outputs that there are 7 sectors in the image. These are indicated by the
numbers 1-7 in both the image and the profile. A smaller, potential peak/sector is also
indicated with a question mark (?). If different options had been used this could also
have been counted as a sector. Parameters used were pd = 10, pw = 9 and pp = 2.

The code was then run on all of the test images with a given set of input parameters,
and compared to the manual measurements. An example of this is shown in Fig. 3.8a
and Fig. 3.8b, which show histograms of the difference between the code and the manual
measurement. In the initial run (pd = 5, pw = 3 and pp = 1) it can be seen that the
distributions are skewed significantly to the right, indicating that the code on average
counts more sectors than the person identified in the images. More quantitatively, the
code counts on average ∆n = 5.0 more sectors than the best manual measurements.
We also found an average δ = 4.2, where δ indicates the difference between the best
estimate of the code ncode and the lower or upper bound (nl, nu) identified by the
person (if nl ≤ ncode ≤ nu then δ = 0).

Ideally, we would like these histograms to be centred on 0 in both cases, and be as
narrow as possible. The process of refining the input parameters to better achieve this
involved looking at some of the images where the level of disagreement was largest.
The input parameters were then changed by trial and error so that the code showed
better agreement with the manual measurements. For instance, starting from Fig. 3.8a
and Fig. 3.8b, the main issue is simply that the code very often considers too many
parts of the signal to be a sector, when in fact it is just noise, at least in the mind of
the person that looked at the image. As a result, parameters were changed so that the
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Fig. 3.7 An example of two issues that commonly arise in the sectoring images.
The first is imaging artefacts and poor or uneven lighting which results in many
incorrect edge points being detected from the brightfield image. The second issue
is that the fluorescent signal becomes very diffuse at long times, so sectors are less
clearly defined. This second example actually represents the same plaque as the ‘good’
example (Fig. 3.6), just later in time.

threshold for counting as a sector was higher, i.e. by increasing the minimum height or
width of a peak that would be counted. Using these new parameters, the code was
then run again on all 100 of the images, and the histograms shown in Fig. 3.8 were
plotted. If the histograms were better, i.e. more narrowly centred on 0, then the above
process of looking at outlier images and tuning the parameters was repeated. If the
histograms were worse than before, then different changes were made to the input
parameters to try to address this. For the results presented here this process was done
manually, although in principle could be automated.

Through multiple cycles of this refinement process, it was determined that the
parameters that were the most useful in altering the shape of the distribution were
minimum peak separation pd, minimum peak width pw, and minimum peak prominence
pp. Changing just these three parameters eventually resulted in the histograms that can
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Fig. 3.8 The performance of the code at identifying sectors in comparison to the
number identified by hand. For an initial attempt at choosing input parameters, (a)
shows a histogram of the difference ∆n between the best estimate of the code ncode and
the best estimate of the person nperson, while (b) shows a histogram of the difference
δ between the best estimate of the code and the range of values identified using the
upper and lower bounds (nu and nl respectively). If nl ≤ ncode ≤ nu then δ = 0. (c),(d)
show the same as (a),(b) but for an improved set of input parameters. The number of
images in each bin ci is normalised by the total number of images N = 100. In (a), (b)
pd = 5, pw = 3 and pp = 1, and in (c),(d) pd = 10, pw = 9 and pp = 2.

be seen in Fig. 3.8c and Fig. 3.8d. It can immediately be seen that these distributions
are much better, with an average ∆n = 0.1 and δ = 0.2. It can also be seen that the
distributions are much narrower, in particular the distribution of δ where approximately
2/3 of the estimates of the code fall within the lower and upper bounds identified by
the person in each case. The parameters used here were pd = 10, pw = 9 and pp = 2.
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3.5 Discussion

This level of agreement reached may seem underwhelming, as there are still 1/3 of the
images which the code produces an estimate that is outside the bounds defined by
hand. A useful comparison however, is how ‘well’ a person does in comparison to other
people. For this comparison, I went through all of Diana’s and Nikhil’s images by hand
and gave a best estimate of the number of sectors in the image. I can then compare
my best estimate with theirs, and the bounds they set, in the same manner that I have
done with the code. The results of this are shown in Fig. 3.9. It can clearly be seen
from this that the distribution of differences between my estimates and their estimates
are is almost identical to the distribution of differences between the code’s estimates
and their estimates. This highlights the earlier point that in these images it is often
simply quite difficult to judge the number of sectors even by hand, resulting in each
person making a different judgement. In this regard then, the code performs just as
well as we might expect a person to, i.e. it does not systematically count more or fewer
sectors, and the differences are on average about the same level as the person-to-person
differences.
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Fig. 3.9 My ‘performance’ at identifying sectors in comparison to the number identified
by Diana and Nikhil. This is shown both in terms of the difference ∆n between the
my best estimate and the best estimate of the person nperson, and in terms of the
difference δ between my best and the range of values identified using the upper and
lower bounds (nu and nl respectively). If nl ≤ ncode ≤ nu then δ = 0. This is also
shown in comparison to the best estimate of the code on the same images. Parameters
used were pd = 10, pw = 9 and pp = 2.

You might reasonably ask whether the code and I perform similarly when presented
with Nikhil’s and Diana’s images simply because I designed the code, and so it is
more likely to agree with my assessment of the images. This does not appear to be
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the case however. Fig. 3.10 shows the performance of the code on only my images, in
comparison to its performance on all of the images. It can clearly be seen that the
code does not agree with me any more than it agrees with Nikhil and Diana. Indeed,
the code actually performs slightly worse on my images than it does on Nikhil’s and
Diana’s. This further emphasises the earlier conclusion: the images are difficult to
analyse, but the code does as well as a person would.
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Fig. 3.10 The performance of the code at identifying sectors in the images which I
looked at, compared to its performance on all of the images. This is shown both in
terms of the difference ∆n between the my best estimate and the best estimate of
the person nperson, and in terms of the difference δ between my best and the range
of values identified using the upper and lower bounds (nu and nl respectively). If
nl ≤ ncode ≤ nu then δ = 0.

There obviously remains several ways in which this approach could be improved
going forward. For one thing, although it would be very computationally expensive,
automating the search for optimum parameters might reasonably be expected to
eventually yield results which are better than the current manual search. Perhaps
more significantly, modifications could be made to correlate the number and location
of sectors in a plaque as a function of time. This would likely improve accuracy, both
of the script and of the by hand measurements, as borderline cases (i.e. ones in which
you think “that might be a sector”) could potentially be ruled in or out more clearly
based on whether a sector could be seen in that location in the previous/future frames.
Similarly, if both fluorescent channels were reliably available, then the sectors in one
channel could be matched with the sectors in the other channel to measure the degree
of agreement, and potentially improve counts.

Regardless of these potential improvements, the main point is that we have now
developed a tool which can be used to identify sectors during phage range expansions.
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This will now allow researchers to address the original questions which motivated the
work: how is the genetic drift affected by bacteria density and lysis time, and does this
match our expectations from Chapter 2.





‘A bad workman always blames his
tools.’

English proverb

Chapter 4

Novel Experimental Techniques for Plaque
Studies

All of the work presented in this Chapter is my own, except the evolutionary experiment
discussed as a motivating example, which was performed by Dr. Diana Fusco and Dr.
Wolfram Möbius

4.1 Introduction

As discussed in Chapter 2 and Chapter 3, our results highlight that phage plaques
have the potential to be used as a well-controlled model system to experimentally
investigate the impact of density-dependent dispersal, and the transition from pulled to
pushed waves in a laboratory setting. At present however, this poses several technical
challenges.

Firstly, if we are to use theoretical and computational models to understand and
interpret experimental observations, it is crucial that we have accurate and appropriate
measurements of the phage life-history parameters that characterise the system. In
Chapter 2, it was demonstrated that the rate of phage diffusion strongly depends on
the host environment and, in particular, can dramatically differ from liquid culture
measurements. This raises the more general question of whether other phage life-history
parameters also depend strongly on the surrounding host environment. As was noted
in Chapter 1, existing methods for the experimental determination of these phenotypic
parameters are almost exclusively performed in well mixed environments (see [62, 88]
for instance). It is perfectly possible that these parameters could take significantly
different values when the infection occurs in different spatially structured environments

97
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and varying metabolic states of the host cells [129]. Moreover, it is possible that these
parameters are not only different on solid media when compared to liquid, but may
also vary across the expansion in a similar fashion to the diffusion coefficient. For
instance, upon lysis, release of cytoplasmic fluids could affect the infection or lysis of
neighbouring cells, resulting in life-history parameters that vary with cell density. To
be able to accurately compare model predictions to experiments it is therefore critical
to develop assays to measure the phage life-history parameters in the environment
where the range expansions occur i.e., on agar plates.

In addition to the ability to accurately map experiments onto computational models
or theories, there are other practical challenges. For instance, studying the spatial
growth of plaques often requires observation over a 24 hour period, or more [88]. This
is because, if one wants to accurately sample from both the initial population and the
population at the front after a period of expansion, for instance, these two regions
need to be significantly separated in space (e.g. at least 3 mm apart). In the case of
wild-type T7 under standard conditions, plaques grow at a rate of ∼100-200 µm/hr,
meaning such a separation is only achieved after ∼15-30 hours [58]. Over this period of
time, the level of nutrients available to the host bacteria (and consequently the phage)
will vary, and the bacteria will almost certainly enter stationary phase, which could
also significantly impact the phenotypic parameters [88, 129]. It would be preferable
therefore, to be able to maintain a constant supply of nutrients to the host bacteria
during the course of the expansion. This would have the additional benefit of increasing
the length of experiments that could be performed, as the limiting factor would simply
become the physical size of the plate, rather than the time until nutrients are exhausted.

In this Chapter, I will present various experimental techniques intended to address
each of the points discussed. This includes methods to measure the phage adsorption
rate (Sec. 4.4) and lysis time (Sec. 4.5) on agar plates, and a technique for constantly
supplying nutrients to an agar plate (Sec. 4.6).

4.2 Existing Phenotypic Assays

4.2.1 Measuring Adsorption Rate in Liquid

Many previous studies have shown that in the first minutes post exposure to phage,
reaction kinetics between free phage (V ), bacteria (B) and bacteria-phage complexes,
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i.e. infected bacteria (I), can be described by a simple reaction model [165]

V +B
rate−−→
α

I, (4.1)

with adsorption rate α. This leads to three different ways of measuring phage adsorption
rate: as a function of time, one can measure the number of (i) free phage, (ii) adsorbed
phage or (iii) uninfected bacteria [74]. The first of these approaches is the most
commonly used, and it is the one we shall focus on here.

Fig. 4.1 A cartoon to illustrate how adsorption rate is measured in liquid. (a) Phage
are added to a bacterial culture in log-phase. (b) Samples are taken periodically, and
diluted into an LB/chloroform mixture. (c) Plating assays are performed on these
samples. (d) Free phage are plotted as a function of time, and the adsorption rate is
extracted.

The procedure is as follows: phage are added to a bacterial culture in log-phase, and
kept at 37 °C. At predetermined time-points, samples of this culture are then removed,
and diluted into an LB/chloroform mixture. The chloroform kills both infected and
uninfected host cells, but has no effect on any remaining free phage. Plating assays
(Sec. 2.8.6) are then performed on these samples to determine the number of free phage
as a function of time. It must be noted that the samples must be taken before the end
of the eclipse period, otherwise fully constructed phage (i.e. those with a complete
capsid and tail, and the viral DNA packaged into the capsid) inside infected hosts may
be counted in the plating assays, skewing the results.

Assuming that the concentration of available host remains relatively constant over
the several minute long period adsorption is usually measured (up to ∼5 mins), this is
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modelled as a first order reaction resulting in an exponential decay in free phage

dV (t)

dt
= −αB0V (t), (4.2)

ln(V (t)) = −αB0t+ ln(V (0)). (4.3)

A cartoon of this process is shown in Fig. 4.1.

4.2.2 Measuring Lysis Time and Burst Size in Liquid

The so called single-burst curve, or lysis curve, is used for experimentally measuring
the average lysis time and burst size of a phage population. The technique used here
is adapted from that used originally by Ellis and Delbrück [166]. The procedure is
as follows: initially, 10 µl of susceptible host overnight culture is diluted in 990 µl of
LB and incubated at 37 °C for approximately 2 hours to generate an exponentially
growing culture. At the start of the experiment (t=0), 10 µl of phage (approximately
107-108 phage) is added to this culture and incubated for one minute to allow infection.
The culture is then diluted 105 and 106 in LB to obtain a countable number of phage,
and kept incubated at 37 °C. Every 2-3 mins for 30-40 mins (the length depends on the
phage’s typical lysis time), 20 µl of each dilution is plated with 100 µl of host overnight
and 3-5 ml of molten 0.7% agar. As in the plating assay (Sec. 2.8.6), these plates are
left on a bench-top overnight, and plaques counted the following day. This should
result in a single step growth curve for the phage, from which the lysis time and burst
size can be measured. Cartoon data that could result from such measurement with the
parameters highlighted are shown in Fig. 4.2.

For fitting lysis curves, multiple different functions have been considered, including
piece-wise [167], logistic-like [62, 66] and Gaussian functions [168]. Previous analysis
has concluded that the use of logistic-like and Gaussian functions yield very similar
results, and that both are preferable to the use of piece-wise functions [169]. Here, we
use a Gaussian function, and so the expected number of PFUs per initial phage np at
time t will be given by [169]

np =
β

2

[
1 + erf

(
t− τ

στ
√
2

)]
+ 1, (4.4)

where β is the burst size (i.e. the yield of new phage produced at a lysis event), τ is the
lysis time and σt is the standard deviation of the lysis times. It’s worth noting here that
while σt could be interpreted as a measure of the stochasticity in lysis time, it is not
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Fig. 4.2 Cartoon data to illustrate the type of results obtained during a lysis curve.
The burst size β, lysis time τ and the standard deviation of lysis times στ are shown.

clear exactly what its mechanistic origin is, i.e. this variability could represent variation
amongst the infecting phages or variation amongst the cells they infect.1 The number
of initial phage is usually taken to be the average of the first three measurements,
although this can be adjusted where appropriate, as long as the points are taken before
it appears that any lysis has occurred. The final +1 in Eq. 4.4 is to adjust for the fact
that, by the nature of calculating the ratio of PFUs at time t to those at the outset,
the distribution should be equal to 1 at time t = 0. erf(x) is the error function given
by

erf(x) =
2√
π

∫ x

0

e−y2dy. (4.5)

4.3 Motivating Example

The importance of being able to answer the questions laid out in Sec. 4.1 is perhaps best
illustrated with a more concrete example. As stated at the beginning of this Chapter,
the work presented in this section is not my own, and represents unpublished results of
Dr. Diana Fusco and Dr. Wolfram Möbius. Briefly, in this work bacteriophage T7 was
inoculated onto a lawn of bacteria on an agar plate and allowed to form a plaque and
grow for 17 hours (Fig. 4.3). At this point, phage from the very edge of the plaque were

1This idea of biological stochasticity will be discussed further in Chapter 6.
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picked with a needle or a razor blade, and used to inoculate a fresh lawn of bacteria.
After another 17 hours of plaque growth, phage were again picked from the edge of the
plaque and inoculated onto a fresh lawn, with this process being repeated 14 times.

Fig. 4.3 The setup of a bacteriophage evolutionary experiment performed in bacterial
lawns of agar plates. Phage are inoculated onto a lawn of bacteria, allowed to grow
for 17 hours, at which point phage are picked from the edge of the plaque and used
inoculated onto a new plate. This process was repeated 14 times. Figure provided by
Dr. Diana Fusco.

While there are various findings from this evolutionary experiment which I will
not detail here, the key finding for the purposes of this Chapter is that the phage
consistently evolved to form faster and faster growing plaques (Fig. 4.4). This increase
in speed was observed across replicates, and the speed after 14 cycles could be as much
as 4× larger than the original inoculate (i.e. the ancestor).

If we attempt to explain this in terms of the reaction-diffusion model presented in
Chapter 2, such a speed increase would require very significant changes to the phage
life-history parameters, such as a 10-fold reduction in adsorption rate α and a 2-fold
reduction in lysis time τ (Fig. 4.5). Changes to burst size β are unlikely to be able
to explain such an increase in speed given that, as shown in Fig. 2.15, changes to
burst size β result in little change to speed for β > 50. When existing techniques (i.e.
methods that rely on bulk liquid culture measurements, described in Sec. 4.2) are used
to measure these parameters in both the ancestor and evolved strains however, they
show no consistent or significant difference (Fig. 4.5).
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Fig. 4.4 Each of the top images are taken the same time after inoculation of the phage.
The phage consistently evolved to form faster and faster plaques, as can be seen both
in the top images, and in the data provided across replicates in the bottom plot. Figure
provided by Dr. Diana Fusco.
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Fig. 4.5 (a) The reaction-diffusion model presented in Chapter 2 indicates that a
4-fold increase in lysis time (∼ cF in the model) would require large changes to the
phage life-history parameters. (b) Phenotypic assays in liquid culture reveal that there
is little difference in the adsorption rate α (top), or the lysis time τ (bottom) of the
ancestor and evolved strains of the evolutionary experiment. Lysis time data collected
by Lucy Witherall of the Möbius Lab. The lysis curves were performed in partially
‘spent’ media, i.e. media which had previously been used to grow cells to a density
specified by the OD600 reading. Adsorption rate figure provided by Dr. Diana Fusco.
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Each of the issues highlighted in the introduction could potentially play a role in
addressing this discrepancy. While the phenotypic assays do not reveal a significant
difference between ancestor and evolved strains, these assay were performed in a
well-mixed liquid culture, where the bacteria are typically in exponential phase with
ample access to nutrients.2 By contrast, the evolutionary experiments themselves were
performed on agar plates, where the metabolic state of the host would change during
the course of the expansion, and so could significantly impact the phage life-history
parameters.

4.3.1 Diffusion of Evolved Phage

WT Mutant
0

0.5
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1.5

2

2.5

*

*

Fig. 4.6 Free diffusion rates measured for standard wild-type (WT) T7 compared to
those measured for one of the evolved mutants discussed in Sec. 4.3. The measurement
procedure is described in Chapter 2, including correction due to geometry and number
of phage (Sec. 2.2.1). The blue asterisk (*) indicates that these data points were
collected from the same plate, i.e. half of the phage droplets were WT and half were
mutant.

While it may seem unlikely, in principle one other characteristic of the phage
that could have changed is the diffusion rate D, which I presented a technique for
experimentally measuring in Chapter 2. I therefore present here results of the measured

2The lysis curves in Fig. 4.5 were also performed in liquid cultures where the nutrients were partially
depleted. This was achieved by growing a culture of bacteria to a pre-determined OD600 (density),
spinning down the culture and removing the cells to leave partially ‘spent’ media.
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free diffusion rate D0 (i.e. without any background bacteria) for both the wild-type
(WT) T7 and one of the evolved mutants - note that the data has been corrected due
to geometry and number of phage as shown in Sec. 2.2.1. It can be seen in Fig. 4.6
that surprisingly the measured diffusion rate is quite different for the mutant. Even
more surprisingly, it is lower than the measured diffusion rate for the WT phage. This
is exactly the opposite of the change we would expect to see if the increased plaque
speed was explained by a change in diffusion rate - lower diffusion rates should result
in a slower plaque speed. This effect is seen across replicates, including when both
types of phage are plated separately on the same plate, so as to rule out any issues of
having a particularly dry plate. Needless to say, this is a very confusing result, and
will require further investigation.

4.4 Adsorption Rate on Solid Media

Here, we adapt the procedure for measuring phage adsorption rate in liquid culture
(Sec. 4.2.1) to allow for the measurement of adsorption rate on solid media. At this
point I would like to thank Chris Dickinson, who helped develop this protocol during
his undergraduate work. The underlying idea of both procedures remains the same:
phage are allowed to infect susceptible host, and after a given time t, chloroform is
added to the system, killing the host bacteria and any phage already adsorbed to
them, while any free phage are left unharmed, and can be subsequently plated with
susceptible host to determine their number. The difference comes in the first steps
of this process, where the liquid culture is now replaced by a lawn of bacteria grown
overnight on the surface of an agar plate. Phage are added to the surface of this lawn,
and after a time t the lawn is then removed and re-suspended in an LB/chloroform
mixture (this is identical to Fig. 4.1 with the exception of part (a)).

4.4.1 Methods

Sample Preparation

6 well plates, with each well containing 5 ml of 20 g/l agar (VWR Chemicals) and 25
g/l LB (Invitrogen) - NaCl concentration 10 g/l - were prepared, and left to dry for
several hours. Once dry, 30 µl droplets of overnight cultures of either E. coli BW25113
or eWM44 (grown from single colonies at 37 °C in 25 g/l LB) were pipetted into
each well, and left to dry. For full details of the strains see Appendix A, but as a
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brief reminder: BW25113 is the phage-susceptible wild-type, whereas eWM44 prevents
phage adsorption and is used as a control. These plates were then incubated overnight
at 37 °C to allow the bacteria to grow into a thick layer.

The following day 2 µl droplets of stock T7 phage (approx 107 pfu/µl) were pipetted
onto the surface of the bacteria lawns. After a time period t from the phage being
added, the bacteria layer was removed from the surface of the agar using a sterile
inoculation loop, and deposited into an Eppendorf tube containing 970 µl of LB, and
30 µl of chloroform. This mixture was then briefly vortexed, stored in ice, and then
serially diluted in LB, and 20 µl of each serial dilution was plated with 100 µl of
overnight BW25113 and 5 ml of 7 g/l agar. These plates were then left overnight to
allow plaques to form.

Determining Density of Bacteria Lawns

To determine the rate of phage adsorption, we must have an estimate for the density
of bacteria in the lawns used in the experiment (i.e. after they have grown to a thick
layer overnight). As the lawns used in the experiment had to be destroyed during the
process of taking measurements, separate lawns were grown under the same conditions
(Sec. 4.4.1), and these were used for the determination of the bacterial density.

To determine the density, two things had to be measured: the volume of the lawns
and the number of bacteria they contained. The volume of the lawn was measured first
by imaging the lawns to determine the cross-sectional area, and then by separately
imaging the ‘base’ and the ‘top’ of the lawn, to determine their respective z locations,
and consequently the height of the lawn. The base was imaged by focusing on the
very edge of the lawn where the bacteria meet the surrounding agar. To image the top
of the lawn, a 1 µl droplet of 1 µm fluorescent beads (3.6 × 1010 beads per ml) was
added to the lawn surface, so as to generate a feature that could be used to find the
correct focus height. Images were taken using a Zeiss Axio Zoom.V16 stereo microscope
equipped with either a Zeiss PlanApo Z 0.5x/0.125 FWD 114 mm objective or a Zeiss
PlanNeoFluar Z 2.3x/0.57 FWD 10.6 mm objective, and analysed using Fiji (v1.52h),
an open source distribution of ImageJ focused on scientific image analysis [156, 157].
The volume determined here is an approximation, as it assumes that the lawn has a
constant height.

To measure the number of bacteria cells in the lawns, the lawns were re-suspended
in 1 ml of LB, and then serially diluted in LB. Then, 100 µl droplets of the 107, 108

and 109 dilutions were pipetted onto the surface of a 20 g/l agar plate and left to dry
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(an approximate estimate of the density made by measuring the OD600 of the culture
indicated that these dilutions would contain ∼ 102, 101 and 100 cells respectively).
These plates were then incubated overnight at 37 °C, and the following day colonies
were counted to determine the number of cells present in the suspension (see Fig. 4.7).

2 cm

Fig. 4.7 Example of the colony spotting assay used to determine the bacteria concen-
tration.

4.4.2 Results

As expected, it can be seen in Fig. 4.8 that the number of free phage recovered from
the surface of the adsorbing bacteria lawns (BW25113) consistently decreases as a
function of time across replicates. This does not occur in the lawns of control bacteria
(eWM44) where adsorption should be prohibited (Fig. 4.9), indicating that the fall in
free phage recovered is primarily due to adsorption to bacteria.

It is worth taking a moment here to comment on the different sources of variabil-
ity/error in these measurements. Working backwards, there is of course the Poisson
sampling error on each of the individual data points that occurs when a small sample
is plated from the liquid suspension of phage. This error is shown as the y error bar in
Fig. 4.8 and Fig. 4.9. Within a single experiment (i.e. within a single plot in either
Fig. 4.8 or Fig. 4.9) there is also variability in the number of phage which are success-
fully ‘scooped-up’ from the plate, due to this being an imperfect process. The scale
of this error can be somewhat appreciated by observing the spread of points within a
single plot in Fig. 4.9, although this spread will also be affected by the Poisson sampling
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Fig. 4.8 Number of free phage recovered as a function of time from the surface of
adsorbing bacteria (BW25113) lawns. Error bars come from the Poisson sampling
error, i.e. ∆P =

√
P .
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Fig. 4.9 Number of free phage recovered as a function of time from the surface of
non-adsorbing bacteria (eWM44) lawns. Error bars come from the Poisson sampling
error, i.e. ∆P =

√
P .

error. Finally, there is also variability between different replicates, i.e. between the
multiple plots in either Fig. 4.8 or Fig. 4.9. This can be appreciated by noting that
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the y-intercept of each of the plots is different, even though the same number (within
sampling error) of phage were added in all cases. I believe that this error originates in
differences between the bacteria used in different experiments. In each case, the strain
of bacteria (BW25113 or eWM44) is of course the same, but cultures used to grow the
lawns were established from different colonies in each case, which may each contain
different minor mutations. Based on my anecdotal experience, this manifests in lawns
which are slightly thicker or thinner, and slightly more or less rigid on different days.
In my experience, more phage are recovered from lawns which are which are thicker or
more rigid.

A summary of the 5 replicates is shown in Fig. 4.10. It can be seen that in the non-
adsorbing control, the fitted gradient is on average αB0 = −0.02± 0.04 min−1, which is
consistent with no adsorption. In the case where we expect adsorption to occur however,
the average gradient is αB0 = 0.25± 0.06 min−1. To convert this into an adsorption
rate alone we then require the density of the bacteria lawns. This was measured as
described previously, and the average of 6 measurements was taken, yielding a density
of B0 = 0.92± 0.08 µm−3 = (0.92± 0.08)× 1012 ml−1 for BW25113 lawns. In the case
of adsorbing bacteria, this leads to an adsorption rate of α = 0.27 ± 0.07 µm3/min
= (0.27± 0.07)× 10−12 ml/min.

BW25113 eWM44
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 4.10 Average adsorption rates determined from 5 replicates.

It is interesting to note here that the product αB0 = 0.25 ± 0.06 min−1 that we
determine on solid media is comparable to those typically found in liquid cultures
(αB0 ≈ 0.1 min−1 in Ref. [62]), but with significantly different values for α and B0
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separately. Ref. [62] reports α ≈ 10−9 ml/min and B0 ≈ 108 ml−1, meaning that our
adsorption rate is several orders of magnitude lower than in liquid, with the density
of bacteria being the corresponding orders of magnitude more dense. This is in good
qualitative agreement with Eriksen et al. [170], who showed using computational
models that adsorption rates were substantially lower in microcolonies than in well-
mixed liquid cultures. Their explanation is that the spatial structure in microcolonies
significantly reduces the hosts’ potential for exposure to phage, both because the
bacteria at the periphery of the microcolony shield the bacteria in the centre, and
because the close packing of cells means that not all of the surface is easily accessible
to the phage for adsorption.

4.5 Lysis Time on Solid Media

Much like adsorption rate, lysis time is traditionally measured in liquid media, since
it requires periodic and precise sampling of the phage population (Sec. 4.2.2). This
approach is not easily adapted to measuring lysis time on agar plates because, as we
have shown in the previous section, adsorption is significantly slower on plates than in
liquid, meaning that it is difficult to ‘synchronise’ infections at the start of the protocol.
In this section, we therefore take a different approach.

The reaction-diffusion models of plaque growth presented in Chapter 2 produce
a front which expands by the width of the infected region ∆xI during one lysis time
interval. As a result, the dimensionless infection region width ∆xI is equivalent to the
dimensionless speed c, as predicted in all the models and confirmed by the numerics
(Fig. 4.11). In physical units, this means that the plaque front travels the width of the
infected region every lysis time.

By utilising phage engineered to result in fluorescent infected cells (see [163] and
Chapter 3), we image a growing plaque of such phage over time in both fluorescent and
brightfield channels to determine the distributions of infected and uninfected bacteria,
and estimate the width of infected cells ∆xI . By simultaneously measuring the speed
of the expansion c, the lysis time in solid media and its variation during the course of
an expansion could be estimated from τ = ∆xI/c.
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Fig. 4.11 Dimensionless width ∆xI shown to be equal to c for all models across the
range of f and Kmax investigated in Fig. 2.7, corresponding to an expansion that
travels the width of the infected region every lysis time. We attribute the small
discrepancy observed at lower values to the limited convergence of the front profile to
its steady-state because of trade-offs between precision and computational cost. Figure
made from material included in Chapter 2 and Ref. [171].

4.5.1 Methods

Sample Preparation

90 mm petri dishes containing 25 ml of 20 g/l agar (VWR Chemicals), with LB
(Invitrogen) - NaCl concentration 10 g/l - were prepared and left to dry for several
hours. Plates were then refrigerated if they were to be used at a later date.

Overnight liquid cultures of E. coli BW25113 were grown from single colonies at
37 °C in LB. Then, 20 µl droplets of bacteria were pipetted onto the surface of the
agar and left to dry. These plates were then incubated for approximately 1 hour. 2 µl
droplets of T7mEYFP were then pipetted onto the surface of the bacteria.

Data Acquisition

The plates were imaged using a Zeiss Axio Zoom.V16 stereo microscope equipped with
a Zeiss PlanNeoFluar Z 2.3x/0.57 FWD 10.6 mm objective. Images of the sample were
taken every 10 minutes for a period of 8 hours. During the imaging period, the sample
was kept with its lid on at 37 °C using an ibidi Multi-Well Plate Heating System.
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Image Analysis

An example of the type of images collected during the expansion of T7mEYFP are shown
in Fig. 4.12. The bright area in the brightfield image shows the plaque in the bacterial
lawn. In the fluorescence image, a bright band can be seen at the edge of the plaque,
which corresponds to the region of infected cells. All of the images were analysed using
Fiji (v1.52h), an open source distribution of ImageJ focused on scientific image analysis
[156, 157].

Brightfield Fluorescence

2 mm 2 mm

Fig. 4.12 A pair of example images. The bright area in the brightfield image shows
the plaque in the bacterial lawn. In the fluorescence image, a bright band can be seen
at the edge of the plaque. This corresponds to the region of infected cells.

The first step in the analysis is to identify the centre of the plaque. This is
done by automatically thresholding the brightfield image, such that ideally the pixels
corresponding to the plaque are white and everything else is completely black. The
edge of the plaque is then identified using the wand tool, which traces around the
boundary between white and black pixels. The centre of mass of this boundary is then
measured, and taken to be an approximation of the centre of the plaque. This process
is essentially the same as the initial steps of the protocol to identify phage sectors
discussed in Chapter 3 - see Fig. 3.4 for illustration.

Next, the shortest distance r between the plaque centre and the edge of the image
is found. A line is then drawn a distance r outward from the plaque centre, at an
angle θ defined clockwise from the positive x direction.3 The intensity profile in the
fluorescent image is then found along this line, both as a function of position along the
line and as a function of frame in the timelapse. This process is then repeated at 5°
intervals around the plaque, producing a total of 72 profiles.

3How θ is defined here does not actually matter, so long as it is done so consistently.
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Data Analysis

The profiles produced during the image analysis are then analysed using MATLAB. It
can be seen in Fig. 4.13b that the profiles produced contain many unwanted features,
such as sharp jumps in intensity at the boundaries between tiles, as well as generally
larger intensities inside the plaque compared to outside the plaque.
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Fig. 4.13 An illustration of the way the data is analysed for an example image. (b):
Initially, the fluorescent intensity profile along a line extending radially outward from
the centre of the plaque is found. (c): The time average of this profile is then determined
using the current frame, and three frames in the past/future. (d): This time averaged
profile is then subtracted from the profile in the current frame to remove unwanted
features such as the edges between tiles in the image. (e): A moving average is taken
of the adjusted profile to reduce the level of noise in the signal, with the averaging
window corresponding to 1% of the length of the profile. A clear peak corresponding
to the region of infected cells is highlighted with a red star.

To remove such features, the time averaged background of the profile is calculated
using the current frame, and three frames in the past/future. The choice of three was
made by trial and error, as either too many or too few frames results in the peak simply
being removed. This time average background is shown in Fig. 4.13c in comparison to
the profile in a single frame. This background is then subtracted from the intensity
profile resulting in an intensity profile which is approximately 0 in regions where the
image does not change significantly from frame to frame (Fig. 4.13d). Finally, given this
profile is itself very noisy, a moving average of the profile is taken, with the averaging
window corresponding to a size of 1% of all of the data (± ∼20 mm). After this
final step is complete, a clear peak in intensity can be seen in the profile (Fig. 4.13e),
corresponding to the peak in intensity observed in the infected region.
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This peak then has to be identified, and its properties (i.e. position and width)
need to be measured. This is done in two separate ways, although as we will see later
both produce similar results.

The first involves using the MATLAB signal processing function findpeaks which
finds local maxima in the input signal vector (i.e. fluorescent intensity as a function of
position in our case). What is considered a “peak” is controlled by a set of optional
inputs including maximum number of peaks, minimum peak height, minimum height
difference between neighbouring peaks, minimum peak separation, minimum peak
width, maximum peak width and minimum peak prominence, amongst others. These
properties were discussed in more detail in Chapter 3, but for our purposes at the
moment, the function is simply run without any of the optional inputs, meaning that it
identifies all of the peaks in the signal. The peak corresponding to the infected region
is then assumed to be the most prominent peak (the peak which stands out relative
to its surrounding landscape the most - see Fig. 3.5) of those identified, and so the
position and width of that peak are recorded, with the other peaks being discarded.

The second method essentially consists of fitting a Gaussian curve to the peak in
the profile. I find this method to be less preferable because it requires more ‘user input’
than findpeaks, but I include it here because it provides a useful point of comparison.4

The type of user input that I mean is that for MATLAB to fit a Gaussian curve to
the correct peak in the data, one has to provide a reasonable starting point for where
the peak can be found, otherwise the script will fit a curve somewhere in the noise of
the signal. To find this starting point, one has to look at the initial frame and identify
roughly where the peak is. To avoid doing this in each frame the starting point for the
code moves along by the average speed of the front. This is an imperfect process, and
sometimes the code still fits a curve to the wrong part of the signal. With a bit of trial
and error however, it does produce similar results to the first method.

In both cases, the width of the peaks are measured along with their position as a
function of time. From the position as a function of time the plaque speed can also be
determined by simple linear regression.

4The reality is also that while I have presented it here as the second method, it’s actually the way
I originally thought to do it, before I discovered the findpeaks package.
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4.5.2 Results

Lysis Time on Plate

The lysis time τ as a function of time during the course of the expansion are shown in
Fig. 4.14 and Fig. 4.15. These figures show the radial average around the edge of the
plaque. Fig. 4.14 shows the radial average of 56% of the profiles which were observed
to show a clearly visible5 fluorescent band in the original images, while Fig. 4.15 shows
the radial average of all of the directions.

It can be seen that both the Gaussian method and the findpeaks method produce
qualitatively very similar results. I believe the slight offset arises for the following
reason. The findpeaks function determines the width at a reference line, which is by
default positioned a distance below the peak equal to half of the peak’s prominence.
For comparison to the Gaussian approach, this height is then taken to be equal to
the full width at half maximum (FWHM), and converted into a standard deviation σ
that one would determine in an equivalent Gaussian curve. Fitting a Gaussian curve
directly however usually results in the inclusion of some of the surrounding ‘noise’ of
the peak, as the peak itself is never a perfect Gaussian curve. This results in a peak
which is slightly wider than that determined from a direct measurement of the FWHM.

It is also worth reiterating my earlier preference for the findpeaks results. While
both methods produce similar results, particularly on the ‘good’ data (the 56% of
profiles with a clearly visible band, shown in Fig. 4.14), the findpeaks approach performs
much better on the ‘bad’ data (the remaining 44%), despite requiring no user input.
Even though both average out across many profiles to be similar, it’s clear from the
single profiles that the results are much more sensible using findpeaks. The Gaussian
method will often fit to the ‘wrong’ peak, which in some cases is easy to identify, for
instance when the height of the peak is negative, or the plot of peak position against
time is not a straight line as expected since the plaque boundary moves at roughly
constant speed.

Several aspects of the results we see are interesting. Firstly, it is worth noting that
the earliest time measurements of lysis time are in line with those that we would expect
from liquid measurements (i.e. ∼ 20 mins, see Fig. 4.16). As the expansion progresses,
however, we see the lysis time initially increase, then return to its original value, before
increasing again until the end of the expansion, eventually reaching a lysis time that is
2-3 times larger than the initial value.

5At least to me
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Fig. 4.14 The radially averaged lysis time at the boundary of the plaque over the course
of the expansion. The average is taken over approximately 56% of the angles in which
a strong band was clearly visible. (a) Shows the position of the plaque boundary as a
function of time. (b) Shows the speed of the front as a function of time, calculated at
each point from the position in a 50 min window (i.e. from 5 frames of the timelapse).
(c) Shows the width of the infected region. (d) Shows the lysis time. A comparison
between the two different methods are shown, with both showing qualitatively similar
results. Error bars are given by the standard error on the mean across the different
directions.

Impact of Host State

We wish to determine the degree to which the observed increase in lysis time during the
course of the expansion Fig. 4.15 is due to a change in the metabolic state of the host.
To this end, we grew a lawn of bacteria on an agar plate under the same conditions
used for the main experiment. Then, this bacteria was re-suspended in fresh LB, and
a lysis curve in liquid was performed, as described in Chapter 2. These results are
shown in comparison to “regular” liquid lysis curve measurements in Fig. 4.16.
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Fig. 4.15 The radially averaged lysis time over all directions around the plaque.
A comparison between the two different methods are shown, with both showing
qualitatively similar results. Error bars are given by the standard error on the mean
across the different directions. Some data points for the Gaussian method at large
times are outwith the y axis limit.
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Fig. 4.16 A comparison of the single burst curve parameters found from the average of 5
measurements. “Liquid” measurements refer to measurements taken with exponentially
growing bacteria, using the standard lysis curve assay described in Chapter 2. “Solid”
measurements refer to the same protocol, but using bacteria that had been grown for 6
hours on an agar plate before being resuspended in fresh LB.

It can be seen that the mean lysis time τ is larger on average in the bacteria
recovered from the agar plate. The increase in lysis time is significant (P = 0.041),
whereas the changes to στ (P = 0.395) and β (P = 0.528) are not. The increase in τ
however is substantially less than the increase in lysis time that we observe during the
course of the expansion on the plate Fig. 4.15.
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This is obviously not a perfect control, as the plate bacteria are re-suspended in
fresh LB, whereas on the plate some amount of the LB will have been used up. If
absolutely no nutrients are provided in the liquid, however, for instance if the liquid
measurements are carried out in water, then we found that no lysis/burst occurs
(Fig. 4.17a). It’s not clear how one would best assess the proportion of the nutrients
that were used up in the plate over a given time period, as it is also likely that the
bacteria will use nutrients globally and locally at different rates i.e., the nutrients
initially directly beneath the lawn will likely be depleted more rapidly than those
originating furthest from the bacteria. It’s also true that in the plate after 8 hours
there must still be some nutrients as the plaque is still growing at this time.

In an attempt to address this issue, we also performed lysis curves where the bacteria
from the plate were re-suspended in partially ‘spent’ LB. To create this spent LB, liquid
cultures of LB were inoculated with bacteria and allowed to grow until a target optical
density OD600 was reached. By comparison to the OD600 of an overnight culture, we
could then estimate the proportion of the available nutrients that had already been
used at that point. This culture was then centrifuged to pellet the bacteria, and the
supernatant (the spent LB) removed.
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Fig. 4.17 (a) A lysis curve performed in water, without the provision of any nutrients.
No change in the number of PFUs can be seen. (b) Lysis curves performed in bacteria
that had been re-suspended in ‘spent’ LB, i.e. LB that had already been used to grow
bacteria to a target OD600. The percentage spent indicates the target OD600 with
respect to the density of an overnight culture.
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The results of the lysis curves performed in the spent media can be seen in Fig. 4.17b.
While the 71% spent media results in a significantly reduced burst size, little difference
is made to the lysis time. This observation could potentially be explained by a limited
portion of infected cells successfully lysing, due to the limited availability of nutrients.
If, for instance, half of the cells which were infected lysed at the usual time, while the
other half never lysed, this would produce a lysis curve where the fitted lysis time was
the same, but the fitted burst size was halved. Regardless, these observations further
suggest that the cause of the substantial increase in lysis time observed on plate is
factors beyond the availability of nutrients.

4.6 Macrofluidic Channels in Agar Plates

One issue that has appeared multiple times throughout this Chapter is that of changing
and uncertain availability of nutrients during experiments on plate. It would therefore
be beneficial if the supply of nutrients to the plate could be carefully controlled, without
disturbing the bacteria and phage that are growing on the surface. To achieve this, the
idea is to create channels under the surface of the agar through which media can flow.
The rate at which the media is flowed through can then be controlled, and maintained
at a constant rate, in principle indefinitely.

4.6.1 Methods

Custom glass plates were designed as shown in Fig. 4.18. These plates have 8 × 3.2
mm diameter holes evenly spaced along each side of the plate. To prepare the plates
for experiments, first everything is autoclaved to ensure it is sterile. Then, Tygon S3
E-Lab tubing (outer diameter 3.2 mm) is placed through the holes on opposite sides of
the plate, such that the tubing forms a straightly line between opposite walls of the
plate. It should be noted here that while the plates had the ability to accommodate
8 channels, only 4 were used in an attempt to reduce the risk of damaging the plate
while it was being constructed (this will be discussed further later). Any holes that are
not in use are sealed using either autoclave tape or blu tac. Next, 45 ml of 2% agar
with no LB is poured into the plate. The lack of LB in the agar is to ensure that any
growth of bacteria and phage on the surface is due to nutrients supplied exclusively
through the channels. After the agar has dried, the tubing is removed, leaving an agar
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plate with channels running under the surface that can be accessed via the side of the
plate.

Fig. 4.18 An illustration of the the preparation procedure of agar plates with subsurface
macrofluidic channels. For scale, the plates are a 7 cm square, and the holes have a
diameter of 3.2 mm. Initially, any holes that will be unused are sealed using blu tac or
autoclave tape. Then, Tygon S3 E-Lab tubing is used to connect holes on opposing
sides of the plate. 45 ml of 2% agar without LB is then poured into the plate, and left
to harden, at which point the tubing is removed.

The next step in preparing the plates is to reconnect tubing to each end of all
channels, such that media can be flowed through. This step is very ‘fiddly.’ The tubing
has to be inserted into the channels in such a way that the tubing forms a seal with
the surrounding agar, so that pressure can be maintained within the channels and no
liquid flows out. This is difficult to achieve without damaging the surrounding agar in
some way, resulting in no seal (see Fig. 4.24, for instance). Similarly, once the tubing
has been successfully inserted, one must be careful not to move it around too much
for the same reason. This is the reason that 4 channels were used instead of 8, so as
to increase the space between neighbouring channels, and reduce the risk of bumping
previously inserted channels. In my experience, this step is easier if the ends of the
tubing are cut in a way such that they are ‘blunt,’ rather than ‘pointed’ (Fig. 4.19).
Pointed tubing feels easier to insert through the hole in the side of the plate, but that
is because it does not need to be inserted straight, which increases the risk of damaging
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the agar. While blunt tubing feels harder to insert, there is a lower risk of damaging
the agar.

PointedBlunt

Fig. 4.19 A cartoon to illustrate the benefit of inserting ‘blunt’ rather than ‘pointed’
tubing. The tubing is shown in grey, the glass wall of the plate is shown as the white
rectangles, with the agar appearing in green. It can be seen that while it is easier to
insert the pointed tubing, it is more liable to rupture the surrounding agar.

Once inserted, the end of the tubes on the outlet side of the plate are placed into a
bottle containing LB. The tubes on the inlet side of the plate are then merged into one
tube using Y-splitters, and this tube is connected to a syringe. Media is then drawn
into the syringe, through all of the tubing and the channels in the plate. The ends of
the tubing in the outlet bottle must remain submerged, so that the tubing remains
sealed end-to-end. The reason for drawing the media through in this fashion is that,
from experience, if the media starts in the syringe, and the tubing is initially filled
with air, then media does not flow down all of the channels unless a lot of pressure
is applied, which risks damaging the plate. This is the same reason that the 4 outlet
channels are not merged into one using the Y-splitters, as that would result in the
same issue when drawing up the liquid.

If there are no leaks anywhere, the media can then be pumped slowly back through
the channels to supply nutrients to the plate. For these initial measurements, the media
was pumped through at a total rate of 1 ml/hr. As usual, overnight liquid cultures of
E. coli BW25113 were grown from single colonies at 37 °C in LB. To create bacterial
lawns, 20 µl droplets of overnight culture were pipetted onto the agar surface and left
to dry. If the growth of plaques was also being observed, 1 µl droplets of wild-type T7
were pipetted onto the surface of the lawns.
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The plates were then imaged using a Nikon D5300 camera equipped with a Nikon
AF-P DX 18-55 mm f/3.5-5.6G VR lens. The camera is held on a stand pointed
downward towards the sample, which is situated above a light table. The camera is
connected to an intervalometer to allow for the acquisition of a time-lapse. During
the imaging period, the sample was kept at 37 °C using an ibidi Multi-Well Plate
Heating System. To allow the tubing to access to plate, there is a small (∼4 mm) air
gap between the base and the lid of the heating system. A thermometer was used to
check the temperature inside the chamber, and it was found that the air gap causes a
reduction of 0.5 °C.

4.6.2 Results

Bacteria Grow Using Nutrients from Channels

It can be seen from the images in Fig. 4.20 that bacteria are able to grow using only
the nutrients provided through the sub-surface channels.

Fig. 4.20 Bacteria are able to grow on plates where nutrients are provided exclusive
through sub-surface channels. The plate is made of 2% agar but contains no nutrients.
LB is flowed into the plate at a total rate of 1 ml/hr. The time indicated in the bottom
right of the image is of the format [hh:mm]. For scale, the plate is a 7 cm square.

We quantify growth in two ways: (i) pixel density and (ii) radius. For the first
approach, the pixel intensity of the droplets was measured as a function of time.
The pixel intensity of the plate background, i.e. regions with no bacteria, was also
measured. The background profile is then subtracted, and then multiplied by -1.
This multiplication occurs because in our set-up, the growth of cells decreases the
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transmitted light, and therefore the intensity. This means that as the lawns grow, the
intensity of the droplet minus the background becomes an increasingly negative value.
Since we want the number to be a proxy for density, it makes more intuitive sense to
make it positive. To account for the uneven light intensity across the image, the growth
curves were then shift up or down such that they match at time t = 0. Averaged across
the 5 droplets this results in the growth curve that can be seen in Fig. 4.21a.
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Fig. 4.21 (a) A proxy for the mean density of bacteria in the lawns as a function of
time. The density proxy is calculated from the pixel intensity in the image. The shaded
region indicates the standard deviation across the 5 droplets. (b) The equivalent radius
of the central lawn as a function of time, measured from the area of the lawn assuming
a circular geometry. A straight line fit of the period between 12 and 25 hours is shown
for comparison.

From this it can be seen that the bacteria are still growing at 47 hours, albeit at
a more limited rate. This is perhaps unsurprising, as over time the supply of oxygen
to the bacteria at the base of the colony will become limited by all of the cells above
them. Additionally, we might expect that as the colony becomes thicker and thicker,
this will have a diminishing effect on the fraction of light that is transmitted.

The size of the central lawn as a function of time was also measured by thresholding
the image such that the lawn and the background were completely black/white. This
allowed easy measurement of the area of the lawn in pixels, which was converted into
an equivalent radius assuming a circular geometry (Fig. 4.21b). This similarly confirms
that the lawns are still growing after 47 hours, albeit also at a reduced rate. The reason
that only the central lawn was used was that it does not overlap with any channels,
which made the image analysis more straightforward.
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Channels Prevent the Plate from Drying

As well as providing the bacteria with nutrients required for growth, another benefit
of the channels is that they keep the agar hydrated and prevent it from drying out.
This is evident by observing how rapidly plates which contain no channels, but which
are otherwise kept in the same conditions, dry out (Fig. 4.22). The only difference
between Fig. 4.22 and Fig. 4.20 is that the plates in Fig. 4.22 have no channels, and
instead have LB supplied directly in the agar (i.e. they are ‘normal’ plates).

Fig. 4.22 Bacteria grown on plates with no channels, but with LB in the agar as is
standard practice. The plates are kept in the same conditions as in Fig. 4.20. The
time indicated in the bottom right of the image is of the format [hh:mm]. For scale,
the plate is a 7 cm square.

Comparison to Bacterial Growth in ‘Normal’ Conditions

The conditions of this setup are themselves, however, admittedly not optimised to keep
the plates from drying out. There are two main factors that contribute to this. Firstly,
as noted previously, there is a small (∼4 mm) gap between the base and the lid of the
heating system, which needed to be there to allow access to the tubing. Secondly, no
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lids were placed over the plates inside the chamber. Both of these factors combined
greatly increase the rate of evaporation from the plate.

So as to have a more meaningful control for the growth rate of the bacteria in normal
conditions, we therefore compare the growth in the channelled plates to lawns grown
on plates that are covered by a lid, and where the chamber itself has no unnecessary
air gaps, as this prevents the plates from drying out so fast. Interestingly, we find that
in these conditions, the control lawns appear to grow significantly faster in terms of
our density proxy (Fig. 4.23a), but slightly slower in terms of the increase in radius of
the lawn (Fig. 4.23b,c). These rates are likely dependent on the rate at which nutrients
are supplied to the plate, and so perhaps this indicates that greater rates are required
to better mimic the conditions of the control plate.
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Fig. 4.23 Growth of bacterial lawns on plates with channels compared to on a control
plate under normal conditions (i.e. with efforts made to minimise evaporation). (a) A
proxy for the mean density of bacteria in the lawns as a function of time. The density
proxy is calculated from the pixel intensity in the image. The shaded region indicates
the standard deviation across multiple droplets. (b) The equivalent radius of the lawns
as a function of time, measured from the area of the lawn assuming a circular geometry.
Straight line fits are shown for comparison. (c) A closeup of the region highlighted
by the yellow dotted rectangle in (b). Channels data is the same data as shown in
Fig. 4.21, but shifted in time to aid comparison.

Plaques Also Form on Channel Plates

It can be seen in Fig. 4.24 that plaques are also able to form on bacteria lawns, where
the nutrients are provided exclusively through the sub-surface channels.

In this plate, one of the channels was damaged when connecting the tubing. To
create a proper seal, the tubing that would have connected to the outlet side of the
plate was then connected directly to the Y-splitter on the inlet side, i.e. the broken
channel was simply bypassed. This results in the plate drying out and shrinking during
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Fig. 4.24 Plaques are able to grow on plates where nutrients are provided exclusive
through sub-surface channels. The plaques are visible as small, circular clearings in the
centre of the bacterial lawns. The plate is made of 2% agar but contains no nutrients.
LB is flowed into the plate at a total rate of 1 ml/hr. The time indicated in the bottom
right of the image is of the format [hh:mm]. For scale, the plate is a 7 cm square. One
of channels in the plate was damaged when connecting the tubing, meaning that it
could not be used. This channel was bypassed, with the media being pumped directly
to the reservoir at the end. The dotted blue rectangle highlights the damage to the
channel.

the course of the experiment. Around the 14 hr mark, this shrinking brakes the seal of
all of the other channels, and liquid leaks out of all of the channels (difference between
hour 12 and hour 16 in Fig. 4.24).

Before this point however, it can be seen that small circular plaques had formed
in the centre of the bacterial lawns, indicating that phage are able to grow in such a
nutrient environment. Although not ideal, this ‘broken’ plate is also useful in that it
indicates that at least 4 channels are necessary to prevent the plate from drying out,
while 3 are insufficient.

4.7 Discussion

In this Chapter, I have presented several experimental protocols intended to address
various technical challenges and shortcomings of existing techniques. At present,
to measure phage phenotypic parameters one has to rely on measurements taken
exclusively in liquid cultures, which are not necessarily representative of the phage
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behaviour in bacterial lawns. This discrepancy is due to multiple effects, such as
interactions that may occur between closely packed neighbouring cells in lawns, as
well as the changing conditions that arise during growth on an agar plate. While the
techniques that I have presented represent an important step forward, there is clearly
still work to do in refining the methods in each case.

The protocol developed to measure adsorption rate in lawns appears to work well,
as we are able to verify that no adsorption occurs in the non-adsorbing control. The
protocol itself has the benefit of being fairly simple, and doesn’t require any additional
materials or equipment compared to existing protocols to measure adsorption rate in
liquid. The main downside of this protocol is that there are many sources of quite
significant error, meaning that a significant number of replicates are required to obtain
a reliable average. This condition however is generally true of adsorption measurements
in liquid too.

The protocol to measure lysis time in lawns also appears to work, as it does produce
a lysis time which seems reasonable. One significant drawback of this protocol is that it
requires a phage which is able to induce fluorescence in infected cells, meaning that the
measurement cannot be made using any phage without genetic modification. There
also remains some questions, both about the protocol and its results. For instance,
it is not entirely clear how well the width that is measured in the fluorescent images
actually maps to the infected cells. One of the reasons for this is purely practical - the
widths measured through this procedure have a relatively large corresponding error. I
expect, therefore, that while this technique should be able to give an estimate for the
lysis time that is better than order of magnitude, it will not produce highly precise
results.

Additionally, as we shall see later in Chapter 6, images taken in a microfluidic
mother machine (Fig. 6.2) seem to suggest that cells only become visibly fluorescent
∼6 mins after infection, consistent with the timing of the expression of late genes in
T7 [172]. While this could potentially alter the precise lysis time measured, the trend
of increasing lysis time during the expansion should remain. This raises the question:
why? Our controls in liquid would seem to suggest that this effect is not caused by a
reduction in nutrients or the change in metabolic state. Further work will be required
to better answer this question.

Finally, it was demonstrated that channels under the surface of the agar could be
used to supply nutrients at a constant and controllable rate. Not only does this have
the benefit of reducing uncertainty when it comes to levels of nutrients, but it also
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prevents the plates from drying out, meaning that experiments can be run for much
longer periods of time, potentially indefinitely. The main difficulty with this approach
is purely practical - it’s difficult to set up these plates without damaging something
that prevents their use. Many of these issues could be fixed with simple modifications
to the equipment, such as increased spacing between adjacent holes, or 3D printed
tools that could act as connectors between the agar and the tubing, reducing the risk
of damage. Beyond this, further work needs to be done to fully characterise the impact
of all of the physical parameters of the system, e.g. the number and density of channels
under the surface of the plate, the size of these channels, the density and thickness
of the agar, the flow rate and concentration of nutrients, etc. In addition, while not
explored here, this kind of set-up could be easily adapted to different purposes, such
as supplying antibiotics, creating nutrient or antibiotic gradients, or looking at the
impact of stopping/starting the supply of these products through time.
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The Evolutionary Impact of Superinfection

This chapter is based on

M. Hunter and D. Fusco, Superinfection exclusion: A viral strategy with short-term
benefits and long-term drawbacks, PLOS Comput. Biol. 18(5): e1010125, (2022)

5.1 Introduction

Here, we explore how allowing or preventing superinfection impacts the evolutionary
fate of neutral and non-neutral variants in a simulated well-mixed phage population
with constant, but limited, availability of host. We choose to focus on superinfection
exclusion mechanisms that allow secondary adsorption events, but prevent DNA
insertion, so that in isolation the phage growth dynamics are the same in the two cases
and a direct comparison between the (dis)advantages of the two strategies is more
straightforward. We first quantify the effective population size of superinfecting (S) and
superinfection-excluding (SX) populations to estimate how these strategies affect genetic
drift. We then turn our attention to the effect of non-neutral mutations on (i) the phage
growth rate in isolation and (ii) their ability to out-compete the wild-type. Having
characterised both the neutral dynamics and the fitness of different variants, we put both
aspects together to explore the balance between drift and selection in superinfecting
and superinfection-excluding populations, showing that selection is consistently more
efficient in superinfecting populations. Finally, we study the evolutionary fate of a
mutation which changes whether an individual is capable of preventing superinfection or
not. Overall, this work establishes a baseline expectation for how the simple occurrence
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of superinfection impacts fundamental evolutionary outcomes and provides insights
into the selective pressure experienced by viral populations with limited, but constant
host density.

5.2 Computational modelling framework

We study the evolutionary fate of phage mutants using a stochastic agent-based model.
We simulate a well-mixed population of phages V interacting with a population of host
bacteria that is kept at a constant density, similarly to a turbidostat [173, 174]. Each
phage i has a defining set of life history parameters, namely an adsorption rate αi, a
lysis time τi and a burst size βi, and each bacterium can either be in an uninfected
B or an infected I state. Throughout most of this Chapter, the subscripts indicating
phage i will be omitted to improve readability. Additionally, we shall use symbols
with ‘hat’ notation (e.g., τ̂) to represent dimensional variables (e.g., τ̂ = 15 min), and
symbols without the ‘hat’ notation to represent non-dimensional/simulation variables.

In each simulation time-step ∆t, adsorption, phage replication within the host
and lysis occur. The number of infecting phage VI in each step is drawn from a
Poisson distribution whose mean corresponds to the expected value αV (B + I)∆t

in a well-mixed population. The infecting phage are removed from the pool of free
phage, and VI bacteria, whether infected or uninfected, are chosen uniformly and with
replacement to be the infection target. In both superinfecting and superinfection-
excluding scenarios, the final lysis time τ of the host is set by the first phage to infect
it and it is treated as deterministic to limit the number of model parameters. This
choice was made for the sake of simplicity, given the complex and varied nature of
superinfection mechanisms [74–76]. A preliminary analysis of the effect of stochasticity
in lysis time is presented in Sec. 5.3.4. In the case where multiple phage infect the
same host in a single time-step, the ‘first’ phage is chosen uniformly among those
infecting the host. Phage replication within the host post-adsorption depends on
whether superinfection is allowed or prevented:

Absence of superinfection: τ steps after the first adsorption event, the bacteria will
lyse, releasing new phage into the pool of free phage. The number of phage released Y
is drawn from a Poisson distribution with mean β.

Presence of superinfection: Pseudo-populations tracking the growth of phage inside
the host are used (see Fig. 5.1b). Because here we focus on the case of two superinfecting
phage populations (a and b), this results in two pseudo-populations pa and pb. During
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Fig. 5.1 (a): In superinfection-excluding scenarios, all of the progeny released as the cell
lyses are copies of the initial infecting phage, whereas when superinfecting is permitted,
the progeny are split between both types of phage. (b): In our model, adsorption of
phage to host occurs each timestep ∆t, with the number of infecting phage VI being
drawn from a Poisson distribution whose mean corresponds to the expected value
αV (B + I)∆t in a well-mixed population. Note that phage are able to adsorb to
both uninfected and infected hosts. (c): During superinfection, pseudo-populations pa
and pb are used to represent the growth of two phage types (a and b) inside the host
cells. These populations increase by 1 whenever a phage infects the host, and each
population increases by some fraction of its rate β/τ determined by the relative size of
the populations in the previous step. (d): Upon lysis, phage are released according
to the relative size of the two pseudo-populations at that point (see text for details).
Lysed cells are then immediately replaced with fresh hosts. (e): We also introduce a
decay, or removal, of free phage at rate δ, which accounts for natural phage decay and
the outflow of the turbidostat system.
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the intermediate steps between the first adsorption event and lysis, in the case where
there is only one type of phage inside the host, that population will grow at a constant
rate β/τ , where β and τ are both specific to the type of phage (i.e. pa grows at rate
βa/τa and pb grows at rate βb/τb)1. This is to reflect previous reports of a positive
linear relationship between lysis time and burst size [51].

In the event where both types of phage are present within the host, to reflect the
intracellular competition for the host’s resources, each population increases by only a
fraction of its potential. We assume that the host contains a fixed amount of resources
that can be used in each step, and that the division of these resources is dictated by
the sizes of the populations within the host at that time e.g., if there are 10 of one
phage and 20 of another, the first will get 1/3 of the resources and the second will get
2/3 of the resources. This means that in a single time-step pa increases by an amount
βa/τa × pa/(pa + pb) and pb increases by an amount βb/τb × pb/(pa + pb).

At the point of lysis, the total number of phage released Y is drawn from a Poisson
distribution with mean pa + pb − Vn, where Vn represents the number that infected the
host prior to lysis. This is to ensure that, in the event where a cell is only infected by
1 type of phage, its mean burst size remains β, regardless of how many phages had
infected the cell until that point. The number of phage released of one type Ya is then
drawn from a binomial distribution with Y attempts and probability pa/(pa + pb) of
success, with any remaining phage being the other type (Yb = Y − Ya).

Following lysis, the lysed bacteria are immediately replaced with a new, uninfected
host, resulting in a bacterial population of constant size. We also introduce a decay,
or removal, of free phage at rate δ, which accounts for natural phage decay and the
outflow of the turbidostat system.

Our decision to model the phage-bacteria interactions in this way is motivated by
a desire to have a relatively ‘simple’ model with which we can explore the baseline
evolutionary impact of superinfection and superinfection-exclusion mechanisms. It
simplifies various biological aspects by design. For instance, in a true turbidostat,
bacteria are able to replicate, and some of the host cells will be removed through the
outflow of the system along with the phage. Our system neglects these aspects, as we
desire a truly constant host population size, rather than one in which the populations
go through repeated cycles of growth and dilution, thereby introducing bottlenecks

1In Appendix 5.A we also present the results from a version of the model where lysis time and
burst size are set by the initial phage.
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that may obscure the impacts of superinfection. Some of the consequences of these
decisions will be discussed further in Sec. 5.4.
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Fig. 5.2 An example realisation of the simulation. The resident phage population
initially grows until it reaches a steady-state Vss. The average behaviour of the model is
mostly captured by a set of delay differential equations (DDEs), set out later in Eqs. 5.1.
Slight discrepancies arise due to the fact that in the simulations, infection, decay and
lysis must occur in discrete steps. Parameters used are α = 3× 10−6, β = 100, τ = 15,
δ = 0.1 and B0 = 1000.

Simulations were initialised with B0 uninfected bacteria and 2B0 “resident” phage,
and then run until the phage, uninfected bacteria and infected bacteria populations
each reached steady-state values (Vss, Bss and Iss respectively), determined by their
running average (Fig. 5.2). This steady-state arises due to a balance between phage
production and loss and it is independent of the initial number of phages (Fig. 5.3).

5.3 Results

5.3.1 Superinfection leads to a larger effective population size

First, we find that genetic diversity consistently declines faster in populations that
prevent superinfection, indicating a smaller effective population size when compared to
superinfecting populations (Fig. 5.4). This can be understood by considering that in
the superinfecting scenario, each phage has more opportunity to successfully infect a
host cell, since secondary infections can result in the production of some offspring when
the cell lyses. Therefore, more phage are able to contribute to the next generation,
thereby slowing the loss of diversity.

In addition, Fig. 5.5 shows that in both superinfecting and superinfection-excluding
populations higher adsorption rate and burst size, and shorter lysis time result in larger



134 The Evolutionary Impact of Superinfection

0 20 40 60 80
3.945

3.95

3.955

3.96

3.965

3.97

3.975
10

4

Fig. 5.3 The steady-state phage population Vss reached does not depend on the initial
number of phage V0 in the simulations. In all, α = 3× 10−6, β = 100, τ = 15, δ = 0.1
and B0 = 1000. Error bars show the standard error on the mean of 10 simulations.
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Fig. 5.4 Linear fit to log transformed heterozygosity data, with slope Λ ≡ 2/Ne

revealing that allowing superinfection (red, S) results in a larger effective population
size compared to the case where superinfection is excluded (blue, SX). Parameters
used were α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. Data obtained is
the average of 1000 independent simulations

effective populations. This observation is, however, partially attributable to the change
in total phage population NT = (Vss + βIss), where Vss indicates the steady-state free
phage population, Iss indicates the steady-state number of infected bacteria, and so
βIss represents the number of phage that inevitably will join the free phage population.
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Fig. 5.5 The effective population size in both superinfecting (S) and superinfection
excluding (SX) populations as a function of adsorption rate α, burst size β and lysis
time τ . Populations also shown scaled by the size of the total phage population
NT = (Vss + βIss). Parameters used were α = 3 × 10−6, β = 100 and τ = 15 unless
otherwise stated. As throughout, δ = 0.1 and B0 = 1000. Error bars are plotted but
are too small to see. The data is obtained from an average of at least 1000 independent
simulations.

Indeed, adsorption rate and lysis time impact both the effective and actual pop-
ulation sizes in the same way (i.e. Ne/NT ≈ const.). By contrast, larger burst sizes
increase the effective population size less than the actual population size (Fig. 5.5),
resulting in a decrease of Ne/NT . This can be interpreted by noticing that while
increasing burst size results in more phage, the number of phage that can actually
contribute to the next generation (i.e. the effective population size) is limited by the
number of bacteria that are available. Therefore, as burst size is increased, a larger
fraction of phage become wasted.

5.3.2 Neutral mutants are consistently more likely to fix in superinfecting

populations

To continue our characterisation of the neutral dynamics in both superinfecting and
superinfection excluding populations, we turn to the fixation probabilities of neutral
mutants (see Sec. 5.5.3), and determine how they are affected by the phage infection
parameters.
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Fig. 5.6 Probability of mutant fixation Pfix in the superinfecting (S) and super-
infection excluding (SX) scenarios, scaled by the initial frequency of the mutant
f ∗
0 = 1/(Vss + βIss), as a function of adsorption rate α, burst size β and lysis time τ .

Dashed lines indicate the simple average of the data for both the superinfecting (blue)
and non superinfecting (red) scenarios. These lines indicate that neutral mutants in
superinfecting populations experience a small advantage over mutants in an equivalent
non superinfecting population. Unscaled Pfix data can be seen in Supporting Informa-
tion, Fig. S4. Unless otherwise stated, the parameters used were α = 3×10−6, β = 100,
τ = 15, δ = 0.1 and B0 = 1000. The error in our estimate of the fixation probability
∆Pfix is given by ∆Pfix =

√
nfix/n, where n and nfix represent the total number of

simulations and the number of simulations where the mutant fixes respectively. The
data is obtained from a minimum of 14 million independent simulations.

Because the total phage population size depends on the life history parameters,
the initial mutant frequency corresponding to one mutant phage inoculated in the
population also varies with life history parameters. To account for this effect, we rescale
the fixation probability by the initial frequency of the mutant f ∗

0 = 1/(Vss + βIss),
which is the same in superinfecting and superinfection-excluding populations. Fig. 5.6
shows that Pfix/f

∗
0 ≈ 1 as the parameters are varied, indicating that the total number

of phages for a given set of parameters is the main controller of neutral dynamics.
Indeed, we find that the impact of the life history parameters on the probability

of fixation is what one would intuitively expect (Fig. 5.7): larger adsorption rate and
burst size, and shorter lysis time, increase the steady-state size of the phage population,
and reduce Pfix. In the following Section (Sec. 5.3.3) we also describe the average
behaviour of our simulations with a system of delay differential equations (DDEs). The
DDE solution shows that the total phage population at steady-state NT is the same as
in the stochastic model (Fig. 5.7).

Fig. 5.6 also shows that, on average, neutral mutants in the superinfecting scenario
are more likely to fix than mutants in an equivalent superinfection-excluding population
(red and blue dashed lines in Fig. 5.6 respectively). This result agrees with that found
by Wodarz et al. [131], who showed that in a superinfecting viral population, higher
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multiplicities of infection slightly favoured rare neutral and disadvantageous mutants in
the short term. The intuition behind this observation can be explained in the following
way: at the moment that the mutant is introduced, all infected cells are infected by the
resident phage. In the superinfecting scenario, the mutant population can therefore
grow by infecting an uninfected cell, or by infecting an already infected cell, as this
secondary infection will lead to some fraction of the burst size being allocated to the
mutant type. While resident phage can replicate by infecting either types of host, the
resident population cannot further grow by infecting previously infected cells. This
is because all infected cells are already exclusively infected with resident phage, and
superinfection of resident infected cells by more resident phage does not result in any
more resident phage being produced. As a result, superinfection increases the mutant’s
chance of survival in the early stages in comparison to the superinfection-excluding
counterpart, similarly to conditions of high vs. low MOI [131].

5.3.3 DDE Description of Model

The average behaviour of the model used in this Chapter can be described by a set of
delay differential equations (DDEs):

dV

dt
= −αV (B + I)− δV + βαVt−τBt−τ , (5.1a)

dB

dt
= −αV B + αVt−τBt−τ , (5.1b)

dI

dt
= αV B − αVt−τBt−τ , (5.1c)

where all of the symbols are defined the same as before (V , B and I indicate the
concentrations of phage, uninfected bacteria and infected bacteria as a function of time
respectively; α, β, τ and δ indicate the phage adsorption rate, burst size, lysis time
and decay rate respectively). The subscript is used to indicate that those terms are
calculated at time t− τ . The positive term in Eq. 5.1b accounts for the instantaneous
replacement of lysed cells in our turbidostat environment.

By numerically solving this DDE system, we can verify that for certain parameters,
a steady-state solution is reached where V = Vss, B = Bss and I = Iss, in agreement
with the average behaviour of the stochastic model used throughout this Chapter
(Fig. 5.2 and Fig. 5.7). In Appendix 5.B we also present a mathematical analysis of
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Fig. 5.7 Probability of mutant fixation Pfix in the superinfecting and non superinfecting
scenarios as a function of adsorption rate α, burst size β and lysis time τ . This is
the same as the data displayed in Fig. 5.6, prior to scaling by the initial frequency
f ∗
0 = 1/(Vss + βIss). Error bars are plotted, although in some instances may be too

small to see. This data is compared with the solution of the system of DDEs, with
the black dashed line represents the frequency f ∗

0 calculated from the steady-states
reached.

this DDE system, and show that our numerically determined steady-state populations
are consistent with the analytical expressions.

5.3.4 Stochastic lysis time

Here we will take a brief pause to explore our decision to implement stochasticity in
both adsorption and burst size, but not in lysis time. The reason we make this choice is
that to introduce stochasticity in lysis time in a realistic way would require additional
parameters. For instance, Campos et al. compare descriptions of lysis using piece-wise,
Gaussian and logistic-like functions [169]. Depending on the mathematical framing of
these functions, each would require at least one parameter that controls the width or
rise rate of the distribution. Given that our model already contains several parameters,
we preferred to choose a simpler description, where lysis time is deterministic.

Nevertheless, here we implement a version of the model previously described where
we introduce stochasticity in lysis time. In this version of the model, at the point
of infection, a lysis time L is drawn from a Gaussian distribution with mean τ and
standard deviation τ/10. The choice of standard deviation is based on lysis time data
collected for different variants of coliphage T7 (Fig. 5.8). In this case the variants
are an isolate of wild-type T7 originally obtained as an aliquot from the Richardson
Lab (Harvard Medical School, Boston, MA), and T7 mutant D111 (wild-type T7
background with deletions from base 532 to 1662) which was kindly donated by Dr.
Vivek Mutalik from the Berkeley Lab (Berkeley, CA). The full procedure can be found
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in Chapter 4 but briefly, the technique used here is adapted from the single-step growth
curve protocol used originally by Ellis and Delbrück [166], and involves infecting an
exponentially growing culture of bacteria with phage and then periodically sampling,
with the samples being plated in soft agar with susceptible host to attain plaques.
Counting the number of plaques yields the plaque forming units (PFUs) as a function
of time, and from this the lysis time and burst size can be inferred.
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Fig. 5.8 One-step growth curves of two coliphage T7 variants. (a) corresponds to
an isolate of wild-type T7, while (b) corresponds to T7 mutant D111 which is the
wild-type T7 background with deletions from base 532 to 1662. Fit to the data is
the Gaussian based function (Eq. 4.4), with mean lysis time τ̂ , standard deviation
σ̂ and burst size β̂. These fits yield τ̂a = 14.40(11) min, σ̂a = 1.32(19), β̂a = 168(2),
τ̂b = 16.4(5) min, σ̂b = 1.5(5) and β̂b = 168(12). These values are typical for wild-type
T7 in similar conditions [175], and so it can be seen that σ̂ ∼ τ̂ /10.

Using this version of the model, we re-run a subset of our simulations, namely
the simulations used to determine the probability of fixation of neutral mutants. As
can be seen in Fig. 5.9 and Fig. 5.10, the introduction of stochasticity in lysis time
does not significantly alter the behaviour of the model. It is still the case that the
probability of fixation of a neutral mutant is controlled by its initial frequency in the
population (Fig. 5.9), and that the average behaviour of the model remains unchanged,
with the simulations remaining consistent with an DDE description of the model
(Fig. 5.10). We do note that the difference between superinfecting and superinfection
excluding scenarios in Fig. 5.9 is less clear than in the corresponding figure without
lysis stochasticity (Fig. 5.6). We speculate that this is caused by the increased level of
stochasticity introduced here, but a more detailed analysis would be required to test
this systematically.
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Fig. 5.9 Probability of mutant fixation Pfix in the superinfecting (S) and superinfection
excluding (SX) scenarios, scaled by the initial frequency of the mutant f ∗

0 = 1/(Vss +
βIss), as a function of adsorption rate α, burst size β and lysis time τ . Dashed
lines indicate the simple average of the data for both the superinfecting (blue) and
superinfection-excluding (red) scenarios. Unless otherwise stated, the parameters used
were α = 3 × 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The data is obtained
from a minimum of 10 million independent simulations.
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Fig. 5.10 Probability of mutant fixation Pfix in the superinfection (S) and superinfection-
exclusion (SX) scenarios as a function of adsorption rate α, burst size β and lysis
time τ . Error bars are plotted, although in some instances may be too small to see.
This data is compared with the solution of a system of DDEs used to describe the
average behaviour of the model, where the black dashed line represents the frequency
f ∗
0 calculated from the steady-state values. Unless otherwise stated, the parameters

used were α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The data is obtained
from a minimum of 10 million independent simulations.

5.3.5 Higher growth rate does not translate into competitive advantage

Now returning to the model with no stochasticity in lysis time, to investigate the
evolutionary fate of non-neutral mutations, we first characterise how phage growth
rate and competitive fitness is affected by changes to the phage life history parameters,
i.e., adsorption rate α, burst size β and the lysis time τ , relative to the values used in
our neutral simulations (see Sec. 5.5.2).

Fig. 5.11 shows that increasing burst size β or adsorption rate α results in a larger
selective advantage s both in isolation and in direct competition. However, while
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Fig. 5.11 The selective advantage s relative to a resident phage that results from a
change to adsorption rate α, burst size β and lysis time τ . This is measured both in
terms of the effect on the isolated growth rate of the mutant (sgrowth, Eq. 5.17), and
in terms of the change in frequency in a population initiated with 50% mutant and
50% resident (sSX and sS, Eq. 5.18). Resident parameters used were α = 3 × 10−6,
β = 100 and τ = 15. As before δ = 0.1 and B0 = 1000. sgrowth determined from 500
simulations, and scomp determined from 200 simulations. Error bars are given by the
standard error on the mean of the simulations.
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Fig. 5.12 The selective advantage in a competitive setting scomp as a function of
the change in growth rate sgrowth, when changing adsorption rate α, burst size β
and lysis time τ . Straight line fits are shown as dashed lines, with gradient σ such
that scomp = σsgrowth. From the above data we find σSα = 1.23(6), σSXα = 1.28(4),
σSβ = 1.04(6), σSXβ = 0.91(5), σSτ = 0.306(6) and σSXτ ≈ 0. Resident parameters
used were α = 3× 10−6, β = 100 and τ = 15. As before δ = 0.1 and B0 = 1000. sgrowth

determined from 500 simulations, and scomp determined from 200 simulations. Error
bars are given by the standard error on the mean of the simulations. Error bars on x
axis have been omitted for clarity, but are shown in Fig. 5.11.

variations in burst size affect similarly the growth rate of the viral population in
isolation and its (dis)advantage in a competitive setting (sgrowth ≈ scomp, Fig. 5.12),
variations in adsorption rate lead to a stronger competitive (dis)advantage than what
would be determined by the growth rate (|sgrowth| < |scomp|). The intuition behind
this result is that increasing adsorption rate becomes particularly advantageous in
a competitive environment, as being the first virus to infect a host allows the virus
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to have largely (superinfection scenario) or completely (non superinfection scenario)
exclusive access to the host resources.
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Fig. 5.13 The relative change in frequency of two populations in the DDE model
(indicating the average behaviour in the stochastic model). It can be seen that once at
steady-state, changing lysis time τ has no effect. Parameters used were α = 3× 10−6,
β = 100 and τ = 15 unless otherwise stated. As throughout, δ = 0.1 and B0 = 1000.

The impact of altering lysis time τ is surprising. 5.11 shows that increasing τ

results in a reduced growth rate, as intuition suggests. Yet, in the superinfection-
excluding scenario no discernible impact on scomp is observed (Fig. 5.12). This result
is supported by our DDE model (Fig. 5.13), which shows that once the system is at
steady-state, alterations to lysis time offer no advantage to one phage over the other
(Fig. 5.13). We believe that this is a special feature of a turbidostat setting, as lysed
hosts are immediately replaced by uninfected cells, providing the same number of
viable hosts independently of the time needed by the phage to lyse them. By contrast,
in the superinfecting case, we are able to observe a selective (dis)advantage in direct
competition, although at a significantly reduced level compared to the change in growth
rate. We believe that this effect arises because, while the extracellular competition is
limited by the turbidostat setup, in the superinfecting scenario there is the opportunity
for some intracellular competition to occur, as mutants will grow at different rates inside
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the host, resulting in different numbers of phage (both in total and proportionally)
being released upon lysis.

5.3.6 Superinfection results in more efficient selection

Having characterised how changes to the phage infection parameters alter first genetic
drift and second fitness, we now put both ingredients together and investigate the
dynamics of non-neutral mutants. To this end, we simulate a resident phage population
to steady-state, introduce a single non-neutral mutant and then run the simulation
until extinction or fixation occurs.

In agreement with our observations regarding the difference between growth rate
and competitive fitness, we find that the value of sgrowth is not sufficient to determine
the fixation probability of the corresponding mutant (Fig. 5.14): a mutation associated
with a higher adsorption rate α increases the mutant’s chance to fix more than a
mutation which alters the burst size β and leads to the same growth rate. We also find
that beneficial mutations are consistently more likely to fix (and deleterious mutations
more likely to go extinct) in superinfecting populations (red) than superinfection-
excluding populations (blue). This suggests that superinfection improves selection
efficiency, by more readily fixing beneficial mutations and purging deleterious ones.

To provide a theoretical framework to our findings, we compare the simulation data
to the fixation probabilities one would expect in a corresponding Moran model. For
small selective advantage scomp, the probability of fixation is given by

Pfix =
1− e−Nescompf0

1− e−Nescomp
, (5.2)

where f0 is the initial frequency of the mutant in the population with effective population
size Ne [10, 176] - see Sec. 5.5.4 for derivation. Our earlier results on neutral dynamics
and fitness provide independent measurements of the parameters in Eq. 5.2 for different
values of α, β and τ : f0 = f ∗

0 from our initial condition (i.e., 1/NT , where NT

is the steady-state phage population size when the mutant is introduced); Ne is
measured from the decay of heterozygosity (Fig. 5.5); and scomp = σsgrowth is derived
from our measurements of the relationship between competitive and growth rate
advantage (Fig. 5.12). These theoretical predictions are plotted without additional
fitting parameters as lines in Fig. 5.14.

Fig. 5.14 shows that theoretical prediction from the appropriately parameterised
Moran model matches the simulation data remarkably well, despite the complex internal
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Fig. 5.14 Probability of mutant fixation Pfix as a function of selective growth advantage
sgrowth. Points indicate simulation results, while lines indicate theoretically predicted
values in a Moran model with equivalent parameters (Eq. 5.2). Data points for the α
and β mutants have been omitted from the right hand panel for clarity. The error in our
estimate of the fixation probability ∆Pfix is given by ∆Pfix =

√
nfix/n, where n and

nfix represent the total number of simulations and the number of simulations where the
mutant fixes respectively. Error bars in the x-axis represent the errors on the growth
rate fitness sgrowth that each burst size corresponds to. These are calculated by fitting
a linear relation to growth rate measurements such that sgrowth = m(βmut − βres). The
fractional error on the sgrowth is then equal to the fractional error on the fitted gradient
m. The data is obtained from a minimum of 5 million independent simulations.

infection dynamic. If we introduce a free scaling parameter ϕ, such that scomp = ϕsgrowth,
and optimally fit Eq. 5.2 to the data, we can compare the resulting values for ϕ with
our previous estimates of σ to measure of the quality of agreement between simulations
and theory. It should be noted that while we have described the scaling in terms of
scomp, it is mathematically identical to scaling Ne. Through this optimal fitting we find
that ϕSα = 1.22, ϕSXα = 1.34, ϕSβ = 1.03, ϕSXβ = 0.94, ϕSτ = 0.27 and ϕSXτ = 0.01

with subscripts indicating scenario and parameter combinations. This indicates that
the data maps well to an equivalently parameterised Moran model, with an average
difference of ∼ 5%.

We note, however, that the simulation data consistently fails to intersect at the
same point when sgrowth = 0 in the superinfecting scenario. This is because of the
effect outlined in Fig. 5.6, where rare mutants initially experience a slight advantage in
the superinfecting scenario because they are able to increase in number by infecting
both uninfected and infected cells.
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5.3.7 βres = 70 Measurements

To test the validity of our findings across parameter space, we also perform all of the
above analysis with different resident parameters. Here we repeat a subset of the
measurements carried out previously for different resident phage parameters, in this
instance βres = 70, with all other parameters remaining the same as in the rest of
the Chapter. First, the effective population size is measured in both superinfecting
and non superinfecting populations (Fig. 5.15), demonstrating that Ne is larger in
superinfecting populations.
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Fig. 5.15 Linear fit to log transformed heterozygosity data, with slope Λ ≡ 2/Ne

revealing that allowing superinfection (red) results in a larger effective population size
compared to the case where superinfection is prevented (blue). Parameters used were
α = 3× 10−6, β = 70, τ = 15, δ = 0.1 and B0 = 1000.

We then move on to characterise the fitness of non-neutral mutants, in this instance
only varying burst size β (Fig. 5.16). Again, we find a positive linear relationship
between burst size and fitness, both in terms of the effect on growth rate in isolation
and in a competitive setting. Interestingly here we find that alterations to burst size
make slightly less difference in a competitive setting, as compared to the effect on
growth rate. This could potentially be because, at lower burst sizes, any small change
in β has a large impact on the growth rate, but has a smaller impact in a population
already at steady-state.

Finally, we put both aspects together and measure the probability of fixation of
non-neutral mutants in both superinfecting and superinfection-excluding populations
(Fig. 5.17). As before, we find fairly good, although slightly worse, agreement between
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Fig. 5.16 (a): The selective advantage s relative to a resident phage that results
from a change to burst size β. This is measured both in terms of the effect on the
isolated growth rate of the mutant (sgrowth, Eq. 5.17), and in terms of the change in
frequency in a population initiated with 50% mutant and 50% resident (sSX and sS,
Eq. 5.18). (b): The fitness in a competitive setting scomp is then shown as a function
of the fitness in an isolated setting sgrowth. Straight line fits are shown as dashed lines,
with gradient σ such that scomp = σsgrowth. From the above data we find σS = 0.92(4)
and σSX = 0.80(5). Resident parameters used were α = 3× 10−6, β = 70 and τ = 15.
As before δ = 0.1 and B0 = 1000. sgrowth determined from 500 simulations, and scomp

determined from 200 simulations. Error bars are given by the standard error on the
mean of the simulations.

our simulation results and the prediction from a Moran model with our independently
measured parameters (Fig. 5.15 and Fig. 5.16). In terms of the additional fitting
parameter introduced earlier, we find here that ϕS = 0.80 and ϕSX = 0.73. It’s possible
that this discrepancy is caused by imprecision in the measurements of fitness as a
function of burst size. Indeed, over the whole range of β we would not expect a perfect
linear relationship between burst size and fitness, with the benefits of increased burst
size being larger for small β, and so at these lower values of β we find that the linear
fit is less of a good approximation.

5.3.8 Superinfection exclusion slows down adaptability in the long run,

but is a winning strategy in the short term

Our findings imply that, even in the absence of intra-cellular processes such as recom-
bination, superinfection results in more efficient selection, so that beneficial mutations
are relatively more likely to fix, and deleterious ones are more likely to be purged,
leading to a fitter overall population in the long run. From the point of view of
viral adaptation, allowing superinfection ultimately seems like the better long-term
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Fig. 5.17 Probability of mutant fixation Pfix as a function of selective growth advantage
sgrowth. Points indicate simulation results, while lines indicate theoretically predicted
values in a Moran model with equivalent parameters (Eq. 5.2). The error in our
estimate of the fixation probability ∆Pfix is given by ∆Pfix =

√
nfix/n, where n and

nfix represent the total number of simulations and the number of simulations where the
mutant fixes respectively. Error bars in the x-axis represent the errors on the growth
rate fitness sgrowth that each burst size corresponds to. These are calculated by fitting
a linear relation to growth rate measurements such that sgrowth = m(βmut − βres). The
fractional error on the sgrowth is then equal to the fractional error on the fitted gradient
m. The data is obtained from a minimum of 20 million independent simulations.

strategy. It is therefore puzzling why several natural phage populations have developed
sophisticated mechanisms to prevent superinfection, particularly given that employing
these mechanisms is expected to come with a biological cost, such as reduced burst
size [128, 177] or increased lysis time [178].

To address this question, we consider the fate of mutations that either (i) remove
the mutant’s ability to prevent superinfection in a resident superinfection-excluding
population or (ii) provide the mutant the ability to prevent superinfection in a resident
superinfecting population. Fig. 5.18 shows that if the mutant is neutral (βmut = βres =

100), then the superinfection-excluding mutant is two orders of magnitude more likely
to fix than the expectation based on its initial frequency f ∗

0 , and that, by contrast, the
superinfecting mutant is at least two orders of magnitude more likely to go extinct. It
should be noted that we actually find no instances of mutant fixation in this case, but
our detection power is limited by the number of simulation runs. Here, we run at least
20 million simulations, and we can thus infer that Pfix ≪ 10−7. This indicates that
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mutants which are able to prevent superinfection experience a very strong selective
advantage over their superinfecting counterparts, and vice-versa.
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Fig. 5.18 (a) The probability Pfix of a mutant which prevents superinfection fixing in a
population that allows it, as a function of mutant burst size βmut. (b) The probability
Pfix of a mutant which allows superinfection fixing in a population that prevents it, as
a function of mutant burst size βmut. It can be seen that the superinfecting mutant
requires a significantly increased burst size to fix, and conversely the superinfection-
excluding mutant can fix, even if its burst size is greatly reduced. The error in our
estimate of the fixation probability ∆Pfix is given by ∆Pfix =

√
nfix/n, where n and

nfix represent the total number of simulations and the number of simulations where
the mutant fixes respectively. Error bars in the x-axis represent the errors on the
growth rate fitness sgrowth that each burst size corresponds to. These are calculated by
fitting a linear relation to growth rate measurements such that sgrowth = m(βmut−βres).
The fractional error on the sgrowth is then equal to the fractional error on the fitted
gradient m. The fixation data is obtained from a minimum of 20 million independent
simulations.

To account for the possibility that superinfection exclusion comes at a cost in phage
growth, as preventing superinfection likely requires the production of extra proteins,
the resources for which could otherwise have gone to the production of more phage,
we consider the case where superinfection exclusion is associated with a reduction in
burst size [177]. Remarkably, we find that even when preventing superinfection carries
a burden of 7% reduction in burst size (sgrowth < −7%), the non superinfecting mutant
still fixes more often than a neutral superinfecting mutant (Fig. 5.18). Conversely, a
minimum of 8% increase in burst size (sgrowth > 8%) is necessary to give a superinfecting
mutant any chance of fixing in a superinfection excluding population. This indicates
that while allowing superinfection increases selection efficiency at the population level,
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preventing it is ultimately a winning strategy in the short term, partially explaining
why superinfection exclusion is so common in nature [59, 78].

5.4 Discussion

In this work, we have considered the impact of either allowing or preventing superinfec-
tion on the evolution of viral populations. Using a stochastic agent-based model of viral
infection, we have shown that allowing superinfection reduces the strength of genetic
drift, leading to an increase in effective population size. Weaker fluctuations result in a
higher efficiency of selection in viral populations, with beneficial mutations fixing more
frequently, and deleterious ones more readily being purged from the population. Despite
the long term, population-wide benefit of allowing superinfection, we find that if a
mutant arises which is capable of preventing superinfection, it will fix remarkably easily,
even if its growth rate is heavily compromised. Conversely, if the whole population
is capable of preventing superinfection, mutants which allow it will have almost no
chance of ever succeeding.

The evolutionary impact of superinfection (and more generally multiple infections)
has most often focused on the role of intracellular interactions and competition [91–
94, 96–99], such as genetic recombination and reassortment [100–103], and viral
complementation [103–107]. A prevalent finding (amongst others) is that recombination
and reassortment can improve the efficiency of selection in viral populations which
do not exclude superinfection. Remarkably, our work demonstrates that the basic
occurrence of superinfection alone, absent of any recombination or reassortment, is
capable of increasing the selection efficiency. In this context, our results provide a
useful baseline for comparison when trying to assess the significance of each of these
more complex effects, which may or may not be present in different situations.

An unexpected finding of this work is that in the turbidostat system we consider,
while increased adsorption rate and burst size both increase the fitness of the phage
population in all respects, in the superinfecting scenario lysis time plays a significantly
reduced role in the competitive (dis)advantage experienced once the system has reached
a steady-state, and in the superinfection-excluding scenario it plays no role whatsoever.
While it has been demonstrated previously that changes to fecundity and generation
time can have different impacts on mutation fixation probability, even when they have
the same impact on long-term growth rate [179], our result is somewhat in contrast
with previous studies showing that well-mixed liquid cultures with an abundance of
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hosts generally select for higher adsorption rates and lower lysis times [49, 51, 84, 180].
The key difference between such liquid cultures and the turbidostat system we model
here is that in the former host cells are not maintained at a constant density, but the
phage population continues to grow until no bacteria remain.

This finding illustrates how the presence or absence of a co-existing steady-state
between phage and bacteria completely alters the selective pressure on the phage
with important implications for studies into the co-evolution of phage and bacteria
populations using continuous culturing set-ups [181–183]. In particular, our results
suggest that in an evolutionary experiment in a turbidostat, the virus should evolve
towards very large burst size even if this feature comes at the cost of longer lysis
times, especially if superinfection exclusion occurs [49]. Reciprocally, detecting a
selective pressure on lysis time could be used to identify potential phages that allow
superinfection, as, in this case, a shorter lysis time is slightly advantageous all else
being equal.

As noted previously, however, our model does not fully capture all of the aspects
of a true turbidostat. In a true turbidostat, unless there is a filter over the outflow,
bacteria can also be diluted out of the system. I expect that this could have significant
consequences for the impact of lysis time, since phage with a long lysis time would
be more likely to be diluted out while still inside an infected host, thereby reinstating
the advantage of short lysis times. On the other hand, in a true turbidostat, dilutions
typically occur as periodic and discrete events, rather than at a continuous rate. I expect
that the frequency of such events, and so the degree to which there is a continuous
steady-state, would have a significant impact on the overall dynamics.

Following this work, it is natural to wonder how the (dis)advantages and impact of
either strategy depends on the selective pressure experienced in different environments.
The relationship between viral fitness and the phage life-history parameters (adsorption
rate, lysis time and burst size) has been shown to be very context-dependent in
both well-mixed and spatially structured settings. For instance, as noted previously,
well-mixed settings generally favour higher adsorption rates [184], but in spatially
structured settings phage with lower adsorption rates are more successful [89, 90].
Additionally, it has been shown previously that eco-evolutionary feedbacks at the
edge of expanding viral populations can result in travelling waves with vastly different
effective population sizes [171]. Given that competition for resources (i.e. viable hosts)
in spatially structured environments is local rather than global, phage are more likely
to be in competition with other genetically identical phage released by nearby cells.
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It is therefore possible that superinfection exclusion proves less useful in this context
than in well-mixed environments where competition is global and phage are more
likely to encounter other genetically different viruses. All of this points at the role
of superinfection strategies and other social viral behaviour on the eco-evolutionary
dynamics of spatially expanding viral populations as an exciting avenue for future
research.

5.5 Methods

5.5.1 Measuring effective population size of the phage population

Consistent with previous work [10], we expect that the genetic diversity of the phage
population, quantified by the heterozygosity H, will decay exponentially at long times
due to genetic drift, so that H(t) ∝ e−2t/Ne , with the decay rate in units of inverse
generations being expressed in terms of an effective population size 2/Ne (Moran model
[10]).

We track the viral heterozygosity H as a function of time, which in a biallelic viral
population is given by

H = 2⟨f(1− f)⟩, (5.3)

where f and (1 − f) represent the frequencies of two neutral viral alleles in the
population, and ⟨. . . ⟩ indicates the average over independent simulations. H(t) can be
understood to be the time-dependent probability that two individuals chosen from the
population are genetically distinct.

To determine the generation time T , we borrow from demographic analysis, and
first calculate the net reproduction rate R0, which represents the number of offspring
an individual would be expected to produce if it passed through its lifetime conforming
to the age-specific fertility and mortality rates of the population at a given time (i.e.
taking into account the fact that some individuals die before reproducing) [185].2 R0

can be calculated as
R0 =

∑
ltmt, (5.4)

2In demography, the net reproduction rate R0 applies specifically to the offspring born to females,
rather than all individuals. Given that all phage are capable of producing offspring, however, we
adapt the approach here to include all phage. I also note that the demographic concept of the net
reproduction rate R0, used here, should not be confused with the epidemiological concept of the basic
reproduction number, also given the symbol R0. Finally, I note that despite being named the net
reproduction rate, I do not believe it is a rate.
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where lt represents the proportion of individuals (in our case, phage) surviving to age
t, and mt represents the average number of offspring produced at age t.

There are two mechanisms in our simulations by which phages can ‘die’ when
superinfection exclusion applies: either by decaying with rate δ, or by adsorbing to a
host with rate αB0. In a sufficiently small timestep ∆t, these rates correspond to a
proportion δ∆t and αB0∆t of the total phage, respectively. Equivalently, these can be
considered to be the probability that any single phage will die in the same period. As
a result, the probability of a phage surviving to age t is lt = (1− δ∆t− αB0∆t)

t/∆t.
The average number of offspring mt produced at age t is 0 if t < τ , because we

assume that no phage is released before the lysis time. For t > τ , mt is given by
the probability of successfully infecting a viable host in a timestep ∆t, τ time earlier
(αBss∆t), multiplied by the yield of new phage (β − 1).

In the limit where ∆t→ 0, this will result in a net reproductive rate of the form

R0 = lim
∆t→0

∞∑
t=0

mtlt = lim
∆t→0

∞∑
t=τ

∆tαBss(β − 1)(1−∆t(δ + αB0))
(t−τ)/∆t, (5.5)

=

∫ ∞

t=τ

ϕeθτe−θtdt, (5.6)

= ϕeθτ
[
−1

θ
e−θt

]∞
τ

, (5.7)

= ϕeθτ
(
− 1

θe∞
+

1

θeθτ

)
, (5.8)

=
αBss(β − 1)

δ + αB0

, (5.9)

where the integral starts at τ because no offspring are produced prior to that point.
Then the generation time T , defined as the average interval between the birth of

an individual and the birth of its offspring, is

T = lim
∆t→0

∑
tltmt

R0

=
1

R0

∫ ∞

t=τ

tαBss(β − 1)e−(δ+αB0)(t−τ)dt, (5.10)

=
1

R0

∫ ∞

t=τ

tϕeθτe−θtdt, (5.11)

=
1

R0

(
ϕeθτ

[
t.
1

θ
e−θt

]∞
τ

+
ϕeθτ

θ

∫ ∞

t=τ

e−θtdt

)
, (5.12)

=
1

R0

(
ϕeθτ

θ
τe−θτ +

R0

θ

)
, (5.13)
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=
1

R0

(
τR0 +

R0

θ

)
, (5.14)

= τ +
1

θ
, (5.15)

= τ +
1

δ + αB0

. (5.16)

Here, we will use resident phage parameters α = 3 × 10−6, τ = 15, δ = 0.1 and a
total bacterial population of B0 = 1000, which leads to a generation time of T = 24.8.
Throughout this work, we use the same generation time for both superinfecting and
superinfection-excluding populations (more details shortly).

For comparison, coliphage T7 in liquid culture typically has parameters of τ̂ ≈
10 − 20 min and α̂ ≈ 10−9 ml/min, while B̂0 ≈ 106 − 108 ml−1, thereby yielding an
α̂B̂0 ≈ 10−3 − 10−1 min−1 [49, 62]. These values are comparable to our own if we
equate 1 timestep = 1 min, and so τ = 15 ≡ 15 min and αB0 = 3× 10−3 ≡ 3× 10−3

min−1, such that the relative timescales in our simulation remain consistent. The
reason behind choosing a larger adsorption rate and smaller bacteria population is
purely practical, as the alternative would lead to unreasonably long computational
times. Given these values, our choice of decay rate δ is made such that steady-state
population sizes are reached.

This generation time is also supported by stochastic simulations of the phage
adsorption and death processes. We simulate a single phage, which in each time-step
∆t has a probability of successfully adsorbing to an uninfected host (αBss∆t), and a
probability of dying ((δ + αIss)∆t). In the event that the phage successfully adsorbs
to a host before it dies, the number of steps tsteps taken for this to occur is noted, and
the time T = τ + tsteps∆t is recorded (representing the time between the ‘birth’ of
the original phage and the ‘birth’ of its offspring). A schematic representation of this
process is shown in Fig. 5.19. This process was repeated 10 million times, with the time
T being recorded in all of the instances where the phage successfully reproduced. This
yields an average generation time of T = 24.78(3) in agreement with the analytical
calculation.

Additionally, throughout this work we use the above generation time for both
superinfection-excluding and superinfecting populations. However, the superinfection
scenario differs from that laid out above in that adsorption to infected cells does
not result in death, and relatedly, the time between successful host infection and
offspring production may be less than τ . To evaluate the error we introduce with
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Fig. 5.19 Schematic diagram illustrating the processes used to verify the generation
time T in superinfection-excluding populations.

our approximation of generation time, we modify the simple stochastic simulations
above to take into account these differences. In this scenario, in a single time-step
the phage has a probability δ∆t of dying, and a probability αB0∆t of infecting a
host (either infected or uninfected). In the case where infection occurs, the phage
has a probability Bss/B0 of infecting an uninfected host, which as before, results in a
generation time T = τ + tsteps∆t. In the remainder of infection cases, phage will infect
already infected hosts. Because of the nature of the process of within-host replication,
secondary infections that occur too late after the initial infection generate almost no
offspring of the superinfecting phage. We account for this observation by assuming
that only secondary infections occurring within the first n steps post initial infection
will successfully produce offspring3. Given that we are considering populations at
steady-state, we assume that infected cells are equally likely to be found any number
of steps post-infection (< τ), and so infection of a cell in the first n steps post initial
infection simply occurs a fraction n/τ of the times that secondary infection occurs. In
this case, the generation time is given by T = tsteps∆t+ τ −∆t

∑n
1 k

n
, where the final

two terms represent the average number of steps between secondary infection and lysis.
This final term can be simplified by noting that

∑n
1 k

n
= n(n+1)

2n
= n+1

2
. A schematic

representation of this process is shown in Fig. 5.20.
Using an example value of n = 3, this process was again repeated 10 million times,

yielding an average generation time of T = 24.11(3). It can be seen that the difference
in generation time is marginal. If we instead take a value of n = τ−1 we find an average
generation time of T = 19.7(2). While this neglects the fact that late superinfections

3This is, in itself, also a simplification of the process, as the precise number of offspring produced
depends not only on when superinfection occurs, but also on how many phage of the other type have
infected, and how many of each type infect in the future.
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Fig. 5.20 Schematic diagram illustrating the processes used to measure the generation
time T in superinfecting populations.

are unlikely to yield any offspring, and so represents a significant underestimation of
the generation time, it is worth noting that were we to fully account for the shorter
generation time in superinfecting populations, it would result in an even larger effective
population size, further emphasising our main findings.

5.5.2 Measuring mutant fitness and growth rate

We start by defining a selective advantage sgrowth in terms of the exponential growth
rate rmut of the mutant phage population relative to that of the resident phage rres [9]:

sgrowth =
rmut

rres
− 1. (5.17)

The exponential growth rate is determined by simulating the growth of the correspond-
ing phage population in isolation, and performing a linear fit to the log-transformed
phage number as a function of time, which is then averaged over 500 independent simu-
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lations. It should be noted that as there is only one type of phage in these simulations,
the growth rate of both superinfecting and superinfection-excluding populations is the
same.

We also characterised the fitness of mutants in a competitive setting, by simulating
a resident population until steady-state, and then replacing 50% of the population
with the mutant. In this direct competition scenario, we determine the selective
(dis)advantage scomp of the mutant phage by tracking the relative growth of mutant
and resident populations, so that

Vmut

Vres
=
Vmut(t = 0)erres(1+scomp)t

Vres(t = 0)errest
= erresscompt, (5.18)

as Vmut(t = 0) = Vres(t = 0). scomp is determined from the average of 200 simulations.
Importantly, in contrast to sgrowth, this competitive selective advantage (scomp) can in
principle differ between superinfecting (sS) and superinfection-excluding (sSX) phage
populations. In the absence of any interactions between the two competing phage
populations, sgrowth and scomp are typically expected to be the same.

5.5.3 Measuring mutant probability of fixation

To measure fixation probabilities of individual mutations, we allow our simulations
to reach steady-state, we then introduce a single mutant phage into the free phage
population, and run the simulation until either fixation or extinction occurs. This
process is repeated at least 14 million times for each set of parameters. The probability
of mutant fixation Pfix is determined from the fraction of simulations where the mutant
fixed, nfix, over the total number of simulations run, n (i.e. Pfix = nfix/n). Assuming a
binomial distribution, the error in our estimate of the number of fixation events ∆nfix is
given by ∆nfix =

√
nPfix(1− Pfix). Consequently, our error in the estimate of fixation

probability ∆Pfix is given by ∆Pfix =
√
Pfix(1− Pfix)/n. It can be easily verified that

in the case where nfix ≪ n, as we have here, the error approaches ∆Pfix =
√
nfix/n

as would be found in a Poisson distribution.

5.5.4 Probability of Fixation in Moran Model

The Moran model describes a population of fixed size N in which two alleles A and B
compete for dominance of the population [10]. In each step, a random individual is
chosen for reproduction, and a random individual is chosen for death, thus ensuring a



5.5 Methods 157

constant population size. At any given time-step, let i denote the number of individuals
of type A in the population. Since the number of A individuals can at most change by
1 in a single time-step, only transitions between state i and i− 1, and i and i+ 1 are
possible. In the neutral case, this leads to transition probabilities of the form:

Pi,i−1 =
N − i

N︸ ︷︷ ︸
reproduce

.
i

N︸︷︷︸
die

, (5.19a)

Pi,i = 1− Pi,i−1 − Pi,i+1, (5.19b)

Pi,i+1 =
i

N︸︷︷︸
reproduce

.
N − i

N︸ ︷︷ ︸
die

, (5.19c)

where Pi,j represents the probability of transitioning from state i to state j.
We can then consider the non-neutral case, where type A has a fitness advantage s

over type B. To align with the bulk of this Chapter, we will assume that this fitness
increases the chance of being chosen to reproduce, without having an effect on the
individual’s chance of dying. In this case the above transition probabilities become:

Pi,i−1 =
N − i

(1 + s)i+ (N − i)︸ ︷︷ ︸
reproduce

.
i

N︸︷︷︸
die

, (5.20a)

Pi,i = 1− Pi,i−1 − Pi,i+1, (5.20b)

Pi,i+1 =
(1 + s)i

(1 + s)i+ (N − i)︸ ︷︷ ︸
reproduce

.
N − i

N︸ ︷︷ ︸
die

. (5.20c)

The probability of fixation xi when starting in state i can then be defined by
recurrence:

xi =


0 when i = 0

Pi,i−1xi−1 + (1− Pi,i−1 − Pi,i+1)xi + Pi,i+1xi+1 when 1 ≤ i ≤ N − 1

1 when i = N

(5.21)

This can then be rearranged as follows:

xi = Pi,i−1xi−1 + (1− Pi,i−1 − Pi,i+1)xi + Pi,i+1xi+1, (5.22)
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Pi,i−1(xi − xi−1) = Pi,i+1(xi+1 − xi), (5.23)

γiyi = yi+1, (5.24)

where we have defined a new variables yi = xi − xi−1 and γi = Pi,i−1/Pi,i+1.
Now we must consider two properties of our variable yi. The first is that

m∑
i=1

yi =
m∑
i=1

(xi − xi−1), (5.25)

= (x1 − x0) + (x2 − x1) + · · ·+ (xm−1 − xm−2) + (xm − xm−1), (5.26)

= xm. (5.27)

The second property is that

yk = x1.
k−1∏
l=1

γl. (5.28)

This can be verified by considering

k−1∏
l=1

γl =
k−1∏
l=1

yi+1

yi
, (5.29)

=
y2
y1
.
y3
y2
. . . . .

yk−1

yk−2

.
yk
yk−1

, (5.30)

=
yk
y1
. (5.31)

Therefore

x1.

k−1∏
l=1

γl = x1.
yk
y1
, (5.32)

= x1.
xk − xk−1

x1 − x0
, (5.33)

= xk − xk−1, (5.34)

= yk. (5.35)

Now using Eq. 5.27 and Eq. 5.28 we can write that

m∑
i=1

yi = xm =
m∑
i=1

x1

i−1∏
l=1

γl, (5.36)
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= x1 + x1

m−1∑
j=1

j∏
k=1

γk, (5.37)

where we have used the fact that the first term of the sum (i = 1) equals x1, as∏0
l=1 γl = 1. If we now combine this with the fact that xN = 1 we find that

xN = x1

(
1 +

N−1∑
j=1

j∏
k=1

γk

)
= 1, (5.38)

x1 =

(
1 +

N−1∑
j=1

j∏
k=1

γk

)−1

, (5.39)

and so

xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

. (5.40)

It can be easily verified that in our system

γk =
Pi,i−1

Pi,i+1

=
1

1 + s
, (5.41)

and so if we combine this with Eq. 5.40 we find that

xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

, (5.42)

=
1 +

∑i−1
j=1

∏j
k=1(

1
1+s

)

1 +
∑N−1

j=1

∏j
k=1(

1
1+s

)
, (5.43)

=
1 +

∑i−1
j=1(

1
1+s

)j

1 +
∑N−1

j=1 (
1

1+s
)j
, (5.44)

=
1 +

1−( 1
1+s

)i

1−( 1
1+s

)
− 1

1 +
1−( 1

1+s
)N

1−( 1
1+s

)
− 1

, (5.45)

=
1− (1 + s)−i

1− (1 + s)−N
. (5.46)

where we have used the properties of geometric series to perform the sum. This
derivation is similar to that presented in many textbooks, for instance [186].
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Finally, if s is small, es ≈ (1 + s), and so we can restate this expression as

x =
1− e−sNf0

1− e−sN
, (5.47)

where we have rewritten in terms of the initial frequency i = Nf0. This is the expression
used in this Chapter for the probability of fixation in the Moran model.
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Appendix 5.A Alternative model

Here we present results from an alternative version of the model to that outlined in
the main body of this Chapter. The key difference in this version of the model relates
to how the pseudo-populations of phage grow within the host prior to lysis. In this
version of the model, in both superinfecting and superinfection-excluding scenarios, the
lysis time τ and the final burst size β of the host are set by the first phage to infect it.
In the superinfecting scenario, this means that during the intermediate steps between
the first adsorption event and lysis, the total number of phage inside the host increases
at a constant rate β/τ , determined by the initial infecting phage. As before, these β/τ
phages are allocated proportionally to each phage type inside the host at that time, in
line with previous reports of a positive linear relationship between lysis time and burst
size [51], and to reflect the intracellular competition for the host’s resources. This
version of the model therefore limits the ability for selection to act on mutants with
different burst sizes and lysis times, as these differences will not impact their growth
rate inside the cell post-superinfection, as this rate is set by the initial infecting phage.

It should also be noted that this version of the model does not impact neutral
dynamics, or any dynamics in the superinfection-excluding scenario. It only impacts
non-neutral, superinfecting dynamics. We therefore present the relevant results below.

In the superinfecting scenario, alterations to burst size now make marginally
less difference in a competitive setting compared to the main model (Fig. 5.21 and
Fig. 5.22). This is perhaps not surprising, as we have removed the ability for selective
(dis)advantages to manifest inside the host, while maintaining the (dis)advantage
gained when the mutant is the first to infect a cell. This effect is more striking however
when we consider alterations to lysis time. Now, also in the superinfecting scenario
alterations to lysis time have almost no impact in a competitive setting, once the
population has reached steady-state (Fig. 5.21 and Fig. 5.22).

These differences between the models are also reflected in the fixation of single
non-neutral mutants (Fig. 5.23). Here, we find that selection of superinfecting mutants
is slightly less efficient when alterations are made to burst size, and significantly less
efficient when alterations are made to lysis time, when compared to the main model.
Crucially however, even in this alternative model where the power of selection is
limited, selection is still always more efficient in superinfecting populations than in
superinfection-excluding populations. We also find that the results of our alternative
model can still be mapped well to an equivalently parameterised Moran model.
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Fig. 5.21 The selective advantage s relative to a resident phage that results from a
change to adsorption rate α, burst size β and lysis time τ . This is measured both in
terms of the effect on the isolated growth rate of the mutant (sgrowth, Eq. 7), and in
terms of the change in frequency in a population initiated with 50% mutant and 50%
resident (sSX and sS, Eq. 9). Resident parameters used were α = 3× 10−6, β = 100
and τ = 15. As before δ = 0.1 and B0 = 1000.
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Fig. 5.22 The selective advantage in a competitive setting scomp as a function of the
change in growth rate sgrowth, when changing adsorption rate α, burst size β and
lysis time τ . Straight line fits are shown as dashed lines, with gradient σ such that
scomp = σsgrowth. Resident parameters used were α = 3× 10−6, β = 100 and τ = 15.
As before δ = 0.1 and B0 = 1000. sgrowth determined from 500 simulations, and scomp

determined from 200 simulations. Error bars on x axis have been omitted for clarity.

Finally, when we consider mutations which change a mutant’s ability to prevent
superinfection, our results remain qualitatively the same (Fig. 5.18), although there are
slight quantitative differences, with superinfection-excluding mutants able to sustain a
slightly more reduced burst size without becoming deleterious (-8% vs -7% in the main
model).
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Fig. 5.23 Probability of mutant fixation Pfix as a function of selective growth advantage
sgrowth. Points indicate simulation results, while lines indicate theoretically predicted
values in a Moran model with equivalent parameters (Eq. 5.2). This is with the exception
of the superinfection-excluding lysis time (SX τ) line, which shows an optimised fit to
the Moran model, with smoran = σsgrowth, as we were unable to accurately measure the
relationship between sgrowth and scomp in this case (see Fig. 5.12). We find σSXτ = 0.008.
Data points for the α and β mutants have been omitted from the right hand panel for
clarity. The data is obtained from a minimum of 5 million independent simulations.
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Fig. 5.24 (a) The probability Pfix of a mutant which prevents superinfection fixing in a
population that allows it, as a function of mutant burst size βmut. (b) The probability
Pfix of a mutant which allows superinfection fixing in a population that prevents it, as
a function of mutant burst size βmut. It can be seen that the superinfecting mutant
requires a significantly increased burst size to fix, and conversely the superinfection-
excluding mutant can fix, even if its burst size is greatly reduced. Error bars in
the x-axis represent the errors on the growth rate fitness sgrowth that each burst
size corresponds to. These are calculated by fitting a linear relation to growth rate
measurements such that sgrowth = m(βmut − βres). The fractional error on the sgrowth

is then equal to the fractional error on the fitted gradient m. The fixation data is
obtained from a minimum of 20 million independent simulations.
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Appendix 5.B Mathematical Analysis of DDE Model

While not directly relevant for the main focus of this Chapter, I present here a
brief mathematical analysis of our delay differential equation (DDE) model, which is
reproduced below:

dV

dt
= −αV (B + I)− δV + βαVt−τBt−τ , (5.48a)

dB

dt
= −αV B + αVt−τBt−τ , (5.48b)

dI

dt
= αV B − αVt−τBt−τ , (5.48c)

All of the symbols are defined the same as before (V , B and I indicate the concentrations
of phage, uninfected bacteria and infected bacteria as a function of time respectively;
α, β, τ and δ indicate the phage adsorption rate, burst size, lysis time and decay rate
respectively). The subscript is used to indicate that those terms are calculated at time
t− τ . The positive term in Eq. 5.48b accounts for the instantaneous replacement of
lysed cells in our ‘turbidostat’ environment.

We start by noting that once the system has reached steady-state and remained
there for a time t > τ , the rate of change of the populations will equal zero (e.g.,
dV
dt

= 0) and the populations will equal their steady-state values, both at time t and
time t− τ (e.g., V = Vt−τ = Vss). If we focus on Eq. 5.48a, at steady-state this yields

dV

dt
= 0 = −αVss(Bss + Iss)− δVss + βαVssBss, (5.49)

0 = −α(Bss + Iss)− δ + βαBss, (5.50)

0 = −αB0 − δ + βαBss, (5.51)

βαBss = αB0 + δ, (5.52)

Bss =
αB0 + δ

βα
, (5.53)

where we have used the fact that B0 = Bss + Iss. Using this same relation it can easily
be shown that

Iss = B0 −Bss, (5.54)

= B0 −
αB0 + δ

βα
, (5.55)
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=
βαB0

βα
− αB0 + δ

βα
, (5.56)

=
αB0(β − 1)− δ

βα
. (5.57)

For the resident phage parameters α = 3× 10−6, β = 100, τ = 15, δ = 0.1, with a total
bacterial population of B0 = 1000, this yields values of Bss = 343 and Iss = 657, in
agreement with our numerical calculations (Fig. 5.25b). It is interesting to note that
Bss and Iss are independent of the lysis time τ .
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Fig. 5.25 An example realisation of the simulation. The resident phage population
initially grows until it reaches a steady-state Vss. The average behaviour of the model is
mostly captured by a set of delay differential equations (DDEs), set out later in Eqs. 5.1.
Slight discrepancies arise due to the fact that in the simulations, infection, decay and
lysis must occur in discrete steps. Parameters used are α = 3× 10−6, β = 100, τ = 15,
δ = 0.1 and B0 = 1000. This figure is the same as Fig. 5.2.

To solve for the viral population, consider the rate at which cells become infected
αV B. At steady-state this rate is constant at αVssBss, and so the number of cells
infected in a time window ∆t is simply equal to αVssBss∆t. We also know that the
number of cells which are infected at time t is the sum of all the cells that became
infected between the period of t− τ to t. Once at steady-state, this means that the
number of infected cells is simply given by Iss = αVssBssτ . We can then use this
relationship, along with our expressions for Bss and Iss to show that

Vss =
Iss

ταBss

, (5.58)

=

αB0(β−1)−δ
βα

τααB0+δ
βα

, (5.59)

=
αB0(β − 1)− δ

τα(αB0 + δ)
. (5.60)
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Using the same resident parameters as before this gives Vss = 42, 502 in agreement
with our numerical calculations (Fig. 5.25a).



‘The closer you look at something, the
more complex it seems to be.’

Vint Cerf

Chapter 6

Single Cell Imaging of Phage Infection

All of the analysis presented in this Chapter is my own. The single cell imaging data
analysed was collected by Charlie Wedd, in the group of Dr. Somenath Bakshi.

6.1 Introduction

In Chapter 4 we attempted to address shortcomings in current experimental phage
techniques, whereby phenotypic parameters are exclusively measured in liquid cultures
rather than in lawns on the surface of a plate. An additional issue with current assays,
and indeed the new assays presented in Chapter 4, however, is that they are based on
population averages, which obscure many of the more stochastic and heterogeneous
aspects of the biological system.

For instance, the degree to which the phage life-history parameters vary from
cell-to-cell, and phage-to-phage, remains unclear. A concrete example of this came
in Chapter 4, when our bulk lysis curve measurements performed in partially spent
media resulted in a fitted burst size half of what is found under normal conditions.
As was pointed out at the time, however, we are unable using our existing techniques
to say whether this reflects a scenario where each of the infected cells produces half
the normal number of phage, or whether it reflects a scenario where only half of the
infected cells lyse and release the normal number of phage.1

Not only this, but if the environment (for instance the lawn of bacteria) is hetero-
geneous, one cannot distinguish the effects of specific local conditions. Furthermore,
using existing techniques it would be difficult to observe and quantify the trade-offs

1Or indeed, something in between these two scenarios.
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between different interactions, as these will often be averaged out in population based
measurements.

These are all important issues, because in addition to sampling stochasticity (i.e.
genetic drift), the evolutionary dynamics of populations are also affected by phenotypic
stochasticity. For instance, in bacteria stochasticity in gene expression and other
biochemical reactions can lead to cell-to-cell variability in traits such as cell size and
division time, which in turn impact the growth rate of the population [187–190].
Classical theory would suggest that if two strains of bacteria with different population
growth rates were to compete in a Moran type process, the strain with the higher
growth rate should come to dominate [10, 186]. More recent work has showed however
that a more detailed understanding of the distribution of phenotypes in the population
is required to predict fitness [191, 192].

Concerning phage, it has been shown previously using bulk measurements that the
host’s metabolic state and growth rate impact burst size and lysis time [129]. Given
this, it seems reasonable to assume that within a bacterial population, variability
from cell-to-cell or in the environment will impact the phage infection cycle. Such
phenotypic heterogeneity could be particularly important for the dynamics at the front
of an expanding population where, as has been discussed previously, the number of
individuals is relatively very small. For instance, if a cell close to the front of the
expansion were to lyse even slightly earlier or later than average, this could conceivably
have a significant impact on the likelihood of the phage it releases reaching fixation.

The issue goes beyond this, however. The concept of biological stochasticity in
phage infection was partially explored in Chapter 5, but as discussed at the time, it is
not clear at present how best to accurately model the variability in these processes,
even in a well-mixed setting. It is entirely possible, if not likely, that even in well-mixed
settings there will be significant consequences of phenotypic heterogeneity to the phage
population.

Being able to observe and measure parameters such as the lysis time at a single cell
level will therefore provide critical information that can be used in stochastic models
of phage infection. Here, we utilise a high-throughput, continuous, liquid culturing
microfluidic device known as a ‘mother machine’ [193, 194]. The mother machine
consists of a series of narrow channels, in which bacteria grow end-to-end in chains,
allowing for the identification and characterisation of single cells. By introducing phage
T7mEYFP (which induces expression of fluorescent proteins in infected cells) to this
setup, we are therefore able to observe infection in single cells.
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6.2 Methods

These experiments were performed by Charlie Wedd in the group of Dr. Somenath
Bakshi, who kindly shared the protocols used in the Bakshi lab for the manufacture of
microfluidic devices.

6.2.1 Feature Design

The first step in making the microfluidic ‘mother machine’ devices is to produce a
master, which is a template that is repeatedly used to fabricate polydimethylsiloxane
(PDMS) replicas. In this case, these masters come in the form of silicon wafers which
are produced using photolithography offsite.

A schematic of the design of the mother machine can be seen in Fig. 6.1. In the
mother machine there are many ‘trenches,’ which consist of 75 µm long, ∼1.4 µm
square channels in which bacteria grow end-to-end in chains. The cells in these channels
are also surrounded by ∼0.5 µm deep side channels, which facilitate efficient access to
media (and phage) over long times [194]. The channels are closed on one end, and on
the other they empty into a feeding channel that supplies fresh medium and washes
away excess cells as they are pushed out by growth.

7

Fig. 6.1 Top and isometric schematics of microfluidic trenches in which bacteria are
held. The trenches are characterised by a central ∼1.4 µm wide square channel, in
which the cells sit, as well as ∼0.5 µm deep side channels that surround the cells,
creating a ‘bath’ of media and phage, that enables efficient access over long times.
Channels connect to a larger channel through which media and phage is continually
replaced, and excess cells are washed away. Figure and caption adapted from Ref. [194].
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6.2.2 PDMS Replica Fabrication

The protocol for producing the PDMS replica is as follows. First, 30 g of PDMS base
elastomer is mixed in a disposable plastic cup with 6 g curing agent elastomer. The
reagents are then mixed thoroughly, either using a milk frother at ≈ 1000 rpm for two
minutes, or alternatively using a spatula. This mixture is then degassed for ≈ 30 mins
in a desiccator to remove the largest air bubbles.

While this occurs, a curing bowl is prepared. This is achieved by spreading
aluminium foil over a glass dish and working into a “bowl shape.” The master silicon
wafer is then placed in the centre of the bowl, and pressed down using a pipette tip
such that it lies flat.

The PDMS mixture is then spread rapidly over the wafer while maintaining constant
contact between the PDMS and the bowl to avoid the production of large bubbles
during pouring. The curing bowl with the wafer and the PDMS is then degassed again
in the desiccator to get rid of any remaining air bubbles. Once degassed, the PDMS
and wafer are baked at 65 °C for at least an hour.

Once baked, the PDMS is peeled carefully off of the silicon wafer, and holes are
punched from the side of the PDMS that contains the features of the microfluidic
device. These holes will act as inlet and outlet channels to allow media/bacteria/phage
to flow into the microfluidic device.

6.2.3 Bonding and Chip Treatment

Initially, the PDMS replica is cleaned by sonicating in isopropanol for 30 mins to
remove any debris produced during the hole punching. After this, the replica is dried
with an air-gun, then rebaked for an hour at 65 °C, and then rinsed and sonicated in
Milli-Q water for 30 mins.

The next step is to clean the glass cover slip that the replica will be bonded to.
This procedure is similar to the PDMS replica, and involves first sonicating for 20 mins
in 1 M KOH then rinsing multiple times with Milli-Q water. The slip is then sonicated
in Milli-Q water for 20 mins, dried with an air-gun and then baked for 1 hour at 65 °C.

The PDMS replica then needs to be bonded to the glass cover slip. The PDMS
replica and cover slip are placed in a plasma cleaner with the surfaces to be bonded
facing up. They are then left to react with the plasma on high power for approximately
60 s, before being removed from the cleaner. The PDMS replica is then placed carefully
on the cover slip, ensuring no air gets trapped between the two surfaces. The PDMS
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is then pressed down firmly to allow covalent bonds to form between the PDMS and
the cover slip. The bonded chip is then placed on a hot plate at 95 °C for 5 mins,
before being based again for 3 hours at 65 °C. This final step is because the plasma
treatment makes the PDMS very hydrophilic, which makes loading the cells into the
small trenches in the device difficult. The time in the oven allows the PDMS return to
it’s normal hydrophobic state, which makes loading the cells easier.

6.2.4 Running an Experiment

Overnight cultures of E. coli strain SB7 (MG1655 constitutively expressing mCherry,
see Appendix A and Ref. [195]) are grown in EZRDM2 + 1% by volume pluronic
solution at 37 °C. On the morning of the experiment, the overnight culture is diluted
1:100 into EZRDM + pluronic solution and allowed to grow for 2-3 hours so that the
cells come out of stationary phase.

The lanes of the chip are checked to ensure that the inlets and outlets are bonded
accurately and well, and to look for debris or deformations in the lanes and trenches.
The lane with the fewest defects is then chosen, and needles are inserted into its inlet
and outlet. EZRDM + pluronic is then flowed through the lane to ‘passivate’ it, i.e. to
make it easier for fluid to easily enter the lane.

Next, ∼1 ml of the diluted culture is spun down in a centrifuge at 1000g for 3 mins
to genetly sediment the cells. The supernatant is then poured away, and the cells
resuspended in the residual volume to create a very dense culture. A small amount of
this dense culture is taken in a gel loading tip, and pushed into the lane in the mother
machine chip. The chip is then left for ∼ 20 mins to allow the cells to diffuse into the
trenches.

After this, the needles are reattached and media is flowed at 20 µl/min through
the lane. The chip is placed on the microscope stage, and checked for leaks. The
mother machine lane is then aligned with the stage’s x coordinate, such that when
moving the stage horizontally the lane remains in view. The trenches are then imaged
using a Nikon Eclipse Ti2 microscope equipped with a Plan Apo λ 40× Ph2 DM
objective (1.5× post objective magnification used, yielding 60× total). Phase contrast
and fluorescence images are then taken at each location every 3 min intervals. In
total, 32 fields of view (FOVs) were sampled, with each FOV containing 15 individual

2EZRDM stands for EZ Rich Defined Medium, and is a preparation of Neidhardt Supplemented
MOPS Defined Medium [196]. The ‘EZ’ is used to indicate that modifications have been made to
streamline the protocol given in Ref [196].
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trenches. The bacteria are then left to grow in the mother machine for ∼1.5 hours to
establish a baseline growth behaviour, before switching the media to that containing
phage.

6.3 Results

At present, this analysis will be limited to highlighting various, qualitatively different,
behaviours that are observed in the mother machine when the bacteria are exposed
to phage. At this point I will also attempt to clarify the terminology that will be
used. Throughout this Chapter, we will be using the expression and observation of
mEYFP as our ‘infection’ marker, as it occurs only in cells which have successfully
been infected. However, the expression of mEYFP does not begin at the moment of
adsorption or DNA injection, it begins as the phage genome is transcribed. As we shall
see shortly, this means there is a delay between the injection of the phage genome and
the moment in which cells become observably fluorescent. Therefore, when I say in this
Chapter that we observe ‘infection,’ I do not mean that we observe the initial moment
in which infection occurs, but that we observe cells in an infected state. Similarly,
when cells begin to fluoresce, we can say that ‘infection’ has occurred, but not in that
precise moment, rather at some point (likely several minutes) in the past. Relatedly,
whenever I say that we observe ‘lysis,’ I do not mean that we see the precise moment
in which lysis occurs. If a lysis event were to occur in one of the trenches during the
experiment, because of the frequency of image capture (once every 3 mins) this would
simply appear as an infected cell at time t, which had disappeared by time t+1.

6.3.1 Infection and Lysis

The first qualitative behaviour we observe is exactly what one might typically expect:
infection and subsequent lysis of the host bacteria. Fig. 6.2 shows a single trench in
the mother machine as a function of time. Initially, no cells in the trench are infected
(at least as far as we can tell), as indicated by the lack of mEYFP expression from
any of the cells. One of the cells then begins to fluoresce, indicating that infection
has occurred. The intensity of this fluorescence then increases for approximately 12
mins, before suddenly disappearing when the cell lyses. Approximately 6 mins after
this lysis event, all of the cells in the trench near the lysed cell then go through the
same process, ultimately leading to an emptying of the trench.
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Fig. 6.2 An example kymograph showing infection and lysis in the mother machine.
The blue dashed rectangle highlights the initial cell which is infected and subsequently
lyses. Blue lines are drawn to aid the viewer in tracing the cell from frame to frame.
For scale, the trenches are 7 µm wide in total.

This pattern of ‘mass infection’ following lysis allows us both to easily identify
lysis events, and to estimate the timing of lysis inside the mother machine. We can
place the time of the initial lysis event somewhere in the 3 min window after the last
frame in which it is visible. Then, if we assume that infections of all of the subsequent
cells occurs rapidly, i.e. within the same 3 min window (which seems like a reasonable
assumption given the simultaneous appearance of fluorescence and subsequent lysis),
then we can say that it takes approximately 6 mins for some fluorescence to become
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visible, and a further approximately 12 mins for the cells to lyse. This is broadly in
line with our expectations of a ∼6 min long eclipse period, and a total lysis time of ∼
18 mins.

However, while the type of situation shown in Fig. 6.2 was what we were expecting
to see in the mother machine, in actual fact it represents quite a rare case. The data
collected so far consists of 434 initially bacteria-filled trenches imaged over a 3 hour
period. During this period, at least one infection event occurs in 387 (89%) of these
trenches, as indicated by at least one yellow fluorescent cell. Of these 387 trenches
however, only 16 (4%) exhibit the kind of lysis followed by mass infection pattern
shown in Fig. 6.2. It’s also worth pointing at that compared to the total number of
infections this percentage would be even smaller, since many of the trenches with at
least one infection in fact contain multiple infections. This then naturally raises the
question: what happens to all the other infected cells?

6.3.2 Outflow

One of the most common fates of infected cells is that they flow out of the end of the
trench and are lost. This occurs because the growth and division of cells further up
the trench results in the cells further down the trench being pushed out. The only cell
to remain where it is in the trench is the cell at the very top, the so called ‘mother’
cell (hence the name mother machine). An example of this can be seen in Fig. 6.3.
Because of this effect, unless the cell which is infected is the mother cell, the infected
cell can be pushed out of the trench before it lyses. This is particularly true of cells
which are infected when they are already near the bottom of the trench.

In Fig. 6.3 however, a cell is shown as starting in the upper half of the trench, and
you will notice takes >36 mins3 to be forced out of the trench, which is double the
amount of time we would expect for lysis to occur in normal conditions (see Fig. 6.2).

6.3.3 Infection Without Lysis

This brings us onto the next phenotype which we find is common in the mother machine:
cells which are clearly infected, but never lyse. An example of this can be seen in
Fig. 6.4. In this example, infection occurs in the mother cell shortly after the start of

3It takes longer than this 36 mins as infection occurred several frames prior to the start of the
figure, but these are not shown to better illustrate the outflow effect.
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Fig. 6.3 An example kymograph showing infection of a cell which then flows out the
end of the trench prior to lysis. Blue lines are drawn to aid the viewer in tracing the
infected cell from frame to frame, with green lines tracing the lineages of cells further
up the trench. For scale, the trenches are 7 µm wide in total.
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the 3 hour imaging period, but lysis never occurs, and as such the cell stays visible in
the trench for the entirety of the experiment.

Crucially, the mEYFP signal remains strong throughout this period. This point is
important because we also observe a second phenotype where the cell never lyses, but
does stop expressing mEYFP (Fig. 6.5). In this example some mEYFP signal does
remain, but at a much fainter level than at the height of infection.

Both of these examples also emphasise that while many infected cells are pushed
out of the end of the trench before they lyse, it seems likely that many of them never
would. This is evidenced by the fact that many of the infected cells, like the example
shown in Fig. 6.3, are in an infected state in the trench for a period much longer than
the expected lysis time.

6.3.4 Other Observations

Another interesting observation is that infected cells are often identifiable from the phase
contrast image alone. It can be seen in Fig. 6.6 that in phase contrast images, uninfected
cells appear relatively uniform in intensity, whereas infected cells are characterised by
a brighter patch in the centre of the cell. It’s possible that this occurs due to DNA
condensation and increased protein concentration within infected cells. This could
be very significant, as if this occurred during infection with any phage, rather than
only phage T7mEYFP, then there would be no need to genetically modify the phage to
observe infection.

A further observation is that in the mother machine, infections very often come in
pairs, i.e. two neighbouring cells appear as infected simultaneously (Fig. 6.7). Given
the frequency of infections in the trenches, it seems unlikely that this would happen
by chance (excluding the ‘mass infection’ events discussed previously, although these
also do not occur by chance). In cases where such paired infections occur, shortly
before fluorescence becomes visible the two cells divide from the same mother cell.
This suggests that the mother cell was infected with phage shortly before division,
resulting in two infected offspring. I think this division must come early in the infection
however, i.e. before the cell begins to express mEYFP, as I observe no instances where
an already yellow fluorescent cell divides. This observation could potentially be used
to better understand the finer timing of the progress of phage infection within the cell.
For instance, for both daughter cells to be infected there presumably must have been
at least two copies of the phage genome within the parent cell at the point of division,
thereby giving us an indication of the timing of genome replication.
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Fig. 6.4 An example kymograph showing infection of a mother cell which then remains
infected without lysing for approximately 3 hours. The intensity of the mEYFP signal
remians strong throughout this time. For scale, the trenches are 7 µm wide in total.
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Fig. 6.5 An example kymograph showing infection of a mother cell which then never
lyses, but where the intensity of the mEYFP signal reduces after approximately 30
mins. For scale, the trenches are 7 µm wide in total.
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Fig. 6.6 Infected cells appear different in the phase contrast images. (a) shows the
blue rectangle highlighted in Fig. 6.2, while (b) shows further examples of infected
and uninfected cells. In infected cells, the centre of the cell appears brighter in phase
contrast images, whereas uninfected cells are uniform in intensity. For scale, the
trenches are 7 µm wide in total.

6.4 Discussion

In this Chapter it was demonstrated that we are able to observe phage infection at a
single cell level in the mother machine. In addition to cell lysis, as was anticipated,
we observe many instances where cells never lyse, and either remain fluorescent or
partially recover. The observation of these phenotypes raises many interesting questions.
Perhaps the most obvious question is why don’t the cells lyse? My instinct is that the
answer to this is, at least partly, related to the media used in the mother machine. We
have seen in Chapter 4 that the availability of nutrients can have a significant impact
on lysis (Fig. 4.17). I would suggest that an obvious next step would be to perform
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Fig. 6.7 An example kymograph showing infection of neighbouring cells in the mother
machine. Shortly prior to the cells beginning to express the infection marker, the pair
of cells had come from the same mother cell, indicating that the infection may have
occurred prior to cell division. For scale, the trenches are 7 µm wide in total.



6.4 Discussion 181

experiments in different media, and at different media concentrations, to ascertain
what impact this has on the frequency of lysis.

Another interesting question is, given how rarely infected cells seem to lyse in the
current set-up, why is it that all of the secondarily infected cells in Fig. 6.2 do lyse? Is
it because those instances represent more ‘effective’ phage mutants in the population,
or because high multiplicity infections increase the likelihood of lysis? If infection
multiplicity is a factor, this could potentially be explored by flowing a much higher
concentration of phage through the feeding lane, and seeing if there is a corresponding
increase in the relative proportion of infections which lead to lysis. Another possibility
is that enzymes and other proteins released when the initial cell lyses remain in the
trench environment, and aid with the lysis of the later cells. This could perhaps be
explored by incorporating phage lysate into the media used in the mother machine, to
see if it increases the frequency of lysis.

One caveat to the seeming rarity of lysis is that, in this work, lysis events have been
identified retrospectively based on the simultaneous appearance of many infected cells
in a trench. It is possible, however, that there are instances where infected cells do lyse,
but for some reason do not lead to many subsequent infections. In such instances, I
expect that it would be difficult to distinguish between cells which had lysed, and cells
which had fully recovered, particularly given the current 3 min gap between frames. To
address this, I would propose the development or use of a lineage tracking algorithm,
which could match cells between frames based on their size, position, growth rate, etc.
Lysis could then be identified more quantitatively if a cell cannot be matched to a high
degree of certainty with any cell in the subsequent frame.

There are also questions which may be more challenging to answering. In the cells
which continue to fluoresce strongly, are phage continually being produced inside the
host? In the cells which don’t continue to fluoresce strongly, are phage no longer being
produced? Does this indicate some kind of ‘recovery’ of the cell? On this point, it
is worth noting that I have not observed an instance where a ‘recovered’ cell began
growing/dividing again. Perhaps instead the reduction in fluorescence indicates that
the cell membrane has become partially compromised, such that the cell remains
intact, but alters the cell environment in such a way that the mEYFP can be degraded.
Interestingly, in these cells the mCherry signal appears to be unaffected (Fig. 6.5).
These observations could be explained by the cell environment becoming more acidic.
The acid sensitivity of fluorescent proteins is measured using a pKa value, which
corresponds to the pH at which the intensity of the fluorescent protein drops to 50% of
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its maximum value. mEYFP has a pKa=6.9 [197], whereas mCherry has a pKa<4.5
[198], meaning that mCherry maintains its intensity better in acidic environments.

In addition to these questions, as this work continues there will also be a more
rigorous and quantitative analysis of the frequency of events, and the properties of
the cells during infection such as length of the cell and length of infection. Beyond
this, it would be useful to observe wild-type phage, along with other mutants, in the
mother machine to determine whether lysis is observed and if cells appear differently
in phase contrast shortly before lysis. If this was a general feature then it would be
incredibly useful as it would mean, in principle, that phage infection could be observed
and identified in the mother machine without the need to induce fluorescence. Finally,
other phage mutants could be created to observe different steps in the phage infection
cycle, such as adsorption and injection of viral DNA. For instance, a phage could be
engineered to itself be fluorescent by attaching fluorescent proteins to its capsid. It’s
possible that as this phage diffused through the mother machine, its movement would
result in no clear signal, but at the moment of adsorption the phage becomes fixed in
place, resulting in a visible signal.



Still, thou art blest, compar’d wi’ me!
The present only toucheth thee:
But Och! I backward cast my e’e,

On prospects drear!
An’ forward, tho’ I canna see,

I guess an’ fear!

from To A Mouse, by Robert BurnsChapter 7

Conclusion

7.1 Summary

We have seen in this thesis a wide variety of interrelated findings regarding the impact
of virus-host interactions on the evolutionary dynamics of phages in general, and T7
more specifically. Throughout much of this thesis, there has been a particular focus
on interactions that occur during growth in bacterial lawns, i.e. during spatial range
expansions. It was known previously, that when individuals in single-species expansions
grew or dispersed better cooperatively, this could result in ‘pushed’ expansions which are
much more resilient to stochastic fluctuations, making the population better equipped
to adapt to changes in the environment. One of the initial questions posed in this
thesis was whether or not a similar pushed dynamic could arise in the expansion of
phage, not through cooperativity (since the phage do not interact directly with one
another), but through the unavoidable physical interactions the phage has with the
host bacteria.

In Chapter 2, we have seen that indeed it can. By combining experimental measure-
ments of phage diffusion in a bacterial lawn with a reaction-diffusion model of plaque
growth, we saw that the bacteria hinder phage diffusion through steric interactions,
and that this can result in pushed expansions at high bacterial density. Not only that,
but we also discovered that pushed expansions could occur due to a second independent
effect, which originates in the fact that phage are unable to disperse while trapped
inside the host during incubation.

This not only highlights the fact that the genetic diversity and adaptability of many
expanding viral populations may often be much higher than is currently assumed, but
it also indicates that bacteriophage offer researchers a potential system in which to
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pulled and pushed dynamics in the laboratory. One approach to such an endeavour
is through the quantification of the properties of the large monoclonal sectors that
form during spatial growth. In Chapter 3, an image analysis pipeline was developed
to identify these sectors from fluorescent images of plaques where phage are able to
induce fluorescence in infected cells.

The next question posed in the introduction was how best to interpret plaque
growth experiments in light of our models and theories. In part, our ability to do
this accurately remains limited because of the experimental tools at our disposal. As
discussed in the introduction, the experimental study of bacteriophage relied almost
exclusively on measurements carried out in a well-mixed liquid culture of exponentially
growing bacteria. While such measurements are certainly useful, they are unlikely to
capture the complex infection dynamics that occur in spatially structured environments,
where bacteria with varying metabolic states are often densely packed together with
an irregular supply of nutrients. In Chapter 4, I presented various novel experimental
techniques designed to address these issues, and to facilitate better comparisons between
models and experiments of plaque growth.

Next, we turned our attention to the evolutionary impact of superinfection and
superinfection-exclusion mechanisms. Originally, our ideas and questions about this
topic were also rooted in a spatial context. Indeed, such mechanisms were already
touched upon in Chapter 2 in relation to the four model variants we looked at, and
it was shown that the presence or absence of a mechanism that prevents adsorption
to previously infected cells greatly alters the expansion dynamic. Our interest in
superinfection-exclusion mechanisms goes beyond this, however. In a spatially struc-
tured environment, phage will mainly be in competition with clonal phage that were
released by the same or neighbouring hosts (picture the monoclonal sectors discussed
in Chapter 3). This raises the question of whether or not having a superinfection-
exclusion mechanism is less useful here? At what point does the cost of maintaining a
superinfection-exclusion mechanism become intolerable for the virus? What impact
does allowing or excluding superinfection have on the balance between selection and
genetic drift in expanding viral populations?

Before we are able to understand the impact of spatial structure on these dynamics,
however, we first have to understand how they operate in an unstructured, well-mixed
environment. To our surprise, even in the comparatively simple case of a well-mixed
environment, the baseline impact on evolution of superinfection and superinfection-
exclusion remained relatively poorly understood. We first therefore had to address this
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gap, and in Chapter 5 we present the results of an extensively stochastic simulation
study characterising the impact of superinfection on the forces of selection and genetic
drift in a phage population grown in a turbidostat. While these results provide a
useful baseline for works investigating the impact of various intracellular interactions
in viral populations, and will provide a necessary point of comparison for future work
exploring the impact of spatial structure, arguably one of the most pertinent findings
concerns simply how different selective pressures can act in a turbidostat compared to
a more traditional well-mixed culture. Our finding that lysis time is under no selective
pressure in superinfection-excluding populations, and that it is only weakly selected for
in superinfecting populations has significant consequences for researchers attempting
to study the evolutionary dynamics of viral populations using continuous culturing
setups.

Finally, another issue raised implicitly in Chapter 5 is the impact of biological
stochasticity, e.g. cell-to-cell variations in the phage life-history parameters, how
those parameters depend on the chemical environment, and how they depend on the
cell metabolism. The level of such variability is currently not well understood, as
both existing phenotypic assays and the newer assays presented in Chapter 4 rely
on bulk measurements of population averages, rather than observations made at the
level of single cells. In Chapter 6 therefore, we began to investigate the extent of
phenotypic variability during phage infection by imaging the infection of single cells
in a microfluidic mother machine. While this work is still in its early stages, several
surprising behaviours and a significant amount of variation was observed, indicating
that phenotypic heterogeneity could play a very significant role in the evolution of
bacteriophage populations.

7.2 Outlook

7.2.1 Single Cell Imaging

There are many possible avenues future research in this area could take, as has been
highlighted in each of the Chapters. Perhaps one of the most obvious and fruitful is
a continuation of the work presented in Chapter 6, where phenotypic variability was
observed at a single cell level in a microfluidic mother machine. The use of mother
machine devices to study bacteria appears to be becoming increasingly prevalent, owing
to their ability to gather vast amounts of data, and their use can clearly also be adapted
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for the study of phage infection. At present, we possess a phage that, as its genome is
transcribed within the host, induces the expression of fluorescent proteins. This is an
incredibly useful marker, but it indicates only one step in the infection cycle. Further
genetic modifications could also be made to the phage with a view to observing other
steps. For instance, a phage could be engineered to itself be fluorescent by attaching
fluorescent proteins to its capsid, and the signal could potentially be used to identify
the moment of adsorption.

Mother machines also offer the potential to observe and quantify many different
phage simultaneously. This could be achieved by labelling a population of bacteria
cells with genetically encoded fluorescent barcodes that are identifiable in the mother
machine. These labelled cells could then be loaded into the mother machine, each
infected with a different phage. At the start of the experiment, we could therefore
tell which phage were in which trenches (within infected cells). Uninfected bacteria
could then be loaded into the trenches below the infected cells, such that when those
initial cells lyse there are bacteria in the trench for the phage to infect. The timing of
infection for many phage could therefore be monitored in a single experiment. One
potential challenge that may be faced here is how to prevent the infected cells from
lysing before they are successfully loaded into the trenches. I would propose that a
solution to this issue potentially lies in suspending and loading the cells in water, or
some other liquid lacking nutrients. As we saw in Fig. 4.17, this appears to prevent
cells from lysing, although whether or not this is because it also prevents infection
remains unclear. If cells were infected without lysing, however, this would allow us to
safely load them into the mother machine, and then induce their lysis at a timing of
our choosing by flowing in fresh media.

7.2.2 The Role of Phenotypic Heterogeneity

While using the mother machine to probe the nature of phage infection is undoubtedly
highly promising, if I am honest, it is not where my heart lies. This is perhaps a more
philosophical point, and it may seem strange given the contents of this thesis, but I
have never felt like my PhD was about phage. I was interested in understanding how
viruses evolved, particularly in space, but in a more general sense. The focus on phage,
at least to my mind, was driven simply by the fact that it is a ‘model’ viral system (i.e.
it is relatively easy to control and manipulate in the laboratory) which could be used
to test predictions. It was not, in itself, the thing which was of interest.
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Therefore, the questions that can be answered using mother machines, such as
what is the precise timing of various steps in the T7 infection process, and what is the
cell-to-cell variability in the length of each of those steps, are at least to me not by
themselves interesting. What compels me is the broader question of how phenotypic
variability alters the evolutionary dynamics of viral populations. What does it mean
for a viral population? Does increased variability help, hinder, or indeed make no
difference to one virus in competition with another? If we are to use phage T7 as a
model system to help us explore the impact of phenotypic heterogeneity, then the levels
of phenotypic heterogeneity in T7 must of course be categorised. I do not dispute
this. If it were me, however, I would first attempt to determine what role I expected
phenotypic heterogeneity to play in the evolutionary dynamics of the populations.

Initially, I would propose to investigate the role of phenotypic heterogeneity using
similar stochastic simulations to those described in Chapter 5. In that Chapter, we
briefly looked at the effect of stochasticity in lysis time by drawing the lysis time from
a Gaussian distribution with some mean τ and standard deviation στ , but we did not
explore the implications of varying στ . If two mutants have the same τ , but a different
στ , are their chances of success the same, or different, and under what conditions? If
one virus has much greater levels of variability compared to its competitor, perhaps
the first will gain the upper hand because some, albeit a minority, of phage in the
population will lyse faster than their competitors. On the other hand, if the lysis time
of those progeny are not correlated with their parent, then any advantage would be
short lived.

This is obviously a relatively simple first step, but I think it would be a worthwhile
one. If we found that, in this context, biological stochasticity has little to no impact on
the evolutionary dynamics, I would not prioritise trying to quantify it using a mother
machine.

7.2.3 More Complex Spatial Dynamics

Much in the same way that I have focused on phage T7 as a model viral system,
throughout this thesis I have focused on plaques as a model system for viruses spreading
through space. This is because plaques represent a relatively ‘simple’ case, e.g. they
occur on a flat, homogeneous surface where the bacteria are unable to move. In nature,
however, bacteria and phage commonly exist in environments with more complex
dynamics and spatial structure. Moving forward, I would be inclined to explore the
impact that these have on the evolutionary dynamics.
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For instance, what happens if we relax the condition that the bacteria are unable to
move? If the bacteria cells were motile, perhaps they could carry the phage significant
distances before lysing. What impact does this have on genetic drift? Presumably
some of the phage would be carried significantly beyond the front and act as ‘founders,’
but some will presumably also be carried parallel to or far behind the front, thereby
increasing the degree of mixing. The movement of bacteria also allows for even
more complex behaviours, as it has been shown previously that bacteria can exhibit
phenotypic resistance to phage by aggregating [163, 199] or propelling themselves away
from phage [200]. How do such mechanisms evolve, and how do the phage react and
adapt to such changes? Additionally, what happens if we relax the condition that
our phage are growing on a flat, homogeneous lawn of bacteria? In nature bacteria
and phage commonly exist in more fragmented environments like the human gut or in
soil. How does infection spread in these environments, and how are the evolutionary
dynamics altered?

Similar to my proposed investigation of phenotypic heterogeneity, I would suggest
that initially the most straightforward way to tackle some these questions would be to
utilise a model similar to that discussed in Chapter 2. That model could be adapted
to account for bacterial motility and an inhomogeneous initial distribution of bacteria.
Following the same approach as in Chapter 2, the speed of the front could be determined
and compared to the speed of the linearised system, and the genetic drift could be
characterised using stochastic simulations.

This could then be followed up by experiments similar to those presented in
Chapter 3, where phage used to induce fluorescence in infected cells were used to
measure and quantify the formation and growth of monoclonal sectors during plaque
growth. These experiments could be repeated using motile bacteria embedded in soft
agar, so that the bacteria are able to move. Similarly, the bacteria could be inoculated
heterogeneously on the plate. I would anticipate that these experiments would, however,
pose some technical challenges. Since the motile bacteria would need to be embedded
in a several mm thick layer of agar, I would expect that any fluorescence signal would
appear to be quite blurry, since it would be originating from multiple z heights. On
top of that, it’s possible that the movement of bacteria would result in a much more
diffuse front, where the boundaries between sectors are hard to identify. The extent of
these issues will not be known, however, until the experiments are attempted.
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7.2.4 The ‘Big’ Challenge

While there will clearly be technical obstacles to overcome, the more profound challenge
I foresee in pursuing the lines of enquiry that I have outlined here, is how we ensure
that our models actually tell us something useful about reality. As we try to account
for more and more complex aspects of phage infection, decisions will need to be made
about how to implement those aspects in our model. I do not think it is always
obvious how to do that. As an example, our simple description in Chapter 5 does
not account for an eclipse period (where infection has occurred, but no phage have
been produced inside the cell). In the case where only one type of phage infects, this
would be straightforward to implement, but what if there are two types of phage? In
the event where a superinfecting phage infects a host prior to the end of the original
phage’s eclipse period, how should we model the internal dynamics? Should both phage
begin production at the end of the first’s eclipse period, or at the end of their own?
Should the phage which infects first gain some advantage, and does this depend on
when exactly during the eclipse period the second phage infects, or does competition
only begin at the end of the eclipse period?

In part, some insight as to the answer to these questions can obviously be gained
from experiments, although even through the use of mother machines I would anticipate
that extracting the intracellular dynamics will be difficult. At present, this then leaves
us to make decisions based on what seems ‘sensible’ and widely applicable. My biggest
fear, however, is not that we will be unable to eventually answer these questions,
or even that the decisions we make in the meantime will turn out to be wrong; my
biggest fear is that there simply is no way of describing these processes that is widely
applicable. As was noted in Chapter 5, superinfection-exclusion mechanisms, and more
broadly the specifics of the infection process, are highly diverse. As we get into the
finer and finer details, it may be that what is true for one virus is completely irrelevant
to another. I suppose that in itself would be interesting, but as a physicist I want to
be able to distil these complex behaviours down into a few simple ingredients. Perhaps,
however, we will discover that this is simply not possible.

That being said, while my interest as a physicist working on this topic has been
in the general, there are obviously many researchers in this area spanning biology,
engineering, mathematics, theory, and experiment who each have their own approaches
and questions, some more general and some more specific. Progress will be made by a
combination of all of them, and I will watch with interest as it is.
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Appendix A

Bacteria Strains

Strain Genotype/Characteristics Source

BW25113 E. coli BW25113 WT (CGSC# 7636) -

eWM43
BW25113, with plasmid (see [133]) conferring resis-
tance to ampicillin, and expressing venus YFP

Ref. [133]

eMTH43
eWM43, with second plasmid pAK591 (Addgene#
48107) conferring resistance to chloramphenicol

Chapter 2

eWM44
E. coli ∆waaC, is resistant to phage infection, with
plasmid (see [133]) conferring resistance to ampicillin
and expressing mCherry

Ref. [133]

SB8

Constructed by a P1 transduction from the Keio
collection strain CGSC#:9565, ∆motA743::kan into
E. coli MG1655, and flippase was used to remove
the kanamycin resistance

Ref. [195]

SB7
Constructed by P1 transducing glmS ::PRNAI-
mCherry1−11-mKate-T1 terminator-FRT Kan
FRT::pstS into SB8. Expresses mCherry.

Ref. [195]
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