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Summary 

A reaction-diffusion type modelling framework is presented to analyse both electro-permeation (EP) and 

thermal desorption (TDS) measurements of hydrogen in metallic alloys. It is assumed that the kinetics of 

hydrogen motion is governed by diffusion through the lattice, along with trapping/detrapping at specific sites 

such as dislocations, grain boundaries etc. It is shown that the trapping and detrapping rates are typically much 

faster than the diffusion rate, and consequently a simplification of the governing equations suffices such that 

local equilibrium exists between lattice and trapped hydrogen. Using this local equilibrium assumption we then 

present an asymptotic analysis of the governing kinetic equation for the EP test. This asymptotic analysis reveals 

that four regimes of behaviour exist, ranging from negligible trapping to the complete filling of deep traps. The 

analysis suggests that EP tests should be so-arranged that three regimes of behaviour are spanned, in order to 

extract the relevant material properties associated with hydrogen transport. The numerical solutions presented 

in this study support the asymptotic analysis. The hydrogen kinetics framework is also deployed to analyse 

both EP and TDS tests on the same martensitic steel. The EP measurements all lie in regime I and are thus 

insufficient to uniquely determine both the trap density and binding energy. Reasonable agreement is obtained 

between measurements and numerical predictions of TDS tests using parameters estimated from the EP tests. 

Further improvements in measurements are required to confirm the fidelity of this modelling approach. 

 

1. Introduction 

The hydrogen kinetics in metallic alloys is typically measured via electro-permeation (EP) tests and thermal 

desorption spectrometry (TDS) tests. McNabb and Foster [1] presented a complete description of the kinetics 

that involves both diffusion of hydrogen through the lattice and the trapping and detrapping of the atomic 

hydrogen at trapping sites: these trapping sites include dislocations, grain boundaries and carbide particles. The 
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EP and TDS tests are designed to estimate the densities of the trapping sites and the hydrogen binding energies 

for each type of trap.  

There is a large literature on the analysis of hydrogen kinetics in metallic alloys. Most of these analyses are 

special cases of the McNabb and Foster [1] governing equations: readers are referred to Bhadeshia [2] and Song 

et al. [3] for overviews of the common modelling approaches. Broadly, three types of approaches are employed 

[4]:  

(i) The so-called “standard theory” of Kissinger [5] is used to analyse TDS experiments.  It is a special case of 

the McNabb and Foster formulation where both diffusion and trapping are infinitely fast and the rate governing 

process is detrapping of hydrogen from the trap sites. 

 (ii) Oriani [6] argued that the trap kinetics occurs on a much smaller time-scale than diffusion of hydrogen 

through the lattice. In this limit it is appropriate to assume that the lattice hydrogen is locally in equilibrium 

with the trapped hydrogen.  Then, the McNabb and Foster [1] governing equations reduce to a Fickian diffusion 

equation with an effective or apparent diffusion coefficient that depends on the lattice and trapped hydrogen 

concentrations; see for example Sofronis and McMeeking [7] and Thomas et al. [8].  

(iii) Turnbull and co-workers [9-11] have typically employed the “full” McNabb and Foster [1] equations where 

both diffusion through the lattice and trap kinetics are explicitly modelled. For example, Turnbull et al. [9, 10] 

successfully described the hydrogen permeation and thermal desorption response in steel by employing two 

classes of traps in the McNabb and Foster formulation. Turnbull [11] has extended this approach to take into 

account effects associated with the resistance that surfaces impose on hydrogen permeation. 

In principle, both TDS and EP tests should give identical values of the relevant material parameters, viz. trap 

density and binding energy. However, few studies have attempted such comparisons. For example, Ha et al. 

[12] performed both TDS and EP tests on an X-70 grade ferritic/pearlitic steels (1% by volume pearlite): they 

employed the standard Kissinger theory to extract binding energy values from the TDS measurements and used 

a first order approximation of Fickian diffusion analysis (in the absence of trapping) for the EP tests. Thus, from 

this study it is difficult to ascertain whether the material parameters as extracted from the two types of tests are 

consistent. 

In the present investigation we employ the McNabb and Foster [1] formulation to analyse both EP and TDS 

tests. The main aims are to (i) investigate the role of trap kinetics; (ii) present analytical solutions and associated 

maps illustrating the regimes of behaviour in EP tests and thereby elucidate the tests conditions that need to be 

achieved in order to extract the required material parameters uniquely from EP tests; and (iii) compare 

numerical predictions with existing measurements to illustrate inadequacies in both the existing data and 

analysis techniques.  
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2. Governing equations of hydrogen kinetics  

Consider the transient diffusion of hydrogen atoms through a crystal lattice. In the absence of traps, Fickian 

diffusion gives the spatial and temporal evolution of the lattice concentration LC . When diffusion occurs in the 

presence of traps, the modified one-dimensional diffusion equation reads as  

2

2
,L T L

L

C C C
D

t t x

  
 

  
      (1) 

where ( , )LC x t  and ( , )TC x t  are the lattice and trapped hydrogen concentrations, respectively, as a function of a 

single spatial coordinate x  and time t . Here 0 exp( )LD D Q RT    is the lattice diffusion coefficient in terms of 

the temperature T , the lattice activation energy Q , the diffusion pre-exponential factor 0D  and the universal 

gas constant R . For the sake of simplicity, in the present study we shall analyse hydrogen kinetics in the 

presence of a single trapping species; readers are referred to Raina et al. [13] for the relevant equations with 

multiple trapping species. 

Let L  be the fraction of lattice sites available to hydrogen that are occupied and T  be the corresponding 

fraction of sites within traps that are occupied by hydrogen. We can then write L L LC N   and T T TC N  , 

where LN  and TN  denote the number per unit volume of lattice atoms and trapping sites, respectively, while 

  and   are the number of available hydrogen sites per lattice atom and per trapping site, respectively. 

Equation (1) is then re-written as 

2

2

L T T L
L

L

N
D

t N t x

   



   
   

   
       (2) 

It now remains to specify an evolution law for the trapped hydrogen. Following McNabb and Foster [1], Raina 

et al. [13] express the kinetic law in the form  

( )
[ (1 ) (1 )] ,T

L T T L

x t
A B

t


   

 
   


               (3) 

where A  and B  are the probabilities of capturing and releasing a hydrogen atom per trap site, respectively, 

and   is the atomic vibrational frequency. These probabilities can be evaluated using Boltzmann statistics when 

given the energy landscape of the hydrogen within the lattice and traps. We postulate an energy landscape as 

sketched in Fig. 1 where tE  and dE  are the trapping and detrapping enthalpies, respectively. Then the 

probabilities A  and B  follow as  
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exp and expt dL L

T L T L

E EN N
A B

N N RT N N RT

 

   

       
        

       
      (4) 

where d tE E H   and H  is the trap binding enthalpy; see Fig. 1. Equations (2) and (3) constitute a coupled 

set of partial differential equations in L  and T  for the kinetics of hydrogen motion within metallic alloys.  

 

 

2.1  Local equilibrium between lattice and trapped hydrogen 

Oriani [6] assumed that local equilibrium always exists between the hydrogen atoms at the lattice sites and the 

trap sites. For a finite value of /T t  , in the limit of   , Eq. (3) reduces to  

1
,

1

T L

T L

K
 

 


 
          (5) 

where K  is an equilibrium constant given in terms of the trap binding energy H  as  

exp
H

K
RT

 
  

 
          (6) 

In most practical cases, it is reasonable to assume that the lattice hydrogen concentration is small with 1L  

in which case Eq. (5) gives the trapped hydrogen occupancy fraction as  

.
1

L
T

L

K

K








         (7) 

 

 

2.2  Non-dimensional kinetic equations 

In order to illustrate the regimes of behaviour it is instructive to non-dimensionalise the above governing 

equations. In the present study we shall assume that the temperature of the specimen remains spatially uniform 

but varies with time such that 0T tT   , where 0T  is the temperature at the start of the test at 0t   and   is a 

constant heating rate that is specified for the TDS tests but adopts the value 0   in the isothermal EP tests. 

Consider a one-dimensional specimen of length L  spanning a domain 0 x L  . Upon introducing the non-

dimensional coordinate /x x L  and a non-dimensional time 2
0 /t t D L , Eq. (2) is written in non-dimensional 

form as 

2

2
,L T L

LN D
t t x

    
 

  
     (8) 
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where ( ) / ( )T LN N N   is the non-dimensional density of traps and the non-dimensional lattice diffusion 

coefficient is 0/L LD D D . Likewise, the non-dimensional equation for trap kinetics is written in terms of the 

non-dimensional temperature 0/T T T  and vibrational frequency 2
0/L D   as 

exp (1 ) exp (1 ) ,
1

t tT
L T T L

H EE

t N T T

 
   

      
              

   (9) 

where 0/H H RT   and 0/t tE E RT .  

In the limit   , Eqs. (8) and (9) combine to form a single governing partial differential equation given by 

2

2 2 22
1

(1
,

) (1 )

L L L
L

L L

N K HN K
D

t K K xT

   

 

   
   

    

    (10) 

where we made use of Eq. (7) to relate T  and L  and have introduced the non-dimensional heating rate given 

by 2
0 0/L T D  .   

 

2.3  Analysis of the EP and TDS experiments 

Both the EP and TDS experiments can be analysed by solving the governing Eqs. (8) and (9) for finite kinetics of 

trapping and detrapping, and Eq. (10) for infinitely fast trap/detrap kinetics. The appropriate initial and 

boundary conditions for both types of experiments are now specified. 

Consider first the one-dimensional EP experiment with hydrogen introduced into an initially hydrogen-free 

specimen of length L  at time 0t   at the left-hand end of the specimen, 0x  . With the lattice hydrogen 

occupancy maintained at 0
L  at 0x   throughout the test we anticipate that the lattice hydrogen concentration 

will evolve both temporally and spatially within the specimen as sketched in Fig. 2a. The initial conditions are 

thus 0L T    for all x  and the boundary conditions for 0t   are specified as 0( 0)L Lx    and 

( ) 0L x L   . The flux of hydrogen J  measured on the right-hand end (at x L ) is given as 

1

( ) .L L L

x

D N
J t

L x

 



  
  

 
                (11) 

This flux J  represents the number of hydrogen atoms exiting the specimen per unit area per unit time. In the 

following we shall present a normalised flux / ssJ J J  where ssJ  is the steady-state flux given by 
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0

.LL
ss

LD
J

L

N 
              (12) 

Now consider the TDS test, again for a one-dimensional specimen of length L . The specimen at time 0t   is at 

temperature 0T  and in equilibrium with a spatially uniform lattice hydrogen occupancy 0
L L   and the 

corresponding T  given by Eq. (7). At time 0t  , the specimen is begun to be heated at a constant rate   

which is sufficiently slow for the temperature to remain spatially uniform such that the temperature varies as a 

function of time only, and is given by 0T tT   . Further, we assume that the specimen is heated in a hydrogen-

free environment such that for 0t  , ( 0,1 0)L x   . The occupancy of lattice hydrogen sites is expected to 

spatially and temporally evolve as sketched in Fig. 2b. The mass flow rate of atomic hydrogen out of the 

specimen of cross-sectional area S  measured is given as 

 
2

,H
H

A

J S M
m

N
           (13)  

where HM  is the molar mass of atomic hydrogen, AN  is Avogadro’s constant and J  the flux given by Eq. (11). 

Write FEm  as the mass of the specimen.  Then, the hydrogen desorption rate per unit mass of the specimen 

follows as  

 
2

,H H

FE A

m J M

m N L
         (14)  

where   is the density of the specimen. 

 

3.  Analysis of electro-permeation tests 

We proceed to predict the isothermal electro-permeation of hydrogen through the specimen in the one-

dimensional setting as laid out by the equations of Section 2. First, results are presented to illustrate the role of 

trap kinetics and then, in the remainder of the section, we restrict attention to the case of local equilibrium (i.e. 

the Oriani assumption) wherein trap kinetics are assumed to be much faster than the diffusion rate of hydrogen. 

 

3.1  Effect of trap kinetics on permeation tests 

The governing equations where the trapping/detrapping rates are finite are given by Eqs. (8) and (9) and we 

shall restrict attention here to a set of parameters 310N  , 15H   , 0tE  , 2 75Q   , 1T   and 0 610L
  

that is considered to be representative for EP tests in Fe alloys.  Predictions of the temporal variation of the 

normalised flux J at 1x   are included in Fig. 3 for normalised vibrational frequencies in the range 
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3 1210 10   . In addition we include the case when    which corresponds to instantaneous equilibrium 

between trapped and lattice hydrogen, i.e. the local equilibrium limit with the governing Eq. (10). It is clear that 

for the realistic range of vibrational frequencies in the range 9 1210 10    ( 13 110 s   corresponds to 1410   

for 7 2 1
0 10 m sD    and mm1L  ), the local equilibrium limit provides an excellent approximation to the 

solution with deviations from this limit only observed at the unrealistic values of 310  . Thus, in the remainder 

of this study we shall assume local equilibrium, and make use of Eq. (10). 

 

3.2. Asymptotic analysis of the local equilibrium limit 

Before proceeding to present numerical solutions for the effect of material and loading parameters on the 

permeation of hydrogen through the specimen in the local equilibrium limit, we develop asymptotic solutions 

for the governing equation (10). These solutions will highlight the different regimes of behaviour and thereby 

help in the interpretation of the numerical solutions. 

For the purposes of the asymptotic analysis it is instructive to re-write Eq. (10) for the permeation test as 

2

0 2 2
1

(1 )

L L
L

L L

N K
D

t K x

 

 

  
   

   

           (15) 

where 0/L L L    such that 0 1L  . We shall now consider the various limits of this governing partial 

differential equation (PDE). 

Regime I: The low trap occupancy limit with 0 1LK . Equation (15) then reduces to  

2

2
,

1

L L LD

t KN x

   
  

   
                (16) 

which is a Fickian diffusion equation with an effective diffusion coefficient 

eff
1

.LD
D

KN

 
  

 
           (17) 

It has the solution 

eff

1 erf ,
2

L

x

D t


  
   

  
  

     (18) 
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in the limit eff 1D t . The diffusion distance then scales as effD t  and following [14] we can define the time 

lagt  for the hydrogen to reach 1x   as eff1/ (6 )D , i.e.  

lag
1

.
6

L
KN

D t


             (19) 

Regime II: The deep trap limit with 0 1LK  and high trap density such that
0 2

1
( )L

N

K 
. 

In this deep trap limit the local equilibrium Eq. (7) gives 1T   and 0L
  over the domain 0 x   . The 

challenge is to obtain   as a function of time. In this domain Eq. (15) reduces to 

 
2

0 2 22
.

( )

L L
L

L L

N
D

t K x

 

 

  
 

   

                 (20) 

In contrast, over the domain 1x   , we have 0T L   .  In this high trap density case, the front   that 

demarcates the region with filled and unfilled traps is expected to move slowly as hydrogen needs to diffuse 

through the lattice over 0 x    and fill the traps at x   in order for the front to propagate. It is thus expected 

that the lattice hydrogen distribution in 0 x    is well approximated by the quasi steady-state solution 

 1 .L

x



          (21) 

To check, whether Eq. (21) is a solution to (20), we first need to determine the relation ( )t . With 0L   at 

x  , hydrogen conservation at the front   states ( )TNJ   , and in normalised form this is written as 

0 ,L L NJD             (22) 

where 0/L D  . Now the normalised flux is given by 

1
,LJ

x






  


                (23) 

via Eq. (21), from which it follows that 

 
0

.LLD

N





         (24) 

Upon substituting Eq. (21) into (20) and using (24) we see that the right hand side of Eq. (20) vanishes while the 

left hand side reduces to  
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1
1 .

( )

L

L LL L

N x x

tK KD 



  

      
            

                (25) 

In the limit 0 1LK  this term tends to zero except at the front x  , i.e. Eq. (21) is a reasonable approximation 

of the solution of Eq. (20). The position   of the front follows from the solution to (24) with initial conditions

( 0) 0t    as 

 
0

2 2 ,L
LtD

N




 
  

 
 

          (26) 

and the time lagt  for the front to reach 1   is 

 ag 0l
2

.
1

L

L

N
tD



 
  

 
 

         (27) 

Regime III: The deep trap limit with 0 1LK  but low trap density such that 
0 2

1
( )L

N

K 
. 

Again in this deep trap limit the local equilibrium, Eq. (7) gives 1T   and 0L
  over the domain 0 .x  

 

However, since the trap density is low, Eq. (15) reduces to 

 
2

2

L L
LD

t x

  
 

 
            (28) 

which is a Fickian diffusion equation with diffusion constant given by the lattice diffusion coefficient of 

hydrogen. This admits a solution of the form 

 1 e
2

,rfL
L

x

tD


 
  
 
 

                (29) 

over 0 x    with 1  . The position   of the front of the trapped hydrogen is again given by mass 

conservation such that at x   

 0
T L L L

x
J N N


   



   
  

       (30) 

Upon calculating J  from Eq. (29), the governing equation for ( )t  follows as 
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0

0

exp
2

1 erf

,

2

LL
L

LL
L

D
tD

t ND
tD









 

  
  
  
   


    
           

     (31) 

with initial conditions ( 0) 0t   . There exists no analytical solution to this ordinary differential equation but 

we can get asymptotic solutions as follows. Note that Eq. (31) will only admit solutions with 2 LtD  , i.e. 

the front of trapped hydrogen cannot be ahead of the distance the hydrogen would travel in the absence of 

trapping. This implies that we can consider the following two cases: 

 

Case a:  Here 2 LtD  and we shall subsequently show that this corresponds to a dilute lattice hydrogen 

concentration such that 0 / 1L N . When 2 LtD ,  Eq. (31) reduces to  

0

0
.L L

L

D

tN 


 
  
  

               (32) 

Then 

 
0

0
2 ,L L

L

tD

N 


 
  

  

               (33) 

upon imposing the initial condition ( 0) 0t   . The condition 2 LtD  is satisfied in the limit 0 / 1,L N  

i.e. this solution is applicable when the lattice hydrogen concentration is low compared to the trap density. The 

time lagt  for the front to reach 1   is then 

g

2

0la
4

.L

L

N
D t





 
  

 
 

            (34) 

 

Case b: In the oversaturated lattice hydrogen limit with 0 / 1L N  , Eq. (31) admits the solution 2 LtD  . 

Thus, the motion of the trapped front is unaffected by the trap density and it immediately follows that the time 

lagt  for the front to reach 1   is  

 lag
1

.
6

LtD           (35) 
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Here we have introduced a factor of 1/ 6  rather than 1/ 4  so that Eq. (19) reduces to Eq. (35) in the limit when

.0KN   We note that, in the absence of traps with 0N  , both regime I and case (b) of regime III reduce to 

pure lattice diffusion of hydrogen with a diffusion coefficient LD . 

 

 

3.2.1 Electro-permeation map 

The operative regime is the one associated with the lowest value of lagLD t  and then the domains of dominance 

of the four regimes can be illustrated on a map with axes of lagLD t  and 0
L  as shown in Fig. 4. At very low 0

L  

the trap occupancy is negligible with lagLD t  independent of 0
L . With increasing 0

L  the behaviour transitions 

to regime II wherein lagLD t  is inversely proportional to 0
L . A further increase in 0

L  
results in the activation of 

case (a) of regime III (labelled here as regime IIIa) where lagLD t  scales inversely with  
2

0
L . Finally at large 

values of 0
L  (regime IIIb), lagLD t  again becomes independent of 0

L : here in contrast with regime I, the lattice 

is oversaturated and the transport of hydrogen reduces to Fickian diffusion with the lattice diffusion coefficient 

of hydrogen. 

We illustrate predictions of the asymptotic analysis in Fig. 5 for selected combinations of KN  and N  values 

again using axes of lagLD t and 0
L . The bottom horizontal line is regime IIIb and independent of KN  and N  

while the sloping lines are regime IIIa and II: their slopes are fixed as illustrated in Fig. 4 and their positions on 

the map only dependent on N . The other horizontal lines are regime I with their positions a function of the 

product KN  such that when 0KN  , regime I coincides with regime IIIb. The selective dependence of lagLD t  

on KN  and N  suggests a method, which in principle, could be employed to uniquely determine all the relevant 

diffusion and trapping parameters from EP measurements of lagt . This is illustrated as follows. Experiments at 

large 0
L  in regime IIIb where lagt  is independent of 0

L  will give the lattice diffusion constant LD  while 

experiments at lower values of 0
L  in regimes IIIa or II will furnish N  from measurements of lagt  once LD is 

known. Finally, measurements of lagt  at very low values of 0
L  in regime I will enable the trapping enthalpy 

(i.e. K ) to be determined given that LD  and N  are already known. 
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3.3. Numerical predictions and comparisons with the asymptotic analysis 

We now proceed to determine the accuracy of the asymptotic analysis presented above. Unless otherwise 

specified we will consider a representative material with 613.82 1 )0 (KH    , 2.75Q  , 310N   and 1T 

and present numerical predictions of permeation experiments for selected values of 0
L  such that the behaviour 

spans across the regimes presented above. The governing PDE, Eq. (10) was solved using the pdepe partial 

differential equation solver in MATLAB. The pdepe solver has an automatic time-stepping routine to ensure 

temporal convergence with the spatial discretisation provided as an input. All simulations used a uniform mesh 

with mesh size 0.005e L : mesh sensitivity studies confirmed that this spatial resolution was sufficient for all 

the regimes analysed here. 

Regime I: With 70 10L
 , we expect the response to be within regime I from the map in Fig. 5. Numerical 

predictions of the temporal variation of J  at 1x   are included in Fig. 6a along with predictions of the spatial 

distributions of 0/L L   at selected times in Fig. 6b. In regime I, the asymptotic analysis suggests a Fickian 

diffusion process with an effective diffusion coefficient eff / ( )LD KND  . In line with this we see that a finite 

hydrogen flux is measured at 1x   when the normalised time LD t  is on the order of KN . Subsequently, as 

would be expected for a diffusion process the flux rises gradually until a steady-state is achieved. This picture 

is also confirmed by the distribution of 0/L L   in Fig. 6b which demonstrate that early in the time history 0/L L   

has an error function like variation with a linear spatial distribution of 0/L L   achieved at long times when 

steady-state is attained. The asymptotic predictions (18) of the spatial variation of 0/L L   are included in Fig. 

6b and show excellent agreement with the numerical predictions when 1LD t , i.e. before the diffusion process 

starts to interact strongly with the 1x   boundary. 

Regime II: With 40 10L
 , we anticipate the response to be within regime II. Here the asymptotic analysis 

predicts that a linear spatial distribution of 0/L L   is attained behind the front that demarcates the regions 

where 1T   and 0.T   Numerical and asymptotic predictions of the spatial distributions of 0/L L   are 

included in Fig. 6c at selected values of LD t . Excellent agreement between the two sets of predictions is seen. 

The corresponding numerical prediction of J  versus LD t  in Fig. 6a confirms that there is a sharp increase in 

J  at 1x   when the front of trapped hydrogen reaches 1x  . This is in contrast to regime I where the Fickian 

diffusion nature of the governing equations implies J  rises more gradually. 
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Regime IIIb: With 20 10L
 , we anticipate the response to be within regime IIIb. Comparisons between the 

numerical and asymptotic predictions of the spatial distributions of 0/L L   at selected values of LD t  are 

included in Fig. 6d. Reasonable agreement is observed for 1LD t  , although the asymptotic analysis over 

predicts the concentrations near the front that demarcates the regions where 1T   and 0.T   Again, 

consistent with the fact the hydrogen is present only behind this front, the J  versus LD t  curve in Fig. 6a shows 

a sharp increase when this front reaches 1x  , i.e. at 1/ 6LD t  . We note in passing that numerical predictions 

for regime IIIa are not included as this regime spans a very narrow range in 0
L  as seen in Fig. 5. Thus, the 

numerical predictions directly transition from regime II to regime IIIb with regime IIIa not being clearly 

distinguished. 

We proceed to illustrate the accuracy of the asymptotic analysis over a wide range of parameters by including 

numerical predictions of lagLD t  on the map in Fig. 5. In this regard we performed a series of numerical 

calculations with 613.82 1 )0 (KH    , 2.75Q   and 1T   held fixed (i.e. the reference properties employed 

above) and varying N  and 0
L  over the ranges 5 210 01 N    and 7 0 20 101 L

   . In these numerical 

calculations, following Barrer [14], we define lagt  as the normalised time when 0.632J  , i.e. the time when the 

flux attains 63.2% of its steady-state value. Numerical predictions of lagLD t  are included in Fig. 5 and show 

excellent agreement with the asymptotic analysis over a very wide range of parameters. As is expected the 

asymptotic analysis loses accuracy at the boundaries of the regimes. Moreover, at low KN  the asymptotic 

analysis is again inaccurate as in this case regimes I and regime IIIb have very similar time lag values  and thus 

the entire response lies intermediate to these regimes. In addition to these numerical calculations we have also 

included in Fig. 5, predictions of lagLD t  as a function of 0
L  for 510K   and 310N   with the other properties 

held fixed at their reference values. These predictions are also in good agreement with the asymptotic analysis 

and confirm that within regime II, lagLD t  is insensitive to K ; see the overlap in Fig. 5 between the predictions 

with 510K   and 610 .  

The map in Fig. 5 is over a very wide range of parameters with large portions of the map mostly inaccessible 

for typical hydrogen electro-permeations experiments in Fe alloys. It is thus instructive to examine the response 

over a range of parameters more representative in such experiments. In this regard we include in Figs. 7a and 

7b numerical predictions of contours of lagLD t  (with lagt  defined as above) for 0 610L
  and 710 , respectively 
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for a test temperature 1T  . These contours are presented on a map with axes of N  and H : in line with the 

predictions in Fig. 5 we observe that lagLD t  increases with decreasing H (deeper traps), increasing trap density 

N  and decreasing hydrogen concentration 0
L . Moreover, the contours of lagLD t  suggest that there is a regime 

where lagt  is independent of H  and another where lagt  increases linearly with N . In fact, the asymptotic 

analysis indicates that both the maps in Fig. 7 span regimes I and II with the boundary between the two regimes 

given by a transition value of the binding energy 

0

3 1
.exp( )I III II

L

K
N

H


                 (36) 

This boundary is indicated in Fig. 7 with lagt  independent of H in regime II (i.e. deep trap regime). Selected 

asymptotic predictions of lagLD t  are also included in Fig. 7 and confirm that over this more representative 

parameter range the asymptotic predictions are an excellent approximation of the complete numerical 

calculations. 

 

4.  Application of the model to EP and TDS measurements 

The EP analysis presented above illustrates that experiments need to span across regimes I, II and IIIb in order 

to uniquely determine the three main material parameters, viz. N , H  and LD . Further, these parameters 

extracted from an EP measurement would only represent true estimates of the material properties if predictions 

using these parameters also provided good agreement with TDS measurements for the same material. With this 

in mind, we proceed in two steps. First, we attempt to determine N , H  from room temperature EP tests on a 

quenched and tempered martensitic steel Fe 0.45C 1.5Mo   reported by Frappart et al. [15]. These parameters 

are then used to make predictions of the thermal desorption measurements reported by Frappart et al. [16] on 

the same steel. 

Frappart et al. [15] performed EP tests using the Devanathan and Stachursky [17] EP apparatus on martensitic 

steel specimens of length 1.1L   mm and cross-section area 23.14 cm  at a temperature 0 293T   K. In these 

tests, the input charging current was varied in order to perform tests at different hydrogen charging conditions 

0
L  and the temporal variation of the current output ( )i t  per unit area was measured. These measurements are 

included in Fig. 8 in terms of the output flux J  of atomic hydrogen with / ( )J i FZ , where F  represents the 

Faraday constant and 1Z   being the state of charge of the atomic hydrogen. The steady-state flux ssJ  is used 
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to estimate 0
L  via Eq. (12) using the room temperature lattice diffusion coefficient of hydrogen in martensitic 

steel 9 2 11.65 10 m sLD     [15] and 28 38.46 10 mLN    [7]. The curves in Fig. 8 for the different input 

currents are labelled by their 0
L  values calculated in this manner.  

In line with the procedure outline in section 3 we define lagt  as the time when 0.632 ssJ J . The measurements 

of the normalised time lag lagLD t  as a function of 0
L  are summarised in the map in Fig. 9 along with the 

asymptotic predictions with 28KN   and selected values of N  in the range 5 310 01 N   . It is clear from this 

map that all measurements lie in regime I with 28KN   fitting the measurements to within the scatter in the 

data. The fact that all the data lie in regime I implies that the data is insufficient to uniquely determine both K

(or H ) and N  except to say that we expect 510N   with 28KN   ( 510N   would imply that the response 

transitions to regime II at the higher values of 0
L  investigated in [15] but this is not supported by the 

measurements). To emphasize this point we include in Fig. 8a numerical predictions of the temporal variation 

of flux J  at a temperature 1T   with 41.7 10N    and 12H    as well as 31.26 10N    and 10H    in 

Fig. 8b such that 28KN   in both cases but N  varies by nearly an order of magnitude between the two cases. 

Excellent agreement is observed between the measurements and numerical predictions in both cases 

demonstrating the inadequacy of the data to uniquely determine both the trap density and binding energy from 

EP measurements that all lie in regime I. 

The TDS measurements of Frappart et al. [16] are included in Fig. 10 on specimens of cross-sectional area

2m40 mS   and length 4L   mm. The TDS tests were carried out starting from an initial temperature 

0 353 KT   and the three heating rates   listed in Fig. 10.  Since these specimens were made from the steel on 

which the EP measurements discussed above were reported, we now proceed to present desorption predictions 

using the N  and K  values estimated above and the lattice activation energy taken to be 1kJ10 molQ   [15]. 

However, the hydrogen loading parameter 0
L  in the TDS experiment is unknown and, unlike in the EP tests 

where it is directly obtained from ssJ , cannot be directly inferred from the TDS measurements. We thus use 0
L  

as a fitting parameter in order to get good agreement between predictions and measurements of the peak 

desorption rates. The desorption predictions with 41.7 10N    and 12H    (i.e. the values used for the EP 

predictions of Fig. 8a) using 0 34.2 10L
   are included in Fig. 10. Unlike in the measurements, the model does 

not predict a distinct peak at an intermediate temperature and thus we chose 0
L  such that the peak desorption 
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rate measurements matched the desorption rate at which there is an inflexion in the predicted desorption curves. 

Beyond the inflexion, the measurements and predictions are in excellent agreement and we argue that 

measurements do not accurately capture the initial transient because hydrogen has started to leak out of the 

specimen prior to the commencement of the measurements as discussed in Raina et al. [13].  For the sake of 

brevity we do not include predictions with 31.26 10N    and 10H    (i.e. the values used for the EP 

predictions of Fig. 8b) but it suffices to say that similar agreement with the measurements is obtained in this 

case as well with the choice 0 33 10L
  . 

Two key conclusions can be drawn from this attempt at comparing simulations and measurements: (i) EP 

measurements that do not span regimes cannot uniquely provide the material parameters related to the traps 

and (ii) trapping parameters estimated from EP tests can be used to obtain a good agreement between 

predictions and measurements from TDS tests. The hydrogen charging in TDS tests, which is parameterised by 

0
L , needs to be used as a fitting parameter in this case. 

 

5.  Concluding remarks 

The McNabb and Foster [1] framework is used to analyse both electro-permeation (EP) and thermal desorption 

(TDS) measurements of hydrogen in metallic alloys. The framework includes the diffusion of hydrogen through 

the lattice as well as the trapping (and detrapping) of hydrogen at specific sites that might include dislocations, 

carbide particles and grain boundaries. It is shown that the trapping and detrapping rates are typically much 

faster compared to the diffusion time-scales and a simplification of the governing equations wherein we assume 

local equilibrium between the lattice and trapped hydrogen suffices. 

An asymptotic analysis of the governing kinetic equation for the EP test is presented. This asymptotic analysis 

reveals that there are four regimes of behaviour. In regime I the trapping is negligible and hydrogen kinetics is 

governed by a Fickian diffusion equation with an effective diffusion coefficient that can be significantly smaller 

than the lattice hydrogen diffusion coefficient. Regimes II and III are high trap occupancy regimes with regime 

II corresponding to a high trap density while the trap density is low in regime III. In both these regimes there 

exists a demarcation front that divides the specimen into regions with filled and unfilled traps. Regime III 

comprises of two sub-regimes with the regime labelled regime IIIb corresponding to the case of oversaturated 

lattice hydrogen. In this regime hydrogen transport occurs at a rate governed solely by the lattice hydrogen 

diffusion coefficient. The asymptotic analysis clearly reveals that EP tests need to span regimes I, II and IIIb in 

order to uniquely extract all the relevant material properties related to hydrogen transport. Numerical solution 

of the governing diffusion equation confirmed the accuracy of the asymptotic analysis. 
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Numerical simulations of EP and TDS tests on the same material, as reported by Frappart et al. [15, 16], are 

presented. The EP measurements are shown to all lie in regime I and are thus insufficient to uniquely determine 

both the trap density and binding energy. However, with trapping parameters estimated from the EP tests, the 

model is shown to capture the TDS tests with reasonable accuracy. Future studies wherein EP and TDS 

measurements are carried out on the same material with the EP tests spanning across the different regimes of 

behaviour are suggested in order to further confirm the fidelity of the model in predicting hydrogen kinetics in 

metallic alloys. 
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Figures  

 

Figure 1: Sketch of the energy landscape for the kinetics of hydrogen through a lattice with trapping sites. The 

energy barrier for diffusion through the lattice is Q  while tE  and d tE E H   are the trapping and detrapping 

energy barriers, respectively. 

 

 

Figure 2: Sketch of the spatio-temporal evolution of the normalised lattice hydrogen occupancy 0/L L   in the 

(a) electro-permeation (EP) and (b) thermal desorption (TDS) tests. In both cases, the one-dimensional specimen 

spans 0 x L   and curves are shown at selected times 1 2 30 t tt   . The output flux J  is also indicated in 

both cases. 

 

(a) (b) 
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Figure 3: Predictions of the temporal evolution of the normalised output flux J  in an EP test with material 

parameters 310N  , 15H   , 0tE  , 2 75Q   , 1T   and hydrogen loading 0 610L
 . Results are shown 

for normalised vibrational frequencies in the range 3 1210 10    as well as the local equilibrium limit with 

  . 

 

Figure 4: Sketch illustrating the four regimes of behaviour as deduced from the asymptotic analysis of the EP 

test. The regimes are marked on the map with axes of normalised time lag lagLD t  and input lattice hydrogen 

occupancy 0
L . The value of lagLD t  in regimes I and IIIb is indicated, with lagLD t  in regimes II and IIIa only 

dependent on 0
L  and N . 
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Figure 5: A map summarising the dependency of the normalised time lag lagLD t  in the EP test on the trapping 

parameters K  and N  as well as the hydrogen loading parameterised by 0
L . The map includes both asymptotic 

predictions and numerical predictions for selected values of K  and N . 
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Figure 6: Comparisons of the asymptotic and numerical predictions of the transient response in EP tests in three 

regimes for a reference set of material parameters 613.82 1 )0 (KH    , 2.75Q  , 310N   and 1T  . (a) 

Numerical predictions of the temporal evolution of the normalised output flux J  in regime I ( 0 710L
 ), 

regime II ( 0 410L
 ) and regime IIIb ( 0 210L

 ). The corresponding numerical and asymptotic predictions of 

the spatio-temporal evolution of the normalised lattice hydrogen occupancy 0/L L   in (b) regime I, (c) regime 

II and (d) regime IIIb. 

 

 

 

(a) (b) 

(c) (d) 
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Figure 7: Maps showing contours of the normalised time lag lagLD t  in an EP test using axes of the normalised 

trap density N  and the normalised trap binding energy H  (with 1T  ) for hydrogen loading with (a) 

0 610L
 and (b) 0 710L

 . Both maps only span regimes I and II with the solid lines corresponding to 

numerical predictions and selected asymptotic predictions indicated by dashed lines. 

 

Figure 8: Comparisons between numerical predictions and measurements [15] of the temporal evolution of the 

output flux in EP tests on a quenched and tempered martensitic steel Fe 0.45C 1.5Mo  . The measurements are 

shown (by markers) for selected input currents parameterised here by 0
L  along with numerical predictions 

employing (a) 41.7 10N    and 12H    and (b) 31.26 10N    and 10H    for a test temperature 1T  . 

 

(a) (b) 

(a) (b) 
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Figure 9: A summary of the time lag measurements from the data in Fig. 8 on a map using axes of lagLD t  and 

the input lattice hydrogen occupancy 0
L . Asymptotic predictions in regimes I and II are indicated for 28KN   

and selected values of N . 

 

 

Figure 10: Comparison between measured (shown by markers) and predicted (solid lines) desorption curves 

for TDS tests [16] carried out on a quenched and tempered martensitic steel Fe 0.45C 1.5Mo  . Both 

measurements and predictions are shown for three heating rates  , an initial lattice hydrogen occupancy 

0 34.2 10L
   and trap properties used in Fig. 8a. 


