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Abstract

We propose a theoretical framework for dealing with a transient polymer network

undergoing small deformations, based on the rate of breaking and re-forming of network

crosslinks and the evolving elastic reference state. In this framework, the characteristics

of the deformed transient network at microscopic and macroscopic scales are naturally

unified. Microscopically, the breakage rate of the crosslinks is affected by the local force

acting on the chain. Macroscopically, we use the classical continuum model for rubber

elasticity to describe the structure of the deformation energy, whose reference state is

defined dynamically according to when crosslinks are broken and formed. With this,

the constitutive relation can be obtained. We study three applications of the theory

in uniaxial stretching geometry: for the stress relaxation after an instantaneous step

strain is imposed, for the stress overshoot and subsequent decay in the plastic regime

when a strain ramp is applied, and for the cycle of stretching and release. We compare

the model predictions with experimental data on stress relaxation and stress overshoot

in physically bonded thermoplastic elastomers and in vitrimer networks.
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Introduction

Transient networks, also called physical gels, play an important role in technology and in

biological systems.1 The unique ability to re-shape solid in an arbitrary way by plastic de-

formation at a higher temperature, returning back to a fully rubber-elastic state at lower

temperatures without any permanent degradation, including self-healing of mechanical dam-

age, is what makes this class of soft materials so attractive in a variety of biological substi-

tutes and functional material applications. In all cases there is some physical (non-covalent)

bonding that holds such a network together; there are many examples of hydrogen or ionic

bonding,2,3 and local hydrophobic interactions,4,5 as well as effective crosslinking by semi-

crystalline or amorphous phase-separated micelles.2,6,7 Biological networks are often bonded

by transient protein-protein interaction,8,9 or by filament-membrane interaction.10,11 The

interest in elastic properties of transient networks with breakable crosslinks dates back to

the early work of Thomas12 and Flory13 which, at that time, mostly concentrated on hy-

drogen bonding crosslinks. Later much attention was given to thermoplastic elastomers of

block-copolymers.14–16 In all of the mentioned cases, physically bonded crosslinks break un-

der stress and at elevated temperature. Very recently, a new class of transient network was

developed, and given the name ‘vitrimer’, where the covalent bonds holding the polymer

chains in the network can be re-arranged by transesterification reaction17–19 or a catalyst-

free transamination of vinylogous urethanes.20 In these systems, the shape of the network

can be re-molded at a sufficiently high temperature, yet the number of covalent crosslinks

remains the same at all times.

Figure 1(a) illustrates a way of effective network crosslinking via aggregates of chain

segment, which could be in a crystalline, glass, or just rigid hydrogen-bonded arrangement.

Figure 1(b) illustrates the topology of chain re-connection due to reversible covalent bonding

such as transesterification, or transamination. Although the chemical nature of polymers

involved, and the physical nature of crosslinks are very different, the common feature of all

these materials is that they all have crosslinks that can be broken by force and spontaneously
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Figure 1: Network rearrangements under stretch in: (a) physically crosslinked thermoplastic
elastomer, and (b) covalently bonded vitrimer network re-configuring itself by transesterifi-
cation.

re-formed, usually after chain relaxation in a non-force-bearing configuration.

Theoretically, understanding the mechanics and relaxation in transient networks has been

a long-standing project. Microscopically, Green and Tobolsky21 introduced breakage and re-

making of the crosslinks when handling relaxation in polymeric networks, which was further

developed by Fricker22 and Baxandall and Edwards.23 Following this line of research, Tanaka

and Edwards have put together a consistent framework of treating the crosslink dynamics

under external force.24,25 Separately, Rouse dynamics and reptation were used for studying

the dynamics of a transient network by Leibler et al.,26 later developed by Rubinstein and

Semenov .27,28

Macroscopically, in a series of papers, Drozdov et al.29,30 proposed constitutive models

for various systems involving transient networks, by analyzing the macroscopic deformation

energy. In this approach one simply assumes appropriate expressions for the crosslink break-

age and the re-forming rates as a function of energy density with fitting parameters. Similar

ideas were successfully applied to deal with dual networks by Long and Hui et al.,31,32 where

the system consists of interpenetrating permanent and transient networks. For simulations,

Langevin dynamics,3,33,34 Monte Carlo35,36 and molecular dynamics simulations37–39 were

applied to study the rheological behavior of a transient network. It is usually simple to get a

constitutive relation, if given the continuum/macroscopic energy form of the system. If the
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microscopic details can be naturally incorporated into such a macroscopic picture, then the

theory can become portable and easy to be modified to meet customized conditions.

As it is known, the classical continuum model for rubber elasticity, sometimes called ‘neo-

Hookean model’, can be obtained by statistically treating polymers as Gaussian chains.40

In this work, we will follow Tanaka-Edwards method24 by explicitly applying the classical

continuum model to describe the energy of the system, instead of using complex statistical

calculations. Specifically, we can obtain the rate of the chains to break from crosslinks,

together with their re-crosslinking rate, by describing polymer chains as Gaussian (which

is consistent with the level of approximation used in the neo-Hookean model). By incorpo-

rating these molecular details into the time evolution of the macroscopic transient network

structure, we obtain the deformation energy of the system and then the constitutive relations

under arbitrary geometry of strain. We then focus on the uniaxial stretching as an example

(one of the most common geometries for study of dynamics and relaxation in experiment),

and derive expressions for stress relaxation, ramp deformation and self-healing of the net-

work in a cycle of deformation. In most cases we also carry out matching experiments on the

SIS (styrene-isoprene-styrene) telechelic copolymer network physically crosslinked by glassy

micelles of polystyrene,15 and on the classical transesterifying vitrimers of Leibler et al.17

Although this has never been studied in detail, one can assume that the rate of spontaneous

re-crosslinking of broken-out chains is slow in SIS (where the chain end diffusion towards a

new micelle needs to occur) and fast in vitrimers where the two chains simple re-connect in

the same location. This comparison, which we can explicitly see in the analytical theoretical

expressions, was the motivation for this choice. We find a good agreement with experiments,

and discuss this and the implications at the end of the paper.
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The model

In this section, we first describe the microscopic picture of rates of breakage and re-forming

of crosslinks in a transient network under tension. We then derive the macroscopic elastic

energy of the system, together with the general constitutive stress-strain relation, where the

microscopic details of the crosslink dynamics are incorporated.

Breaking and re-forming of a crosslink

We shall work under a natural assumption that the crosslink is held together in a potential

energy well with a characteristic energy barrier to overcome, Wb. The equilibrium Kramers

rate of breakage of such a system is given by the thermally activated law

β = ω0e
−(Wb−fb)/kBT , (1)

where ω0 is the natural frequency of thermal vibration of the reactive group in the isolated

state. The work by an external force f acting on the chain connected to this crosslink is

obtained by assuming that a displacement of one monomer length, b, is enough to pass the

confinement barrier. For a Gaussian chain (a valid approximation in a polymer melt due

to screening of self-interactions), the force acting on the chain is simple: f = 3kBTr/Nsb
2,

where r is the end-to-end vector of the chain, and Ns is the number of the segments consti-

tuting a chain that connects the crosslinks. Alternatively, the acting force can be obtained

from the stress tensor, which will be illustrated later.

Equation (1) can also be arranged in the form that separates the exponential factor

containing the applied force, and converts this force into the end-to-end distance of polymer

strand connecting two crosslinks: β = β0e
κr, where the parameter κ = 3/Nsb, and β0

is the spontaneous breaking rate determined by the barrier Wb. The average end-to-end

distance 〈r〉 of a deformed network changes with imposed deformation E, following the

affine expression 〈r〉 = 〈E · r0〉 with an appropriate orientational averaging, resulting in the
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dependence of the breaking rate on deformation. When both breaking and re-forming of

crosslinks takes place and the deformation is dynamic, E = E(t), the breakage rate β(t, t0) is

a function of both the current time t and the time t0 when this crosslink was formed during

the process.

We shall assume that the recrosslinking of the dangling chain ends is a simpler case, as

the dangling chains are assumed to be in the relaxed state. This is an approximation ignoring

the effects of diffusion (possibly reptation) time that is required for this chain to equilibrate

in the network. This assumption is also useful in the discussion of the energy of the system,

later in the text. The crosslinking rate can be given by another Kramers expression,

ρ0 = ω0e
−wc/kBT , (2)

where wc is the energy barrier for a dangling chain to overcome in order to be crosslinked.

In this form ρ0 is a reaction constant and is independent of the deformation in the system.

Usually, the crosslinking rate is much higher than the breakage rate at ambient temperatures,

ρ0 � β0 (i.e. Wb � wc), so the network can be regarded as ‘crosslinked’. For high tempera-

tures, one could reach a regime when ρ0 ≈ β0 ≈ ω0, and this is clearly a system that would

undergo a plastic flow under stress. It is interesting that by fitting the data of experiments

on vitrimer stretching17,41 later in the paper, we shall obtain Wb ≈ 1.4 · 10−19J = 30 kBT at

room temperature: a reasonable value much lower than an ordinary covalent bond.

The rate constant ρ0 measures the reaction time, but we have to also consider the time it

would take for the free dangling end of the chain to reach the point of the new crosslinking

(a position that we consider force-free for this chain). In some cases, this time is short,

e.g. when the crosslinking reaction can happen essentially with any nearby monomer (as

happens in vitrimer chemistry17). In other situations, when the reacting end of a dangling

chain needs to travel a substantial distance to link with another matching site, this time

can be long. Many excellent theoretical models describe this diffusion motion (usually –
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reptation, with or without constraint release42,43). Here we simply account for the diffusion

time as an addition to the reaction time, making the effective rate of re-crosslinking:

ρ =
1

tdiff + 1/ρ0

, (3)

and will later consider the cases when the diffusion time is very short (tdiff � 1/ρ0) and very

long (tdiff � 1/ρ0).

Transient network

Since the crosslinks form and break dynamically, the numbers of both the crosslinked chains

and the dangling chains in the network may change with time. If we take the number of

crosslinked chains at a given time to be Nc(t), then the number of the uncrosslinked chains

is correspondingly Nb(t) = Ntot −Nc(t), where Ntot is the total number of the chains in the

system including both crosslinked and freely dangling. If the system is in the equilibrium

(reference) state without any deformation, then the breakage rate in Eq. (1) becomes a con-

stant β = β0e
κr0 = β0e

3/
√
Ns (the last relation is due to the average end-to-end in such a

network being r̄0 = b
√
Ns, consistently staying with the Gaussian approximation). The equi-

librium detailed balance gives the relationship between Nc and Nb under no deformation:

Ncβ = Nbρ0. Note that it is the reaction rate ρ0, Eq. (2), that forms this detailed bal-

ance, whereas the full rate, ρ, determines the re-crosslinking during the process of dynamic

deformation.

Furthermore, since the newly re-crosslinked chains are assumed to be in their relaxed

state, the crosslinked chains can be categorized into two classes: one is the newly crosslinked

chains in their force-free relaxed state, with the number Nnc(t), while the other is the ‘sur-

viving’ crosslinked chains, which were crosslinked initially and are still elastically active at

the present time, with the number Nsc(t) = Nc(t)−Nnc(t).

The Table 1 illustrates in discrete form how we build up the expressions for the time
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Table 1: Time-evolution of the number of the crosslinked chains.

Time Number of crosslinked chains

0 Nc(0)

∆t Nc(0)e−β(∆t;0)∆t +Nb(0)ρ∆t

2∆t Nc(0)e−β(∆t;0)∆te−β(2∆t;0)∆t +Nb(0)ρ∆te−β(2∆t;∆t)∆t +Nb(∆t)ρ∆t
... ...

N∆t Nc(0)e−
∑N
i=1 β(i∆t;0)∆t +

∑N−1
j=0 Nb(j∆t)ρ∆te−

∑N
k=j+2 β(k∆t;[j+1]∆t)∆t

dependence of Nc(t). Apart from losing a portion of initially crosslinked chains, at each

step with a rate that reflects the current state of deformation, the rate of breaking of newly

re-crosslinked chains depends on the changing reference state. After the first small time

interval ∆t, the number of chains broken from crosslinks is Nb(∆t) = Nc(0)β(∆t; 0)∆t,

and the number of the survived crosslinked chains is Nsc(∆t) = Nc(0)(1 − β(∆t; 0)∆t) '

Nc(0)e−β(∆t;0)∆t, correspondingly. Meanwhile, the number of the newly crosslinked chains is

Nnc(∆t) = Nb(0)ρ∆t. After the next time interval ∆t, the number of the surviving chains

initially crosslinked reduces further at a rate β(2∆t; 0) that corresponds to the state of

deformation at this time. For the chains re-crosslinked at time ∆t, the breakage rate has the

reference (force-free) state at ∆t, which explains the second term in the 2∆t line of Table 1.

Plus, a portion of chains that were broken at the previous time step re-crosslinks with the

constant rate ρ. Repeating these discrete steps, the total number of crosslinked chains at

time N∆t can be written down. Taking the limit ∆t → 0, the continuous version of these

sums takes the form

Nc(t) = Nc(0)e−
∫ t
0 β(t′;0)dt′ +

∫ t

0

Nb(t′)e−
∫ t
t′ β(t′′;t′)dt′′ρ dt′. (4)

This expression is key for our subsequent analysis. The first term represents the initially

crosslinked chains surviving from t′ = 0 till the present time, while the second term represents

the chains re-crosslinked during that period both from the originally broken chains and the

chains broken at different times during this evolution. Since Nb(t) = Ntot−Nc(t), Eq. (4) is

a formal integral equation that determines Nc(t) for a given state of dynamic deformation.

8



Macroscopic elastic energy

We shall use the classical continuum model of rubber elasticity derived from statistics

of Gaussian chains.40,44 Let us at first assume that a rubbery network, with permanent

crosslinks, is at its reference state at t = 0. If the system is deformed from its reference

state with a general affine deformation tensor E(t; 0) at time t, then the energy density of

the system can be written as

Frub(t; 0) =
1

2
G
(
tr[ET(t; 0)E(t; 0)]− 3

)
, (5)

where G is the shear modulus of the rubber. The entropic Gaussian model will give the

rubber modulus proportional to the density of crosslinked chains, G0 = kBT Nc(0)/V , but

we shall not be concerned with a specific value of this material constant.

For a deformed transient network, the average elastic free energy is made of several

contributions. Let us assume that the initial reference (force-free) state is at time t = 0.

For t > 0, the chains in network no longer have the same reference state: the Nsc chains

crosslinked from the beginning that survived till the current time are deformed with respect

to the t = 0 state, but the Nnc re-crosslinked chains are deformed with respect to their

individual reference states that were force-free at different times. Consider Nnc(t0) chains

newly crosslinked at t0, and the macroscopic deformation tensor of the transient network

E(t0; 0) at time t0 (with respect to the original reference state). Then Nnc(t0) chains are

in their reference, or relaxed state. As such, they do not contribute any elastic energy to

the system at time t0 and state of deformation E(t0; 0). But at a later time, t > t0, if the

imposed deformation has dynamically changed to a new value E(t; t0), the energy density

contributed by these Nnc(t0) chains is proportional to Nnc(t0)e
−

∫ t
t0
β(t′;t0)dt′

F (t; t0), where the

time-dependent factor represents the proportion of these Nnc(t0) chains still crosslinked at a

later time t′. The elastic free energy density F (t; t0) in this expression is determined by the
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deformation tensor E(t; t0) with respect to the reference state at t0, expressed by

E(t; t0) = E(t; 0) · E−1(t0; 0), (6)

where E−1 is the inverse matrix of E.

Assembling together all these contributions from the chains that have been re-crosslinked

during the deformation period between t′ = 0 and t, and adding the continuously diminishing

contribution from the initially crosslinked chains, the energy density of the transient network

can be expressed by

Ftr.n.(t) = e−
∫ t
0 β(t′;0)dt′Frub(t; 0) +

∫ t

0

ρ
Nb(t′)

Nc(0)
e−

∫ t
t′ β(t′′,t′)dt′′Frub(t; t′)dt′, (7)

where in the second term the neo-Hookean free energy density uses the dynamically changing

strain tensor from Eq. (6).

In ordinary rubbery networks, the crosslinks are permanent, and the rubber modulus G

is defined in Eq. (5) with an unchanged reference state at t = 0. However, the reference

state in a transient network can only be defined locally for different chains, depending on

when they are crosslinked. Because of the difficulty in tracking the real reference state of

every crosslinked chain, it is sometimes convenient to define an effective shear modulus G∗

as the ratio45

G∗(t) =
2Ftr.n.(t)

tr[ET(t; 0)E(t; 0)]− 3
, (8)

which essentially measures the relative change of the transient network response with respect

to an analogous permanently crosslinked network with the elastic reference state at t = 0.
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Elastic stress tensor

The stress of a transient network usually includes two parts, the elastic stress and the viscous

stress, σela +σvis, since the plastic flow could be an essential part of the mechanical response.

The origins of the viscous part σvis are complex, and might include nonaffine movement of

the crosslinks, dynamics of entanglements and dangling chains, etc. We shall simply express

it in the form

σvis = η(γ̇) · γ̇, (9)

where η is the viscosity tensor, which is expressed as a possible function of the strain rate

tensor γ̇. There are many studies on how viscous stress depends on the strain rates, including

shear thinning and thickening effects, which is usually induced by nonaffine movement inside

of the network.46,47

In this work we will concentrate on how elastic stress evolves with deformations ignoring

the viscous effects during the developed plastic flow. Earlier we discussed the Helmholtz

elastic free energy of the transient network. However, we need to account for the ma-

terial (in)compressibility, which is not naturally included in the classical rubber-elasticity

expression (5). It is common to simply impose the incompressibility constraint onto such

an expression; however, the ‘cost’ is often an unphysical non-zero stress on the free sides

of the deformed sample. There are two ways to account for this: either explicitly include

the (large) bulk modulus, find a corresponding (small) volume change on deformation and

rescale the strain tensor to be measured with respect to that state48 – or work with the

Gibbs free energy density g(p, T ) and replace the (constant) pressure from the constraint

that free surfaces of the sample have zero stress.49 This is the approach we follow here and

introduce:

g(t) = Ftr.n.(t)− p · detE , (10)
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where Ftr.n.(t) is given by Eq. (7), Eij(t; t
′) = Eik(t; 0)E−1

kj (t′; 0), and the pressure p is a La-

grangian multiplier in charge of the incompressibility condition, determined by the boundary

conditions of the stress. Defining stress as a functional variation of g(t),

σela
ij (t) =

δg(t)

δEij(t; 0)
, (11)

we can obtain the expression of the stress tensor,

σela
ij (t) = e−

∫ t
0 β(t′;0)dt′GEij(t; 0) +

∫ t

0

ρ
Nb(t′)

Nc(0)
e−

∫ t
t′ β(t′′,t′)dt′′GEik(t; t′)E−1

jk (t′; 0)dt′

−p · detE · E−1
ji , (12)

where the first term represents the contribution from the surviving chains crosslinked at t = 0,

and the second term represents the contribution from the chains re-crosslinked between t′ = 0

and t.

Let us now focus on how a transient network responds to an imposed uniaxial stretch,

as an application of the above general model. When undergoing a uniaxial stretch along the

longitudinal direction, Fig. 2(a), the polymeric sheet will deform, with length as L = λLL0,

width as W = λWW0 and thickness as H = λHH0, where λL, λW, λH are elongation ratios

along the three orthogonal directions. Taking λL as the external parameter λ, λW and λH

can be written as 1/
√
λ each, due to the incompressibility.

If the particular crosslinks are formed at time t′, then their corresponding deformation

tensor at time t can be known from Eq. (6), treating E(t′; 0) as the reference state:

E(t; t′) =
λ(t)

λ(t′)
eLeL +

√
λ(t′)

λ(t)
(eWeW + eTeT) , (13)

where eL, eW and eT are unit vectors along the three orthogonal directions. In this case,

Fig. 2(b), the average end-to-end distance 〈r〉 that determines the breaking rate β in Eq. (1)

can be calculated using the changing average end-to-end distance that reflects the deforma-
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Figure 2: Schematic illustration of (a) a polymeric sheet, and (b) a chosen subchain in a
uniaxial stretched network, with r as the end-to-end distance and θ as the angle between
the end-to-end vector and the stretch direction.

tion that occurs at time t with respect to a reference state at time τ :

〈rt;τ 〉 = r0

∫ π/2

0

dθ sin θ

√(
λ(t)

λ(τ)

)2

cos2 θ +
λ(τ)

λ(t)
sin2 θ. (14)

where r0 ∼
√
Nsb is the mesh size of the network in its reference state. Substituting the

strain tensor from Eq. (13), the Helmholtz elastic free energy density of the system can be

written explicitly as:

Ftr.n.(t) =
1

2
Ge−

∫ t
0 β(t′;0)dt′

(
λ(t)2 +

2

λ(t)
− 3

)
(15)

+
1

2
G

∫ t

0

ρ
Nb(t′)

N0

e−
∫ t
t′ β(t′′,t′)dt′′

[(
λ(t)

λ(t′)

)2

+
2λ(t′)

λ(t)
− 3

]
dt′

with the orientational averaging implicit in the expressions for β(t, t′) in the relaxation

exponents. Applying Eq. (8), the effective shear modulus can be obtained by simply dividing

both terms in this free energy density by the characteristic neo-Hookean strain combination,

which for uniaxial deformation is given by the bracket in the first term in Eq. (15):

G∗(t) = Ge−
∫ t
0 β(t′;0)dt′ (16)

+G

∫ t

0

ρ
Nb(t′)

N0

e−
∫ t
t′ β(t′′,t′)dt′′

(
λ(t)2/λ(t′)2 + 2λ(t′)/λ(t)− 3

λ(t)2 + 2/λ(t)− 3

)
dt′.
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The transverse diagonal components of stress can be obtained from Eq. (12) by inserting the

explicit components of the uniaxial strain tensor, producing

σW = σT =
G√
λ(t)

(
e−

∫ t
0 β(t′;0)dt′ +

∫ t

0

Nb(t′)

N0

ρ e−
∫ t
t′ β(t′′,t′)dt′′λ(t′)dt′

)
− p
√
λ(t). (17)

In this geometry of uniaxial stretching, σW and σT should be both equal to 0, which gives

the value of p to be substituted into the final expression for the tensile stress. After a little

algebra we obtain:

σL(λ, t) = Ge−
∫ t
0 β(t′;0)dt′

(
λ(t)− 1

λ(t)2

)
(18)

+G

∫ t

0

Nb(t′)

N0

ρ e−
∫ t
t′ β(t′′,t′)dt′′

(
λ(t)

λ(t′)2
− λ(t′)

λ(t)2

)
dt′.

Calculation of this dynamic stress for a given imposed deformation λ(t) goes in two steps:

first we must solve the integral equation (4) to determine Nb(t) and then compute the

time-integrals in Eq. (18). In the following sections we will discuss in detail how a tran-

sient network responds to several practically relevant deformation modes: step strain, ramp

deformation, and a loading-unloading cycle.

Stress relaxation

In this section, we discuss how the stress in a transient network relaxes in a ‘standard

experiment’ when a uniaxial stepwise deformation λL = λ is applied at t = 0. This is the

simplest case of application of our theory. As seen in Eq. (16), with λ(t) = λ(t′) the second

term vanishes exactly, which means the chains re-crosslinked after t = 0 do not contribute to

the relaxation stress, as these chains remain in their force-free reference state with λ(t) = λ.

From Eq. (18), we can directly find the tensile stress along the stretching direction, which
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relaxes as a simple exponential:

σL = Ge−β(λ)t

(
λ− 1

λ2

)
, (19)

where the inverse τ = 1/β(λ) is the characteristic relaxation time of the tensile stress.50,51

The explicit form of β(λ) = β0 exp[κ〈r(λ)〉] with the orientational average of the end-to-end

chain length from Eq. (14) is given by:

β(λ) = ω0e
κr0

∫ π/2
0 sin θ

√
1
λ

sin2 θ+λ2 cos2 θdθe−Wb/kBT = c0(λ)e−Wb/kBT , (20)

where

c0(λ) = ω0 exp

[
3

2
√
Nsλ

(
λ3/2 +

Arcsinh
√
λ3 − 1√

λ3 − 1

)]
,

which increases monotonically with the stretching ratio λ (and also on uniaxial compression,

λ < 1). At small strain ε = λ − 1 � 1, we obtain c0 ≈ ω0 exp(3/
√
Ns), a constant for a

given network. For large λ, the opposite limiting case gives c0 ≈ ω0 exp(3λ/2
√
Ns), that

is, the rate of breaking increases exponentially. In this case most of the chains align along

the stretching direction and directly transmit the deformation to the shift in the thermal

activation law.

Most standard stress-relaxation experiments are conducted in the linear stress-strain

regime, effectively measuring the effective shear modulus G∗(t). Figure 3 shows two examples

of analysis of experimental data in two chemically different vitrimer networks, assuming

that in both cases the authors did maintain the linear stress-strain regime. Both plots

show that the simple exponential relaxation is a valid model, and since the data at different

temperatures has been collected – we can fit the Arrhenius law in Eq. (20) and obtain the

activation energies Wb for the transesterification reaction in these two materials (the values

listed in the figure caption).
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Figure 3: (a) Relaxation of the effective shear modulus G∗ for different temperatures in
two vitrimer networks. Solid lines are the simple exponential curves, and the dots are
experimental data: (a) from Leibler et al.,17 where the fitting gives Wb ≈ 1.4 · 10−19 J =
34 kBTroom. (b) A different polylactide vitrimer from Hillmyer et al.41 gives a much stronger
bonding: Wb ≈ 2.6 · 10−19 J = 64 kBTroom.

So far we worked under assumption that the activation energy for the crosslink breaking,

Wb, is a fixed parameter of the material. This is a good assumption in the case when the

crosslinks are held by, e.g. hydrogen bonds, or in the case of vitrimers (where the covalent

bond is ‘weakened’ by an appropriate catalyst). However, there are many cases where the

physical bonds would not have a single characteristic binding energy: the simple example

is the SIS telechelic block-copolymer network where the glassy polystyrene micelles must

have a distribution of sizes, shapes, and therefore strength of chain confinement. The way to

account for such a distribution is to perform the quenched average of the relaxation function

(19) with an (assumed Gaussian) probability distribution:

〈G∗(t)〉W = G

∫
exp

[
−ω0e

κr0e−Wb/kBT t
]
·
√

∆

2π
e−(Wb−W∗)2/2∆ dWb, (21)

where W∗ is the average binding energy and ∆ measures the spread of the distribution. The

earlier case of the single binding energy is ∆ → 0. The integral of the double exponential

is difficult to calculate analytically (although good interpolations are possible), but the

numerical plot of the quenched-averaged relaxation function 〈G∗(t)〉W in Fig. 4(a) shows
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Figure 4: (a) Double log-log plots of the Eq. (21), in scaled non-dimensional variables, for
several values of variance (width) ∆ of the quenched distribution of energy barriers Wb. The
dashed line has a slope of 0.2, giving the long-time relaxation limit of 〈G∗〉W ∝ exp[−(βt)0.2]
after the crossover from the linear-exponential regime at early times. (b) Relaxation of the
effective shear modulus G∗(t) for different temperatures in the transient network of SIS. Here
the solid lines are the stretched exponential curves exp[−(βt)0.2] resulting from our model
with a broad distribution of activation energies Wb, and the dots are experimental data from
Hotta et al.15 Clearly the stretched exponential fits the long-time relaxation, with only two
parameters: G and β(T ).

that the relaxation law becomes the stretched exponential exp[−(βt)0.2] when there is a

sufficiently wide spread of theWb values: ∆ ≥ W∗, while remaining the simple exponential for

the narrow distribution, as expected. Also note that this characteristic stretched exponential

only sets in at long relaxation times, while the short-time remains simple exponential, with

the crossover between the two regimes starts at times (ω0e
κr0)t ∼ 1.

The relaxation data in Fig. 4(b) are from the physically crosslinked SIS elastomer of Hotta

et al.15 where the long-time tails are reliably following the exp[−(βt)0.2] law, supporting

the concept of a broad distribution of crosslinking strengths in such a physically linked

network. Note that there is a systematic discrepancy of the simple stretched-exponential

relaxation law and the data at very short times in Fig. 4(b): this is not a relevant issue in

our discussion as neither the theory nor the experiment are ‘designed’ to describe very short

times. In experiment, there are difficulties in simultaneous long- and short-time detection

and the inability to impose and instantaneous strain step. In theory we do not consider

time-dependent transient effects of stress propagation through the sample; also the creep
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theory at high strain is certainly due to the sample tearing.

process we describe only starts after a characteristic time 1/β, which was ∼10-17 s in the

fitted curves. The important point is that the relaxation law fits the time and temperature

dependent data over the whole of the true relaxation process.

There are very few papers where the stress relaxation in transient networks is experimen-

tally studied at increasing magnitude of the step strain λ, with the work of Serero et al.5

being one of the few. The data points in Fig. 5 are from this paper. Although the stretched

exponential G∗ = Ge−(βt)0.8 was used in, the results would be qualitatively the same with

what we get in above case of a simple exponential, in the sense that there is a characteristic

relaxation rate β(λ) that we calculate and the experiment measure. We find that the exper-

imental values for β(λ) fit very well with the full high-strain expression in Eq. (20), using

the single fitting parameter κr0 ≈ 1.7. For an ideal Gaussian chain κr0 ≈ 3/
√
Ns, implying

a perhaps too low length of the network strand, but there are certainly many corrections to

this naive estimate expected, and the order of magnitude of this parameter is meaningful.
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plot (b) the slow re-crosslinking, ρ = 0.1β0.

Strain ramp

The other commonly used testing method in rheology is the linear ramp of imposed strain.

Many standard instruments, such as Instron, operate in this mode, and very often one finds

the stress-strain curves in the literature are reported after measuring the strain as a function

of time during a strain ramp. Here we analyze how the dynamics of crosslink distribution

shows itself in such an experiment. We remain in the uniaxial stretching geometry and let the

longitudinal extensional strain increase linearly with time, λ = 1 + γ̇t, where γ̇ is a constant

strain rate. We already know the dynamic strain-stress relationship in the uniaxial geometry,

which is Eq. (18), so all we need is to identify the important non-dimensional parameters that

control the outcome. Let us measure the time in units of 1/β0, and similarly for the strain

rate, γ̇/β0, and consider two cases: of fast re-crosslinking, ρ = 10β0, and slow re-crosslinking,

ρ = 0.1β0 (meaning that the diffusion time tdiff is long in the second case). Then, measuring

the stress in units of raw rubber modulus G, we can numerically integrate Eq. (18) and plot

the results in Fig. 6.

We see that initially the stress increases linearly with elongation ratio λ (or strain λ−1),

and the slope is exactly the shear modulus G. There is always a point of ‘stress overshoot’

(the yield point36) for every γ̇, although at very fast rates of deformation this point moves
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far to the right in the plots. Past this yield point the stress begins to monotonically decrease

with strain, with a power-law numerically found close to λ−2.

The phenomenon of ‘stress overshoot’ is encountered often in rheological studies of dis-

ordered materials, and the detailed mechanisms vary for different systems. In entangled

polymer solutions and polymer melts, the Doi-Edwards-Marrucci-Grizzutti model predicts

the existence of stress overshoot,52,53 which originates from the contraction of stretched

chains and reptation of polymer chains in the tubes. Later, the idea of ”constraint release”

was proposed and developed42,43,54–56 to produce an even more pronounced stress overshoot

and yielding instability. One also finds stress overshoot in metallic glass,57–59 where the

softening and fluidization is prompted by the nonaffine shear-induced cage breakup. One

finds a lot of conceptual similarity in all these physical situations, where the conditions are

reached to break the microscopic constraints that normally produce an elastic contribution.

To test the predictions of our theory, we carried out strain-ramp experiments on two

very different transient networks: the classical vitrimer and the physically crosslinked SIS

elastomer, Fig. 7. We used the custom-built mechanical testing gear described elsewhere,60

which in this situation has been set to impose a constant controlled rate of uniaxial extension

on the sample, while continuously monitoring its tensile stress and changes in shape. In order

to find the stress overshoot within the comfortable range of strain rates and stress values, we

had to maintain the temperature close to the vitrification point, as defined for both materials

in the original paper,15,17 respectively. In full agreement with theoretical curves in Fig. 6, the

experiment on both materials shows a clear yielding instability and the continuous decrease

of stress past it, when the rate of stretching is sufficiently low. The vitrimer network was not

able to survive without fracturing at higher strain rates, while the SIS (with its generally

more robust composite microstructure and longer chain strands) shows the high-rate curves

also in agreement with Fig. 6.

Self-healing materials attract much attention due to their potential applications in mim-

icking biological tissues, advanced materials with reversible performance, and in the general
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Figure 7: Strain-stress relations of a transient network under a linear ramp deformation for
different strain rates, with plot (a) showing the data for the vitrimer of Leibler et al.,17 at
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network of Hotta et al.,15 at constant temperature T = 80◦C. In both cases the temperature
is chosen at the approximate level of ‘vitrification transition’; the rates of strain are labelled
on the plots.

context of re-using recycled plastic components. One of the aspects of self-healing is the re-

producibility of repeated stretching cycles. Both the stretching and the return to the original

imposed length are assumed to proceed as a linear ramp with the strain rate γ̇. The dynamic

tensile stress response is still given by Eq. (18), and Fig. 8 illustrates the response over a

sequence of deformation cycles, taking a constant rate of loading that corresponds to the

‘0.1’ curve in Fig. 6(a) reaching just before the yield instability point, followed by a constant

rate of unloading-compression. Several rates of unloading are presented to illustrate the dy-

namics of the process, but in each case the tensile stress passes the zero point and turns into

compression when the length of the sample is forced to shorten. The negative (compression)

stress reaches the maximum magnitude when the stress returns to zero, at which point we

hold the shape constant for a period of relaxation. In fact, this stress relaxation under an

effective compression step is not different from the one studied in Fig. 3 and Eq. (19): it

is a simple exponential relaxation over a characteristic time β0t ≈ 1 for all three unloading

curves – only the amplitude of stress changes at different rates.

In Fig. 8, we see that the compression stress is larger for the same stretching ratio
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indicates the full recovery of the sample reference state.

if the unloading rate is higher, which is because fewer stretched chains are able to relax

or disconnect from the stretched crosslinks. Obviously, more elastic energy is relaxed or

dissipated with a lower unloading rate, due to relatively quick breakage and reformation

of new crosslinks. However, in such a loading-unloading experiment, a significant practical

factor might be the Euler buckling of the elastomer sample on compression.61,62 The bucking

instability occurs when a compression force on a rod of length L exceeds the critical value

fc = π2B/L2, where B is the bending modulus. Assuming the rectangular cross-section

of the sample with the width W and thickness H, this modulus is B = 3GWH3/12 and

the critical stress is σc = fc/WH. We then find the critical compression stress at which the

sample would buckle: σc = 1
4
π2G(H/L)2. So for a typical sample in a shape of flat strip, with

H/L� 1, the negative (compression) values of stress in Fig. 8 are not achievable. Instead,

the sample would buckle very soon on entering the compression region, and the ‘recovery’ we

observed in these plots will not be possible. Nevertheless, the concept of self-healing remains

valid: on applying a required set of constraints (in shape or stress) the transient network

can be brought into any desired reference state.
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Discussion

In this work, we have derived the dynamic constitutive relation of a transient network,

in which crosslinks can be broken by local tensile force on the polymer strand connecting

them – and re-established in the assumed zero-stress configuration with a certain rate. To

achieve this, we had to combine the microscopic kinetic description of crosslinks with the

macroscopic rubber-elastic energy function describing the deviation from the dynamically

changing reference state. The incompressibility constraint is accounted for via the pressure

acting as Lagrange multiplier, ensuring the boundary condition constraints are satisfied.

After the general analysis, we specifically focus on the case of uniaxial deformation and the

main Eq. (18) is the constitutive relation for that case. There are two particular applications

we consider: the relaxation of stress after a static imposed strain, and the response to a

dynamic strain imposed as a constant-rate ramp (in the latter case, also the cyclic loading-

unloading deformation). In both cases we compare the detailed theoretical predictions with

experimental results: obtained from the literature in the case of stress relaxation, and our

own in the case of dynamic loading. We deliberately compare very different kinds of transient

network: the SIS tri-block copolymer physically bonded via phase-separated glassy micelles

(in Fig.4(b) for stress relaxation and in Fig.7(b) for the stress overshoot and yielding on ramp

deformation), the perfluoroalkyl-modified poly(ethylene oxide) telechelic hydrogel of Serrero

et al.,5 which is also physically bonded by phase-separated micelles (Fig.5), and two kinds

of vitrimer networks where the covalent bonds can be reconfigured by the transesterification

reaction (Fig.3 for stress relaxation and Fig.7(a) for the stress overshoot and yielding on

ramp deformation). There are many important effects traditionally discussed in context of

physcally bonded polymer networks: the loop/bridge ratio,63 entanglements and constraint

release,64,65 filler effects of block copolymers with a glassy micelles,66 dangling loops, etc.

It is perhaps surprising that our theory, purely based on the breakable crosslink dynamics,

achieves such a good (essentially quantitative) agreement with a variety of experiments on

very different kinds of networks.
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The most important conclusion about the stress relaxation is that it proceeds in a simple

exponential manner. This is in marked contrast to stress relaxation in ordinary rubbers,

which always has a very long-time tail (either power-law or even logarithmic). In ‘neat’

transient networks (where the energy barrier for crosslink breaking has a well-defined value)

the relaxation is strictly simple exponential, which allows us to determine the energy barriers

(Fig.3). In ‘heterogeneous’ transient networks where the energy barrier for crosslink breaking

is distributed over a wide range of values around a mean, the long-time stress relaxation

follows a stretched-exponential law ∼ exp[−(βt)0.2], see Fig.4(b).

It is difficult to find the literature data on how the chracteristic stress relaxation time

depends on the amplitude of strain, in a highly non-linear manner. The data of Serrero et

al.5 fits very well to the basic prediction of our theory given by the analytical Eq.(20), again

suggesting that perhaps the crosslink break/re-connect dynamics is the dominant factor.

The key finding in the case of linear deformation ramp is the stress overshoot (yielding

point) after which the network flows plastically. This yield point strongly depends on the

applied strain rate. Again, we compare our predictions with experiments the single-mode

covalently bonded vitrimer network and on the polydisperse physically-constrained SIS net-

work, both showing good agreement. It is true that entanglement / constraint release models

also predict the similar stress overshoot.43,55,56 However, our theory and concepts are not

worse in this comparison – while offering several other verifiable predictions discussed here.

Finally, we examine the ability of transient networks to ‘self-heal’, or recover the initial ref-

erence state when external forces are applied to keep it in that state for a sufficient length

of relaxation time (which itself is a function of activation rate of crosslink breaking).

Several approximations are made in this work to keep the transparency of the theory.

Apart from the already mentioned factors traditional in polymer rheology, we have omitted

the non-affine movements of the system, which can be important when the chains between

the crosslinks are short, or when the movement of entanglement is not negligible. The neo-

Hookean model of rubber elasticity which we used is only strictly valid for deformations that
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do not reach the full extension of network strands. Although it is frequently and successfully

used up to extensions of 100% and more, strictly speaking, a different elastic model should be

used when dealing with large deformations when the chain inextensibility is tested. In spite

of these limitations, we believe this work provide a clear and predictive picture of dynamics

and relaxation in generic transient networks and offer insights for handling and processing

such materials in practice.
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