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Structure prediction has become a key task of the modern atomistic sciences, and depends on
the rapid and reliable computation of energy landscapes. First principles density functional based
calculations are highly reliable, faithfully describing entire energy landscapes. They are, however,
computationally intensive and slow compared to interatomic potentials. Great progress has been
made in the development of machine learning, or data derived, potentials, which promise to de-
scribe entire energy landscapes at first principles quality. Compared to first principles approaches,
their preparation can be time consuming and delay searching. Ab initio random structure searching
(AIRSS) is a straightforward and powerful approach to structure prediction, based on the stochastic
generation of sensible initial structures, and their repeated local optimisation. Here, a scheme, com-
patible with AIRSS, for the rapid construction of disposable, or ephemeral, data derived potentials
(EDDPs) is described. These potentials are constructed using a homogeneous, separable manybody
environment vector, and iterative neural network fits, sparsely combined through non-negative least
squares. The approach is first tested on methane, boron nitride, elemental boron and urea. In the
case of boron, an EDDP generated using data from small unit cells is used to rediscover the com-
plex γ-boron structure without recourse to symmetry or fragments. Finally, an EDDP generated
for silane (SiH4) at 500 GPa enables the discovery of an extremely complex, dense, structure which
significantly modifies silane’s high pressure phase diagram. This has implications for the theoretical
exploration for high temperature superconductivity in the dense hydrides, which have so far largely
depended on searches in smaller unit cells.

I. INTRODUCTION

The knowledge of the arrangement, and nature, of
atoms in a system is an essential starting point for its
theoretical or computational study. First-principles ap-
proaches to crystal structure prediction have provided
a route to this knowledge which is independent of ex-
periment or intuition.1 Early approaches were based on
evolutionary algorithms,2 or random search,3,4 but many
related algorithms have been proposed since.5,6 Over the
last decade and a half, first-principles structure predic-
tion has led to a number of computational “discoveries”.
These include dense transparent sodium,7 the structure
of phase III of hydrogen and its mixed phase IV,8 and
complex host-guest structures in aluminium at terapas-
cal pressures.9 The first application of random structure
search3 was to testing Ashcroft’s prediction10 that com-
pressed hydrides might offer a route to high temper-
ature superconductivity.11 This has been dramatically
confirmed with the experimental discovery of supercon-
ductivity in hydrogen sulphide at 203K12 and 250K in
LaH10.13 In both cases the structures were predicted
from first principles and the superconductivity antici-
pated computationally.14–16

Ab initio random structure searching (AIRSS) is a
particularly simple, yet powerful, approach to structure
prediction.4 Random structures are generated and re-
laxed to nearby local minima of the energy landscape,
repeatedly and in parallel. With a focus on exploration
rather than exploitation, the initial random structures
are generated to broadly sample a sub-volume of the to-
tal configuration space, see Figure 1. This sub-volume is
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FIG. 1. A sketch of configuration space, highlighting regions
which may be reached starting from structures assembled ac-
cording to physically motivated biases and/or constraints. In
general, the volume of configuration space accessible from
these “sensible” initial structures will be very small compared
to the total volume of configuration space.

defined by the search parameters. These parameters in-
clude the range of unit cell volumes and shapes, species
dependent minimum distances, structural or molecular
units, and symmetry. If these settings are well cho-
sen, the initial random structures are ‘sensible’ and steer
the search to promising regions of the energy landscape.
AIRSS depends on features of the first principles energy
landscape for its effectiveness, in particular its relative
smoothness.4
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The development of robust first principles codes to cal-
culate the total energy of extended systems, through pe-
riodic boundary conditions,17–19 along with databases of
accurate pseudopotentials,20 has enabled high through-
put computational approaches. One high throughput ap-
proach is to compute properties of structures derived
from experimental databases, such as the ICSD.21,22

Structure prediction, and especially AIRSS, also depends
on high throughput computations, with the structures
rather generated stochastically.

Density functional theory (DFT) offers a very efficient
way to compute electronic properties from first princi-
ples at the quantum mechanical level,23 but it remains
computationally expensive in the Kohn-Sham formula-
tion, as single particle wavefunctions must for optimised
for all the electrons in the system. During the 1980s,
as the techniques behind modern DFT codes were being
developed, there was a parallel interest in accelerating
computations using empirical potentials.24–26 Physically
inspired functional forms for the interatomic potentials
were constructed, and the free parameters fit to experi-
mental data, or small datasets of first principles data.25

With the advent of high throughput computation, which
can rapidly generate large datasets, these approaches to
fit potentials have been revisited, in the context of ma-
chine learning.27

Machine learning has a long history in the materi-
als sciences.28,29 In the 1990s attempts were made to
use neural networks to learn electronic band-structures,
to accelerate Brillouin-Zone integration for Electron En-
ergy Loss Spectra prediction.30 Neural networks were
also used to fit complex energy landscapes of isolated
systems,31 density functionals,32 and to predict alloy
properties.33

Hampered by a relative lack of data, and the computa-
tional costs of training neural networks, it has taken some
time for these approaches to become ubiquitous. Key to
a revitalisation of the application of machine learning
to interatomic potentials has been the work of Behler
and Parrinello,34 who emphasised the importance of de-
composing the total energy into atomic contributions for
neural network potentials, and Csanyi and coworkers,35

who introduced the alternative gaussian approximation
potentials. A wide variety of machine learning potentials
are now available.36–43 They vary depending on the strat-
egy for assembling the training data,44 describing the lo-
cal environments,45 and the machine learning model for
regressing the energy landscape.

Structure prediction can be accelerated if the compu-
tational cost of evaluating the energy landscape can be
reduced through efficient approximation.46–54 If that ap-
proximation is robust and of sufficiently high quality, for
all, or most, sampled configurations, AIRSS can be at-
tempted. Here the development of a data derived po-
tential, based on a many-body environment descriptor
and the combination of many small neural networks, is
described. Coupled with an iterative training scheme it
is shown that potentials can be constructed, as needed,

for a given set of search parameters. They are described
as ephemeral, as there is no attempt to build a defini-
tive potential for any given chemical system, and a new
potential can be constructed from scratch at little cost.

In what follows, the scheme for generating the data
derived, ephemeral or disposable, potential designed for
random structure search is described. It is benchmarked
first against a CH4 dataset, then validated for boron ni-
tride, elemental boron and urea. Finally, in an true test
of the approach, it is used to uncover a complex dense
phase of silane.

II. A DATA DERIVABLE POTENTIAL

An idea central to the development of potentials is that
the total energy of a collection of N atoms can be decom-
posed into the individual contributions of each atom:

E =

N∑
i

Ei. (1)

When combined with the approximation that the en-
ergy of each atom, Ei, depends on the environment of
that atom within some localised region, typically a sphere
with cutoff radius rc, fast linear scaling computational
schemes are possible.

The energy of each atom, Ei, can be further decom-
posed into terms that depend on the interactions between
increasing numbers of surrounding atoms:

Ei = E
(0)
i + E

(1)
i + E

(2)
i + E

(3)
i + E

(4)
i + · · · . (2)

The zero body term, E
(0)
i , is typically dropped as it

describes a chemical species independent energy offset,
leading to a rigid shift of the total energy of the system
regardless of composition.

The one body term, E
(1)
i , depends only on the chemical

species of atom i. In an elemental system, or one of
any fixed composition, it again leads to an overal rigid
shift of the total energy, and can be ignored. It is vital,
however, for the description of compounds with variable
composition.

A. Two body interactions

The two body term, E(2), is the first that leads to a
non-trivial energy landscape. Physically, it describes the
attraction, or repulsion between pairs of atoms. The ear-
liest potentials applied to model materials, such as the
Lennard-Jones potential, were two body potentials. The
Lennard-Jones potential, with its linear, homogenous,
form compromises between computational efficiency and
physical motivation. This might be contrasted with the
inhomogeneous, and non-linear, Buckingham potential
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with an exponential term describing the repulsion be-
tween closed electron shells, a 1/r6 term describing at-
tractive dispersion interactions, and a Coulomb term.

Here, we follow the compromise made by Lennard-
Jones, and choose a homogeneous linear potential with
the form:

E
(2)
i =

N∑
j 6=i

(
w

(2)
1 f(rij)

p1 + w
(2)
2 f(rij)

p2

)
, (3)

or

E
(2)
i =

N∑
j 6=i

2∑
m

w(2)
m f(rij)

pm , (4)

in the case of two terms (as for the Lennard-Jones po-
tential), and with a general form:

E
(2)
i =

N∑
j 6=i

M∑
m

w(2)
m f(rij)

pm . (5)

The sum is over the N − 1 other atoms, and over M
fixed exponents, or powers, pm. The linear weights wm

are parameters to be determined, and the f(r) is a fixed
functional form.

For the original Lennard-Jones potential, f(r) = 1/r,
w1 = 1, w2 = −1, p1 = 12, and p2 = 6. Extended
Lennard-Jones potentials55 resemble our general form,
which can be written as a scalar product between a

weight vector w(2), and a vector F
(2)
i , which contains

information about the environment of atom i:

E
(2)
i =

M∑
m

w(2)
m

N∑
j 6=i

f(rij)
pm = wᵀ

(2)F
(2)
i . (6)

B. Range cutoff

The Lennard-Jones potential is long ranged, in that
there is no natural cutoff. This range is physically moti-
vated, but it presents problems for computations of con-
densed systems. This has long been recognised, and man-
aged through the imposition of range cutoffs, along with
shifting and adjusting the potential so that it is zero at
the cutoff radius, rc, potentially along with the gradi-
ent and higher derivatives. This is known to have an
important impact on the energy landscape, and indeed
the ground state crystal structures.56 Recently, Wang et.
al.57 proposed an alternative to the Lennard-Jones poten-
tial that is appropriately cutoff by construction, recognis-
ing the importance of both computationally efficient and
well defined potentials. Their approach is taken here, and
f(r) is constructed so that it is zero at and beyond rc.
There are many functions which satisfy this condition,
but we choose:
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FIG. 2. The function f(r), defined in Eqn. 7, raised to a
range of exponents for the cutoff radius, rc = 2.

f(r) =

{
2(1− r/rc) r ≤ rc
0 r > rc.

(7)

When all the exponents, pk, to which f(r) is raised are
two or greater both the resulting potential, and its gra-
dient, at rc are zero, by construction. Higher derivatives
can also be forced to be zero by further increasing the
minimum exponent. Exponents that are less than one
(but greater than zero) generate step-like functions, with
steep gradients approaching rc, as shown in Fig. 2 for
p = 1/2. In what follows all exponents are chosen to be
two or greater.

C. Three body interactions

Without the careful design of unphysical two body
potentials,58 the range of structures that can be sup-
ported in the elements is extremely limited, to those that
are well packed. However, the elements are known to ex-
hibit extremely rich, and potentially open structures. For
example, the diverse polymorphism in carbon and the
extremely complex phosphorous and boron structures.
Contributions are required to the potential that can dis-
tinguish between bond angles in triplets of atoms. A
three body interaction term can achieve this, and since
three distances rij , rik, and rjk uniquely determine the
triangle formed by the three atoms, i, j, and k, it can be
written generally as:

E
(3)
i =

N∑
j 6=i

N∑
k>j 6=i

V (rij , rik, rjk). (8)
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The function V (rij , rik, rjk) remains to be parame-
terised. Consistently with our treatment of the two body
interactions, we write it as a linear, homogeneous, and
separable approximation25:

E
(3)
i =

N∑
j 6=i

N∑
k>j 6=i

M∑
m

O∑
o

w(3)
mof(rij)

pmf(rik)pmf(rjk)qo .

(9)
The individual terms must be invariant to the swap-

ping of the j and k atoms, as is the case in the above by
construction. The summation can be rearranged, as for
the two body terms:

E
(3)
i =

M∑
m

O∑
o

w(3)
mo

N∑
j 6=i

N∑
k>j 6=i

f(rij)
pmf(rik)pmf(rjk)qo ,

(10)
and so

E
(3)
i =

M∑
m

O∑
o

w(3)
moF

(3)
i,mo = wᵀ

(3)F
(3)
i . (11)

The three body terms can therefore also be written
as a scalar product between the weight vector w(3) and

the vector F
(3)
i , which describes the environment around

atom i, taking into account three body interactions.
In principle the construction we have adopted to de-

scribe the three body interactions can be readily ex-
tended to four body interactions (see Fig. 3) and beyond.
However, what follows is limited to three body potentials
througout.

Our construction is related to atomic body-ordered
permutation-invariant polynomials, where our basis is
not complete, but carefully chosen to be computation-
ally efficient and provide sufficient accuracy.59

D. Vectorisation and Multiple species

For a system containing multiple species the one body
contribtion to the atomic energy, Ei, is important.

E
(1)
i = wᵀ

(1)F
(1)
i . (12)

The one body environment vector, F
(1)
i , has the size

of the total number of species, and assuming full occu-
pancy, one (1) is added to the nth element if atom i is

of species n. The two body environment vector, F
(2)
i ,

is constructed by concatenating environment vectors for
each of the species pairs. For example, for two species,
A and B:

F
(2)
i = F

(2)
AA,i ⊕ F

(2)
AB,i ⊕ F

(2)
BA,i ⊕ F

(2)
BB,i. (13)

Note that in the case of full occupancy, and if atom i is
of species A then the second half of the vector will be

i

1 body 2 body

3 body 4 body
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p p q

q

q
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1

FIG. 3. Contributions to the environment vectors due to one,
two, three and four bodies. The exponent p is applied to
functions of the distance from the central atom, i, and the
exponent q between the other atoms.

precisely zero. This leads to substantial sparsity. The
three body environment vector is similarly constructed
from concatenated contributions from triplets of species,

where F
(3)
ABA,i, for example, is equivalent to F

(3)
AAB,i, and

dropped. While it is not explored further here, this con-
struction is suited to fractional and mixed occupation.

It is computationally convenient to further concatenate
the one, two and three body environment vectors through
the direct sum:

Fi = F
(1)
i ⊕ F

(2)
i ⊕ F

(3)
i . (14)

This single vector, Fi, describes the environment of the
atom i, considering up to three bodies, and taking atomic
species into account.

III. FITTING THE POTENTIAL

Once the environmental (or feature) vectors have been
chosen, there are many possible choices when it comes
to the functional form and fitting procedure. We now
describe the scheme selected in this work. To guide the
choices, a number of considerations are made. The goal
is to produce a method that is robust, in that a large frac-
tion of the structures obtained, on relaxing random sen-
sible structures, remain sensible and physical. Further,
the method should be computationally rapid. The aim
is structure prediction, and the more time and computa-
tional resources spent searching for structures the better.
There should also be a minimum number of parameters,
and reasonable settings that apply to many systems are
preferred. The overall method should demand as little
intervention from the user as feasible.
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A. Cost function

The design of the cost function influences the nature
of the resulting fit. While it is common to fit to both the
energy landscape itself, and the forces (and sometimes
stresses), which are readily available within DFT, here
we construct a cost function based on total energy alone:

C =
1

S

∑
s

∣∣∣∣∣
Ns∑
i

(E(Fs,i)− Es)

∣∣∣∣∣
p

. (15)

The sum is over the S structures, s, in the training data
set, with energies Es and number of atoms Ns. The
concatenated vectors, Fs,i, describing the environment
of atom i in structure s are the input for the function
E(F) which computes the local energy for an atom with
environment F. The magnitude of the difference between
the predicted and target energies is raised to the power
p. For p = 2 the standard least squares cost function is
recovered, whereas for p = 1, minimising the cost func-
tion reduces the mean absolute error. To deemphasise
the impact on the cost function of a few very poorly pre-
dicted local energies (which will typically be encountered
in highly energetic and unphysical structures far from the
low energy structural minima) an intermediate value of
p = 1.25 is chosen. In principle the individual terms in
the cost function can be weighted. This is not found to
be necessary in the current scheme.

B. Neural network

In Section II, a linear potential was developed from
the environment vectors, F, and weights w: Ei = wᵀFi.
For p = 2, a closed form for the weights that minimises
the cost function C can be computed. However, such a
potential is limited in the form of the potential energy
surface that can be modelled. Non-linear fits promise
to describe more complex surfaces, but are more chal-
lenging to perform. Neural networks are recognised as
a particularly powerful way to carry out general non-
linear fits.60 They have proven to be particularly adept
for tasks of computational two dimensional image pro-
cessing, such as classification. These breakthroughs have
been built on deep (multilayer) neural networks,61 with
large number of nodes in each layer. The resulting very
large number of weights are optimised through specialist
computer codes running on GPUs.62,63 In this work, in
contrast, shallow narrow neural networks are found to be
sufficient, and considerably easier to manage computa-
tionally. The architecture consists of an input layer of
the size of the vector F, a hidden layer with between 5
and 10 nodes, and a single output node for the predicted
atomic energy. The total number of weights required is
modest. Both the inputs and outputs are normalised on
the training data, and a tanh activation is used between
the input and hidden layer, and a linear activation on
output.

C. Levenberg-Marquardt Iteratively Reweighted
Least Squares

Deep neural networks are typically fit (trained) us-
ing stochastic gradient descent,64 in which gradients are
computed from random subsets (batches) of the train-
ing data. Given the small size of the neural networks
employed here, direct minimisation is more appropriate.
General quasi-Newton optimisers empirically did not per-
form particularly well for this task, converging slowly to
poor solutions. Given the suitable structure of the cost
function, the powerful Levenberg-Marquardt algorithm
can be used.65,66 Excellent fits are reliably obtained in
modest numbers of iterations. Although implemented,
geodesic acceleration67 was not observed to significantly
improve or speed up the fits in this case. As originally for-
mulated, the Levenberg-Marquardt algorithm performs
an optimisation of a least squares cost function. For
p 6= 2, an approach based on iteratively reweighted least
squares is required.68 Overfitting is avoided through early
stopping.69 As the optimisation progresses the cost of a
validation data set, Cv, is monitored. If the validation
cost increases for, typically, ten steps the optimisation is
halted and the weights for the minimum Cv are selected.

D. Non-negative least squares combination

In contrast to linear least square fits, fitting non-linear
functions is a task of non-convex optimisation, leading
to a multitude of potential solutions corresponding to
the many local minima of the cost function depending
on the initialisation of the weights. It is claimed that for
neural networks many of these individual solutions lead
to good fits.70 An alternative is to average a number of
fits to produce stabilised ensemble neural networks.71,72

An attempt was made to linearly combine multiple fits
to minimise the cost function for the validation data set
(to which the neural networks had not been directly fit-
ted). Extremely low cost functions for both the train-
ing and validation sets can be achieved, given a suffi-
cient number of individual fits, suggesting that these fits
are diverse. However, it was observed that many of the
weights were large and alternating in sign, and the large
costs for the held out testing set implied overfitting. In
any case, such a combination is unphysical. Ideally one
would hope to observe many small positive weights, re-
sulting in an “adding” of the individual potentials or fits.
To directly enforce positive weights, non-negative least
squares (NNLS)73 can be employed. NNLS has the prop-
erty of producing sparse solutions, in that the weights are
either positive, or precisely zero. For this application, it
is found that out of, for example, 256 individual neu-
ral network fits, around 20 are selected by the NNLS.
The combined NNLS potentials are found to be consid-
erably more robust than potentials based on single fits.
At the same time they are more computationally effi-
cient than ensemble averages, automatically discarding
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any relatively poor individual fits.

IV. ITERATIVE FITTING

Closely following the approach developed in Refs. 49
and 74, the fitting is carried out iteratively, in the manner
of the scheme described in Fig. 4. First, random sensi-
ble structures are generated, according to the structure
building parameters chosen for the specific AIRSS search
for which the potential will be used. Without relaxation,
the total energies are computed using DFT and stored
along with the structures. These structures will span the
entire region of configuration space accessible consistent
with the biases implied by the AIRSS parameters (for
example, unit cell volume ranges, minimum separations
and space groups). Because the structures are unrelaxed,
the typical total energies will be high. These samples in-
struct the potential about the high energy regions of the
energy landscape and play an important role in the gen-
eration of robust potentials that are suitable for random
search. Without these samples at high total energy it
is likely that the potential will adopt low and unphysi-
cal total energies for these regions of configuration space.
On structural optimisation this can lead to pathological
structures with, for example, extremely close contacts.

The second step is optional, and involves taking so-
called “marker” structures and applying random small
amplitude displacements to their ionic positions, and lat-
tice vectors. Again, the unrelaxed DFT total energies are
computed and stored. The marker structures are typ-
ically chosen to be known structures in the system of
interest. They may be derived from experiment, or ear-
lier traditional AIRSS searches. Given that forces and
stresses are not present in the cost function, the role of
the shaking of the structures is to provide information
about the gradients of the potential energy landscape. A
related approach is the Taylor expansion method of Ref.
75.

At this point, a data set has been generated that is
both broadly representative of the accessible configura-
tion space, and, if marker structures as selected, of some
of the low energy portion of the energy landscape. The
environmental vectors Fs,i are computed for all the struc-
tures, which are randomly divided into training, valida-
tion and testing subsets in an approximately 80:10:10
ratio. A potential is then generated using the scheme
described in Sections III B to III D.

It is quite likely that the quality of this first fit will not
be particularly good, as monitored through the cost of
the held out testing set, Ct. In order to expand the data
set, and to ensure the final potential does not lead to a
large number of unphysical low energy local minima, the
following iterative procedure is followed. An AIRSS cal-
culation is carried out, using the same structure building
parameters and the most recently generated potential, to
generate a number of local minima of the potential energy
landscape. These structures are subjected to a number

of random distortions, as for the marker structures, and
the DFT total energies are computed and stored without
relaxation. The combined data set is again randomly
split into training, validation and testing subsets, and a
new potential computed. The next iteration then begins.
Either a fixed number of iterations can be performed,
or the procedure halted when the quality of the fit, as
measured by Ct, no longer significantly improves.

V. IMPLEMENTATION

The implementation consists of a collection of OpenMP
Fortran codes, and bash scripts, assembled into three
separate packages. The nn package is a Fortan imple-
mentation of multilayer neural networks, which is used
by the ddp package to generate the EDDP potentials,
and the repose code which performs variable cell struc-
tural optimisations using a preconditioned76 Barzilai-
Borwein77 scheme. The ddp package consists of several
codes. The frank code and franks script generate the
environment vectors for a given input structure, singly
and multiply, respectively. The franks script exploits
the parallel tool78 to parallelise the environment vec-
tor generation. The forge code performs individual po-
tential neural network fits, while the farm script man-
ages the high throughput multiple fits. The flock code
combines the multiple individual fits into a single EDDP
using NNLS. The chain script automates the iterative
fitting scheme, and the repose code is integrated into
the GPL2 AIRSS package.79 The ddp, repose, and nn
packages are also available under GPL2.80

The following examples were computed using a head
node with 28 cores attached to 32 compute nodes, each
with 32 cores and accessible by ssh. Each neural network
was trained using 4 OpenMP cores, permitting 256 fits
to be performed in parallel. The CASTEP plane wave
total energy package18 is used to compute the non-spin
polarised DFT properties throughout.

VI. METHANE MOLECULE

As a first, and challenging, test we follow Ref. 81
and generate a data set of randomly distorted methane
(CH4) molecules. As in Ref. 81 the central carbon
atom is fixed, and the four hydrogen atoms are ran-
domly added within a sphere of radius 3Å. If any in-
teratomic distance is less than 0.5Å, the configuration is
rejected. The molecule is placed in a unit cell of side
length 10Å, and the single point total energies computed
using DFT as implemented in the CASTEP code18 with
the PBE exchange correlation functional.82 The QC5 on-
the-fly pseudopotentials (1|0.9|7|7|9|10(qc=5) for H,
and 2|1.4|8|9|10|20:21(qc=5) for C) are used, with
a plane wave cutoff of 340eV. Generating 10,000 con-
figurations, and dividing them into training, validation
and testing subsets in an approximately 80:10:10 ratio, a
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FIG. 4. A flow diagram outlining the iterative approach to
fitting. The use of marker structures is optional. A typical
value for N is 5.

three body EDDP is generated five times, with rc = 6,
8 exponents ranging from 2 to 10, and 5 hidden nodes.
Typically, of 256 individual fits, NNLS selects less than
10%. The best potential of the five resulted in a root
mean square error (RMSE) of 0.13 eV/mol, and the worst
0.18 eV/mol. Repeating with 50,000 configurations the
best and worst were 0.12 eV/mol and 0.13 eV/mol respec-
tively. The RMSE for 10,000 configurations is somewhat
lower than the best reported in Fig. 4c of Ref. 81, but
the 50,000 configuration result is similar. This suggests
that this EDDP, with its modest number of parameters,
performs very well, but the fit does not improve rapidly
with larger datasets. This is an acceptable compromise
for the current application, where low energy candidate
structures will ultimately be relaxed using DFT.

VII. BORON NITRIDE

As a first test of the iterative scheme described in
Section IV we explore the construction of a three body

EDDP for boron nitride. Boron nitride adopts a hexago-
nal layered polymorph as its most stable form, with the
denser tetrahedral cubic polymorph being metastable.
Cubic boron nitride can be synthesised at high pressures
and temperatures. A hexagonal dense wurztite tetrahe-
dral structure can also be formed at high pressure.

A. Potential Generation

The EDDP is generated from 4 formula unit (f.u.)
boron nitride structures (8 atoms). The volumes of the
unit cells are chosen randomly and uniformly from 4 to
8 Å3/atom, no symmetry is applied, and minimum sep-
arations of 1 to 2 Å are randomly selected. No marker
structures are used. 1000 fully random structures are
generated in the first phase, and then 5 cycles of per-
forming random searching using the current EDDP is
performed, generating 100 local minima per cycle. Each
of these minima are shaken 10 times, with an ampli-
tude of 0.02 (AIRSS parameters POSAMP and CEL-
LAMP). The total energy of each configuration is com-
puted using CASTEP,18 the PBE exchange correlation
functional,82 QC5 on-the-fly pseudopotential (boron def-
inition string 2|1.4|7|7|9|20:21(qc=5), and nitrogen
2|1.4|13|15|17|20:21(qc=5)), with a 440 eV plane
wave cutoff and k-point sampling of 0.05×2π Å−1. Each
generation of EDDP is constructed using the same pa-
rameters. The cutoff radius, rc, is 3.75Å, and 4 expo-
nents, ranging from 2 to 10, are used. Non-linear fits
(256 in total) are performed with a neural network with
114 inputs, 5 hidden nodes in a single layer, and a single
output for the predicted atomic energy, and 581 weights
in total. The subsequent NNLS fit to the validation data
selects 28 potentials with a non-zero weight. The final
EDDP is based on 6495 structures and energies, split
into training, validation sets in the ratio 5196:649:650,
and has training, validation and testing RMSE of 42, 55,
and 86 meV/atom, respectively. The testing RMSE is
considerably larger then those of the training and vali-
dation data sets. However, as is clear in Figure 5, this
is the result of deviations of the predicted energy land-
scape from the DFT one only at high energies, and so is
benign. The data set contains structures with energies
up to 11.84 eV/atom above the minimum. The Spear-
man rank correlation coefficient is above 0.99 for all sets,
suggesting a good ordering of the predicted energies. In-
cluding iteratively building the DFT data set, the EDDP
took just 23 minutes to construct.

B. Structure searches

Extensive structure searches with the final EDDP and
the same structure generation parameters as used in its
construction were performed for a larger unit cell of 8
f.u. None of the 55,000 fully relaxed structures contained
close contacts. The lowest energy structures were either
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FIG. 5. The energy per atom predicted by the EDDP plotted
against PBE DFT energies for the 650 boron nitride testing
configurations. Note that despite the relatively large overall
RMSE of 86 meV/atom, the error at low energies is small,
around 18 meV/atom up to 0.5 eV above the ground state,
and around 34 meV/atom up to 3 eV.

layered hexagonal or dense cubic boron nitride, or re-
lated stackings. The energy difference between relaxed
hexagonal and cubic boron nitride is 77.5 meV/atom in
PBE DFT, and 79.5 meV/atom using the EDDP, sug-
gesting that the potential provides an excellent ranking
at a greatly reduced computational cost. The 55,000
structures were generated in just 12 minutes using 1024
Intel Xeon Gold 6142 CPU @2.60GHz compute cores.
Performing an identical structure search, using CASTEP
for the first principles structural optimisations, results in
1080 structure over 11.5 hrs. This suggests that search-
ing using an EDDP is over 250 times faster than DFT
for this application. It should be noted that the EDDP
optmisations are performed to machine precision, while
the DFT relaxations are terminated when the forces and
stresses fall below 0.05 eV/Å and 0.1 GPa, respectively,
which results in far fewer DFT optimisation steps. The
EDDP calculations scale linearly with number of atoms,
so the acceleration for larger systems will grow rapidly.
For example, the computation of the forces and stresses
for a 256 atom boron nitride structure is nearly 105 times
faster using the EDDP as compared to DFT. Should the
DFT data have been computed using, for example, a
denser k-point mesh, as would be required for the ac-
curate description of a metallic system, the acceleration
would be larger still.

3.0 3.5 4.0
rc/Å

0

10

20

30

40

50

60

R
M

SE
/m

eV

4 exp.
6 exp.
8 exp.

0 2 4 6 8
Nodes

0

40

80

120

160

R
M
SE

/m
eV

FIG. 6. The RMSE per atom for EDDPs refit to the intera-
tively generated boron nitride dataset. Left: Variation in the
fit with the cutoff radius and number of exponents. Right:
Variation in the fit with the number of hidden nodes in the
neural networks, and number of exponents.

C. Parameters

The EDDP potential for boron nitride was created
without particular consideration as to the optimal pa-
rameters, such as the cutoff radius, number of exponents,
or size of the neural network. The aim is to perform an
accelerated structure search with as little time invested
into potential generation and parameter refinement as
possible. However, it is interesting to investigate how
sensitive the resulting potential might be to the chosen
parameters. In Figure 6 the impact of varying the num-
ber of exponents, cutoff radius, and number of hidden
nodes, is explored. The previously iteratively generated
data is randomly resplit into training, validation and test-
ing sets (in the ratio 80:10:10) for each refitting of the
EDDP. It is clear that the 3.75Å cutoff radius was a rea-
sonable choice, but that increasing the number of expo-
nents from 4 to 6 significantly improves the fit. However,
increasing further to 8 exponents provides relatively lit-
tle further improvement, at an increased computational
cost. The fit is also seen to only improve marginally, if
at all, for more than 5 hidden nodes in the neural net-
works. Repeating the iterative generation of a three body
EDDP with 6 rather that 4 exponents leads to improved
training, validation and testing RMSEs of 26, 38, and 67
meV/atom, respectively. The testing RMSE is just 20
meV/atom up to 3 eV above the ground state.
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VIII. BORON

Elemental boron exhibits extremely complex crys-
tal structures, from the purely icosahedral α-boron, to
high pressure γ-boron, which consists of icosahedra and
dimers which exchange charge to form an elemental ionic
solid,83,84 and the exceedingly complex β-boron85,86, the
structure of which continues to be studied,87 but is
thought to consist of icosahedra and larger defected clus-
ters in a complex arrangement. This structural rich-
ness has ensured boron has played an important role
in the development of first principles crystal structure
prediction.27,53,88 We explore boron as a case study in
crystal structure prediction using EDDPs.

A. Potential Generation

To reproduce the experience of investigating the boron
system without any prior knowledge, the following pro-
cedure is followed. A three body EDDP is constructed
using the iterative scheme detailed above. In the absence
of the knowledge that 12 atom icosahedra are an impor-
tant feature of low energy boron structures, the EDDP
is generated from smaller 8 atom unit cells. The volumes
of the unit cells are chosen randomly and uniformly from
3 to 10 Å3/atom, no symmetry is applied, and minimum
separations of 1 to 3 Å are randomly selected. In the
spirit of a naive search, initially no marker structures
are used. 1000 fully random structures are generated in
the first phase, and then 5 cycles of performing random
searching using the current EDDP is performed, gener-
ating 100 local minima per cycle. Each of these minima
are shaken 10 times, with an amplitude of 0.02 (AIRSS
parameters POSAMP and CELLAMP). The total energy
of each configuration is computed using CASTEP,18 the
PBE exchange correlation functional,82 the same boron
QC5 on-the-fly pseudopotential as used for boron nitride,
with a 340 eV plane wave cutoff and k-point sampling of
0.05×2π Å−1. Each generation of EDDP is constructed
using the same parameters. The cutoff radius, rc, is
3.75Å, and 4 exponents, ranging from 2 to 10, are used.
Non-linear fits (256 in total) are performed with a neu-
ral network with 21 inputs, 5 hidden nodes in a single
layer, and a single output for the predicted atomic en-
ergy, and 116 weights in total. The subsequent NNLS
fit to the validation data selects just 15 potentials with a
non-zero weight. The final EDDP is based on 6499 struc-
tures and energies, split into training, validation sets in
the ratio 5199:650:650, and has training, validation and
testing RMSE of 52, 52, and 59 meV/atom, respectively.
The data set contains structures with energies up to 11.5
eV/atom above the minimum. The Spearman rank cor-
relation coefficient is 0.98 for all sets, suggesting a good
ordering of the predicted energies.

B. “Discovery” of α-boron

As a first test of the EDDP, a random search is per-
formed using the same structure building parameters as
used during the iterative fit, but with 12 atoms rather
than the original 8. Despite the fact that the training set
cannot contain α-boron, it is identified as the most sta-
ble structure (once some obviously pathological results,
about 1 in 6000, are removed). How is this possible, given
that the training structures can contain no icosahedra?
Examining the most stable 8 atom structure in the train-
ing set (see Fig. 7) it appears that there are hints of
icosahedral fragments in the small cell, which the EDDP
is able to learn, without overfitting, given the relatively
inflexible functional form. It should be noted, unsur-
prisingly, that this EDDP does not perfectly reproduce
the DFT energy landscape. For instance, it would be ex-
pected to find the α-boron structure about 1 in 3000 ran-
dom samples in a 12 atom unit cell, but using this EDDP
it is reduced to about 1 in 10000 samples. Furthermore,
the volume of the relaxed alpha boron structure differs
substantially from the DFT result, by about 9%.

C. Structure solution for γ-boron

A second, more ambitious test, is the solution of the
28 atom gamma boron structure, from the knowledge of
the lattice parameters alone. A random search, with ini-
tial structures with minimum separations of 1.7Å and
randomly selected space-groups with two to four symme-
try operators, was performed. The fixed unit cell search
resulted in about 1 in 3000 obviously pathological struc-
tures. The otherwise lowest energy structures had the
Pnn2 space group, a subgroup of Pnnm, adopted by the
γ-boron structure, see Fig.7. On inspection the struc-
ture appears closely related to the known γ-boron struc-
ture, and subsequent structural optimisation of the Pnn2
structure within DFT recovers it precisely. This result is
impressive - it is difficult to conceive that the 8 atom
structures contain obvious hints of the complex icosahe-
dral/dimer interactions.

D. Free search for γ-boron

Next, the challenging task of a symmetry and lattice
free search for the γ-boron structure is attempted. The
EDDP is regenerated using the α-boron structure, which
has already been located, as a marker, which is shaken
500 times. The shake amplitude is increased to 0.04, the
rc to 4.5Å, the number of exponents to 8 and the hid-
den nodes to 10. To increase the chance of encountering
pathological structures during the generation procedure,
and to “dig deeper” into the EDDP’s energy landscape,
on the N th step, in order to generate a single retained
structure, 2N relaxed random structures are generated,
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and the lowest energy one selected. Using this poten-
tial, 362,754 structures containing 28 atoms are randomly
generated and relaxed. A dense metastable structure
with space group P21/c is encountered twice. On in-
spection the structure appears to be only a very slight
distortion of the γ-boron structure, and indeed, on re-
laxation using CASTEP, it becomes precisely the Pnnm
γ-boron structure.

E. Structural distortion and potential range

To test a hypothesis that the observed distortions are
due to the relatively short range of the potentials, a new
EDDP is generated, this time increasing the cutoff to
5.5Å. The Pnn2 and P21/c structures relax directly to
the Pnnm structure using this EDDP. There is clearly a
tradeoff between the number of samples that can be gen-
erated, which depends on the computational cost of the
potential used, and the quality of the generated struc-
ture. Given that all important structures in a study will
ultimately be relaxed using DFT, imperfections in com-
putationally cheaper EDDPs can be tolerated in the pur-
suit of a more thorough coverage of the energy landscape.
However, care must be taken as a poorly described en-
ergy landscape may contain more local minima, hence be
more challenging to search.

Overall, these results for boron suggest that EDDPs
are a promising basis for general random structure pre-
diction tasks.

IX. UREA

Constructing a fully reactive potential for the entire
C-H-N-O chemical space is expected to present chal-
lenges, not least in the generation and manipulation of
suitably large training data sets. In the spirit if this
work, here we generate and apply a three body EDDP
for the specific region of C-H-N-O’s configuration space
that contains the urea (CH4N2O) molecule, at around
atmospheric and moderate positive pressures. Phase
transitions in urea (carbamide) under pressure were first
studied by Bridgeman. Polymorphism in urea remains
under active investigation, both experimentally89 and
computationally.90–92 Here we explore the application of
random searching and EDDPs to identify the low energy
polymorphs of urea.

A. Potential Generation

In the first phase of the iterative construction of the
potential for urea, structures are generated by construct-
ing 10000 randomly shaped unit cells with volumes from
60 to 80 Å3/mol, and placing two urea molecules with
random positions and orientations, ensuring that the
molecules are no closer to each other than a randomly

(a) 8 atoms (b) 12 atoms

(c) 28 atoms Pnn2

(e) 28 atoms Pnnm - DFT relaxed

(d) 28 atoms P21/c

FIG. 7. Structure (a) is the lowest DFT energy configuration
contained in the potential training data set for Section VIII A.
A subset of the 8 atoms are highlighted as they resemble con-
figuration encountered in icosahedral alpha boron. Structure
(b) is the result of structure searches using this iteratively
generated potential, and is that of alpha boron. Structure (c)
is the result of structure searches in a unit cell with shape
constrained to that of γ-boron. Structure (d) is the result of
structure searches in variable unit cell with no imposed sym-
metry. On relaxation in DFT both the (c) and (d) structures
become that of γ-boron, shown in (e).

selected distance from 1 to 2 Å . The positions of the
atoms in the molecules are then perturbed by up to 0.3
Å. The same settings as for the first potential of boron,
Section VIII A, are used for the iterative phases of re-
laxation and shaking, as well as the final construction
of the potential. The energy of each configuration is
computed using CASTEP,18 the QC5 on-the-fly pseu-
dopotentials (2|1.4|13|15|17|20:21(qc=5) for N, and
2|1.5|12|13|15|20:21(qc=5) for O, and the same def-
initions for C and H as for the methane example), and a
high plane wave cutoff of 540 eV. A coarse k-point grid
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FIG. 8. Energy versus volume for the 16045 Z=4 urea struc-
tures relaxed using the EDDP. The fine blue line is the convex
hull of the point, highlighting the structures that might be-
come stable at positive and negative pressures.

spacing of 0.1×2π Å−1 was used along with the PBE+TS
dispersion corrected functional.93 Of the 256 non-linear
neural network fits, 38 were selected by NNLS. The fi-
nal potential is based on 15500 structures and energies,
split into training, validation and testing in the ratio
12400:1550:1550. The training, validation, and testing
RMSE (MAE) is 20.65 (9.99), 27.50 (17.42), and 39.02
(18.76) meV/atom respectively. The data set contains
structures with energies up to 5.52 eV/atom above the
minimum and a Spearman rank correlation coefficient of
0.999 for all sets, demonstrating an excellent ordering of
the predicted energies.

B. Structure Searches

Having generated the EDDP for urea using just two
molecules per unit cell (Z=2), it is tested for Z=4. Unit
cells with volumes ranging from 60 to 80 Å3/mol are
filled with four molecular units of urea. No symmetry
is used to generate the structures, so in principle struc-
tures with up to Z′=4 are accessible. The molecules are
placed so that they do not overlap, with a minimum sep-
aration of 2Å. The initial structures are relaxed to their
nearby local minima 16045 times, generating a diverse set
of structures. A scatter plot of the energy and volume of
these structures is shown in Figure 8.

The lowest energy structure identified had Z=4 and
space group P212121. It was located 4 times, and is
known as the high pressure Form III of urea. The ambi-
ent pressure P4̄21m (Z=2) form I was located twice, and
the high pressure P21212 (Z=2) form IV was located 18
times. Additional structures with P21/m (Z=4), Pna21

Space EDDP PBE+TS PBE+MBD∗

Group (Z) V/Å3 E/meV V/Å3 E/meV V/Å3 E/meV

P212121 (4) 67.79 0 68.20 0 72.15 0

P21/m (4) 75.10 1 74.06 24 75.31 41

Pna21 (4) 64.59 14 65.37 2 67.20 18

P21212 (2) 72.83 15 70.70 17 72.87 27

P4̄21m (2) 76.13 16 71.35 13 71.86 23

Pccn (4) 72.93 17 70.00 53 70.84 55

TABLE I. Relative energies and volumes (per urea molecule)
for the low energy structures, evaluated using the EDDP,
at the PBE+TS level used to construct the potential, and
PBE+MBD∗.

FIG. 9. The Pna21 (Z=4) urea structure is energetically com-
petitive in all cases, and a candidate high pressure phase of
urea given its high density.

(Z=4) (see Figure 9), and Pccn (Z=4) were identified
at energies within 40 meV/mol of Form III. To assess
the reliability of the ranking, the structures and energies
are recomputed at both the PBE+TS level (using the
same computational parameters as for the potential gen-
eration), and PBE+MBD∗ (the default CASTEP OTFG
parameters, a plane wave cutoff of 900 eV and k-point
sampling density of 0.07×2π Å−1).94 As shown in Table
I, in all cases Form III is found to be the lowest energy
structure, with the maximum difference in relative en-
thalpy of 40 meV/mol, or 5 meV/atom. It is clear that
the EDDP is capable of resolving differences in energy
well below the testing RMSE.
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X. APPLICATION TO DENSE SILANE

The earliest published application of first principles
random searching (later referred to as ab initio ran-
dom structure searching, AIRSS4) was to the study of
high pressure polymorphism in silane.3 Feng et al.95 had
proposed silane as a potential candidate for high tem-
perature conventional superconductivity,using structures
based on chemical intuition and local structural optimi-
sation using DFT. In Ref. 3 random searches at around
100GPa using two f.u. of SiH4 and just 40 initial config-
urations uncovered a more stable, semiconducting, phase
of silane with space group I41/a. The presence of an
electronic band-gap postponed any expectation of super-
conductivity to higher pressures. Shortly afterwards the
I41/a structure was encountered experimentally96, and
subsequent theoretical work, exploring larger unit cells
of up to 6 f.u., identified further candidate structures
at both higher and lower pressures.97,98 Despite refine-
ments to searching algorithms, and increased compu-
tational resources, structure predictions for binary and
ternary compounds are still typically restricted to rela-
tively small unit cells. Here we revisit silane, exploit-
ing the computational acceleration afforded by EDDPs
to search in larger unit cells (up to 16 f.u.).

A. Potential Generation

A three body EDDP was generated using the iter-
ative scheme described in Section IV. Random unit
cells were constructed with volumes ranging from 5 to
15 Å/f.u., containing just two f.u. The minimum sep-
arations between the species were randomly chosen to
be between 1 and 2 Å, and no symmetry was im-
posed. The total energy of each configuration is com-
puted using CASTEP,18 the PBE exchange correla-
tion functional,82 QC5 on-the-fly pseudopotential (defi-
nition strings 3|1.8|4|5|5|30:31:32(qc=5) for Si, and
1|0.9|7|7|9|10(qc=5) for H), with a 340 eV plane wave
cutoff and k-point grid spacing of 0.05×2π Å−1. The
settings for the iterative scheme, and parameters for the
potential, were identical to those used for boron, with
one key difference. The random searches using each gen-
eration of the potential were performed by minimising
the enthalpy at an elevated pressure of 500GPa. This
ensures that the potential will be suitable for high pres-
sure searches, around this pressure. Non-linear fits (256
in total) are performed with a neural network with 114
inputs, 5 hidden nodes in a single layer, and a single out-
put for the predicted energy and 581 weights in total.
The subsequent NNLS fit to the validation data set se-
lects just 23 potentials with a non-zero weight. The final
EDDP is based on 6500 structures and energies, split into
training, validation sets in the ratio 5200:650:650, and
has training, validation and testing RMSE of 9.98, 13.40,
and 44.22 meV/atom, respectively. The MAE error for
the testing set is considerably lower, at 10.77 meV/atom,

which is an indication the higher RMSE is the result of
a few structures with significant error. Indeed, the max-
imum error for the testing set is 876.02 meV/atom. The
data set contains structures with energies up to 126.4
eV/atom above the minimum. The Spearman rank cor-
relation coefficient is 0.999 for all sets, suggesting an ex-
cellent ordering of the predicted energies.

B. Structure searches

Having generated the EDDP suitable for SiH4 at pres-
sures around 500GPa, structures searches may be carried
out. As a first test, an extensive search using the same
structure generation parameters as used for the iterative
construction of the EDDP was performed at 500GPa.
Any structure that encounters close contacts (by default,
defined at 0.5Å) during optimisation is rejected. Of the
structures that survive optimisation, the most stable is
the C/2c structure proposed in Ref. 3 as the very high
pressure form of SiH4. The 4 f.u. P21/c structure re-
ported in Ref. 98 is not accessible to a search restricted
to 2 f.u.

The promise of using fast data derived potentials for
structure searching is that much larger systems could be
investigated if those potentials are sufficiently transfer-
able. The challenge of larger systems is that both each in-
dividual structural optimisation is slower, with each step
being more computationally expensive, and the struc-
tural optimisation requiring more of those steps, and that
many more structures must be sampled to ensure the low
energy regions of the energy landscape are adequately
explored. Even if the same structure generation parame-
ters are used for the potential generation and the search,
exploring larger systems is necessarily an extrapolation.
As such, an iteratively generated potential cannot be ex-
pected to result in the precise structures, and energy or-
dering, that a DFT search would. However, as we saw in
the case of boron above, the EDDP does appear to of-
fer extrapolation, and generates appropriate low energy
structures. A pragmatic approach is to simply perform
single point energy DFT computations at the end of each
local optimisation using the EDDP. If the EDDP relaxed
structures are reasonably close to what they would be
within DFT the ranking obtained will be reliable, with
any poor structures being pushed to the bottom of the
ranking. This is the approach taken here.

We next perform searches at 500GPa with 3 and 4
f.u. of SiH4, again using the same structure generation
parameters, but this time constructing symmetric initial
structures with 2 to 4 symmetry operations in the prim-
itive cell. The P21/c structure of Ref. 98 is rapidly re-
covered, along with the high pressure C2/c phase of Ref.
3.
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FIG. 10. A visualisation of the Pa3̄ structure , created using
the VESTA package.99 This complex structure consists of 12
f.u. of SiH4, or 60 atoms, in the primitive unit cell, and does
not appear to be a named structure type.

Space group Lattice parameters Atomic coordinates

(Å, ◦) (fractional)

Pa3̄ a=b=c=4.998 Si1 0.1168 0.1168 0.1168

α=β=γ=90.00 Si2 0.0000 0.0000 0.5000

H1 0.1664 0.2236 0.3800

H2 0.2246 0.4858 0.3756

TABLE II. Parameters for the Pa3̄ structure of SiH4 at
500GPa.

C. Identification of complex high pressure phase

Having demonstrated that the potential can recover
the theoretically known high pressure structures of SiH4,
its computational efficiency can be exploited to explore
much larger unit cells. A search at 500GPa is performed
with up to 16 f.u. and using between 4 and 12 symmetry
operators. A low enthalpy cubic structure with 12 f.u. is
identified, see Figure 10 and Table II.

This structure adopts the high symmetry Pa3̄ space
group, and is characterised by two distinct silicon sites,
one octahedrally coordinated by nearest neighbour sil-
icon atoms, and the other tetrahedrally. To assess its
dynamic stability, a hundred 3 × 3 × 3 supercells of the
cubic primitive cell, containing 1620 atoms, were con-
structed and “shaken” with a 0.1 amplitude. On relax-
ation with the EDDP all the distorted structure returned
to the 60 atom Pa3̄ space group unit cell. Computing the
enthalpy of this structure, along with those previously re-
ported, reveals that it has a wide range of stability at the
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FIG. 11. Relative PBE DFT enthalpy plotted for a selection
of SiH4 polymorphs. The 60 atom Pa3̄ structure is increas-
ingly more stable than the P21/c structure above 285GPa,
leaving only a small window of stability for the C2/c struc-
ture from 276 to 285 GPa.

static lattice level, from 285 GPa upwards using the PBE
density functional. Using the rSCAN100 functional it is
stable above 305 GPa. It is significantly more dense than
the competing phases, and so its relative stability grows
with pressure, see Figure 11. The enthalpy curves were
computed using CASTEP, a more accurate potential for
hydrogen (1|0.6|13|15|17|10(qc=8)) and an increased
plane wave cutoff of 700 eV. The electronic density of
states (eDOS) for the Pa3̄ and C2/c structures are re-
ported in Figure 12. They were computed101 with the
same settings as for the enthalpy curves, but with a finer
k-point grid spacing of 0.01×2π Å−1. The eDOS at the
Fermi level for the Pa3̄ structure is considerably lower
than for the C2/c structure at 300 GPa, which can be
attributed to its greater stability. Furthermore, without
performing extremely costly density functional perturba-
tion theory computations of Tc it is expected that this
reduced eDOS would lower the prospects for high tem-
perature superconductivity in silane at these pressures.
Given that silane has been extensively studied theoreti-
cally, the emergence of such an important, and large unit
cell, structure should inform our confidence in the sta-
tus of our knowledge of the dense hydrides. It is very
likely that more extensive searches for the dense binary
hydrides, in large unit cells, will reveal a significant revi-
sion of our knowledge of these candidate high tempera-
ture superconductors.11
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FIG. 12. The PBE DFT electronic density of states for the
Pa3̄ and C2/c structures computed at 300GPa. The density
of states around the Fermi level (vertical dashed line) is con-
siderably lower for the Pa3̄ structure.

XI. DISCUSSION

First-principles methods owe their flexibility and ap-
plicability to databases of high-quality pseudopotentials,
which allow arbitrary chemical systems to be explored.
The CASTEP code18 is unique in its on-the-fly pseu-
dopotential methodology, where the pseudopotential is
generated as needed, and consistently with the density
functional chosen. This has opened the door to structure
predictions at extreme densities, with small core poten-
tials being generated as needed, and independently of the
provided databases.

Here, the same flexibility is introduced to data derived
potentials, which are generated specifically for the struc-
ture building parameters, and pressures, that will be used
for each search. These potentials are ephemeral, in the
sense that the next search performed will likely require a
new, bespoke, potential. The ease and robustness of the
scheme described makes this possible.

Random structure search is a challenging application
of data derived potentials. It is very difficult to construct
potentials that are stable across the entire space of pos-
sible inputs, or configurations. The initial random struc-
tures are extremely diverse, exploring many different re-
gions of configuration space. Constructing the EDDPs
from these diverse structures, generated from a given set
of structure building parameters, is essential to ensure
robustness.

For any finite training dataset, some failures are to
be expected in an extended sampling of configuration
space. A typical pathological behaviour is the encounter
of very close contacts during structural optimisation or

evolution. This could cause severe problems in a lengthy
molecular dynamics simulations. However, during a ran-
dom structure search such configurations may simply be
rejected. A very similar situation is encountered in first-
principles structure searches – for heavier elements, over-
lapping pseudopotentials cores can lead to problems in
the calculation of the electronic structure, and common
practice is to reject those configurations.

The pioneering work of Behler, and Csanyi, who in-
troduced neural network, and Gaussian process based
atomic potentials respectively, which can be fit to ex-
tensive databases of first-principles data, has led to an
explosion of alternative schemes based on their key in-
sights. It is worth reflecting on the justification of in-
troducing yet another. In some sense, it is inevitable –
there are countless valid approaches to the fitting of high
dimensional functions, and while any scheme will share
commonalities with the others in use, the details may
differ, depending on the intended application. While the
electronic structure community has coalesced around a
few, very complex, computer codes, the relative simplic-
ity of data derived potentials is likely to favour persistent
diversity. In this case a scheme has been designed for
random structure search.

The functional form for the EDDP has its origin in
an earlier attempt to develop a few-parameter model 3-
body potential that could describe the rich structure of
the elements, going beyond simple close packing. Start-
ing with the Lennard-Jones potential, this original model
potential was written as follows:

Ei =
∑
i6=j

(
A

r12ij
− B

r6ij

)
+
∑
j 6=i

∑
k>j 6=i

C

rnijr
n
ikr

m
jk

. (16)

By manually adjusting the parameters, A, B, C, n,
and m, and performing random searches for each choice,
it was found to be possible to navigate the space of pos-
sible elemental structures, from close packed, to the di-
amond lattice, and even the icosahedral α-boron struc-
ture. Exploring the properties of the simplified potential
described in Eqn. 16 would be a fruitful topic of further
investigation.

XII. CONCLUSION

Fitting of potentials to data generated across the whole
accessible energy landscape ensures that the benign prop-
erties of the first-principles energy landscape are re-
tained, and random search can be successfully performed.
The computational simplicity of the form of the potential
ensures that these searches are much accelerated com-
pared to a purely first-principles approach. Close atten-
tion has been paid to develop a bespoke scheme that com-
plements the computational workflow of structure search.

It has been shown that the EDDP potentials can be
fit to first-principles data derived from much smaller unit
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cells than are typically chosen for training. These poten-
tials can be used to discover novel structural features in
much larger unit cells. For example, a potential trained
using unit cells containing just eight boron atoms was
used to generate approximations to the 12-atom icosa-
hedral alpha-boron structure, and the 28 atom gamma-
boron. This extrapolation to larger unit cell sizes is es-
sential if these potentials are to be successfully used to
accelerate structure prediction.

EDDPs been used to revisit the high-pressure phase
diagram of silane, uncovering a large (60-atom) unit cell
structure that is considerably more stable at high pres-
sures than those currently known. This structure had
been overlooked, despite extensive investigation using
both random search and evolutionary approaches. This

is strong evidence that EDDPs are a powerful tool for
the thorough exploration of structure space. At the same
time, it suggests that many of the systems that have been
explored using first-principles structure prediction should
be revisited.
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ner, Machine Learning: Science and Technology 1, 015004
(2020).

60 C. M. Bishop, Neural networks for pattern recognition
(Oxford University Press, 1995).

61 Y. Bengio, Learning deep architectures for AI (Now Pub-
lishers Inc, 2009).

62 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, in Advances in Neural Information Pro-
cessing Systems 32 (Curran Associates, Inc., 2019) pp.
8024–8035.

63 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
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