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Abstract
Quantumkey distribution (QKD), a technology that enables perfectly secure communication, has
evolved to the stage wheremany different protocols are being used in real-world implementations.
Each protocol has its own advantages,meaning that users can choose the one best-suited to their
application, however each often requires different hardware. This complicatesmulti-user networks,
inwhich usersmay needmultiple transmitters to communicate with one another.Here, we
demonstrate a direct-modulation based transmitter that can be used to implementmost weak
coherent pulse-basedQKDprotocols with simple changes to the driving signals. This also has the
potential to extend to classical communications, providing a low chirp transmitter with simple driving
requirements that combines phase shift keyingwith amplitude shift keying.We performQKDwith
concurrent time-bin and phasemodulation, alongside phase randomisation. The acquired data is
used to evaluate secure key rates for time-bin encoded BB84with decoy states and a finite key-size
analysis, givingmegabit per second secure key rates, 1.60 times higher than if purely phase-encoded
BB84was used.

1. Introduction

Quantumkey distribution (QKD) allows users to communicate with information theoretic security [1, 2]. This
is possible by encoding the key on single photons so that amalign party trying tomeasure a key bit will alter its
state in amanner observable to the legitimate parties. The security provided is of great value to anyonewishing to
future-proof the secrecy of their information transfer. The technology is also practical and is currently
implemented in a number ofmetropolitan networks [3, 4] and even in ground-satellite links [5–7].

Research developments tend to aim at improving the secure key rate and the achievable distance ofQKD
systems [8–11]. For example, the decoy-state BB84 protocol has security against coherent attacks, is able to reach
distances of hundreds of kilometres and can achievemegabit per second secure key rates [12, 13]. However, this
oftenmakes systemsmore complex, requiring stabilisation routines and extra consideration to protect against
side channels, where Eve attacks the practical implementation [14, 15].

QKD can be carried out using orthogonal states within two ormore non-orthogonal bases. Thismeans the
result is non-deterministic if the state encoded in a certain basis ismeasured in a different basis. Time-bin qubits,
preparedwith the setup infigure 1(a), are the natural choice in opticalfibres because the pulses travel along the
fibrewith their phase reference,meaning that perturbations apply to both pulses. Their state can be conveniently
represented using the Bloch sphere, as depicted infigure 1(b). The equatorial bases,X andY, correspond to two
equal intensity pulses with a phase difference between them. States inX andY can be realised by separating a
single phase-randomised pulse into a signal and reference pulse using an asymmetricMach–Zehnder
interferometer (AMZI), then encoding a phase difference using a phasemodulator (PM). This can be decoded
using an identical AMZI. The polar basis,Z, corresponds to a pulse in just one of the two potential time bins.
States in this basis can be decoded bymeasuring the arrival time of the time-bins in the receiver’s detectors.
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In thismanuscript, we refer to theQKDprotocol using theZ basis alongside either theX orY bases as polar
BB84, and the protocol using theX andY bases as phase-encoded BB84. Polar BB84 could theoretically be
implemented using the BS/switch component shown infigure 1(a). However this is not a commonly available
component and it is challenging to build a device that can act reliably as a high-speed switch and beamsplitter at
the rates required byQKD systems.One of themost practical setups to implement polar BB84 [16]uses a phase-
randomised pulsed laser diode as the source, separated into a reference and signal pulse by anAMZI and then
encoded using another intensitymodulator (IM) and a PM. This setup is bulky andwould require stabilisation
routines to ensure the AMZI delay line ismatched to that in Bob’s receiver for a real-world implementation.
Another drawback is that the transmitter is not versatile, requiringmodifications if onewishes to implement
anotherQKDprotocol, for example differential phase shift [17, 18], coherent oneway [19, 20] or differential
quadrature phase shift [21, 22].

A promisingQKD transmitter thatmitigates these aforementioned drawbacksmodulates the phase of one
laser, which is then inherited by the pulses of another laser via optical injection locking (OIL) [23]. This enables
the precise control of the output phase of pulses, as well as the ability to performon-demand phase
randomisation [24]. OIL also gives an enhancedmodulation bandwidth, allowing time-bin encoding to be
carried out on gain-switched pulses at 2GHz, whilstmaintaining a coherent phase [25]. However, it has not yet
been possible to simultaneously directlymodulate the phase and intensity of a light sourcewith the high purity
necessary forQKD.

Here, we use direct lasermodulation to concurrentlymodulate the phase and intensity of the transmitter to
provide six states that can be used to performQKDwithout the need for an interferometer in the transmitter.
The directly-modulated systemproduces signal and vacuum states, allowing a single IM to be used to prepare the
decoy states and to equalise themean photon number in the phase bases.We use theZ andX bases to implement
the polar BB84 protocol and compare the results to phase-encoded BB84 implemented with theY andX bases.
The lowquantumbit error rate (QBER) of the polar basis relative to the equatorial basesmeans that its use as the
signal state allows for fewer bits to be lost to error correction, enhancing the secure key rate.

2. Experimental realization

The transmitter we use is based onOIL and is shown infigure 2. The protocols implemented are decoy-state
polar BB84 and decoy-state phase-encoded BB84 [26–28].

The phase preparation laser encodes a relative phase between pulse pairs using a 750ps signal to bring the
laser above threshold and to coincide temporally with two pulse preparation laser pulses 500ps apart. A 250ps
modulation is applied in themiddle of this signal to control the relative phase between the two pulses. The laser
is then driven below threshold for 250ps to ensure the global phase of every pulse pair is completely randomdue
to the randomphase of spontaneous emission photons [23, 24]. The optical signal is injected into the pulse
preparation laser via a circulator, where pulses adopt the phase of the phase preparation laser. This removes the
need for a high-speed PMand an extra randomnumber generator for phase-encoding and randomisation. A
1550nmDFB laser diodewith a 10GHz bandwidth (Gooch&HousegoAA0701) is used as the phase
preparation laser and a custom-made laserwithout an optical isolator as the pulse preparation laser.

The electrical signal into the pulse preparation laser is patterned to produce intensity-modulated gain-
switched pulses [25]. For polar BB84with decoy states, empty pulses are required to prepare Z basis states and
vacuum states. 250ps electrical pulses are input to the pulse preparation laser at a frequency of 2GHz and the

Figure 1.X, Y, ZQKDbases (a) a possible schematic to produce all the necessaryQKD states using a phase-randomised pulse source
and a device that can act as a beamsplitter (BS) and a high-speed switch, plus a phasemodulator (PM) producing a phase shiftf. To
produce theX andY bases, the device acts as a beamsplitter (BS), phasemodulating one half of the pulse using the PMand delaying the
other half with an optical delay line. To produce theZ basis, the device acts as a switch, routing the pulse down one path to place it in
the desired time-bin and (b)Bloch sphere representation of qubit states.
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DC is set to below the lasing threshold.When a signal or decoy pulse is required, the electrical signal is above the
lasing threshold. To prepare a vacuum state the electrical signal is below the lasing threshold, as shown in
figure 2. TheX andY bases can then be attenuated by 3dB so that they contain the samemean photon number as
theZ basis. Although only two bases are used for BB84, we take experimental data for theX,Y andZ bases,
allowing us to demonstrate the versatility of the transmitter.

The transmission basis probabilities are set toPZ=0.8, PX=PY=0.1 and the probabilities of sending a
signal (photon flux s), decoy (photon flux v) and vacuum (photon fluxw) state arePs=0.8,Pv=Pw=0.1
respectively. The photon fluxes are 0.5, 0.038 and 0.001 for s, v andw respectively. A proof of principle
experiment is then carried out, where data ismeasured for 20min per basis at each distance, giving 40min of key
time for both the polar BB84 protocol and phase-encoded BB84. This allows us tomaximise the number of key
bits, whilst providing a sufficient number of bits in the check basis to keep the fluctuations low.

The pulse preparation laser is clocked at 2GHz, giving an effective system clock rate of 1GHz. This is
because two time bins are required to encode a single qubit. A 210-bit pseudorandom sequence is generated as
Alice’s pattern, allowing the corresponding electrical signals to be input to drive the laser diodes. Afixed 12GHz
spectralfilter (AdvancedOptics Solutions—ASE Filter) at 1 550.12nm is placed at Alice’s output to reduce any
amplified spontaneous emission. The pulses are then attenuated to the required photon number before being
sent through the quantum channel to Bob.

TheX andY data are collected using anAMZIwith a 500ps time delay on one arm to interfere consecutive
pulses. A polariser is placed at the output of the AMZI to clean the signal, necessitating the use of a polarisation
controller in Alice for alignment. TheAMZI has a 1.7dB loss and half of the photons (the reference pulses)
contain no information so are discarded. Afixed attenuation of 4.7dBmust be placed on theZmeasurement
arm to balance the detection efficiencies for eachmeasurement basis. This is because the security of BB84 relies
on identical basis-independent detection probabilities [2, 29, 30].

The detected counts are tagged using a digitizer and binned into 211-bin histograms for extraction of the
counts and error rates. A 10ns subset of this histogrambefore creation of decoy states and equalisation of theX
andY bases intensities can be seen infigure 3. Random interference occurs in theX andY bases when two pulses
from separate blocks interfere, giving an average interference intensity of half themaximum intensity. An empty
pulse followed by a full pulse has no interference, thus producing a quarter of themaximum intensity.

Figure 2.Experimental design. (a) Light from the phase preparation laser diode (LD) is injected into the pulse preparation laser diode
via a circulator. The applied electrical signals are shown beside each laser and the pulse intensities are shown along thefibre. An
intensitymodulator (IM) can then be used to prepare decoy states and to equalise the polar and equatorial state intensities before
attenuation and transmission through the quantum channel. (b)TheZ basis ismeasured through direct detectionwhereasX/Y basis
detection uses an asymmetricMach–Zehnder interferometer (AMZI)with a phasemodulator (PM) on one arm. An attenuator (Att)
on theZ detection armbalances the losses of theX/Y detection arm.
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The detectors used are superconducting nanowire SPDswith a detection efficiency of 34%, a dark count rate
of 30Hz and a deadtime of<20ns. The jitter increases and efficiency decreases with increasing count rate, so
measurements are not taken at count rates over 10MCounts s–1.

A digitizer with 100ps time bins and constant factor discrimination then processes the counts. The detectors
have a polarisation dependence, so a polarisation controller is used for optimal detection efficiency. Although
the receiver is adapted to each specific protocol, the transmitter remains entirely unchanged. This is a necessary
feature for amulti-protocol QKD transmitter.

3. Results

The number of signal and decoy countsmeasured in each basis is shown infigure 4(a). These decrease
exponentially because themeasurement time remains constant at 20min, regardless of the distance, whereas
received counts scales exponentially with channel loss. Figure 4(b) highlights the 2.6 percentage point drop in
QBERbetween theXY bases andZ basis. Simulations using the experimental parameters and the predicted
count rate based on the system losses are also shown. Thefinite key-size analysis is detailed by Lim et al [12],
which quantifies the security and correctness of the protocol through the parameters εsec and εcor. In this
implementation, these values are set to 2×10−11 and 1×10−15 respectively. The key rate,RL is calculated
using

f l e e= + - - - D[ ( ( )) ( )] ( )R s s h t1 , , 1L ZZ ZZ z EC;0 ;1 sec cor

where sXX,ZZ; n is the number of countsmeasured by Bob in theX orZ basis, given that Alice prepared an n-
photon state in theX orZ basis respectively,fZ is the single photon phase error rate inZ,λEC is the error
correction information,Δ is the finite key-size correction term and t is the time used to collect the experimental
data block [12]. The key rates displayed in 4(c) show an experimental secure key rate of 1.26megabits per second
at an equivalent distance of 40km (assuming opticalfibrewith a 0.2 dB km–1 loss) using an attenuator and 246

Figure 3.Directly-modulated traces.Measurement traces before decoy-state preparation and basis intensity equalisation. TheZ basis
(top) has only a single trace, whereas theX andY bases (middle and bottom) have twoAMZI outputs. The corresponding input pattern
values are displayed at the top, labelled asBb, whereB is the basis and b is the logical bit value inside that basis. A red (grey) peak in the
X andY bases corresponds to a ‘0’ (‘1’) logical bit, where the photon exits through the upper (lower)AMZI port. Peaks in output 1 (2)
counts of the AMZI are complemented by small counts in output 2 (1) (middle inset), showing the high distinguishability between
bits.
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kilobits per second in real fibre of length 75km. Apositive secure key rate could be achieved up to 250km in the
asymptotic limit and up to 180kmwith the finite key-size analysis of equation (1) for just 40min of key time.

To compare between polar BB84 and phase-encoded BB84, we looked at the secure key rate in the
asymptotic limit using the experimental parameters obtained in theZX and theYX bases respectively. The
transmission basis probabilities are renormalised to allow for a fair comparison. The key rate is improved by 1.60
timeswhen using theZX bases compared to theYX bases. Also, phase-encoded BB84 is able to reach an
attenuation of 48.5dBwith a positive secure key rate, whereas polar BB84 can reach slightly further, at 50.1dB.

4.Discussion

Our implementation produced six states in order to show the versatility of the source, however only used four
for theQKD implementations. Six-stateQKD is possible and has a slightly higher tolerance to noise than its
four-state counterpart, leading to the ability to share secure keys at slightly longer distances [2]. Themain
drawback is found in the receiver. Polar BB84 can be implementedwith three SPDs (phase-encoded BB84would
require two SPDs in an active receiver and four SPDs in a passive receiver). Six-stateQKD, on the other hand,
requires an extra AMZI and two extra SPDs if it is to remain passive, or a high-speed PM in the AMZI to choose
the basis in an active implementation. Both of these options add significant complexity when compared to their
meager increase in secure key distance. Indeed, four-stateQKDcould be carried out for a longer time-period to
reduce statistical fluctuations and increase the achievable distance. Reference frame independent-QKD [31] is
another protocol that requires three bases, allowing two bases to drift in timewhile the other stays constant. This
basis drift is a problem for polarisation-encoded systems in real fibre, however is not an issue for phase-encoded

Figure 4.Polar BB84 results with decoy states, secure against coherent attacks. Lines are theoretical results and symbols are
experimentallymeasured or calculated values. (a)Number of countsmeasured in each basis, (b)QBER for each basis, (c) secure key
rate (SKR) in the asymptotic (filled symbols, dotted line) andfinite key-size regimes (empty symbols, solid line). The star symbols are
datameasuredwith real fibre as the quantum channel.
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systems like the one demonstrated here because the signal travels along the fibrewith the phase reference.Multi-
protocol transmitters have also been demonstrated in [32, 33], although these have the drawbacks of being
complex and not offering phase randomisation, respectively.

Aswell as the aforementioned benefit of requiring one fewer SPD for polar BB84 compared to phase-
encodedBB84, the key rates are also improved by a factor of 1.60 times. This ismade possible by the reduced
QBERof the signal basis from2.8% to 0.2%,which reduces the bits lost to error correction, hence improving the
secure key rate.

Direct preparation of decoy states can be realised by driving the pulse preparation laser at different levels
above the lasing threshold to reach different intensities. This is ideal because no external hardware, for example
an IM, is required. This would also be useful for classical communications, increasing the number of bits
encoded per symbol [34].We have achieved intensitymodulation using thismethod. This creates a patterning
effect for the decoy states, however, where the intensity of a pulse is correlatedwith the intensity of the preceding
pulse, opening the door to side-channel attacks [16]. To avoid this security loophole, theQKDdecoy states are
instead produced using a two-level Sagnac-based IM [35].

The transmitter also shows promise to be useful in classical communications. The patterning effects that
proved prohibitive forQKDwhen directly producingmultiple intensity states are not amajor concern here, it
will just add a slight degradation to the distinguishability between states. The directmodulationmeans that the
system is not reliant onmultiple externalmodulators,making it cheaper, less complex and also easier to
integrate with other components. TheOIL ensures that all pulses have the samewavelength. This removes a side
channel forQKD, but alsomeans the systemhas low chirp, reducing the inter-symbol interference caused by
dispersion effects. In this paper we have shown the accurate production of four phase states, however this can
easily be increased by usingmore phase-preparation levels. Different intensities can be produced directly, and
also a vacuum state can be produced, further increasing the amount of information encoded per symbol.

5. Conclusion

In this paper, we have demonstrated a transmitter capable of performing all weak coherent pulse-basedQKD
protocols, performing phase and intensity encoding simultaneously.With this system, we have demonstrated
the decoy-state polar BB84 protocol and the decoy-state phase-encoded BB84 protocol in a single experiment,
preparing the six states in three different bases required by the simultaneous execution of these two protocols
from a single transmitter. In both bases we found a secure key rate in the order of 1megabit per second at 8dB
attenuation, with the decoy-state polar BB84 protocol providing a 1.6 times larger secure key rate on average and
a slightly higher tolerance to losses.

The ability to adapt to different protocols with simple software changesmakes the transmittermore robust
in network scenarios where all the users could potentially have different receivers. Alongside this, the system is
more simple thanmany other transmitters that are dedicated to a single protocol, which is appealing for real-
world implementations. Also the relatively few components ensure it has a good power efficiency andmake it
ideal for on-chip implementations. The versatility, lowpower consumption and stability of this transmitter
make it the natural choice for use inmetropolitanmulti-user quantumnetworks.
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