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Abstract

Sound waves in a combustor are generated from fluctuations in the heat

release rate (direct noise) or the acceleration of entropy, vorticity or composi-

tional perturbations through nozzles or turbine guide vanes (indirect or entropy

noise). These sound waves are transmitted downstream as well as reflected up-

stream of the acceleration point, contributing to the overall noise emissions,

or triggering combustion instabilities. Previous experiments attempted to iso-

late indirect noise by generating thermoacoustic hot spots electrically and mea-

suring the transmitted acoustic waves, yet there are no measurements on the

backward propagating entropy and acoustic waves. This work presents the first

measurements which clearly separate the direct and indirect noise contributions

to pressure fluctuations upstream of the acceleration point. Synthetic entropy

spots are produced by unsteady electrical heating of a grid of thin wires located

in a tube. Compression waves (direct noise) are generated from this heating

process. The hot spots are then advected with the mean flow and finally accel-

erated through an orifice plate located at the end of the tube, producing a strong

acoustic signature which propagates upstream (indirect noise). The convective

time is selected to be longer than the heating pulse length, in order to obtain a

clear time separation between direct and indirect noise in the overall pressure

trace. The contribution of indirect noise to the overall noise is shown to be non
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negligible either in subsonic or sonic throat conditions. However, the absolute

amplitude of direct noise is larger than the corresponding fraction of indirect

noise, explaining the difficulty in clearly identifying the two contributions when

they are merged. Further, the work shows the importance of using appropriate

pressure transducer instrumentation and correcting for the respective transfer

functions in order to account for low frequency effects in the determination of

pressure fluctuations.
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1. Introduction

Acoustic perturbations arising from the heat release in combustion devices

are a topic of increasing concern due to stricter noise regulations. The in-

troduction of lean premixed pre-vaporised combustors, which produce low NOx

emissions, but are more sensitive to fuel flow rate and thus pressure fluctuations,5

has increased noise emissions and the potential for catastrophic instabilities [1].

In the last decade, a significant effort has been undertaken to understand and

reduce noise and instabilities whilst maintaining emissions benefits through EU-

funded research programmes such as ICLEAC, TIMECOP-AE and RECORD

[2, 3, 4]. Pressure perturbations generated in combustors have traditionally10

been classified into direct and indirect combustion noise. The first is caused by

isentropic pressure waves that are produced by the unsteady heat release and

propagate towards the turbine [5]. In the second mechanism, local regions of

hot gas (hot spots or entropy spots), vortical structures [6] and composition

inhomogeneities [7] are produced and then advected toward the turbine with15

the mean flow. These entropy, vorticity and compositional waves are not di-

rectly associated with any pressure fluctuations in the linear regime. However,

as they convect through regions with mean flow gradients (such as through tur-

bine vanes or exhaust nozzles) acoustic waves are created, generating indirect

combustion noise. These waves travel both upstream into the combustor as well20

as downstream through the turbine. The upstream-travelling acoustic waves
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may couple with the acoustics of the system, stabilising or destabilising the

original flame oscillation [8, 9]. Marble and Candel [10] originally developed

a one dimensional analytical model, deriving expressions for the magnitude of

both direct and indirect noise in the low frequency limit, and more recent work25

has revisited the issue [8, 9, 11, 12].

One of the main obstacles in the investigation of entropy noise is the lack

of unambiguous data linking entropy and pressure fluctuations, owing to the to

the complex dynamics of flames in combustion chambers [13]. To overcome this

issue, simplified laboratory scale experiments have been designed, in which the30

flame is replaced with a more easily controlled unsteady source.

Bohn, Zukoski et al. [14, 15, 16] reported some of the first experiments at-

tempting to isolate indirect noise by generating entropy spots synthetically using

an electrical heater. However, due to the small temperature increase achieved

(1 K) and the poor resolution of the data acquisition system available then,35

direct and indirect noise could not be separated. This method of generating

hot spots was applied more recently in the Entropy Wave Generator (EWG) rig

developed at DLR Berlin, to study indirect combustion noise [17, 18]. Acoustic

waves resulting from the unsteady electrical heating of thin wires were measured

downstream of a convergent-divergent nozzle both in the subsonic and super-40

sonic regime. The DLR experiment generated interest in the community and

prompted multiple theoretical and numerical endeavours to explain the experi-

mental results [18, 19, 20, 21, 12, 22, 13]. In the case of the supersonic nozzle

the signal was attributed to indirect noise and acoustic reflections [21]. In a

study simulating numerically the operation of the EWG under subsonic condi-45

tions, Duran et al. [12] suggested that the pressure signal obtained was instead

mainly due to direct noise. In contrast, according to their model, Lourier et al.

[22] concluded that direct noise was nearly 6-7 times lower than indirect noise.

In all the simulations performed, the acoustic boundary conditions applied had

a large influence in the interpretation of the results.50

Due to the difficulties in explaining the results of the DLR EWG experiment

and the differing interpretations in subsequent analytical and numerical simu-
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lations, further experiments have been developed to investigate the phenomena

in depth. The Osney Thermo Fluid Laboratory at the University of Oxford

has produced an Entropy Wave Generator Test Rig [23] where hot spots are55

also generated via electrical heating. At Politecnico of Milan a new concept of

Entropy Wave Generator has been developed, based on the alternating injec-

tion of hot and cold air upstream of a high pressure turbine [24, 25]. Recent

experiments have also been performed in the Hot Acoustic Test rig at DLR to

investigate the sound generation and propagation due to accelerated cold spots60

in a nozzle [26].

The aim of all these experiments has been to generate and isolate transmitted

entropy noise in a clean and traceable way, without the complications induced

by flames or vorticity, so that appropriate models can be suitably validated. To

date, there have been no measurements of the upstream entropy noise generated65

by the acceleration of synthetic hot spots: the experimental data reported so

far refers only to the transmitted acoustic waves (acquired downstream of the

nozzle). Yet the impact of the backward propagating waves is clear, as they can

adversely affect the flame leading to instabilities [8, 9, 27].

The present study aims to investigate the physical mechanisms involved70

in the generation of direct and indirect noise in a controlled environment.

The experiment produces a very simple geometric situation, amenable to one-

dimensional modelling. Synthetic hot spots are generated via the Joule effect

and accelerated via an orifice plate. The acoustic signal is acquired upstream

rather than downstream of the acceleration point; therefore, the results are75

complementary to other experiments using EWGs.

A detailed description of the experimental apparatus and of the measurement

techniques is provided in Section 3. Experimental results for four different

configurations are considered, to obtain a comprehensive understanding of the

behaviour of the system and provide limit cases for validation of models: (A)80

an open end configuration, with clear boundary conditions; (B) a closed tube

configuration with no bulk flow, where direct noise can be clearly determined;

(C) a set-up where the flow is accelerated in a subsonic orifice plate; (D) a set-up
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where the flow is accelerated in a sonic orifice plate. Direct noise is generated

when the heating device is activated, indirect noise when the hot spots are85

accelerated in the orifice plate, both in subsonic and sonic conditions. The

modular set-up enables the unambiguous time separation of direct and indirect

noise in the overall pressure trace using a long tube.

Finally, we discuss an important issue which has not been previously re-

ported, regarding the inadvertent use of condenser microphones in the low fre-90

quency range typical of entropy spot experiments. In the ultra low frequency

range, they behave as a high pass filter, leading to potentially erroneous outputs.

2. Theoretical background

The theoretical underpinnings of the generation of acoustic waves via entropy

spots in a flow have been discussed in a number of papers [28, 10], and further95

developed more recently [9, 12, 29]. Most theoretical studies consider the one

dimensional case of hot spots generated from a heating source at rest and then

convected through a compact nozzle. A schematic layout of this scenario is

represented in Figure 1, where acoustic (P+
1 and P−0 ) and entropy waves (σ) are

generated in an unsteady heat release zone. The heat release zone is considered100

compact, meaning that its length is much smaller than all the wavelengths

considered here (i.e. low frequency waves). These waves manifest themselves

as fluctuations of pressure p′, velocity u′ and density ρ′ relative to the mean

flow pressure, velocity and density (p̄, ū, ρ̄), and can be represented by their

respective amplitudes in the downstream (+) and upstream (-) direction, where105

(0) and (1) denote the regions upstream and downstream of the heat release

interface:

P+
1 ≡

1

2

(
p′

γp̄
+
u′

c̄

)
(1)

P−0 ≡
1

2

(
p′

γp̄
− u′

c̄

)
(2)
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σ ≡ p′

γp̄
− ρ′

ρ̄
=
s′

cp
(3)

If one assumes negligible incoming waves (P−1 = P+
0 = 0), one can derive

expressions for the amplitudes of the waves generated at the heat release zone

from the conservation of mass, enthalpy and entropy [12]:110

P+
1 =

1

2

(
M

1 +M

)
q′ (4)

P−0 =
1

2

(
M

1−M

)
q′ (5)

σ = q′ (6)

where M is the mean Mach number and q′ is the non-dimensionalised value

of the fluctuating heat release Q̇′ (q′ = Q̇′/ṁCpT̄ ). These acoustic waves are

referred to as ‘direct’ noise, as they are a direct result of the unsteady heat

release. The acoustic waves thus generated propagate at the speed of sound c̄

relative to the mean flow, and are reflected at the inlet and outlet of the duct115

having acoustic reflection coefficients Ri,a and Ro,a, respectively (Figure 1).

The entropy spots are advected downstream with the mean flow without

generating an acoustic signature in the linear approximation [28]. If these waves

are accelerated, they generate sound waves which propagate both downstream

and upstream of the outlet. Marble and Candel [10] derived expressions for120

the amplitude of a single backward-propagating (or ‘reflected’) wave due the

acceleration of an hot spot for a compact nozzle (P−s ) under subcritical and

supercritical (choked) isentropic conditions, between two sections with Mach

numbers M1 and M2, respectively:

P−s = −M2 −M1

1−M1

1
2M1

1 + 1
2 (γ − 1)M1M2

σ (7)

Under critical conditions, we have M2 = 1, so that:

P−∗s = −1

2

M1

1 + 1
2 (γ − 1)M1

σ (8)
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The acoustic waves generated in this manner are referred to as ‘indirect’125

noise, as they are only indirectly related to the unsteady heat release upstream.

In this paper, the terms ‘indirect noise’ and ‘entropy noise’ are used interchange-

ably to indicate acoustic waves generated from the acceleration of entropy spots

both upstream and downstream of the nozzle. From Marble and Candel [10], the

reflected indirect noise is a negative perturbation relative to the mean, whereas130

the direct noise resulting from a single perturbation of the heat release q′ is

positive as shown in Eq. 4 and 5 and further on in the experimental results.

In the absence of acoustic reflections at the boundaries, in an idealised one di-

mensional situation, the shape of the direct and indirect acoustic waves in the

time domain is expected to be identical to that of the heat fluctuation q′ at the135

heating grid and at the nozzle respectively (e.g. a square heat pulse should lead

to a square acoustic pulse). Dispersive effects owing to molecular or turbulent

diffusion alter the original shape of the non-uniformity, thus affecting the final

pressure perturbation [30].

(0)

P−0 P+
1

σ

q′

P−1P+
0

Ri, a

Ro, e

FP (s)

Pressure
measurement

Temperature
measurement

FT (s)

(1) (2)

Ro, a

Figure 1: Experimental layout including pressure transducer transfer function FP (s) and

thermocouple transfer function FT (s).
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Figure 2: Schematic of the experimental set-up (values in parentheses correspond to the long

tube configuration). Dimensions in mm. Dimensions not to scale.

Figure 3: Schematic of the heating grid. Dimensions in mm

8



3. Experiment140

3.1. Instrumentation

The experimental set-up is shown in Figure 2. Air flows through a tube

at a controlled rate. Hot spots are produced synthetically by pulsing current

through a heating device, generating a heat release pulse via the Joule effect.

The air flow exits through an orifice plate, which can be operated in subsonic145

and sonic conditions. The hot spots are convected with the flow, and generate

indirect noise as they accelerate through the orifice. Dynamic temperature and

pressure measurements are performed downstream of the heating device, via

flush-mounted pressure transducers or thermocouples, as described further on.

Filtered compressed air from the laboratory air supply system is fed into a150

250 L tank to dampen out upstream pressure oscillations. The tank pressure

is set to 5 bar using a pressure gauge. The tank is connected via a 12 mm

inner diameter plastic hose to a mass flow controller (MFC, Alicat MCR250,

accuracy, ± 1% full scale), or a mass flow meter for high flow rates (MFM,

Alicat MCR3000, accuracy ± 1% full scale). The MFC/MFM are connected to155

the test section via a 12 mm, 1.2 meter long plastic hose via a flat flange to

provide a simple boundary condition.

The tube has an inner diameter of 42.6 mm and is made from sections of

PVC and stainless steel 316. The PVC tube inner diameter is slightly larger

than the steel tube by 0.2%, so the discrepancy is assumed to be negligible. The160

different materials are used to address both safety and sealing considerations:

the PVC pipe is lighter and easier to handle, but is prone to air leakages if fitted

with transducer ports. Thus, it is used only in the sections of the tube where

there are no transducers.

The heating device (Fig. 3) is fitted 700 mm downstream of the tube inlet165

via a PVC flange for electric isolation. The device itself is composed of three

grids of thin tungsten wires (58 µm diameter) connected in series, with an

overall resistance of about 1 Ω. Each grid is made of 2.3 m of wire wound

around a FR4 substrate 1.6 mm thick, which keeps the wires in place using a
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toothed comb structure. Two copper plates connect the wires on both faces of170

the module, so that each heating grid is electrically equivalent to 42 parallel

45-mm-long resistances of tungsten wire. Two consecutive grids are separated

by a FR4 insulating plate 1.6 mm thick. The heating device is roughly 10

mm thick, and therefore it can be approximated as a compact element for low

frequency disturbances. An in-house circuit controlled by a computer drives a175

power supply (Glassman Lp 60-20), and delivers a current pulse of 21 A to the

heating device, with a duration set to 200 ms for all experiments.

The experimental set-up is flexible, and can be operated in several configu-

rations to cover a large range of operating conditions. The length of the tube

downstream of the heating device can be varied to modify the convective dis-180

tance travelled by the hot spots before being accelerated. In the short tube

configuration, this distance is 400 mm, whereas in the long tube case, it is 1400

mm. These two different tube lengths have been chosen to enable a partial-total

time separation between the generation of the heating pulse and the acceleration

of the hot spots. In this way, direct and indirect noise can be initially separated185

in time and afterwards partially merged in time.

Two orifice plates are used: one with a 6.6 mm diameter hole (8 mm thick-

ness), and a second with a 3 mm diameter hole (5 mm thickness). An orifice

plate is easier and cheaper to manufacture than a convergent nozzle but the

two are expected to behave in the same way regarding both the direct and the190

indirect noise generated. In a first approximation, the flow through a generic

area decrease interface can be assumed to be isentropic [31]. Additionally, both

the orifice and the nozzle are expected to behave as a compact sources in the

frequency range of the experiment.

The air temperature is determined using thin K-type thermocouples (fine195

gauge exposed welded tip thermocouples type K, 0.076 mm wire diameter, la-

belled Ti in Figure 2), whose time constant is found experimentally to be around

300 ms. In order to correct for the long response time relatively to the 200 ms

heating pulses, a hot film anemometer (Dantec gold plated wire probe type

55R01) with a wire diameter of 5 µm (response time under 10−4 ms) is used to200
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obtain the shape of the temperature pulse. The pressure signal is acquired with

condenser microphones and piezoresistive pressure transducers at the locations

Pi: two G.R.A.S. 40bp (IEC 61094 WS3P 1/4”) externally polarised condenser

microphones connected to the G.R.A.S. 26AC 1/4” standard preamplifier, two

Kulite XTE-190(M) piezoresistive pressure transducers and a Kulite XT-140M205

piezoresistive absolute pressure transducer. The transducers are either placed

on the same axial plane for calibration cross checking, or along the tube at

stations downstream of the heating module. The outputs of the piezoresistive

pressure transducers are amplified with a Fylde FE-379-TA modular DC ampli-

fier. Both the Kulite and G.R.A.S. transducers are connected to a NI PCI-5259210

board via a NI-2090 DAQ box. The sampling rate used is 8192 samples per

second, with a 16-bit resolution.

3.2. Flow rate measurements and conditions at the throat

The flow meter/controller records the volumetric flow rate (Q), mass flow

rate (ṁ), temperature Tf and pressure at the flowmeter Pf at a sampling rate

of 20-30 Hz. The bulk flow velocity Ū is calculated as:

Ū =
ṁ

AP̄/RT̄
(9)

where A is the inner cross-sectional area of the tube, P̄ and T̄ are the measured

pressure and temperature in the tube and R is the gas constant for air. In the215

present analysis, the mean temperature in the tube T̄ is assumed to be identical

to that acquired at the flow meter Tf since the difference between these two

temperatures is expected to be lower than 1%.

The Mach number at the orifice plate throat is necessary to estimate the220

intensity of the entropy noise, yet it is difficult to measure it directly in subsonic

conditions. A calculated value for the Mach number MT at the throat can be

obtained by assuming isentropic expansion from the measured mean pressure in

the straight section of the tube, P̄ , to the pressure at the throat, estimated to

be atmospheric pressure (PT = Pa).225
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M2
T =

2

γ − 1

[(
P̄

Pa

) γ−1
γ
(

1 +
γ − 1

2
M̄2

)
− 1

]
(10)

The upstream pressure P̄ is measured using the Kulite absolute pressure

transducer, and the upstream Mach number M̄ is calculated from the bulk

velocity and mean temperature (M̄ = Ū/
√
γRT̄ ).

The markers in Fig. 4(a) show the upstream pressure P̄ and velocity Ū

measured in the tube at several operating points for the 3 mm (red dots) and 6.6230

mm (black triangles) orifice. The lines represent the theoretical relation between

upstream pressure and velocity assuming an ideal isentropic convergent nozzle

with a vena contracta factor Γ = 1. Figure 4(b) shows the calculated nozzle

Mach number (obtained from Eq. 10) versus the upstream bulk flow velocity,

comparing the experimental results with the theoretical predictions for an ideal235

isentropic convergent nozzle. The discrepancy between the ideal and measured

cases are due to the vena contracta factor of the orifice which is around 0.8 for

all cases.

3.3. Characteristics of the heating pulse

Figure 5 shows the normalised current signal pulsed into the heating module240

and the induced temperature increase in the flow, detected with the anemometer

0.5 m downstream of the grid. The current signal is normalised to the maximum

nominal current delivered from the power supply, 21 A. In all experiments the

current is set to its maximum limit (Imax), while the voltage is set to 35 V. The

heating module has a resistance R ∼ 1 Ω, requiring a voltage V = RImax = 21245

V, and the excess energy is dissipated. However, in the first few milliseconds of

the pulse, the capacitor in the driving system leads the power supply to release

a higher current, before it auto-adjusts the current to its maximum nominal

limit. The initial peak in the delivered current makes the wires warm up faster

than they would do with a square pulse. It can be observed that there is no250

relevant time delay associated to the electric circuit: the time constant of the

RC circuit is much shorter than the characteristic times of the experiment.
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Figure 4: Calculated upstream pressure (a) and nozzle Mach number (b), as a function of

bulk flow velocity for the 3.0 mm (red circles) and 6.6 mm (black triangles) diameter orifices.

Lines represent the corresponding isentropic values with Γ = 1.
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Figure 5: Current pulse delivered by the driving system into the heating module normalised

by the maximum nominal current of the power supply Imax,N = 21 A (blue dashed line);

temperature rise profile of the hot spot signal acquired in the centre of the tube by the

anemometer normalised by the peak temperature Tmax (red solid line).

3.4. Temperature measurements

Accurate information regarding the temperature and shape of the hot spots

generated by the heating device is crucial to understand and model the exper-255

iment. Three pieces of information are particularly important: the shape of

the response of the temperature pulse in the time domain, the maximum tem-

perature change induced in the air flow, and finally the spatial behaviour of

the hot spots (how they spread and disperse before reaching the orifice). The

transient nature of the heating process makes obtaining accurate measurements260

challenging. In order to overcome these difficulties, both thermocouple and hot

film anemometry measurements are performed simultaneously. Thermocouples

are often used to determine a gas temperature, but, due to the inertia of the

thermal junction, their transient output is slower-rising with respect to the ac-

tual input signal. For a given temperature input TI(s), they produce an output265

TO(s)

TO(s) =
1

1 + sτtc
TI(s) (11)
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where τtc is the time constant of the thermocouple.

Figure 6 shows how the actual temperature increase at a given location in

the tube (in this case, just downstream of the heating grid) is reconstructed

(red dotted line). Commercial beaded wire thermocouples with small diameters270

(0.076 mm) are used to obtain measurements of the asymptotic temperature

rise. For these thermocouples an average time response τtc = 300 ms was

experimentally determined with a step input and an air flow of 20 m/s. For

lower flow velocities, the time constant is higher. Therefore, in the 200 ms

of the pulse, the thermocouple displays a slower-rising and attenuated output275

(dashed lines in figure 6) with respect to the temperature input.

From the temperature signal in Fig. 5 it can be noted that in 200 ms

the hot spot temperature nearly saturates, which suggests that the wires of

the grid have reached their maximum temperature. If the same current and

voltage are pulsed into the grid for a time tp sufficiently long (tp > 3τtc) the280

thermocouples have enough time to asyntothise and acquire the actual value

of the temperature. Therefore, the peak temperature value displayed after the

1.5 s long pulses (dashed-dotted lines in Fig. 6) is a good representative of

the actual peak temperature of the hot spot. The shape of the temperature

pulse is reconstructed more precisely using a hot film anemometer (dotted line285

in Fig. 6). The 5 µm Dantec probe has a negligible response time compared to

the pulse duration. For moderate variations of the air temperature Ta (∆Ta ∼

10-80 K), assuming negligible variations in the bulk flow velocity, the output

voltage variation ∆E can be expressed as [32]:

∆Ta = −2
TW − Ta,0

E0
∆E ≈ −β∆E (12)

where TW is the temperature of the hot wire (TW ∼330◦C). For small tempera-290

ture increases, the change in the output voltage of the anemometer is in a first

approximation proportional to the change in the air temperature. Assuming

that the anemometer captures the shape of the temperature pulse without dis-

tortion or attenuation, the shape of the output voltage of the anemometer is
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used to represent of the shape of the hot spot.295

The different measurements of the air temperature are kept as consistently as

possible, but there is an estimated uncertainty of ±2 K in the determination of

the absolute value of the air temperature rise. This is due to: (i) difficulties in

accessing the correct location for some measurements (i.e. as close as possible

to the heating grid and to the nozzle), (ii) internal differences between the trans-300

ducers, and (iii) small and uncontrollable variability of the test conditions (e.g.

replacement of the heating module). The tests for acquiring the air temperature

at the grid are performed with an open tube, to enable the thermocouple to be

placed as close as possible to the heating grid. It is assumed that the same heat-

ing power delivered to the same mass flow rate leads to the same temperature305

increase in an open and closed tube configurations.

Figure 6: Temperature profiles acquired with three nominally identical thermocouples down-

stream of the heating grid, mean flow velocity of 1 m/s for a 200 ms pulse (dashed lines) and

a 1.5 s pulse (dashed-dotted lines). Solid lines: short and long input pulses. Anemometer

output (red dotted line) normalised using the measured temperature rise.
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3.5. Pressure transducer characteristics

Piezoresistive pressure transducers and microphones convert an acoustic sig-

nal into an electrical signal. Piezoresistive transducers rely on the piezoresistive310

effect that occurs when the electrical resistance of a material changes in re-

sponse to applied mechanical strain [33]. They offer a flat frequency response

and zero phase shift even at very low frequencies. Microphones translate pres-

sure fluctuations into a voltage via a diaphragm or a cantilever beam exposed

to the incident sound pressure, using cavities and vents as pressure equalisation315

channels. Microphones therefore act as differential pressure measurements with

capacitance, so that the sensors only respond to dynamic pressure fluctuations,

unlike pressure transducers [34, 35]. The added capacitance means that at low

frequency they behave as a high pass filter, with lower gain and shift in phase.

On the other end, capacitive microphones are capable of higher sensitivity and320

dynamic range than piezoresistive pressure transducers.

The transfer function Fp(f) of a condenser microphone such as the G.R.A.S.

40bp has been shown to be well represented by that of a high pass filter function

[33, 34]:

Fp(f) = G
i f
f0

1 + i f
f0

(13)

where f0 is the cut-on frequency of the microphone and G is the frequency-

independent sensitivity of the microphone, called open-circuit voltage [33]. In

the present experiment we calibrate the response of the condenser microphone

to show that its corrected response can yield the original pressure data.325

3.5.1. Predicted and measured transfer function of G.R.A.S. microphones

The high pass filter behaviour of the two G.R.A.S. condenser microphones

was measured at frequencies from 1 to 40 Hz, using a calibrated Kulite trans-

ducer as a reference, as its output is not distorted at low frequencies. The test

tube is attached to a plenum by means of a conical intake, where two opposed330

loudspeakers are housed. The two loudspeakers excite the tube by generating si-

nusoidal acoustic waves at a given frequency. All of the transducers are located
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on the same axial plane along the tube, exposing them to the same pressure

signal in the plane wave approximation.

The differences in gain and phase between the signals acquired by the two335

G.R.A.S. microphones and the Kulite reference transducer are shown in Figure

7. As expected, the signals displayed by the G.R.A.S. transducers are attenuated

(Fig. 7(a)) and phase shifted (Fig. 7(b)). The two G.R.A.S. transducers behave

slightly differently at low frequencies. The cut-on frequency was experimentally

determined as 1.02 Hz, with a phase shift of π/4. This is consistent with the340

G.R.A.S. 26AC 1/4” standard preamplifier specifications, according to which the

cut-on frequency of typical 1/4” microphones is around 1 Hz, as measured [36].

Indeed, from the specifications in the datasheet, the G.R.A.S. 40bp microphones

have a frequency range (±2 dB) of 4 Hz to 70 kHz.

3.5.2. Experimental demonstration of the signal distortion for capacitive micro-345

phones

Prior to introducing tests with the heating device, low frequency pulsed

excitation using a cold air pulse is used to test the G.R.A.S. sensor response

relative to the Kulites, both with and without the microphone transfer function.

Pulsating mass flow is injected by driving the mass flow controller with square350

pulses at 0.22 Hz frequency and a duty cycle of 15%. The mass flow controller

valve rise time is only 7.4 ms according to the specifications. Measurements are

carried out over a period of 32 seconds with a sampling frequency of 2048 Hz.

Due to the presence of the orifice plate at the end of the tube, an increase in

the flow rate leads to a pressure increase in the tube. Indeed, from Figure 8,355

it can be seen that the Kulite pressure transducers display the expected shape

of the outputs in the form of a pressure rise to a final value (black solid line),

whereas the raw signal of the G.R.A.S. transducers (red dashed line) produces a

smaller rise and a ringing negative pulse at this low frequency. The red dashed-

dotted line shows the output from the G.R.A.S. sensors when corrected by the360

corresponding transfer function in Eq. 13 using the experimental values for f0.

An adequate match in shapes and amplitudes with the Kulite transducers is
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Figure 7: Difference in gain (a) and phase (b) between signals from the reference Kulite and

G.R.A.S. transducers (markers), along with the differences for the best fit high pass filter

transfer function (dashed line) obtained from the experimental data.
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Figure 8: Pressure profile acquired after pulsating mass injection in the tube from Kulite (black

solid line) and G.R.A.S. (red lines) transducers. G.R.A.S. microphone raw signal (dashed line)

and corrected by the transfer function (dashed-dotted line).

4. Results

The response of the system to the generation and convection of synthetic365

hot spots was measured for four cases: (A) open tube with flow, the tube is

terminated with an open end; (B) closed tube with no flow, the tube is termi-

nated with a rigid cap; (C) accelerated flow (subsonic), the tube is terminated

with the 6.6 mm hole orifice plate; (D) accelerated flow (sonic), the tube is

terminated with the 3.0 mm hole orifice plate, which is choked. These cases370

are summarised in Table 1. The four cases are used to obtain a clearer under-

standing of the behaviour of the system and provide a comprehensive frame for

further modelling. Indirect noise can be generated only in cases (C) and (D),

where the hot spots are accelerated in the orifice. The open and closed cases

(A and B) add limit situations for comparison and provide information useful375

to identify the acoustic properties of the system, such as dissipative effects and
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reflection coefficients at the boundaries. In to the ultra-low frequency range

of the experiment, traditional techniques for impedance measurements, such as

multi microphone methods, cannot be easily used [37]; the present experiments

allow the reflection coefficients and the system physics to be extracted from the380

resulting signal in the open and closed cases as references.

The pressure signals shown in this section are acquired 160 mm downstream

of the heating module. All the experiments are carried out in the long tube

configuration (1400 mm convective length downstream of the heating module)

and the short tube configuration (400 mm convective length). A current of 21 A385

is pulsed for 200 ms with a voltage of 35 V; both the power and the energy are

kept constant for all tests. The pulse period is set to 3 s to obtain a clear time

separation between the acoustic oscillations caused by successive pulses. The

air flow in the tube is varied between 78 and 250 slpm. The acquisition time is

set to 512 seconds, so that the signals are averaged over 170 pulses. Within one390

test, the normalised RMS deviation on the acquired temperature measurements

(calculated on the peak temperature values) is around 2%.

The mean air flow temperature measured at the flowmeter varies between 19

and 21◦C depending on the environmental conditions, and it is taken as 20◦C

on average. The data is filtered with a 0-100 Hz rectangular window digital395

filter.

Case Description Tube termination

A Open tube with flow Open tube

B Closed tube without flow Rigid wall

C Accelerated flow (subsonic) Orifice (6.6 mm)

D Accelerated flow (sonic) Orifice (3.0 mm)

Table 1: Overview of the four experimental cases

4.1. Case A: Open tube

Figures 9 show pressure signal results for Case A (open-ended tube) with a

mean flow velocity Ū= 2.27 m/s (upstream Mach number = 0.0066), in the long
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(a) and short (b) tube configurations. The acoustic pressure signal measured in400

the tube is very low, with a few peaks due to the initial gas expansion during

heating. The theoretical reflection coefficient of an open end Ro,a is close to -1 in

the low frequency range, meaning that the forward propagating acoustic waves

generated by the heating device (direct noise) are approximately instantaneously

reflected with an opposite sign at the outlet and propagate back into the tube.405

The forward and backward waves in the tube nearly cancel out, explaining why

the pressure in the tube oscillates around zero. In the long tube data (Fig. 9a),

the oscillation frequency f ' 38 Hz corresponds to a quarter of wave modes

(λ/4 ' L), which is consistent with the fact that the inlet of the tube behaves

as a closed wall (Ri,a ' +1).410
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Figure 9: Ensemble-averaged pressure signals as a function of time obtained with an upstream

Mach number M=0.0066 and open tube in the short (a) and long (b) tube configuration.

4.2. Case B: Closed tube

Figure 10 shows the results for Case B (closed tube) with no mean flow.

When the heating device is active, the adjacent fluid is heated by conduction (the

air trapped inside the tube is still) and tends to expand. The sudden expansion

of the fluid, constrained by the inertia of the unperturbed media, acts as a piston415

on the rest of the gas, creating a local pressure disturbance which leads to the
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generation of acoustic waves that propagate along the tube at the speed of sound

(thermoacoustic convection) [38, 39, 40, 41]. The acoustic waves generated from

the heat source impinge on the walls, and are reflected back with the same

sign as the original wave (the theoretical reflection coefficient at the rigid walls420

Ri,a, Ro,a is 1). Subsequently, these waves repeatedly traverse between the

boundaries. Given that the acoustic time-scale is an order of magnitude smaller

than the pulse duration, these acoustic waves are essentially accumulating while

the heating device is active. Once the heating device is switched off, the acoustic

energy decays due to losses at the boundaries and viscous and thermal losses425

within the fluid.

For the short tube (black solid line) the maximum pressure is higher and the

pressure rises faster than for the long tube (red dashed-dotted line). Indeed,

the tube boundaries are closer together, meaning that the acoustic round trip

time is shorter, and the acoustic waves are reflected more times during a given430

interval than in the long tube configuration. As a result, the acoustic pressure

build up in the shorter tube is faster, leading to a higher maximum pressure.
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Figure 10: Ensemble-averaged pressure signals obtained after the heating pulse with closed

boundaries (rigid wall at the end) for the short (black solid line) and long (red dashed-dotted

line) tube configuration.
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4.3. Case C: Accelerated flow (subsonic)

In these experiments, the downstream end of the tube is terminated by the

6.6 mm orifice plate, through which the air flow accelerates. The experimental435

conditions tested are listed in Table 2. It was experimentally determined that

the bulk flow velocity required to choke the flow with the 6.6 mm orifice is 4.2

m/s (see Figure 4 in Sec. 3.2) therefore the flow through the orifice is subsonic

in the test conditions listed.

P̄ [kPa] Ū [m/s] MT ∆Tg [K] ∆TS [K] ∆TL [K]

1 102.78 0.88 0.1441 26.7 19.1 7.9

2 103.54 1.12 0.1771 21.1 16.1 8.2

3 104.00 1.24 0.1942 19.5 15.1 8.0

4 105.19 1.49 0.2327 15.9 12.5 7.5

5 106.64 1.75 0.2719 13.3 10.9 6.8

6 108.34 1.98 0.3114 11.7 9.9 6.1

7 110.86 2.27 0.3613 10.5 8.5 5.9

8 113.65 2.56 0.4088 9.2 7.6 5.7

Table 2: Operating conditions for Case C (accelerated subsonic flow) for the long tube (1.4 m

convective length downstream of the heating module) and the short tube (0.4 m convective

length). P̄ : mean pressure at the grid; Ū : bulk flow velocity at the grid; MT : estimated Mach

Number at the throat (see Sec. 3.2); ∆Tg : measured peak temperature rise of the hot spots at

the grid; ∆TS : measured peak temperature of the hot spots 0.4 m downstream of the heating

module (location of the orifice plate for the short tube); ∆TL: measured peak temperature of

the hot spots 1.4 m downstream of the heating module (location of the orifice plate for the

long tube)

4.3.1. Long tube440

Figure 11 shows the pressure signal obtained 160 mm downstream of the

heating module in the long tube configuration. The velocity of the flow is

kept low in order to obtain a clear time separation between the heating pulse

and the time at which the hot spots arrive at the outlet. Since all the tests

are performed by pulsing the heating device at a constant power, increasing445
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the volumetric (and mass) air flow through the heating device decreases the

measured temperature rise induced in the flow, as can be seen in Table 2. Two

thermocouples are located in the orifice to detect the arrival of hot spots at

the outlet of the tube. Figure 12 zooms on Case C-3 (Table 2) to identify the

characteristic components of the acoustic signal.450

The air temperature time history in figure 12 is reconstructed from the

output of the thermocouple and the anemometer using the method described in

Sec. 3.4. The data are recorded at three different positions (Lc) downstream of

the heating grid: 0.05 m, 0.4 m (end of the short tube) and 1.4 m (end of the

long tube). It is assumed that the temperature signal 0.05 m from the heating455

grid well approximates the temperature signal at the grid. The shape of the

temperature signal close to the heating grid has a higher and sharper peak,

whilst for longer distances the hot spot spreads out and the temperature signal

is more disperse.

Figure 11: Ensemble-averaged pressure signal acquired by the Kulite transducer 160 mm

downstream of the heating module for the cases listed in Table 2 (long tube). Legend indicates

the magnitude of the bulk velocity (U) in m/s.

From Figure 12 a strong acoustic signal is observed in the tube while the460

heating device is active: there is a negligible time lag between the driving pulse

and the observed pressure pulse. For a distance Lp = 0.16 m between the
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Figure 12: Detail of operating condition C-3 (Ū = 1.24 m/s): identification of direct noise,

indirect noise, convective time on the pressure trace (solid blue line); and reconstructed air

temperature profile acquired at three different convective lengths (L, in m) downstream of the

heating module (respectively dotted red line for L = 0 m, dashed red line for L =0.4 m and

dashed-dotted red line for L =1.4 m).

heating grid and the pressure acquisition point, this time lag is τp = Lp/c ∼

5× 10−4 s, which is of the order of the time resolution of the acquisition system

(τS = 1/8192 ∼ 1.2 × 10−4 s). In all 8 cases, the pressure reaches a positive465

maximum at the end of the heating pulse. Therefore, it can be concluded that

these positive pressure rises represent the direct noise. When the hot spots arrive

at the orifice and are accelerated through it (as detected by the thermocouple

signal), smaller negative excursions are observed. As the flow velocity increases

(and the convective time decreases), these negative dips occur earlier in time.470

Therefore, these negative peaks are attributed to the acceleration of hot spots

through the orifice plate, the so-called indirect noise. A third contribution to

the acoustic signal can be seen in the pressure signal in Figure 12: after the

direct noise peak, the pressure fluctuation does not return to zero, but becomes

negative (negative oscillation labelled PN ). This effect may arise from the mean475

lower density of the flow, but requires further investigation.
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Figure 13(a) shows the peak values of the direct and indirect noise against

the estimated orifice Mach number. The indirect noise peak is evaluated by

subtracting PN from the minimum value of the pressure trace as shown in Figure

12(a). Both direct and indirect noise peaks increase approximately linearly as480

the Mach number is increased. However, the amplitude of the direct noise is

nearly four times larger than that of the indirect noise. Figure 13(a) shows that

under subsonic conditions the effect of indirect noise is not negligible. Even

at small Mach numbers at the orifice (i.e. low accelerations), and for small

temperature fluctuations, there is still a clear sign of indirect noise, in contrast485

to the findings for subsonic conditions in previous experiments [12, 26]. In

Figure 13(b), the maximum absolute values of direct and indirect noise from

Figure 13(a) are normalised by the corresponding peak temperature increase

of the air at the grid and at the nozzle (values reported in Table 1), and non-

dimensionalised by the mean pressure and temperature in the tube. Both the490

normalised direct and indirect noise are directly proportional to the nozzle Mach

number. Considering that the peak temperature at the nozzle is lower than the

peak temperature at the heating grid, the normalised indirect noise becomes

comparable to the normalised direct noise. However, for higher velocities, the

ratio of the hot spot temperature at the nozzle and at the grid becomes smaller,495

which explains the different slopes of the two curves. This shows that in this

experiment the direct noise has a significant influence and cannot be neglected.

The direct noise caused by the heating of the wires always reaches its max-

imum at the end of the heating pulse (t = 200 ms). As the flow rate (and

the velocity) increases, the time separation between the direct and the indirect500

noise peaks becomes shorter, due to the decrease in the convective time. These

results suggest an important issue in the identification of indirect noise: in-

creasing the flow velocity can increase the relative contribution of indirect noise

through higher acceleration in the nozzle, yet the convective time of hot spots

decreases. When the convective time becomes similar to the pulse length, direct505

and indirect noise start merging, and a clear time separation between the two is

no longer possible. However, because the direct noise is typically higher (Figure
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13), the effect of the indirect noise can not be distinguished in a straightforward

way: if the merging effect is not considered, it can be erroneously concluded

that there is no indirect noise in the system.510
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Figure 13: Absolute (a) and normalised (b) values of the peak of the acoustic oscillation of

direct and indirect noise vs. estimated orifice Mach number in the long tube configuration.
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Figure 14: Ensemble-averaged pressure signal acquired 160 mm downstream of the heating

module acquired by the Kulite pressure transducer (black solid line) and the G.R.A.S. mi-

crophone, before (red dashed line) and after (red dashed-dotted line) correction using its

high-pass filter behaviour at low frequencies (Case C-3, long tube).

4.3.2. Comparison between the outputs of condenser microphones and piezore-

sistive pressure transducers

A note must be made regarding the usage of capacitive microphones in the

present context. Figure 14 compares the pressure signal acquired by a G.R.A.S.

microphone (red dashed line) and a Kulite pressure transducer (black solid line)515

for a bulk flow velocity of 1.24 m/s (M1 = 0.0036) (case C-3). The signal of the

G.R.A.S. microphone is inverted to account for the 180◦ polarity shift character-

istic of a condenser microphone. The signal acquired with the G.R.A.S. trans-

ducer is both distorted and attenuated, and shows non-physical ringing caused

by the high pass behaviour of the microphone. As expected, once this signal520

is filtered using the experimentally determined transfer function (red dashed-

dotted line), it nearly matches both the shape and the amplitude of the signal

obtained with the Kulite transducer. However, while the match for the direct

noise is relatively good, the negative pressure peak and the indirect noise peak

are still somewhat different.525

Why are the present findings regarding the different types of microphone
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relevant at all? The amplitude and shape of the pressure signal are essential for

the understanding of the behaviour of the system. A distorted and/or attenu-

ated output can lead to a misinterpretations of the results and a mismatching

with the modelling. In prior experiments aimed to generate hot spots and ther-530

moacoustic waves with unsteady electrical heating of thin wires and foils (DLR

EWG [17, 18], Oxford EWG [23] and [40]), condenser microphones rather than

pressure transducers were used, without mentioning if any correction was ap-

plied to the output of the microphones.

In [42] the issue of the microphone transfer function was brought up. How-535

ever, the cut-on frequency obtained in [42] from numerical considerations is 12

Hz, 10 times larger than the cut-on frequency experimentally determined in this

work and reported in the specifications of G.R.A.S. microphones [36]. There-

fore, we suggest that in the future, all such low frequency measurements need

to be verified for accuracy according to the calibration suggested here, or that540

piezo sensors be exclusively used for such low frequency experiments.

4.3.3. Short tube

Figure 15 shows the pressure signal obtained 160 mm downstream of the

heating module in the short tube configuration. A convective time τC ' 0.32 s

is estimated for the lowest flow velocity (Ū=0.88 m/s), and τC ' 0.11 s for the545

highest flow velocity (Ū=2.52 m/s). As a result of this much smaller difference

in characteristic time, direct and indirect noise have merged, and it is no longer

possible to analyse the two separately. This merging results in an apparent

change both in the shape and the amplitude of the direct and indirect acoustic

oscillations. The direct noise appears as a positive increase in the pressure trace,550

as observed in Figure 12, while the indirect noise brings a negative contribution.

However, when they superpose, both the positive and the negative peaks seem

to decrease and the slope of the signal changes.

As shown in the case of the long tube (Fig. 13), the amplitude of the

direct noise is nearly four times higher than that of the indirect noise, and555

has a dominant effect on the pressure signal. This may lead the indirect noise
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contribution to be underestimated or neglected altogether. This can be clearly

observed in Case C-8 (Ū=2.52 m/s, short tube): the entropy spot reaches the

nozzle 0.11 s after the beginning of the heating pulse, when the heating device

is still active. The amplitude of the indirect noise peak seems smaller than in560

the Ū=2.27 m/s case, whereas the direct noise is only slightly higher than in

the Ū=2.27 m/s case. However, as observed for the long tube configuration

(Figures 11, 13) both the direct and indirect noise contributions increase nearly

linearly with the Mach number. Thus, the apparent decrease in the indirect

noise amplitude is an effect of the destructive interference of direct and indirect565

noise. This interaction can also be seen in the shape of the pressure oscillation:

the sum of the negative oscillation with the positive direct noise peak effectively

increases the decay rate of this positive oscillation.
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Figure 15: Ensemble-averaged pressure signal acquired by the Kulite transducer 160 mm

downstream of the heating module. Legend indicates the magnitude of the bulk velocity (U)

in m/s.

4.4. Case D: Accelerated flow (sonic)

Figures 16(a-b) show the pressure signals acquired in choked conditions with570

the 3 mm diameter orifice (black solid line) in the long and short tube config-

urations. From Figure 4 the pressure in the duct which corresponds to choked
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conditions is around 1.9 ×105 Pa. These results are compared with the corre-

sponding results in the subsonic configuration (Case C-1, dark grey dashed line),

and with the closed tube case (Case B, light grey dotted line). The reflection575

coefficient of a choked nozzle is comparable to that of a closed end: the velocity

is imposed at the throat, which thus nearly behaves as a rigid wall (apart from

a small mean flow effect).

The shape of the pressure signal in the choked configuration can be under-

stood by comparing it with the acoustic oscillations in the subsonic and in the580

closed tube cases. Acoustic waves are created inside the tube when the heat-

ing device is active, and undergo repeated reflections at the two ends of the

tube. Heat is exchanged from the heating device to the air via a convective

mechanism, which is faster than the conductive mechanism in the closed tube

condition, where the air is still. This results in a faster amplification of the585

acoustic energy in the system. When the heating device is no longer active, the

acoustic energy starts to decay. The main difference relative to the closed tube

appears due to the entropy waves: when the hot spots are accelerated through

the nozzle, negative acoustic waves are generated, which are manifested as a

change of the slope of the pressure decay, which becomes steeper. However, the590

pressure only becomes negative in the case of the long tube configuration. In-

deed, the indirect noise generation starts when the acoustic energy of the direct

noise has yet to dissipate, and the sum of the positive and negative cases results

in the signal shape shown in Figures 16(a-b).

For the long tube configuration, the amplitude of the indirect noise can be595

estimated by isolating the negative pressure oscillation from the curve. The

amplitude of this oscillation is ∆PI ∼ 290 Pa. Comparing this value with the

indirect noise peak for the same bulk velocity in subsonic conditions, the indi-

rect noise in choked conditions is nearly 10 times higher in terms of absolute

value and 6 times higher in terms of the normalised value than under subsonic600

conditions. With the short tube configuration, however, the amplitude of the

indirect noise cannot be estimated in a straightforward way because the con-

vective time of the entropy is too short and the indirect noise signal can not be
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Figure 16: Averaged pressure signal acquired by the Kulite transducer 160 mm downstream

of the heating module in the long (a) and short (b) tube. Black solid lines: choked tube; bulk

flow velocity = 0.85 m/s (3 mm orifice); dark grey dashed lines: rigid wall (rigid wall with no

flow); light grey dotted lines: subsonic flow, bulk flow velocity = 0.88 m/s (6.6 mm orifice).
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extracted from the overall pressure trace, even if its influence as a change of the

decay rate of the curve is clear.605

5. Discussion on the results and further development

A detailed comparison between the experimental measurements and analyti-

cal models requires the full characterisation of the tube acoustics at the relevant

low frequencies, both regarding the reflection coefficient of the orifice plate as

well as the upstream end. Because of the ultra-low frequency range of interest,610

the calculation of the reflection coefficients is not straightforward. Whereas in

general the orifice may be considered as a compact nozzle, potential losses need

to be characterised for a fully quantitative comparison. Models for the trans-

missive and reflective properties of orifices can be found in the literature, but to

the authors’ knowledge, there is no information on their behaviour as a source615

of indirect noise.

The present experiments emphasise one of the major limitations of the cur-

rent and previous studies: due to the physical behaviour of the wires, exper-

iments can only be run in the ultra-low frequency range. This adds further

complications to the understanding and modelling of the system due to the lack620

of experimental and analytical/numerical data in the infrasonic region. More-

over, the results are difficult to compare with a real physical situation. This

suggests that it may be advantageous to consider alternative configurations ca-

pable of excitation/deexcitation frequencies closer to those of interest in real

combustors, even if complications resulting from these alternatives may arise.625

6. Conclusions

In this paper we have measured the backward propagating acoustic signals

resulting from accelerating entropy spots generated by electrical heating, into

outlet sections operated in subsonic and sonic conditions. The key result is

the unambiguous identification of the contribution of direct and indirect noise630

in the overall noise. The acceleration of entropy spots is shown to generate
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a significant acoustic signal. To the authors’ knowledge, a clear identification

and separation between direct and indirect noise for the reflected waves had not

previously been demonstrated.

The indirect noise is isolated by choosing a convective time much longer635

than the electric pulse length. The indirect noise is then clearly identified by

locating thermocouples in the orifice, which detect the arrival and acceleration

of the hot spots: when the thermocouples start detecting an increase in air

temperature, a pressure decrease is detected by the pressure transducers. This

negative pressure excursion occurs earlier as the flow velocity is increased, due to640

a shorter convective time. We demonstrate that even for small flow accelerations

(subsonic conditions), and low values of temperature fluctuations, indirect noise

has a non-negligible contribution to the overall acoustic signal. However, direct

noise is found to have a larger effect: when the heating device is active, a large

pressure increase is detected by the pressure transducers. This pressure signal is645

caused by the air expanding due to the heat addition: no time lag is measurable

between the heating pulse and this pressure pulse, which is therefore identified

as direct noise. The peak amplitude of the direct noise is nearly four times

higher than that of the indirect noise on average. From these results, it can be

hypothesised that one of the reasons why the acoustic trace of entropy noise was650

not clearly detected in previous experiments is linked to the short convective

time associated with the hot spots. In this experiment, a clear time separation

between direct and indirect noise can be obtained only at low flow velocities (1-2

m/s) and long convective distances (1.4 m). With higher bulk flow velocities or

shorter convective distances, the contribution of the indirect noise merges into655

the higher direct noise and can no longer be easily identified, even if it may

affect the shape and amplitude of the pressure oscillation.

Another important result is the need to carefully account for the pressure

transducer response at the very low frequencies typical of such rigs, which are

limited by the cooling time of the wires. Condenser microphones behave as660

high pass filters, which significantly attenuate the pressure signal and lead to

a phase shift at frequencies below about 10 Hz, and are unable to follow static
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pressure increases or decreases. This generates non-physical ringings in the

displayed output, which can lead to a misinterpretation of the results. Once the

transfer functions of the microphones are taken into account, their outputs can665

be brought to a good agreement with piezoresistive transducers.
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