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 Titania-based nanocomposites for solar photocatalysis  

 

Aditya Chauhan 

Department of Materials Science and Metallurgy, University of Cambridge 

This thesis explores several titania-based composites for photocatalytic water treatment and 

hydrogen evolution. For water treatment, TiO2-C core-shell composites were prepared through 

controlled hydrolysis of titanium alkoxides followed by calcination in a non-oxygenating 

atmosphere. A total of nine TiO2-C samples were synthesized by combining different alkoxides 

and solvents. The sub-micron sized composites displayed eight times faster photocatalytic 

activity for degradation of aqueous methylene blue under simulated sunlight compared to 

pristine TiO2. Particle size of the best performing TiO2-C catalyst was further reduced through 

hydrolysis with aqueous KCl. The resulting nanoparticles (~10 nm) displayed a comparable 

rate of photodegradation for methylene blue with only 1/5th catalyst loading by weight. This 

nano-sized powder composite (nanocomposite) photocatalyst was also tested for 

photodegradation of other dyes, pharmaceuticals and Escherichia coli bacteria. The photo-

activity was found to be at par or better than several state-of-art TiO2-C materials reported in 

the literature and approximately twice as better as standard commercially available TiO2 (P25).  

Second part of the thesis explores three different nickel-based cocatalysts for TiO2 for visible-

light driven hydrogen evolution. Composites containing Ni(OH)2, NiO, and Ni2P were prepared 

and the effects of loading concentration and synthesis method on the rate of hydrogen evolution 

were studied. It was observed that hydrogen evolution could be achieved in the presence of a 

sacrificial electron donor (ethylenediaminetetraacetic acid disodium). Catalysts with Ni(OH)2 

and Ni2P displayed significant photoactivity, in which highest rate of hydrogen production was 

achieved with TiO2-Ni2P nanoparticles. The prepared catalyst also displayed excellent long-

term stability under continuous illumination tested for seven days. 

The final section of this thesis reports on the synthesis and visible-light activity of a hybrid 

Bi0.5Na0.5TiO3-BiOCl (BNT-BiOCl) ferroelectric photocatalyst. The parent ferroelectric BNT 

microparticles were prepared by solid-oxide reaction route and BiOCl growth on surface was 

achieved by treatment with dilute HCl. Despite a large bandgap and large particle size (>1 µm), 

the composite photocatalyst displayed a high rate of rhodamine B degradation under visible 

light. The high photoactivity was attributed to the heterojunction formed between the two 

phases, which improved charge separation. 
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Chapter 1  

1. Introduction 

 

1.1 Overview 

The global population crossed the 7 billion mark in 2012, compared to roughly 6 billion at the 

turn of the century (2000), of which developing countries accounted for 97% growth.1 As the 

developing nations continue to fuel their technological and infrastructural advancement, it 

places an ever-increasing burden on the energy supplies of the world. Contrastingly, the 

developed world still accounts for a larger share of per-capita energy consumption, owing to 

the higher standards of living (Figs 1.1 and 1.2).  

 

Figure 1.1: The graph shows the price per unit energy consumption for selected countries. 

Adapted from with permission from Ref.2 

However, this trend is unsustainable as most of the energy required to provide for and maintain 

a high standard of living (including basic amenities like shelter, clean water and electricity) is 

drawn from fossil reserves. The International Energy Agency (IEA) estimated that the global 

energy consumption in 2013 was 18.0 terawatts (Fig 1.3),3 of which a large portion (40.7%) 
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came from oil, natural gas (15%), and coal (10%), whereas renewable energy only accounted 

for 3.5%.3 

 

Figure 1.2: The graph shows the per capita energy consumption by several countries of the 

world in kilograms of oil equivalent, for 2011; adapted from Ref.4 

IEA world energy outlook shows a trend which indicates that the global energy consumption 

could increase at a rate of 10% annually because of developing countries. At this rate the planet 

is expected to run out of oil in approximately 30 years, and coal will be the only source of fossil 

fuel left after 2042.5  

 

Figure 1.3: The graph shows the increase in global energy consumption as a function of time. 

Adapted from Ref.3 

However, even before the global fossil reserves are depleted humanity could face a global and 

irreversible catastrophe in the form of climate change. Global warming due to the green-house 

effect is a major problem associated with rapid consumption of fossil fuels. Various 
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anthropogenic activities, chiefly burning of carbon-based fuels for energy production, release 

large amounts of carbon dioxide and other greenhouse gases into the atmosphere annually. 

According to a recent study published by Le Quéré et al. the global carbon emissions rose by 

approximately 2.7% in 2018 compared to 9.9 gigatons in 2017, marking it the year with the 

highest carbon emissions. According to the latest report by the International Institute for 

Applied Systems Analysis, the current emission trends will cause irreversible changes to the 

environment even if the global warming is somehow limited to 1.5 oC.6 Effects of such extreme 

climate change include loss of entire ecosystems, food shortages owing to altered precipitation 

pattern, increased frequency of extreme weather events, and rise in sea level leading to loss of 

habitat in the coastal areas. Thus, there is an urgent need to create clean and renewable sources 

of energy and develop technology for active carbon capture from the atmosphere.  

With regards to clean renewable energy, several technologies such as wind, geothermal, 

hydroelectric, and photovoltaic already have a strong presence. However, the total contribution 

from all these sources is still limited. Our planet receives about 1.74×105 terawatt of solar 

energy every day at the upper atmosphere.7 Of this 30% is reflected back and the rest reaches 

the earth’s surface in the form of terrestrial radiation. The total energy received from the sun 

on the surface of the earth in one hour was more than that consumed by the entire human 

population in 2002.8 Even by today’s energy consumption rate, the total incident solar energy 

received by our planet in a day is more than the annual global consumption. Thus, it is easy to 

conclude that the future of humanity relies on efficient tapping and utilization of this abundant 

form of energy. However, solar energy is rather dilute and highly dependent on geographical 

and atmospheric conditions. Hence, techniques need to be developed which can directly utilize 

unconcentrated solar energy for various applications. Space and water heating, cooking, process 

heating, electricity generation and photocatalysis are all examples of such applications.  

Heterogeneous photocatalysis is a technique that employs suitable semiconducting materials to 

harness and convert electromagnetic energy of the UV/visible region into chemical potential.9 

Photocatalysis can be used for several applications including air10 and water treatment,11 

chemical synthesis,12 solar fuel production13 and active carbon capture.14 Such technology 

requires minimum infrastructure, has low upfront and operational cost, is robust and easy to 

use, and can be powered by free and abundant solar energy, all of which make photocatalysis a 

lucrative prospect.  

Photocatalysis in itself cannot be used to solve the pollution and energy problems of the world. 

Furthermore, the current state-of-art materials are still far from the efficiency level required to 

rival established technologies. However, there have been few recent attempts towards 
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successful commercialization of photocatalysis. CaluTech, a USA based firm, have developed 

photocatalytic strips employing UV light for indoor air-purification.15 The developed system 

claims to successfully remove several gaseous pollutants, allergens, and pathogens at levels 

typically encountered in a domestic setting. Similarly, LIGHT2CAT was an EU funded research 

project with the aim of developing light-sensitive concrete to be used as building material for 

reducing NOx pollution.16 The team successfully modified commercial concretes with visible 

light active TiO2 (4 wt.%), which were observed to be 15% more active than pristine concrete 

under warm white light. Finally, these modified concretes were used as building material in 

several European cities leading to 5-20% reduction in environmental NOx concentration over a 

year. Furthermore, Panasonic has already presented a solar water-purification prototype capable 

of very high processing and flow speeds.17 The technology employs zeolites which trap and 

release TiO2 nanoparticles on-demand, thereby eliminating the need for permanent 

immobilization of photocatalysts. Finally, Syzygy Plasmonics, a USA based start-up focused 

on development of (photocatalytic) clean synthesis has already raised USD 5.8 million.18 These 

examples indicate that the field of photocatalysis continues to grow and improve rapidly and it 

will soon be able to provide a competitive advantage large enough to warrant its integration 

into the established systems.  

1.2 Aims and thesis structure 

TiO2 has been extensively investigated for photocatalytic applications owing to its abundance, 

stability and low toxicity.19 However, pristine TiO2 is highly inefficient and needs to be suitably 

modified to improve its performance under visible light, which accounts for nearly 45% of the 

total solar energy. Hence, this study is primarily focused on developing suitable modifications 

and cocatalysts for improving the photocatalytic response of TiO2 (anatase phase) under full 

solar spectrum. In this regard, two applications namely water treatment and hydrogen evolution 

have been explored. The thesis itself is structured as follows: 

• Chapter 2 provides an overview of the fundamentals of photocatalysis including 

semiconductor-light interactions and various reduction-oxidation processes. The 

chapter also provides a brief literature review of the current state-of-art materials. This 

is followed by a description of how photocatalysis can be employed for water 

treatment and hydrogen production. Finally, the chapter concludes with the 

introduction of TiO2 and its reported composites with carbon and nickel, which are 

the two main configurations explored in this study. 

• Chapter 3 lists the different chemicals and reagents used in this study. The chapter 

also provides a brief description of the various characterization techniques and tests 
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used in this study. Details regarding the experimental setup and actual measurement 

conditions, which are common to all studies, have also been provided. 

• Chapter 4 reports on the effect of different solvent-precursor combinations on the 

shape, size and morphology of the as-prepared TiO2-C core-shell particles. Nine 

different samples were prepared using a combination of three different alkoxides 

(precursor) and alcohols (solvents). The materials were thoroughly characterized and 

tested for their photocatalytic activities.  

• Chapter 5 builds on the results obtained in chapter 4 and reports on the preparation of 

TiO2-C nanoparticles (termed as nanocomposites) through optimized synthesis 

parameters. The as-prepared powder photocatalyst was tested for degradation of a 

broad-spectrum of water-borne pollutants including dyes, pharmaceutical compounds, 

and model pathogen (bacteria). Photoelectrochemical analyses were also performed 

to elucidate the reason for improved catalytic activity.  

• Chapter 6 reports the synthesis and preliminary analysis of various TiO2 and Ni-based 

composite nanoparticles (also termed as nanocomposites) for visible-light driven 

hydrogen evolution. Three different compounds were prepared and tested for their 

cocatalytic properties. It was observed that selection of appropriate Ni-based co-

catalyst along with proper synthesis and loading conditions could considerably 

improve the hydrogen evolution activity of TiO2 under visible light, without 

compromising the stability of the composite. 

• Chapter 7 deviates away from semiconducting TiO2 and reports on the synthesis and 

catalytic activity of Bi0.5Na0.5TiO3-BiOCl composite particles. The combination of a 

parent ferroelectric phase (Bi0.5Na0.5TiO3) with an active catalyst (BiOCl) was 

investigated for visible light degradation of rhodamine B. Finally, mechanisms 

responsible for the improved catalytic activity and dye degradation are also discussed.  

• Chapter 8 summarizes the salient results and observations of the entire study, followed 

by an outline of areas requiring further research and some possible future work. 
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Chapter 2  

2. Heterogeneous photocatalysis: principles, materials and application 

 

2.1 Fundamentals of photocatalysis 

The term ‘photocatalysis’ can be deconstructed into two individual terms of ‘photoreaction’ 

and ‘catalysis’. Hence, the term photocatalysis can be defined as the process of catalysing a 

desired photoreaction. The catalyst employed in this case can either be of similar 

(homogeneous) or different (heterogeneous) phase than the reactants. Consequently, 

photocatalysis can be broadly divided into two major categories of homogeneous and 

heterogeneous catalysis. The majority of homogeneous photocatalysts are based on ozone and 

photo-phenton systems with a primary function of producing hydroxyl 𝑂𝐻• radicals.1 Examples 

of mechanism for hydroxyl formation in ozone-based systems are as follows:2 

𝑂3 + ℎ𝜈 → 𝑂2 + 𝑂          (2.1) 

𝑂 + 𝐻2𝑂 → 𝑂𝐻• + 𝑂𝐻•         (2.2) 

𝑂 + 𝐻2𝑂 → 𝐻2𝑂2          (2.3) 

𝐻2𝑂2 + ℎ𝜈 → 𝑂𝐻• + 𝑂𝐻•         (2.4) 

Similarly, (Fe2+-based) photo-phenton systems operate on the following mechanism:3 

𝐹𝑒2+ + 𝐻2𝑂2 → 𝑂𝐻− + 𝑂𝐻• + 𝐹𝑒3+       (2.5) 

𝐹𝑒2+ + 𝑂𝐻• → 𝐹𝑒3+ + 𝑂𝐻−        (2.6) 

𝐹𝑒3+ + 2𝐻2𝑂 + ℎ𝜈 → 𝑂𝐻• + 𝐹𝑒2+ + 𝐻3𝑂+      (2.7) 

Homogeneous photocatalysis based on such systems has several advantages including high 

mass transfer rates, high efficiency and utilization of visible light (upto 450 nm) for photo-

phenton systems.1 However, each set of systems has its drawbacks which limits its wide-scale 

applicability. Ozone in higher concentrations is potentially harmful to biological life-forms and 

its production requires the use of deep UV which is carcinogenic. Further, as only a minor 

fraction of the incident solar energy is UV (<5%), artificial sources are required for its 

production. Similarly, photo-phenton based systems have a stringent set of requirements 

regarding pH, concentration of hydrogen peroxide and a need for removal of iron after reaction 

completion.4  
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In this regard, semiconductor based heterogeneous photocatalysis may offer a better route for 

direct conversion of incident electromagnetic energy into catalytically active species that are 

capable of performing reduction and oxidation reactions.5 This chapter provides a detailed 

overview of the underlying processes, mechanism for production of photogenerated charge 

carriers and subsequent reduction and oxidation (REDOX) reactions. However, before the 

photochemistry of a semiconductor can be explored, it is important to elucidate the nature of 

semiconducting materials and the origin of the bandgap.  

2.1.1 Electronic band-structure in solids and semiconductors 

The basic and most fundamental building block of any element is its atom. An atom is made up 

of a dense, positively charged nucleus of protons and neutrons. The nucleus is surrounded by a 

cloud of orbiting electrons which keep the atom electrically neutral. The protons define the 

atomic number of the element and, hence, an element’s place in the periodic table. However, 

protons themselves do not participate in classical chemical reactions, which are limited 

exclusively to the outermost orbiting electrons. This is especially relevant in all reactions 

pertaining to photochemistry and photocatalysis, in which the changes in the state of outmost 

electrons govern the various REDOX reactions. 

The motion of an electron around the nucleus is defined as its atomic orbital and indicates the 

area where the probability of locating that electron is the highest. In an isolated atom, each 

atomic orbital has a discreet energy level and can be shared by a maximum of two electrons 

with opposing spin. When two or more atoms are grouped together, the atomic orbitals from 

the neighboring atoms begin to overlap. According to Pauli’s exclusion principle, no two 

electrons can occupy the same set of quantum numbers. Hence, this overlap leads to splitting 

of energy levels known as molecular orbitals. Molecular orbital theory employs linear 

combination of atomic orbitals to define the ‘new’ orbitals which arise due to chemical bonding 

between two atoms. The bonding orbital is located in between a given pair of atoms and hence, 

possesses relatively lower energy with respect to the individual atomic orbitals. Similarly, anti-

bonding orbitals contain electrons directly behind each nucleus and therefore, possess slightly 

higher energy. Fig 2.1 shows the evolution of molecular orbitals from atomic orbitals during 

the bonding process of two hydrogen atoms. 
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Figure 2.1: Evolution of bonding and anti-bonding molecular orbitals in a di-hydrogen 

molecule. 

When a sufficiently large number of atoms come together, these molecular orbitals are spread 

over a range of energy levels. Furthermore, since the difference in energy between each 

individual molecular orbital is very small, the collection of these molecular orbitals can be 

approximated as a continuum and is defined as an energy band. Energy band containing the 

anti-bonding orbitals is known as the conduction band (cb). Similarly, the energy band 

consisting of bonding orbitals is known as valence band (vb). Finally, the difference between 

the highest energy state of the bonding orbitals and the lowest energy state of the anti-bonding 

molecular orbitals may be defined as the band gap. Fig 2.2 illustrates the evolution of band 

structures as a function of number of molecular orbitals/participating atoms.  

 

Figure 2.2: Evolution of band structure as a function of electronic orbitals. Adapted with 

permission from Ref.6 
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For any given material, the probability 𝑓(𝐸𝑠) for an electron to occupy an energy state 𝐸𝑠 can 

be determined using Fermi-Dirac distribution as follows:6 

𝑓(𝐸𝑠) =
1

1+𝑒
(𝐸𝑠−𝐸𝐹)

𝑘𝐵∗𝑇⁄
         (2.8) 

In which, 𝐸𝐹 is the Fermi level, 𝑘B is the Boltzmann constant and 𝑇 is the temperature in Kelvin. 

In band theory of solids, 𝐸𝐹 is defined as the energy level which has the probability of being 

50% occupied at any given time, in a state of thermal equilibrium. Additionally, from the nature 

of equation (2.8), it can be easily concluded that the probability 𝑓(𝐸𝑠) increases with increase 

in temperature 𝑇. Electrons which occupy energy beyond 𝐸𝐹 can be readily employed for 

conduction. Hence, 𝐸𝐹 along with position of molecular orbitals is vital in determining the 

electrical nature of a solid whether it is a conductor, a semiconductor or an insulator.7 Materials 

in which 𝐸𝐹 lies within a delocalized (occupied) band are readily able to conduct electric current 

and are termed as metals/conductors. Similarly, for materials which have 𝐸𝐹 located within a 

large bandgap are termed as insulators. Semiconductors are materials in which the 𝐸𝐹 is located 

within a band gap where the probability of electrons occupying 𝐸𝑠 > 𝐸𝐹 is non-negligible at 

room temperature. Fig 2.3 illustrates the placement of band positions with respect to Fermi level 

for different category of solids. 

 

Figure 2.3: Fermi level positions with respect to occupied molecular orbitals in metals, 

semiconductors and insulators. 

In semiconductors, the value of bandgap at operational temperatures is sufficiently small such 

that it can be easily overcome by activation. The energy required to move an electron from 

highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) 

can be provided externally through electromagnetic interaction. With respect to photocatalysis 
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at room temperature, the upper limit of a band gap is restricted at ~3.4 eV, correlating to the 

most energetic photons of the incident solar spectrum (UV-B). Table 2.1 provides an overview 

of the band gaps and respective cb and vb positions with respect to normal hydrogen electrode 

(NHE), for common semiconductors employed in photocatalysis. Hence, when the 

semiconductor is excited with a photon of energy greater than its band gap, it may excite an 

electron from the conduction band to the valence band, leaving a hole in its place. This electron-

hole pair is known as a photogenerated charge carrier and forms the basis of all photocatalysis. 

The associated photochemistry of a semiconductor, as well as factors affecting its catalytic 

performance can now be discussed.  

Table 2.1: Band gap, conduction band, and valence band edge (v/s NHE) of common 

semiconducting materials.8 

Semiconductor Valence band edge  

(V) 

Conduction band edge 

(V) 

Bandgap 

(eV) 

TiO2 (anatase) 2.7 -0.5 3.2 

TiO2 (rutile) 2.7 -0.3 3.0 

Cu2O 0.85 -1.16 2.0 

WO3 2.7 -0.1 2.8 

gC3N4 1.16 -1.53 2.2 

Ag3PO4 2.49 0.04 2.45 

BiVO4 2.1 -0.3 2.4 

CdS 1.5 -0.9 2.5 

Ta3N5 1.35 -0.75 2.1 

TaON 1.75 -0.75 2.5 
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2.1.2 Heterogeneous photocatalysis 

 

Figure 2.4: The process of photogenerated charge carrier production, annihilation and 

migration in a typical semiconductor. Surface adsorbed acceptor (A) and donor (D) species 

may react with the electron and hole pair to initiate photochemical reactions. 

In heterogeneous photocatalysis, when a photon with energy greater or equal to the bandgap 

(Eg) of the semiconductor interacts with the material; it initiates non-equilibrium photophysical 

and photochemical processes9. This photon can excite an electron from the highest occupied 

molecular orbital to lowest unoccupied molecular orbital. The process lasts for a few 

femtoseconds and is followed by the relaxation of the generated holes and electrons to the top 

and bottom of vb and cb, respectively on a similar time-scale:9,10 

𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 + ℎ𝜈 → 𝑒−(𝑐𝑏) + ℎ+(𝑣𝑏)      (2.9)  

 Depending on the band positioning and band bending configuration, these charge carriers can 

migrate to the surface of the catalyst and initiate REDOX reactions. The migration itself could 

be completed on a scale of microseconds, whereas the reactions themselves are much slower 

(millisecond timescale).9 Alternately, if the electron/hole does not have sufficient time or 

energy to migrate, the charge pair may recombine to produce a phonon (heat). Depending upon 

the surrounding medium, these electrons and holes can be used to reduce and oxidize surface 

adsorbed acceptor and donor chemical species, respectively. Fig 2.4 gives a graphical 

representation of the processes involved in an aqueous photocatalytic reaction. Once the charge 

carriers successfully migrate to the surface, holes can oxidize adsorbed water at the surface to 

produce hydroxyl radicals (OH•). These hydroxyl radicals can have an oxidation potential of 

upto 2.70 V (vs NHE)11,12 and can subsequently oxidize dissolved organic species producing 

mineral salts, CO2, and H2O.11 Equations (2.10)-(2.16) summarize the main REDOX and the 
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subsequent chemical reactions that take place at the surface of a photocatalyst in an aqueous 

medium. 

𝐻2𝑂 + ℎ+ → 𝑂𝐻• + 𝐻+         (2.10) 

𝑂𝐻• + 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 → 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 → 𝐻2𝑂 + 𝐶𝑂2    (2.11) 

𝑂2 + 𝑒− →  𝑂2
−          (2.12) 

𝑂2
− + 2𝑂𝐻• → 𝐻2𝑂2 + 𝑂2         (2.13) 

𝑂2
− + 𝐻+ → 𝑂𝑂𝐻•          (2.14) 

𝑂𝑂𝐻• + 𝑂𝑂𝐻• → 𝐻2𝑂2 + 𝑂2        (2.15) 

𝐻2𝑂2 → 2𝑂𝐻•          (2.16) 

Electrons in the conduction band can be rapidly trapped by molecular oxygen absorbed on the 

surface, which is reduced to form a superoxide radical anion (𝑂2
−). This superoxide anion can 

further react with (𝐻+) to generate a hydroperoxide radical (𝑂𝑂𝐻•). These reactive oxygen 

species (ROS) can also contribute to the oxidative pathways, such as the degradation of a 

pollutant; see equation (2.11). Thus, both the photocatalytic oxidation and reduction reactions 

generate powerful radicals for degradation of pollutants that are prone to mineralization in an 

aqueous medium. Alternately, the photogenerated electrons and holes may also be used for a 

variety of applications including water splitting13, solar fuel production14, chemical synthesis15 

and oxidation of air-born pollutants.16 All of which can be powered through sunlight. 

2.1.3 Factors affecting semiconductor photocatalysis 

Not all incident photons interacting with a semiconductor result in the generation of a charge 

pair. The ratio of charge carriers produced to the number of photons intercepted (at a certain 

wavelength) is known as the quantum efficiency of the semiconductor. Moreover, a majority 

of the generated charge pairs could either be trapped as ions or may recombine to generate heat 

(phonon) in the process17. The semiconductor-photon interaction itself is dependent on a 

number of factors including the average cross-section and surface area of the particle as well as 

the wavelength of incident light. The absorption coefficient 𝛼(𝐸) of an idealized semiconductor 

is given by:9 

𝛼(𝐸) = 𝛼0√
𝐸−𝐸𝑔

𝐸𝑔
 (direct semiconductor)       (2.17) 

Or 
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𝛼(𝐸) = 𝛼0 (
𝐸−𝐸𝑔

𝐸𝑔
)

2

(indirect semiconductor)       (2.18) 

In which 𝛼0 indicates the intrinsic absorption of the semiconductor and 𝐸 is the energy of the 

incident photon. Equations (2.17) and (2.18) indicate that photons with smaller wavelength are 

absorbed closer to the surface, whereas visible light (400-800 nm) can penetrate much deeper 

into the material (up to a few microns) before generating a charge-pair. Hence, care must be 

taken while selecting the morphology of the designated catalyst. A lower particle size increases 

the surface area, thereby increasing the number of incident photons and reducing the migration 

distance of electron and holes. However, a larger cross-section improves the photon to charge 

pair conversion ratio. Apart from the issue of photogeneration, other important factors are life-

time of the charge pair and their migration ability within the material.  

To design an efficient and stable photocatalyst for utilization of solar energy, several critical 

requirements must be satisfied. Primarily, the semiconductor responsible for light harvesting 

must possess a band gap large enough to provide energetic electrons, so that Eg >> 1.23 eV, and 

typically Eg > 2.0 eV.18,19 However, the band gap must also be sufficiently small to allow for 

efficient absorption overlap with the solar spectrum, so that Eg < 3.2 eV.18,19 The selection of 

an appropriate band gap is a trade-off between the low band gap (lower REDOX potential, high 

absorption) and the higher band gap (higher REDOX potential, reduced absorption). For 

example, to efficiently generate 𝑂𝐻• radicals an Eg of ≥2.7 eV is required. Furthermore, suitable 

band positions located above and below the hydrogen and oxygen evolution energy levels are 

also important to initiate and sustain several reactions, such as water splitting or hydrogen 

evolution.20 Secondly, there must be a mechanism to efficiently drive the charge separation and 

transportation process. Finally, there should be suitable provisions to protect the catalyst from 

unwanted galvanic reactions, such as dissolution of components into ions or plating from the 

ions in the solution to form surface layers, which can deteriorate or destabilize the material over 

prolonged periods of use. It is generally accepted that pure or intrinsic semiconductors cannot 

satisfy the above criteria.21 Hence, techniques such as band-engineering through doping, 

sensitizers, cocatalysts and creation of heterojunction are often employed. Barring a few 

exceptions, all heterogeneous catalysts can be broadly classified into the following categories: 

(a) doped semiconductor; (b) semiconductor-semiconductor; (c) molecule-semiconductor; (d) 

nano-hybrid; and (e) metal-semiconductor. Each one of these categories has its own set of 

advantages and disadvantages, which will be described in the following section. 
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2.2 Current materials: advantages and disadvantages 

 

Figure 2.5: Typical photocatalytic behavior corresponding to a) semiconductor-

semiconductor b) molecule-semiconductor c) multifunctional or nano hybrid and d) metal-

semiconductor type catalyst. (Figure reproduced with permissions from Ref. 22 © Sustainable 

Chemistry and Engineering, ACS publications, 2017). 

2.2.1 Doped semiconductor 

Doping is the process of introducing controlled (small) amounts of impurity in an intrinsic 

semiconductor leading to the creation of additional electronic orbitals between HOMO and 

LUMO states. These energy states are known as band tails and appear close to the energy band 

corresponding to the dopant type. Dopants which are electron donors create band tails near cb 

while acceptor type impurities introduce energy states near vb. Creation of band tails practically 

lowers the band gap of the material, thereby allowing the material to absorb lower energy 

wavelengths. Additionally, if the dopant-site boding energy is relatively small, thermal energy 

at room temperature is enough to ionize all of the dopant atoms.23 This leads to a higher 

availability of charge carriers which can partially compensate the high recombination rates. 

Finally, un-occupied electronic orbitals act as trap sites for electron/hole, which prevents 

recombination and enables the other species to successfully migrate to the surface. Co-doping 

of two or more ions is also reported where such mechanism imparts favourable overpotentials 

or band positions desired for certain REDOX reactions.24 TiO2 is most widely studied 

semiconductor with respect to doped photocatalysts. Examples include doping with metals (Cr, 
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Eu), non-metals (N, C), and self-doped (Ti3+) catalysts.23,25 Doping is an established science 

and has been successfully employed in several fields of semiconductor technology such as 

transistors (p-n junction). However, doping creates trap states which may act as recombination 

centres for photogenerated charge carriers along with lowering the reduction/oxidation 

potential of generated radicals. As doping alone is unable mitigate all the drawbacks associated 

with semiconductor photochemistry, creation of heterostructures is employed. 

2.2.2 Semiconductor/semiconductor  

As the name implies, a semiconductor/semiconductor (S/S) catalyst is composed of two 

different semiconducting materials with different band gaps but with an overlap of either the cb 

or vb positions, see Fig 2.5a. This allows the lower band gap semiconductor to absorb in the 

visible region and pump energetic charge carriers into its partner. Furthermore, the resulting 

difference in Fermi energy creates a Schottky junction at the interface which effectively resists 

charge recombination.26 This Schottky or heterojunction can be of two types. A junction can be 

labelled as type-A when the conduction band of the sensitizer is located higher than that of the 

base semiconductor. In this case, the photogenerated electrons are transferred from the cb of 

the sensitizer to that of the catalyst. This high availability of electrons makes such an 

arrangement ideal for carrying out reduction reactions with chemisorbed acceptor type species. 

In an aqueous medium, this can give rise to superoxide radicals and can also be employed for 

hydrogen production. However, a higher availability of holes is of benefit for pollutant 

degradation, which can be achieved in the type-B junction. A type-B junction is created when 

the valence band of the sensitizer is lower than that of the primary catalyst. Such an arrangement 

allows some of the electrons from the vb of catalyst to be transferred to sensitizer. This creates 

an imbalance of charge which allows preservation of available holes in the catalyst vb to be 

used for oxidation reactions. Finally, depending upon the nature of the REDOX reactions and 

pollutants, a co-catalytic effect can also be observed. An example of such an arrangement 

includes titania and nickel/cobalt compounds,27 TiO2-CdS,28 TiO2-ZnO29 and CdS-CdSe30 

among others. Hence, this combination offers advantages which can overcome some of the 

associated problems described above. However, the lower band gap semiconductors are 

generally less stable in a corrosive environment and prone to galvanic reactions at its surface, 

which reduces catalyst lifetime.31 Surface passivation can be used to improve chemical stability 

but often results in reduced performance;32 hence, the issue of chemical stability still needs to 

be addressed.33 
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2.2.3 Molecule/semiconductor 

Another approach to acquire surface passivation, photosensitization and a cocatalyst effect 

involves binding the host semiconductor to co-catalytic molecules, see Fig 2.5b.34 Fig 2.5b 

shows how the molecular catalyst helps to sensitize the semiconductor towards visible light 

absorption and allows rapid charge transfer between the surrounding dielectric medium and the 

depleted charge carriers on the catalyst surface. The molecular catalysts, which can be organic 

or inorganic in nature, act in a similar manner to that in a dye-sensitized solar cells.35 A good 

example is chlorophyll, which is responsible for the green pigmentation in plants and aids 

photosynthesis.35 Catalytic molecules are often used to suppress recombination of 

photogenerated charge carriers and facilitate rapid charge transfer. Furthermore, this step can 

also enable protection of the photocatalyst from oxidation, thereby prolonging the operational 

lifetime.36 Molecular cocatalysts can be further subdivided into two individual classes 

depending upon the nature of interaction between the molecules and the host semiconductor. 

Type 1 catalysts include an arrangement in which the molecules are simply anchored to the 

semiconductor surface.37,38 In contrast, Type 2 catalysts are created if there exists a distinct 

chemical bonding between the molecules and semiconducting phase.39 Molecular catalytic 

systems possess several advantages over traditional heterogeneous materials; these systems are 

highly selective towards the adsorption/desorption of reactant species and products. This 

characteristic enables the desired REDOX reaction to proceed at a much faster rate. 

Furthermore, a better surface distribution requires lower loading percentages as opposed to 

other catalyst classes.40 Finally, these systems have highly reduced REDOX overpotentials, 

which allows them to operate at efficiencies that are superior to bulk or nano-scale systems.40,41  

Molecular systems are also employed as sensitizers to enable large band gap semiconductors to 

absorb and utilize visible light.42 The dye reacts to visible light by producing electrons, which 

are then injected into the conduction band of the semiconductor, see Fig 2.5b. In return, the 

oxidized dye can be returned to its original state by accepting electrons from the donor species 

in the reaction. However, this mechanism places a limitation on the speed of REDOX reactions 

and the dye is exposed to potentially unwanted galvanic reactions. In some instances, these 

molecules also exhibit synergistic effects.39,43 For example hydrogenases, including [Ni-Fe] or 

[Fe-Fe] hydrogenases, have been widely studied as cocatalysts for photogeneration of H2.
44-46,47 

However, there are limits in terms of the long-term stability of the catalyst or cost-effective 

production techniques.47 Furthermore, the degradation products of the dye(s) are often 

toxic/carcinogenic in nature and present a disposal hazard. Hence, until the issue of long-term 

stability and recyclability of dye is addressed, large scale deployment cannot be realized. 
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2.2.4 Multifunctional or nano-hybrids 

As the name suggests, this category includes multi-component and nano-scale architectures. 

However, their distinguishing feature is that each component serves a specific purpose in the 

overall structure. Since a designated shape, geometry and chemical composition are obtained, 

several benefits can be achieved simultaneously. These include desired REDOX reactions, 

efficient photogenerated charge transfer, enhanced catalytic activity and prolonged stability. 

Photocatalyst systems based on BiOCl-Au-CdS,22 CdS-Au-TiO2
48 and CdS-Pt-TiO2

49 are 

example of such heterostructures. The photocatalytic performance of such materials far exceeds 

that of TiO2 alone. Integration of multiple semiconductors or cocatalysts with an appropriate 

architecture allows functionality unattainable within a single material. For example, Fig 2.5c 

shows the BiOCl-Au-CdS system, where BiOCl is a large band gap catalyst that is sensitized 

by the lower band gap CdS through an Au junction which facilitates rapid charge transfer and 

prevents the photodegradation of CdS in the process. This methodology has been used to 

address some critical and fundamental challenges in the field of photocatalysis. The modular 

approach associated with fabrication of nano-architectures makes it the most appealing method 

for producing catalysts with specialized or tailored properties. This makes them a promising 

candidate for development of competitive photocatalytic technology. However, since the 

fabrication of nano-structures is often a multi-step and bottom-up approach, the difficulty and 

cost of fabrication scales with complexity and number of participating heterostructures. 

Additionally, majority of these nanomaterials are fabricated through wet chemistry, which 

requires the use of high purity precursors. Hence, the overall cost of production for such 

catalysts is exceptionally high. If the economics of fabrication can be resolved, this technique 

is potentially lucrative for wide-scale applications. 

2.2.5 Metal/semiconductor 

Nobel or rare-earth metals which are bonded with traditional semiconductors, have been 

reported to provide several benefits including band-bending, surface plasmonic resonance, 

Schottky junction and enhanced scattering and absorption.17,44,50,51 As described by Zhang et al, 

the metal can be in solo, embedded, encapsulated or isolated form, as in Fig 2.5d.52 Noble 

metals (Au, Ag, and Pt) are often used owing to their inertness in chemically aggressive 

environments. This is important, as the sole purpose of these photocatalysts is to retain the 

metallic characteristic, whereas oxidation of the element will give rise to semiconductor-

semiconductor type catalyst, as in Fig 2.5a.  
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When the metal clusters form a close-contact with the host semiconductor, it gives rise to a 

Schottky junction.53 However, unlike traditional semiconductor bonding, this junction allows 

for the separation of photogenerated charge carriers by acting as an electron reservoir.53,54 This 

lowers the probability of recombination, thereby allowing for more charged species to migrate 

to the surface and initiate catalysis. Secondly, these metals often have their own co-catalytic 

properties.55 Hence, their incorporation also attempts to reduce the overpotential for surface 

photochemical reactions. Finally, the abundant availability of free conducting electrons at the 

metal/water dielectric interface allows these metal clusters to display surface plasmon 

resonances (SPR).56 Localized SPR, or LSPR, is observed when the interacting light has a 

wavelength comparable to the cluster size.52 In the presence of a suitable dielectric medium, 

such as water, this generates a resonance in the surface electrons of the metal which results in 

a very high energy transfer. These ‘hot-electrons’ can easily overcome the forbidden zone of 

the Schottky junction and can be used for surface reduction reactions, while the metal itself can 

replace the lost electrons from the surface adsorbed species. LSPR is highly dependent on the 

size and shape of the metal cluster employed and hence, can be easily tuned to absorb specific 

wavelengths. This allows superior control over the light absorption characteristics of the 

metal/semiconductor pair without the need to alter their chemistry. LSPR and plasmonic 

catalysis is a growing field and there already exist several reviews on the topic.52,56,57 In brief, 

the most commonly employed nanoclusters are based on Ag, Au, and Pt, while the 

semiconductors used for evaluation have included TiO2, CdS and Fe2O3.
52,56 Several 

morphologies can be obtained, and a classification involves either asymmetric, axis-symmetric 

or core-shell structures. However, the use of noble metals and wet-chemistry techniques, often 

employed to fabricate these catalysts, makes them expensive and places them at a commercial 

disadvantage. This can be overcome by simplifying the fabrication process and shifting the 

focus to employ more earth-abundant elements, such as copper. Also, LSPR is only useful when 

the host semiconductor is insensitive or weakly sensitive to incident light. If the incident 

photons are energetic enough to trigger significant photogeneration in the primary catalyst, 

LSPR is not observed and the metal cluster is only employed as an electron reservoir. Hence, 

such configuration is highly selective with respect to incident wavelengths and care must be 

taken while designing such catalysts.  

2.3 Selected applications for photocatalysis 

2.3.1 Water treatment 

Even though pure water does not have any nutrients or caloric value, it is essential for 

supporting all known life forms on our planet. Water in its pure form is a transparent, tasteless, 
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colourless and odourless liquid which covers about 71% of earth’s surface.58 However, 96.5% 

of all surface water is contained in the ocean and consequently unfit for human consumption. 

Of the remaining 3.5% fresh water, 1.74% is stored as permafrost (snow, ice and glaciers) while 

the remaining ~1.69% is potable ground water which is used to support the entirety of global 

population (7.6 billion people). 

According to WHO, an average human being needs a minimum of 20 L potable water per day 

just to meet the basic hygiene and food requirements.59 Water is also required for other purposes 

such as food production, cleaning, cooking and industrial processes. Hence, it is very important 

to ensure that a minimum acceptable quality of water is always available for everyone. 

However, even in 2018 approximately 844 million people (~11% of global population) lack 

access to clean water.60 Water pollution has been linked to more than 14000 deaths each day 

and is considered as one of the leading causes of death and diseases in the world.61 Furthermore, 

the majority of the population affected by this global water crisis is concentrated in developing 

economies. An estimated 580 people in India die daily due to polluted water, while 90% of the 

water in major cities of China is severely polluted. Growing economies, population and industry 

in these areas are all responsible for such dangerous levels of water pollution. Other practices 

such as surface run-off, agricultural discharge, lack of proper sanitation and water treatment 

plants also contribute to polluting of fresh water sources. Fig 2.6 shows a map of the world 

depicting the percentage of population with access to improved water sources. 

 

Figure 2.6: Global population (%) with access to improved water sources. Reproduced with 

permission from Ref. 60 
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Contaminants or pollutants encompass a wide spectrum of pathogens and chemical compounds, 

a majority of which may be naturally occurring in water bodies. Hence, a pollutant can be 

defined as any substance above/below a certain concentration such that its presence/absence 

can pose an environmental and biological hazard. Nevertheless, water pollutants can be mainly 

classified as biological (pathogens) or chemical (compounds). Pathogens are micro-organisms 

(bacteria, virus and worms) responsible for causing and spreading disease in plants, animals 

and human beings. A few common examples include E. coli, Salmonella and Norovirus. 

Conversely, any chemical compound which is toxic or causes adverse effects can be classified 

as a chemical pollutant including detergents, insecticides, pesticides, pharmaceuticals and 

industrial by-products including textile dyes. Traditional methods for pollutant removal such as 

chemical treatment and mechanical filtration are energy and cost intensive, with any direct 

return on investment recouped only in the longer run.62 However, one key challenge in 

employing such systems is the vast infrastructure required for the collection and redistribution 

of pollutant and treated products, respectively.63 The problem is further aggravated due to the 

generation of chemical by-products which demand specialized disposal.64 Hence, it would be 

economically and energetically beneficial if in-situ treatment of a majority of pollutants could 

be undertaken with minimum energy input and unwanted by-products. Of the currently 

available and researched technologies, solar photocatalysis is potentially capable of meeting 

these stringent requirements.65,66  

Primarily, photocatalytic water treatment relies on the generation of powerful ROS such as 

hydroxyl radicals, superoxides, and peroxides (section 2.1.2) which can oxidize/mineralize a 

variety of organic, inorganic and biological contaminants. Most dissolved pollutants can be 

degraded through attack with these ROS provided their reduction/oxidation potential lies within 

the band edges of the employed semiconductor. The advantage of employing photocatalysis for 

water treatment lies in its simple construction, portability, need for minimum infrastructure and 

availability of free and abundant solar energy.67 Another important aspect favouring the 

development of photocatalytic water treatment plants is the non-selectivity of ROS towards 

chemical and biological pollutants.65 Hence, a single treatment can be applied to remove and/or 

inactivate a host of pollutants. Therefore, suitable development and integration of 

photocatalytic water treatment is being viewed as an important step towards the development 

of a cleaner and sustainable future. 

Aqueous dye degradation is one of the most commonly employed tests for discerning the 

catalytic activity of any semiconductor. Organic dyes are employed in a variety of industries 

including textile and printing, but a large portion of untreated dye solution is often released as 
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an industrial effluent. The presence of dyes even in low concentrations can affect the quality of 

water adversely.65 As majority of these dyes are not biodegradable, chemical treatment is often 

used for their removal. Photocatalysis can be used to mineralize/degrade aqueous dye solutions 

in the presence of actual or simulated sunlight.68 If sufficient time is provided, most organic 

pollutants can be oxidized to produce carbon dioxide and water as the ultimate products. The 

presence of aqueous dyes can be easily identified due to their absorbance in the visible region. 

However, there are other classes of chemical compounds which are invisible to the naked eye. 

Cosmetics, pharmaceuticals (prescription and non-prescription) and agricultural products like 

fertilizers/insecticides can lead to disastrous effects such as eutrophication, endocrine 

disruption and development of anti-microbial resistance.65 These are often hard to detect by the 

naked eye as they do not absorb in the visible region. Further, since these chemicals originate 

from a non-point source unlike industrial discharge, their collection and treatment is 

challenging. In this regard, non-selectivity of ROS generated in aqueous photocatalysis can lend 

a strategic advantage towards their elimination using natural sunlight.69 The final category of 

pollutants consists of microbes such as bacteria, virus and fungi, which can spread water-borne 

diseases upon coming in contact with contaminated water.70 Unlike chemical pollutants and 

industrial discharge, growth of microbes in wastewater is mainly linked to improper handling 

of sewage and sanitation products. Direct release of untreated sewage into water bodies gives 

these microbes an ideal environment for unchecked growth, in which they can multiply rapidly 

and disturb the ecosystem of the whole region. This problem can be further aggravated by the 

presence of fertilizers and pharmaceuticals, which can lead to eutrophication, and mutation of 

these pathogens to develop resistance to antibiotics. Photocatalytic treatment of waste water for 

the removal of microbial impurities has already been investigated on a large scale.70 

Photocatalytic disinfection of pathogens proceeds either through generation of ROS or metal 

ion formation. The ROS and metal ions attack the outer membrane and cell wall affecting the 

permeability of cell. Breach of the cell wall is followed by lipid peroxidation of the cytoplasmic 

membrane ultimately causing the cell to deactivate.70,71 Fig 2.7 gives a graphical representation 

of the possible mechanisms by which photocatalytic bacterial inactivation can be accomplished.  
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Figure 2.7: Possible mechanism for photocatalytic inactivation of bacteria. Reproduced with 

permission from Ref.70 

TiO2 (anatase) has been widely investigated as a potential catalyst for removal of disinfection 

and removal dissolved impurities from large water bodies because of its non-toxic nature, 

chemical and physical stability and a suitably high cb potential.70,72 However, owing to its high 

band gap, charge recombination and poor activity in the visible light, there is a huge body of 

science dedicated towards the development of other candidate materials for photocatalytic 

water treatment using visible light.65 Nevertheless, owing to its inherent advantages and 

economic viability, TiO2-based materials remain one of the strongest contenders for the 

development of practical photocatalytic water treatment technology.66 

2.3.2 Hydrogen production 

Hydrogen is one of the cleanest fuels available and can be generated using abundant solar 

energy and water. Currently, majority of the hydrogen is produced through catalytic 

decomposition of fossil fuels or electrolysis of water using electricity which is often produced 

using fossil fuels.73 However, these are not cost-effective methods and the hydrogen so 

produced is generally used for industrial applications rather than utilization as a fuel.73,74 

Furthermore, utilization of fossil fuels for hydrogen production is not a sustainable method. 

Water splitting can be used to generate large quantities of pure hydrogen in a sustainable 

manner. This can be accomplished through various techniques all of which utilize solar energy, 

as explained in Fig 2.8. However, energy conversion from one form to another appends to the 

irreversibility of the process and hence, the compounded efficiency of these models is low. 

Therefore, it would be very economical if we could utilize solar energy for direct splitting of 
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water. Heterogeneous photocatalysis presents an efficient method for the same. However, the 

prohibitively high cost of noble-metal cocatalysts and the lack of economical and stable systems 

has long prevented this concept from commercialization.  

 

Figure 2.8: Methods of (solar) hydrogen production.  

UV-assisted water splitting on a TiO2-based photoanode was first demonstrated by Fujishima 

and Honda, in 1972.75 This work was further built upon by Bard who laid the foundation for 

particle based heterogeneous photocatalysis.15 Since then, a variety of semiconductors 

including ZnO76, CdS77, GaP78 and ZnS79 have been tested for solar hydrogen production. The 

ability to control the structure and functionality of semiconductor particles at nanoscale has 

enabled the use of cheaper earth-abundant materials with a significantly improved quantum 

efficiency. However, development of competitive photocatalytic technology requires a solar-

to-hydrogen conversion efficiency of 15%80 which is much higher than what can be achieved 

using current-state-of-the-art photocatalysts. However, this target could be readily achieved by 

a smart combination of photovoltaic technology and efficient electrocatalysts,81 

photoelectrocatalysis under concentrated sunlight,82 and a reduced component cost.83 For 

photocatalytic systems, the target could be met by efficient upconversion of NIR light which 

could participate in photocatalysis.84 

Photocatalytic water splitting or photolysis is not a single step process but rather made up of 

two half reactions namely the hydrogen evolution reaction (HER) and oxygen evolution 

reaction (OER). Equations (2.19) and (2.20) describe the mechanisms for each half reactions 
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for the HER and OER respectively, whereas equation (2.21) gives the overall Gibb’s free energy 

(∆𝐺𝑜) and REDOX potential (∆𝐸𝑜) of the whole process.51 

2𝐻+ + 2𝑒− → 𝐻2(𝑔)(∆𝐸𝑜 = −0.41 𝑉 )      (2.19) 

2𝐻2𝑂(𝑙) → 𝑂2(𝑔) + 4𝐻+ + 4𝑒−(∆𝐸𝑜 = +0.82 𝑉)     (2.20) 

𝐻2𝑂(𝑙) → 𝐻2(𝑔) +
1

2
𝑂2(𝑔)(∆𝐺𝑜 = +237.2 𝑘𝐽𝑚𝑜𝑙−1;  ∆𝐸𝑜 = +1.23 𝑉)  (2.21) 

Equations (2.19) to (2.21) indicate that the OER is the limiting factor, requiring four electron 

oxidation of two water molecules. To achieve successful water splitting the lowest edge of the 

cb (LUMO) should be slightly below the reduction potential of H+/H2 (0 V against NHE at pH 

7). Similarly, the highest edge of vb (HOMO) should be higher than the oxidation potential of 

H2O/O2 (1.23 V against NHE). Further, the minimum energy required to achieve water splitting 

places the lower limit of the band gap (Eg) to be >1.23 eV (absorbing <1000 nm wavelength). 

In theory, any semiconductor fulfilling these requirements will be able to achieve un-assisted 

splitting of pure water (pH 7) in the presence of energetic photons. However, in practical 

application the energy required to achieve water splitting is significantly more owing to several 

factors including sluggish reaction kinetics, imperfect crystal geometry, surface adsorption, 

recombination and back reactions. The difference between the minimum required energy and 

the practical requirements of a given system is known as its overpotential. Hence, for practical 

photocatalytic water splitting Eg of the material should lie in the range of 1.5-2.5 eV (Fig 2.9). 

 

Figure 2.9: (a) Required positions of the conduction and valence band for efficient HER and 

OER reactions and, (b) band-gap energy of the semiconductor materials with respect to the 

electromagnetic spectrum. 

An ideal semiconductor should be able to achieve pure water splitting with H2 and O2 gas being 

the only end products of the reaction in a strict stoichiometric ratio of 2:1. Even though TiO2 is 

one of the most investigated photocatalytic materials, its cb edge of -0.5 V versus NHE makes 

it a poor catalyst for hydrogen production. Hence, other candidate materials have been 
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investigated for the purpose of solar hydrogen production including halides, nitrides and 

sulphides of transition metals.85,86 Recently, CdS has emerged as one of the most important 

hydrogen evolution photocatalysts. It has a narrow band gap of 2.4 eV which allows it to absorb 

visible light along with an ideal cb edge of -0.9 V (vs RHE) enabling generation of energetic 

electrons for water reduction.87 However, CdS suffers from fast photocorrosion attributed to 

autooxidation of Cd-S bonds from cb electrons resulting in its poor stability.88 Hence, CdS is 

often employed with metal nanoparticles or other cocatalysts which can act as an electron 

sink.89 Further details about techniques adopted to improve the efficiency and stability of these 

semiconductors have already been discussed in section 2.2. Alternately, several good reviews 

are available in the literature dealing with recent advances and challenges in the field of 

photocatalytic water splitting.45,80,85-87 However, even with advance nanostructured and noble-

metal cocatalysts, solar water splitting is a difficult task as intermediates for both HER and 

OER reactions are unstable and tend to undergo fast recombination to form water. Hence, most 

water splitting reactions are performed in the presence of sacrificial agents to suppress the 

backward reaction and isolate either H2 and O2 gas as the end product. For HER, the sacrificial 

agents traditionally consist of alcohols, which are consumed during the reaction. However, 

other compounds such as alkali carbonates90, sulphates and sulphides have also been reported.91 

In case of the OER, nitrates of silver and iron have been employed as sacrificial electron traps 

to suppress the formation of hydrogen.91 In order to achieve complete water splitting without 

the need for sacrificial agents the semiconductor must contain sites for both hydrogen and 

oxygen evolution, and these reaction sites must be physically separated. There have been a few 

reported examples of such system which are capable of achieving pure water splitting by 

inclusion of sites for both hydrogen and oxygen evolution. One of the landmark examples in 

this field has been reported by Duonghong et al. who fabricated colloidal TiO2 particles co-

deposited by ultrafine Ru2O and Pt particles.92 Pt being an electron reservoir acted as a site for 

hydrogen evolution while Ru2O facilitated hole transport from the vb of TiO2 to the particle 

surface. Consequently, a high quantum yield of 30% was reported under UV (300 nm) 

illumination. Recently, a few studies have reported the fabrication of ‘Janus’ particles for 

overall water splitting. The term ‘Janus’ is derived from the two-faced god in Roman mythology 

and, in materials science, is often used to identify biphasic heterodimer geometries which 

exhibit a clear anisotropic distinction between the two constituent phases. Zheng et al. 

fabricated a hollow carbon nitride nanosphere functionalized with Pt and Co2O3 nanoparticles 

on its interior and exterior surfaces, respectively.13 Janus nanospheres with an optimized 

loading concentration (1 wt.%) of cocatalysts could achieve almost stoichiometric (H2/O2=2.1) 

water splitting in the absence of sacrificial agent under UV illumination (λ>300 nm). In another 
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recent study, authors reported the fabrication of a Janus z-scheme based on γ‐MnS and Cu7S4.
93 

The bare Janus catalyst could achieve a quantum efficiency of 18.8% for hydrogen evolution 

under visible light in the presence of sacrificial agents. To achieve complete water splitting the 

Janus particles were deposited with MnOx cocatalyst for oxygen evolution. These modified 

Janus particles displayed an apparent quantum efficiency of 5.5% (420 nm) for overall water 

splitting without the need of any sacrificial agents. To date this remains one of the few studies 

dealing with photocatalytic overall water splitting using visible light. However, for preliminary 

investigations, the use of sacrificial agents remains a popular method.51  

2.4 Titania-based photocatalysts 

Titanium dioxide or titania (TiO2) is one of the oldest known photoactive oxide semiconductors. 

The first reported photoactive effects of TiO2 date back to 1920, when Renz reported darkening 

of the material under UV radiation.94 However, it was only after the discovery of water-splitting 

activity of TiO2 photoanode, reported in 1972, that TiO2 based photocatalysis came into 

limelight.75 According to Scopus, as of the submission of this thesis, over 50,000 articles have 

been published in the field of photocatalysis out of which ~32,000 (63%) are based on TiO2 in 

a direct or indirect manner. Presently, TiO2 has become the ‘gold standard’ for comparison of 

photoactivity for novel catalysts and still remains one of the most heavily investigated oxide 

photocatalyst till date.23 There are several reasons responsible for the success of TiO2-based 

materials in the field of photocatalysis. Primarily, titanium is fourth most abundant metal in 

earth’s crust which translates to high availability and economy of production.95 Titania in 

mineral form is evenly distributed over the globe which allows competitive production free 

from geo-political influence.96 Fig 2.10 gives a graphical description of the global titania 

reserves. Processed TiO2 is mined and used for a variety of application including production of 

pigments, plastics, cosmetics, optical and hydrophobic surfaces among others. The oxide 

industry itself is estimated to be worth USD 13.2 billion97. Furthermore, processes required for 

production, purification, size control and chemical modification of TiO2 is an established body 

of knowledge. Apart from this, TiO2 also possesses several other advantages including low 

toxicity, high thermal and physical stability, resistance to corrosion and photodegradation and 

chemical inertness in a wide range of acidic and basic media. All these factors have contributed 

heavily towards rapid development of TiO2 based photocatalysts. 
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Figure 2.10: World map depicting global titania reserves. Adapted from Ref.96 

The most abundant forms of titania are rutile, anatase and brookite. Of these, only rutile is stable 

at room temperature, whereas both anatase and brookite are metastable and revert back to rutile 

phase when heated to 600-800 oC.98 Of these, only anatase has been primarily investigated for 

photocatalytic applications. Anatase TiO2 is a brilliant white mineral possessing tetragonal 

crystal structure and an optical band gap of 3.2 eV. Comparatively, rutile TiO2 is also a 

tetragonal crystal and has a slightly lower band gap of 3.0 eV. However, the band positions for 

anatase are favourably placed with respect to a variety of desired REDOX reactions including 

hydrogen evolution, which makes it favourable to employ it as a photocatalyst.  

 

Figure 2.11: Crystal structure for polymorphs of TiO2: anatase, rutile and brookite. Adapted 

with permission from Ref.23 
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However, pristine TiO2 (anatase) has several disadvantages associated with its use. Primarily, 

its large band gap of 3.2 eV corresponds to absorption capacity of wavelength λ≤ 380 nm. This 

means that the material can only utilize UV radiation for photogeneration of charge carriers. 

UV radiation only constitutes ~5% of the total incident solar energy. Hence, TiO2 is unable to 

employ a large fraction of the available energy, putting it at a significant disadvantage. 

Moreover, the quantum efficiency of pure TiO2 is low, meaning a large fraction of the incident 

photons are unable to produce charge carriers. Finally, majority of the charge carriers produced 

are lost due to the high recombination rate of unmodified anatase TiO2. Hence, a large body of 

science has been dedicated to sensitizing TiO2 towards visible light, improving charge carrier 

life-time and mitigating the high recombination rate.23 The three primary methods for 

improving photocatalytic performance of titania include doping, sensitization, and creation of 

heterostructures. A brief overview of these methodologies has already been provided in section 

2.2. However, different applications require production of TiO2 composites with tailored 

properties. Recently, with the discovery of LSPR effects, a large number of noble-metal and 

titania based catalysts have been reported.56,99 Given the high visible light activity and good co-

catalytic effects of metal nanoparticles, this approach has developed rapidly over the last 

decade. However, the fabrication cost of such catalysts is high and hence, any attempts at large 

scale production are self-limiting in nature. Therefore, a practical approach for developing 

economically viable photocatalyst will involve modification of TiO2 with earth abundant 

elements. In this regard, this study deals with development, optimization and investigation of 

two specialized TiO2 nanocomposites. In this entire study, the term nanocomposite is used to 

denote nanoparticles of TiO2 containing a cocatalyst, whereas the photocatalysts themselves 

are powders which were dispersed in an appropriate aqueous solution. First composition, which 

is a carbon-coated TiO2 has been developed for water treatment through rapid degradation of 

dissolved impurities and inactivation of bacteria. The second composition focuses on 

development on nickel nanostructures for efficient solar hydrogen production. A brief literature 

review of both categories is presented below.  

2.4.1 Carbon-TiO2 composites 

Carbon is the 15th most abundant element in Earth’s crust and forms the basis of all life forms 

on our planet.95 At present, carbon-based fossil fuels power most of our technology and 

transportation. Rapid release of stored carbon (in oxide form) is also the biggest source of air 

pollution in the world and the main gas responsible for climate change.100 However, carbon 

might also be the solution to harnessing the free and abundant solar energy and mitigating the 

air and water-based pollution. Carbon, due to its unique bonding properties can exist as different 
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allotropes including amorphous, graphene and diamond. With contemporary advancement in 

fabrication and imaging techniques, researchers have successfully engineered these allotropes 

at their most fundamental level to produce exotic carbon nanomaterials including nanotubes101 

and fullerene.102 Further functionalization of these nanostructures has allowed us to tap into a 

wide range of unprecedented physical and chemical attributes which are not encountered in any 

other material class. The scientific and technological ramifications have been huge, including 

the field of photocatalysis.103 Primarily, there are three different methods for creating carbon 

and TiO2-based photocatalysts. These include doping with carbon,24,104 coating with carbon,105-

107 and mounting onto carbon nanostructures such as graphene,108 reduced graphene oxide,109 

nanotube (CNT),110 fullerene,111,112 and recently carbon-nitride.113  

Among the potential non-metallic dopants for TiO2, carbon has received considerable attention. 

This can be credited to its low cost and toxicity, and demonstrated ability for both band gap 

reduction and improved absorption of visible light.24,103,107,112 Furthermore, compared to the 

most investigated non-metallic dopant nitrogen (N), C seems to be beneficial.24,114 C-modified 

TiO2 has been investigated for a host of applications including photoelectrochemical water 

splitting114,115, mineralization of dissolved pollutants24,116 and anti-bacterial treatment.104 

However, modification attempts with elemental C have met with limited success and hence, 

only a few studies have been reported compared to other dopants. This can be partly credited 

to the incompatibility of C with TiO2 lattice24 along with the high temperature and pressure 

requirements to produce such materials. The commonly employed methods to produce TiO2-C 

composites entail flame-pyrolysis114, high temperature sintering105, hydrothermal117 or sol-gel 

approaches.24 Furthermore, usually an external carbon source is required and offers little control 

over the degree or placement of C atoms. Carbon as a dopant can exist as both: a substitutional 

anion114 or an interstitial cationic impurity.118 As a substitutional anion it tends to form Ti-C 

bonding with an oxidation state of -4. Similarly, as a cation it exhibits an oxidation state of +4 

as a carbonate in C-O configuration. However, in any carbon-based material both may be 

present with varying degrees.119 This uncertainty has led to different studies reporting 

conflicting findings and claims over the mechanism for enhancement of photocatalytic activity, 

expressed either as band gap reduction or from enhanced absorption. The energy levels 

associated with Ti-C120, O-Ti-C117, C-O121 and C-C122 bonds all lie well within the HOMO and 

LUMO levels of pristine anatase TiO2. Hence, the presence of either one of more of these states 

could directly contribute to the lowering of band gap and corresponding change in optical 

absorption characteristics. However, another theory states that inclusion of C into TiO2 matrix 

could give rise to oxygen vacancy defects.123 These defects act as colour centers and are 
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responsible for the change in absorption spectra without necessarily altering the band gap. 

These facts coupled with the exhaustive number of reported synthesis techniques has created 

much controversy and debate over the subject matter. Nevertheless, over the last 15 years a 

number of published studies have indicated the beneficial effects of incorporating C in titania 

based photocatalysis. 

One of the seminal articles in the field dates back to 2002 in which Khan et. al demonstrated 

the high photoactivity of C doped photoanode for photoelectrochemical water splitting.114 A 

maximum total conversion efficiency of 11% was reported, which was an order of magnitude 

higher than undoped electrode. However, it was in 2007 that an actual direct comparison of C-

doped TiO2 was made with both pristine and N-doped TiO2 as a standalone photocatalyst.24 

Chen et al. systematically investigated the effects of both individual and co-doping of TiO2 with 

N and C at varying percentages, prepared through sol-gel approach. Visible light degradation 

of methylene blue solution indicated that C-doped TiO2 is significantly better than N-doped 

TiO2, whereas the highest activity was displayed by the co-doped sample. However, sol-gel 

fabrication technique is time and cost-intensive and alternate economic methods are required 

for the production of photocatalysts. This issue was addressed by Dong et al. who reported a 

‘green’ approach for the synthesis of C-doped TiO2
117. The process involved dissolving known 

quantities of Ti(SO4)2 and glucose in water as precursors for titania and carbon, followed by 

hydrothermal synthesis at 160 oC for 12 H. The fabricated mesoporous catalyst was reportedly 

17.6 times better than P25 Degussa under visible radiation for degradation of gaseous toluene.  

Apart from doping, another popular configuration is a carbon coating on TiO2 particles to 

produce a core-shell configuration. A layer of graphitic carbon over a titania shell can impart 

several benefits unobtainable from doped configurations. These include improved surface 

absorptivity of chemical species in an aqueous environment and a higher surface area which 

leads to the generation of more active sites for potential REDOX reactions.105 Another 

important advantage is that graphitic carbon may enhance absorption in the visible spectrum 

due to electronic coupling of π electrons with cb states of TiO2.
107 Additionally, since carbon 

incorporation helps absorb visible light, a smaller particle size may be employed since the light 

does not need to travel further. Hence, with all these benefits, it is expected that a TiO2-C core-

shell structure would exhibit superior catalytic activity. An example in this regard was 

demonstrated by Shanmugam and coauthors who prepared core-shell structure through thermal 

dissociation of titanium(IV) oxyacetyl acetonate monohydrate under high-pressure using a 

custom made cell.105 The carbon content in the prepared catalyst varied with calcination 

temperature between 32.8% to 36.7% (900 oC to 700 oC). All catalysts performed better than 
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P25 for visible light degradation of methylene blue. However, the large carbon content and high 

temperature and pressure required for the synthesis makes the approach less than ideal. This 

method was further improved upon by Zhang et al. who surface functionalized P25 with a few 

molecular thick layer of graphitic carbon.107 The functionalization was carried out by 

hydrothermal treatment of P25 in a glucose solution. Under UV radiation, the particles 

performed twice as better than untreated P25 for formaldehyde degradation, while also 

displaying significant activity in visible light. Recently, other forms of TiO2-C core-shell 

structures have also been reported including nano-graphene covered TiO2
106 and inverse TiO2-

C configuration.124 However, to the best of our knowledge, a single method for facile, in-situ 

production of TiO2-C core-shell particles has not yet been reported. 

All other configurations of carbon-titania catalyst can be classified as mounting of TiO2 on 

functionalized and unfunctionalized nano-carbon structures. Since the available configurations 

and preparation techniques differ vastly, it is not possible to provide an exhaustive review of 

the same. Hence, only a brief description will be provided. Ever since Iijima broke ground for 

their development,125 CNTs have rapidly developed from being a scientific curiosity to having 

a host of practical applications such as structural support, functional probes, and energy storage 

and conversion.101 CNTs have also been widely investigated in the field of heterogeneous 

photocatalysis due to several inherent advantages. Both single wall (SWCNT) and multi wall 

(MWCNT) possess exceptionally high surface area in the range of 400-900 m2g-1 and 200-400 

m2g-1, respectively.126 Thus, combination with CNT increases the available REDOX sites 

manifold. Additionally, depending on the rolling vector, CNTs can be made to display all 

manners of electrical characteristics from conducting to insulating.127 This combined with the 

ability to functionalize its surface area makes CNTs highly advantageous for selective 

catalysis.128 CNTs have also been reported to suppress recombination of photogenerated charge 

carriers in TiO2, through the formation of a Schottky junction as well as acting as an electron 

sink.129,130 There have also been reports where CNTs have been employed as photosensitizers 

allowing TiO2 to absorb photons in the visible region.131 The reported TiO2-CNT configurations 

include TiO2 dispersed on SWCNT and MWCNT,129 SWCNT and MWCNT on larger TiO2 

particles,129 TiO2 coated CNTs131 and intermixed nanotubes132 among others. 

However, in the field of heterogeneous photocatalysis attention has recently shifted from CNT 

to its fundamental form of graphene133 and its derivatives graphene oxide (GO)134 and reduced 

GO (rGO).135 Individual graphene sheets have a staggeringly high surface area of 2600 m2g-1 

owing to their two-dimensional structure.136 Moreover, carefully prepared graphene sheets 

demonstrate a concomitantly high electron mobility of up to 15000 m2v-1s-1 making them 
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exceptional conductors and an excellent electron sink.137 Their monoatomic thickness allows 

them to retain high transparency138 and being chemically bonded to the surface hydroxyl groups 

of TiO2 also allows narrowing of band gap.139 This sensitizes TiO2 towards visible light as well 

as forming a heterojunction thereby, greatly suppressing electron-hole recombination.134 

Furthermore, the surface can also be functionalized to impede or accelerate certain reactions 

with targeted REDOX sites.140 Graphene can also be readily oxidized to produce GO which can 

be used as an on-demand semiconductor-semiconductor junction and further reduced to form 

rGO.141 Hence, graphene can impart all the benefits of CNT at a much higher scale. 

Comparative analysis has revealed that indeed for the same amount of carbon percentage 

graphene-TiO2 composite can readily outperform CNT-TiO2 catalyst under similar 

conditions.139 Other nano-carbon morphologies investigated for titania based heterogeneous 

photocatalysis include graphitic carbon nitride142 and fullerene among others.103 However, there 

are relatively fewer studies in this area.  

2.4.2 Nickel-TiO2 composites  

One of the primary reasons for popularity of TiO2 as a universal photocatalyst is owing to the 

ideal placement of its vb. A high oxidation potential (2.7 V vs NHE) allows TiO2 to readily 

oxidize a host of organic and inorganic compounds. However, its low cb edge (-0.5 V vs NHE) 

limits its applicability with respect to reduction reactions. Furthermore hydrogen evolution 

relies exclusively on high availability of cb electrons to reduce surface absorbed protons into 

molecular hydrogen.86,87 This requires a high electron transport/mobility on the surface of the 

semiconductor as well as a highly negative cb edge with respect to the reduction potential of 

H+/H2 (E0=0.0 V). Hence, pure TiO2 is not considered to be a good material for hydrogen 

evolution reaction and the use of a cocatalyst is necessitated. A cocatalyst can improve 

hydrogen production by either reducing the overpotential for hydrogen evolution or lowering 

the cb edge, or both. In this regard, noble metals such as Pt, Au, Ag and Pd are often employed. 

Noble metals are preferred cocatalysts owing to several major advantages. Primarily, these 

metals have a Fermi level significantly lower than TiO2 which allows the formation of a 

heterojunction.19 This not only improves separation of photogenerated charge carriers but also 

suppresses their recombination. This junction also imparts band-bending which lowers the cb 

potential, thereby reducing the amount of energy required for hydrogen evolution. Additionally, 

these metals also act as electron reservoirs and hence, act a preferential reduction sites for 

adsorbed atomic (H+) and molecular species (H3O
+). Finally, size selected metal nanoclusters 

can also benefit from LSPR which uses visible light and rapidly injects hot electrons into the 

semiconductor cb.52,56 All these properties make them an ideal candidate for direct conversion 
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of solar energy into hydrogen fuel. However, given the high cost and low availability of these 

metals, their wide scale applicability remains doubtful. Hence, efforts have been made to 

develop cocatalysts with earth abundant materials including Fe, Co, Mo, Ni and their 

compounds.51,86 Recent reports have shown that carefully nanostructured transition metal 

compounds are not only efficient and stable but can also compete, and in some instances, 

outperform noble metal composites.  

In this regard, Ni and its selected compounds have shown promising results.143 Nickel in both 

free standing and supported forms is already employed as an industrial catalyst for various 

processes including hydro-cracking, steam reforming, methane reforming and hydrogenation 

of organic compounds.143 Its thermocatalytic properties and ability to store and release large 

amounts of hydrogen gas make it indispensable as a noble-metal free catalyst. Indeed, 

nanostructured nickel is one of the most investigated materials for electrochemical and 

photoelectrochemical splitting of water. However, studies involving its direct application in 

semiconductor photocatalysis have been limited. Moreover, a majority of these studies focus 

exclusively on CdS, owing to its excellent capacity for photocatalytic water splitting; with only 

a handful of studies involving TiO2.
143 However, CdS is highly prone to photo-corrosion and 

its stability is only limited to lower pH values;144 whereas, TiO2 being an oxide is stable in a 

wide variety of acidic and basic medium and hence, is highly versatile. Therefore, it is important 

to explore potential cocatalysts for hydrogen production using TiO2. In order for a material to 

be a good hydrogen evolution cocatalyst several requirements must be met. Primarily, it should 

display a suitable cb position for hydrogen evolution (< 0 V vs RHE). As initially proposed by 

Bard,15 a particulate photocatalytic system is essentially a small short-circuited 

photoelectrochemical cell. Hence, a good electrocatalyst could potentially also be employed for 

photocatalysis. However, other requirements such as rapid and efficient electron transfer 

between the parent semiconductor and the cocatalyst, preferable position of molecular orbitals, 

morphology and interfacial interaction are all important. Hence, only a select few morphologies 

of nickel have been explored including: metallic nickel, nickel oxide, hydroxide, sulphide and 

phosphide.143  

Even though bulk Ni offers a large activation energy, nano-structured Ni is considered a good 

catalyst for hydrogen evolution. Owing to its nano-sized geometry it possesses a high surface 

area. Exposed surface of these nanoparticles also provide a large number of sites for 

adsorption/release of hydrogen atoms and photochemical proton reduction. The small size also 

facilitates close contact, leading to enhanced charge migration and separation though the 

formation of a heterojunction. The rapid charge transfer also prevents photo-oxidation of 
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metallic nickel, although care must be taken with respect to pH of the operating solution. One 

good example of this setup was demonstrated by Tran et al. who reported hydrogen production 

activity of Ni nanocluster decorated commercial TiO2 powders.145 When employed for visible 

light hydrogen production using triethanolamine as a sacrificial agent, it was observed that pure 

TiO2 displayed no activity. However, with a 0.3 wt.% loading of Ni a turnover frequency of 90 

H-1 was observed. However, this number was found to be three times lower than Pt decorated 

particles. A study by Wang et al. explored the possibility of in-situ photo-deposition of metallic 

Ni particles onto TiO2 surface from a Ni(NO3)2 solution.146 Using an aqueous solution of 

methanol and 0.32 mol.% Ni(NO3)2, the authors reported an optimized hydrogen production 

rate of 2547 µmolh-1g-1; corresponding to a quantum efficiency of 8.1% for 365 nm (UV) light. 

However, no direct comparison with Pt or hydrogen production under visible light was reported. 

Recently, Chen et al. reported a direct comparison of hydrogen evolution capacity of Ni (0.5 

wt.%) and Au (2 wt.%) loaded P25 particles.147 The photocatalytic hydrogen evolution was 

carried out under UV illumination with a variety of water-alcohol mixtures of differing 

concentrations. The Ni containing catalyst performed comparable to or even better than Au 

containing catalyst, depending upon the choice and concentration of alcohol used. However, 

there are conflicting theories whether the active component for improving hydrogen production 

is Ni0 (metal) or Ni2+ (oxide). A study exploring this topic was reported by the same group who 

examined the role of the active Ni species responsible for hydrogen production.14 Using UV 

illumination comparable to that present in natural sunlight and a water-ethanol mixture, the 

authors demonstrated that metallic Ni is the active cocatalyst even in NiO. The surface atoms 

of NiO, in UV, are first reduced to Ni0 before any hydrogen evolution is observed. Hence, for 

similar loading percentages, NiO performs poorly with respect to metallic Ni. Nevertheless, 

NiO is an important p-type semiconductor and has been explored as an independent cocatalyst 

for improving charge separation with TiO2
148 while also extending its activity in the visible 

region149. However, only one study has been reported direct evidence of visible light hydrogen 

production using NiO and TiO2.
149  

Primarily, hydrogen production over NiO-TiO2 composites has been attempted with UV 

radiation. One of the earliest studies in this direction was conducted by Sreethawong and co-

workers.150 The authors prepared a mesoporous TiO2 supported NiO using sol-gel route and 

employed it for UV assisted degradation of methanol. Another similar study reported the effect 

of calcination temperature on the hydrogen evolution activity of (10 wt.%) NiOx supported on 

TiO2.
151 The authors prepared the catalyst through incipient impregnation of TiO2 using 

Ni(NO3)2 solution followed by calcination in air. For UV assisted degradation of aqueous (20 
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vol.%) glycerol solution, the authors reported an optimized calcination temperature of 450 oC. 

Compared to bare TiO2, NiOx loaded catalyst demonstrated three times higher hydrogen 

evolution. The authors reported that calcination is important for the formation of heterojunction 

between TiO2 and NiO phases. However, at higher temperatures agglomeration of particles may 

occur which could lead to activity reduction. The same group later reported a detailed analysis 

of the effects of preparation and reaction conditions on the photocatalytic hydrogen production 

of NiO loaded TiO2.
152 The authors reported that hydrogen production activity of the composite 

catalyst increases up to 2 wt.% NiO loading after which it decreases. The percentage loading 

was responsible for altering the band gap of the composite material, which contributed partially 

towards improving the photocatalytic activity; whereas pH was reported to be another major 

factor. However, the authors noted that glycerol was the only source for evolved hydrogen and 

little to no water splitting was observed. Aspect ratio and morphology of the catalyst may also 

play an important role in determining the overall activity of such photocatalysts. Li et al 

reported the fabrication and photocatalytic activity of bicomponent NiO/TiO2 (anatase phase) 

nanofibers.153 The catalyst was prepared by electrospinning a colloidal solution of Ni(NO3)2 

and titanium butoxide followed by calcination in air. Using 25 vol.% aqueous methanol, the 

optimized fibres (0.25 wt.% NiO) achieved a hydrogen evolution of 337 μmol h−1 g−1, which 

was seven times higher than pure TiO2.  

Other important nickel-based compounds reported for their excellent cocatalytic activity 

include Ni(OH)2, NiS, and NixPy. Even through pure Ni(OH)2 does not display any 

photocatalytic hydrogen production, its inclusion as a cocatalyst can drastically improve the 

performance of TiO2. This was demonstrated in a study by Yu and co-workers in which the 

authors decorated commercial titania (P25) with Ni(OH)2 nanoclusters.154 The composite 

catalyst was prepared by a conventional precipitation method in which TiO2 particles were 

suspended in Na(OH) solution, to which a solution of Ni(NO3)2 was carefully added. Due to 

the lack of any further processing, the precipitated clusters of Ni(OH)2 were amorphous in 

nature. The composite catalysts were then utilized for hydrogen evolution with a water-ethanol 

mixture (33 vol% ethanol) under UV illumination (365 nm). Catalyst containing an optimal 

loading of 0.23 mol% could achieve hydrogen production of 3056 μmol h−1 g−1, corresponding 

to a quantum efficiency of 12.4%. This value was an impressive 223 times larger than reported 

for bare TiO2 alone. The high performance of the composite catalyst was attributed to the 

slightly lower reduction potential of Ni2+/Ni (E0=-0.23 V) with respect to cb of TiO2. This 

enabled rapid electron transfer from TiO2 cb to Ni(OH)2 nanoclusters, which acted as active 

site for proton reduction. Furthermore, presence of UV reduced Ni2+ to metallic Ni that acted 
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as an electron reservoir thereby improving charge separation. However, such a compound lacks 

proper sites for hole trapping, which could be employed for oxygen evolution during complete 

water splitting reaction. In this direction Wang et al. performed a follow-up study, modifying 

Ni(OH)2 containing TiO2 with amorphous Ti acting as a hole trapping site.37 The base TiO2 was 

prepared by hydrothermal synthesis and later modified using controlled hydrolysis of Ti(SO4)2 

to achieve a coating of amorphous Ti. This was followed by urea assisted precipitation of 

Ni(OH)2 using a solution of Ni(NO3)2. When employed for photocatalytic hydrogen evolution, 

the optimized catalyst (0.1 wt.%) could achieve hydrogen production of 7280.04 μmol h−1 g−1 

and a quantum efficiency of 20.71%.  

As a p-type semiconductor, NiS has also been employed as an efficient cocatalyst for hydrogen 

production. NiS also has some unique properties such as accelerated absorption-desorption 

kinetics of surface adsorbed species along with improved electron transfer, which favor its 

wide-scale applicability. Zhang et al. reported the fabrication and photocatalytic activity of 

nanostructured NiS deposited on the surface of TiO2.
155 The catalyst was synthesized by mixing 

together anatase powder with thiourea, glycol and Ni(NO3)2 followed by hydrothermal 

synthesis at 180 oC. For photocatalytic hydrogen evolution, 30 vol% lactic acid in water was 

used a sacrificial agent. The setup was irradiated for 4 h with an unfiltered Xe lamp, indicating 

that both UV and visible radiation were present. It was reported that individually pure TiO2 and 

NiS could not display any appreciable photocatalytic activity. However, with an optimized 

loading concentration of 7 mol% NiS, the composite catalyst could achieve a hydrogen 

evolution rate of 698 μmol h−1 g−1. NiS, similar to Ni(OH)2, can rapidly trap photogenerated 

electrons from cb of TiO2 and transfer them to metallic Ni nanoclusters formed on the surface 

of NiS due to photoreduction. However, NiS is also a potent cocatalyst for effectively trapping 

and re-release of hydrogen atoms which allows it to function more effectively than either Ni3S2 

or NiS2. This performance could be further improved by adopting a morphology with a better 

aspect ratio, as demonstrated by Huang and co-workers.156 In this study, the authors fabricated 

a TiO2 nanotube and NiS composite catalyst with a single step hydrothermal synthesis by 

mixing P25 nanoparticle with Na(OH), thiourea, glycol and Ni(NO3)2 solution. The resulting 

catalyst consisted of TiO2 nanotubes having a diameter of 5-15 nm and a length of 60-100 nm, 

decorated by clusters of NiS. The photocatalytic experimental setup consisted of a quartz 

reactor illuminated by a Xe lamp, in which 25 vol% aqueous methanol solution served as the 

electron donor. Pure TiO2 nanotube displayed a poor hydrogen evolution rate of 94 

μmol h−1 g−1. In contrast, even a 2 mol% loading of NiS improved this number to 3743 
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μmol h−1 g−1. The optimized loading concentration was reported to be 8 mol% with the highest 

hydrogen evolution rate of 7486 μmol h−1 g−1, two orders of magnitude higher than pure TiO2.  

These studies demonstrate the excellent co-catalytic capacity of Ni based compounds for 

hydrogen evolution in acidic medium. However, all of the studies involving Ni modified TiO2 

rely mainly on the availability of UV to assist with hydrogen production, which is not desirable 

for a practical photocatalyst. To the best of our knowledge there are not studies for nickel-titania 

composites which report hydrogen production in visible light. One possible solution to this 

problem might be the use of an emerging new Ni based material. NixPy is used to denote a range 

of nickel phosphides with different oxidation states of Ni, of which Ni2P is most investigated 

compound.157-159 Ni2P has been reported as the most effective noble metal free Ni based 

cocatalyst for both photocatalytic157,159 and electrocatalytic160 hydrogen evolution. This is often 

credited to the ameliorated charge separation, efficient charge transfer and ability to absorb in 

the visible region. Furthermore, it is the only Ni based compound with demonstrated and stable 

activity in visible light. However, only a limited number of studies have been conducted 

regarding the photocatalytic potential of Ni2P, of which only one is reported with TiO2.
159 

Furthermore, the reported synthesis method primarily involves the use of unstable oleylamine, 

which makes the synthesis challenging while providing little control over the dispersion and 

morphology of the deposited Ni2P particles. Given the recently reported promising results, this 

field warrants further investigation to realize its full potential and unlock the door to the 

development of a practical, effective and stable Ni based cocatalyst for solar powered hydrogen 

production and water splitting reactions. 
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Chapter 3  

3. Materials and methods 

 

3.1 Materials  

Details for the different precursor, reagents and other compounds used in this study are provided 

in Table 3.1. 

Table 3.1: Data for materials used in this study. 

Material Provider Assay 

TiO2-C core-shell particles 

titanium IV butoxide Acros Organics 99% 

titanium IV isopropoxide Acros Organics >98% 

titanium ethoxide Sigma-Aldrich 97% 

1-butanol Acros Organics anhydrous 

isopropanol Acros Organics anhydrous 

ethanol Acros Organics anhydrous 

potassium chloride Fisher Scientific extra pure, SLR 

P25 Degussa Sigma-Aldrich >99% 

Bi0.5Na0.5TiO3-BiOCl composites 

bismuth nitrate 

pentahydrate 

Fisher Scientific 99% 

bismuth carbonate Fisher Scientific 99% 

sodium carbonate Fisher Scientific 99% 

titanium dixode (anatase 

nanopowder; <25 nm) 

Sigma-Aldrich 99.70% 

Nickle-titania nanocomposites 

titanium dixode (anatase 

nanopowder; <25 nm) 

Sigma-Aldrich 99.70% 

nickel (II) acetate 

tetrahydrate 

Sigma-Aldrich >98% 

ammonia solution (35%) Fisher Scientific N/A 

sodium hydroxide 

(anhydrous pellets) 

Sigma-Aldrich >97% 
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sodium hypophosphite 

monohydrate 

Sigma-Aldrich >99% 

Model pollutants 

brilliant green Sigma-Aldrich >90% 

methyl orange Sigma-Aldrich 85% 

methylene blue Sigma-Aldrich >82% 

rhodamine B Sigma-Aldrich >95% 

diclofenac (sodium salt) Alfa Aesar >98% 

ibuprofen (sodium salt) Sigma-Aldrich >98% 

Escherichia coli (bacterial 

strain JM109) 

Promega N/A 

Electrochemical and photochemical measurements 

sodium sulphate Sigma-Aldrich >99% 

nafion Sigma-Aldrich ~5 wt.% solution 

 

Since different methods have been used to synthesise each material, detailed procedures for the 

preparation of individual catalysts are described separately in each chapter. However, the 

description of the common characterization techniques used throughout this study is provided 

in the following sections. 

3.2 Characterization techniques: phase and morphology 

A successful and thorough characterization of any (new) material is crucial to gain important 

insight into its structure-property relationship. Characterization also acts as a fundamental pillar 

upon which the reproducibility of scientific data is based. Hence, when reporting on the 

fabrication of a (new) compound it is important to include relevant information about its phase, 

microstructure, and chemical composition. Thereafter, based on the intended application, 

further tests might be required to ascertain other aspects such as electronic, optical, electrical 

or mechanical properties. There are several established and standardized techniques which can 

be employed to directly probe and analyse these attributes. In this regard, this chapter aims to 

provide a brief overview of the various characterization techniques employed in the course of 

this study. Details which are common to all investigations have been included at the appropriate 

places in the following subsections, whereas any deviation relevant to a particular study has 

been dealt with separately.  
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3.2.1 Powder X-ray diffraction (XRD) analysis 

As several TiO2-based and other composite materials were prepared in this study, identification 

of the constituent phases and crystal structure of the prepared samples is an important first step 

for confirming a successful synthesis. As all the photocatalysts in this study are polycrystalline 

powders, powder XRD analysis was used for phase identification. A key advantage of X-ray or 

any other diffraction technique is that they can be used to differentiate between compounds 

having similar chemical composition but different crystal structure.1 Hence, XRD patterns serve 

as fingerprints for identification of various crystal structures and phases in a material. X-rays 

are unique in the sense that their wavelength is comparable to the lattice spacings of most 

crystalline materials.1 Hence, when these X-rays are reflected from the internal planes of any 

crystal, depending upon the difference in path length, either constructive or destructive 

interference is obtained. A constructive interference results in a sharp rise in intensity of the 

reflected X-rays, which can be identified as a ‘peak’ against the background of destructive 

reflection. The condition for constructive interference can be determined by using Bragg’s 

law:1,2 

𝑛𝜆 = 2𝑑𝑝𝑙 ∗ 𝑠𝑖𝑛𝜃          (3.1) 

In equation (3.1), ‘𝑛’ is an integer and ‘𝜃’ is the incident angle with respect to the plane of 

reflection, whereas the symbols ‘𝑑𝑝𝑙’ and ‘𝜆’ denote the interplanar spacing and the wavelength 

of incident radiation, respectively. Hence, in a polycrystalline sample, the position ‘𝜃’ of the 

peak is used to identify a certain set of parallel planes, whereas the intensity ratio of reflections 

with respect to other peaks can be used to evaluate the relative concentration/orientation of the 

sample. 

In this study, the powder XRD patterns for all samples were acquired using a Bruker D8 Gen 

10 theta/theta system employing Cu-Kα radiation (λ=1.5406 Å), unless otherwise specified. For 

sample preparation, equal amounts of powder (~0.2 g) were weighed and placed in a special 

single crystal (Si) holder having sample diameter of 10 mm. To achieve a flat surface that is 

level with the surface of sample holder, the powder was pressed with a clean glass slide and all 

excess powder was scraped off. The XRD setup was configured with a slit mount of 4.0o and a 

slit size of 9.5 mm. The diffraction data was collected with a step-size of 0.03o and a dwell time 

of 1 sec. The scanning range for all samples was limited from 10o to 80o (2𝜃), unless otherwise 

specified. The obtained diffraction patterns were analysed using HighScore Plus software 

(PANalytical X'Pert).  
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3.2.2 Scanning electron microscopy (SEM) imaging 

In photocatalysis, the particle size and morphology have a significant bearing on the photo-

activity of a catalyst. Hence, electron microscopy was employed to image the different micro 

and nano-sized morphological aspects of the different samples prepared in this study. SEM is a 

versatile and powerful tool for acquiring information about the microstructure of a large variety 

of materials and has become ubiquitous as a characterization technique in materials science. 

Unlike electromagnetic radiation, electrons can be accelerated to achieve a very small (de 

Broglie) wavelength,3 which can be scanned across a surface to produce high-resolution images 

of a material at micro or nanometre level. Interaction of an accelerated electron beam with a 

sample produces various signals such as secondary electrons, back-scattered electrons, 

transmitted electrons and X-rays.1 Each of these signals provide a unique set of information 

about the shape and configuration of the sample. For example, secondary electrons can be used 

to image the surface morphology, whereas X-ray generation can be used to detect the 

distribution of various elements, thereby revealing the approximate chemical composition. The 

latter technique is known as energy dispersive X-ray spectroscopy and is covered in section 3.3. 

In this study, the SEM images were acquired using two separate instruments namely FEI Nova 

NanoSEM and FEI Helios Nanolab. For image acquisition, catalyst samples containing no 

carbon were prepared as follows: a double adhesive conductive carbon tape was applied to an 

aluminium stub and a small quantity of the powdered sample was transferred to the exposed 

surface of the carbon tape. Alternately, for carbon-containing TiO2 copper tape was used 

instead, and the powdered samples were immobilized using silver paste (adhesive). The stub-

mounted samples were sputtered with a Pt target for 5 min to achieve a conductive coating with 

a thickness of approximately 10 nm. Information about the actual imaging conditions such as 

the spot size, accelerating voltage and working distance is provided in the images itself. Part of 

the SEM images used in this study were acquired with help of Mr. Simon Griggs (MSM), 

whereas the rest were provided by Mr. Sundararajan Thirumalai (MSM) and Mr. Moolchand 

Sharma (IIT Mandi).  

3.2.3 Transmission electron microscopy (TEM) imaging 

Transmission electron microscopy was employed to image samples for which sufficient 

resolution could not be obtained using SEM alone. As the name implies, in a TEM sample 

images are produced by transmitted electrons rather than secondary or back-scattered electrons. 

This places a limit on the overall sample thickness that can be imaged directly using a TEM. 

However, a TEM is capable of achieving a much higher resolution (~0.1 nm), which is limited 
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only by lens aberrations.1 Images produced using data derived from transmitted electrons in 

known as a bright-field image in which areas with higher mass density appear darker. Similarly, 

a dark-field image is generated using data from diffracted electrons and is darker for areas with 

low mass density. A TEM is a versatile instrument and is often coupled with other sensors and 

techniques such as energy-dispersive X-ray spectroscopy or high-angle annular dark-field 

imaging to obtain data about the local chemical composition of a material at nanoscale. The 

TEM images used in this study were provided by Dr. Giorgio Divitini (MSM), Mr. Moolchand 

Sharma (IIT Mandi), and Mr. Gauthaman Chandrabose (Open University). The TEM images 

were acquired using FEI Tecnai F20, JEOL JEM 2100, and FEI Technai G2 microscopes. For 

images acquired in the department, powdered samples were directly deposited onto holey-

carbon film TEM grids (Cu 400 mesh; EM resolutions U.K.) and imaged under bright-field 

mode with an acceleration voltage of 200 kV. For both TEM and SEM images, individual 

acknowledgement is provided at the end of each chapter.  

3.3 Characterization techniques: chemical composition 

The surface of a photocatalyst is pivotal to its overall performance as it is where both photon 

absorption and subsequent REDOX reactions take place. Hence, accurate determination of the 

chemical makeup of a catalyst’s surface is of prime importance. The following techniques were 

used to determine the composition, oxidation states, chemical species and nature of bonding in 

the prepared samples.  

3.3.1 Energy dispersive X-ray (EDX) spectroscopy 

EDX analysis was used to determine the average elemental composition at the surface of the 

prepared photocatalysts. As the interaction volume in EDX analysis is based on the mass 

density of the material and the incident beam energy, it is usually employed for qualitative 

rather than quantitative measurement. This is especially true in case of large-area particulate 

analysis as the interaction volume can vary a lot over the distances. EDX spectroscopy is based 

on the principle that interaction of accelerated electrons with an atom can eject electrons from 

the inner orbitals.1,4 This causes an electron from the outer shell to migrate to an empty orbital 

and the difference in energy can result in the production of X-rays. Since each element has a 

distinct set of atomic orbitals and allowed transitions, it results in a unique X-ray emission 

spectrum. Hence, EDX spectroscopy can be used to precisely map the presence and quantity of 

individual elements on a sample. In this study, the EDX spectra of different samples was 

acquired in-situ during electron microscopy imaging using an EDX detector. Maps were 

acquired by using area scans and analysed using the ESPIRIT imaging software (Bruker). 
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However, owing to the high-magnification and heterogeneity of the samples, the EDX spectrum 

can change with respect to the area of imaging. Hence, all EDX images and data presented in 

this study are only used to provide qualitative information about the presence of particular 

elements and not the actual composition.  

3.3.2 X-ray photoelectron spectroscopy (XPS) 

XPS analysis was used to identify the oxidation states and hence, determine the overall 

chemical composition of the surface of the prepared photocatalysts. The term X-ray 

photoelectron is used to describe an electron ejected from the inner shell of an atom after 

absorbing an incident X-ray photon. If the energy of the incident X-ray photon is known, the 

binding energy (𝐸𝐵𝐸) of the emitted electron can be calculated as:5 

𝐸𝐵𝐸 = 𝐸 − 𝐸𝐾𝐸 − 𝜙          (3.2) 

In equation (3.2), the symbols 𝐸, 𝐸𝐾𝐸, and 𝜙 denote the energy of the incident X-ray photon, 

kinetic energy of the ejected electron and work function which is dependent on the material and 

spectrometer, respectively. Hence, an XPS spectra provides a measure of the number of ejected 

electrons as a function of binding energy. Since each element produces a set of characteristic 

XPS peaks, this can be used to identify the presence of that element in the sample; whereas the 

location and ratio of peaks with respect to binding energy reveals the oxidation state and ratio 

of different chemical species.1,5 Hence, XPS is considered as a very powerful tool to study the 

surface composition, electronic state and chemistry of a variety of samples in physical sciences. 

However, as the technique relies on detection of ejected electrons, it has a probe-depth 

limitation of ~10 nm and requires a high vacuum to operate.5 In this study, the majority of the 

XPS spectra were acquired using an ESCALAB 250Xi instrument (Thermo Fisher, U.K.), 

equipped with an Al-Kα X-ray source (hν = 1486.6 eV). Prior to XPS measurements, the sample 

chamber was initially pumped down to 10-9 mbar and flooded twice with He (BIP) to remove 

any stray gases escaping from the samples. The acquired spectral data was corrected for charge 

compensation with respect to the C 1s orbital of adventitious carbon (284.8 eV). Data 

acquisition and peak-fitting for all samples were performed by Mr. Chris Amey at the 

Cavendish laboratory, University of Cambridge. XPS data for some samples, which could not 

be analysed with the above instrument, were provided by Mr. Gauthaman Chandrabose (Open 

University) by employing a Kratos XSAM800 system (Shimadzu) equipped with a dual anode 

Mg-Kα X-ray source (hν = 1253.6 eV). Mr. Gauthaman Chandrabose also did the processing 

and peak-fitting (deconvolution) of the raw XPS data. 
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3.3.3 Raman spectroscopy 

Even though EDX and XPS can reveal important information about the surface chemistry, it 

often does not provide the complete picture such as the presence of distinct electronic states in 

chemical bonds. Owing to the unique nature of photocatalysts prepared in this study (carbon 

containing core-shell structured TiO2 and ferroelectric Bi0.5Na0.5TiO3-supported BiOCl), 

additional characterization techniques such as Fourier-transform infrared and Raman 

spectroscopy were used to acquire information about the constituent molecules and chemical 

bonds. In Raman spectroscopy, the working principle is based on inelastic or Raman scattering 

of monochromatic electromagnetic radiation by polarizable molecules.6 An incident photon of 

energy comparable to the vibrational energy of the molecule can be used to excite it to a higher 

(vibrational) energy. If the molecule returns to its original level, no net change is observed in 

the frequency of the scattered photon and the phenomenon is known as elastic scattering. 

Conversely, if the final molecular vibration is different than the initial a concomitant shift in 

the frequency of the scattered photon is observed. This is known as inelastic or Raman 

scattering and can be classified as either Stokes (shift to lower frequency) or anti-Stokes (shift 

to higher frequency).6 As each type of molecule has a defined number of vibration modes and 

unique frequencies, by measuring the shift in frequency with respect to certain wavenumbers 

the presence of certain molecules or chemical species and be identified. In order for a vibration 

mode to be Raman active, the first derivative of polarizability with respect to vibration at the 

equilibrium position should not be zero.1 In other word, if a particular molecule displays a 

change in polarizability with respect to certain vibration, then that mode is Raman active. 

Hence, Raman spectroscopy is especially useful for identification of molecules/vibrational 

modes which are infrared inactive. 

In this study, the samples were analysed using confocal Raman spectroscopy (Renishaw InVia) 

at 5× magnification in ambient atmosphere. Samples were prepared by transferring a small 

amount of powdered sample onto a clean glass slide. This was then pressed using another glass 

slide to immobilize the powder and create a relatively flat surface for measurement. The 

illumination source was a 532 nm diode laser which was coupled with a diffraction grating of 

1800 mm-1.  

3.3.4 Fourier-transform infrared (FTIR) spectroscopy 

FTIR and Raman spectroscopy were used to provide complementary data about the molecular 

composition and chemical structure of the prepared photocatalysts. However, there is a 

fundamental difference between the two techniques. For a vibration mode to be infrared active, 
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the derivative of dipole moment with respective to the vibration at the equilibrium position 

should be non-zero.1,7 In other words, if the dipole distance changes as a consequence of shifting 

centre of charges, then that particular mode is infrared active. Another difference in Raman and 

FTIR techniques is the method of data acquisition. In FTIR, the material is simultaneously 

probed with photons of multiple frequencies. The actual absorption (or transmission) spectrum 

is obtained by Fourier transformation of the raw data. Since IR absorption occurs at resonant 

frequencies, the position and intensity of an FTIR peak can be used to identify the nature and 

relative concentration of a certain species in a material. FTIR data used in this study was 

provided by Dr. Himmat Singh Kushwaha at IIT Mandi. The spectra were acquired on a 

K8002AA carry 660 (Agilent) FTIR spectrophotometer.  

3.4 Characterization techniques: optical and electronic 

In the field of photocatalysis, properties such as the band gap, absorption of the electromagnetic 

spectrum, and separation and transport of photogenerated charge carriers can be used to analyze 

and elucidate the photo-activity of the catalyst. Accurate determination of these attributes can 

be used to correlate or explain any change in the catalytic activity. In this study, the following 

optical and electronic characterization techniques were employed.  

3.4.1 Diffuse reflectance spectroscopy (DRS) 

The optical bandgap of the various samples prepared in this study was determined indirectly by 

using diffuse reflectance spectroscopy. When any material interacts with electromagnetic 

waves three phenomena, namely transmission (𝑇𝑟), absorption (𝐴𝑏), and reflection (𝑅𝑒), are 

observed. The relationship between the incident energy (𝐼) of the light and can be expressed as: 

𝐼 = 𝑇𝑟 + 𝐴𝑏 + 𝑅𝑒          (3.3) 

Depending upon the wavelength of incident light, bandgap and microstructural environment of 

the material, it is possible that no transmission takes place (𝑇𝑟 = 0). A good example of this 

condition would be polycrystalline transition-metal compounds under visible light. In such a 

case, by measuring the reflectivity of the sample with respect to a standard, information such 

as wavelength-dependent optical absorption and bandgap of the material can be determined. 

The total reflection from the surface of a material can be differentiated into two-types: (1) 

specular reflection, in which angle of incidence equals angle of reflection such as reflection 

encountered on polished surface; and (2) diffuse reflection, in which incident light is scattered 

randomly.1 DRS is a quick and easy technique to determine optical absorption spectra of 

powdered samples. In this study, DRS spectra of the samples were acquired using USB-4000 
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Ocean Optics Spectrometer equipped with a DRS probe. The setup was calibrated to 100% 

reflectance under illumination by using BaSO4 as the internal standard (Labsphere) and a 

tungsten-halide lamp as the illumination source; whereas, the baseline was measured by 

acquiring the reflectance spectrum in the dark. For data acquisition, the powdered samples were 

immobilized by compressing between two pre-cleaned glass slides. Acquired data was 

processed on OceanView software (Ocean Optics), which measured the change in reflectivity 

of the sample with respect to the internal standard as a function of wavelength. Several spectra 

were acquired for each sample and the average value was used to minimize the manual 

measurement error.  

3.4.2 Transient photocurrent measurement 

In semiconductor analysis, transient photocurrent measurements are used to quantify the 

magnitude of photogenerated charge carrier extraction in a given volume of sample.8 When a 

semiconductor is illuminated with light it results in the production of photogenerated charge 

carriers. These charge carriers can either recombine to generate heat or migrate to the surface 

to participate in photocatalytic reactions. If the semiconductor is sandwiched between two 

conducting electrodes, these charge carriers can be extracted, and based on the principles of 

photovoltaic effect, a current can be made to flow in the external circuit.9 In photocatalysis, the 

intensity of transient photocurrent is a direct measure of the extractable (usable) charge carriers 

and can also be used to provide useful information about the generation and recombination of 

charge carriers.10 Usually, a higher photocurrent density indicates better performance.8  

In this study, transient photocurrent measurements were performed on an AUT86543 

electrochemical workstation (Metrohm Autolab B.V.). To fabricate the working electrode, a 

homogeneous catalyst ink solution was prepared by dispersing the catalyst (5 mg) in a solution 

of deionized water (1 mL), isopropyl alcohol (1 mL), and Nafion (20 μL; 5 wt.%). The catalyst 

ink was ultrasonicated for about 30 min to obtain a homogeneous dispersion. 500 μL of the 

catalyst ink was drop-cast onto a pre-cleaned indium tin oxide (ITO) glass substrate and allowed 

to dry under flowing N2. The dried substrates were directly used as working electrodes. A 

custom-made LED setup (15 W; λ=420 nm; Phillips India) was used as the light source to 

provide chopped illumination. The transient photocurrent results used in this study were 

provided by Dr. Himmat Singh Kushwaha (IIT Mandi) and Mr. Moolchand Sharma (IIT 

Mandi).  
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3.4.3 Electrochemical impedance spectroscopy (EIS) 

Impedance can be defined as the resistance to the flow of (alternating) current through a circuit. 

EIS is performed by applying AC voltage to a sample and measuring the current output with 

respect to different frequencies. This data can be represented using a complex-impedance plane 

plot and its fitting with respect to an equivalent electrical circuit can be used to observe and 

quantify various kinetic processes. In photocatalysis, the frequency dependent current or 

impedance data can be used to calculate the charge-transfer resistance between the 

semiconductor and the surrounding medium (electrolyte).10,11 This data can be used to acquire 

useful information about the separation efficiency and transport characteristics of 

photogenerated charge carriers. Generally, semiconductor with a lower charge-transfer 

resistance indicates a better mobility and utilization of charge carriers. In this study, the EIS 

measurements were performed using a standard three-electrode cell setup on AUT86543. 

Ag/AgCl (saturated) and platinum wires were used as the reference and counter electrodes, 

respectively, with aqueous Na2SO4 (0.1 M) as the electrolyte. The procedure for fabrication of 

working electrode is the same as that described in section 3.4.2. The working electrodes had an 

exposed surface area of 1 cm2 which was directly exposed to the electrolyte. The EIS 

measurements and processing of raw data were done by Mr. Moolchand Sharma (IIT Mandi). 

3.5 Characterization techniques: other 

To acquire information about the surface area and composition of the prepared samples, the 

following techniques were employed. 

3.5.1 Nitrogen adsorption-desorption isotherms 

Information about the apparent surface area and pore size distribution of the prepared 

photocatalyst were acquired through gas sorption isotherms. Nitrogen adsorption-desorption 

isotherms were acquired by measuring the amount of N2 gas adsorbed on the surface of the 

photocatalyst being tested and the subsequent amount that desorbs at a constant temperature. A 

plot of adsorbed gas volume as a function of relative pressure can be used to calculate the 

surface area and characterize the porosity of a given material. 

In this study, the gas sorption isotherms were acquired using TriFlex sorption equipment 

(Micromeritics), located at Institute for Manufacturing (IFM) courtesy of Dr. Michael De 

Volder. A carefully measured amount (~100 mg) of powdered sample was transferred into the 

sampling tube, which was connected to the instrument. Prior to isotherm measurement, the 

samples were degassed in-situ at 250 oC for 6 h. Raw isotherm data was converted to comma-
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separated value format using 3Flex software (Micromeritics). Isotherms are plotted for the 

molar amount of gas absorbed or desorbed under isothermal conditions as a function of the 

equilibrium partial pressure. Brunauer–Emmett–Teller (BET) theory was used on the 

adsorption branch of the isotherm in the partial pressure range of less than 0.4 to calculate the 

specific surface area. The BET theory is an extension of Langmuir theory for monolayer 

adsorption and is based on the following assumptions: (1) gas molecules physically adsorb on 

a solid in layers infinitely; (2) gas molecules only interact with adjacent layers; and (3) the 

Langmuir theory can be applied to each layer. The resulting BET equation can be expressed 

as:12 

1

𝑣[(𝑝0 𝑝⁄ )−1]
=

𝑐𝐵𝐸𝑇−1

𝑣𝑚𝑐𝐵𝐸𝑇
(

𝑝

𝑝0
) +

1

𝑣𝑚𝑐𝐵𝐸𝑇
        (3.4) 

In equation (3.4) 𝑝0 and 𝑝 are the saturation and equilibrium pressure of the adsorbates at a 

given temperature, 𝑣𝑚 and 𝑣 are the monolayer and total adsorbed volume and, 𝑐𝐵𝐸𝑇 is the BET 

constant defined as: 

𝑐𝐵𝐸𝑇 = 𝑒(
𝐸1−𝐸𝐿

𝑅𝑇
)
          (3.5) 

in which 𝐸1 is the heat of adsorption of the first layer, 𝐸𝐿is the heat of liquefaction, 𝑅 is the gas 

constant and 𝑇 is the temperature in Kelvin. Thus, data from sorption isotherms can be used to 

calculate the specific surface area (𝑆𝐵𝐸𝑇) using the following expression: 

𝑆𝐵𝐸𝑇 =
𝑣𝑚𝑁

𝑎𝑉
           (3.6) 

In equation (3.6) 𝑎 is the mass of the solid sample, 𝑉 is the molar volume of the adsorbate gas 

and 𝑁 is Avogadro’s number. Furthermore, the volume pore size distribution was determined 

using the Barret-Joyner-Halenda (BJH) model, which assumes that critical relative pressure 

leads to condensation in pores according to the following equation:13 

𝑙𝑛
𝑝

𝑝0
=

−2𝛾𝑉 𝑐𝑜𝑠𝜃

𝑅𝑇(𝑟𝑝−𝑡𝑐)
          (3.7) 

In equation (3.7), 𝛾 corresponds to the surface tension at the liquid-vapour interface and 𝜃 is 

the contact angle between the liquid and pore wall, which is assumed to be zero for N2. 

Furthermore, symbols 𝑟𝑝 and 𝑡𝑐 denote the pore radius and the thickness of the adsorbed layer, 

respectively. It is important to mention here that the specific surface area of the particles has 

been calculated in a dry state using gaseous N2, which has a diameter of about 300 pm. Even 

though the water molecule is even smaller with an approximate diameter of 275 pm, the 

terminal hydroxyl groups at the surface of TiO2 particles can lead to agglomeration depending 
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on the pH of the aqueous solution.14 Hence, techniques such as stirring and ultrasonication are 

needed to achieve a homogeneous dispersion of the individual particles and ensure availability 

of active sites.   

3.5.2 Thermal analysis 

Additional information about the composition and important thermal events (such as calcination 

temperature) of the various photocatalysts prepared in this study were acquired through the 

following thermal analyses. Differential scanning calorimetry (DSC) is a technique that 

measures the difference in the amount of energy required to raise the temperature of a sample 

with respect to a reference, as a function of temperature. This data can be used to identify the 

temperature required to induce important physical and chemical transitions such as phase 

change and crystallization. Furthermore, if the mass of the material is known, data provided by 

DSC can be used to calculate the enthalpy of transformation. Hence, it is considered to be an 

important tool in the field of materials science. Data from DSC is often complimented by 

performing thermogravimetric analysis (TGA). TGA is another form of thermal analysis and is 

used to measure the change in mass of a given material as a function of temperature. This data 

can be used to acquire important information about various physical attributes such as thermal 

stability, phase change temperature, oxidation temperature and even some limited information 

about the material composition such as water and (combustible/volatile) organic content.  

In this study, simultaneous DSC and TGA were used to determine the crystallization 

temperature and weight percentage (wt. %) of water in amorphous (hydrated) and carbon in 

calcined TiO2 particles. To perform the thermal analysis, a carefully measured amount of 

powdered sample (~50 mg) was placed into a clean alumina crucible, which was loaded into a 

Q600 SDT thermal analysis instrument (TA instruments). The ramp rate for both heating and 

cooling cycles were fixed at 5 oC.min-1 and the holding time at peak temperature was 30 min. 

At least two runs were performed for each sample to ensure reproducibility. 

3.6 Photocatalytic experiments: setup and methods 

3.6.1 Illumination sources 

The following equipment were used as illumination sources for various photocatalysis 

experiments.  

3.6.1.1 Newport Oriel solar simulator 

A Newport Oriel solar simulator (Class A flood exposure source) equipped with an AM 1.5G 

optical filter was used for generating artificial sunlight for aqueous dye degradation experiments 
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with TiO2-C composite particles. The incident power at the surface of the liquid was calibrated 

at 100 mW.cm-2 by using a standard Si solar cell (Fraunhofer-ISE RS-OD4), which is the 

roughly equal to the average solar intensity received on the surface of the earth.  

3.6.1.2 Mercury-vapor lamp 

A 125 W mercury-vapor lamp (Phillips, India) was used in conjunction with a long-pass filter 

(λ>400 nm; UQG Optics) for performing dye degradation experiments under visible light. The 

distance between the lamp and the surface of the liquid was kept fixed at 15 cm, which provided 

an equivalent (theoretical) illumination of 4.97 × 104 Lux. 

3.6.1.3 OAI solar simulator 

An OAI TC-100E solar simulator (TRISOL class AAA) equipped with an AM 1.5G optical 

filter was employed as a light source for anti-bacterial analysis with TiO2-C composite particles. 

Access to this solar simulator, located at IIT Mandi, was provided by courtesy of Dr. Rahul 

Vaish for the anti-bacterial tests. The incident power at the sample surface was calibrated at 

100 mW.cm-2 by using a photovoltaic integrated measurement system (OAI Instruments). 

3.6.1.4 LOT-Quantum design solar simulator 

A LOT-Quantum design LS0816-H (LOT-QD GmBH) large area solar simulator was used for 

simultaneous photocatalytic hydrogen evolution testing of various nickel-titania composites. 

The output power at the liquid surface was calibrated to 1 Sun (100 mW.cm-2) by using an 

optical power meter (1916-R, Newport). Access to this instrument for intermittent and 

continuous exposure experiments was provided by courtesy of Mr. Arjun Vijeta (ReisnerLab) 

at the department of chemistry, University of Cambridge. 

3.6.2 Aqueous dye degradation 

Photo-assisted degradation of aqueous dye solutions is one of the oldest and most frequently 

employed tests for measurement of a catalyst’s performance. Generally, stock solutions are 

prepared by dissolving a known quantity of a certain dye in water, which can be degraded in 

the presence of a catalyst and proper irradiation. The relative change of concentration can be 

determined using various methods, of which ultraviolet/visible spectroscopy, either in 

absorption or transmission mode, is the most popular. The concentration of the stock solution 

is selected such that it corresponds to the linear working range of the testing spectrophotometer 

(for absorption analysis). Hence, by calibrating the change in intensity, the relative change in 

concentration can be measured as a function of irradiation time. This method is not only 
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straightforward but also enables relative comparison of performance between various materials. 

Hence, it remains a popular technique among the scientific community. 

Photocatalytic degradation of dyes or other dissolved pollutants is often attempted with very 

dilute aqueous solutions and in the presence of rather large quantities of photocatalyst. 

Furthermore, (usually) the end product of such a reaction are CO2 and water. Hence, the reaction 

itself can be classified as a first order or pseudo-first order, and the rate of degradation is directly 

proportional to the initial concentration of the pollutant as follows: 

𝑟𝑎𝑡𝑒 = −
𝑑[𝐶]

𝑑𝑡
= 𝑘[𝐶]𝑛         (3.8) 

In equation (3.8), 𝑘 is the rate constant, [𝐶] is the concentration of the reactant, and 𝑛 is the 

order of the reaction (=1 for first order reactions). Equation (3.8) can be rearranged as: 

 −
𝑑[𝐶]

[𝐶]
= 𝑘𝑑𝑡           (3.9) 

Integrating equation (3.9) within the limits 𝑡 = 0 to 𝑡 gives the rate law of the first order reaction 

as follows: 

ln[𝐶] = −𝑘𝑡 + ln [𝐶0]         (3.10) 

In which, 𝐶0 is the initial concentration whereas 𝐶 is the concentration after time 𝑡. The terms 

in equation (3.10) can be rearranged to yield the following: 

−ln (
𝐶

𝐶0
) = 𝑘 × 𝑡          (3.11) 

The log form represented in equation (3.11) is widely used to determine the degradation rate of 

various aqueous pollutants in a photocatalytic reaction. However, it only holds true under the 

following assumptions: (1) the initial (molar) concentration of the pollutant is sufficiently low, 

(2) the generated (by)products do not affect the equilibrium point of the reaction, (3) the 

heterogeneous catalyst is present in large quantities, and (4) there is no significant reduction in 

the number of active catalytic sites. Equation (3.11) holds true for most dilute aqueous solutions 

and can be used to calculate the rate constants with sufficient accuracy. However, performance 

evaluation through dye degradation also has its shortcomings. Coloured dye molecules have 

been reported to produce a sensitization effect in some photocatalysts, which enables visible 

light absorption.15 This can lead to an apparent increase in the degradation rate. Furthermore, 

dye properties such as light absorption, degradation mechanism, and production of 

intermediates varies for different catalysts, which can lead to inconsistent results. Finally, 

decomposition of pure/single dye solutions has limited practical applicability outside laboratory 
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trials. Therefore, dye degradation is not a standardized benchmark for performance evaluation, 

but rather an indicator of the catalytic activity. In this study, degradation of aqueous solutions 

of various dyes were performed to evaluate the performance of various photocatalysts. 

Furthermore, degradation of two pharmaceutical compounds namely diclofenac and ibuprofen 

were also tested similarly as these are transparent to the visible light and hence cannot induce 

any sensitization. Degradation of the dyes and pharmaceutical compounds was confirmed by 

the change in their absorbance peak in the visible and UV regions respectively. Stock solution 

of various concentrations were prepared for each compound by dissolving a known quantity in 

1 L deionized water under constant stirring and stored in the dark for further use. The 

concentration of each compound was selected based on relevant data reported in literature, 

solubility in water, and the absorbance peak produced by the spectrophotometer (linear range). 

Before each degradation experiment, 50 mL of the stock solution was mixed with a known 

quantity of powder photocatalyst. The mixture was kept stirred in dark for at least 30 min to 

achieve absorption-desorption equilibrium. Each experiment was performed until either 

complete dye degradation was achieved, or five data points could be recorded at equal intervals, 

to accurately determine the degradation rate constant. After the experiments, all remaining 

liquids were disposed of in accordance with the department’s chemical disposal policy. A 

schematic of the dye degradation setup employed in this study is provided in Fig 3.1. 

 

Figure 3.1: Schematic of the dye degradation setup. 
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3.6.3 Ultraviolet/visible (UV/Vis) spectroscopy 

UV/Vis absorption spectroscopy is an indispensable characterization tool in analytical 

chemistry for both quantitative and qualitative measurements. Theoretically, any compound 

with bonding and non-bonding electrons can absorb photons from both ultraviolet (250-400 

nm) and visible (400-750 nm) spectra and be excited to higher anti-bonding orbitals.16 Hence, 

by identification of the wavelength corresponding to the maximum absorption and calibrating 

it with respect to a known solution, the change in concentration of a compound can be easily 

ascertained. This method for quantitative determination is based on the Beer-Lambert law:16 

𝐴 = log10 (
𝐼0

𝐼
) = 𝑎𝑚𝑜𝑙 × 𝐿𝑝𝑎𝑡ℎ × 𝐶       (3.12) 

In equation (3.12), the symbols 𝐴, 𝐼0, and 𝐼 denote absorbance, intensity of the incident light 

and intensity of the transmitted light, respectively. Similarly, 𝑎𝑚𝑜𝑙, 𝐿𝑝𝑎𝑡ℎ, and 𝐶 correspond to 

molar absorptivity (extinction coefficient), path length through the sample, and concentration 

of the compound, respectively. The extinction coefficient is a fundamental property of a 

compound in a given solvent and is usually considered to be a constant at a given temperature 

and pressure. Therefore, if the path length of the absorbing liquid is fixed, the change in 

absorbance becomes directly proportional to the change in concentration. This method is used 

by spectrophotometer to determine the relative change in concentration of any compound.  

In this study, UV/Vis absorption spectroscopy was used to determine the change in 

concentration of aqueous dye and pharmaceutical compounds as a function of time (degradation 

rate). During the photocatalytic degradation experiments, 1 mL sample aliquots were drawn 

from the reaction mixture at fixed intervals using a micropipette. The dye mixture was 

centrifuged at 8000 rpm for 4 min to separate any stray catalyst particles. The supernatant (0.8 

mL) was pipetted into a fresh centrifuge tube and the process was repeated. Finally, the clear 

supernatant (0.5 mL) was pipetted into a clean quartz cuvette providing a path length of 1 cm 

and analysed using an Agilent/HP 8453 spectrophotometer in the absorbance mode. Stock 

solution was used to determine the initial absorbance, whereas the concentration at zero min 

was acquired using the dye solution after establishing absorption-desorption equilibrium in the 

dark. Similarly, the baseline of the instrument was calibrated using deionized water (solvent). 

All absorbance data were acquired within the manufacturer-specified linear limits of the 

instrument.  
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3.6.4 Hydrogen evolution 

Solar water-splitting for production of hydrogen as a renewable fuel is another attractive 

application for photocatalysis. Details regarding semiconductor-based photocatalytic water 

splitting have already been discussed in section 2.3.2. In practice, photocatalytic splitting of 

water for hydrogen production is plagued with several shortcomings such as sluggish kinetics, 

recombination, and side reactions.17 Hence, most photocatalysts for hydrogen evolution are 

tested in the presence sacrificial electron donors. These sacrificial agents provide the necessary 

electrons to drive the hydrogen evolution reaction, act as hole traps to prevent oxygen evolution 

and are consumed in the process. In this study, hydrogen evolution was tested using sodium 

ethylenediaminetetraacetic acid (Na-EDTA) as the sacrificial agent. 3 mL of the freshly 

prepared aqueous stock solution (0.1 M; pH 4.5) of Na-EDTA was mixed with 5 mg catalyst 

powder under constant stirring in a borosilicate glass vial. Thereafter, the vials were sealed with 

a septum and bubbled with an inert gas chromatography (GC) standard (2% CH4 in N2) for 30 

min in dark. The sample mixtures were placed in a temperature-regulated rack at 25 oC and 

illuminated using a solar simulator (incident energy 100 mW.cm-2) through coupled AM 1.5G 

and long-pass (λ≥420 nm) filters. After the reaction completion, a gas sample (20 µL) was 

drawn from the headspace of the vials using a gas-tight syringe and analysed using a GC 

coupled with a thermal conductivity detector. A schematic representation of the hydrogen 

production setup used in this study is provided in Fig 3.2. Both intermittent (4 h) and continuous 

illumination experiments (upto 168 h) were performed to assess the rate of hydrogen production 

and long-term stability of the catalyst.  

 

Figure 3.2: Schematic of the hydrogen production setup. 

 

 



62 
 

3.6.5 Gas chromatography (GC) 

As the name implies, GC is a type of chromatography technique in which the mobile phase is 

a gas that is either non-reactive (H2/N2) or inert (He/Ar) in nature. GC used in conjunction with 

mass-spectrometry (GC-MS) is considered to be one of the most versatile and powerful 

characterization techniques in physical sciences for identification of specific compounds. GC 

in isolation can be used to detect and quantify the presence of even trace amounts of gas or any 

compound that can be volatilized without decomposition. The mixture of compounds to be 

tested is injected into a long-tubing known as the column, which houses the stationary phase on 

a solid-support. The column itself is located inside a thermally-regulated oven for precise 

temperature control. When a mixture to be identified is made to flow through the column, each 

individual compound in the mixture is fractionated depending on its interaction with the 

stationary phase. Hence, individual compounds can be detected based on their retention time. 

In this study, an Agilent 7890A Series GC was used for quantitative measurement of the 

hydrogen gas produced during photocatalytic experiments. In all characterizations, N2 was used 

as the carrier gas and the oven temperature was fixed at 45 oC. The GC itself was setup with a 

5 Å molecular sieve in conjunction with a thermal conductivity detector (TCD) column. A TCD 

consists of a temperature-controlled cell that houses an electrically heated filament. In principle, 

as the thermal conductivity of all compounds are different, by comparing the increase or 

decrease in the thermal conductivity of the filament with respect to a reference the presence of 

a particular compound can be identified. For quantitative measurements, approximately 20 µL 

sample was drawn from the headspace of the vials using a gastight syringe (Hamilton; 

GASTIGHT) and the produced hydrogen was determined by comparing the area under the peak 

for CH4 (2%) which served as an internal standard.  

3.6.6 Bacterial inactivation 

The term water disinfection implies removal, inactivation or killing of pathogenic 

microorganisms present in water to render it fit for human consumption. Photocatalysis has 

long been investigated and reported for its ability to oxidize dissolved organic impurities. 

However, photocatalysts have also been explored for their biocidal properties.18,19 The powerful 

reactive oxygen species (ROS) produced by TiO2 and other high bandgap semiconductors can 

also be employed for inactivation of a host of pathogens that are commonly present in large 

water bodies.18 Photocatalysts have also been reported for destruction of cancer cells20 and 

treatment oral bacteria present in humans.21 Hence, photocatalysis is considered to be a 

potential solar-powered solution for non-centralized water-treatment applications, especially in 

places which lack proper sanitation infrastructure such as many developing countries. 
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In order to assess the bactericidal activity of any potential photocatalyst, two bacterial strains 

namely gram-negative Escherichia coli (E. coli) and gram-positive Lactobacillus acidophilus 

are used as model pollutants. The rate of inactivation/death of any bacterial culture is dependent 

on a number of factors such as the individual strain, growth mechanism and the type of agar 

plate employed. However, there appears to be a common consensus for the mechanism 

responsible for inducing cell death in microorganisms in the presence of photocatalysts. 

Bacteria are single cellular organisms and are often classified as the most primitive life-form 

on earth. The species forms a sub-classification of the prokaryotic microorganisms. Bacteria 

can be further classified as either gram negative or positive depending on their ability to retain 

the crystal violet strain used in gram-staining method. The gram-positive bacteria have a thick 

peptidoglycan layer that retains the crystal-violet dye upon gram staining whereas, gram-

negative bacteria have a thinner peptidoglycan layer which does not retain the dye molecules. 

The gram-negative bacteria also have an outer membrane consisting of polysaccharides in its 

outer leaflet and phospholipids in its inner leaflet. The article by Maness et al was one of the 

first to establish that lipid peroxidation might be responsible for cell death.22 In the presence of 

sunlight and water, semiconductors such as TiO2 produce ROS (mainly hydroxyl and 

superoxide radicals) that attack the outer membrane and cell wall of the bacteria. This initial 

attack affects the permeability of the cell thereby allowing the ROS to penetrate further into the 

cell, finally leading to phospholipid peroxidation of cytoplasmic membrane resulting in 

disruption of cell respiratory functions and ultimately cell death. The process generates 

malondialdehyde as a by-product, which also serves as an indicator for photocatalytic activity. 

Alternately, the remaining bacteria can be salvaged and loaded onto an agar plate to measure 

the colony forming units (CFU). 

In this study, gram-negative E. coli (Bacterial Strain JM109, Promega) was used as a 

representative bacterium to assess the anti-bacterial activity of the prepared photocatalysts. The 

photocatalytic bacterial inactivation test was performed as follows: 1 mL of bacterial 

suspension containing 1×106 cells.mL-1 was diluted with 3 mL phosphate buffer saline (PBS) 

to obtain the working bacterial suspension. To this bacterial suspension 100 µL of photocatalyst 

suspension (10 mg.mL-1 in PBS) was added. Thereafter, all test-tubes were separately kept 

under dark and illuminated conditions for a specified period of time (120 min). All test-tubes 

were shaken at 100 rpm during the experiments to ensure uniform distribution of particles and 

bacterial cells.23 Aliquots of 100 µl were drawn at specific time intervals (0, 30, 60, 90, and 120 

min) and spread over solidified Luria Broth agar plates after dilution. The colony forming units 
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per mL (CFU.mL-1) were then calculated for each plate and represented as percentage survival 

with respect to control sample.  

To assess the effect of photocatalysis on morphology and survival of bacterial cells, SEM 

micrographs were acquired for photocatalyst and control-treated bacterial cells after 60 min. 

Sample preparation for SEM analysis was performed according to a previously described 

procedure.24 The cells were collected with centrifugation followed by fixation using 4% 

glutaraldehyde and kept at 4 oC for 6 h. The metabolically fixed cells were serially dehydrated 

over silicon wafer surface using 20%, 40%, 60%, 70% and 100% (v/v) ethanol followed by 

acetone. The dehydrated cells were sputter coated with gold and mounted for SEM analysis. 

All photocatalytic anti-bacterial studies were performed by Mr. Sandeep Kumar at IIT Mandi 

who also provided the results for these experiments.  

3.6.7 Scavenger tests 

Photocatalytic oxidation or reduction of dissolved organic species is dependent on several 

factors such as the dye-catalyst interaction, formation of reaction intermediates and the nature 

of ROS produced.15 Equations (2.10) to (2.16) in section 2.1.2 give an overview of the main 

photocatalytic reduction/oxidation reactions. Even though hydroxyl ions are the most powerful 

and abundant radical in heterogeneous photocatalysis, other species such as superoxide anion 

radical (𝑂2
−), hydrogen peroxide (H2O2), holes (h+), and singlet oxygen (1O2; spin-paired 

molecule) may also play an important role in the degradation of a compound.25 Hence, 

scavenger tests are employed to quantify the generation and relative contribution of different 

ROS and to determine the possible degradation pathway. As the name suggests, scavengers are 

compounds which react with/consume a specific ROS and, thereby, quench the photocatalytic 

reaction. The incorporation of specific scavenging agents and the degree of reduction of the 

apparent rate constant is useful to determine the role of individual ROS in the overall 

degradation. In this study, the following compounds were used as scavenging agents: 

isopropanol (IPA) and tert-butanol (TBA) for 𝑂𝐻•; Na-EDTA and sodium oxalate for h+, and 

para-benzoquinone (BQ) for 𝑂2
−. The relative concentration of each of the compound to be used 

were determined from published literature.26 Concentrated solution of individual scavenging 

agents were produced by dissolving a known quantity in 100 mL of deionized water. A few 

drops of the concentrated solution were added to the (50 mL) mixture of powered catalyst and 

dye solution to achieve the final concentrations of 0.01 M for each compound. Thereafter, the 

solution was stored in the dark for 30 min to establish absorption-desorption equilibrium before 

performing the photocatalytic experiment. The reduction in apparent rate constant compared to 
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standard experiment was used to determine the role of different ROS and a degradation 

mechanism was proposed. 
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Chapter 4  

4. Fabrication of TiO2-C core-shell particles: effect of solvent and precursor 

 

4.1 Introduction 

Among heterogeneous semiconductor photocatalysts no other material has been investigated as 

extensively as TiO2 (anatase).1,2 This can be credited to several desirable attributes of TiO2 such 

as economy of production, chemical and physical stability, low toxicity, and ease of 

fabrication.3 Hence, it is still one of the most widely investigated photocatalytic material to 

date. However, pure TiO2 suffers from several drawbacks:3 (1) TiO2 being a wide band gap 

semiconductor (3.2 eV) mainly absorbs in the UV region, which is less than 5% of the total 

solar energy and (2) suffers from fast recombination of photogenerated charge carriers. These 

characteristics have already been covered in detail in section 2.4. Other factors which affect the 

catalytic performance of TiO2 are its particle size/surface area, crystallinity, and phases present. 

Significant efforts have been made to mitigate these aforementioned shortcomings and increase 

the catalytic efficiency of TiO2.
1 Some of the popular methods include metal and non-metal 

doping, surface sensitization and coupling with narrow band-gap semiconductors.1 The merits 

and demerits of each individual technique have also been provided in section 2.2, but all of 

which primarily focus on improving visible-light absorption of TiO2.  

From the view of enhancing light absorption, carbon (C) incorporation has been a popular 

technique.4-7 Depending on the structure and fabrication strategy either doping or coupling with 

carbon can be attempted. Doping can result in generation of colour centres and mid-gap states 

which can improve (visible) light absorption. However, it can also lead to generation of trap 

sites, which restrict the mobility of charge carriers and also act as recombination centres.8,9 

Alternately, an external combination with nano-structured carbon can impart several benefits 

including band-gap shifting, enhanced absorption, and reduced trap sites.4 Hence, various 

carbon-based structures have been investigated including amorphous C,10 reduced graphene 

oxide (r-GO),11 carbon nanotubes (CNTs)12,13 and recently graphitic carbon nitride.7 C-TiO2 

based morphologies reported so-far also include core-shell5,12 and Janus morphologies.10 A 

detailed literature overview of popular C-TiO2 composites is provided in section 2.4.1. It can 

be observed that most of these studies employ an external carbon source and entail a two-step 

process for the final synthesis of these composite catalysts. 
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In this regard, it would be highly advantageous to develop a technique that not only enables 

facile synthesis of desired TiO2-C composite photocatalysts but also allows a high-degree of 

control over the particle size and morphology. Hence, this chapter deals with the development 

of a method for in-situ preparation of TiO2-C composite particles by using titanium alkoxide as 

a single precursor for both C and TiO2. Parameters affecting the final particle geometry and 

chemistry can be placed in two broad categories of precursor (reagent) selection and synthesis 

technique. To prepare a material with high catalytic activity, optimization of both categories 

has been attempted. The first part of the study explores the hydrolysis of various titanium 

alkoxides in different media.  

The term alkoxide is used to define the conjugate base of an alcohol, therefore alkoxides are 

good nucleophiles and generally not stable in protic solvents such as water. In the presence of 

water, metal alkoxides (𝑀𝑂𝑅) undergo hydrolysis to produce the respective alcohols (𝑅𝑂𝐻), 

whereas the ligand is precipitated (𝑀2𝑂). The process can be described with the following 

equation: 

2𝑀𝑂𝑅 + 𝐻2𝑂 → 𝑀2𝑂 + 2𝑅𝑂𝐻        (4.1) 

However, alkoxides can be easily dissolved in alcohols, which can be used as a reaction medium 

to perform controlled hydrolysis of the desired ligand. Hydrolysis of titanium alkoxides to 

produce TiO2 is well explored.14,15 However, the choice of solvent (alcohol) is usually 

determined by the nature of conjugate base, and often similar alcohols are used. According to 

the best of our knowledge, there exists no study in literature exploring the effect of different 

solvents on the hydrolysis of titanium alkoxides and its resultant particles. As the selection of 

different alcohols can affect the zeta-potential of the resultant solution, it is expected to have a 

direct bearing on the particle morphology and forms the first topic of investigation. 

4.2 Material selection 

Given the large number of alkoxides available only three model compounds were selected for 

in-depth analysis namely titanium IV butoxide, titanium IV isopropoxide and titanium ethoxide. 

These are the most commonly used precursors for wet-synthesis of TiO2 nanoparticles. 

Consequently, 1-butanol, isopropanol and ethanol were used as solvents. For the purpose of 

simplification, the following reference codes have been adopted to designate the reagents: 

titanium IV butoxide (T1), titanium IV isopropoxide (T2), titanium ethoxide (T3). Similarly, 

the alcohols employed as solvents carry the following designation: ethanol (E), isopropanol (I) 

and butanol (B) unless specified otherwise.  
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4.3 Photocatalyst synthesis 

First, amorphous TiO2 particles were prepared through controlled hydrolysis of titanium 

alkoxides, according to a previously reported method.15 Maret and coworkers initially proposed 

the method for fabrication of highly monodisperse colloidal TiO2 particles. The authors 

suggested that the molar ratio between the titanium alkoxide and water in the final solution 

should be 1:3 as a minimum. Hence, this ratio was selected as a guideline for the synthesis of 1 

gm calcined TiO2 powder. Briefly, a known quantity of titanium precursor T1 (4.3 mL), T2 (3.7 

mL) and T3 (3.11 mL) was added to 15 mL alcohol under inert conditions (glove box) and 

shaken vigorously for 5 min to achieve a clear solution. To this solution another 50 mL alcohol 

was added under magnetic stirring in ambient conditions. To ensure a homogeneous solution 

the stirring was continued for 10 min. Thereafter, water (1.5 mL) was added dropwise to the 

solution under vigorous stirring. Depending upon the alcohol and precursor used, precipitation 

started to occur after several seconds or minutes, as indicated by the colour change of the 

solution. The fastest hydrolysis was observed for T3, whereas T1 took several minutes before 

precipitation was observed. The stirring was discontinued after 30 minutes and the mixture was 

allowed to stand for a further 120 min to allow the reaction to complete. The suspended particles 

were recovered through centrifuging and washed repeatedly with designated solvent to remove 

any unreacted components. These particles, which were found to be amorphous, were then left 

to dry overnight in a vacuum furnace at 60 oC. As per the combination of alkoxide and alcohol, 

nine samples were prepared. The complete nomenclature for the samples has been provided in 

Table 4.1. 

Table 4.1: Sample codes used in this work. 

Sample code Precursor Solvent 

T1-E Titanium (IV) butoxide 

Ti(OCH2CH2CH2CH3)4 

Ethanol (C2H5OH) 

T1-I Isopropanol [(CH3)2CHOH] 

T1-B Butanol (C4H9OH) 

T2-E Titanium isopropoxide 

Ti[OCH(CH3)2]4 

Ethanol (C2H5OH) 

T2-I Isopropanol [(CH3)2CHOH] 

T2-B Butanol (C4H9OH) 

T3-E Titanium (IV) ethoxide 

Ti(OC2H5)4 

Ethanol (C2H5OH) 

T3-I Isopropanol [(CH3)2CHOH] 

T3-B Butanol (C4H9OH) 

 

Thereafter, the samples were calcined in a non-oxidizing atmosphere to preserve the residual 

carbon from the alkoxide precursor. To achieve this, a tube furnace was connected to a 
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compressed nitrogen gas supply. The amorphous powders were transferred into an alumina boat 

and placed in the furnace. The furnace was initially flushed with N2 (100 mL.min-1) for 30 min 

to ensure complete removal of air. Thereafter, the flow rate was decreased to 5 mL.min-1. The 

calcination was performed at 500 oC for three hours and the ramp rate was fixed at 5 oC.min-1 

for both heating and cooling steps. The as-prepared powders displayed a range of colour varying 

from dark grey to sharp black. A control sample (W) was prepared by similar calcination of 

amorphous T1-I (500 oC; 3 hr) in air. Fig 4.1 shows a digital (optical) photograph of the as-

prepared samples.  

 

Figure 4.1: Optical photograph demonstrating the colour of calcined samples. 

4.4 Characterization 

The as-prepared samples were investigated using the following characterization techniques to 

determine their physical, chemical and optical properties. 

4.4.1 Powder X-ray diffraction analysis 

Fig 4.2 a, b and c displays the XRD patterns of T1-E, T1-I, and T1-B, respectively. Fig 4.2a 

utilizes the symbols (A) and (R) to indicate the peaks corresponding to anatase and rutile phase, 

respectively. The XRD patterns for the remaining six samples have been provided in Fig 4.3. 

The presence of strong and well-defined peaks indicate the crystalline nature of all samples 

understudy. 
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Figure 4.2: Powder XRD patterns for (a) T1-E, (b) T1-I and (c) T1-B (A-anatase; R-rutile). 

 

Figure 4.3: Powder XRD patterns for T2-E/I/B and T3-E/I/B 

For all samples, major peaks could be indexed to anatase phase (JCPDS file No. 21-1272), 

whereas a few minor peaks associated with rutile phase (JCPDS file No. 03-0380) were also 



72 
 

observed. The rutile phase was particularly visible in T1-E, T3-E, and T3-I. The formation of a 

minor amount of rutile phase can be attributed to the relative high calcination temperature (500 

oC) used in this study.8 However, the presence of C can stabilize anatase even at higher 

temperature, which explains the low rutile content in the prepared samples.16 For T1-I, the 

broadening observed for (101) peak and a high background could originate from its reduced 

crystallite size. As a preliminary test, Debye-Scherrer equation was employed to calculate the 

crystallite size of all samples by using (101) peak data. The calculation indicated that T1-I 

possessed the smallest crystallite size of ~1.59 nm, whereas the biggest size was observed for 

T3-E (8.15 nm). All calculated crystallite sizes are presented in Table 4.2. However, it is to be 

noted that the Debye-Scherrer equation is not an accurate method for determination of grain 

size in nanoparticles. Recently, Vorokh proposed that for particle sizes below 4 nm, the error 

in Scherrer formula increases non-linearly.17 Furthermore, since the calculated crystallite sizes 

are comparable to the absolute error (~0.3 nm), these values are only representative and do not 

impart any quantitative insight. Another important observation that can be made from the XRD 

data is the lack of any additional peaks which could explain the colour change of the samples. 

This indicates that the phase/impurity/doping which is responsible for the colour change in the 

as-prepared samples is either amorphous in nature or below the detection limits of the 

instrument. Notably, the presence of interstitial carbon does not generate any additional peaks, 

especially at lower concentrations. However, it does induce a slight shift (~0.08) in the 101 

peak owing to change of lattice parameters.18 For the present study, no appreciable shift was 

observed with respect to pristine TiO2, suggesting the absence of any bulk-doping. 

Table 4.2: Experimental matrix summarizing the key quantifiable results. 

Sample Surface area 

(m2.g-1) 

Crystallite size 

(nm) 

Rate constant k 

(min-1) 

Surface-area normalized 

k (min-1.m-2) 

Weight loss 

(%) 

T1-E 4.85 4.02 0.088 0.3629 2.3 

T1-I 96.84 1.59 0.101 0.0209 4.0 

T1-B 2.33 4.35 0.035 0.3004 0.54 

T2-E 4.37 5.83 0.044 0.2014 1.32 

T2-I 12.33 3.89 0.055 0.0892 0.76 

T2-B 2.25 4.57 0.030 0.2667 0.63 

T3-E 4.05 8.16 0.047 0.2321 3.4 

T3-I 2.44 8.02 0.022 0.1803 0.5 

T3-B 1.33 5.03 0.012 0.1805 0.5 
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4.4.2 Scanning electron microscopy imaging 

Fig 4.4 displays the acquired SEM micrographs for T1-E, T1-I, and T1-B. Representative SEM 

images for all other samples are provided in Fig 4.5. It can be visualized that T1-E, T2-E, T2-

B, T3-E and T3-I exhibit spheroidal geometry with an average agglomerated particle size 

ranging from 300 to 500 nm.  

 

Figure 4.4: SEM images for (a) T1-E, (b) T1-I and (c) T1-B; (d) high magnification image for 

T1-I. 

T1-I displays shapes resembling agglomerated spheres with an average size of ~500 nm. 

However, upon further magnification, it was observed that these spherical lumps are composed 

of a network of much finer particles and the surface displays a porous structure, Fig 4.4d. T1-

B consists of irregular particles of varying sizes and a clear trend or average particle size could 

not be determined even under higher magnifications. Furthermore, the lack of observable 

necking between individual particles suggest that lumps observed in the SEM image of T1-B 

might be soft agglomerates. T2-I also exhibits a porous structure, as observed for T1-I. 

However, here the constituent smaller particles are observed to be more densely packed.  
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Figure 4.5: SEM images for T2-E/I/B and T3-E/I/B. 

T3-B appears to be composed of irregularly shaped particles with sharp edges, whereas the flat 

part appears to be decorated with smaller particles. However, in case of T3-B, the particle size 

was found to be extremely large with an average cross-section of >10 µm. These images 

indicate that different combinations of the participating alkoxide and alcohols can greatly 

influence the particle size and geometry. Further, energy dispersive X-ray (EDX) spectrum was 

also acquired for all samples to determine the (elemental) composition. The EDX analysis could 

not be used to determine the percentage composition of the samples with a high accuracy, as 

the data shifted with respect to area of imaging. This is an expected feature as EDX analysis is 

typically used for qualitive measurements and the acquired depends on the interaction volume, 

which changes with respect to imaging area. Nevertheless, the presence of elemental C on the 
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surface of the samples could be easily identified, which can be used to explain the colour change 

of the samples. The representative EDX spectra for 3 samples (T1-B, T2-E and T3-B) is 

presented in Fig 4.6. 

 

Figure 4.6 SEM image (left) and corresponding EDX spectrum (right) of the highlighted area 

for (a, b) T1-B, (c, d) T3-B and (e, f) T2-E. 

4.4.3 X-ray photoelectron spectroscopy 

To acquire an in-depth assessment of the chemical composition and electronic structure of the 

particle surface XPS was performed. The XPS survey spectrum for T1-E is provided in Fig 

4.7a, in which the characteristic peaks for O 1s, Ti 2p, and C 1s could be easily identified. 

Furthermore, the survey data indicates that the catalyst surface is primarily composed of these 

three elements (O, Ti and C), which is in good agreement with the EDX results. The high-

resolution spectra for these elements are provided in Fig 4.7b to d. 
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Figure 4.7: (a) XPS survey spectrum, and high-resolution (b) Ti 2p, (c) O 1s and (d) C 1s 

spectra of T1-E. 

Similar peaks were observed for the remaining samples and, therefore, have not been shown. 

All spectra were acquired after charge compensation with respect to adventitious carbon (C 1s), 

which is inevitable for samples exposed to atmosphere. Fig 4.7b shows that the acquired Ti 2p 

spectrum contains two well-defined peaks at binding energies (BEs) of 458.5 and 464.3 eV. 

Both these peaks correspond to the presence of Ti4+ oxide, which is typical for TiO2. Lack of 

any additional peaks indicates that the Ti atoms present on the surface are exclusively bonded 

to oxygen atoms. Similarly, the major peak in the O 1s spectrum is centred around BE of 529.8 

eV, which corresponds to the presence of metal oxides. Since Ti was the only metal detected in 

the survey spectrum, this further corroborates the lack of any additional phases or dopants. 

However, a small and broad peak centred around ~530.9 eV can also be observed in the O 1s 

spectrum. This can be attributed to the presence of surface (terminal) hydroxyl groups and is a 

commonly reported impurity for photoactive TiO2-based materials.19 Finally, Fig 4.7d displays 

the C 1s spectra for T1-E. The largest peak corresponding to BE of 284.8 can be attributed to a 

few nm thick layer of adventitious carbon. The spectrum could be further convoluted into two 

additional peaks centred around BEs of 285.6 and 288.7 eV. These peaks correspond to the 

presence of carbonate phases. The presence of asymmetrical peaks indicate that the present 
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carbon lacks any long-range order. Analysis of the XPS spectra suggests that the majority of C 

is present on the surface of the catalyst, possibly bonded to the terminal oxygen groups, and 

does not contribute to interstitial doping in any significant way. Combined with the SEM 

imaging and XRD data, it can be suggested that the as-prepared catalysts display a (TiO2-C) 

core-shell structure. As the depth of XPS analysis is only limited to a few nanometres, confocal 

Raman spectroscopy was applied to further confirm this hypothesis.  

4.4.4 Raman spectroscopy 

The acquired Raman spectra for T1-E/I/B are presented in Fig 4.8. Observations made from the 

Raman spectra are in good agreement with the results obtained from XRD, SEM, and XPS 

analysis. All five Raman active modes for anatase phase could be easily indexed including the 

Eg (147, 198, and 640 cm-1), B1g (398 cm-1) and A1g (515 cm-1) bands. Notably, neither 

interstitial C nor stoichiometric Ti-C bonds can be identified using Raman spectroscopy. 

However, Raman spectra can be used to identify and even characterize the presence of free 

carbon.  

 

Figure 4.8: Acquired Raman spectra for the T1-E/I/B samples. 

A small band is observed at 1590 cm-1 corresponding to the in-plane stretching vibration (E2g) 

of carbon, which confirms the presence of sp2-hybridized carbon on the surface of the particles. 

The lack of additional modes corresponding to D and D’ bands suggest that the present carbon 

is amorphous in nature and lacks long-range order. Similar observations were also made in the 

acquired Raman spectra of the remaining samples (Fig 4.9)a.  
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Figure 4.9: Acquired Raman spectra for the T2-E/I/B and T2-E/I/B samples. 

4.4.5 Thermogravimetric analysis 

All the analysis made until this point clearly indicate the presence of surface carbon. However, 

quantitative data regarding the amount of C present in the system is still needed. To determine 

the wt.% of carbon in the composites, all of the samples were analysed using TGA under the 

assumption that any surface carbon would oxidize in the presence of air upon heating to a 

sufficiently high temperature. This would result in a net weight loss of the powder which can 

be used to determine its relative amount. Therefore, all samples were heated in air up to a 

temperature of 600 oC and thereafter cooled down to room temperature. Fig 4.10 shows the heat 

flow and mass change of T1-E as a function of temperature. Similar plots were obtained for the 

remaining samples and the results are listed in Table 4.2. It was observed that all samples 

displayed a weight loss between 0.5% to 4%. However, no correlation could be established 

between the weight change and other parameters such as particle size or surface area. This 

suggests that the amount of carbon cannot be controlled by altering the morphology of the 

particles and is unique for each precursor-solvent composition.  
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Figure 4.10: TGA graph depicting mass change and heat flow as a function of temperature 

for T1-E.  

4.4.6 Diffuse reflectance spectroscopy 

The photocatalytic properties of any material is directly dependent on its light harvesting ability 

and its effective surface area. Therefore, measurement of both these parameters is important to 

assess and compare the different catalytic performance. Hence, DRS measurements were 

performed on all samples understudy to observe their optical characteristics. Fig 4.11 shows the 

reflectivity of the as-prepared catalysts compared to a standard TiO2 sample. Owing to the 

presence of surface carbon, all of the samples displayed a strong absorbance in the visible 

region. The small bump observed at λ=475 nm and the increased reflectivity at λ<330 nm are 

an artefact of measurement introduced by the imperfect reflection from the internal calibration 

standard. Compared to standard (commercial) TiO2, approximately a 50% drop in reflectivity 

was observed. Furthermore, the characteristic transition curve for TiO2 (~390 nm) was visible 

in all spectra indicating that carbon incorporation has not shifted the band gap of the base 

semiconductor; even though for some samples a slight red-shift of the transition point was 

apparent. This could be credited to an enhanced scattering of the photons by the external carbon 

shell after being reflected from the TiO2 layer underneath. Alternately, the presence of rutile 

phase in some samples could also result in a reduced bandgap. In either case, the red-shift is 

only of the order of ~20 nm, suggesting that the prepared catalyst still possess a band gap of 

~3.2 eV, thereby, making them UV active. Compared to pristine TiO2, the improved absorption 

in the visible region should help to improve its catalytic performance. 



80 
 

 

Figure 4.11: Diffuse reflectance spectra for (a) T1-E/I/B, (b) T2-E/I/B and (c) T3-E/I/B. 

4.4.7 Nitrogen absorption-desorption isotherms 

The DRS measurements were followed by specific surface area measurements through nitrogen 

absorption-desorption isotherms. Fig 4.12 displays the acquired sorption isotherms for all the 

samples under study. Except for T1-I and T2-I, all of the samples displayed plots closely 

resembling a type-II isotherm, indicating indefinite multilayer adsorption and a wide pore-size 

distribution. Contrarily, both T1-I and T2-I resemble a type-IV isotherm with a weak hysteresis 

observed between partial pressure values of 0.4 to 0.6. This corresponds to finite multilayer 

adsorption and indicates a relatively narrow pore-size distribution. The placement and nature 

of hysteresis suggest that both these samples have some degree of porosity with a large pore 

size distribution.  
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Figure 4.12: Nitrogen absorption-desorption isotherms for (a) T1-I, (b) T1-E/B, (c) T2-E/I/B 

and (d) T3-E/I/B. 

Brunauer–Emmett–Teller (BET) theory was used to calculate the specific surface area and the 

obtained values are listed in Table 4.2. As expected from the isotherms, T1-I was found to 

possess an exceptionally high surface area of ~96.8 m2.g-1 compared to other samples. This 

could be attributed to the highly porous surface of T1-I, as also observed under SEM imaging. 

This was followed by T2-I displaying a surface area of ~12.3 m2.g-1, which also correlates well 

with the observation of a porous structure in its SEM image. The rest of the samples displayed 

a specific surface area ~4 m2.g-1 with T1-E, T2-E and T3-E possessing an effective surface area 

of 4.9, 4.4, and 4.1 m2g-1, respectively. The least specific surface area was observed for T3-B 

(1.3 m2.g-1), which could be attributed to its relatively large particle size. 

4.5 Formation of TiO2-C core-shell particles 

Controlled hydrolysis of titanium precursors with the method described in this study yields 

amorphous hydrated titania particles. TGA analysis reveal that the hydrated amorphous 

particles are composed of ~20% water by weight and display onset of crystallization upon 
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heating to ~410 oC (Fig 4.13). The amorphous samples appear to lose water rapidly with 

increasing temperature and the weight stabilizes around 350 oC signalling a complete loss of 

water. TGA/DSC data indicates that calcination can be performed at ~420 oC to obtain anatase 

phase. However, a calcination temperature of 500 oC was selected in order to ensure complete 

crystallization of the amorphous precipitates. Calcining the amorphous particles in air resulted 

in powders with the distinct white colour associated with pristine TiO2. Repeated washing and 

drying of precipitates further ensure that the carbon shell of the calcined samples originates 

from the residual organic precursor (alkoxide). Hence, a methodology can be proposed for the 

formation of the observed core-shell structure. 

 

Figure 4.13: Simultaneous DSC and TGA plots for amorphous T1-E. 

Calcination of the amorphous powders in an atmosphere devoid of oxygen allows preservation 

of residual carbon from the incomplete hydrolysis of the titanium alkoxide. Upon reaching 

crystallization temperature, compaction of the particles starts to occur, and the residual carbon 

permeates outwards owing to its lower density. Consequently, this residual carbon bonds with 

the terminal oxygen groups at the surface of individual crystallites and imparts a range of colour 

to the prepared TiO2 samples (Fig 4.1). A schematic description of the whole process is 

provided in Fig 4.14. 
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Figure 4.14: Formation mechanism for the TiO2-C core-shell particles. 

4.6 Dye degradation experiments 

Finally, to assess the catalytic activity all samples were tested using sunlight-assisted dye 

degradation experiments. Methylene blue (MB) was selected as the model compound for the 

experiment with 50 mL of stock solution (10 mg.L-1) mixed with 50 mg catalyst. It was 

observed that for the best catalyst, complete degradation could be achieved in less than 15 min. 

Hence, each experiment was designed to run for 12 min. Absorbance data was collected at 

λ=664 nm with respect to the untreated (initial) dye sample. Fig 4.15a and b displays the change 

in absorbance spectra and the corresponding profile for MB solution over T1-E, both in dark 

and illuminated conditions, respectively. Fig 4.15b can be used to clearly differentiate the 

change in absorbance due to absorption-desorption process and the onset of photocatalysis. The 

time-dependent degradation profiles were plotted for each sample and are provided in Fig 4.15a 

and b as both linear and logarithmic forms, respectively.  
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Figure 4.15: (a) Absorbance spectra and (b) corresponding change in absorbance of MB over 

T1-E. (c) Time-dependent degradation profiles for all samples and control experiments and 

(d) corresponding natural log plots (line of best fit provided as a guide only). 

It can be clearly observed from Fig 4.15 that there is a correlation between the surface area of 

the prepared catalysts and the corresponding degradation rates. Within the measured time-

period, the highest degradation of ~92% was achieved with T1-I, followed closely by T1-E 

(87%), T2-I (76%), and T3-E (70%), whereas T3-B displayed the lowest degradation of 28%. 

Control experiments were also performed by monitoring the degradation of dye in dark (with 

catalyst) and blank (illuminated without catalyst) conditions. Negligible degradation under 

these control experiments confirmed that mineralization was achieved primarily through 

photocatalysis. In order to firmly establish the benefit of carbon incorporation, the control 

sample (W) was further tested for MB degradation under similar conditions, in which no 

appreciable change in dye concentration was observed. These observations clearly indicate that 

incorporation of a carbon shell on the surface of TiO2 particles significantly improves their 

photocatalytic properties.  

The degradation of MB solution closely follows the first order kinetics which can be described 

by the following expression: 



85 
 

−ln (
𝐶

𝐶0
) = 𝑘 × 𝑡          (4.1) 

In which 𝐶0 is initial concentration, 𝐶 is the concentration at time 𝑡 and 𝑘 is the apparent 

reaction rate constant. Hence, the rate constant can be estimated by measuring the slope of a 

line having the best fit with the data points. Table 4.2 lists the determined rate constants for all 

samples understudy. T1-I displayed the highest reaction rate constant of 0.101 min-1 followed 

closely by T1-E (0.087 min-1) and T2-I (0.055 min-1). A direct comparison of the rate constants 

for T1-I and W (0.012 min-1) indicates that for particles with similar morphology, carbon 

incorporation improves the photocatalytic activity by 8.35 times. Even with a significantly 

reduced surface area of sample T2-I, the activity of carbon coated sample is still 4.58 times 

higher than pristine TiO2.  

4.7 Discussion 

Upon arranging the samples according to their measured surface areas an important observation 

can be made. With the exception of T3-I, all other samples, using isopropanol as a solvent have 

shown a relatively high surface area post calcination. Conversely, employing butanol as a 

solvent produces the lowest specific surface area particles. Similarly, among precursors, 

particles synthesized using titanium butoxide possess a higher surface area followed by 

isopropoxide and ethoxide. This observation could be credited to two major factors. The first 

being the relative molecular weight and viscosity of the different titanium organometallic 

precursors. For a given alcohol, the rate of polycondensation (hydrolysis) of any titanium 

alkoxide is dependent on the molecular weight and nature of the conjugate base.20 Hence, 

increasing the molecular weight and viscosity of alkoxide reduces the rate of hydrolysis. This 

slower mixing increases the number of nucleation sites giving rise to a higher number of smaller 

particles. Alternately, a lower molecular weight precursor (ethoxide) tends to hydrolyse more 

rapidly resulting in fewer nucleation sites. Hence, the latter reaction results in lesser particles 

with a relatively larger cross-section. Another important factor which could determine the 

particle formation and growth is the zeta-potential of the initial colloidal solution. It has been 

previously reported that the particle size of TiO2 during precipitation can be controlled by 

carefully varying the zeta-potential.15 It is quite possible that depending upon the alcohol used, 

the zeta-potential of the nucleated particles might be significantly different. Further work has 

been undertaken to analyse and confirm the role of changing zeta-potential on the size and 

surface area of the calcined particles. 

Degradation profile for all samples in this study has a good correlation with their specific 

surface area. This is to be expected as the photocatalysis is mainly a surface phenomenon and 
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hence, a larger surface area would equate to faster degradation. However, the degradation 

profile is not directly proportional to the specific surface area of the respective samples. T1-I 

has the highest specific surface area of 96 m2.g-1 and achieves ~91% degradation in 12 min. 

The second-highest degradation rate is observed for T1-E (~87%) despite having a significantly 

lesser surface area (4.9 m2.g-1) than both T1-I and T2-I (12.3 m2.g-1). In order to explain this 

phenomenon, SEM images of the samples can be helpful. In each of the above three samples, 

the average particle size is of the order of 500 nm, indicating that the samples are 

polycrystalline. In samples T1-I and T2-I, the individual particles are porous in nature. It can 

be theorized that at the inception of crystallization, the primary crystallites for T1-I and T2-I 

are relatively smaller. Given their larger surface energy, upon calcination, these primary 

particles form agglomerates resulting in a porous structure, which explains the large surface 

area observed in the BET analysis. However, given the black colour and opaque nature of the 

samples, only the sites directly exposed to irradiation participate in photocatalysis. Therefore, 

despite having a significantly larger surface area and high porosity, the materials are unable to 

deliver concomitant degradation rates. A succinct summary of some key findings in this study 

is tabulated in Table 4.2. Furthermore, Table 4.2 also lists the area-normalized rate constants 

for all powders understudy. From this new parameter, it can be observed that T1-E has the 

highest area-normalized k of 0.018 min-1.m-2 followed closely by T1-B (0.015 min-1.m-2) and 

T2-B (0.013 min-1.m-2). The now differing values of k indicate that there might other factors 

such as enhanced surface adsorption, increased trap sites or efficient separation of 

photogenerated charge carriers, which could determine the overall mechanism for 

photocatalysis. It also indicates that for the same amount of surface area present, T1-E has the 

highest rate constant of all the prepared samples. Contrary to the direct rate constant, the surface 

normalized k does not display a correlation with either the surface carbon percentage, crystallite 

size, or specific surface area. Furthermore, given the small sample size, such a correlation would 

be unable to provide much insight. Prima facie it appears that the catalyst prepared using 

titanium butoxide and ethanol produces a higher number of active sites per unit area. One 

possible explanation is that the molecular mass and nature of conjugate base affects the creation 

of catalytically active sites during calcination. However, the underlying mechanism for this still 

remains unclear and would need further investigation. Nevertheless, it is evident that for a given 

surface area, T1-E is the most active photocatalyst, and this number could be further improved 

by reducing the primary particle size of the catalyst. This is an important observation and hence, 

this configuration was selected for a follow-up study dealing with size optimization and in-

depth investigation of catalytic performance of these core-shell particles.  
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4.8 Conclusions 

In this chapter, we report a facile method for in-situ preparation TiO2-C core-shell composites 

through controlled hydrolysis of titanium alkoxides. To study the effect of preparation 

conditions on the size and morphology of the resulting particles three different combinations of 

titanium precursors (ethoxide, isopropoxide, and butoxide) along with three alcohols (ethanol, 

isopropanol, and butanol) were investigated. The hydrolysed particles were amorphous in 

nature, contain 20 wt.% water, and exhibit onset of crystallization at ~420 oC. Upon calcination 

in an oxygen-free atmosphere, the residual carbon from organic precursor diffuses outwards to 

form a shell around the titania particles. XRD, XPS, SEM and Raman analysis of the samples 

indicate that the Ti atoms are exclusively bonded to O atoms, the samples do not display any 

evidence for bulk doping, and carbon is present as a thin coating on individual TiO2 crystallites. 

SEM images revealed that depending upon the combination of alkoxide and solvent, different 

particle geometries and sizes, ranging from 300 nm to 50 µm, can be prepared. BET and XRD 

analysis indicate that for a given alcohol, samples prepared using titanium butoxide possessed 

the largest surface-area and smallest crystallite size.  

The largest surface area of 96.8 m2.g-1 was reported for sample designated as T1-I with a 

correspondingly high k of 0.101 min-1
 for sunlight-assisted mineralization of MB dye. However, 

the highest activity per unit surface area was recorded for T1-E sample with an effective k of 

0.018 min-1.m-2. Compared to a controlled sample calcined in air, the photocatalytic activity 

was improved by eight times through carbon incorporation. DRS analysis reveals that carbon-

containing samples are 60% to 90% less reflective than commercial titania in the visible 

spectrum. However, a significant change in bandgap was not observed, suggesting that the 

material can efficiently utilize both UV and visible light. Results indicate that the as-prepared 

TiO2-C composites possess a core-shell structure and can be employed for efficient solar 

photocatalysis. Further improvement of catalytic performance could be obtained by reducing 

the particle size, which has been dealt with in chapter 5. However, it is important to note that 

further research is required to understand the role of solvent-alkoxide combination on the nature 

and placement of residual carbon such that further optimization can be attempted. 
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Chapter 5  

5. Optimized TiO2-C core-shell nanocomposites for solar water treatment 

 

5.1 Introduction 

Results obtained in chapter 4 have already demonstrated that TiO2-C core-shell structure can 

be successfully prepared without the need for multi-step fabrication techniques or an external 

C source. Furthermore, it was also observed that C-modification can lead to a significant 

improvement in the photocatalytic activity of TiO2. The sample prepared by using titanium (IV) 

butoxide with isopropanol as the solvent displayed a high activity for degradation of methylene 

blue dye. This ameliorated performance could be attributed to its outstanding surface area (96.8 

m2.g-1), which was more than an order of magnitude higher than catalysts synthesized from 

other combinations (listed in Table 4.2). However, the sample prepared using titanium (IV) 

butoxide and ethanol delivered the best performance per unit surface area.  

Notably, the average particle size of all samples reported in chapter 4 was in the range of 0.5 to 

>5 µm. It has already been discussed that for a wide bandgap semiconductor such as TiO2, the 

majority of the photon absorption and charge generation occurs near the surface (equations 2.17 

and 2.18). Therefore, the larger particle size of the prepared TiO2-C samples is actually a major 

limiting factor that needs to be addressed. This is further confirmed by the fact that the as-

prepared TiO2-C composites did not display a change in the bandgap suggesting effective UV 

utilization. Hence, reducing the particle size and increasing the specific surface area of the 

catalyst is expected to significantly improve its performance. Furthermore, in-depth 

characterization of the core-shell composites is required to explain the underlying mechanism 

for improved photo-response. Finally, it is important to test the efficacy of a practical 

photocatalyst for a broad spectrum of water-borne pollutants including pharmaceuticals and 

pathogens. 

In this regard, this chapter reports the optimized synthesis parameters for producing highly 

photoactive TiO2-C core-shell nanocomposites. In-depth characterization of the optimized 

catalyst has been performed to highlight and explain the underlying mechanism for the 

improved photo-response. Finally, the as-prepared nanocomposites were tested for remediation 

of a variety of common water pollutants including gram-negative Escherichia coli (E. coli) 

bacteria. A comparative analysis of the results reported in this study with those reported in the 

literature is also provided.  
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5.2 Material selection 

Table 4.2 provides the key quantifiable results of the dye degradation tests performed in chapter 

4. From the table, it can be easily visualized that sample designated as T1-E provides the highest 

degradation rate constant normalized with respect to surface area. As T1-E was fabricated by 

controlled hydrolysis of titanium (IV) butoxide in ethanol, the same combination was selected.  

5.3 Photocatalyst synthesis 

The fabrication method reported in chapter 4 (section 4.3) was slightly modified to prepare 

TiO2-C core-shell nanocomposites. The synthesis procedure is the same as described in section 

4.3, except that precipitation was performed in the presence of aqueous KCl (1.5 mL; 0.5, 0.2 

and 0.1 M). Barringer and Bowen first reported the synthesis of monodisperse TiO2 particles 

by hydrolysis of titanium alkoxides in alcoholic solutions.1 The authors reported that highly 

monodisperse particles could be obtained if the molar ratio of alkoxide to water in the final 

solution was ≥3. It was also observed that the alkoxide itself has a direct bearing on the average 

size and morphology of the particles. This study forms the basis for all hydrolysis analysis 

reported thereafter. However, the authors noted that only a slight reduction in particle size can 

be obtained even if the concentration of water used for hydrolysis is increased considerably. 

Hence, the study did not report on the possibility of size control of particles. Furthermore, in 

our study it was observed that increasing the water of hydration led to complete hydrolysis and 

did not result in the traditional C-coated structures. In the same direction, Maret and coworkers 

discovered that inclusion of surfactants and ionic salts in low concentrations can be a useful 

tool to control the zeta potential of ethanoic solution, which in turn can be used to control the 

size of the primary precipitates.2 Addition of alkali salts to the precursor solution has a two-fold 

effect: 1) primarily it increases the zeta potential which prevents Brownian aggregation and, 

therefore, formation of larger particles; 2) with increasing salt concentration, more cations bind 

to the water in the hydration shell thereby restricting or even preventing hydrolysis. Further 

tests confirmed that no residual cation or anionic elements/compounds were observed in the 

calcined particles. Hence, given the ease of application and the greater degree of control, 

precipitation of nanoparticles was performed with dilute KCl solutions.  

It was observed that the reaction mixture containing 0.5 M KCl did not produce any 

precipitation even after extended time periods. The solution was allowed to stand for several 

days, which resulted in the formation of a pale yellow-coloured transparent gel. However, no 

direct precipitation was observed. Upon using 0.2 M KCl solution, a white turbid solution was 
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obtained indicating hydrolysis. However, the resulting particles could not be separated from the 

solution even after centrifuging for >20 min (at 4500 rpm) suggesting that the particles are 

colloidal in nature. Finally, experiment performed with 0.1 M KCl produced particles which 

could be recovered by centrifuging at 4500 rpm for 10 min resulting in a clear supernatant. In 

this last experiment, the effective concentration of KCl in the final solution was calculated to 

be approximately 2.1 mM. The precipitates were washed several times with ethanol to remove 

any trace reactants and salts and dried overnight at 60 oC in a vacuum oven. A measured 

quantity of the powder was spread evenly in an alumina boat and calcined at 450 oC for 3 h 

under Ar flow (5 mL.min-1) in a tube furnace with a ramp rate of 5 oC.min-1. As opposed to 

previous synthesis conditions (500 oC, N2) a lower temperature and Ar gas were selected based 

on results acquired from TGA analysis of amorphous powders (Fig 4.14). These conditions 

were adopted to avoid any high-temperature induced sintering/cluster formation and thereby 

preserve the nanostructure of the primary precipitates. Prior to calcination, the sample in the 

furnace was purged with Ar for 30 min (100 mL.min-1) to ensure a completely oxygen-free 

environment. The as-prepared catalyst was dark-grey in colour and is designated as TC. The 

control sample was prepared in a similar manner by calcination in air and is designated as TA.  

5.4 Characterization 

5.4.1 Powder X-ray diffraction analysis 

Powder XRD patterns for both the primary catalyst (TC) and the control sample (TA) are 

presented in Fig 5.1. The strong diffraction lines and well-defined peaks indicate a high-degree 

of crystallinity in both the samples. However, the presence of peak broadening indicates a 

smaller crystallite size compared to catalysts prepared by salt-free precipitation (Fig 4.2). All 

the peaks for TC could be clearly indexed to anatase phase (JCPDS card No. 21-1272) 

indicating phase purity of the sample. However, for TA a small peak corresponding to the 

orthorhombic brookite phase (121) could also be observed (JCPDS card No. 39-1360). It has 

been previously reported by Zhang and Banfield that during calcination of amorphous 

(hydrated) titania nanoparticles, the thermodynamics of anatase to rutile transformation is 

highly dependent on the crystallite size of the precursor.3 Anatase is the most stable phase for 

crystallite size below 11 nm, whereas brookite phase can be obtained if the crystallite size is 

between 11 to 35 nm. 
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Figure 5.1: Powder X-ray diffraction patterns for the calcined TA and TC samples. 

 Since in this study the size of the primary precipitates for both TC and TA are same, it is likely 

that calcination in air has favoured the formation of unstable brookite phase in the control 

sample (TA). As a preliminary test, the crystallite size of the two samples was calculated by 

using the Scherrer equation for (101) XRD peak data, which was fitted using Gaussian function 

in Origin software. The average crystallite size for both the samples was calculated to be 

approximately 1.79 nm. However, as the calculated value is similar for both samples and 

comparable to the absolute error (~0.3 nm) it cannot be considered as a reliable indicator of 

crystallite size.4 Notably, no peaks corresponding to TiC or other polymorphs of carbon could 

be observed within the detection limits of the instrument. This can be attributed to the absence 

of bulk doping and the low concentration of carbon in the samples, which is in good agreement 

with our previous observations. 

5.4.2 Scanning and transmission electron microscopy imaging 

SEM imaging was used to study the morphology and average particle size of the prepared 

catalysts. Fig 5.2 shows the SEM images for both samples at various magnifications. 
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Figure 5.2: SEM images for (a, b) TC and (c, d) TA samples at different magnifications. 

The images reveal that both samples form agglomerates of irregular shape and size, and a clear 

pattern could not be observed. Furthermore, owing to the extremely small particle size and 

charging of the samples higher magnification images could not be obtained, thereby limiting 

the information provided in the SEM images. To accurately determine the average 

particle/crystallite size and elemental composition of the catalyst TEM imaging was employed. 

Fig 5.3a and c shows the low magnification TEM images for TC and TA, respectively. The 

TEM images reveal that both the catalysts form an average cluster size of roughly 100 nm 

across, consisting of much smaller individual particles. 



94 
 

 

Figure 5.3: TEM images for (a, b) TC and (c, d) TA at different magnifications. (e) 

Representative EDX spectra for TC under area scans. 

The HR-TEM images for TC and TA (Fig 5.3b and d) reveal that the average crystallite size is 

around 10 nm for both samples. This value is significantly larger than that predicted using the 

(101) XRD peak data and further confirms the limitation of Scherrer formula for size 
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determination of nanoparticles. To determine the presence of different elements in the as-

prepared TC catalyst, energy dispersive X-ray spectroscopy (EDX) was performed using large 

area scans. Fig 5.3e shows a typical EDX spectrum for TC, clearly revealing the presence of C 

along with Ti and O atoms. However, as the relative composition changed with respect to each 

individual analysis, an accurate composition could not be determined. The HR-TEM images 

also reveal that the individual TiO2 particles for both TC and TA are highly crystalline and 

display no apparent distortion of the lattice, which is commonly attributed to the inclusion of C 

in the TiO2 matrix. This suggests that C may be present as a thin coating on the surface of the 

individual particles and eliminates the possibility of a bulk-doping. However, further 

characterization is required to confirm this hypothesis. 

5.4.3 X-ray photoelectron spectroscopy 

XPS analysis was performed to investigate the chemical composition and electronic structure 

of the catalyst surface and the acquired XPS spectra are presented in Fig 5.4. Fig 5.4a displays 

the survey spectrum for TC, in which the peaks corresponding to O 1s, C 1s and Ti 2p orbitals 

could be easily indexed, thereby, confirming the presence of these elements. Fig 5.4b shows 

the high-resolution Ti 2p spectra with two symmetrical peaks located at binding energies (BEs) 

of 464.2 and 458.5 eV. The presence of symmetric peaks and a splitting energy difference of 

5.7 eV confirms the presence of Ti4+ oxide (TiO2). No additional peaks corresponding to 

metallic (Ti0) or self-doped (Ti3+) species were observed. It has been previously reported that 

doping or interstitial incorporation of foreign elements like C and N can shift the Ti 2p peaks 

to lower binding energies by ~0.5 eV with respect to pure anatase TiO2.
5 As the acquired Ti 2p 

spectrum for TC displays a lack of any shift in BEs of these orbitals, it suggests the absence of 

C or any other heteroelement doping. This observation is further supported by the O 1s spectrum 

presented in Fig 5.4c, which can be deconvoluted into two peaks. The sharp peak corresponding 

to BE of 529.7 eV can be attributed to the Ti-O bonding, whereas the smaller and broader peak 

centred around ~530.9 eV indicates the presence of either hydroxide or carbonate species on 

the sample surface. This is a commonly reported impurity on the surface of photoactive TiO2.
5,6 

The high-resolution XPS spectrum for C 1s has been presented in Fig 5.4d. The main band can 

be deconvoluted into three individual peaks centred around 284.8, 286 and 288.5 eV, 

corresponding to C-C, C-O and C=O species, respectively. Even though the scans have been 

performed after charge compensation with respect to carbon, a large portion of the peak centred 

at 284.8 eV could originate from (atmospheric) adventitious carbon with no means for further 

resolution. The other two peaks located at BEs of 286 and 288.5 eV can both be attributed to 

the presence of carbonate phase. It has been previously reported that the presence of a C 1s 
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band at ~288.5 eV indicates substitutional doping of C in TiO2 matrix, in which some of the C 

atoms can displace Ti atoms and form bonds with the lattice O.5,6 However, in such a case the 

BEs for Ti 2p orbitals would be shifted to lower energies and a strong O 1s peak corresponding 

to C-O would be observed beyond 531.5 eV. Since the acquired XPS data for TC does not 

support this observation, it is safe to assume that the majority of C is present as free/amorphous 

carbon bonded with the terminal oxygen groups at the surface. 

 

Figure 5.4: (a) XPS survey spectrum and the corresponding high-resolution XPS spectra of 

(b) Ti 2p, (c) O 1s and (d) C 1s orbitals of calcined TC samples. 

5.4.4 Raman spectroscopy 

The prepared samples were further analysed using Raman spectroscopy and the acquired 

spectra is presented in Fig 5.5. The presence of a strong band at 147, 198, and 640 cm-1 can be 

correlated to the Eg mode of the anatase phase. Similarly, bands corresponding to 398 and 515 

cm-1 can be attributed to the B1g and A1g modes of the anatase phase. No additional modes 

corresponding to either rutile or brookite phase were observed suggesting the phase purity of 

anatase phase in TC, within the detection limit of the instrument. Similar observations were 

made in the Raman spectrum of TA along with a small band around 450 cm-1, which can be 
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attributed to the brookite phase and is in good agreement with the XRD results. The presence 

of surface carbon in TC was confirmed by the observation of a peak at 1590 cm-1 corresponding 

to the in-plane stretching vibration (G band) of carbon. This G-band (~1590 cm-1) clearly 

indicates the presence of sp2-hydridized graphitic carbon. Additionally, the inset of Fig 5.5 

clearly shows the redshift of Eg band in TC compared to TA, which can be attributed to the 

electronic interaction between the TiO2 and carbon layers on the surface.7,8 The Raman 

spectrum of crystalline graphitic carbon usually contains a D-band (at ~1350 cm-1). This D-

band is associated with the presence of defects in long-range ordered graphene layers and its 

intensity is dependent on the number of graphene layers present on the material.9 The absence 

of a strong D-band in the acquired Raman spectrum suggests that the C-shell coating of TC 

composite lacks sufficient long-range order, which makes the C-shell appear to be amorphous 

in nature.10,11 Additionally, the intensity ratio of the D and G peaks [I(D)/I(G) ≈0] along with 

the G peak position indicates that the present carbon is indeed amorphous in nature with a high 

sp2 content10,12. However, owing to the high background of TiO2 and the overall low carbon 

content in the nanocomposites, it is difficult to accurately determine the volume ratio of sp2/ 

sp2 carbon in the mixture.  

 

Figure 5.5: Acquired Raman spectra for the as-prepared TC and TA powders. 
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5.4.5 Thermogravimetric analysis 

To quantitatively determine the amount of carbon (wt.%) present in the sample 

thermogravimetric analysis was performed. The catalyst was heated in air up to 800 oC to 

achieve complete oxidation of the surface carbon. Fig 5.6 shows the weight change of the 

sample as a function of temperature and the highlighted area shows the associated y-error. The 

graph displays a sharp drop in the weight of the sample from 0-200 oC, which can be partially 

attributed to the removal of adsorbed moisture. However, at 200 oC a shift in the heat flow is 

encountered indicating a possible loss of water from the hydroxyl defects in the sample. 

Another sharp transition in the heat flow can be observed at ~620 oC, potentially attributed to 

the onset of carbon oxidation. The sample was further heated to 800 oC and held at this for 30 

min, after which it was slowly cooled to room temperature. Analysis of the TGA data indicates 

that TC contains ~2.2 wt.% carbon which could be directly oxidized in air. This value is in 

excellent agreement with that observed for the T1-E sample, which displayed a weight change 

of ~2.3% (Table 4.2). This data suggests that the mechanism for partial hydrolysis of titanium 

alkoxide does not change in the presence of aqueous KCl and that the amount of surface C is 

possibly invariant for a certain combination of alkoxide and alcohol synthesis. However, further 

testing is required to fully confirm this hypothesis. 

  

Figure 5.6: Graph depicting mass change and heat flow as a function of temperature for TC. 
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5.4.6 Diffuse reflectance spectroscopy 

Fig 5.7 shows the DRS spectra of TC and TA in the wavelength range of 250 to 650 nm. From 

the presented data it can be clearly observed that the core@shell structure of TiO2 allows it to 

better absorb in the visible region. The reflectivity of TC in the wavelength range of λ>400 nm 

is almost half that of TA, which is consistent with the DRS data observed for the sub-

micrometre sized particles (section 4.4.6). The characteristic absorption edge of TiO2 is still 

clearly visible in TC, as indicated by the sharp drop in reflectivity at approximately ~380 nm; 

even though compared to TA a slight red-shift in the band gap (~0.05 eV/ 20 nm) can be 

observed. As bulk or interstitial incorporation of carbon is associated with a significant 

reduction of the bandgap, the presented data further supports the theory that majority of carbon 

in the sample is present at the surface. 

 

Figure 5.7: Diffuse reflectance spectra for TC and TA. 

5.4.7 Nitrogen absorption-desorption isotherms 

As photocatalysis is essentially a surface phenomenon, the average surface area and pore size 

of the catalyst has a direct bearing on its catalytic properties. Hence, nitrogen absorption-

desorption isotherms were acquired for both TC and TA and are presented in Fig 5.8a and b. 

The isotherms for both TC and TA can be categorized as type IV owing to the lack of a clear 

saturation even in the higher relative pressure region. TC displays two distinct hysteresis 

regions in the relative pressure range of 0.5-0.8 and 0.9-1.0. Hysteresis in the pressure range of 
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0.5-0.8 suggests the presence of mesopores with a broad size distribution, whereas the second 

region (0.9-1.0) can be approximated to a H1-type hysteresis indicating the presence of well-

ordered micropores with a smaller size distribution. Contrarily, for TA the distinct hysteresis 

region is observed in the partial pressure range of 0.6-0.9 with an H2-type geometry suggesting 

that the mesopores in TA have a larger average size and a narrower size distribution compared 

with TC.  

 

Figure 5.8: (a, b) Nitrogen absorption-desorption isotherms and (c, d) the derived pore-size 

distribution plots for TC (left) and TA (right). 

To further analyse the size and distribution of porosity in the two samples, the desorption branch 

of the isotherms was analysed using Barret-Joyner-Halenda (BJH) theory and the resulting 

pore-size distribution is plotted in Fig 5.8c and d. It was observed that the first pore mode for 

TC is located at 47.78 Å with a broad pore-size distribution, whereas the first pore mode for 

TA is observed to be at 72.23 Å with a narrow distribution of pores. The Brunauer–Emmett–

Teller (BET) theory was used to calculate the specific surface area of both as-prepared catalysts. 

It was observed that TC possesses a slightly higher surface area of ~123 m2.g-1 compared to 

~116 m2.g-1 for TA. The specific surface area for both samples is significantly higher compared 
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to commercial TiO2 powders (P25; 56 m2.g-1) and 25 times larger than salt-free samples (Table 

4.2).13 This can be credited to the optimized synthesis parameters which help to produce well-

dispersed nanoparticles (~10 nm) and prevent agglomeration. The small discrepancy between 

the surface areas of TC and TA can be explained based on the calcination process. In the 

absence of an oxygenating environment the presence of residual carbon can interfere with the 

growth process of the nucleated crystallites, consequently leading to the creation of smaller and 

numerous particles. However, in an oxygenating environment this free carbon is oxidized 

before the onset of crystallization of amorphous TiO2. Hence, some agglomeration and growth 

of particle size is possible. 

5.5 Formation of TiO2@C nanocomposites 

The mechanism for formation of the carbon-coated TiO2 particles to produce a core@shell 

structure has been previously discussed and will only be reported here briefly.13 Essentially, 

controlled hydrolysis of titanium alkoxide followed by calcination in an inert atmosphere 

allows the heavier TiO2 to condense during the crystallization process, whereas decomposition 

of the residual alkoxy group produces amorphous C, which permeates outwards and is deposited 

on the surface of the calcined particles as a thin layer. The addition of salt (KCl) helps to control 

the zeta potential of the primary and calcined particles by limiting coagulation of the amorphous 

precipitates and the rate of hydrolysis.2 Alternately, calcination in the presence of oxygen 

produces pristine TiO2 with a varying mixture of crystalline phases (anatase/rutile/brookite) 

depending upon the size of the primary precipitates. A graphical representation of the whole 

process is presented in Fig 5.9. By a careful selection of the water amount (for hydrolysis), salt 

concentration, calcination time/temperature and the inert gas, well-dispersed nanoparticles of 

TiO2 can be obtained with a thin outer layer of carbon. This presence of surface carbon can 

impart a host of benefits for photocatalysis including enhanced surface area, improved visible-

light response, efficient generation/separation of charge carriers and better adsorption of dye 

molecules. 
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Figure 5.9: Graphical depiction of the controlled hydrolysis process used for fabrication of 

pristine and TiO2@C core@shell nanoparticles. 

5.6 Photocatalytic tests  

5.6.1 Dissolved impurities 

The experimental setup and preparation technique for photocatalytic degradation experiments 

is identical to that described in section 4.5. The photocatalytic activity of the as-prepared and 

control catalyst was initially determined by monitoring sunlight-assisted degradation of 

aqueous methylene blue (MB) as a function of time. Initially, 50 mg of catalyst was added to 

50 mL stock solution of MB dye (5 mg.L-1). However, in this case the dye was mineralized 

within 3 min and no reliable data could be obtained. Hence, to generate meaningful data points 

the catalyst amount was limited to 10 mg and the experiment was repeated. UV/Vis adsorption 

data for the dye (supernatant) was collected at 3 min intervals until 5 data points were obtained. 

The plot of dye concentration as a function of time is provided in Fig 5.10a. It was observed 

that ~66% degradation of MB was achieved in 15 min by TC compared to ~37% degradation 

over TA, Fig 5.10b. No appreciable degradation was observed for blank (no catalyst) or in dark 

suggesting photocatalysis as the primary means for degradation. The experiment was repeated 
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with brilliant green (BG, 5 mg.L-1) dye, for which ~91% degradation was achieved over TC 

compared to only ~74% with the control sample (TA). These two tests clearly indicate that the 

TiO2@C core@shell structure of TC helps to significantly improve the photocatalytic 

properties. However, the rate of photo-mineralization is observed to be dependent on the dye 

molecule. To further confirm this hypothesis additional tests were performed with methyl 

orange (MO; 5 mg.L-1) and rhodamine B (Rh B; 5 mg.L-1) under similar conditions. The 

degradation percentage was significantly lower for MO (~34%) and least for Rh B at ~33%. 

However, upon increasing the catalyst amount to 50 mg and repeating the experiment ~89% Rh 

B could be degraded in 9 min, whereas the dye was completely mineralized in <12 min (Fig 

5.10c). For comparative analysis, the test was repeated with 50 mg P25 Degussa, which could 

produce only ~77% degradation of Rh B in a similar time frame (9 min). The advantage of TC 

compared to P25 can be credited to its high surface area and the presence of carbon on the 

surface, which improves visible-light absorption and charge separation.  
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Figure 5.10: Time-dependent photocatalytic dye degradation plots using (a) TC and (b) TA. 

(c) Rh B degradation plots for TC and P25 Degussa. (d) Time-dependent absorbance spectra 

for (e) Diclofenac (DS) and (f) Ibuprofen (IS) sodium salts using TC. 

The logarithmic plots of relative concentration profiles and the calculated degradation rate 

constants for all photocatalytic experiments in this study have been provided in Fig 5.11 and 

Table 5.1, respectively. 
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Figure 5.11: Time-dependent concentration plots for various dyes with (a) TC and (b) TA 

samples. (c) Concentration plot for Rh B over TC and P25 Degussa. (d) Concentration plots 

of DS and IS over TC. 

It can be argued that coloured dyes can sensitize TiO2 rendering it slightly active in the visible 

region. Furthermore, a practical photocatalyst will be seldom employed only for mineralization 

of coloured dyes. Hence, the photocatalytic study was extended to include two model 

pharmaceutical compounds namely ibuprofen and diclofenac. Both ibuprofen and diclofenac 

are nonsteroidal anti-inflammatory compounds. However, their unchecked presence in the 

environment can be fatal to other organisms such as the Indian vulture crisis caused by the 

rampant use of diclofenac, which resulted in near extinction of Gyps vultures in the 

subcontinent.14 The stock solution for IS (10 mg.L-1) and DS (50 mg.L-1) were prepared 

according to their respective solubility in water. 50 mg of catalyst was added to 50 mL of 

pharmaceutical stock solution and the setup was illuminated as in previous experiments. 

Samples were collected at 15 min intervals and the experiment was allowed to run for 75 min.  
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Table 5.1: Summary of key data for photocatalytic dye and pharmaceutical degradation 

experiments. 

Sample Amount 

(mg) 

Dye Run time 

(min) 

Absorbance 

wavelength 

(nm) 

Degradation 

(%) 

Rate constant[a] 

(min-1) 

R2 value 

TC 10 BG[b] 15 626 91 -0.1544 0.991 

10 MB[b] 15 626 65.62 -0.0707 0.939 

10 MO[b] 15 462 34.41 -0.0232 0.792 

10 Rh B[b] 15 552 33.54 -0.0254 0.932 

50 Rh B[b] 12 552 100 -0.361 0.914 

50 DS[c]  75 277 95.54 -0.0436 0.958 

50 IS[d]  75 193 82.5 -0.0236 0.979 

TA 10 BG[b] 15 626 73.86 -0.0893 0.991 

TA 10 MB[b] 15 626 37.54 -0.0316 0.987 

P25 50 Rh B[b] 12 552 77.38 -0.1365 0.943 

[a] Rate constant calculated using the following expression: − ln (𝐶
𝐶0

⁄ ) = 𝑘 × 𝑡, in which 𝑘 is the rate 

constant, 𝐶0 is the initial absorbance and 𝐶 is the absorbance after time 𝑡. 

[b] Compound concentration 5 mg.L-1. 

[c] Compound concentration 50 mg.L-1. 

[d] Compound concentration 10 mg.L-1. 

The UV/Vis absorption spectra for DS indicates that highest absorption lies below λ=224 nm. 

However, given the poor signal/noise ratio in that region, the absorbance data was collected 

with respect to λ=277 nm. It can be clearly visualized from Fig 5.10e that the absorbance spectra 

of DS changes as progressive oxidation of DS produces reaction intermediates, which were also 

mineralized subsequently. Measuring absorbance with respect to 224 nm indicates that ~95% 

mineralization was achieved within 60 min and did not change after that suggesting reaction 

completion. The corresponding relative concentration profile is provided in Fig 5.11d. It can be 

observed that this number is limited by the baseline compensation of the instrument and the 

wavelength used. In case of IS, the UV/Vis absorbance spectrum was much clearer (Fig 5.10f). 

Hence, λ=193 nm was selected for monitoring the change in absorbance. Similar to DS, ~83% 

degradation could be achieved in 60 min and no further change in absorbance was observed 

(Fig 5.10f). From Table 5.1 it can be clearly observed that for similar amounts of catalyst and 

dissolved compounds, the degradation rate constant can vary largely depending on the dye 

molecule. The highest rate constant of -0.1544 min-1 was observed for BG, whereas it was 

reduced to -0.0254 min-1 for Rh B. Data also shows that TC is approximately twice as efficient 

as TA for photo-degradation of BG (1.72×) and MB (2.237×). This confirms the beneficial 



107 
 

effects of the carbon shell coating for visible light absorption. Furthermore, optimized 

fabrication leads to a higher surface area which allows it to easily outperform commercial P25 

(2.64×). Scavenger analyses were performed with aqueous Rh B to determine the relative 

contribution of various REDOX species in the overall degradation process. Benzoquinone 

(BQ), tert-butanol (TBA), and sodium oxalate were used as scavenging agents for superoxide 

(𝑂2
−), hydroxyl ion (𝑂𝐻•), and photogenerated holes (ℎ+), respectively. The percentage 

degradation achieved in the presence of different scavenging agents is shown in Fig 5.12.  

 

Fig 5.12: Scavenger analysis for determination of different REDOX species generated during 

photocatalytic degradation of Rh B in the presence of TC. 

 Scavenger tests reveal that photogenerated holes are the primary REDOX species followed by 

hydroxyl radicals, whereas superoxide anions contribute very little to the overall degradation 

process. However, considering the abundance of water molecules adsorbed on the surface of 

the photocatalyst at any given time compared to the relatively fewer pollutant molecules; it can 

be theorized that the photogenerated holes are primarily used for the production of hydroxyl 

ions, which subsequently lead to pollutant degradation.  

5.6.2 Antibacterial analysis 

As a final indicator of its versatile applicability, TC was employed as an anti-bacterial material 

for inactivation of gram-negative E. coli bacteria. For complete details of the experimental 

procedure please refer to section 3.6.6. The results of the photocatalytic antibacterial analysis 

are presented in Fig 5.13. 
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Figure 5.13: (a) Percentage survival and (b) Log reduction value of E. coli bacteria under 

various conditions. (c) Post illumination optical photographs of the bacterial assays. 

Control tests indicate that the survival rate for the bacterial assay is significant in dark 

conditions, even though ~20% inactivation was observed (Fig 5.13a). Similar inactivation rates 

were also observed in the dark for both TC and TA suggesting that loss of homeostasis could 

be responsible. However, when the setup was illuminated with simulated sunlight almost 100% 

bacterial inactivation was achieved over TC in 60 min, whereas only 50% inactivation was 

achieved over TA even after 120 min. This loss in survival rate over TA can be credited to the 

presence of ~5% UV component in the simulated sunlight, which leads to a minor production 

of photogenerated charge carriers resulting in bacterial death. Fig 5.13c shows the optical 

photographs of the bacterial assay post-illumination for TC, TA and blank samples without 

dilution. The FE-SEM micrographs of the bacteria before and after treatment with TC are 

presented in Fig 5.14. Results from the cumulative analyses indicate that the as-prepared TC is 

a simple and effective photocatalyst, which can be used for a host of water treatment 

applications and works through oxidation of various dissolved organic impurities and 

pathogens.  



109 
 

 

Figure 5.14: FE-SEM images of the bacterial assay after 60 min exposure to visible light over 

(a) control (blank) and (b) TC. 

5.7 Discussion 

As the DRS data already indicates, the presence of carbon helps to improve the visible light 

absorption in TC (Fig 5.7). The decreased reflectivity of the carbon-containing TC can be 

attributed to the increased electric surface charge of the composite. The presence of a thin layer 

of carbon on the surface of individual TiO2 particles results in a good electronic contact between 

the two phases.8 The presence of sp2-hydridized carbon on the TiO2 surface, which is expected 

to have a two-fold effect: 1) The overlapping orbital/electronic interaction helps to improve 

separation of the photogenerated charge carriers, as evident from the improved photocurrent 

response; and 2) the carbon atoms on the surface can also provide a sensitization effect as 

evident from DRS analyses. To confirm this hypothesis transient photocurrent under chopped 

illumination and EIS measurements were performed for both samples. The results for transient 

photocurrent measurement are plotted in Fig 5.15.  
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Figure 5.15: Transient photocurrent measurements for TC and TA. 

From Fig 5.15 it can be clearly observed that a fast and uniform photocurrent is generated in 

the TC containing electrode. Furthermore, a stable current density of ~1.4 µA.cm-2 was 

reproduced for 103 seconds. Compared to the negligible current observed with air calcined TA, 

the photocurrent density of TC is several orders of magnitude higher. This demonstrates the 

excellent separation efficiency of photogenerated charge carriers in TC, which can be attributed 

to the electronic overlap between the sp2-hybridized carbon and TiO2 phases. The results from 

photocurrent measurements were complimented by performing EIS study on both TC and TA 

samples. EIS data can not only reveal the separation efficiency of photogenerated charge 

carriers but also provide valuable information regarding charge transfer kinetics at the 

electrode/electrolyte interface. Hence, EIS data was acquired under dark and illuminated 

conditions and is presented in Fig 5.16.  
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Figure 5.16: EIS complex plane plots for TA and TC under dark and illuminated (visible 

light) conditions. 

The presence of only one arc in the EIS plots for both samples indicates that charge transfer at 

the catalyst/liquid interface is the rate limiting step in the photocatalytic activity. The EIS plots 

for TA exhibited a similar radius under illuminated and dark conditions confirming that pristine 

TiO2 is insensitive to the visible light used in the experiment. However, the charge transfer 

resistance decreased considerably for TC, as indicated by the decreased radius under visible 

light. Furthermore, the corresponding EIS plots for TC were observed to have a smaller arc 

radius than those obtained for TA. Both these observations indicate that the presence of a carbon 

shell not only helps to reduce the surface charge transfer resistance but also sensitizes TiO2 to 

absorb and utilize visible light. 

Table 5.2 provides a comparative analysis of selected C-modified TiO2 photocatalysts reported 

in the literature. Owing to the vast difference in illumination source, incident energy, light 

absorbed, surface area, and aqueous suspension of the catalysts between different studies, a 

direct comparison is not possible. However, it can be easily observed almost all C-modifications 

require an external carbon source and multi-step processing, which is eliminated in the proposed 

methodology. Furthermore, even with lower catalyst loading concentrations the photocatalytic 

performance of TC is either comparable or better than the state-of-the-art catalysts reported in 

literature; in which TC is the only catalyst reported to be effective for such a broad spectrum of 

water-borne pollutants. The photocatalytic activity of TC is observed to be even better than Ag-

loaded TiO2, which was recently reported by our group.  
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Table 5.2: Table provides a brief overview of photocatalytic performance of selected C-

modified TiO2 nanostructures reported in literature. 

Material Catalyst 

conc. 

(g.L-1) 

Dye Dye conc. 

(mg.L-1) 

Light source Time[a] 

(min) 

Precursor Year Ref 

C-doped 

mesoporous TiO2 

1 

 

Rh B 5 500 W metal-

halogen  

(>420 nm) 

>300 Glucose 2007 15 

TiO2@C 

nanofiber 

0.3 Rh B 5 150 W Xe  

(>400 nm) 

360 Glucose 2011 16 

C-coated TiO2 

nanocrystals  

0.33 Rh B N/A Solar simulator 40 Pluronic 

F127 

2014 17 

C-coated (001) 

microspheres 

0.2 MB 10 250 W metal-

halogen (visible) 

360 Glucose 2014 17 

TiO2@C peapods 0.15 Rh B 19.16 300 W Xe  60 Glucose 2015 18 

C-modified TiO2 

nanotubes 

N/A MB 12 160 W Hg-vapor  240 Carbamide 

solution 

2015 19 

TiO2@C 

nanobelts 

0.5 Rh B 4.79 Hg-vapor  30 Poly(acrylic 

acid) 

2016 7 

TiO2@C hollow 

sphere 

0.625 Rh B 20 500 W Hg-vapor  120 Glucose 2016 20 

C-doped TiO2 

single crystal 

nanorods 

0.2 Rh B 9.58 350 W Xe  40 Polystyrene 

spheres  

2017 21 

Graphene-carbon 

nanodot-TiO2 

ternary composite 

0.2 MB 3 50 W metal-

halogen (100 

W.m-2) 

90 Graphite, 

graphene 

oxide 

2017 22 

TiO2@C 

nanocomposites 

0.1 MB 5 Solar simulator 42[b] - This work 

TiO2@C 

nanocomposites 

1 MB 5 Solar simulator <3 - This work 

TiO2@C 

nanocomposites 

0.1 Rh B 5 Solar simulator 117[b] - This work 

TiO2@C 

nanocomposites 

1 Rh B 5 Solar simulator <12 - This work 

TiO2-Ag  

(3 mol.%) 

1 MB 5 150 W Xe 21[b] N/A 2017  23 

[a] Time required to achieve complete degradation. 

[b] Estimated time required for >95% degradation based on observed rate constant. 

 

To provide a quantitative direct comparison, different photocatalysts need to be evaluated using 

the same experimental setup and conditions. This represents a very stringent set of requirements 

and requires that all variables including spectrum/intensity of the light source, and 
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depth/absorptivity of the aqueous suspension must be measured and reported. However, this is 

usually not the case and unless a standardized testing/reporting protocol is developed other 

methods of indirect comparison must be adopted. Finally, the presented results indicate that the 

nanocomposites still primarily employ UV light for generation of charge carriers. Hence, 

suitable cocatalysts/sensitizers should be explored to further improve their performance. 

5.8 Conclusions 

This chapter reports the synthesis of TiO2@C core@shell nanocomposite as an efficient 

photocatalyst for solar water-treatment applications. Partial hydrolysis of titanium alkoxide 

followed by calcination in an inert atmosphere enables the fabrication of highly monodisperse 

TiO2 particles with a thin coating of amorphous carbon, which is bonded with the terminal 

oxygen groups. The presence of surface carbon improves visible-light absorption, provides a 

small red-shift of the band gap, and drastically improves the separation efficiency and transport 

of photogenerated charge carriers. Even in low concentrations, the as-prepared catalyst can be 

employed for rapid degradation of a variety of water contaminants including azo dyes, 

pharmaceutical compounds and E. Coli bacteria. The facile preparation technique, high 

catalytic activity and a wide range of applicability makes the proposed catalyst a strong 

contender for practical solar water treatment applications; especially in combination with 

suitable membranes which enable facile recovery and reuse of such nanocomposites.24  
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Chapter 6  

6. Nickle-titania nanocomposites for visible light hydrogen production 

 

6.1 Introduction 

Ever since the discovery of UV-assisted water splitting on a TiO2-based photoanode,1 efficient 

solar hydrogen production has been a dream of the (photocatalytic) scientific community. Over 

four decades of research in this area has led to the discovery and development of many novel 

photocatalyst, and significant progress has been made with respect to the stability, economy 

and efficiency of hydrogen production.2-4 Nevertheless, even as of yet the state-of-art materials 

are no closer to meeting the requirements for commercial or large-scale deployment. This can 

be partly attributed to economic factors and easy availability of conventional forms of energy 

including fossil fuels. However, with increasing concerns over the long-term detrimental impact 

of carbon emissions on the environment and climate, this field has received renewed interest in 

the past few years. The basics of semiconductor-assisted photocatalytic water splitting, 

including the underlying processes, has already been discussed in section 2.3.2. Briefly, the 

interaction between an energetic photon and a semiconductor with a suitable bandgap and band 

edges can result in the production of an electron (𝑒−) and a hole (ℎ+) in the conduction (𝑐𝑏) 

and valence (𝑣𝑏) bands, respectively. These photogenerated charge carriers can migrate to the 

surface of the photocatalyst and react with adsorbed water molecules to initiate REDOX 

reactions at the surface to produce hydrogen and oxygen. The whole process can be summarized 

as follows:5 

𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 + ℎ𝜈 → 𝑒−(𝑐𝑏) + ℎ+(𝑣𝑏)      (6.1) 

2𝐻+ + 2𝑒− → 𝐻2(𝑔)(∆𝐸𝑜 = 0 𝑉)       (6.2) 

2𝐻2𝑂(𝑙) → 𝑂2(𝑔) + 4𝐻+ + 4𝑒−(∆𝐸𝑜 = +1.23 𝑉)     (6.3) 

𝐻2𝑂(𝑙) → 𝐻2(𝑔) +
1

2
𝑂2(𝑔)(∆𝐺𝑜 = +237.2 𝑘𝐽𝑚𝑜𝑙−1;  ∆𝐸𝑜 = +1.23 𝑉)  (6.4)  

Equations (6.2) and (6.3) represent the hydrogen (HER) and oxygen (OER) evolution reactions, 

respectively; whereas, equation (6.4) represents the overall water splitting with all potential 

measured against NHE. The symbols ∆𝐸𝑜 and ∆𝐺𝑜 represent the required potential and Gibb’s 

free energy for the reaction, respectively. Equation (6.4) indicates that any semiconductor with 

a bandgap ≥1.23 eV and suitable band positions should, in theory, be able to achieve water 

splitting. However, owing to limited catalytic sites and sluggish reaction kinetics, the actual 
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bandgap should lie in the range of 1.5-2.5 eV (Fig 2.9). Furthermore, suitable band edges are 

required to initiate and sustain both the HER and the OER.  

Few intrinsic semiconductors satisfy the required criteria for hydrogen production. Among 

these TiO2,
3 CdS,6 and recently discovered graphitic carbon nitride (gC3N4)

7 have been 

extensively studied. CdS has established its presence as the one of the leading semiconductors 

for photocatalytic hydrogen evolution owing to its narrow band gap (2.4 eV) and ideal cb edge 

of -0.9 V (Table 2.1). However, pure CdS is unstable and suffers from fast photo-corrosion, 

bulk recombination and poor quantum efficiency.8 In contrast, gC3N4 has a bandgap of ~2.7 eV 

with an exceptionally high cb potential of -1.53 V.9 This combined with its unique advantages 

of metal-free composition, low toxicity, economy of production and high thermal and chemical 

stability make it an excellent candidate for photocatalytic water splitting. However, bulk gC3N4 

suffers from various drawbacks including low surface area (~10 m2.g-1), low charge mobility, 

high recombination, poor reaction kinetics and small number of catalytically active sites.9 There 

is active ongoing research to mitigate these issues and improve the photocatalytic activity of 

gC3N4.
10 Until these limitations persist, TiO2 will remain a popular choice as base 

semiconductor for photocatalytic hydrogen evolution.2,11 However, considering the drawbacks 

of pristine TiO2 along with the high energy requirement for overall water splitting (∆𝐺𝑜=+237.2 

kJ.mol-1), the use of cocatalysts and sacrificial agents (electron donors) become indispensable.  

Nanostructured Pt is the ideal cocatalyst for photocatalytic water splitting, but its prohibitively 

high cost limits any attempt at commercialization. Hence, there is a need to develop cocatalysts 

based on more earth-abundant materials. In this regard, nanostructured Ni has been extensively 

studied as a possible substitute for Pt in a variety of disciplines involving the HER such as 

electrocatalysis,12 photoelectrocatalysis13 and photocatalysis. Section 2.4.2 provides a detailed 

discussion and literature review on the various Ni-based compounds reported for photocatalytic 

hydrogen evolution. A common drawback of TiO2-supported nanostructured-Ni cocatalyst is 

its poor or complete lack of activity in the visible spectrum. Owing to the high bandgap and 

poor cb potential of TiO2, an ideal cocatalyst should not only improve the rate of hydrogen 

production but also sensitize TiO2 to absorb in the visible spectrum. Hence, this chapter aims 

to explore various Ni-based compounds as cocatalysts for visible light hydrogen production 

over TiO2. Even though TiO2 is not an ideal material for solar water splitting, it is expected that 

the findings in this study will help the development of other suitable composite materials for 

solar hydrogen production. 
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6.2 Material selection 

Reiche and Bard’s work is one of the seminal articles in the field of photocatalytic hydrogen 

production.14 The authors deposited Pt on TiO2 powder and irradiated it in the presence of 

aqueous NH4Cl saturated with CH4, which resulted in the production of amino acids and 

hydrogen as a byproduct. The study was based on the premise that a particulate photocatalytic 

system is essentially a small short-circuited photoelectrochemical cell. This article is also 

credited with establishing the modern approach of particle-based photocatalysis. Thereafter, the 

field of photocatalysis, photoelectrocatalysis, and electrocatalysis have developed as separate 

disciplines with little overlap. Nevertheless, much of the fundamentals for development of 

cocatalyst for water splitting remains the same. Hence, it is quite possible that electrocatalysts 

developed to lower overpotential for (photo)cathodes in (photo)electrolysis can also be 

employed for photocatalytic hydrogen production. In this regard, this chapter aims to explore 

some established state-of-art Ni-based electrocatalysts as potential cocatalysts for TiO2. Three 

compounds namely β-Ni(OH)2, and its derivatives NiO, and Ni2P were fabricated. Details 

regarding advantages, disadvantages and previous studies for all three compounds have already 

been provided in section 2.4.2 (Chapter 2).  

6.3 Photocatalyst synthesis 

6.3.1 TiO2-β-Ni(OH)2  

TiO2 nanocomposites with 1, 2.5, 5, and 10 wt.% Ni(OH)2 were prepared using hydrothermal 

synthesis by slightly modifying a previously reported method.15 In a typical synthesis, for the 

preparation of (2 gm) 1 wt.% photocatalyst, 0.21 mM of Ni(CH3CO2)2·4H2O was dissolved in 

50 mL deionized water under vigorous stirring resulting in the formation of a clear green 

solution. To this solution, 1.98 gm of anatase TiO2 (Sigma; <20 nm) was added and the mixture 

was allowed to stir for another 30 min. Thereafter, 1.0 M ammonia water was added dropwise 

under continuous stirring till the mixture attained a stable pH of 11. Addition of ammonia 

initially resulted in the precipitation of pale-green Ni(OH)2, which later re-dissolved in the 

presence of excess ammonia to form Ni-NH3 hexammine complex. This final solution, 

characterized as having a bright blue colour, was transferred to a stainless-steel autoclave (100 

mL) and heated to 180 oC for 3 h. The heating and cooling ramp rates were fixed at 5 oC.min-1. 

After the autoclave cooled down to room temperature, the mixture was collected, washed with 

deionized water and centrifuged at 4500 rpm for 10 min. The resulting precipitates were 

repeatedly washed until the supernatant reached a stable pH value of ~7. The wet precipitates 

were dried overnight in an oven at 80 oC to finally obtain the nanocomposites. The as-prepared 
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nanocomposites were designated as TNH-1, 2.5, 5 and 10 corresponding to 1, 2.5, 5, and 10 

wt.% Ni(OH)2. As a control, pure β-Ni(OH)2 samples were also prepared similarly by 

eliminating TiO2 from the synthesis. 

6.3.2 TiO2-NiO 

TiO2-NiO samples were prepared by simply heating the TNH samples in air.16 Carefully 

weighed amount of powder was transferred to an alumina boat, which was placed inside a 

muffle furnace. The temperature was slowly raised to 350 oC and held for 2 h. The heating and 

cooling ramp rates were fixed at 5 oC.min-1. After cooling to room temperature, the powder was 

collected without any further treatment. The corresponding samples were labelled as TNO-1, 

2.5, 5 and 10. 

6.3.3 TiO2-Ni2P  

Ni2P containing samples were prepared by reaction with NaH2PO2·H2O.15 Dried TNH samples 

were mixed with sodium hypophosphite such that the molar ratio was Ni2+/P5+=1:5. The 

powders were ground together using a mortar and pestle for 30 min to aid mixing and achieve 

physical homogeneity. The ground mixture was transferred to an alumina boat and heated to 

275 oC for 2 h in a tube furnace under Ar atmosphere. The furnace was initially flushed with 

Ar (100 mL.min-1) for 30 min with sample inside to ensure complete removal of air. Thereafter, 

the flow rate was decreased to 5 mL.min-1 and the ramp rate for both heating and cooling legs 

was limited to 5 oC.min-1. After cooling to room temperature, the samples were repeatedly 

washed with deionized water until the supernatant achieved a stable pH value of ~7, and dried 

overnight at 80 oC. The corresponding samples were labelled as TNP-1, 2.5, 5 and 10. Pure 

Ni2P was also prepared using pure β-Ni(OH)2.  

A second set of Ni2P containing samples was also prepared by a simple precipitation technique 

followed by calcination in Ar atmosphere. A procedure similar to preparation of TNH samples 

was followed except the precipitation of Ni(OH)2 was performed using 1.0 M NaOH solution. 

This prevented the redissolution of Ni(OH)2 precipitate. The samples were washed repeatedly 

with deionized water until the supernatant achieved an approximate pH value of 7. The samples 

were then recovered and dried overnight at 80 oC. The dry powders were ground together with 

sodium hypophosphite (Ni2+/P5+=1:5) and calcined in an Ar atmosphere at 275 oC for 2 h. The 

samples prepared by this method were designated as TNP-1s, 2.5s, 5s and 10s, in which the 

suffix ‘s’ is used to indicate the salt-precipitation method.  
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6.4 Characterization 

6.4.1 Powder X-ray diffraction analysis 

Fig 6.1 shows the XRD patterns for the as-prepared pure samples along with the commercial 

(anatase) TiO2 used in the synthesis.  

 

Figure 6.1: XRD patterns for phase pure (a) TiO2, (b) β-Ni(OH)2, (c) NiO and (d) Ni2P. 

The major peaks in all samples could be easily indexed to the respective JCPDS card numbers 

for anatase TiO2 (21-1272), β-Ni(OH)2 (14-0117), NiO (47-1049), and Ni2P (03-0953). The 

XRD patterns were observed to be free of any additional or anomalous peaks indicating purity 

of the samples, within the detection limits of the instrument. Furthermore, all graphs display 

sharp, intense and well-defined peak shapes suggesting high crystallinity. Similarly, XRD 

patterns were also acquired for the 1, 2.5, 5 and 10 wt.% nanocomposites. In the XRD pattern 

for samples below 10 wt.% loading only peaks for TiO2 could be observed. These samples did 

not display any reflections corresponding to the respective Ni compound, which could be 

attributed to the low concentration of the cocatalysts. Consequently, only XRD patterns for 

samples with 10 wt.% loading are displayed in Fig 6.2.  
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Figure 6.2: XRD patterns for (a) TNH-10, (b) TNO-10 and (c) TNP-10. The symbols T, NH, 

NO and NP denote peaks associated with TiO2, β-Ni(OH)2, NiO, and Ni2P, respectively. 

Fig 6.2 a, b and c displays the XRD patterns for TNH-10, TNO-10 and TNP-10, respectively. 

The XRD pattern for TNP-10s was similar to that observed for TNP-10 and, therefore, is not 

shown. Peaks corresponding to both anatase phase and the respective Ni compounds could be 

clearly indexed. This confirms that the suggested procedure resulted in successful fabrication 

of the desired composites. Owing to the small size of particles and the high background in the 

XRD patterns, information regarding the average crystallite size could not extracted reliably 

using the Debye-Scherrer method. Hence, the samples were inspected using electron 

microscopy imaging.  
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6.4.2 Transmission electron microscopy imaging  

Fig 6.3 shows the low and high resolution TEM images for pristine β-Ni(OH)2 and NiO.  

 

Figure 6.3: Low and high resolution TEM images for (a, c) β-Ni(OH)2 and (b, d) NiO. 

It can be clearly visualized from the images that hydrothermal synthesis leads to the production 

of two-dimensional (2D) plate-like β-Ni(OH)2. This observation is in good agreement with that 

reported in the literature.16 The individual platelets appear to have an average cross-section of 

~200 nm. This 2D plate-like structure is preserved during calcination of Ni(OH)2 in air, leading 

to the creation of highly mesoporous NiO. The as-prepared NiO appears to have limited or poor 

crystallinity owing to the abundance of pores. This could be a possible explanation for the high 

background observed in the XRD pattern for free-standing NiO. However, hydrothermal 

synthesis of Ni(OH)2 in the presence of TiO2 nanoparticles results in the formation of large 

clusters with an average cross-section well over 300 nm, which made it difficult to resolve 

individual phases (Fig 6.4a). Similarly, large sized particles were also observed for TNO 

samples (Fig 6.4b). Furthermore, a majority of the particles also displayed the evolution of rod-

like structures in both TNH and TNP samples. The evolution of these nanorods can actually 

help to explain the formation these large clusters. The temperature used in the hydrothermal 

synthesis of β-Ni(OH)2 (180 oC) is sufficiently large for initiating recrystallization of the 

anatase nanoparticles. This leads to agglomeration and growth of larger particles.  
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Figure 6.4: Representative TEM images for (a) TNH-5 and (b) TNO-5. 

The evolution of TiO2 nanorods from nanoparticles is actually a byproduct of the high pH (~11) 

of the Ni-hexammine precursor solution, as previously reported in literature.17 TEM images of 

the TNP samples also displayed similarly large particles with an average cross-section >100 

nm. However, the TNP samples prepared by salt-deposition method exhibited an average 

cluster size <100 nm, in which the individual anatase crystallites could be easily observed. This 

can be credited to the overall low-temperature processing of the salt-deposited TNP samples, 

which prevents agglomeration. The representative TEM images for both conventional and salt-

deposited TNH samples have been provided in Fig 6.5. 
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Figure 6.5: Representative TEM images for (a) TNP-5 and (b) TNP-5s. 

Preliminary energy dispersive X-ray spectroscopy does indicate the presence of Ni and P in the 

respective samples. However, owing to the large variation between individual scans, further 

characterization is required to confirm the chemical composition.  

6.4.3 X-ray photoelectron spectroscopy 

Information about the surface chemistry and valence state of the participating elements was 

acquired using XPS. Samples with less than 5 wt.% Ni did not produce a clear Ni 2p spectra; 

whereas, for samples with 10 wt.% Ni the Ti 2p peaks could not be acquired, possibly owing 

to the shielding effect of Ni. Hence, high-resolution XPS spectra for only for 5 wt.% samples 

are provided here. Fig 6.6 a and b displays the XPS spectra for Ni 2p and O 1s orbitals for TNH-

5.  

 

Figure 6.6: (a) Ni 2p and (b) O 1s XPS spectra of TNH-5. 

The binding energy (BE) associated with the Ni 2p3/2 orbital in pure Ni(OH)2 is located at 855.2 

eV; whereas in the TNH-5 sample, this peak was observed at a BE of 856.2 eV.18 This peak 
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shift to a higher BE could originate from sample charging. However, another plausible 

explanation could be delocalization of Ni antibonding orbitals owing to the formation of a 

heterojunction with TiO2. This can be confirmed if a concomitant shift is observed in the BE of 

Ti 2p orbitals. However, as of yet a clean Ti 2p spectrum is not available. The absence of Ni 2p 

orbitals below 854 eV indicates the lack of any oxide or metallic Ni0, thereby confirming that 

Ni is indeed present as a hydroxide. This is further confirmed by the splitting value of the BEs 

(∆=17.5 eV) for Ni 2p orbitals, which is in a good agreement with that reported in literature for 

β-Ni(OH)2.
18 The main peak of the O 1s orbital lies at a BE of 529.8, which is attributed to the 

presence of Ti-O. However, the presence of another peak centered at BE of 531.3 eV can be 

attributed to the presence of chemisorbed water (-OH). The relative intensity of this peak 

compared to O 1s-A suggests the origin to be Ni-O-OH rather than presence of surface impurity. 

However, the final (O 1s-C) peak could be attributed to the presence of either carbonate or 

physically adsorbed water on the surface. Corresponding Ni 2p and O 1s XPS spectra for TNO-

5 are presented in Fig 6.7. 

 

Figure 6.7: (a) Ni 2p and (b) O 1s XPS spectra of TNO-5. 

The analysis of this sample was performed by Gauthaman Chandrabose (OU), who also 

provided Fig 6.7. Gauthaman has also done the processing and peak fitting of the XPS data for 

TNO-10 and other Ni-Ti composites. The deconvoluted Ni 2p spectra suggests the presence of 

Ni2+ (853.5 eV), Ni3+ (856.4, 863.8 eV) and Ni0 (859.1 eV) species. However, further analysis 

is required to confirm the presence of metallic Ni0. Similarly, deconvolution of O 1s spectra 

shows the presence of four peaks at 528.2, 529.8, 532.0 and 533.6 eV corresponding to Ni-O, 
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Ni-O-OH/Ti-O, -OH and physically adsorbed water, respectively. Finally, the Ni 2p and P 2p 

XPS spectra for TNP-5s is provided in Fig 6.8. 

 

Figure 6.8: (a) Ni 2p and (b) P 2p XPS spectra of TNP-5s. 

In the Ni 2p spectrum of TNP-5s, the peak observed at BE of 853.0 eV can be assigned to 

partially Niδ+ and is a characteristic of Ni2P.19 The corresponding peak for Niδ+ can be observed 

at 870.6 eV, resulting in a splitting energy difference of 17.6 eV. Both these observations further 

confirm the presence of Ni2P. The peaks observed at 856.6 and 860.6 correspond to the Ni2+ 

(oxidized) and satellite Ni 2p3/2. The remaining peaks can also be classified similarly, 

corresponding to a splitting energy difference of 17.6 eV. In the P 2p core spectra, peaks located 

at 129.1 and 129.9 eV indicate the presence of Pδ− in Ni2P. However, the spectra also suggest 

the presence of metal phosphate owing to the strong peaks located at BEs of 132.8 and 133.8 

eV. The presence of peaks corresponding to phosphate in both Ni and P core spectra suggest 

that Ni2P undergoes significant oxidation upon exposure to atmosphere. Unfortunately, reliable 

information about the origin and nature of peaks observed at 138.2 and 138.9 eV could not be 

found in literature, and further analysis might is required.  

Preliminary investigation of the XPS spectra for all samples indicate that the intended Ni-

compounds could be successfully synthesized. Hence, it is now possible to undertake hydrogen 

evolution experiments. 

6.4.4 Photocatalytic hydrogen evolution 

 Complete details of the hydrogen evolution setup used in this study has been provided in 

section 3.6.4. Initially, 5 mg each of the phase pure samples along with TNH-1, TNO-1, TNP-

1 and TNP-1s were added to 3 mL of deionized water, and the experiment was performed for a 

total duration of 4 h under constant stirring. No hydrogen evolution was observed over any of 

the samples upon using pure water. This could be attributed to the lack of a suitable cocatalyst 
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or active sites for the OER. Hence, the experiment was repeated using 3 mL aqueous solution 

of sodium ethylenediaminetetraacetic acid (Na-EDTA) (0.1 M, pH=4.5), which acts as a 

sacrificial electron donor. In the presence of Na-EDTA, a minor quantity of hydrogen evolution 

was observed for pure Ni2P along with TNH-1, TNP-1 and TNP-1s. Hence, these samples were 

selected for further analysis, whereas the evolved hydrogen for pure Ni2P (0.698 µM) was 

selected as reference.  

Fig 6.9 displays the hydrogen evolution rate for different samples as a function of Ni-loading. 

It can be observed that photocatalytic hydrogen evolution follows the order: (salt precipitated) 

TNP-s>TNH>TNP. For 1 wt.% samples, the total evolved hydrogen is similar for all samples, 

which is approximately 0.16 µM for TNP-1s, 0.155 µM for TNH-1, and 0.147 µM for TNP-1. 

For samples containing Ni(OH)2, the maximum rate of hydrogen production was observed for 

TNH-2.5 (0.342 µM). The rate and total hydrogen production was observed to decline with 

increasing Ni(OH)2. However, the rate of hydrogen production increases significantly for TNP-

s samples with increasing Ni loading. TNP-5s displayed a net hydrogen production of 0.981 

µM, which increased to 0.993 µM for TNP-10s. This marginal increase of performance between 

samples with 5 and 10 wt.% loading suggest that over deposition of Ni2P could be blocking 

light absorption for TiO2. However, the net hydrogen production over regular TNP samples was 

consistently poor. This drastic difference between the catalytic activity of similar compounds 

suggests the importance of proper synthesis method. However, further analysis is required to 

confirm the underlying mechanism responsible for this improvement in catalytic activity (and 

lack thereof) for the different samples.  

 

Figure 6.9: Hydrogen evolution as a function of Ni loading for various samples. 
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Considering the minor difference in activity between TNP-5s and 10s samples, the hydrogen 

production per unit Ni (wt.%) is higher in TNP-5s, which indicates that this is close to the 

optimum loading concentration. It is also important to determine the long-term stability of the 

as-prepared catalyst and ensure that auto-oxidation of Ni2P is not responsible for the evolved 

hydrogen. Hence, to assess the photostability of the catalyst, an extended experimental run was 

performed under continuous illumination. A fresh vial was prepared using 3 mL (0.1 M) Na-

EDTA and 5 mg TNP-5s. After purging the sample with the GC standard for 30 min, the mixture 

was illuminated continuously for seven days. During the test, gas samples were withdrawn from 

the headspace of the vials intermittently and tested for the amount of evolved hydrogen. Fig 

6.10 displays the net hydrogen evolution over TNP-5s under continuous illumination for seven 

days. It can be observed from the graph that an almost linear rate of hydrogen evolution was 

observed over TNP-5s. After a total illumination period of 168 h, 50.8 µM of H2 was evolved. 

These results demonstrate the excellent photostability of the prepared catalyst. Furthermore, to 

assess the photocatalytic performance, turnover number (TON) and turnover frequency (TOF) 

were calculated with respect to Ni2P as follows: 

𝑇𝑂𝑁 =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑢𝑐𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
        (6.1) 

𝑇𝑂𝐹 =
𝑇𝑂𝑁

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
           (6.2) 

 

Figure 6.10: Net hydrogen evolution over TNP-5s for extended illumination. 

Data from the extended illumination experiment reveals that TNP-5s has a stable TOF 0.179 

molH2.molNi2P.h-1. Owing to the lack of reports on similar material systems, a comparative 

analysis with current state of the art cannot be provided. However, prima facie these numbers 
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are more than an order of magnitude smaller than recently reported Ni-TiO2 based catalysts,20 

which is still lower than state of the art C3N4-based photocatalysts.21 

6.5 Discussion 

Even though the mechanism for increasing reaction kinetics is different for both electrocatalysis 

and photocatalysis, some of the underlying principles such as facilitating surface adsorption of 

proton and providing active sites for proton reduction to H2 gas remain the same. Apart from 

this, other factors such as high surface area, electronic conductivity and improved reaction 

kinetics are also common in both fields. Furthermore, the ability of Ni to adsorb and release 

large quantities of hydrogen atoms prompted us to explore the possibility of using some 

established Ni electrocatalysts for photocatalytic hydrogen evolution. It has been previously 

reported that in the presence of UV light, most Ni compounds including NiO can be reduced to 

metallic Ni,22 which in turn acts as a cocatalyst by promoting rapid electron transfer between 

TiO2 and surface adsorbed hydrogen.23 Hence, to avoid the formation of metallic Ni and 

evaluate the effect of different compounds all experiments were performed under visible light. 

Both 2D plate-like β-Ni(OH)2 and Ni2P have been extensively reported for electrocatalytic and 

photoelectrocatalytic water splitting, whereas NiO has been traditionally reported as a 

cocatalyst for photocatalytic hydrogen evolution. Literature review indicates that Ni(OH)2 can 

serve as a precursor for both NiO16 and Ni2P,15 hence TNH samples were fabricated first and 

used as starting materials for preparation of both TNO and TNP nanocomposites.  

Preliminary results provided in this study indicate that pure TiO2, NiO and Ni(OH)2 are unable 

to generate hydrogen using visible light even in the presence of sacrificial agents. However, 

significant hydrogen production was observed pure Ni2P. Similarly, no hydrogen production 

was observed for NiO decorated TiO2, whereas TiO2 nanocomposites with both Ni(OH)2 and 

Ni2P showed significant hydrogen evolution. In case of Ni(OH)2, it has already been reported 

that the slightly lower reduction potential of Ni2+/Ni (E0=-0.23 V) with respect to cb of TiO2 

(E0=-0.26 V) enables rapid electron transfer from TiO2 cb to Ni(OH)2 nanoclusters. This 

reduces Ni(OH)2 to metallic Ni, which act as active site for proton reduction.24 However, in 

such earlier studies Ni(OH)2 used was amorphous in nature and UV light is required to enable 

reduction of Ni(OH)2 to metallic Ni as the energetic electrons must originate in the cb of TiO2. 

The presence of UV light and amorphous nature of Ni(OH)2 in the earlier study could be 

responsible for the difference in activity of the TNH samples with that reported in literature. 

However, there are no reports available in the literature describing the hydrogen evolution 

activity of TiO2-Ni2P compounds in visible light.153 Ni2P has already been reported for its 

excellent stability and photoactivity in the visible region,151,153 which is also reflected in the 
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results obtained in this study. The results also indicate that materials developed for improving 

the HER in electro and photoelectrolysis of water can also be used as suitable cocatalysts for 

photocatalytic hydrogen evolution. However, further research is required to uncover the 

mechanism(s) responsible for the ameliorated performance. Based on this information further 

optimization with respect to both loading and morphology can be undertaken.  

6.6 Conclusions  

This chapter reports the fabrication and assessment of various Ni-titania nanocomposites for 

visible light induced photocatalytic hydrogen evolution. Three different Ni compounds namely 

β-Ni(OH)2, NiO and Ni2P with different loading concentration (1, 2.5, 5 and 10 wt.%) were 

fabricated. Characterization techniques such as XRD, TEM and XPS were utilized to confirm 

the phase and morphology of the as-prepared composites. It was observed that hydrothermal 

synthesis leads to the production of large sub-micrometre sized particles, which can be avoided 

with salt precipitation technique. Photocatalytic experiments revealed that for Ni(OH)2 2.5 

wt.% loading is optimum and leads to a hydrogen evolution rate of 17 µmol.h-1.g-1 under visible 

light, whereas no hydrogen production was observed for NiO containing compounds. TiO2-

Ni2P composites prepared from β-Ni(OH)2 also displayed poor photocatalytic activity. 

However, TiO2-Ni2P nanocomposites prepared by salt-precipitation method showed a high and 

stable hydrogen production rate. The highest hydrogen evolution rate of 60.5 µmol.h-1.g-1 was 

demonstrated by sample containing 5 wt.% Ni2P, which could be sustained for 168 h under 

constant illumination. These results indicate that Ni2P can be used as a stable and efficient 

cocatalyst for visible light hydrogen evolution. However, TiO2 is not suitable for development 

of a stable and practical photocatalyst for hydrogen evolution, In this regard, the prospect of 

properly engineered C3N4 are much better as it offers better band positions, visible light 

absorption, quantum efficiency, and economy of production and operation. Finally, these 

preliminary results also serve as a proof of concept that electrocatalysts can potentially be 

employed for photocatalytic water splitting. 

6.7 Planned work 

 The results presented here form a part of an ongoing investigation and the following is 

suggested future work. Further characterization such as electrochemical impedance 

spectroscopy, transient photocurrent measurement or photoluminescence emission 

spectroscopy will help to evaluate various features such as flat band potential and generation 

and transport of the photogenerated charge carriers for pristine and nanocomposite samples. To 

further evaluate the role of Ni compounds on the bandgap, techniques such as diffuse 
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reflectance spectroscopy and ultraviolet photoemission spectroscopy should be employed. 

TEM images have revealed a large variation in the particle size of the samples prepared by 

different techniques. Hence, determination of effective surface area and Ni loading between 

various samples is important to normalize and evaluate the relative performance. Finally, the 

effect of pH and sacrificial agents on the net hydrogen evolution will also be studied.  
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Chapter 7  

7.Other avenues: photocatalysts with internal electric field 

 

7.1 Introduction 

TiO2 or titania (anatase phase) is one of the oldest and most investigated material in the field of 

photocatalysis.1 It is chemically and physically stable, economic to produce, easily available 

and non-toxic, which makes it highly desirable for photocatalytic applications. Over the years 

P25 Degussa (mixture of anatase and rutile phases) has come to be regarded as the ‘gold 

standard’ in photocatalysis owing to its excellent photoactivity.2 Hence, the performance of 

other materials is often evaluated relative to it. However, owing to its large band gap (~3.2 eV) 

it is only active in the ultraviolet (UV) region, which accounts for only (approximately) 5% of 

the available energy in the solar spectrum.2 Majority of the incident electromagnetic energy is 

contained in the visible spectrum (44%), which remains untapped. Hence, pristine TiO2 needs 

to be modified such that it can harness visible light energy. Modification of TiO2 usually entails 

band engineering3, doping (metal/non-metal) and formation of heterogeneous multi-component 

materials.4 However, as discussed in previous section, each of these techniques has its own set 

of advantages and limitations and may not always be a practical solution. In this regard, 

replacing TiO2 with an alternate/better material as the base semiconductor can be an effective 

approach. The selection of a new semiconductor can be tailored to specific applications. For 

example, in reactions requiring water splitting (hydrogen production) the base material should 

have a conduction band edge much lower than reduction potential of NHE. Similarly, oxidation 

of water-borne pollutants can benefit from a higher valence band edge. Notably, non-TiO2 

heterogeneous catalysts have shown promise for rapid growth and improvement, and exhibit 

excellent stability.5 One such emerging material in this field is bismuth oxychloride (BiOCl).6-

13 BiOCl is a wide bandgap (3.6 eV) semiconductor which is active in the UV region.12 

Primarily, its high bandgap puts it at a disadvantage compared to anatase (3.2 eV). However, it 

possesses a remarkably high quantum efficiency and the ability to form heterojunction with its 

native oxide, chloride or sulphide compounds, which renders it visible light active.6,7,9,10,13 

These potential advantages have sparked a flurry of research into the field of Bi-based multi-

component catalysts over the past few years. Many studied have reported various Bi-based 

compounds such as Bi/BiOCl12, BiPO4/BiOCl13, Bi2O3/BiOCl10,11, BiOCl/BiVO4
9, Fe(III)-

modified BiOCl8, BiOCl/Bi2Sn2O7
7, and Bi24O31Cl10/BiOCl6 among others. However, majority 

of these studies have been limited to different compounds of Bi which are independently 
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sensitive to visible light, but unstable and (potentially) toxic. Hence, it is highly desirable to 

develop a stable support for BiOCl that can also help to improve its sensitivity to visible light. 

Previous research has demonstrated that ferroelectrics form an interesting new field of 

photocatalytic materials owing to their unique advantages of Stern-layer formation and band-

bending.14,15 Bi0.5Na0.5TiO3 (BNT) is an established Bi-based ferroelectric material which is 

explored for its excellent piezoelectric and pyroelectric properties.16,17 Even though pristine 

BNT is a poor photocatalyst,15 the Bi-rich phase in BNT can be used for growth of BiOCl on 

its surface. In this regard, this study reports a suitable combination of BNT with BiOCl through 

a heterojunction. The resulting composite material (BNT/BiOCl) exhibits unprecedented 

visible light photocatalytic activity. 

Ferroelectric materials possess spontaneous (remnant) polarization (below Curie temperature), 

which is stable under a wide range of environmental conditions including those that are 

chemically aggressive.18 This bulk polar vector draws holes towards the negative potential and 

electrons towards the positive potential regions of the grain, respectively. Consequently, a 

space-charge region is created which imparts several beneficial features including: (i) Stern-

layer formation, (ii) band bending, (iii) enhanced chemisorption on the surface, (iv) bond 

bending of polar species, and most importantly (v) effective charge separation and enhanced 

life-time of photogenerated electron-hole pairs.19 Owing to selective potential surface 

availability, ferroelectric materials are ideal for separation REDOX sites, thus, prevent 

recombination and back reactions . Based upon these facts, it can be concluded that despite 

lacking any evident sensitizing effect or photoactivity, presence of BNT could be potentially 

beneficial to enhance the catalytic properties of BiOCl. Hence, this chapter reports the 

development of a facile method for fabricating a stable BNT/BiOCl composite photocatalyst. 

The composite was characterized for its phases, structural and optical properties. It was 

observed that the as-prepared composite catalyst is visible-light active despite a large bandgap. 

Furthermore, the material displays excellent and stable photocatalytic activity, which makes it 

a strong contender for solar-water treatment applications.  

7.2 Photocatalyst synthesis 

Pure BiOCl catalyst was prepared according to a previously reported study.20 Briefly, 3 mmol 

of Bi(NO3)3·5H2O was added to 50 mL deionized water and stirred for 60 min. The resulting 

turbid solution was transferred to an autoclave (100 mL) and heated at 160 oC for 24 h under 

autogenous pressure. The synthesized BiOCl particles were recovered using a centrifuge (4400 

rpm, 10 min), washed several times with ethanol and water, and dried overnight in a vacuum 

furnace at 80 oC. 
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BNT powder was prepared through a conventional solid-state reaction technique. Briefly, 

powders of BiCO3, Na2CO3 and TiO2 were weighed in stoichiometric ratios and ground using 

mortar-pestle for 2 h to aid mixing and obtain physical homogeneity. The ground powders were 

then transferred to an alumina crucible and calcined at a temperature of 800 oC for 2 h. The 

ramp rate during both heating and cooling processes was kept at 5 oC.min-1. The calcined 

powders were ground again for 2 h to break any agglomeration encountered during the 

calcination process.  

BNT powder obtained in the previous step was separated into four batches. The first batch, 

marked as ‘zero’, was kept as a reference sample whereas the rest of the batches were treated 

with dilute HCl (50 mL, 0.1 M) for 15, 30 and 60 min and designated as 5%, 10%, and 15% 

BNT-BiOCl, respectively. Post-treatment powders were recovered by centrifuging at 4400 rpm 

for 10 minutes and washed several times with ethanol and water to remove any residual ions. 

The wash-cycles were continued until the supernatant achieved a pH of ~7.0. Subsequently, the 

treated powders were dried over-night (~10 h) in a vacuum furnace (held at 80 oC) to finally 

obtain the composite catalysts. 

7.3 Growth and formation of BNT-BiOCl 

Fig 7.1(a) provides a schematic description of the various processes leading to the formation of 

BiOCl on the surface of Bi0.5Na0.5TiO3 in the presence of dilute HCl. Literature review indicates 

that BNT is attacked in the presence of concentrated HCl, which triggers the nucleation-

dissolution-recrystallization process.21,22,23 In the present scenario, Bi3+ ion reacts with the Cl-1 

to produce BiCl3, which dissolves in presence of excess HCl (step 1). This is followed by an 

immediate hydrolysis of BiCl3 to form precipitates of BiOCl on the surface of BNT (step 2). 

This initial layer serves as a nucleus for further growth of BiOCl, as progressively more Bi is 

leached away from the surrounding area and deposited onto the seed layer (step 3). The process 

continues until either Bi3+/Cl-1 ions are depleted or the whole surface is passivated by the 

formation of BiOCl, which prevents further leaching of BNT. 
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Figure 7.1: (a) Step-wise formation and growth of anisotropic BiOCl on the surface of 

Bi0.5Na0.5TiO3. (b) Representative unit cells for Bi0.5Na0.5TiO3 and BiOCl. 

In the present study, excess HCl serves as both an acidic medium and as a source of aqueous 

Cl-1 ions. A detailed description of this mechanism was provided by Li et al. for Bi2O3 film,21 

and recently verified by Singh and Vaish with SrO-Bi2O3-B2O3 glass ceramic containing 

SrBi2B2O7 nanocrystals23. In case of Li et al. NaCl was used as a source of Cl-1 ions required 

for BiOCl synthesis.21 At a pH of 2.0 dense and uniform BiOCl films could be obtained within 

30 min. However, the recent results by Singh and Vaish suggests that a much smaller time scale 

(~5 min) can be sufficient to initiate the growth of BiOCl. Once the initial layer is deposited, 

the growth rate for the subsequent layers increases considerably with time until complete 

conversion is achieved. The following characterization data not only supports this theory but 

also confirms the successful formation of BiOCl on the surface of BNT. 

7.4 Characterization  

The physical, chemical, and optical properties of the as-prepared catalysts were characterized 

using the following techniques. 

7.4.1 Powder X-ray diffraction analysis 

Fig 7.2 displays the acquired X-ray diffractograms for all samples under study. For the pristine 

samples, the peaks could be easily indexed to tetragonal structure of BNT (JCPDS card no. 46-

0001) and BiOCl (JCPDS card no. 06-0249), in which the lack of any excess or anomalous 
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peaks confirmed the phase purity of the samples (within the detection limit). Similar analyses 

were conducted for the treated catalyst (15-60 min) and are compared with the XRD pattern for 

pure samples. It can be observed that with increasing treatment time, the peaks progressively 

start resembling that of pure BiOCl (peak evolution at 25˚ and 33˚). However, the underlying 

BNT peaks (position) remain clearly visible and unaltered. The lack of distinct peaks 

corresponding to BiOCl phase in the XRD patterns of 15- and 30-min samples could be 

attributed to its low weight percentage, which is below the detection limit of the instrument. 

The peak positions for the evolved BiOCl on the acid-treated samples is in good agreement 

with the pristine BiOCl. However, the relative peak intensity of the composite powders does 

not match well with the prepared BiOCl. This could be attributed to the different/random 

orientation of BiOCl on the BNT particles compared to pure (two-dimensional) BiOCl, which 

exhibits a prominent (001) orientation.20 

 

Figure 7.2: Powder X-ray diffraction patterns for all samples understudy. 

7.4.2 X-ray photoelectron spectroscopy 

To investigate the surface chemical composition of the prepared catalysts, XPS analysis was 

performed. Fig 7.3a, b and c display the XPS (survey) spectra for BNT, BiOCl and 15% BNT-

BiOCl composite catalysts, respectively. Corresponding data for scanned peaks along with their 

respective binding energies (BEs) are reported in Table 7.1. The C 1s peak observed at ~284 

eV can be attributed to the presence of a thin layer of adventitious C, which is inevitable in XPS 
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measurements of samples exposed to atmosphere. The surveyed spectrum was used to clearly 

detect the presence of all constituent elements in both pure and composite catalysts. 

 

Figure 7.3: XPS survey spectrum for (a) pure Bi0.5Na0.5TiO3, (b) pure BiOCl and (c) 15% 

BNT-BiOCl; (d) high-resolution scan for Bi 4f peaks. 

However, the build-up of adventitious carbon on the catalyst adversely affected the XPS 

measurements. Primarily, even though the presence of Na in both BNT and BNT-BiOCl could 

be confirmed by the Na 1s peak observed at ~1071 eV; an in-depth spectrum for the same could 

not be obtained despite several scans. Fig 7.3d shows the shows the high-resolution XPS scan 

for Bi 4f orbitals. Two symmetrical peaks could be observed corresponding to binding energies 

of 159.1 and 164.4 eV for Bi 4f7/2 and Bi 4f5/2 orbitals, respectively. The two spin orbit 

components are separated by a binding energy difference of ∆5.3 eV, strongly indicating the 

presence of Bi3+ oxide. It is important to note that the binding energies of Bi3+ in the composite 

catalyst are similar to that of phase pure samples, suggesting a lack of change in the oxidation 

state of Bi post acid treatment. This observation stems from the fact that the BE values of Bi 4f 

orbitals are similar for both pure BNT and BiOCl. Hence, a transition from one to other cannot 

be detected using Bi orbitals alone.  
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Fig 7.4a shows the Ti 2p scan of 15% BNT-BiOCl, which is similar to that observed for pure 

BNT. The scan reveals a consistent presence of peaks at 458.5 and 464.2 eV, corresponding to 

Ti 2p3/2 and Ti 2p1/2 spins. Furthermore, a binding energy splitting value of ~∆5.2 eV confirms 

the presence of Ti4+ oxide. Fig 7.4b displays the high-resolution scans for Cl 2p spectra of the 

15% BNT-BiOCl sample. The Cl 2p3/2 and 2p1/2 peaks are located at 198 and 199.5 eV, 

respectively, which is characteristic of metallic chloride. However, the Cl 2p3/2 peak is shifted 

by a significant value of 0.5 eV towards lower binding energy compared to pure BiCl3. This 

decrease in binding energy arises because of the higher electronegativity of Cl compared to O 

in BiOCl.  

 

Figure 7.4: High resolution XPS spectra for (a) Ti 2p, (b) Cl 2p orbitals. O 1s plots for (c) 

BiOCl and (d) 15% BNT-BiOCl. 

Finally, Fig 7.4c and d display the acquired O 1s spectra for BNT and 15% BNT-BiOCl 

catalysts, respectively. The largest peak designated as O 1s A was cantered at 530.1 and ~529.4 

eV in BiOCl and the composite catalyst, respectively. Both these values are located in the BE 

range of 529-530 eV, which indicates a strong presence of metallic oxide. However, compared 

to the composite catalyst the O 1s A peak in BiOCl displays a shift of 0.5 eV towards higher 

BE. This corroborates well with shift observed in Cl 2p3/2 confirming the presence of lower 

electron density around O atoms in BiOCl owing to the higher electronegativity of Cl. This 

phenomenon is not observed for the composite sample, which could be attributed to the lower 

quantity of BiOCl compared to the parent BNT phase. The other two peaks in the O 1s spectrum 
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of BiOCl are located at 531.7 and 533 eV. The first peak lies in the range of (531.5–532 eV) 

and indicates the presence of CO3
2+ impurity on the surface, whereas the second peak 

corresponds to the presence of SiO2 contamination. Similarly, three additional O 1s peaks are 

observed in the composite catalyst centered at 531, ~532.9 and ~535.2 eV. The latter two peaks 

can be attributed to the presence of SiO2 (impurity) and overlap with Na KL2 auger peak. Given 

the overlapping nature of the peaks, further resolution is not possible. The presence of peak 

cantered at 531 eV could be attributed to either the presence of carbonates or alumina (Al2O3), 

both of which are possible impurities. However, given the strong intensity of the peak the 

presence of impurity alone is an unlikely explanation. Literature review does not indicate any 

other possible origin and hence, no explanation can be provided at present. 

Table 7.1: XPS survey spectrum and corresponding peak locations for pure and composite 

catalysts. 

Scan type Binding energy (eV) Additional note 

Bi0.5Na0.5TiO3 (BNT) 

Bi 4f7 158.16  

Bi 5s 161.67  

Bi 4f5 164.1  

C 1s 284.9  

O 1s 530.26 (~32% area is Na KL2) 

Ti 2s 564.23  

Na1s 1071.02 (~3% area is Ti LM2) 

BiOCl 

Bi 4f7 158.64  

Bi 5s 161.41  

Bi 4f5 164.5  

Cl 2p 198.16  

C 1s 284.55  

O1s 529.85  

15% BNT-BiOCl 

Bi 4f7 158.36  

Bi 5s 161.78  

Bi 4f5 164.18  

Cl 2p 197.96  
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C 1s 284.72  

Ti 2p3 458.26  

Ti 2p1 463.46  

Bi 4d3 466.2  

O 1s 529.54  

Na1s 1070.78  

 

7.4.3 Raman spectroscopy 

To complement the XPS and XRD data, confocal Raman spectroscopy was employed. All 

images were acquired at 5x magnification and 1% laser power, with a diffraction grating of 

1800. Fig 7.5a, b, and c contain the Raman spectra for pure BNT, BiOCl and 15% BNT-BiOCl, 

respectively.  

 

Figure 7.5: Raman spectra for (a) pure BNT, (b) pure BiOCl, and (c) 15% BNT-BiOCl. 

The Raman spectra for pure BNT and BiOCl samples is in good agreement with that reported 

in literature.16,24-26 BNT has six vibration modes, the first two modes observed at 130 and 279 

cm-1 are associated with the presence of Na-O bond (A-site) and TiO6 octahedra, respectively. 
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Both of these confirm the presence of ABO3-type perovskite structure.16,24,25 This is followed 

by modes observed due to presence of oxygen displacements (521 and 590 cm-1) and oxygen 

vacancies (784 and 855 cm-1). The peak broadening of the Raman spectra in BNT is often 

correlated to the small volume of the trigonal ferroelectric phase and lowering of symmetry.24 

Further, the absence of low frequency F2g peak (30 cm-1) indicates the lack of cubic phase, 

confirming the phase purity of the tetragonal ferroelectric structure.24 Similarly, in pure BiOCl, 

only the peaks corresponding to the internal Bi-Cl stretching modes of A1g (142 cm-1) and Eg 

(198 cm-1) could be observed.20,26 The Eg and B1g bands associated with the motion of oxygen 

atoms (396 cm-1) were very weak. The Raman spectra acquired for 15% BNT-BiOCl 

composite, presented in Fig 7.5c, contains all the respective modes for the individual BNT and 

BiOCl phases. The lack of any additional modes indicate that the bond structure does not change 

after acid treatment and no additional phases are formed. The relatively higher intensity of the 

Bi-Cl stretching modes could be attributed to the enhanced scattering of the incident photons 

by the surface evolved BiOCl phase. This could also explain the lack of Na-O vibration mode, 

which is masked by the stronger signal from the Bi-Cl vibrations in the same vicinity. This data 

strongly indicates the presence of BiOCl phase on the surface of parent BNT phase in the 

composite catalyst. 

7.4.4 Scanning electron microscopy imaging 

All the characterization until this point show the evolution of phase and electronic structure of 

the as-prepared BNT-BiOCl. However, direct imaging of the particles is often required to 

confirm the evolution of microstructure and to determine the morphology of the resulting 

particles. Hence, SEM micrographs of the pure and treated BNT were obtained (Fig 7.6). Fig 

7.6a reveals that the as-prepared BNT consist of well-defined cube-like particles with 

distinguishable edges and faces. The particle size distribution ranges between 0.8-2 µm with an 

average size of ~1 µm. Fig 7.6b displays the particles’ morphology after being treated with HCl. 

It is easy to observe that treatment with acid distorts the original shape by creating etch-like 

features, which are clearly visible on the particle surfaces. Further, the presence of BiOCl is 

detected in the residual islands on the surface of BNT. Since the composite is still part of the 

original calcined powder, it is safe to assume that the generated BiOCl phase forms a 

heterojunction with the parent BNT phase.  
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Figure 7.6: SEM micrographs of (a) pure and (b) treated (15% BNT-BiOCl) BNT samples 

and their corresponding EDX elemental mapping charts (below).  

Elemental mapping was performed for area scans using energy dispersive X-ray (EDX) 

absorption spectroscopy for pure and treated BNT samples, reported in Fig 7.6c and d, 

respectively. EDX analysis confirms the original hypothesis of surface-grown BiOCl as a strong 

presence of Cl element was detected in the island-like structures while being almost negligible 

in other regions. This observation is in good agreement with results obtained from Raman 

spectroscopy. Notably, prolonged beam exposure in SEM has been previously reported to alter 

the surface morphology of BiOCl; as it is highly susceptible to melting under impinging 

electrons.27 

7.4.5 Optical (UV/Vis and infrared) spectroscopy 

UV/Vis diffuse reflectance and Fourier transform infrared spectroscopy analyses were 

conducted on all samples to determine the effect of progressive acid treatment on the BNT 

samples. All catalyst batches were studied using a full spectrum UV/Visible spectrophotometer 

in the reflectance mode. The diffuse reflectance spectroscopy (DRS) analysis reveals that 

formation of BiOCl does not interfere with the band positioning of BNT (Fig. 7.7a). A sharp 

drop in reflection is encountered for a wavelength of λ=420 nm, corresponding to a bandgap of 

2.95 eV, which is in good agreement with the reported literature.28 However, there is a stark 

difference between the reflection intensity beyond 400 nm for phase pure and acid-treated 
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samples. Compared to standard BaSO4 internal reflectance standard, the untreated sample 

displays ~80% reflectivity in the visible region, whereas this number comes down to 60% for 

samples containing 5% and 10% BiOCl by weight. Furthermore, for the sample containing 15% 

BiOCl the reflectivity was further reduced to less than 55%. These plots reveal that the presence 

of BiOCl allows the composite to better absorb energy in the visible spectrum without affecting 

the band position. DRS data indicates a 25% improvement in absorption for 15% BNT-BiOCl 

compared to the untreated sample. 

 

Figure 7.7: (a) Diffuse reflectance and (b) fourier transform infrared spectroscopy plots of 

the pristine and acid-treated BNT samples. 

FTIR analysis was used to detect the presence of unreacted Cl- impurities and other functional 

groups in the BNT-BiOCl heterostructures. Fig 7.7b shows the FTIR spectra of the pure BNT 

and BNT-BiOCl samples. The peak at approximately 523 cm−1 results from the symmetrical 

stretching vibration of the O–Bi bond, which is a characteristic peak of BiOCl. The intensity of 

band corresponding to Bi-O bond increases with the acid exposure time. This indicates an 

increased concentration of BiOCl sheets on the BNT surfaces, whereas an obvious shift of the 

absorption peak towards lower wavelength is observed associated with the stretching vibration 

of Bi-O bond. This is valent-symmetrical A2u-type vibrations of Bi-O in BiOCl, representing 

the gradual compositional changes of the treated catalysts. The FTIR results are in good 

agreement with observation made using XRD, XPS, Raman and SEM analysis and further 

confirm the progressive formation of BiOCl phase with acid treatment. 

7.5 Dye degradation experiments 

The photocatalytic setup consisted of a pyrex glass vessel (100 mL) kept in a water-cooled 

temperature bath (25 °C). The setup was illuminated from above using a high-pressure mercury 

vapor lamp (125 W) kept at a distance of 15 cm and screened through a visible light cut-off 
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filter (λ > 400 nm). Described setup resulted in an equivalent (theoretical) illumination of 

4.97 × 104 Lux at the surface of liquid. Primarily, to establish photocatalytic activity 

mineralization of Rh B solution (50 mL; 5 mg.L−1) was employed as a model test. Absorbance 

data was acquired at λ = 550 nm with respect to the stock solution to determine percentage 

degradation. Fig 7.8a to c give different representations of the dye degradation parameters 

plotted as a function of time.  

 

Figure 7.8: (a) Actual degradation of Rh B (%) plotted as a function of time for the tested 

samples; (b) observable de-colouration of Rh B solution in the presence of 15% BNT-BiOCl 

catalyst; (c) degradation rate constants for all samples corresponding to plots given in (a); 

and (d) reusability tests for 15% BNT-BiOCl composites. 

Fig 7.8a describes the mineralization (%) with respect to the original concentration for various 

experimental setups. Control experiments were performed to analyse the change in dye 

concentration under pure photolysis/blank (no catalyst) and dark (no illumination) conditions. 

No change was observed in the dye concentration over a period of 20 min for photolysis 

experiments. Similarly, only minute changes were observed in the presence of untreated BNT 

and other catalysts in dark condition. Literature indicates that pure BiOCl is a poor visible light 

catalyst.20 Hence, control experiments with BiOCl were not performed. This knowledge 

combined with the observation from dye degradation experiments confirm that the 
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mineralization observed under illuminated conditions can be solely attributed to photocatalysis 

in the presence of composite BNT-BiOCl. This is made even more evident by comparing the 

degradation curves observed for composite catalysts under visible light illumination (20 

minutes). For 5% BNT-BiOCl a 50% degradation of the dye was observed, whereas for 10% 

BNT-BiOCl and 15% BNT-BiOCl samples 80% and 100% degradation could be achieved, 

respectively. The actual colour change at fixed time intervals has been depicted in Fig 7.8b, 

displaying complete mineralization (with a 15% BiOCl sample). In order to evaluate the 

apparent rate constant for degradation, the relative concentration ratio is plotted in Fig 7.8c. 

The rate constants for 15%, 10%, and 5% samples were calculated to be 0.36, 0.1, and 0.033 

min-1, respectively. Table 7.1 provides a comparative analysis of selected photocatalysts 

reported in the literature for degradation of Rh B. For reasons already discussed in section 5.7, 

a direct comparison between two different catalyst systems is not possible. Nevertheless, data 

listed in Table 7.1 provides a qualitative overview of different ferroelectric-, BiOCl-, and 

sensitized TiO2-based systems which have reported visible light degradation of Rh B. 

Table 7.1: Table lists recent selected examples of different ferroelectric-, BiOCl-, and TiO2-

based photocatalysts reported in literature for Rh B degradation. 

Material 

Catalyst 

conc. 

(g.L-1) 

Dye conc. 

(mg.L-1) 
Light source 

Degradation 

(%) 

Time 

(min) 
Year Ref 

BaTiO3-Ag 3 10 Solar simulator (AM 1.5G) 100 60 2015 29 

Ag–AgCl–TiO2/Pal 1.5 5 300 W Dy lamp (λ>400 nm) 100 20 2016 30 

Bi2Fe4O9/Bi2WO6 0.3 10 300 W Xe lamp (λ>420 nm; 

155 mW cm–2) 

100 90 2018 31 

Poled BaTiO3 0.5 10 300 W Solar simulator 44 90 2018 32 

BiOCl/BiOI on rGO 0.25 10 350 W Xe lamp (λ>420 nm) ~100 9.61 2018 33 

P25-C dots 0.68 15 84 W (λ>400 nm) 80 60 2019 34 

Bi4Ti3O12/BiOI 1 10 300 W Xe lamp (λ>420 nm) 100 12 2019 35 

BiFeO3/BiOCl 0.5 9.58 300 W Xe lamp (λ>420 nm) 60 75 2019 36 

Au@PbTiO3 1 9.58 500 W Hg-vapor lamp 

(λ>400 nm) 

80 ~210 2019 37 

BiFeO3  0.5 10 500 W Xe lamp 100 80 2019 38 

BiOCl-Au 0.05 4.79 300 W Xe lamp (λ>420 nm) 93.8 20 2019 39 

BiOCl/gC3N4 nanosheets 1 10 300 W Xe lamp (λ>420 nm) ~96 80 2019 40 

Bi0.5Na0.5TiO3-BiOCl 1 5 125 W Hg-vapor lamp 

(λ>400 nm) 

100 ~13 this 

study 

 

 

It is to be noted that photocatalysis is essentially a surface phenomenon and BiOCl is the active 

catalyst in the composite material. Since with prolonged acid treatment an increasing 
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concentration of BiOCl can be acquired on the surface, the correlation between the catalyst 

composition and degradation rates can be easily explained. Also, a decrease in particle size 

because of acid treatment would lead to increased activity owing to the enhancement in the 

specific surface area. Although the BNT particles are relatively large in the current work, their 

catalytic functionality can be clearly established. 

Long term stability and resistance to photodegradation, anodic corrosion and poisoning are 

other important parameters for a practical catalyst. Hence, it is imperative to ascertain the 

reusability and long-term stability of the prepared catalyst. In this regard, Fig 7.8d displays the 

dye degradation results for 15% BNT-BiOCl for five consecutive cycles performed under 

similar experimental conditions. Before each cycle, the catalyst was recovered by centrifuging, 

washed repeatedly and dried in a vacuum oven at elevated temperature (80 oC) to rid of any 

stray dye molecules and moisture. The powder was then carefully weighed for any weight 

change and the experiment was repeated. The consistent performance of the composite catalyst 

indicates a lack of any unwanted galvanic reactions which could affect its reusability. 

Furthermore, for similar time frames and exposure conditions ~100% degradation was still 

observed even after five cycles, indicating the stability of the composites. This can be partly 

credited to the inertness of both the participating phases (BNT and BiOCl). BNT is an oxide 

perovskite (relaxor ferroelectric) and possesses high chemical stability, which is common to 

this class of compounds (oxide perovskites).41 Similarly, BiOCl has been extensively 

investigated and reported for its chemical inertness in a wide variety of reaction medium.42 

Another important contributing factor could be the nature of phase evolution of BiOCl during 

fabrication process. BiOCl is formed at the surface of its parent phase BNT after suitable acid 

treatment. Hence, it possesses a strong bonding to the parent phase, which is often absent in 

similar catalysts prepared by two-step syntheses (surface deposition etc.). This bonding is 

expected to impart a good long-term stability to the composite material against loss of 

functionality through peeling, flaking or corrosion. 

7.6 Discussion 

Mechanism responsible for the improved photocatalytic activity of BNT-BiOCl along with the 

potential route for dye degradation is provided as follows. 

7.6.1 Proposed band structure and improved photocatalytic activity 

Despite both BNT (~3.0 eV) and BiOCl (>3.0 eV) having a large bandgap, the composite 

catalyst (BNT-BiOCl) displays significant photoactivity in the visible region. The bonding 

between BiOCl and BNT and the resulting visible-light activity of the composite can be 



147 
 

explained on the basis of heterojunction formation. A traditional bi-phasic heterojunction 

consists of a sensitizer (narrow bandgap) and the main catalyst (larger bandgap). Typically, 

materials capable of absorbing in the visible spectrum (CdS, Cu2O) are used to generate charge 

carriers. Part of these charge carriers are then transferred to the main catalyst through the 

development of a Schottky junction owing to the difference in fermi energy at the interface. 

This Schottky or heterojunction can be of two types. A junction can be labelled as type-A if the 

conduction band (cb) of the sensitizer is located higher than that of main catalyst. In this case, 

the photogenerated electrons are transferred from the cb of the sensitizer to that of the catalyst. 

However, this is less than ideal as only a fraction of the desired oxidative species are generated. 

This arrangement is suitable for reaction proceeding through reduction such as water splitting 

or hydrogen evolution. Furthermore, the oxidation potential of holes is much greater, and the 

subsequently generated species are far more potent at achieving mineralization of organic 

pollutants. Hence, a higher availability of holes is of benefit for pollutant degradation, which 

can be achieved in a type-B junction. A type-B junction is created if the valence band (vb) of 

the sensitizer is lower than that of the primary catalyst. Such an arrangement allows some of 

the electrons from the vb of catalyst to be transferred to sensitizer. This creates an imbalance 

of charge which allows preservation of available holes in the catalyst vb, which can lead to 

direct reduction of adsorbed pollutants or help in the generation of hydroxyl radicals (see 

section 2.1.2). 

This can be used to explain the improved photocatalytic activity of the BNT-BiOCl composite 

catalyst. Our studies indicate a lack of any significant photoactivity in BNT, which confirms 

that BiOCl is the active catalyst in this case. Despite lacking any sensitization activity, bonding 

of BNT and BiOCl creates a type-B heterojunction owing to the location of the respective vb 

edges, as depicted in Fig 7.9. BNT is a n-type semiconductor with a vb edge at 2.53 V, whereas 

BiOCl is a p-type semiconductor with vb edge at 2.4 V.9,10,28,43 Similarly, the cb edges of BNT 

and BiOCl are located at -0.42 V and -1.1 V, respectively. Owing to band-bending at the 

heterojunction, BiOCl can partly absorb visible light and transfer energetic electrons to its cb, 

creating electron-hole pairs. Part of these electrons are then transferred to the cb of BNT. The 

process continues until any further flow is opposed by the growing depletion layer at the 

interface. Similarly, some of the holes from vb of BNT are transferred to vb of BiOCl until the 

generation of the depletion layer. Consequently, the excess holes are made available in the vb 

of BiOCl to migrate to the surface. A suitable charge imbalance extends the lifetime of these 

holes and reduces the chances of recombination. Moreover, the presence of BiOCl on the 

surface reduces the path length of the holes to the reaction medium (Fig 7.9). The presence of 
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a bulk polar vector in the parent BNT phase, its n-type nature, and presence of trap sites all 

combine to significantly reduce recombination and improve the availability of holes on the 

surface. There are only a few tests that can directly confirm the Stern-layer formation in free 

standing ferroelectric particles such as piezoresponse force microscopy44 and second harmonic 

generation.45 However, it is generally accepted that all ferroelectric particles above a critical 

size will display the formation of a Stern layer.19,46 Furthermore, a study by Su et al. describes 

that the critical size for such ferroelectric particles could be well below 10 nm.44 Since the BNT 

particles in this study are considerably larger (~1 µm), the presence of a Stern layer on the 

surface can be assumed. The bulk polar vector of ferroelectric phase accelerates and prolongs 

the separation of photogenerated charge carriers, and the formation of a Stern layer enables 

better surface adsorption of (polar) pollutants, which also contributes towards their accelerated 

degradation. A graphical representation of the concept is provided in Fig 7.9. All these factors 

work synergistically to produce the high photocatalytic activity observed in BNT-BiOCl. 

 

Figure 7.9: Mechanism for formation of type-B heterojunction between parent BNT and 

photoactive BiOCl phase and the effect of Stern layer formation on charge separation. Block 

arrows indicate magnified image of the highlighted area. 

 To further justify the proposed hypothesis, transient photocurrent measurements were 

performed for all prepared catalysts using chopped illumination with a 100-second cycle. Fig 

7.10 shows the measured current activity for BiOCl, BNT and 15% BNT-BiOCl catalyst 

measured for a period of 103 seconds. As expected, BNT displays the least magnitude of 

photocurrent which agrees with its lack of photoactivity. BiOCl being a good photocatalyst 

displayed a variation of ~0.8 µA.cm-2 between the light and dark cycles. However, for the 15% 

BNT-BiOCl composite a peak photocurrent of 3.7 µA.cm-2 was observed with a difference of 

~3 µA.cm-2 between the light and dark cycles. Comparatively, this amounts to a difference of 

300% between pure BiOCl and the 15% composite, even though the latter contains far less 
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active catalyst (BiOCl) by weight. Sharp edges are present between the onset of illuminated 

and dark time intervals, whereas the photocurrent intensity is reproducible and stable. Since the 

photocurrent is a result of the transfer of photogenerated charge carriers minus the 

recombination at the electrolyte surface; these observations confirm that the photocurrent 

enhancement of the composite catalyst can be attributed to the higher separation efficiency and 

reduced recombination of the photo-induced electron–hole pairs at the heterojunction. All this 

reaffirms the advantages of BiOCl surface bonding with the ferroelectric phase. Thus, based 

upon the presented evidence, we can conclude that a non-photocatalytic (ferroelectric) material 

with poor activity can be used to introduce and enhance the visible-light performance of 

traditional UV-active materials. 

 

Figure 7.10: Transient photocurrent measurements for BNT, BiOCl, and 15% BNT-BiOCl. 

7.6.2 Dye degradation mechanism 

The degradation of Rh B can proceed through several different mechanisms in the presence of 

a composite photocatalyst. To investigate the primary REDOX species and thereby propose a 

degradation mechanism, the photocatalytic experiments were repeated in the presence of 

scavenging agents. Fig 7.11 displays the degradation achieved with different scavenging agents 

for the 15% BNT-BiOCl composite. When benzoquinone (BQ) was added to the mixture only 

a partial degradation (~60%) could be achieved within the standard time frame (20 minutes); 

whereas incorporation of isopropanol (IPA) had no effect whatsoever. However, the 

photoactivity of the catalyst was seriously hampered upon addition of sodium 
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ethylenediaminetetraacetic (Na-EDTA) and no degradation was observed. Upon subsequent 

washing and drying of the catalyst, its original performance was regained. 

 

Figure 7.11: Scavenger test for photocatalytic degradation of Rh B over 15% BNT-BiOCl.  

These observations support the assumption that holes are the primary REDOX species for the 

composite catalyst followed by superoxide radical. Hence, the degradation mechanism of Rh B 

in the solution can be represented as: 

𝐵𝑖𝑂𝐶𝑙 + ℎ𝑣 → 𝐵𝑖𝑂𝐶𝑙∗        (7.2) 

𝐵𝑖𝑂𝐶𝑙∗ → ℎ+(𝐵𝑖𝑂𝐶𝑙) + 𝑒−(𝐵𝑁𝑇)       (7.3) 

2ℎ+ + 2𝐻2𝑂 → 2𝐻+ + 𝐻2𝑂2       (7.4) 

𝐻2𝑂2 → 2𝑂𝐻•         (7.5) 

𝑅ℎ 𝐵 + 𝑂𝐻• → 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠      (7.6) 

7.7 Conclusions 

A visible-light active Bi0.5Na0.5TiO3-BiOCl based catalyst was successfully prepared by 

treating calcined BNT particles with dilute HCl. By varying the duration of acid treatment, 

different concentration (0-15 wt.%) of BiOCl phase could be obtained. BiOCl was observed to 

crystallize on the surface of parent BNT phase owing to a combination of etching and 

precipitation reaction. XRD was used to confirm the phase purity of the as-synthesized catalyst, 

whereas SEM (EDX) was used for mapping the particle size and phase distribution. XPS and 

Raman analysis helped to confirm that the composite catalyst consists of both BNT and BiOCl 

phases, and that acid treatment did not induce any changes in the oxidation states. DRS analysis 

of the BNT-BiOCl catalyst revealed the bandgap of the composite catalyst to be ~3.14 eV. 
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However, despite the large bandgap the catalyst was able to show high photoactivity in visible 

region as evident from degradation of Rh B. This observation was explained based on the 

formation of a type-B heterojunction between the BNT and BiOCl phases. The heterojunction 

improved charge separation and surface proximity of the BiOCl facilitated enhanced migration 

of holes to the catalyst surface. A confirmation of this concept was observed by the presence of 

a strong, sharp and reproducible photocurrent in the composite catalyst. Further, scavenger 

study indicates that holes (h+) are the primary oxidative species responsible for dye-

degradation. These results indicate that suitable bonding to a ferroelectric phase can induce 

visible-light activity even in a high bandgap and UV-active catalyst such as BiOCl. Such 

ferroelectric materials could also impart additional benefits such as piezocatalysis.47 Hence, 

development and optimization of such photocatalysts could easily overcome the limitations of 

pure TiO2, thereby making it easier to achieve commercial solar water-treatment technology. 
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Chapter 8  

8. Conclusions and future prospects 

 

This chapter summarizes and highlights the important observations and results reported in this 

study. The results acquired during the course of investigation have also uncovered some topics 

worthy of further analysis, which are also discussed here. 

8.1 Conclusions 

TiO2-C composite particles were prepared through controlled hydrolysis of titanium alkoxide 

dissolved in excess alcohol. Partial hydrolysis enabled retaining of limited alkoxy groups 

thereby eliminating the need for an external carbon source. Three different alkoxides namely 

titanium IV butoxide, titanium IV isopropoxide, and titanium ethoxide were selected as Ti 

sources, whereas ethanol, isopropanol and butanol were selected as solvents. This enabled a 

systematic analysis of the effect of reagents on the size, morphology and amount of residual 

carbon in the samples.  

It was observed that regardless of the reagent combination, the precipitated particles were 

composed of amorphous hydrates of Ti containing approximately 20 wt.% H2O. These particles 

when calcined in a non-oxygenating atmosphere exhibited a range of colours varying from dark 

grey to black. XRD analysis indicated that the calcined particles were highly crystalline and 

composed mainly of anatase TiO2 with some samples displaying peaks associated with either 

rutile or brookite phases. However, no other excess or anomalous peaks were observed. 

Characterization techniques such as EDX, Raman, and XPS spectroscopy revealed the presence 

of sp2-hybridized carbon on the surface. Hence, the dark/black colour of the particles was 

attributed to the presence of a core-shell (TiO2-C) structure. The amount of carbon in the 

samples was estimated using thermal analysis and was calculated to vary between 0.5 to 4.0 

wt.%. Furthermore, SEM imaging revealed that depending on the solvent and precursor used, 

the average particle size varied from 300 nm to well over 10 µm with a concomitant change in 

specific surface area. It was observed that, regardless of the solvent used, there was a weak 

negative correlation between the molecular weight of the alkoxide and the size/surface area of 

the particles. However, no other correlation or trend could be established.  

Reflectance spectroscopy indicated that the various TiO2-C samples had significantly improved 

absorbance (≥50 %) in the visible spectrum with only a minor redshift (~0.2 eV) in the bandgap. 

Thereafter, these powders were tested for degradation of aqueous methylene blue under 
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simulated AM 1.5G sunlight. It was observed that the best sample batch offered 8.4 times faster 

rate of dye mineralization compared to a control sample of TiO2 (calcined in air). Even the least 

active carbon-containing composite sample was still 4.6 times faster than control despite the 

reduced surface area. This test helped to establish the ameliorated catalytic performance of 

TiO2-C samples over pristine TiO2. Owing to the large disparity in the size of different catalysts, 

the apparent rate constants were normalized with respect to specific surface area. It was 

observed that the catalyst prepared using titanium IV butoxide and ethanol had the highest 

normalized rate constant among all samples. Hence, this combination was selected for further 

optimization. 

In the subsequent study, the size of the primary precipitates was reduced through addition of 

aqueous KCl to the reaction mixture. It was observed that 0.1 M KCl produced stable particles 

which could be collected using a centrifuge, whereas increasing the salt concentration any 

further led to either colloidal particles (0.2 M KCl) or no precipitation (0.5 M KCl). The 

calcined particles were also observed to exhibit a core-shell (TiO2-C) structure with an average 

crystallite size of ~10 nm and an agglomerated cluster size of ~100 nm. As previously defined, 

these composite nanoparticles were denoted as nanocomposites. The carbon content of the 

nanocomposites was observed to be in good agreement with those prepared through salt-free 

hydrolysis. However, reduction of the particle size increased the specific surface area of the 

nanocomposites by 25 times. These core-shell nanocomposites were tested for degradation of 

aqueous methylene blue, methyl orange, brilliant green and rhodamine B dyes. It was observed 

that degradation rates comparable to salt-free catalyst were achieved using only 1/5th the amount 

(50 mg versus 10 mg), whereas the photo-activity was observed to be ~2 and 2.6 times better 

than control (air calcined) and commercial P25 catalysts under same conditions. A comparative 

analysis also revealed that the reported nanocomposites could easily perform at par or better 

than many state-of-art TiO2-C-based materials reported in literature, and present an advantage 

of a facile preparation method.  

The nanocomposites were further tested for degradation of two non-steroidal anti-inflammatory 

pharmaceutical compounds namely ibuprofen and diclofenac, and model pathogen gram-

negative Escherichia coli bacteria. A considerably high degradation rate was observed for both 

compounds with an average 60 min required for complete degradation. Similarly, complete 

deactivation of bacteria could be achieved within a similar time period (~60 min), which was 

five times higher than with the control sample. These results confirmed that the rate of 

degradation is highly dependent on the type of dye molecule tested. Transient photocurrent 

measurement and electrochemical impedance spectroscopy revealed that the outer carbon 
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coatings not only increased visible light absorption but also improved the generation and 

separation of photogenerated charge carriers. The ameliorated performance was attributed to 

the delocalization of generated photoelectrons and sensitization produced by sp2-hybridized 

carbon. Hence, the proposed technique was used for facile synthesis of an efficient TiO2-C 

photocatalyst, which can be employed for the treatment of a broad range of water-borne 

pollutants under full solar spectrum.  

The second part of the study reports on the synthesis and testing of various TiO2 and Ni-based 

composites for visible light hydrogen evolution. Three compounds namely β-Ni(OH)2, and its 

derivatives NiO and Ni2P were selected owing to their proficiency as good electrocatalysts. 

TiO2 nanocomposites with 1, 2.5, 5, and 10 wt.% Ni compounds were prepared through various 

routes including hydrothermal synthesis followed by solid-state reaction or salt-precipitation 

method. Various characterization techniques such as EDS, XPS, and XRD were used to 

determine the presence and phase purity of the prepared nanocomposites. It was observed that 

samples prepared using hydrothermal method had a relatively larger particle size (~300 nm) 

compared to salt-precipitated method owing to the low temperature processing of the latter, 

which could avoid particle agglomeration. Both phase pure and composite samples were tested 

for hydrogen evolution under visible light. No hydrogen was produced with pure water 

suggesting the need for sacrificial electron donors. Hence, a second set of experiments were 

performed using sodium ethylenediaminetetraacetic acid (Na-EDTA) (0.1 M, pH=4.5). In the 

presence of an electron donor significant hydrogen evolution was observed for Ni(OH)2 and 

Ni2P composites, whereas no hydrogen evolution was observed for pure TiO2 or NiO-based 

catalysts. For Ni(OH)2-based catalysts, the highest hydrogen evolution was observed for sample 

containing 2.5 wt.% cocatalyst (0.342 µM). However, for Ni2P-based catalyst the samples 

prepared through salt-precipitation method displayed the highest rate for hydrogen production, 

which was observed to have a positive correlation with the wt.% of Ni2P. A total hydrogen 

evolution of 0.981 and 0.993 µM could be achieved with samples containing 5 and 10 wt.% 

Ni2P over a period of 4 h. The sample with 5 wt.% loading was selected for further analysis 

owing to the most hydrogen evolution per unit mass of active cocatalyst. A fresh reaction 

mixture was subjected to constant illumination for seven days and the amount of evolved 

hydrogen was measured. A steady rate of hydrogen production was observed (60.47 µmol.h-

1.g-1), which confirmed the stability of the prepared catalyst over the tested time period. 

The final section of the study deviates away from TiO2 and reports on the synthesis and activity 

of a novel ferroelectric photocatalyst titanate. Ferroelectric Bi0.5Na0.5TiO3 (BNT) was selected 

as the parent phase owing to its chemical affinity to BiOCl, which is an established 
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photocatalyst. BNT particles were prepared using solid-oxide reaction technique by calcination 

in air. The micrometre sized (~1 µm) particles were then treated with dilute HCl to achieve 

growth of BiOCl on the surface through nucleation-dissolution-recrystallization process. Four 

samples were prepared corresponding to 0 (pristine), 15, 30, and 60 min of acid treatment, in 

which the total BiOCl growth was observed to be dependent on the duration of the exposure. 

The as-prepared composite particles were observed to have a high bandgap (>3.0 eV) as 

estimated using diffuse reflectance spectroscopy. However, the presence of BiOCl was 

observed to improve visible light absorption by up to 30% for 15% BiOCl-BNT sample. These 

samples were then tested for degradation of aqueous rhodamine B under visible light. It was 

observed that despite the large particle size and high bandgap, the composite catalysts displayed 

fast dye degradation under visible spectrum (λ > 400 nm), and complete mineralization could 

be achieved in ~15 min under a (theoretically estimated) illumination of 4.97 × 104 Lux. The 

high visible light activity was attributed to the formation of a type-B heterojunction. This 

heterojunction improved charge separation and increased availability of holes in BiOCl for 

rapid reduction of dye molecules, as confirmed through independent transient photocurrent and 

scavenger tests. The presence of ferroelectric parent phase is also expected to impart further 

benefits such as Stern-layer formation. However, direct evidence for such activity was not 

observed. The stability of the composite catalyst was confirmed through repeated cycling for 

five consecutive runs, with no appreciable change in photocatalytic activity. This study serves 

as a proof-of-concept that integration of traditional photocatalyst with ferroelectric materials 

could be used to prepare stable and efficient visible-light active materials as an alternate to 

TiO2.  

8.2 Future prospects 

In this study, the section regarding TiO2 and carbon composites presents a facile method for 

preparation of TiO2-C core-shell nanoparticles. These materials possess a high surface area and 

well-defined porosity which could benefit applications such as an electron transport material in 

solar cells,1 electrode materials for fast-charging Na/Li-ion batteries2 and solid-state 

capacitors;3 as it improves contact with the electrolyte and provides sites for mass/charge 

transport. These are all applications that can benefit from a facile single-step preparation 

technique for producing TiO2-C nanostructures. However, further investigation is required with 

respect to synthesis conditions and reagents to allow precise control over the shape and carbon 

content of the synthesized particles. Furthermore, the aim of this study was to develop a noble-

metal-free composite material that can provide an efficient and stable performance for 

photocatalytic degradation of a wide range of water-borne pollutants. Preliminary 
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investigations have already indicated the potency of the prepared composites. However, only a 

limited set of isolated pollutants were tested. In a practical setting, it is quite rare to encounter 

isolated dye or pharmaceutical agents in contaminated water sources apart from select industrial 

discharges. Furthermore, recent research has suggested that catalyst behaviour can both be 

promoted and retarded/poisoned based on the nature and quantity of pollutants present in the 

mixture.4 Hence, further research is required to analyse the effect of mixed pollutants on the 

performance of the as-prepared photocatalyst. In the same regard, optimization studies would 

also be beneficial to ascertain the best loading amount of the catalyst with respect to dye 

concentration. The effect of pH5 and temperature6 on the catalytic activity could also be 

explored to give a definite set of parameters to achieve maximum performance. It is well 

established that pH,5 dye concentration7 and temperature6 all affect the rate of catalysis. In this 

study, all experiments were performed at room temperatures which is an ideal setting for 

performing photocatalysis without auxiliary temperature regulation equipment. However, a 

study by Fu et al. suggests that degradation of some pollutants could be accelerated with 

increase in temperature.8 This could be beneficial for developing applications for targeted 

pollutants at or near source and warrants further research. Another important area for 

investigation is the effectiveness of the photocatalyst for inactivation of gram-positive bacteria. 

Gram-negative bacteria are easily attacked by radicals owing to their thinner cell wall. 

However, gram-positive bacteria are more resilient to attack by free radical and, hence, present 

more of a challenge for photo-inactivation.9 The study should also be extended beyond model 

strains and field tests need to be performed to see the effect of as-prepared photocatalyst on 

live-unregulated pathogen strains. Given the large surface area and the presence of an outer 

carbon shell, the proposed catalyst could also be explored for degradation of gaseous 

pollutants10 and to aid carbon capture11 according to recently proposed techniques. Finally, it 

should be noted that water treatment using particulate systems is challenging as a large number 

of nanoparticles are left suspended in the treated water at the end of the photocatalytic process. 

These nanoparticles present a potential hazard and need to be removed to make the water 

potable. In this regard, several techniques such as centrifuging and filtration can be employed. 

However, a better solution is to suitably immobilize these particles either in a matrix12 or a 

membrane,13 which enables unhindered access to the photocatalyst along with ease of 

separation. Hence, techniques for proper immobilization and a suitable reactor design will also 

be required to achieve a practical photocatalytic water-treatment system. Each of these steps 

offers its own set of challenges, all of which could be a possible topic for further investigation.  
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The section dealing with hydrogen production is part of an ongoing investigation and the 

following experiments have already been planned in further work. Both the pristine and used 

catalysts will be analyzed using X-ray fluorescence (XRF) and XPS to determine the actual 

composition and oxidation states of the catalyst. The current nomenclature assumes 100% Ni 

deposition and conversion for each synthesis step, however actual amount may be different. 

Hence, XRF of pristine samples would help to establish the yield for different conversion 

processes and may also help to identify the cause for disparity between results obtained for 

samples prepared using different techniques. Thereafter, optimum Ni loading can be determined 

with respect to maximum hydrogen production. The instrument for performing XRF 

measurements on the powder samples is already installed in the materials chemistry lab and 

will be commissioned soon. In the same regard, performing nitrogen-sorption isotherms to 

determine specific surface area of the catalysts can also help to elucidate any existing 

relationship between the synthesis methods, effective area and hydrogen production rates of the 

catalysts. XPS analysis of the tested catalysts is another important characterization that will be 

performed. There is ample literature suggesting that metallic (Ni0) is the active phase in any 

hydrogen evolution reaction regardless of the Ni compound used.14,15 Ni0 can be produced from 

reduction of Ni2+ in the presence of energetic photons and these metal nanoparticles serve as 

electron reservoirs thereby enabling hydrogen evolution.15 However, majority of the studies 

supporting this conclusion have been performed in the presence of UV light. As the present 

studies were all performed under visible light, further analysis is required to confirm the state 

of Ni post reaction. XPS analysis of the used compounds will be able to certify whether the 

different Ni-based compounds undergo photo-reduction. XPS could also help to ascertain if the 

large amount of hydrogen evolution observed for Ni2P-based catalysts is actually a result of the 

co-catalytic effect or auto-oxidation of Ni2P. Similarly, photoelectrochemical tests such as 

electrochemical impedance spectroscopy (EIS) and transient photocurrent measurement (TPM) 

can provide useful information about the generation, separation and mobility of charge carriers 

in the composite samples. EIS is especially useful for determination of charge transfer 

efficiency and can also be used to determine the rate-limiting step in the photocatalytic 

hydrogen evolution reaction. Similarly, TPM analysis can be used to determine the separation 

efficiency of photogenerated charge carriers. Results from these analyses can be further 

supported by transient photoluminescent spectroscopy, which can provide information about 

the recombination rate of photogenerated charge carriers. To further determine the reason for 

improved visible light photoactivity of the prepared nanocomposites, accurate determination of 

the band structure and bandgap is necessary. In this regard, preliminary information can be 

quickly acquired using diffuse reflectance spectroscopy. However, further tests such as 
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ultraviolet photoelectron spectroscopy and Mott-Schottky plots are needed to determine the 

location of band edges. These tests can provide useful information about the shift in band edges 

and fermi level of pristine and Ni-TiO2 composites. This information can also be used to 

determine other potential application of the prepared nanocomposites such as alcohol/aldehye 

reduction.16 Finally, further studies with respect to different electron donors, effect of pH and 

catalyst/reagent concentration will be performed to optimize the rate of hydrogen evolution. 

Eventually, this study will provide a roadmap for further testing of potential electrocatalyst 

materials for photocatalytic hydrogen production/water splitting reactions. 

The final section of the thesis is an attempt to explore other stable materials for environmental 

photocatalysis apart from TiO2. In this direction, BNT-BiOCl is a surprising find in which the 

benefits of a high quantum efficiency photocatalyst (BiOCl) could be successfully combined 

with the benefits of a ferroelectric phase (BNT). As the results presented in this study are for 

large (~2 m) particles, there is ample scope of improvement through reduction of particle size. 

However, preliminary attempts to produce BNT-BiOCl nanocomposites have not been 

successful. Even extended treatment of BNT nanoparticles with different HCl concentrations 

did not result in any detectable BiOCl on the surface of the resulting particles. A systematic 

analysis could be undertaken to determine the effect of primary particle size on BiOCl 

formation and its eventual stability. Once optimized, these composites can be further tested for 

other important applications such as carbon capture17 and degradation of gaseous pollutants.18 

In this regard, other recently proposed ABO3-type oxide perovskites with reduced bandgap 

could also be explored as potential photocatalyst with in-built electric fields.19,20 Poled-

ferroelectric materials also have some other interesting applications such as piezocatalysis21 

and enhanced adsorption,20 all of which can be combined to significantly improve the 

photocatalytic performance. These are all interesting areas of research and insights gained from 

such research can help to advance the field of photocatalysis towards successful 

commercialization. 
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