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Metacognitive impairments 
extend perceptual decision making 
weaknesses in compulsivity
Tobias U. Hauser   1,2, Micah Allen   1,3, Geraint Rees   1,3, Raymond J. Dolan1,2 & NSPN 
Consortium*

Awareness of one’s own abilities is of paramount importance in adaptive decision making. 
Psychotherapeutic theories assume such metacognitive insight is impaired in compulsivity, though 
this is supported by scant empirical evidence. In this study, we investigate metacognitive abilities 
in compulsive participants using computational models, where these enable a segregation between 
metacognitive and perceptual decision making impairments. We examined twenty low-compulsive and 
twenty high-compulsive participants, recruited from a large population-based sample, and matched for 
other psychiatric and cognitive dimensions. Hierarchical computational modelling of the participants’ 
metacognitive abilities on a visual global motion detection paradigm revealed that high-compulsive 
participants had a reduced metacognitive ability. This impairment was accompanied by a perceptual 
decision making deficit whereby motion-related evidence was accumulated more slowly in high 
compulsive participants. Our study shows that the compulsivity spectrum is associated with a reduced 
ability to monitor one’s own performance, over and above any perceptual decision making difficulties.

Knowing what you did and how well you did it is crucial for achieving one’s goals and making adequate deci-
sions1. Humans are burdened with imperfect perception and recollection, and this extends to the metacognitive 
ability to recognize such deficits. Despite this sub-optimality, we retain an ability to quantify the degree to which 
we can rely on our behaviour as represented by the feeling of confidence.

Confidence helps us determine how much credit we should assign to an information source, enabling us to 
calibrate our future behaviour. Metacognitive ability is thus important for good performance, and it is known that 
metacognitive training improves decision making2. However, there are considerable variations in metacognitive 
performance, i.e. how well humans are able to consciously judge their own performance3–5. Poor metacognitive 
skills, or insight, can have detrimental real-world consequences. For example, one might assign too much credit 
to a poorly informed decision or exhibit too little trust in a good decision. In extremis, impaired metacognition 
might lead to systematically bad decisions, for example continuously enacting the same behaviour regardless of 
outcome, as observed in obsessive checking6.

Obsessive-compulsive disorder (OCD) is a condition linked to metacognitive impairment. This disorder 
is characterized by intrusive thoughts and images (obsessions), and these are coupled to repetitive behaviours 
(compulsions) which serve to alleviate obsession-induced distress7. Initial theories of metacognitive impairments 
in OCD propose patients overestimate the credibility of their intrusions, believing their likelihood of becom-
ing real8, 9. Therapy for OCD often targets these (meta-) cognitive biases6. More recent accounts propose that 
metacognitive impairments are not restricted to intrusions, but also apply to memory recollection, although not 
unequivocally10–15. Thus, impairments in meta-memory are believed to drive repetitive checking, because low 
confidence in one’s own memory is likely to cause a repetition of a previously carried out action16, 17. However, 
findings of lowered confidence in patients with OCD in cognitive domains other than memory18–20 suggest OCD 
patients might suffer from a more general impairment in metacognition.

Traditional studies of metacognition using questionnaires11, 14, 21–25 or subjective confidence ratings10, 12, 13, 15  
are subject to influences that may mimic a metacognitive impairment, such as systematic response biases in 
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questionnaires and other confidence scales26. Here, we operationalize metacognition as the objective sensitiv-
ity of confidence ratings to discrimination performance, as defined by signal detection theory27. Metacognition 
thus reflects the degree of insight into one’s behaviour, i.e. how well one knows their own performance. This 
model-based measure is robust against general biases in rating behaviours (e.g. generally lower or higher ratings) 
and is independent of variability in perceptual decision making that can directly influence confidence ratings. 
The latter is of particular importance as OCD patients are reported to suffer from perceptual decision making 
difficulties28, 29. By combining a computational model of metacognition together with experimentally controlled 
task difficulty, here we circumvent these limitations to single out contributing factors that selectively influence 
perceptual and metacognitive abilities26.

In this study, we probed metacognitive abilities along a recently proposed compulsivity spectrum30, 31 using 
a perceptual decision making task in two groups of participants with either high or low obsessive- compulsive 
scores. These participants were carefully selected from a large cohort so as to match for potential confounding 
factors, such as depressive or anxiety symptoms13. The psychophysical detection task was continuously and auto-
matically adapted for each participant to maintain constant performance levels, allowing us to study separate per-
ceptual decision making and metacognitive differences. Using a hierarchical metacognition model, we analysed 
participants’ metacognitive efficiency, allowing us to map the objective sensitivity of a participant’s subjective 
beliefs (i.e., confidence) to actual underlying performance. Using this computational approach, we found that 
compulsivity is related to impairments in metacognitive efficiency, and that this was complemented by an inde-
pendent perceptual decision making impairment.

Methods
Participants.  We recruited forty participants from a large population-based sample of 2409 young people 
in London and Cambridge (U-CHANGE study; www.nspn.org.uk)32, 33. We used a directed sampling approach, 
selecting twenty participants with high scores on an obsessive-compulsive measure (‘high compulsives’) and 
twenty participants with low obsessive-compulsive scores (‘low compulsives’). For this categorisation we used 
the PI-WSUR questionnaire34 (total score) as an index of compulsivity. The groups were selected so as to match 
in terms of age, gender, depression (using MFQ questionnaire35; relative symptom severity relative to population: 
low compulsivity: 31.5 ± 13.6 percentile, high compulsivity: 30.1 ± 16.2), and anxiety levels (using RCMAS ques-
tionnaire36; relative symptom severity: low compulsivity: 31.6 ± 12.1 percentiles, high compulsivity: 28.7 ± 14.5). 
The groups also did not differ in IQ (using vocabulary and matrix subtests of WASI battery)37 and impulsivity 
(BIS questionnaire)38. Participants that reported any psychiatric or neurological disorders were excluded a priori. 
All participant had normal or corrected-to-normal vision.

The selected groups differed strongly in their compulsivity scores, but were otherwise well matched across 
all other psychiatric dimensions (Table 1). Two high compulsive participants were excluded from data analysis 
due to difficulties with the task (staircase failed to converge). The study was approved by the UCL research eth-
ics committee (No. 6218/001) in accordance with the Declaration of Helsinki and all participants gave written 
informed consent.

Task.  We used a metacognition task based on a global motion detection paradigm, similar to that reported 
previously3, 39, 40. The task (Fig. 1A) consisted of 140 trials subdivided into 10 blocks, with short breaks between 
blocks. On each trial, participants judged whether the global motion of the randomly moving dots was directed 
left- or rightwards relative to vertex. Subsequently, participants had to indicate their confidence using a visual 
analogue scale, where 0 indicated a guess and 100 total certainty. To prevent motor preparation, the starting point 
of the confidence slider was randomly adjusted to +/−12% of the scale midpoint. Before the main task, partici-
pants completed a short training and were also instructed to use the entire confidence scale for their confidence 
ratings. The task was implemented using Psychtoolbox 3 (www.psychtoolbox.org) in MATLAB (MathWorks 
Inc.).

The motion signal consisted 1100 black dots presented for 250 ms. The motion direction of the dots was deter-
mined using a mean motion angle (‘orientation’, in degrees from vertical movement) plus Gaussian noise with a 
standard deviation of 15 degrees. The mean motion orientation of the stimulus was adjusted on each trial so that 
participants performed consistently around 71% in an adaptive 2-up-1-down staircase procedure41. This ensured 
that detection performance (d’) of all participants was roughly equal enabling a higher sensitivity for assessing 

Low compulsives High compulsives

age 21.40 ± 2.52 20.75 ± 2.34 t (38) = 0.85, p = 0.403

gender (f/m) 13/7 14/6 χ (1) = 0.114, p = 0.736

IQ (WASI total) 115.60 ± 10.91 115.40 ± 9.80 t (38) = 0.06, p = 0.952

PI-WSUR* 5.25 ± 4.00 50.18 ± 18.28 t(38) = 10.74, p < 0.001

MFQ* 19.12 ± 8.94 19.36 ± 11.67 t (38) = 0.07, p = 0.942

RCMAS* 20.70 ± 10.09 18.70 ± 10.65 t (38) = −0.61, p = 0.545

BIS 58.30 ± 6.87 59.04 ± 9.74 t (38) = −0.28, p = 0.782

Table 1.  Participants with high and low compulsivity scores. Two groups of participants were recruited from 
a population-based database, based on their compulsivity scores (PI-WSUR). The groups were matched for 
other psychiatric dimensions, especially depression (MFQ) and anxiety (RCMAS). Groups did not differ in age, 
gender, IQ, or impulsivity (BIS). (mean ± SD). *Data used for recruiting.

http://www.nspn.org.uk
http://www.psychtoolbox.org
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Figure 1.  Metacognition task performance. High and low compulsive participants performed a metacognition 
task. (A) Participants saw a cloud of dots moving with a defined mean motion orientation plus added random 
movement noise. After participants’ categorical judgement of the main direction of stimuli they then had to rate 
their confidence using a visual slider. (B) A staircase procedure ensured that performance was stable (the first 
three block were omitted (dotted line), because stability was not yet reached). This staircase ensured that both 
groups performed at the same level (C) and did not differ in their mean reaction times (D). Mean confidence 
ratings were similar between groups (F), but the sensory signal was significantly stronger in high compulsives 
(E), indicating a poorer perceptual decision making performance in high compulsive participants. Bar plots: 
mean ± 1s.e.m; *p < 0.05; n.s. p > 0.05.
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metacognitive performance26, 42. A full description of the motion stimuli and the staircase procedure can be found 
in Allen et al.3.

Behavioural analysis.  To assess performance of our groups we compared confidence ratings, accuracy, 
signal strength (stimulus motion orientation) and reaction times using independent-sample t-tests. To allow 
staircase stabilization, we discarded the first 30% of trials (three blocks total). Additionally, any missed trials were 
excluded from all analyses. Repeated-measures ANOVA confirmed that performance was stable (Fig. 1B) for the 
remaining seven blocks (F (6, 222) = 1.15, p = 0.337).

Metacognition model.  Metacognition reflects an ability to consciously access one’s own performance, 
which in this context refers to explicitly distinguishing between a correct and an incorrect response. Traditional 
approaches for analysing metacognition (e.g., mean confidence rating or correlating confidence and accuracy) are 
subject to bias by perceptual performance such that it is impossible to tease apart metacognitive from perceptual 
difficulties or response biases26. Recently developed model-based approaches that control for these confounds 
circumvent these difficulties and provide an unbiased estimate of metacognition26.

Here, we use the metacognitive efficiency (M-ratio), an established marker of metacognition that is based on 
signal detection theory42. The M-ratio is calculated as the ratio between the second order, or type-II metacognitive 
sensitivity meta-d’ and the perceptual sensitivity d’42. M-ratio controls accurately for potential perceptual differ-
ences as well as response biases, and is thus superior to model-free approaches. This is particularly critical in com-
pulsivity as OCD patients have previously been found to have worse perceptual decision making performance28.

To estimate the M-ratio, we used a recently described hierarchical modelling approach that is implemented in 
a freely available toolbox (HMeta-d toolbox43, https://github.com/smfleming/HMM). This toolbox is a Bayesian 
extension of the widely used metacognitive efficiency model39, 44–48 by Maniscalco & Lau42, and allows estimation 
and comparison of group-level parameters. This is particularly critical for studies with vulnerable groups, such 
as ours, because hierarchical models have regularising effects on the parameter estimates and allow adequate 
parameter estimation within relatively few trials, as in our study. Moreover, the Bayesian nature of this model 
naturally provides information about parameter uncertainty, which can then be used for group comparisons43. 
The model is built so that it estimates a group-level metacognitive efficiency (M-ratio = meta-d'/d'), which in turn 
governs individual participants’ behaviour. The optimisation of the (log-transformed) metacognitive efficiency, 
rather than the meta-d’, was used in our study because the latter is influenced by d’ which could bias metacogni-
tion results if d’ were different43. Because the model renders both d’ and meta-d’ in standard signal detection units, 
their ratio describes how much of the available signal (i.e., their perceptual sensitivity) is captured by confidence 
ratings, capturing this potential bias42. Simulation studies have demonstrated that this model provides more ade-
quate parameter estimates than previous models, especially in situations involving relatively few trials, such as 
ours43.

The parameters were estimated using Markov-Chain Monte-Carlo methods (MCMC, here: 3 chains of 10’000 
samples each, burn-in of 1000 samples) as implemented in JAGS (http://mcmc-jags.sourceforge.net). MCMC 
sampling methods are reliable methods for parameter estimation robust to local minima and parameter recovery 
studies show a reliable parameter estimation for a given model43. We used the wide standard priors for the model 
that have been found to be sensitive to detect group differences43. Model convergence was ensured by inspecting 
MCMC chains as well as checking that the R̂ convergence measures for all parameters were <1.1.

We followed the standard group comparison approach by estimating each group separately and then com-
pared the posterior group distributions in metacognitive efficiency43. To assess significance we computed the dif-
ference of the group posteriors and compared the overlap with 0 of the resulting distribution (similar to a classical 
or frequentist statistical test, it assesses the probability of the difference between the groups to be 0), as well as the 
95% high density intervals of the difference distribution (analogous to confidence intervals).

Perceptual decision making model.  Besides our comparison of a metacognitive ability between low and 
high compulsive participants, we were interested in whether we would replicate an independent, perceptual deci-
sion making deficit. Such an impairment was previously reported28, 29, and our finding of an increased stimulus 
strength in high compulsives (see results) pointed towards a similar impairment.

Drift-diffusion models (DDM) are widely used to investigate perceptual decision making, can successfully 
capture underlying neural decision processes49, and generalise beyond perceptual decision making50–52. In keep-
ing with the previous study on perceptual impairments in OCD28, 53, we used an hierarchical version of a drift 
diffusion model54. The hierarchical drift diffusion model (HDDM)55 estimates group model parameters using 
MCMC, similar to the metacognition model described above, and thus provides robust parameter estimates.

We compared drift diffusion models with different parameterisations in order to determine the best-fitting 
model, which was then used for group comparisons. As per standard settings in the HDDM toolbox, all models 
were specified with the following free parameters: a drift rate v determines how rapidly evidence accumulates 
over time, the decision threshold a indicates the information threshold needed to commit to a decision, and the 
non-decision time t captures the decision-independent processing time. Critically, because we controlled for 
performance by adjusting signal strength (stimulus motion orientation) in our task, we used a regression analysis 
that allows v to be modulated by signal strength at every trial. This approach was used because is well known that 
stimulus strength directly influences an accumulation of evidence49.

To assess group differences, we entered both groups into the same hierarchical model, but used group 
membership to predict differences in the model parameters (implemented in the regression). This deviates 
from the metacognitive analysis, in which we estimated both groups separately. We applied this approach, 
because the HDDM55 offers the possibility to explicitly model a group factor, a feature not yet implemented 

https://github.com/smfleming/HMM
http://mcmc-jags.sourceforge.net
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in the metacognition toolbox43. Such an approach can help to further increase the robustness of the parameter 
estimates55.

We assessed different models where (i) group influenced drift rate directly, (ii) group and orientation effect on 
drift rate interacted (i.e. group predicts how strong orientation affects drift rate), (iii) group has a separate effect 
on decision threshold a; and (iv) group interacted with orientation effect on drift rate as well as a separate group 
effect on threshold. Models were compared using deviance information criterion (DIC)55, and posterior group 
parameters of the best-fitting model were further assessed.

We found that the best-fitting model was characterised by a regression model that incorporated both, influ-
ences of stimulus strength as well as group and their interaction:

∼ + + ⁎v orientation group orientation group,

where orientation depicts stimulus strength, group describes whether a subject belongs to the high or low group, 
and * depicts their interaction. The group level parameters of this winning model were vintercept = 0.03 ± 0.26 
(group mean ± group standard deviation), vorientation = 0.27, vgroup = 0.22, vorientation*group = −0.13, a = 1.37 ± 0.14, 
t = 0.19 ± 0.11, and the DICs of all models are depicted in Table S1.

Results
Behavioural performance.  To attain a stable proportion of correct and incorrect responses for all par-
ticipants we adapted the difficulty of the dot motion paradigm (Fig. 1A) by adjusting the motion orientation of 
the stimuli using a staircase procedure. The groups thus did not differ in response accuracy (Figs 1C and 2D; 
low compulsives: 73.54 ± 2.54; high compulsives: 73.31 ± 2.64; t(36) = 0.28, p = 0.780). Additionally, they did not 
differ in response latencies (Fig. 1D; low compulsives: 0.61 s ± 0.12; high compulsives: 0.56 s ± 0.11; t(36) = 1.55, 
p = 0.131). However, the stimulus motion orientation (median signal across trials), was significantly greater in 
high compared to low compulsive participants (Fig. 1E; low compulsives: 3.05 degrees ± 0.83; high compulsives: 
4.25 ± 2.05; t(36) = −2.42, p = 0.021). This means that high compulsive participants required a stronger motion 
orientation signal to perform at the same error rate as the low compulsives, indicating a weaker perceptual detec-
tion performance.

Comparing mean confidence rating we found no significant difference (Fig. 1F; low compulsives: 
71.17 ± 22.51; high compulsives: 68.56 ± 19.64; t(36) = 0.38, p = 0.706). This means that high compulsive par-
ticipants were neither more, or less, biased in reporting subjective confidence. Mean confidence, however, gives 
little insight into how well participants can consciously monitor their performance. To examine metacognitive 
differences between the groups, we thus used a hierarchical metacognition model.

Metacognitive impairments in high compulsive participants.  We used a hierarchical metacognition 
model43 to assess group metacognitive efficiency (M-ratio). This signal detection theoretic measure captures the 
degree to which participants exploit a perceptual signal for their confidence judgement by controlling for poten-
tial confounds, such as performance or rating biases42. Metacognitive efficiency equals 1 if an agent has full access 
to their perceptual performance, whereas values below 1 mean that confidence reports are suboptimal and cannot 
access full perceptual information. The hierarchical nature of this model allows robust estimates of group level 
metacognitive efficiency and also allows comparison of these efficiencies between groups43.

Our computational modelling revealed that low compulsive participants have a mean metacognitive efficiency 
(M-ratio) of 0.814 (Fig. 2A, left panel), whereas high compulsive participants have a ratio of 0.512 (Fig. 2A, right 
panel). This means that low compulsive participants exploit about 80% of the perceptual signal for their metacog-
nitive judgement. High compulsive participants, however, only use approximately 50% of the perceptual signal 
for their metacognitive judgement. Interestingly, depicting the individual estimates reveals that all but three par-
ticipants from the high compulsive group performed worse than low compulsives (Fig. 2D).

A comparison of group posteriors revealed that the metacognitive efficiency was significantly lower in high 
compulsive participants (Fig. 2B; p(difference ≤0) = 0.017; equivalent to a one-sided significance test; 95% con-
fidence intervals = 0.031–1.000). Importantly, this was not due to an impaired perceptual performance, as there 
was no significant group difference in their d’ (Fig. 2C; t (36) = 1.46, p = 0.153). A qualitatively similar result 
was obtained when approximating metacognitive sensitivity using a behavioural measure, which however is not 
robust to the aforementioned biases (Figure S1). These findings suggest that high compulsive participants have 
worse conscious access to their performance over and above any perceptual decision making impairments or 
response biases.

Lower drift rate in high compulsives impairs perceptual decision making.  Our finding of an 
increased motion signal in high compulsive participants suggests that these participants also have a perceptual 
decision making difficulty. To understand the processes underlying this impairment and to extend previous stud-
ies that found similar difficulties in OCD patients28, 29, we used a hierarchical drift diffusion model55. Model 
comparison (Table S1) revealed that the drift rate was modulated by task difficulty, as reflected in stimulus motion 
orientation. A model with a group factor (low, high compulsives) that modulates drift rate and its interaction with 
stimulus orientation, but not decision threshold, performed best.

To understand more precisely how the groups differ in their perceptual decision making, we evaluated the 
posterior model parameters of the best-fitting model. A highly significant influence of orientation on drift rate 
(Fig. 3A; p(vorientation ≤ 0) <0.001) confirmed that stimulus difficulty directly influences evidence accumula-
tion. The group factor had a highly significant impact on the relationship of stimulus orientation to drift rate 
(Fig. 3B; p(vorientation*group ≥ 0) <0.001), meaning that high compulsive participants benefited less from the stimulus 
strength. The absence of a main effect of group on the drift rate suggests that there are no additional group-factors 
impacting the drift rate (Fig. 3B; p(vgroup ≤ 0) = 0.091).

http://S1
http://S1
http://S1
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Figure 2.  Metacognitive impairments in high compulsives. (A) Group posterior of metacognitive efficiency 
(M-ratio) for high and low compulsive participants revealed that high compulsive participants are significantly 
worse in their metacognitive abilities (B). This is not due to perceptual differences, because we controlled 
for performance, also indicated by the absence of a difference in the perceptual performance (d’, C). (D) An 
illustration of the individual metacognitive efficiencies (diamonds) reveals that all but three participants 
from the high compulsive group perform worse than the low compulsives. There were no systematic biases 
in the accuracy (triangles) across the groups which highlights that metacognitive biases are not driven by 
perceptual difficulty. However, it must be noted that the metacognitive efficiencies depicted here are derived 
from a hierarchical model, and can thus not easily be interpreted or compared individually (i.e., they are not 
statistically independent). Bar plots: mean ± s.e.m.; n.s. p > 0.10.
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Discussion
A longstanding tradition associates compulsivity with impairments in metacognition, but until now such 
metacognitive deficits have not been formally examined using a computational approach. In this study, we pro-
vide the first evidence that compulsivity is linked to an impairment in metacognitive abilities, independent of an 
additional impairment in perceptual decision making. This suggests that people with high compulsive traits are 
worse at introspectively monitoring their perceptual performance, and suffer from a degraded impact of sensory 
evidence on confidence.

Metacognition has traditionally been characterised as “thinking about thinking” or insight, a form of 
conscious monitoring or introspection about one’s decisions and experiences1. Humans differ considera-
bly in their metacognitive abilities3, 4. Metacognitive investigations in OCD have mainly focused on biases 
in stimulus-outcome beliefs, for example that which an intrusive thought is likely to instantiate9. Later 
accounts focused on memory-related confidence judgements, although with mixed results and heterogene-
ous approaches10–15, suggesting that OCD patients are not impaired in their memory, but in their confidence 
about their memory. Here, we expand on this research by showing that compulsive participants’ impairments 
are not restricted to biased beliefs or lowered confidence. Instead, we show that for high compulsive participants 
metacognitive judgements are less efficient, i.e. they are generally worse at accessing their own performance, a 
finding that holds when controlling for general response biases or perceptual decision making difficulty. This 
is of importance because it shows that compulsivity is related to impairments in metacognition, which sheds 
new light on the previous findings and theories. An impaired conscious access to one’s own performance can 
directly deteriorate the attitude towards intrusive thoughts and memories, as a poor monitoring system might 
induce a general distrust into one’s perceptions and recollections, and thus fosters distrust in memory recollection 
and an engagement in compulsive safety behaviours. Moreover, the recent finding that noradrenaline modulates 
metacognition suggests novel interventions to improve metacognitive abilities in compulsive patients40.

As reported in OCD patients28, 29, we found that high compulsive participants also exhibit perceptual decision 
making impairments in the visual domain. This was expressed in our task as an increased stimulus motion orien-
tation (i.e. signal strength), and our computational modelling related this impairment to a lower accumulation of 
sensory evidence, in accord with this previous study28. It is interesting to speculate how this perceptual decision 
making difficulty might be related to the metacognitive impairments observed here. In the simplest case, these 
impairments could be completely independent of one another, so that compulsivity is contributed to by a lower 
metacognitive efficiency as well as a lower perceptual decision making sensitivity. Alternatively, perceptual deci-
sion making impairments could indirectly affect metacognition in a bottom-up manner by also influencing a 
post-decision evidence accumulation process39, 56–58. However, it is unclear how the increased signal strength for 
high compulsives would influence a post-decision accumulation. Lastly, a perceptual decision making difficulty 
could be a top-down consequence of impaired metacognition, where impaired metacognition alters the amount 
of evidence a participant needs to make a decision. This in turn could impact their behaviour in perceptual deci-
sion making tasks, such that they only decide once they have consciously perceived enough information, leading 
to an increased need for greater signal strength.

We focused on ‘healthy’ participants, selected from a large population-based sample, who scored high or low 
on a compulsivity scale. This had the advantage of controlling for psychiatric dimensions that are often comor-
bid with compulsivity, such as depression and anxiety. This is important given that metacognitive impairments 
are suggested to be symptomatic for many psychiatric disorders59. Thus, our experimental strategy allows us 
to be confident that observed differences are solely driven by compulsivity, but not by other psychiatric traits. 
Additionally, our replication of a perceptual decision making impairment similar to the one found in patients 
with OCD28 speaks to a conceptualisation of compulsivity in terms of as a spectrum, rather than as a categorical 
entity30, 31. However, future studies of patients with OCD will be necessary to ascertain whether similar processes 
are impaired in participants with clinically relevant compulsivity.

Figure 3.  Stimulus processing is altered in high compulsive participants. (A) Signal strength (stimulus motion 
orientation) significantly increases drift rate across both groups (green). This effect entirely accounts for drift 
rate, as the orientation-independent drift rate (‘intercept’, blue) is not significantly different from 0. (B) The 
groups differ in in how much the stimulus motion orientation affects the drift rate: high compulsive participants 
benefit significantly less from an increasing stimulus orientation (orange). There is no additional effect of group 
on the drift rate (pink).
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In summary, we show that a compulsivity spectrum identified in the general population is linked to impair-
ments in metacognitive efficiency. This impairment is expressed over and above an effect due to perceptual deci-
sion making difficulty. Our findings provide the first computational evidence that metacognition is impaired 
in compulsivity and thus clarify the relationship between compulsivity, perceptual performance and conscious 
insight.

Data availability.  The datasets analysed during the current study are not publicly available because it is not 
foreseen in ethics permission, but are available from the corresponding author on reasonable request.
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