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Figure S1. Quality assessment of batch effect correction for RNA-seq and DNA methylation data. 
Multidimensional scaling (MDS) before and after batch effect correction to assess center effects using cross-

over samples. All samples generated by the Human Variation Panel (Chen et al. (2016), Cell 167(5), 1398-

414) are included. (A) MDS of RNA-seq data before (left panel) and after (right panel) batch effect 

correction. (B) MDS of DNA methylation data before (left panel) and after (right panel) batch effect 

correction.  
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Figure S2. Quality assessment of the gene expression data set generated using RNA-seq. Quality 

assessment of the RNA-seq data after normalization and batch effect correction. We filtered non-protein 

coding genes, and genes that were not expressed in at least 50% of the samples in each of the three cell 

types. This resulted in a final set of 11,980 protein-coding genes. (A) Distribution of read counts 

(logarithmic scale) for the three profiled immune cell types. (B) Proportion of variance explained by the 

first ten principal components (left panel), principal component analysis (PCA; middle panel), and 

multidimensional scaling (MDS; right panel). 
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Figure S3. Quality assessment of the DNA methylation data set generated using 450K arrays. Quality 

assessment of the 450K array data after normalization, probe filtering, and batch effect correction. The final 

data set contained 440,905 CpG sites. (A) Distribution of DNA methylation M-values for all three profiled 

immune cell types. (B) Proportion of variance explained by the first ten principal components (left panel), 

PCA (middle panel), and MDS (right panel). (C) Singular value decomposition (SVD). The heatmap 

indicates the nature of the largest components of variation. 
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Figure S4. Robust quantification of inter-individual variability of gene expression levels. We compared 

two parameters that give account of gene expression variability, the median absolute deviation (MAD) and 

gene expression variability value (EV). First, gene-wise MAD-values were calculated. Then, these values 

were ordered from low to high MAD, grouped together in bins of 100 genes, and plotted against their 

corresponding mean gene expression levels. The ordering by MAD-values was maintained to examine 

whether the MAD-values are evenly distributed across gene expression levels. The same was done for EV-

values. (A) RNA-seq read counts (logarithmic scale) with regards to MAD-values, ordered from low to 

high. (B) RNA-seq read counts with regards to EV-values. In contrast to MAD-values, EV-values showed 

less dependence on the mean, thus enabling unbiased quantification of gene expression variability. 
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Figure S5. Genetic determinants of hypervariable genes and CpGs in the BLUEPRINT Human 

Variation Panel. (A) Venn diagrams showing the overlap between genes identified using the approach to 

assess differential variability described in this study (labeled “Diff Var”), genes associated with local genetic 

variants (i.e. expression QTLs, labeled “eQTLs”), and genes estimated to be under genetic control using 

variance decomposition modeling (labeled “Var Decomp”). (B) Venn diagrams showing the overlap 

between CpG sites identified to exhibit hypervariable DNA methylation levels using the approach described 

here (labeled “Diff Var”) and CpGs associated with cis genetic variants (i.e. DNA methylation QTLs, 

labeled “meQTLs”). 
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Figure S6. Sex-specific differences in gene expression across immune cells. (A) Boxplots showing the 

expression levels of the neutrophil-specific hypervariable genes SEPT4 and TMEM63C. These two HVGs 

were the only ones that were found to be differently expressed between male and female donors at a log-

fold change (FC) of ≥1, with P = 6.35×10-5 (FC = 1.04) and P = 5.66×10-4 (FC = 1.08), respectively. Data 

points represent the expression values of the indicated gene in one individual. (B) Barplots showing the 

number of genes with significantly higher expression levels in females (labeled “f”) and males (labeled “m”) 

for each cell type. 
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Figure S7. Functionally grouped annotation network of a highly correlated network module of 

neutrophil-specific hypervariable genes not mediated by cis genetic effects. Gene ontology and KEGG 

pathway enrichments of the genes contained in the red network module of Figure 3. Node sizes are 

determined by BH-corrected P-values, with bigger nodes indicating smaller P-values. Functionally related 

terms are shown in the same color. Connections between nodes reflect the relationship between the 

significant terms based on the similarity of their associated genes.  
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Figure S8. Robust quantification of inter-individual variability of DNA methylation levels. We 

compared two parameters that give account of DNA methylation variability, the MAD and DNA 

methylation variability value (MV). First, CpG-wise MAD-values were calculated. Then, these values were 

ordered from low to high MAD, grouped together in bins of 300 CpGs, and plotted against the mean DNA 

methylation M-values. The ordering by MAD-values was preserved to investigate whether the MAD-values 

are evenly distributed across mean DNA methylation M-values. The same was done for MV-values. (A) 

Mean M-values with regards to increasing MAD-values. We found that MAD-values are correlated with 

mean DNA methylation levels. (B) Mean M-values with regards to MV-values. In contrast to MAD-values, 

MV-values showed less dependence on the mean, enabling unbiased quantification of DNA methylation 

variability. (C) Distribution of MAD- and MV-scores in relation to 450K array probe types. While MAD-

values exhibited differences in relation to Illumina probe type, MV-values did not. 



Ecker S. et al. 

-10- 

 
 

Figure S9. Correlation of cell type-specific hypervariable CpGs with donor information. Heatmap of 

Spearman’s correlation coefficients showing cell type-specific HVPs that correlated with various 

quantitative traits in donors. Correlations are shown for (A) neutrophils, (B) monocytes, and (C) T cells. 

Only HVPs that correlated with at least one of the measured traits are shown (BH-corrected P-value <0.05, 

Spearman’s rank correlation). 
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Figure S10. Global relationship between DNA methylation variability and gene expression variability 

at gene promoters and bodies. (A) Correlation between DNA methylation variability and gene expression 

variability at gene promoters in monocytes. First, gene-wise MV-values were calculated. Then, the values 

were ordered from low to high MV-value, grouped together in bins of 100 genes, and plotted against the 

EV-values, maintaining the ordering by MV-values. This binning strategy was applied to reduce the 

complexity of the data. HVPs at gene promoters were defined as CpG sites annotated to TSS1500, TSS200, 

5’UTR, and first exon, according to the Illumina 450K array annotation manifest. Darker data points indicate 

the subset of bins that is further discussed in the Results section. (B) Same scatter plot as shown in panel 

(A) but for HVPs that map to gene bodies. HVPs at gene bodies were defined as CpGs annotated to body 

and 3’UTR, according to the 450K array annotation manifest. (C) Scatter plot of the number of consensus 

transcription factor binding motifs at promoter regions in monocytes versus MV-values. Promoter regions 

were defined as ±500 bp around the transcription start site. Darker data points indicate the subset of bins 

that is further discussed in the Results section. (D)–(F) Plots as shown in panels (A)–(C) but for T cells. 
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Figure S11. Gene expression of surface markers corresponding to known neutrophil subpopulations. 
We assessed the expression profiles of a number of genes that encode cell surface proteins indicating distinct 

cellular subpopulations of neutrophils. Differences attributed to such subpopulations can contribute to inter-

individual heterogeneity. (A) Boxplots of gene expression values of cell surface markers in neutrophils. For 

each cell type, data points represent the expression values of the indicated gene in one individual. Cell types 

marked by an arrow were found to show significantly increased variability compared to monocytes and T 

cells. The markers were selected based on the literature (Silvestre-Roig et al. (2016), Blood 127(18), 2173-

81): CXCR4, encoding chemokine (C-X-C motif) receptor 4, is upregulated in “aged” neutrophils. 

Mobilization of CD63 correlates with neutrophil elastase release, and represents a marker for cell activation 

status. CD62L (also known as SELL) encodes selectin L; its ligation and cross-linking results in neutrophil 

activation, including intracellular calcium release and superoxide production. CD49 (also known as ITGA4), 

encodes integrin alpha-4 subunit 3, and is required for efficient inflammatory response against pathogen 

invasion. Note that the following previously characterized neutrophil subset markers were not present in our 

data set: CD177/PRTN3, OLFM4, IL13, TCRA/TCRB, and IL17A. (B) Distribution of the EV-values of all 

protein-coding genes assessed in our data set. The genes discussed in panel (A) are highlighted in red. 


