
Abstract 
Determining a suitable level of description, or granularity, for a product or process model is 
not straightforward, especially since granularity can manifest in multiple ways, but it is 
important to capture important elements in the model without building models that are too 
large to understand. This article investigates the implications of model granularity choices by 
simulating the design process of a diesel engine on different levels of detail, comparing the 
results and exploring ways to account for the differences. It uses two Design Structure Matrix 
(DSM) models for change prediction in a diesel engine at different levels of granularity to run 
simulations of the design process. Changes are a major source of rework and lead to frequent 
rescheduling of design tasks. The incremental nature of product development as well as 
design changes and their propagation complicate design process planning further. Process 
simulation may provide support in such contexts when it is based on an appropriate 
description of the product. The paper shows that while coarse models can give an indication 
of likely process behaviour, they miss potentially significant iteration loops. 

 
 

  



Experimental investigation of the implications of 
model granularity for design process simulation 

1 Introduction 

Contemporary product development is almost unthinkable in the absence of the insights 
drawn from modelling and simulation. In any modelling activity, there is usually a choice in 
the level of detail at which the model is constructed. This choice can have a significant impact 
on the effort required to build models. Building detailed models can require additional effort, 
as does the creation of more abstract models than easily afforded by the available data.  This 
paper discusses the issue of granularity and uses the simulation of process models at different 
levels of detail to highlight that model granularity can have a significant effect on the outcome 
of simulation and needs to be considered both models are built and inferences are draw from 
them.    

Modern engineering is largely carried out through the interaction with models. For instance, 
drawings, physical or CAD models are used to generate designs, and finite element analysis 
or computational fluid dynamics models can help evaluate the design. While these product 
models assist designers in creating innovative and functional products, other types of product 
models target the considerable interconnectedness of emerging products by capturing their 
underlying structure (e.g. Browning, 2001). With a similar aim, process models may capture 
the structural properties of design processes, such as information dependencies, to offer 
support for planning decisions, which are crucial for a timely delivery (Browning, 2002). 
However, process modelling and planning is also inherently difficult due to the uncertainty 
and complexity exhibited by design projects; and the relationship between the models and 
the processes they bring into being as epistemologically unclear (Eckert and Stacey, 2010).  

The main motivation of process modelling is to gain an overview of the process, understand 
its behaviour and manage the process (Eckert and Clarkson, 2010). Building process models 
can involve considerable effort, as few engineering companies follow standard processes in 
their design activities close enough to use pre-existing models. Somebody has to gather data 
and development process models from typically heterogeneous sets of data and estimations 
based on past experience. The available data is often at different levels of detail and the 
modellers have to make a decision about what to include and at which level of detail the 
models are generated (Gericke et al., 2016). This process is difficult to automate. Data mining 
techniques allow to depict certain processes at maximum detail by mapping events that have 
occurred, however it present these techniques are largely applied to manufacturing or 
workflow processes and the date involve considerable effort to clean up (Suriadi et al. 2017). 

For the time being the practical challenge of choosing a meaningful and comprehensible 



representation remains – in particular in design processes where many relevant steps do not 
leave digital traces. This leaves designers and researchers with little alternative to modelling 
design process in interaction with human experts. However, people often have little 
awareness that the level of detail of a model affects the actions the model affords and therefore 
the results that can be obtained with it (Maier, 2017). In particular, the level of detail affects 
the structure of the model in terms of the connectivity that is visible. The results of the paper 
will add to the model literature of people who build models and who use the results of 
models. The effects of simulations could either be the properties of the process or the 
properties of the models. In process model the structure reflects and affects the dynamic 
behaviour of the process as pointed out by Braha and Bar-Yam (2007). 

To highlight the implications of deliberately choosing a specific level of detail, this paper 
demonstrates the differences between simulation results of the development of a new version 
of a diesel engine, based on a more or less detailed model. The models are change propagation 
models to be used in conjunction with the Change Propagation Method (CPM) developed at 
the Cambridge EDC (Clarkson et al, 2004). The models is a Design Structure Matrix (DSM) 
(see Browning, 2001) with added probability and impact of change propagating. The more 
detailed model has been built by the second author and her student with experts from the 
company (see Jarratt et al, 2004). The aim was to build a model that was both rich and easily 
comprehensible by looking at it on screen or a single piece of paper. The modelling process 
become with identifying a suitable level of detail in the product breakdown. This involved 
considerable negotiation with experts, as they wished to add small components that had 
caused problem in the past, such as lifting eyes, while the researcher wanted to keep a 
relatively even level of granularity. The model was built after consulting four engineers in 
collaboration with one of them. Later it was verified with the team by populated the 
probabilities. The preparatory process involved approximately 10 hours of expert interaction 
in addition to studying the structure of diesel engines in detail. The probability capturing 
exercise took between 4 and 7 engineers about 4 hours. As the example illustrates, selecting 
the right level of detail is important. Revisiting the same engineers to obtain probabilities at 
different levels of detail would have been very time consuming for the researchers and 
confusing for the engineers.  

By nature, models are abstract representations of their target system, or the part of reality they 
aim to capture, created for a specific purpose (Frigg 2003). Depending on how and to what 
extent the target system is abstracted, the emerging model comprises a certain level of detail 
or granularity. The term granularity is used here to describe the level of detail in the 
description of various aspects of the target system (see Maier et al. 2016 for a review of 
definitions of granularity from a number of perspectives and disciplines). 

The aim to this paper is to show through simulation the effect the choice of a particular level 
of detail has on the results; and thereby raise the awareness of practitioners and researchers 



of the importance of selecting a suitable level of detail. Including all individual tasks (or parts) 
as separate entities would be as infeasible as modelling the entire process (or product) as one 
single entity. Between those extreme cases there is a range of options, which, depending on 
the modelling approach and the objective of the project, may lead to different models and 
consequently different results, which can impact related decisions. In process models, 
inaccurate results may lead to unfortunate planning decisions. This article thus investigates 
the implications of granularity choices by simulating the design process of the same artefact 
on different levels of detail, comparing the results and testing ways to account for the 
differences. As it is rarely possible to obtain models of the same product or process at different 
levels of detail in practice, therefore a coarser grained instance of the product model has been 
created using an aggregation algorithm proposed by Ariyo et al. (2007). Experimentation 
shows how more abstract models lead to simulation results with reduced variance, 
underestimating both delays due to iterations and impacts of policy interventions aimed at 
supporting task prioritisation decisions throughout the development process. 

Complex systems, as often encountered in engineering design, are characterised as a multi-
level hierarchy (e.g. Simon 1962; Alexander 1964; Sarkar et al. 2014), the choice of which 
level(s) to represent in a model is inherently difficult yet also of particular importance. Braha 
and Maimon (1998) point out the level of abstraction must be proportional to the information 
contained.  The choice of model granularity cannot only affect the cost and effort to develop 
and maintain models (Pidd 1999; Robinson et al. 2004), but also the results of analyses based 
on these models (Chiriac et al. 2011; Suh et al. 2015). These choices may be particularly 
impactful in engineering design due to the influence such models have on their target system 
(see Eckert and Hillerbrand, 2018, for a discussion of the relationship between models to their 
target systems). For instance, product model granularity can influence modularisation of 
system architectures (Chiriac et al. 2011) or sequencing of integration tasks (Eppinger et al. 
2014). Process models must account for the multi-disciplinary, interdependent, parallel and 
iterative nature of product development (Browning et al. 2006) and can exhibit considerable 
uncertainty (Wynn et al. 2011).  

Within engineering design there is a distinction between product and process modelling, 
which are often handled separately but can also be integrated (see e.g. Eckert et al. 2015). In 
either case, granularity choices in one domain can influence choices in the other; equally, 
models within one domain can influence each other. For example, since change propagation 
in an artefact is an important factor in sequencing and executing design tasks, the granularity 
of a product model can influence design process simulation and consequently task 
prioritisation decisions (Maier et al. 2014; Maier et al. 2015). More recent studies have 
demonstrated the impact model granularity can have on analysis (Chiriac et al. 2011; Suh et 
al. 2015; Samy et al. 2015; AlGeddawy and ElMaraghy 2015). This highlights not only the 
practical importance of the topic, but also emphasises the need for accessible support that 



captures and synthesises the various perspectives regarding model granularity and shows 
their pertinence for engineering design. 

Despite the apparent importance of model granularity in the field of engineering design, 
relatively few research contributions address the topic directly. In practice, it is often assumed 
that some appropriate level will be determined without considering the sensitivity of the 
results (Chiriac et al. 2011). While some contributions emphasise the impact of model 
granularity on analysis (of product models), a systematic investigation of this topic within the 
area of process simulation is lacking. In order to better understand the implications of 
granularity for this important type of analysis in engineering design, this article presents 
experiments, investigating the impact of model granularity on design process simulation. 

The experimentation in this article builds on a DSM-based design process simulation model 
(Maier et al. 2014) and enhances it by introducing different levels of model granularity. The 
model dynamically generates and simulates an array of potential activity sequences based on 
a product DSM, accounting for the combined effects of change propagation, design iteration, 
and rework (see Section 3 for a more detailed description). For the purpose of this 
experimentation, a detailed CPM model of a diesel engine, comprising 41 components, is 
aggregated to a more coarse-grained instance, comprising 10 systems (Section 4). Based on 
these two models, the design process of the diesel engine is simulated on two different levels 
of granularity to compare the results. Ways of accounting for the resulting differences by 
adjusting the simulation model are discussed, explored and their results compared (Section 
5). Based on this illustrative example, the implications of varying the input model granularity 
for the design process simulation are reviewed. The impact of model granularity on analysis 
results and the emerging ramifications for making related decisions are discussed in more 
general terms (Section 6), before conclusions are drawn (Section 7). 

2 Background 

While it is generally accepted that the granularity of a model refers to its level of detail in 
some way, the term granularity and other related concepts are used in different ways across 
research communities. This section presents a characterisation framework for model 
granularity and provides a brief overview of relevant design process models to establish the 
background for the simulation model used and the experiments conducted in this study. 

2.1 Characterising model granularity 
The level of detail, or granularity, of a model is a topic that is relevant to range of disciplines 
relying on the use of models. As Maier et al. (2016; 2017) discuss, the terminology used to 
describe granularity and related concepts (e.g. abstraction, complexity, resolution), activities 



that may influence granularity (e.g. aggregation, clustering, decomposition) and model 
characteristics resulting from granularity (e.g. accuracy, fidelity, precision) differs across these 
disciplines.  

As the goal of this research is to support researchers in practitioners in building models at 
suitable levels of granularity the authors  synthesise a framework outlining the main 
manifestations of model granularity. Figure 1 illustrates the resulting categories, principally 
distinguishing between structural and information granularity, see Maier et al. (2017) for 
details.  

 

 

Figure 1: The main manifestations of model granularity from Maier et al. 2017 

The structural dimension is derived from the definition of structures as a set of objects and a 
set of relations between them, as advocated by the structuralist view of models in philosophy 
of science (e.g. Frigg 2009). This definition does not make assumptions about the nature of 
these objects and their relations. Size and quantity of these objects as well as the number and 
nature of their relations depend on the level of abstraction of the model. The structural 
granularity of a model thus describes the level of decomposition of model elements and the 
density of relations between these. A fine granularity indicates many little elements, whereas 
coarse granularity indicates fewer, bigger elements. Similarly, the degree of detail in the 
description of relations can be referred to. 

However, this structural dimension does not indicate the nature and content of model 
elements and their relations. A certain amount of information is required to describe 
individual elements, depending on the possible variety of their content (Shannon 1948). 
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Additionally, certain aspects of simulation models, such as dynamic properties or the 
statistical characteristics of their response surface cannot be fully captured by the structural 
dimension of granularity.  Information granularity therefore refers to the intra-granule 
information content and the resolution of model-based analysis. Model elements with a 
higher information content have a finer information granularity. Analysis resolution 
generally indicates the amount of detail exhibited by model-based analysis based and may 
refer to the temporal resolution of dynamic simulation or the degree of discretisation of a 
process model.  

Structural and information granularity are not necessarily independent of each other, as 
changes to one type of granularity may also affect the other. However, the distinction is useful 
nonetheless because it enables capturing a wider spectrum of modelling approaches while 
accounting for their particular properties. Maier et al. (2017) also indicate that structural and 
information granularity may be traded off (see Section 5). 

The authors conceptualise granularity from the perspective of the information contained in 
the models. Others have proposed granularity metrics (e.g. Yao 2003) to quantify partitions of 
sets, which has also been used to quantify the granularity of process models (Holschke et al. 
2009).  

By contrast Braha and Maimon (1998) look at the artefact being designed and conceptualise 
abstraction in the context of a mathematical theory of design as a measure of the information 
context of a design representation, where a good design is seen as one without unnecessary 
complexity and a good representation of a design as one without unnecessary information. 
They follow Shannon and Wiener in seeing information as the reduction of uncertainty. They 
also note that “that the nature and number of abstraction levels are entirely dependent on the 
designer and the type of system being designed”. They define the information associated with 
a design through the number of parameters required to describe a design, from which they 
can derive an entropy factor H. Abstract is the ratio between this absolute measure and the 
measure contained in a specific representation. While this definition is theoretically insightful, 
it is practically challenging to derive these factors for a complex existing product, like the 
diesel engine in the case, as it would require a complete detailed model of the final product.  

2.2 Design process modelling and simulation 
Design process modelling and simulation supports design engineers and managers in coping 
with uncertainty and complexity (Smith and Morrow 1999; Browning et al. 2006). The 
purposes of these models range from support for pricing and resource allocation to task 
prioritisation decisions and task planning. Process models are also repurposed throughout 
the design process. Models that start as a process plan and are used later to control and 
monitor the process. Finally, models are often the only record of the process, even though the 



actual process might have been quite different to that modelled at the beginning (Eckert and 
Clarkson 2010).  

Activity network models consider the order of activity execution, which is governed by 
information required and generated by each activity (Wynn 2007). Examples of activity 
network models include applications of Petri Nets (McMahon and Xianyi 1996), Signposting 
models and extensions (Clarkson and Hamilton 2000; Wynn et al. 2006) and approaches based 
on complex networks (Braha and Bar-Yam 2007). In activity-based models a range of valid 
decompositions may be derived and activities may be specified at varying levels of detail 
depending on the respective model context and purpose (Wynn 2007). This article focuses on 
an established and versatile technique of modelling the structural properties of processes and 
products: matrix-based models, in particular DSMs and related approaches which has also 
been employed outside of the process domain (e.g. Steward 1981; Eppinger et al. 1994). DSMs 
and extensions have been widely employed to model various aspects of product development 
(see Browning 2016 for a recent survey). Numerous articles apply DSM-based simulation, for 
instance to understand the impact of interdependencies and rework on the schedule and risk 
of design processes (e.g Smith and Eppinger 1997a; Browning and Eppinger 2002; Yassine 
2007). Karniel and Reich (2009) note the ambiguities in transforming a DSM-based plan to a 
logically correct process model in the case of iterations. In their review of DSM-based process 
simulation models, they conclude that approaches differ in their simulation method, 
treatment of concurrency and underlying DSM type. 

Simulation methods for DSM-based models can be distinguished in three main categories: 
deterministic, Markov chain and Monte-Carlo (Karniel and Reich 2009). Deterministic models 
assume that the DSM structure fully defines process progress. For example, Smith and 
Eppinger (1997b) consider the total work required to complete an intercoupled process using 
a deterministic model, in which the coupling strength between activities determines the 
amount of rework created on each time step. Yassine et al. (2003) extend this by reflecting 
developer’s productivity levels as different completion rates per component. Markov Chain 
models describe a process as a memoryless progression between states according to transition 
probabilities. Smith and Eppinger (1997a) present a design process simulation using reward 
Markov chains based on DSM sequencing. Monte-Carlo models assume stochastic process 
behaviour according to model-specific logic. In their task-based discrete-event simulation 
model, Browning and Eppinger (2002) use Monte-Carlo methods to explore the impacts of 
activity sequence on cost and schedule risk. Cho and Eppinger (2005) additionally account for 
resource constraints and enhance representation of task concurrency and rework. 

Treatment of concurrency can be distinguished in four categories, the first three of which take 
multipath approaches (Karniel and Reich 2009): (1) fully parallel execution of activities (e.g. 
Smith and Eppinger 1997b), (2) parallel with possible overlap (e.g Browning and Eppinger 
2002; Yassine 2007), (3) serialised execution of activities (e.g Smith and Eppinger 1997a), and 



(4) single-path approaches, assuming tasks are executed one-at-a-time (e.g Lévárdy and 
Browning 2009). 

DSM types used for simulation modelling vary between three main categories (Karniel and 
Reich 2009): (1) binary DSMs (cannot directly be used as iteration probabilities), (2) probability 
DSMs using probabilities for simulation (Browning and Eppinger 2002), (3) numeric DSMs, 
for example indicating the number of iterations (Smith and Eppinger 1997b). Combinations 
of different types may be used, e.g. numeric and probability DSMs (Cho and Eppinger 2005). 

3 Design process simulation model used for 
experimentation 

Planning design processes is a difficult undertaking throughout product development 
projects. It involves a range of activities, from strategic planning decisions regarding system 
architecture selection to operational scheduling of design task sequences (Wynn 2007). In 
many cases, designers require a quick method to estimate development effort based on the 
current state of the design. Examples include planning iteration loops, selecting between 
system architecture alternatives or choosing among ways of implementing a change to 
respond to unexpected problems or new customer requests. The required design tasks differ 
in their nature. While some tasks like testing are largely independent of potential alternatives, 
others are contingent on the chosen solution or on the nature of necessary changes. Process 
simulation can play an important role in process analysis: to understand the dynamic 
behaviour of design processes or to understand the risk of process running over time. It can 
for example help to identify bottle necks in processes (Braha and Bar Yam 2007), which would 
need to be removed to make significant improvements. Simulation also generates a multitude 
of specific process plans, from which users can select a process that meets their constraints 
and preferred level of risk.  

Taking the effects of changes on both product and process into account enables the designer 
to consider process effort when considering modifications to an existing product or making 
decisions about design task prioritisation. A small number of integrated product and process 
models exist (Eckert et al. 2017), but most of them do not incorporate product specific 
information for process simulation. To address this, a discrete-event simulation model was 
developed (Maier et al. 2014), which simulates potential activity sequences based on a product 
DSM. These activity sequences represent the maturity progression of components of the 
design. This research builds up on this model and substantially extends it by introducing 
different levels of model granularity. It brings together three important issues in design to 
study their combined effects:  

• iteration carried out to progress the design (Smith and Eppinger 1997a);  



• iteration, or rework, necessary to correct errors or address design changes (e.g. Wynn 
et al. 2007);  

• change propagation due to structural interdependencies in the developed product 
(Clarkson et al. 2004). 

The simulation assumes an incremental design problem where a new product is generated or 
an existing product is modified while maintaining a stable system architecture. The level of 
maturity associated with a component may be thought of as its degree of readiness to be 
employed in the final design. Changes are initiated randomly, propagate depending on the 
design structure and impact component maturity. This makes it possible to use a change 
prediction matrix (see Clarkson et al. 2004) to guide the simulation of design processes. The 
model is briefly described here, with reference to the framework presented in Section 2.1. 

3.1 Overview of the simulation model 
The model enables a design process simulation on the basis of product DSMs, representing n 
components and their interfaces in a design (Browning 2001). It synthesises the iterative 
progression between maturity level by randomly initiating change during task completion. 
The model uses Monte Carlo methods to simulate occurrence and propagation of changes and 
treats concurrency using a multipath approach, executing activities in parallel with potential 
for overlap. Figure 2 presents an overview of the simulation algorithm.  



 

Figure 2: Overview of the algorithm for a single run of the Monte Carlo simulation  

3.2 The DSMs 
Numeric entries between 0 and 1 describe the impact and likelihood of change propagation 
associated with each dependency (Clarkson et al. 2004). If this level of information granularity 
is not available and a binary DSM is used as input, these values are assumed to be both 0.5. In 
addition to the information in the DSM, another input to the models is the amount of time it 
takes to develop each component in the absence of resource limitations, changes and rework. 
Maturity levels assigned to each component track the state of design progression, which 
changes during the simulation. Using m discrete maturity levels allows for m-1 
transformations between them. Work on a component increases its maturity level, while a 
decrease may be triggered by changes, which are modelled as random events. The main cause 
for delays in the simulated design process is thus rework resulting from changes and their 
propagation to other connected parts of the design. The simulation ends when all components 
reach their maximum maturity level m.  

The simulation algorithm can be expressed as a cycle of three steps (explained in more detail 
in Sections 3.3 - 3.5), which is repeated until the simulation is complete: 
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1. Identify task(s) to start: account for maturity and resource constraints and make 
prioritisation decisions. 

2. Start task(s): calculate task durations including learning effects and update model state 
to start tasks. 

3. Complete task(s): simulate change initiation and propagation upon task completion 
and update model state accordingly. 

Table 1 presents an overview of model parameters and the symbols used to refer to them. 
Figure 2 summarises the simulation algorithm. 

Table 1: Model parameters referred to in this article, including standard values (see Maier et al. 2014) 

Parameter Description Definition Std. 

m No. of maturity levels 𝑚 ∈ ℕ  5 

Dmmax Max. allowed maturity level difference ∆𝑚𝑚𝑎𝑥 ∈ ℕ | ∆𝑚𝑚𝑎𝑥 < 𝑚  2 

pc Probability of change initiation 𝑝𝑐 ∈ ℝ | 0 ≤ 𝑝𝑐 ≤ 1  0.1 

smax Max. no. of change propagation steps 𝑠𝑚𝑎𝑥 ∈ ℤ  5 

n No. of components in the design 𝑛 ∈ ℕ  n/a 

q No. of resources 𝑚 ∈ ℕ | 𝑞 ≤ 𝑛  n/a 

ℤ is the set of all integers. ℕ is the set of all nonzero positive integers. ℝ is the set of all rational numbers. 

3.3 Identify tasks to start 
Which tasks can be started at any given point in the development process is determined by 
each component’s maturity level, availability of appropriate resources as well as the relative 
priorities of other components, requiring the same resource. 

Accounting for maturity constraints. The sequence of design progress is constrained by the 
design structure and components’ current maturity. The model assumes that interconnected 
components in the DSM cannot be designed independently and have progress together. A 
component can only be selected for further work if the maturity levels of all other components 
it is dependent on are at most one level lower than its own (Dmmax = 2). Thus, in the absence of 
rework, the maturity of any component would never be more than two levels higher than any 
of the components it is dependent on. 

Accounting for resource constraints. Resources are required to execute design activities. In 
the model, resources are interpreted as individual designers or teams, which can work on 
progressing the respective component. The model allows for assigning specialised skills to 
resources, allowing them to work on specific components, or for assuming that every resource 



has generic skills and can work on every component. An eligible component can only be 
progressed at the current time if at least one resource is both idle and capable of working on 
it. The number of resources is specified by parameter q. 

Making priority decisions. If there are more eligible components than available resources to 
work on them, a priority decision has to be made. This decision is simulated using a function 
that evaluates the priority for each eligible task. The task with the highest priority is chosen 
to execute and the others must wait. 25 prioritisation rules are defined (partly adapted from 
Braha and Bar-Yam 2007) consistently prioritising the task with either the minimum or 
maximum value for the selected decision criterion (Table 2). The active sum of a DSM is 
calculated by summing up the respective entries (likelihood, impact or risk) across a column, 
which represents all outgoing connections of a component. The passive sum is calculated by 
summing up the entries across a row, representing the incoming entries for a component. For 
binary DSMs, policies 9–20 are identical to policies 5–8, and for symmetric DSMs, active and 
passive sums are similar. If two or more tasks have identical values, a random tiebreaker 
chooses between them. 

Table 2: Decision policies and corresponding criteria of components to be prioritised 

Decision criterion Prioritisation rule 

None 0: Random selection 

Task duration 1: Shortest first 2: Longest first 

Current maturity level 3: Lowest first 4: Highest first 

Active sum in binary DSM 5: Lowest first 6: Highest first 

Passive sum in binary DSM 7: Lowest first 8: Highest first 

Active sum in risk-DSM 9: Lowest first 10: Highest first 

Passive sum in risk-DSM 11: Lowest first 12: Highest first 

Active sum in impact-DSM 13: Lowest first 14: Highest first 

Passive sum in impact-DSM 15: Lowest first 16: Highest first 

Active sum in likelihood-DSM 17: Lowest first 18: Highest first 

Passive sum in likelihood-DSM 19: Lowest first 20: Highest first 

Total attempts 21: Fewest first 22: Most first 

Total amount of rework 23: Lowest first 24: Highest first 



3.4 Start tasks 
After the task(s) to be started by each idle resource are chosen as explained above, the 
durations are calculated and the model state is updated. 

Calculating task durations accounting for learning effects. The estimated development 
durations for each component are an input to the model. These durations do not include 
possible delays due to resource limitations, changes and rework, as this is calculated during 
the simulation. If a maturity level is reached for the first time, a fixed and identical proportion 
(determined by the number of possible maturity transitions) of the total duration is required. 
Reworking an activity often takes less time than to attempt it for the first time (Browning and 
Eppinger 2002). The duration of a task accounting for a change, thus returning it to a 
previously reached maturity level, is subject to learning effects. The improvement curve is 
adapted from Cho and Eppinger (2005), assuming a linear improvement by a certain 
percentage (25%) on each consecutive attempt until a minimum fraction (25%) of the original 
duration is reached. 

Updating model state to start tasks. For each resource, the task to work on is identified from 
the list of tasks to be started. Tasks are added to the event list, accounting for their duration. 
Resources are flagged as occupied and tasks as being worked on. 

3.5 Complete tasks 
After starting the chosen tasks, the simulation advances to the next task that has reached the 
end of its execution time and is due for completion. The state of the model is updated 
accordingly, and potential change initiation and propagation is considered. Once this has been 
processed, resources may have become available and new tasks eligible to be started, 
effectively returning the model to the first step (Section 3.3). 

Updating model state to complete tasks. The completed task is removed from the event list, 
the simulation time is advanced, the respective component is flagged as not being worked on 
and the responsible resource as idle, the maturity level and total iteration counter for the 
component are increased. If multiple completions occur at the same time, they are processed 
similarly. 

Change initiation at task completion. Changes are modelled as random events when 
activities are completed, which is thought to be a realistic assumption (Browning and 
Eppinger 2002; Yassine et al. 2001). This logic is used to represent changes both internal and 
external to the design process. A change in a component that is being worked on results in a 
task interruption and release of the respective resource. The probability pc of change initiation 
upon task completion is constant. The model allows for two assumptions regarding the 
affected component in case a change occurs: affects component that has just been worked on 



(standard assumption) or any component, selected randomly. Changes are taken into account 
by reducing the affected component’s maturity level. 

Change propagation at task completion. Initiated changes may propagate to other, 
interconnected components. The model assumes that this occurs within the same timestep as 
the initiated change. The logic of the CPM is used to simulate the knock-on effects of an 
initiated change. The entries in the likelihood DSM determine the probability of changes 
propagating from the initiating component to components that are dependent on it. A Monte 
Carlo approach simulates whether any of these propagations occur. Second- and higher-order 
propagations are simulated by repeating this process for affected components. When a change 
propagates from one component to another, the maturity level of the latter is reduced 
according to the respective entry in the impact DSM. The higher the degree of connectivity 
and the likelihoods of change propagation, the more extensive the resulting propagation tree 
is likely to be (Clarkson et al. 2004; Braha and Bar-Yam 2007). Change propagation is 
terminated when it exceeds smax (standard: five) steps, given that changes would not (be 
allowed to) propagate infinitely in practice (Clarkson et al. 2004; Pasqual and de Weck 2011). 
Change propagation also terminates when the algorithm revisits a component that has 
already been subject to a change in the current timestep.  

 

4 Change propagation on different levels of granularity 

To generate a product DSM on different levels of granularity, which can be used as an input 
for the simulation model presented in Section 3, an approach from Ariyo et al. (2007) is 
adapted. Predicting changes on different levels of granularity is a challenging problem, given 
that the structural granularity of the underlying model determines system boundaries and 
propagation paths. Intra-system propagation may be obscured by more abstract models and 
the impacts of change propagation cannot easily be transferred between models on different 
levels of granularity. Top-down approaches generally require additional data collection and 
do not follow a standard procedure. The bottom-up approach taken here allows to aggregate 
an existing detailed change propagation model with the help of a multi-step algorithm. The 
algorithm as well as the original and aggregated model of a diesel engine, which is used in 
the experimentation (Section 5), are outlined in this section. 

4.1 Aggregating change propagation models 
Ariyo et al. (2007) introduce an algorithmic approach, which allows change prediction on 
different levels of granularity, as an extension to the CPM (Clarkson et al. 2004). This is 
realised through bottom-up aggregation, resulting in a coarser model instance. The approach 



distinguishes between inter- and intra-system connectivity (Figure 3). This allows the 
calculation of the likelihoods of changes propagating from components-to-systems, system-
to-components and systems-to-systems (Figure 5). This is a pragmatic choice of algorithm, 
since computing these independently is the basis for assessing change propagation 
likelihoods on various levels of granularity. 

 

Figure 3: Intra- and inter-system connectivity (adapted from Ariyo et al. (2007)) 

Calculating likelihoods of change propagation on different granularity levels may reduce the 
development effort of hierarchical models and ensures consistent estimation of change 
likelihood across levels. However, the algorithm does not allow the estimation of change 
propagation impacts on different levels. The expectation is that a system-to-system change 
propagation has a higher impact than a component-to-component propagation but this is not 
accounted for. Measures of change impact may indicate the amount of necessary rework 
(Section 3.5). There is, however, no indication of the effect of changes on the design process. 
On a system level, intra-system change propagation is not represented. This could conceal 
parts of the change propagation behaviour and resulting rework, especially in highly modular 
products. Simulating the design process of the respective product, taking these effects into 
account, may provide a better understanding of change propagation behaviour (Section 5). 

The first step of the algorithm introduced by Ariyo et al. (2007), is to compute the combined 
likelihoods of changes propagating between two components across a system boundary. As 
Figure 4 indicates, a change initiating in component ai in system SA may propagate via a 
‘boundary’ component ak, which is connected to component bj in system SB.  
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Figure 4: Estimating the component-to-component inter-system likelihood (adapted from Ariyo et al. 
(2007)) 

The combined intra-system component-to-boundary-component likelihoods Lc(ai ® ak) are 
calculated with the CPM algorithm described by Clarkson et al. (2004). Multiplying this value 
with the direct likelihood of changes propagating from boundary components to components 
in system SB, yields the likelihood of component ai in system SA affecting component bj in 
system SB through a specific boundary component ak in system SA: 

𝐿􏿴𝑎𝑖 → 𝑎𝑘 → 𝑏𝑗􏿷 = 𝐿𝑐(𝑎𝑖 → 𝑎𝑘) ∙ 𝐿𝑑􏿴𝑎𝑘 → 𝑏𝑗􏿷 (1) 

Based on this, the likelihood of a change in ai affecting bj via all possible boundary components 
ak can be determined: 

𝐿􏿴𝑎𝑖 → 𝑏𝑗􏿷 = 1 −􏾠􏿮1 − 𝐿􏿴𝑎𝑖 → 𝑎𝑘 → 𝑏𝑗􏿷􏿱
𝑛

𝑘=􏷠

 (2) 

This inter-system component-to-component likelihood L(ai ® bj) is then used to calculate 
component-to-system, system-to-component and system-to-system likelihoods. Figure 5 
illustrates how these likelihoods are estimated. 
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Figure 5: Estimating component-to-system, system-to-component and system-to-system likelihoods 
(adapted from Ariyo et al. (2007)) 

The likelihood of a change propagating from a component ai to system SB is calculated by 
computing a multiplication over L(ai ® bj) obtained from Equation (2) for any component in 
SB: 

𝐿(𝑎𝑖 → 𝑆𝐵) = 1 −􏾠􏿮1 − 𝐿􏿴𝑎𝑖 → 𝑏𝑗􏿷􏿱
𝑛

𝑗=􏷠

 (3) 

Estimating system-to-component likelihoods is conceptually more difficult because a change 
to a system does not necessarily affect all of its components. It is thus important to also 
consider the probability of a change initiating within a system. Ariyo et al. (2007) note that 
logical problems would result from aggregating likelihoods as in the two previous equations 
and suggest using numerical averages to obviate this: 
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𝐿􏿴𝑆𝐴 → 𝑏𝑗􏿷 =
1
𝑛􏾝

𝐿􏿴𝑎𝑖 → 𝑏𝑗􏿷
𝑛

𝑖=􏷠

 (4) 

Similarly, the system-to-system likelihood is the average of all component-to-system 
likelihoods, as calculated in Equation (3): 

𝐿(𝑆𝐴 → 𝑆𝐵) =
1
𝑛􏾝

𝐿(𝑎𝑖 → 𝑆𝐵)
𝑛

𝑖=􏷠

 (5) 

Based on these calculations, a system-level likelihood DSM can be computed, based on a 
component-level DSM (outlined in Section 4.2).  

4.2 Used product model with two levels of structural granularity 
For the purpose of this experimental investigation, the product model of a diesel engine is 
used, as described by Jarratt et al. (2004) and adopted by Ariyo et al. (2007). This is employed 
as an illustrative example with two levels of granularity to show the underlying principles. 
Other product models and hierarchical decompositions can be processed by the simulation 
model in a similar manner. Figure 6 shows the component-level DSM of the diesel engine, 
comprising 41 components. The cells of this matrix indicate the direct likelihoods of changes 
propagating between components (from column to row) and are shaded accordingly. The 
DSM also indicates which components belong to which system, highlighting the underlying 
hierarchical structure. The specific hierarchical decomposition depends on the context and 
purpose and may require some negotiation, as Ariyo et al. (2007) note. With the help of 
domain experts, they group the 41 components into ten systems, which is adapted in this 
work.  



 

Figure 6: Component-level DSM of a diesel engine; numbers and shading indicate change 
propagation likelihoods between components 

Based on the component-level DSM shown in Figure 6, numeric values for system-level 
change propagation likelihoods can be computed, using the algorithm outlined in Section 4.1. 
This leads to a coarser structural granularity of the model. The calculations were performed 
using a custom implementation of the algorithm in a MATLAB script. Running this algorithm 
yields a 10x10 system-level DSM of the diesel engine (Figure 7), indicating the likelihoods of 
change propagation between systems (rounded to two decimal places). 

Exhaust System 

C
yl

in
de

r H
ea

d 
A

ss
em

bl
y

C
yl

in
de

r B
lo

ck
 A

ss
em

bl
y

P
is

to
n 

R
in

gs
 G

ud
ge

on
 P

in
C

on
n 

R
od

Li
fti

ng
 E

ye
s

C
ra

nk
sh

af
t M

ai
n 

B
ea

rin
gs

A
da

pt
er

 P
la

te
 / 

Fl
yw

he
el

 H
ou

si
ng

Fl
yw

he
el

 R
in

g 
G

ea
r

G
ea

r t
ra

in
G

ea
r D

riv
en

 A
ux

ili
ar

y 
(c

om
pr

es
so

r)
B

al
an

ce
r

B
el

t D
riv

en
 A

ux
ili

ar
y 

(h
yd

ra
ul

ic
 p

um
p)

E
C

M
C

ra
nk

 P
ul

le
y 

D
am

pe
r B

el
t

A
lte

rn
at

or
 B

ra
ck

et
W

iri
ng

 H
ar

ne
ss

H
ig

h 
P

re
ss

ur
e 

Fu
el

 P
ip

es
Fu

el
 P

um
p

Fu
el

 In
je

ct
io

n 
A

ss
em

bl
y

Lo
w

 P
re

ss
ur

e 
Fu

el
 S

ys
te

m
Fu

el
 F

ilt
er

S
um

p
O

il 
Fi

lle
r

E
ng

in
e 

B
re

at
he

r
O

il 
P

um
p

O
il 

Fi
lte

r
O

il 
C

oo
le

r
S

ta
rte

r M
ot

or
S

ta
rti

ng
 A

id
Va

lv
e 

tra
in

C
am

 S
ha

ft
P

us
h 

ro
ds

Ti
m

in
g 

C
as

e
Tu

rb
oc

ha
rg

er
A

irc
ha

rg
e 

C
oo

le
r

A
ir 

In
ta

ke
A

ir 
Fi

lte
r

Fa
n 

D
riv

e
Fa

n 
E

xt
en

si
on

C
oo

la
nt

 P
um

p
E

xh
au

st
 M

an
ifo

ld

Cylinder Head Assembly .5 .1 .2 .1 .1 .1 .1 .1 .2 .1 .2 .4 .1 .1 .1 .2 .1 .2
Cylinder Block Assembly .5 .1 .4 .4 .1 .1 .2 .2 .2 .1 .1 .1 .1 .2 .2 .1 .2 .2 .1
Piston Rings Gudgeon Pin .3 .3 .2 .1 .5 .2
Conn Rod .1 .2 .2 .1 .2
Lifting Eyes .1 .3 .1
Crankshaft Main Bearings .3 .2 .3 .1 .1 .1 .1 .2 .1
Adapter Plate / Flywheel Housing .1 .3 .1 .1 .2
Flywheel Ring Gear .1 .1
Gear train .1 .1 .1 .2 .2 .2 .1 .1 .1
Gear Driven Auxiliary (compressor) .1 .1 .1 .2 .2
Balancer .1 .2 .2 .3 .1 .2 .2
Belt Driven Auxiliary (hydraulic pump) .2 .1 .1 .1
ECM .2 .3 .2 .1 .1 .2 .3 .4 .5 .4 .2 .5 .8 .3 .3 .1 .1 .4
Crank Pulley Damper Belt .2 .3 .1 .1
Alternator Bracket .1 .1 .1
Wiring Harness .2 .2 .3 .2 .3 .5 .4 .5 .4 .3 .3 .3 .1 .1 .2 .2 .6 .1 .2
High Pressure Fuel Pipes .1 .2 .3 .1 .2 .2 .1 .1 .3 .2
Fuel Pump .1 .3 .2 .8 .4 .2 .1
Fuel Injection Assembly .2 .1 .3 .2 .1
Low Pressure Fuel System .1 .2 .3 .1 .3 .2 .2
Fuel Filter .1 .3 .1 .1 .2
Sump .2 .1 .1 .2 .2 .1
Oil Filler .1 .2 .1
Engine Breather .1 .3 .1 .3 .2
Oil Pump .2 .1 .1 .1
Oil Filter .1 .2 .1
Oil Cooler .1 .3 .1 .1
Starter Motor .3 .1 .1 .1
Starting Aid .3 .1 .2 .2
Valve train .2 .1 .3 .5 .1
Cam Shaft .2 .2 .1 .1
Push rods .1 .2 .1 .1
Timing Case .1 .2 .2 .1 .3 .1 .1 .1 .1 .1 .1 .1 .3
Turbocharger .2 .2 .1 .2
Aircharge Cooler .2 .1
Air Intake .2 .3 .2
Air Filter .1
Fan Drive .2 .2 .1 .2 .1
Fan Extension .1 .1
Coolant Pump .1 .1 .1 .2 .1

E
xh

au
st

 S
ys

te
m

Exhaust Manifold .4 .1

Fu
el

 S
ys

te
m

Lu
br

ic
at

io
n 

S
ys

te
m

S
ta

rt.
 

S
ys

t.
Ig

ni
tio

n 
S

ys
te

m
A

ir 
In

ta
ke

C
oo

lin
g 

S
ys

te
m

Ignition 
System Air Intake Cooling 

System
C

om
bu

st
io

n 
S

ys
te

m
Tr

an
sm

is
si

on
C

on
tro

l a
nd

 
E

le
ct

ric
al

s

Combustion 
System Transmission Control and 

Electricals Fuel System Lubrication System Start. 
Syst.



 

Figure 7: System-level DSM of a diesel engine; numbers and shading indicate change propagation 
likelihoods between systems 

5 Experimental design and results 

The implications of different levels of model granularity for design process simulation are 
explored in a set of simulation experiments, using the two diesel engine models (Section 4.2) 
as inputs. This yields a perspective on the potential effect of model granularity on analysis 
results, with reference to a specific model. As shown by Maier et al. (2014), the structural 
granularity (size and density) as well as the information granularity (binary vs. impact and 
likelihood values) of the product model can have an impact on the analysis results.  

The presented experiments have two purposes. Firstly, they aim to explore the effect of 
different structural granularities on results by using the model of a diesel engine on two 
different levels of granularity (Section 4.2). Secondly, four ways of accounting for these 
differences in structural granularity are analysed and further options are discussed. In 
addition to adapting model factors representing basic assumptions (Section 5.2 a & b), the 
information granularity of the simulation model is altered in the experimentation (Section 5.2 
c). An overview of the conducted experiments is given in Table 3, indicating the set-up of the 
most important simulation parameters and highlighting how they are manipulated compared 
to a baseline simulation with the original, fine-grained model (see Section 5.2 for a more 
detailed explanation of the differences between the respective experiments). The number of 
resources is limited to one, even though the simulation allows for concurrency. While this 
simplifies conditions, it enables to study the impact of varying granularity without influence 
from concurrency effects (e.g. overlaps between tasks and change propagation across several 
teams working on parts of the overall design simultaneously). The results of all experiments 
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are based on 10,000 simulation runs with Monte-Carlo sampling and the maximum number 
of change propagation steps smax is set to five. An overview of a typical distribution of 
simulation results for all experimental set-ups is provided in Figure 13 to facilitate 
comparison. 

Table 3: Overview of the simulation experiments with shaded cells indicating manipulated 
parameters 

Pre-set parameters 
Section 
5.1 

Section 
5.1 

Section 
5.2 a) 

Section 
5.2 a) 

Section 
5.2 b) 

Section 
5.2 c) 

Input product 
model Fine Coarse Coarse Coarse Coarse Coarse 

Priority policy 
(Table 2) 

0 – 24; 0 0 – 24; 0 0 0 – 24; 0 0 – 24; 0 0 – 24; 0 

Probability of 
initiating change 
(pc) 

0.1 0.1 0.1 - 0.32 0.3 0.1 0.1 

Max. change 
propagation steps 
(smax) 

5 5 5 5 5 5 

Max. allowed 
maturity difference 
(Dmmax) 

2 2 2 2 2 8 

Number of 
maturity 
transitions (m-1) 

4 4 4 4 4 16 

 

5.1 Simulation results with basic experimental set-up 
To enable an experimental comparison of the two input models (Section 4.2), some 
assumptions have to be made. In particular, the expected task durations have to be adjusted. 
To account for this, the durations to develop individual components are added up to estimate 
how long it would take to develop the system they are part of. Given that the original diesel 
engine model does not indicate the necessary design effort for its components, it is assumed 
that their development requires equal amounts of time (in the absence of iterations and 
rework). Developing a system is consequently assumed to require this amount of time 
multiplied by the number of components it comprises. Figure 8 depicts policy performance 
relative to random task selection (Table 2) as well as a histogram of total project duration with 
policy 0 and 10,000 simulation runs with Monte-Carlo sampling. 



 

Figure 8: Simulation results with basic simulation parameters. Boxplot of relative policy performance 
and histogram for 10,000 simulation runs with policy 0 (random selection) and total duration in years 
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Figure 8 illustrates the differences between the original and aggregated model, in particular 
the smaller variation in relative policy performance and the decrease in both mean and 
variance of the total duration. Given that performance is measured in terms of project 
duration, these effects are not independent. Despite the less pronounced differences, policy 
performance remains qualitatively similar in the aggregated model. An exception are policies 
based on task durations, which are identical in the original model. The lower mean duration 
in the aggregated model can be explained by multiple factors. Firstly, assuming that the 
expected duration to develop a system equals the sum of durations of its components, 
simplifies actual conditions and conceals intra-system iteration, change propagation and 
rework (see also Section 4.1). Secondly, fewer changes are initiated in the aggregated model 
when assuming an identical likelihood pc, given that this only occurs upon task completion. 
Thirdly, the number of total maturity progression steps (m·n) is lower in the aggregated 
model, because the number of maturity levels m is identical for both models with different 
numbers of components n. Finally, change propagation impacts may be underestimated in 
the aggregated model. Due to a lack of both information and a validated mechanism to 
aggregate them from the detailed model, they are assumed to be uniform across the two 
models. 

5.2 Simulation results with adjusted experimental set-up 
After comparing simulation results for the two product models in the previous section, the 
question is how and to what extent the difference in structural input model granularity can 
be accounted for by adjusting model assumptions. As the previous section outlined, the main 
parameters to adjust the simulation model are: 

a) Likelihood of change initiation pc, 

b) Aggregation of task durations on system level, 

c) Number of maturity levels m per system vs. component and 

d) Impacts of change propagation on a system level. 

Essentially, these adjustments lead to a finer information granularity by incorporating 
information that can be inferred or estimated by comparing the structural granularity of the 
original and aggregated model. In particular, a), b) and d) increase the information content 
behind the respective model factors, while c) increases the simulation resolution. These 
modifications do not alter the structural granularity of the model. 

a) Likelihood of change initiation pc 

Out of these parameters, varying the likelihood of change initiation is the only one that allows 
for a systematic sensitivity analysis by varying the respective parameter, without the necessity 



to introduce additional assumptions. Figure 9 displays the results of a sensitivity analysis, 
carried out by varying pc in a range from 0.1 (standard) to 0.32, with results of the original 
model on the left side for comparison (see also Figure 8). The resulting mean duration of the 
aggregated model with pc = 0.3 corresponds to the original model with pc = 0.1. However, the 
characteristics of the distribution are different. The results for the original model (and the 
aggregated model with pc = 0.3) are: mean 3.35 (3.35), median 3.08 (3.17), lower quartile 2.47 
(2.62) and upper quartile 3.93 (3.84). This indicates that the detailed model’s results are more 
widely spread and positively skewed (longer tail of the distribution). 

 

Figure 9: Sensitivity analysis for varying change initiation likelihood  
(original model displayed on the left side) 

Figure 10 displays simulation results of the aggregated model with adjusted pc in more detail. 
It shows the relative policy performance and a histogram for policy 0, illustrating the shape 
of the distribution. A comparison to the results of the detailed model (Figure 8) reveals the 
decreased variance and impact of policies. It is worth noting that, while policy performance 
remains qualitatively similar, the effects of disadvantageous policies are underestimated. 
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Figure 10: Simulation results for coarse-grained model with change initiation likelihood 0.3 
(see also Figure 8 for a comparison with the original model) 

b) Aggregation of task durations on system level 

The durations for developing systems can be estimated by simulating the development of 
individual systems and assuming the average as the amount of time it takes to develop this 
system. This takes iteration and rework on an intra-system level into account, albeit in 
isolation for individual systems, and thus increases the information content of the assumed 
task durations. As Figure 11 shows, the difference to the original simulation with the coarse-
grained model (Figure 8) - a 11% increase in mean task duration - is marginal relative to the 
results for the fine-grained model. While this includes the effects of intra-system change 
propagation, propagation paths crossing system boundaries are not accounted for on a 
component level.  
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Figure 11: Simulation results for coarse-grained model with simulated system durations 
(see also Figure 8 for a comparison with the original model) 

c) Number of maturity levels per system vs. component 

Given that a system comprises multiple components, the number of maturity transitions to 
design a system is assumed to be higher than for individual components. This can be taken 
into account by increasing the respective model factor m. Since the fine model contains 
approximately four times as many components, the number of maturity transitions is 
increased fourfold, from 4 to 16, and the maximum allowed maturity difference (Dmmax) is 
adjusted accordingly, from 2 to 8. These adjustments lead to a finer simulation resolution and 
thus represent a trade-off between the structural granularity of the product model and the 
information granularity of the analysis. Figure 12 shows that this leads to a similar mean 
project duration as with the original fine-grained model, however with marginally less 
variance. Relative policy performance is less pronounced but remains qualitatively similar. 
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While a specific configuration was chosen, the results indicate that different types of 
granularity may be traded off to simulate design process performance. It has to be noted, 
however, that intra-system iterative behaviour is not directly captured, leading to fewer 
overall iterations with less variance. Also, due to the simulation mechanism, all systems have 
the same number of maturity progression steps, which may not appropriately represent their 
internal complexity. 

 

Figure 12: Simulation results for coarse-grained model with increased simulation resolution – 16 
maturity level transformations (instead of 4, see Figure 8) 

d) Impacts of change propagation on a system level 

The impacts of change propagation on a system level may be higher than on a component 
level. While the model implicitly takes this into account by increased task durations on a 
system level, and therefore higher rework efforts, the impacts of change propagation in the 
underlying CPM model are assumed to be identical. While no validated approach exists, 
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Ariyo (2007) explores a way to aggregate impacts from a detailed model, noting the 
underlying conceptual difficulties. The impact only comes into effect in the last step of a 
change propagation chain, while the likelihoods are multiplied along it. The impact between 
systems thus also depends on the ‘frequency’ of changes propagating system-to-system. This 
can be accounted for by computing weighted averages, using likelihoods as weight factors 
(Ariyo 2007). Using this algorithm on the diesel engine model yields only two system-to-
system dependencies with an increased impact (from a maturity reduction of one level to 
two). The differences in the simulation results are therefore marginal. Given that the 
aggregation of change propagation impacts, as opposed to likelihoods, is not validated and 
conceptually challenging, further work is necessary to obtain a valid aggregation algorithm. 
This would increase the information content of system-to-system relationships, thereby 
enabling to trade off coarser structural granularity with finer information granularity. 

5.3 Implications of different granularities in the simulation model 
The experiments conducted in this study illustrate the impact changes in (structural) 
granularity can have on the results of the investigated simulation model. Variations of model 
granularity have implications for a range of other model parameters and assumptions, some 
of which can also be used to mitigate the resulting effects. In particular, change initiation 
likelihood, assumed task durations, change propagation impacts, number of maturity levels, 
learning effects and task prioritisation rules can be adjusted to account for different structural 
granularities. These options, the underlying trade-offs and assumptions are discussed in this 
section. Figure 13 provides an overview of the simulation results of the conducted 
experiments to facilitate comparison. 

The most straightforward way of adapting the simulation to different input model 
granularities is to adjust the overall change initiation likelihood. This follows the logic that 
changes are more likely to occur in a system, which comprises multiple components, than in 
a single component. While this allows to achieve a similar mean project duration and 
qualitative policy performance, it yields a more concentrated distribution and underestimates 
the effects of task prioritisation policies. The factor allows to scale the total simulated project 
duration but does not account for the concealed intra-system change propagation and the 
lower simulation resolution, leading to less variance in the results. 



 

Figure 13: Overview of simulation results obtained in Section 5, displayed as histograms and 
cumulative distribution functions for 10,000 simulation runs with policy 0 

Adding up the assumed durations to develop individual components does not account for 
intra-system iterations. This can be mitigated by simulating the development of individual 
systems independently and then using the respective mean durations as additional 
information to simulate the whole project. While this yields results that are closer to the 
original model, the project duration and policy performance are still underestimated. Another 
option would be to include a factor that accounts for intra-system iteration depending on 
system granularity. 

In the original simulation model, components have a discrete maturity level between 0 and 4. 
Representing maturity progression more finely on a system level may be appropriate, given 
that systems comprise multiple components, each with specific design maturity levels. 
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Increasing the number of maturity levels according to the aggregation factor yields a total 
project duration similar to the fine-grained model. While variance and relative policy 
performance are still underestimated, this represents a way of trading off different 
dimensions of granularity by increasing the simulation resolution, thereby accounting for the 
coarser structural granularity of the model. 

The algorithm used to aggregate the input model computes likelihoods but does not compute 
impacts of change propagation. Both values are used in the simulation model. This can be 
taken into account by calculating impact values in a similar fashion, which is conceptually 
more difficult – likelihoods are multiplied along a change propagation path while impacts 
only ‘occur’ in the last step. While the higher impacts on a system-level are partly accounted 
for by higher task- (and thus rework-) durations, predicting change impact on different levels 
remains challenging. Using an unvalidated algorithmic approach (Ariyo 2007) yields only 
marginally different impacts and therefore relatively similar simulation results. More research 
is necessary to develop mathematically and empirically viable multi-level impact estimation. 

The learning curve in the original model, which is adapted from Cho and Eppinger (2005), 
may be more appropriate on a component level. While learning effects are also expected on a 
system level, their magnitude may be lower due to the more fragmented and distributed 
nature of developing bigger, more complex entities. Although priority rules are generic to 
development processes, they could be adjusted to account for granularity. Policies may be 
implemented, taking system size and intra-system connectivity into account. Moreover, the 
implications and purpose of such policies differ on less detailed levels, moving from task 
scheduling and operational planning to higher level strategic planning.  

Simulation experiments with models on different levels of granularity reveal the impact on 
results as well as ways to account for this. While the conducted experiments only represent a 
fraction of conceivable configurations, focusing on one particular model, they do illustrate the 
implications of varying model granularity, provide an example how these can be studied and 
accounted for, and explore the potential trade-offs between different types of granularity. 
Even though some of the observed effects are specific to the used simulation model, they 
provide the basis for studying the implications of granularity more broadly. Based on the 
presented findings, Section 6 discusses how model granularity may affect analysis in more 
general terms and explores how such insights can provide guidance for modellers. 

6 Limitations and further work 

The experimental study presented in this article provides an indication of the implications of 
model granularity for design process simulation. It demonstrates that simulations are a 
promising way to analyse and demonstrate the importance of considering model granularity 
when building and using models.  



Due to the scope and focus of this research, the analysis presented aims to provide an 
indication rather than a comprehensive account (insofar this is even possible) of the impact of 
granularity. Two models of a diesel engine on different levels of decomposition are 
considered, which allows for initial insights but not the deduction of a more general theory. 
Both the levels of granularity, number of architectures and different decompositions have to 
be increased to attempt comprehensive analysis. A bottom-up algorithm is adopted to 
aggregate based on a detailed model. Including top-down and combined perspectives could 
yield a better understanding of the role of granularity choices, but is conceptually more 
difficult to realise. For example, a model could be decomposed and aggregated again, 
analysing the effects and developing guidelines to ensure consistency. Because the chosen 
decomposition and change probabilities depend on the perspective of involved stakeholders, 
the influence of the original model on derivations with different granularities should also be 
investigated. The algorithm by Ariyo et al. (2007) is designed to conserve the structure of the 
models as much as possible in the aggregation processes, but it is possible that the dynamic 
behaviour of the models is different, as the connections between the aggregated will not cause 
iterations, which is likely to account for the denser distribution of the aggregated models.  

The experiments explore four ways of adjusting the model to account for varying structural 
granularity of the input model (Section 5.2), modifying mainly information granularity. 
Extending this in terms of factors and granularity levels would help to quantify the 
relationships between model factors, input model properties and analysis results as well as to 
determine appropriate combinations. Another limitation concerns the two approaches used 
in this study (Maier et al. 2014; Ariyo et al. 2007). While they are thought to have face validity, 
given that they are synthesised from accepted and established concepts, they still only offer a 
particular perspective on the implications of model granularity. An extensive experimental 
study with a range of models on multiple levels of granularity is necessary to fully address 
these limitations.  

This paper gives raise to many more detailed questions, that simulation of models at different 
levels of detail could answer such as 

- How the strategies for priority rules are affected? 

- Do maturity progression curves over time differ significantly between models with 
different levels of detail 

- What general rules can be derived for modelling by looking at two different levels of 
detail 

- Would the coarser model, be more argument if the probabilities are elicited from 
human experts? 

- Would the results of the simulation be different, if a coarse model would have been 
refined rather than starting with a more detailed model? 



Some of these questions would require artificially generated models on which statistical 
analysis can be carried out. However, this would go beyond the scope of this paper. In practise 
it is has also been proven very difficult to gain accurate change data (see Jarratt 2004) or to 
obtain models the process in detail in the case study company (Flanagan 2006), as the data is 
highly confidential and most likely capture in different formats based on different vocabulary. 
It doubtful that historic data could be captured over different product generations. Beside the 
time delay between generation, designers make a choice in each situation how to respond to 
a change which is highly context dependent (Eckert et al. 2005); and as designs have margins 
components and systems can absorb a certain amount of change in requirements, before 
turning from change absorbers into change multipliers (Eckert et al. 2004).  

The research started with a fine grained model and generated a coarser model from it. This is 
a realistic scenario in industry in situation when an available product breakdown is too 
detailed for analysis. For example, the model used in Clarkson et al. (2004) started with a Bill 
of Materials breakdown and used two rounds of iteration to be make abstract enough that the 
model become usable. The practical problem in industry is however often that the granularity 
is uneven and that model builders need to aggregate components because they are very highly 
coupled and would generate spurious iterations in the simulation. Alternatively, company 
models might include whole systems as single entries, because they are bought in as a chunk, 
but the effect on subsystem is of interest.  

Simulations models of processes would typically be built at the beginning of a process to gain 
insight into its behaviour. The designers using the models need to make a trade-off between 
the effort involved in building the models and the insights they can have through the model. 
Models are often reused between product generations or are used as a starting point in the 
modelling activity. The designers or analysts need to make a judgement whether the starting 
design is sufficiently similar to reuse a coarse or whether a greater level of detail is required 
to make this judgement about critical areas.   

7 Conclusions 

This article investigates the implications of varying granularity levels by reference to a DSM-
based design process simulation model. An aggregation algorithm is used to create a change 
propagation model of a diesel engine on two different levels of granularity, which are used as 
inputs to conduct simulation experiments. This demonstrates the sensitivity of simulation 
results to shifts in model granularity, highlighting the importance of modelling choices 
regarding granularity. Based on the observations in this article, the ramifications of choosing 
and varying granularity for modelling more generally are discussed.  

The main findings from the experimentation relate to the impact of granularity changes and 
potential ways to account for these. Changes in model granularity can have a significant effect 



on analysis results. Abstract models may lead to results with less variance, underestimating 
delays due to iterations and impacts of policy interventions. In particular, more abstract 
models conceal lower-level effects, such as intra-system iterations, which may have significant 
influence on design process performance. Higher-level models may therefore misrepresent 
iteration behaviour across the model (Section 5.1). Depending on the modelling approach, 
model factors can be used to adjust model behaviour to granularity variations. Trading off 
different types of granularity (e.g. reducing structural granularity while increasing 
information granularity), may help to achieve an appropriate representation of a system or to 
retain model behaviour despite granularity variations (Section 5.2). By adjusting model 
factors, an aggregated model may yield average results similar to an underlying detailed 
model (e.g. project duration), which suggests that coarser models can also be used for initial 
planning purposes. However, the differences in the distribution of simulation results and 
relative policy performance indicate that the chosen granularity level has implications for 
analysis that cannot be predicted accurately (Section 5.2). 

The simulation experiments presented in this article are a first step in determining the 
implications of model granularity for analysis and simulation. A comprehensive study is 
necessary to explore a wider range of modelling approaches and granularity variations as well 
as further representations of the simulation results (e.g. design progress over time). However, 
this article provides an indication of the impact of granularity as well as potential ways to 
study this and account for variations. In future research both the number of product 
architectures and levels of granularity should be increased and both bottom-up and top-down 
perspectives should be considered. Furthermore, the influence of the underlying original 
model on derivations with different levels of granularity could be explored. The effect of using 
models on different levels of granularity should also be studied for other modelling 
approaches. For instance, the presented experimentation could be extended to study other 
cross-domain cases with an underlying network structure, such as information flow processes 
on different hierarchical levels in an organisation.  
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