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Abstract. In this paper we will address the problem of recovering co-
variant transformations between objects—specifically; lines, planes, cir-
cles, spheres and point pairs. Using the covariant language of conformal
geometric algebra (CGA), we will derive such transformations in a very
simple manner. In CGA, rotations, translations, dilations and inversions
can be written as a single rotor, which is itself an element of the algebra.
We will show that the rotor which takes a line to a line (or plane to a
plane etc) can easily be formed and we will investigate the nature of the
rotors formed in this way. If we can recover the rotor between one object
and another of the same type, a useable metric which tells us how close
one line (plane etc) is to another, can be a function of how close this
rotor is to the identity. Using these ideas, we find that we can define
metrics for a number of common problems, specifically recovering the
transformation between sets of noisy objects.

1. Related Work

Our primary aim in this paper is to simultaneously estimate the rotation
and translation that takes one object (line to line/circle to circle/plane to
plane/sphere to sphere/point-pair to point-pair) to another. There are many
methods that estimate rigid body transformations with points [1–4]. In [5]
the authors estimate a general rotor between arbitrary objects using the idea
of carriers—while interesting, this method lacks simplicity and does not deal
directly with the objects themselves.
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2. Conformal Geometric Algebra

The objects we work with here will be CGA objects unless explicitly stated
otherwise. We will use the standard extension of the 3D geometric algebra,
where our 5D CGA space is made up of the standard spatial basis vectors
{ei} i = 1, 2, 3, plus two additional basis vectors, e and ē with signatures,
e2 = 1, ē2 = −1. Two null vectors can therefore be defined as: n∞ = e+ ē and
n0 = e−ē

2 . The mapping of a 3D vector x to its conformal representation X is
given by X = F (x) = 1

2 (x2n∞ + 2x − 2n0). Many of our target applications
will be in computer vision, and in investigating algorithms which use more
than just points, which is the case with most conventional computer vision
algorithms.

3. A Rotor Between Objects

Suppose we wish to find the rotor (rotation, translation, dilation) which takes
an object X1 to an object X2 (where X1 and X2 are conformal n-blades
representing the lines/circles/planes/spheres/point pairs). If we firstly take
lines as an example, conventionally we would translate along the common
perpendicular and then rotate about the intersection point—which requires
a series of non-trivial geometric operations for two arbitrary lines in space.
Here we seek a method which will not require reverting to the geometric
properties of the lines, but which will give the transformation in terms of
the lines themselves—and we wish this method to be valid for all objects.
In CGA, let the rotor which takes X1 to X2 be Rx, where this comprises
both rotation, translation and dilation rotors. We assume both objects are
normalised such that X2

1 = X2
2 = γ, where γ = 1 for lines, circles and point

pairs, and γ = −1 for planes and spheres:

X2 = RxX1R̃x

Note, that X̃ = −γX. We motivate our approach by considering the
quantity (X1 + X2) which is in some sense the ‘average’ object; ie, if we
reflect X1 in (X1 + X2), we should get some function of X2 (we assume for
convenience that X2 = 1, ie γ = 1):

(X1 + X2)X1(X1 + X2) = (1 + X2X1)(X1 + X2)
= [2 + (X1X2 + X2X1)]X2 ≡ KX2 (1)

So the reflection does indeed produce a multiple, though the multiple is
a scalar plus 4-vector, of X2. Since we can write the LHS of Eq. (1) as

(X1 + X2)X1(X1 + X2) = [(X1 + X2)X1]X1[X1(X1 + X2)]
= (1 + X2X1)X1(1 + X2X1)̃

we propose to use the spinor quantity Z = 1 + γX2X1 to form Rx. As above
(but now with γ included) ZX1Z̃ gives;

Y = ZX1Z̃ = 2X2 + γ(X1X2 + X2X1)X2 = (2 + γM12)X2 = KX2 (2)
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where M12 = X1X2 + X2X1 is the anticommutator of X1 and X2. Thus,
we see that Z takes X1 to a multiple of X2, where this multiple involves
the anticommutator of the objects. In general this anticommutator will have
scalar and 4-vector parts (the bivector part of X1X2 cancels with the bivector
part of X2X1).

Since all 4-vectors square to give a scalar, we can take K∗ = 〈K〉0−〈K〉4,
such that KK∗ = 〈K〉20 − 〈K〉24, is a scalar, which we call μ. We show later
that μ is always positive. We now multiply both sides of Eq. (2) by K∗ to
give:

1
μ

K∗ZX1Z̃ = X2

We now look to split up K∗ such that S2 = K∗, where S = α+βM12 ≡
(α + β〈M12〉0) + β〈M12〉4 and α and β are scalars. If S takes this form, it
is clear that it is both self-reverse and commutes with Z and X1; we can
therefore write (

1√
μ

SZ

)
X1

(
1√
μ

SZ

)∼
= X2

so that 1√
μSZ is our required rotor and μ = K∗K. To find such an S we can

use the square root formula given in [6] or simply equate scalar and 4-vector
parts of the equation S2 = K∗. We do the latter first in order to see how the
particular form of our scalar plus 4-vector behaves and then confirm that it
agrees with the formula in [6]:

(α + β〈M12〉0)2 + 2β(α + β〈M12〉0)〈M12〉4 + β2〈M12〉24 = 〈K〉0 − 〈K〉4
Since 〈K〉0 = 2 + γ〈M12〉0 and 〈K〉4 = γ〈M12〉4, we have:

(α + β〈M12〉0)2 + β2〈M12〉24 = 〈K〉0
2β(α + β〈M12〉0)〈M12〉4 = −γ〈M12〉4

From equating 4-vector parts we see that 2β(α + β〈M12〉0) = −γ so
that, provided 〈M12〉4 �= 0;

S = − γ

2β
+ β〈M12〉4

If 〈M12〉4 = 0 we simply have S =
√〈K〉0 if 〈K〉0 is positive, which it

is for lines, planes, circles and point pairs. 〈K〉0 can take negative values for
some sphere cases. If 〈M12〉4 �= 0 we then find β from the equation which
equates scalar parts:

1
4β2

− β2λ = 〈K〉0
where 〈M12〉24 ≡ 〈K〉24 = −λ, since the 4-vectors always square to give zero
or a negative scalar. This is a quadratic in u = β2:

4λu2 + 4〈K〉0u − 1 = 0 (3)

with solutions given by:

u =
−4〈K〉0 ± 4

√
〈K〉20 + λ

8λ
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As β2 = u we need the solution which is guaranteed to be positive:

β2 =
1
2λ

(√
〈K〉20 + λ − 〈K〉0

)
=

1
2λ

(
√

μ − 〈K〉0)

Recall K = 2 + γ(X1X2 + X2X1) = 〈K〉0 + 〈K〉4, K∗ = 〈K〉0 − 〈K〉4,
λ = −〈K〉24, μ = K∗K = 〈K〉20 + λ, so is always positive (as λ ≥ 0). We can
now write the explicit form of the rotor as:

1. If 〈M12〉4 �= 0:

Rx =
1√
μ

(
− 1

2β
+ β〈K〉4

)
(1 + γX2X1) (4)

β2 =
1

2
(√

μ + 〈K〉0
) (5)

2. If 〈M12〉4 = 0 and 〈K〉0 > 0

Rx =
1√〈K〉0

(1 + γX2X1) (6)

3. If 〈M12〉4 = 0 and 〈K〉0 < 0,

Rx =
1√|〈K ′〉0|

(1 + γX̄2X1) (7)

where X̄2 = −X2 and K ′ = 2 + γ(X1X̄2 + X̄2X1).

Taking the positive or negative square root for β simply changes the
sign of the rotor, which makes no difference to the transformation. These
expressions hold for all CGA objects: lines, planes, circles, spheres, point
pairs. The following subsection will give the explicit forms for each of these
objects and will discuss the third case which can occur for spheres.

Before looking in more detail at the nature of the rotors formed by the
process outlined here, we return to Eq. (1) and note that we can now take
X1 to X2 via a reflection in the quantity Xm where

Xm =
S√
μ

(X1 + X2)

where S and μ are as given previously, ie μ = K∗K and S takes the form
in Eqs. (4), (6) and (7) depending on the nature of M12. We see in [7] that
the quantity S√

μ projects the m-vector obtained from the addition of the two
blades X1 and X2 onto an m-blade and therefore an object – the object being
that in which we reflect X1 in to get X2.

We can also confirm the solutions in Eqs. (4), (6) and (7) using the
result in [6], where the square root of the scalar plus 4-vector, Σ, is given by

√
Σ =

Σ ± [[Σ]]√
2
√〈Σ〉 ± [[Σ]]

=
〈Σ〉 ± [[Σ]]√

2
√〈Σ〉 ± [[Σ]]

+
〈Σ〉4√

2
√〈Σ〉 ± [[Σ]]
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where [[Σ]] =
√

〈Σ〉2 − 〈Σ〉24. Here, our Σ = K∗ = 〈K〉0 − 〈K〉4, so that
(taking the solution corresponding to the + sign):

[[Σ]] =
√

μ and
√

2
√

〈Σ〉 + [[Σ]] = ± 1
β

giving
√

Σ = − 1
2β + β〈K〉4, as required (taking − 1

β ).

3.1. Lines

Conformal lines take the form L = A∧B ∧n, with A, B being the conformal
representations of two points lying on the line, and n the point at infinity.
L̃ = −L and we normalise such that L2 = 1, therefore γ = 1. For lines,
the 4 vector part of the anticommutator takes the form βI5n ≡ βI3n, thus
the square of this is always zero, which means λ = 0 and μ = 〈K〉20, which
reduces Eq. (3) to u = 1/(4〈K〉0) and β = ±1/(2

√〈K〉0 [note that it does
not matter which sign we take], giving us the simpler form of the rotor as:

R =
1

〈K〉0

(√
〈K〉0 − 〈K〉4

2
√〈K〉0

)
(1 + L2L1) ≡ 1√〈K〉0

(
1 − 〈K〉4

2〈K〉0

)
(1 + L2L1)

(8)

3.2. Planes

With planes, as with lines, there is no issue of scaling as the objects are
infinite. A plane Π is taken to be the conformal 4-blade of the form A ∧ B ∧
C ∧ n, with A,B,C any 3 conformal points lying on the plane. Conformal
planes square to a negative number, so we assume that planes are normalised
such that Π2 = −1, therefore γ = −1. Note that Π̃ = Π.

For planes the anticommutator is a scalar and it is not hard to show that
(for normalised planes) 〈K〉0 is always positive. Thus, the form for the rotor
in the plane-to-plane case is particularly simple as the 〈K〉4 term vanishes:

RΠ =
1√〈K〉0

(1 − Π2Π1) (9)

where K = 2 − (Π1Π2 + Π2Π1).

3.3. Circles

One might think that the case of circles-to-circles would be more complex,
as a transformation which takes one arbitrary circle to another involves a
dilation as well as a rotation and translation. However, nothing in the above
derivation assumed anything specific about the rotor, and we find that we
can use precisely the same formula to move between arbitrary circles.

Let us start with two conformal circles, C1 and C2 not necessarily of
the same radius. A conformal circle is a 3-blade of the form P ∧Q∧R, where
P,Q,R lie on the circle. Circles square to a positive scalar, so we will assume
that our circles are normalised such that C2 = 1 and therefore γ = 1. Note
that C̃ = −C.
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The anticommutator, M12, is in general a scalar plus 4-vector, so we
must use the form given in Eqs. (4) and (5) and little simplification is possi-
ble:

Rc =
1√
μ

(
− 1

2β
+ β〈K〉4

)
(1 + C2C1) (10)

β2 =
1
2λ

(
√

μ − 〈K〉0) (11)

with K = 2 + (C1C2 + C2C1), μ = K∗K.

3.4. Spheres

We start with two conformal spheres, S1 and S2 not necessarily of the same
radius. A conformal sphere is a 4-blade of the form N ∧ P ∧ Q ∧ R, where
N,P,Q,R lie on the sphere. Circles square to a negative scalar, so we will
assume that our spheres are normalised such that S2 = −1 and therefore
γ = −1. Note that S̃ = S.

As for planes, 〈K〉24 is zero, so the rotor takes a very simple form:

Rs =
1√|〈K〉0|

(1 − S̄2S1) (12)

where K = 2−(S1S̄2+S̄2S1), S̄2 = S2 if 〈K〉0 > 0 and S̄2 = −S2 if 〈K〉0 < 0.
−S2 is the same sphere as S2, so in a sense it does not matter whether we
take S1 to S2 or to −S2—this additional complexity occurs with spheres as
they lack any intrinsic orientation, which is not the case for lines, planes,
circles and point pairs.

3.5. Point Pairs

In the conformal setting, point pairs take the form A ∧ B where A,B are
conformal points – we can think of a point pair as a line segment. For a point
pair, P , clearly P̃ = −P and P 2 gives a positive scalar. We will therefore
assume that point pairs are normalised so that P 2 = 1.

Since the anticommutator will generally have both scalar and 4-vector
parts, we again have the general form taken from Eqs. (4) and (5):

Rp =
1√
μ

(
− 1

2β
+ β〈K〉4

)
(1 + P2P1) (13)

β2 =
1
2λ

(
√

μ − 〈K〉0) (14)

with K = 2 + (P1P2 + P2P1), μ = K∗K.

3.6. Lines to Circles: Planes to Spheres

Note that in the previous rotor derivation we assumed X1 and X2 were blades
of the same grade, but nothing further. Therefore, we should, and indeed do,
find that the rotor formulae in Eqs. (4)–(7) work for moving between lines
and circles and between planes and spheres.
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Figure 1. The red objects in each of these images show
the interpolations of the rotors formed from pairs of black
objects. Here we see that a range of geometric primitives in-
cluding circles, lines and point pairs are all handled elegantly
by the same framework

4. The Non-uniqueness of the Recovered Rotors

Although we have recovered rotors for each case of lines, planes, circles,
spheres and point pairs, it is clear that these rotors are not unique. For
example, if we transform one line into another, we can then translate along
the second line without altering the result. So, a natural question to ask
is exactly what is the transformation we are recovering with the 1 + X2X1

expression.
To investigate this further we extract the bivector, B, for each recovered

rotor, with R = eB , and plot the interpolated objects for each of λi, i =
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1, . . . n, with Xi = eλiBX1e−λiB , where X2 = RX1R̃ and λi = i/n. Figure 1
below show these interpolations for each class of object.

5. Conclusion

In this paper we have presented a general framework for explicitly extracting
the conformal rotor that takes a conformal object of a given grade to another
conformal object of the same grade. The technique works for point pairs,
lines, circles, planes and spheres. In the process of investigating these rotors
we have touched on the form of the object required to reflect one object into
another and by visualising intermediate objects we have verified that the
rotors take the objects smoothly to each other. Code that implements this
rotor extraction algorithm is available in the clifford [8] python package and
novel applications of this technique are additionally presented in [7,9] and
[10]. It is also interesting to note that the nature of the quantity X2X1 was
investigated first in [11], and then in [12], and noted to produce a quantity
which was R2, where R is the rotor taking X1 to X2. This has also been
used for interpolations between objects in [13]. Here we have given explicit
expressions for the rotor itself and investigated the whole range of use cases.
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