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Abstract

Research on two-dimensional (2D) materials currently occupies a sizeable

fraction of the materials science community, which has led to the development

of a comprehensive body of knowledge on such layered structures. However,

the goal of this thesis is to deepen the understanding of the comparatively un-

known heterostructures composed of different stacked layers. First, we utilise

linear-scaling density functional theory (LS-DFT) to simulate intricate inter-

faces between the most promising layered materials, such as transition metal

dichalcogenides (TMDC) or black phosphorus (BP) and hexagonal boron ni-

tride (hBN). We show that hBN can protect BP from external influences,

while also preventing the band-gap reduction in BP stacks, and enabling the

use of BP heterostructures as tunnelling field effect transistors. Moreover,

our simulations of the electronic structure of TMDC interfaces have repro-

duced photoemission spectroscopy observations, and have also provided an

explanation for the coexistence of commensurate and incommensurate phases

within the same crystal. Secondly, we have developed new functionality to

be used in the future study of 2D heterostructures, in the form of a linear-

response phonon formalism for LS-DFT. As part of its implementation, we

have solved multiple implementation and theoretical issues through the use

of novel algorithms.
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Chapter 1

Introduction

My doctoral research concerns the computational study of layered material interfaces

through the use of linear-scaling density functional theory (LS-DFT). In turn, this branches

out into simulations of electronic properties of 2D-material combinations, and the devel-

opment of LS-DFT functionality. My thesis also reflects this segregation, with the first

part being dedicated to the study of two-dimensional heterostructures, containing hexag-

onal boron nitride (hBN), black phosphorus (BP) and transition metal dichalcogenides

(TMDCs), while the second part concerns the implementation of linear-response phonons

in ONETEP [1].

In order to put my research into context, a brief account of the research on 2D ma-

terials is necessary. The first experimentally-obtained atomically thin layers consisted

of graphene[2], which instantly caught the attention of the scientific community, due to

its enormous electron mobility[3] (1, 000, 000 cm2/Vs) and high mechanical resistance[4].

However, its applicability was severely limited by the lack of a band gap. In turn, this

determined researchers to turn their attention to semiconducting inorganic layered ma-

terials, the most notable class being transition metal dichalcogenides [5](TMDCs), such

as MoS2, MoSe2, WS2, and WSe2. TMDCs soon proved their worth in domains such

as semiconductor electronics [6], spintronics[7], and optoelectronics[8]. This applicability

range of TMDCs was ensured by their large current on/off ratios (due to large band

gaps such as 1.9 eV for monolayer MoS2), the presence of strong spin-orbit coupling in

stacks without mirror symmetry [7], mobilities (400 cm2/Vs for MoS2 [9]) of the order

of those encountered in silicon, and the ability to withstand large strains [10]. How-

ever, even TMDCs have flaws: most have a direct band gap only in monolayer form

[11], the carrier mobilities are far smaller than those encountered in graphene, and their

large band gap implies that the infrared (IR) spectrum cannot be harnessed by TMDC

optoelectronics.
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Consequently, the spotlight has recently been shared with layered black phosphorus

(BP)[12, 13], a material which rectifies the most important shortcomings of TMDCs. The

band gap of BP is direct even in stacked forms, and its value changes significantly with the

number of layers: from 0.3 eV in bulk to 1.5-2.0 eV for the monolayer [14, 15]. This range

of values allows BP to exploit a range of spectrum previously unharnessed by graphene

and TMDCs, corresponding to the mid- and near-IR. Moreover, the higher carrier mobil-

ities (1, 000 cm2/Vs)[16] compared to TMDC monolayers, the strongly anisotropic elec-

tronic and optical properties [17, 18, 19, 20, 21], as well as the robustness under elastic

strain [22, 23, 24] have already ensured novel uses of BP in electronic [16, 18, 15, 25, 26],

photonic [27, 28, 29], and thermoelectric [30, 31] applications.

Unfortunately, alongside these highly desirable properties, BP also has drawbacks. Firstly,

it is highly sensitive to molecules present in air [32] and it is structurally unstable in ambi-

ent conditions [33, 34], meaning that pristine BP flakes are unusable after only a couple of

hours [35]. Such effects prevent the holes in monolayer BP from reaching their maximum

predicted mobility of 10, 000 cm2/Vs [17]. Secondly, the decrease of the band gap in BP

stacks implies that only the monolayer is usable for near-IR optoelectronic applications,

limiting the external quantum efficiency of such devices. This band gap decrease cannot

be avoided by simply misaligning the BP layers, as we have shown in a previous article

[36] and in my Master dissertation [37] that stacked layers always interact at the Γ point

of the Brilloin zone, exactly where the BP direct band-gap is. Lastly, due to the gap being

smaller than that of TMDCs, the current on/off ratio for BP transistors is lower, making

pristine BP channels not as appealing as TMDCs in ultra-low power applications.

Therefore, in the first part of Chapter 3 we propose that monolayers of an inert insulator,

such as hexagonal boron nitride (hBN), could alleviate the aforementioned shortcom-

ings of pristine BP. By simulating large rotated hBN/BP interfaces, we arrive at three

conclusions: hBN encapsulation does not negatively affect the main electronic proper-

ties of BP, hBN spacers prevent the band gap reduction in stacked forms of BP, and

BP/hBN/BP heterostructures are potential tunnelling field-effect transistors (TFETs),

useful in both high-speed and low-power applications. The first point suggests that there

is no electronic-structure downside to hBN-encapsulation, which is already known to pro-
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tect BP from environmental interactions [38, 35, 39]. The second conclusion is especially

relevant for optoelectronics, implying that hBN-spaced BP stacks have similar light-

absorption properties as monolayer BP, with the added advantage of more photons being

absorbed due to the increased thickness. Finally, since the operation of BP/hBN/BP as

a TFET is based on quantum tunnelling, instead of thermal excitation of carriers, we

encounter negative differential resistance (NDR) peaks [40]; their peak-to-valley ratios

(PVRs) are comparable to those predicted for TMDC TFETs [41], and their subthresh-

old swings are below the minimum theoretical limit for conventional field effect transistors

[42]. We note that intricate heterostructure 2D stacks have already been experimentally

obtained [43], meaning that our proposition of hBN-encapsulated or spaced BP is realis-

tic. However, our hBN/BP heterostructures are too large for traditional DFT to be an

option. Therefore, for this study we utilise LS-DFT, as implemented in the ONETEP

code [1], the framework of which we briefly describe in Chapter 2.

Chapter 3 concludes with the account of our study on bandstructure effects that oc-

cur when stacking TMDC layers, which was undertaken in conjunction with angular

resolved photoemission spectroscopy (ARPES) performed by experimental collaborators

[44]. Firstly, we have proven that LS-DFT can correctly account for hybridisation and

band offsets in TMDC heterojunctions in good agreement with experiment. Moreover, we

have been able to explain the presence of nonintuitive additional bands present in ARPES

results, indicative of the coexistence of commensurate and incommensurate domains in

slightly twisted MoSe2/WSe2 interfaces.

In the second part of the thesis, namely Chapter 4, we present the implementation of

new functionality in ONETEP. One of the long term goals of the ONETEP community

is to enable the computation of Raman spectra in a linear-scaling fashion. In the past

10 years, Raman spectroscopy has become a crucial multi-purpose investigation tool for

layered materials [45]. In particular, relating to the previously discussed black phospho-

rus, Raman spectroscopy can determine the crystal orientation in micro-sized flakes, as

the Raman active modes have different polarisation dependencies, strongly related to the

crystal orientation [46]. Raman can also be used to determine the number of BP layers

[47], as the interlayer breathing mode is highly redshifted with increasing thickness. Such
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methods retain their usefulness throughout a wide range of 2D materials, such as TMDCs

and graphene, as one can predict the number of layers or the stacking arrangements in a

flake [45, 48, 49].

As the readers will see in this thesis, and from previous work [36], 2D heterostructures can

form large coincidence cells, due to differing lattice parameters. Therefore, even though

many traditional DFT codes have access to Raman spectroscopy simulations, such an

approach would be too expensive for simulating large 2D heterostructures. Therefore, the

main goal of the implementation part of my PhD work will be to create the framework

for future linear-scaling Raman spectroscopy, through the implementation of accurate

phonon spectra. Therefore, in Chapter 4 of this thesis I present my novel linear-scaling

implementation of linear-response phonons in ONETEP, within the projector augmented

wave (PAW [50]) formalism, for insulators.

While the well-known density-functional perturbation theory framework is followed for

part of the derivations, the ONETEP constraints of linear-scaling and localised orbitals

impose the need for an alternative approaches. Therefore, the novelty of our work is in

developing an entirely new optimisation routine for the first-order wavefunctions, which

consists of a combination of a preconditioned quasi-Newton approach (for the response

kernel) and a preconditioned conjugate-gradient one (for the localised orbitals). More-

over, localisation constraints also resulted in the need to use a different displacement

basis, meaning that for each perturbation we simultaneously move all atoms in certain

directions, with certain associated weights. This framework also allows a trivial extension

to electric field perturbations, which brings us closer to the ultimate goal of enabling fast

and accurate Raman spectroscopy simulations in the context of 2D heterostructures.

Finally, in Chapter 5 I conclude my work, and briefly present ideas for future research.
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Chapter 2

Theoretical considerations

In this chapter, we briefly discuss the general theory behind the ONETEP[1] implementa-

tion of linear-scaling Density Functional Theory (LS-DFT), and the projector-augmented

wave (PAW) formalism [50]. The reader is assumed to be familiar with the central fea-

tures of Density Functional Theory [51, 52], a full coverage of which can be found in Ref.

[53].

2.1 Linear-Scaling DFT (LS-DFT) : ONETEP

2.1.1 Limitations of KS DFT

In traditional DFT one uses the Kohn-Sham formalism, in which the fully interacting

system is mapped onto a non-interacting system with the same charge density. In this

approach, the energy functional is minimised under the constraint that the Kohn-Sham

(KS) orbitals, describing the electron states, are orthonormal. Thus, assuming that

the number of KS orbitals is N , the number of orbital pairs that are required to be

orthonormal scales as O(N2).

Figure 2.1: Left, one delocalized orbital ψi(r) from a conventional DFT calculation [54]

on a peptide. Right, three NGWFs from a ONETEP calculation on the same peptide [1].

As seen in Fig. 2.1, such KS orbitals also usually extend over the entire system, meaning

that the extent of each orbital scales with the system size as O(N). Combining the
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previous scaling relations, a traditional KS DFT calculation scales as O(N3). While this

does not pose a problem for relatively small systems, one encounters a scaling wall after

a few hundred atoms. Since we will be investigating heterostructures containing more

than 1500 atoms (Fig. 3.2.f,g), traditional DFT is simply not an option, and we require

a different approach.

2.1.2 Density-matrix methods

One solution originates from the first order density matrix, which can fully represent the

system properties according to the Hohenberg-Kohn theorems [51]:

ρ(r, r′) =
∑

n

fnψ
∗
n(r)ψn(r′) , (2.1.1)

where fn is the occupation number (either 0 or 1); note that and ρ(r, r) = ρ(r) is simply

the charge density. However, the aforementioned problematic KS-orbital constraints are

now translated into the idempotency condition for the density matrix:

ρ2(r, r′) =
∑

i,j

fifj 〈r|ψi〉 〈ψi| |ψj〉 〈ψj|r′〉 =
∑

i,j

fifj 〈r|ψi〉 δij 〈ψj|r′〉 =

∑

k

fk 〈r|ψk〉 〈ψk|r′〉 = ρ(r, r′) , (2.1.2)

where we have implicitly used the orthonormality of the orbitals |ψi〉 and the fact that

fifj is still either 0 or 1.

However, the information contained in the density matrix still scales as O(N2), due to

orbital delocalisation and linear scaling with system size. The solution comes in the

form of the near-sightedness principle [55, 56, 57], which states that in insulating or

semiconducting systems the terms in the density matrix decay exponentially:

ρ(r, r′) ∝ e−γ|r−r′| , (2.1.3)

implying that the density matrix is sparse. This also allows one to use localised orbitals

accurately; thus, in ONETEP the density matrix is written as:

ρ(r, r′) =
∑

α,β

φα(r)Kαβφβ(r′) , (2.1.4)
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where φα(r) is a localised orbital (Fig. 2.1), henceforth called non-orthogonal generalized

Wannier function (NGWF) [1, 58], and Kαβ is a density kernel [59, 1]. Thus, the square

of the density matrix (Eq. 2.1.2) is now:

ρ2(r, r′) =
∑

α,δ

〈r|φα〉Kαδ 〈φδ|
[∑

γ,β

|φγ〉Kγβ 〈φβ|r′〉
]

=

=
∑

α,β

〈r|φα〉
[∑

δ,γ

KαδSδγK
γβ
]
〈φβ|r′〉 ,

(2.1.5)

where Sδγ = 〈φδ|φγ〉 is the overlap term between NGWFs φδ and φγ. If one requires that

Eq. 2.1.2 is fulfilled, the square bracket of the previous equation needs to be equal to

Kαβ:

KSK = K (2.1.6)

The contravariant nature of the kernel Kαβ makes it strictly related to the NGWF duals

φα =
∑(

S−1)αβφβ, which have a much larger localisation region than the NGWFs. Thus,

even if the orbitals are localised, the kernel is not automatically sparse; however, based on

the near-sightedness principle, one can enforce sparsity by assuming that if two NGWFs

are far apart, their contribution to the density kernel is null.

The locality of the NGWFs and the truncation of the density-kernel ensure that the infor-

mation in the density matrix actually scales as O(N) with the system size for insulating

or semiconducting systems. However, we did not employ kernel truncation, as this is

usually required only for systems much larger than ours.

In order to obtain accurate results, self-consistency is still required; in ONETEP this is

done by optimising both the density-kernel (inner loop [60]) and NGWFs (outer loop [58]).

This method avoids charge sloshing and is equivalent to Ensemble DFT in plane-wave

codes, where one optimises state occupancies.

As previously explained, the density kernel must be idempotent, but the cost of explicitly

imposing Eq. 2.1.6 scales as O(N3) for dense matrices. Since ONETEP needs to be

linear-scaling, an alternative solution was required: the LNV method [61, 62], which

ensures implicit idempotency at the ground state. This implies that the density-kernel is

expressed in terms of an auxiliary matrix L:

K = 3LSL− 2LSLSL , (2.1.7)
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where L is optimised iteratively in order to minimise the energy functional. This method

has the advantage that the energy functional does not have multiple minima (being cubic

as a function of L).

2.1.3 NGWF formalism

In ONETEP, one utilises only a small number of dynamic (iteratively optimised) local

orbitals [1], which should have the same accuracy as a large fixed basis set. Therefore,

the previously defined NGWFs are optimised to adapt to their chemical environment,

ensuring transferability, and eliminating the need for basis-set superposition error (BSSE

[63]) corrections [64]. In the following, we will present some defining properties of NG-

WFs.

Figure 2.2: Left: 2D psinc centered at a grid point in the simulation cell (courtesy of

Haynes et al. [64]). Right: NGWF expansion in terms of the psinc basis (courtesy of

Skylaris et al. [1]).

The underlying basis in ONETEP comprises psinc functions centred on the points of a

regular real-space grid [1], i.e. periodic bandwidth-limited delta functions (Fig. 2.2 - left

inset):

Di(r) =
1

N

∑

p

eikp·(r−ri) , (2.1.8)

with N being the number of points in the simulation cell, ri is a grid point in the real-

space simulation cell and kp is a reciprocal space point, consisting of multiples of the

simulation cell reciprocal lattice vectors. The maximum value of kp is controlled by the
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kinetic energy cutoff. The psinc functions have some useful properties: they are non-zero

only on the grid point on which they are centred, they share the periodicity of the cell,

and are mutually orthogonal. The NGWFs are expanded in terms of this psinc basis

(Fig. 2.2 - right inset):

φα(r) =
∑

i∈Rα

Di(r)ciα , (2.1.9)

where Rα is the localisation radius of the NGWF and ciα is the coefficient of the NGWF

φα(r) in terms of the psinc at the grid point i.

In ONETEP, the computational effort is further reduced by performing Fast Fourier

Transforms (FFTs) on so-called FFT boxes instead of the whole simulation cell. These

boxes are centred on the NGWFs and they encompass all the overlapping neighbours of

the respective NGWF (i.e. the box has a lateral size six times larger than the NGWF

cutoff radius). Therefore, linear scaling is maintained, as the FFT domain only depends

on the radius of the NGWFs, making the number of FFT operations scale linearly with

the number of NGWFs, i.e. the system size.

2.2 Projector Augmented Wave (PAW) formalism

In DFT, valence wavefunctions are highly irregular near the ion core, as they are need

to always be orthogonal to the core wavefunctions. This lack of smoothness implies the

need of a large number of Fourier coefficients for an accurate representation. However,

the crucial physical interactions, such as chemical bonding, are mostly related to the

smooth tails of the valence wavefunctions. This opens up the possibility of using smooth

pseudised (PS) wavefunctions, thus replacing the all-electron (AE) eigenstates and po-

tentials, such that the required computational effort is reduced, with little effect on the

calculation accuracy. However, such a transformation should only affect the wavefunction

near the ion core, as the AE and PS wavefunctions and potentials need to identical after

a predetermined cut-off radius, in order to accurately represent bonding.

While there are several variations of this approach, the most promising is the Projector-

Augmented Wave formalism (PAW), introduced in 1994 by Blöchl [50]. This framework is

the theoretical generalisation of the pseudopotential concept, and it allows for smoother
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PS wavefunctions due to the lack of constraints regarding norm conservation. Lastly, one

can obtain all-electron quantities from the PS equivalents.

2.2.1 Wavefunctions

Such that the pseudisation leaves the wavefunction tails unchanged, one defines a trans-

formation that acts only inside a certain spherical augmentation region around the

atom:

|Ψn〉 = τ̂ |Ψ̃n〉 =

[
1 +

∑

i

(
|ϕi〉 − |ϕ̃i〉

)
〈p̃i|
]
|Ψ̃n〉 , (2.2.1)

with τ̂ being the transformation operator between the PS |Ψ̃n〉 and AE |Ψn〉 eigenstates

(all PS quantities have ”∼” as accent). The PS wavefunctions are expanded into a basis

of PS partial waves |ϕ̃i〉:
|Ψ̃n〉 =

∑

i

|ϕ̃i〉 〈p̃i|Ψ̃n〉 , (2.2.2)

where the overlap between the wavefunctions and projectors |p̃i〉 acts as coefficients;

an equivalent relation applies to the AE wavefunctions, using AE partial waves |ϕi〉.
The partial waves obey the same transformation as the wavefunctions (Eq. 2.2.1), with

the additional property that they are restricted to be zero outside the augmentation

sphere:

|ϕi〉 = τ̂ |ϕ̃i〉 (2.2.3)

PAW datasets usually contain the radial parts of the partial waves and projectors, but one

also needs to consider a spherical component, according to their quantum numbers:

ϕi(r) =
∑

ni,li,mi

ϕni,li(r)

r
Sli,mi(r̂) , (2.2.4)

where the same relation applies to PS partial waves or projectors, ni, li and mi are

quantum numbers, and Sli,mi is a real spherical harmonic.

Lastly, since the PS wavefunctions are not orthogonal in the same sense that the AE

eigenstates are (〈Ψi|Ψj〉 = δij), one needs to redefine the orthogonality relation through

a new metric:

〈Ψi|Ψj〉 = 〈Ψ̃i| τ̂ †τ̂︸︷︷︸
Ŝ

Ψ̃j〉 = δij , (2.2.5)
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called an augmented overlap operator Ŝ:

Ŝ = 1 +
∑

a,b

|p̃a〉
[
〈ϕa|ϕb〉 − 〈ϕ̃a|ϕ̃b〉

]

︸ ︷︷ ︸
Oab

〈p̃b| (2.2.6)

2.2.2 Densities

In an equivalent manner to the previously described wave-function pseudisation proce-

dure, the all-electron charge density can be viewed as a PS density on the whole simulation

grid, from which one removes the sphere of PS density (in the augmentation region) and

replaces it with a sphere of AE density, as also shown in Fig. 2.3:

ρ(r) =
∑

n

fn 〈Ψ̃n|r〉 〈r|Ψ̃n〉
︸ ︷︷ ︸

ρ̃(r)

+
∑

i,j

ρij 〈ϕi|r〉 〈r|ϕj〉
︸ ︷︷ ︸

ρ1(r)

−
∑

i,j

ρij 〈ϕ̃i|r〉 〈r|ϕ̃j〉
︸ ︷︷ ︸

ρ̃1(r)

, (2.2.7)

where we have defined a projector density kernel ρij (fn are the occupation numbers):

ρij =
∑

n

〈Ψ̃n|p̃i〉 fn 〈p̃j|Ψ̃n〉 , (2.2.8)

As an added constraint, the PS augmentation density (ρ̃1) needs to have the same mul-

Figure 2.3: Schematic of augmentation and pseudisation procedure for densities.

tipole moment as the AE augmentation density (ρ1). Therefore, a compensation density

ρ̂(r), non-zero only inside the augmentation region, is added to the pseudo-densities (ρ̃(r)

and ρ̃1(r)):

ρ̂(r) =
∑

i,j

ρijQ̂ij , (r) (2.2.9)

where Qij are multipole moments. Therefore one maintains the charge density quadra-

ture, while allowing the correct description of the multipole. Lastly, PAW datasets also

include the PS (ρ̃c) and AE (ρc) core-electron charges, which are important for the

exchange-correlation energy; by also adding the ion charge, one obtains ρ̃Zc and ρZc ,

which are used in the definition of the local pseudo-potential.
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2.2.3 Energy and pseudo-Hamiltonian

One quantity that will be the starting point of our discussion in Chapter 4 is the PAW

electronic energy:

Eel
PAW =

Ne/2∑

i

fi 〈ψ̃i
∣∣∣− 1

2
∇2 + vH

[
ρ̃Zc
]∣∣∣ψ̃i〉+ EH

[
ρ̃+ ρ̂

]
+ EXC

[
ρ̃+ ρ̂+ ρ̃c

]
+

∑

a,b

ρab

{∫
vH

[
ρ̃Zc
]
Q̂ab dr + 〈ϕa| −

1

2
∇2 + vH

[
ρZc
]
|ϕb〉−

〈ϕ̃a| −
1

2
∇2 + vH

[
ρ̃Zc
]
|ϕ̃b〉 −

∫

Ω

vH

[
ρ̃Zc
]
Q̂ab dr

}
+ (2.2.10)

EH

∣∣∣
Ω

[
ρ1
]

+ EXC

∣∣∣
Ω

[
ρ1 + ρc

]
− EH

∣∣∣
Ω

[
ρ̃1 + ρ̂

]
− EXC

∣∣∣
Ω

[
ρ̃1 + ρ̂+ ρ̃c

]
=

Ne/2∑

i

fi 〈ψ̃i|H̃|ψ̃i〉 − Edc[ρ]

where “H” and “XC” denote Hartree and exchange-correlation energies, respectively.

Energies with Ω are calculated in the augmentation sphere, while the first line of the

previous equation is computed on the entire simulation grid. In the last equality we

have shown the standard decomposition of the energy into a bandstructure term and

a density-dependent double-counting element. The former component is determined by

a Kohn-Sham the pseudo-Hamiltonian H̃, containing an effective potential ṽeff which

describes the pseudo-, Hartree, and exchange-correlation potentials:

H̃ = −1

2
∇2 + ṽeff +

∑

a,b

|p̃a〉
[
D̂ab +D1

ab − D̃1
ab

]
〈p̃b|

ṽeff(r) = vH[ρ̃Zc ](r) + vH[ρ̃+ ρ̂](r) + vXC[ρ̃+ ρ̂+ ρ̃c](r) (2.2.11)

The remaining non-local component of the pseudo-Hamiltonian is described by

D̂ab =

∫
ṽeff(r) Q̂ab(r) dr

D1
ab = 〈ϕa| −

1

2
∇2 + v1

eff|ϕb〉 (2.2.12)

D̃1
ab = 〈ϕ̃a| −

1

2
∇2 + ṽ1

eff|ϕ̃b〉+

∫

Ω

ṽ1
eff(r) Q̂ab(r) dr ,

where v1
eff and ṽ1

eff are all-electron and pseudised equivalents of ṽeff on the augmentation-

sphere. More nonessential details regarding the general PAW framework can be found in

the ABINIT plane-wave implementation [65] of PAW.
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Lastly, for the particularities of PAW in LS-DFT, we refer the reader to the detailed

ONETEP implementation as written by Nicholas Hine [66].

2.3 Spectral function unfolding

In this thesis, especially in Chapter 3, we have used the concept of bandstructure unfold-

ing, which has already been described in our previous work [36] and my Master thesis

[37]. However, for the convenience of the readers we briefly revisit the theory.

An extensively used experimental technique to probe the electronic structure of materials

is angular resolved photoelectron spectroscopy (ARPES), which registers the photocur-

rent [67, 68] induced by photo-excitations:

I(k, ω) ∝ f(ω)|Mf,i(k)|2Akj,kj(ω) , (2.3.1)

Neglecting the polarization-dependent dipole matrix |Mf,i(k)|2, we see that this current

is directly related to the one-particle Kohn-Sham spectral function Akj,kj(ω). The latter

represents probability that an electron of momentum k can be added/removed into/from

band j with an energy of ω, and its operator is defined as:

Â(ω) = − 1

π
Im
∑

K,J

|ΨKJ〉 〈ΨKJ |
ω + iη − εKJ

=
η

π

∑

K,J

|ΨKJ〉 〈ΨKJ |
(ω − εKJ)2 + η2

, (2.3.2)

with the eigenvector and eigenvalue of the system state being |ΨKJ〉 and εKJ , while η is

a small broadening factor.

The bandstructure is not a useful concept in the supercells we have simulated, as one

cannot envision how electronic effects relate back to the Brillouin zone (BZ) of each

monolayer’s unit cell. To solve this problem, we project the supercell spectral function

onto the subsystem (monolayer) of interest and unfold it to the unit cell BZ:

AIkj,kj =
∑

K,
ρ∈I

〈Ψkj|ΨKJ〉AKJ,KJ 〈ΨKJ |φρ〉 〈φρ|Ψkj〉 ,
(2.3.3)

where AIkj,kj is the spectral function projected on layer I in the representation of the

primitive cell eigenstates |Ψkj〉, AKJ,KJ is the heterostructure spectral function for the

supercell eigenstates |ΨKJ〉 and
∑

ρ∈I |φρ〉 〈φρ| projects onto the atomic orbitals of sub-

system I.
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Chapter 3

Two-dimensional heterostructures

3.1 hBN/BP

In this section we describe our work related to the interfacing of black phosphorus (BP),

a semiconducting layered material, with hexagonal boron nitride (hBN), an insulating

counterpart. We remind the reader that our main goal was to prove that hBN can safely

shield BP from external interactions, limit its band gap decrease in multilayers, as well

as enable its use as a tunnelling field effect transistor. The work presented here has been

published as Nano Letters 16, 4, 2586-2594 (2016) [69].

3.1.1 Methodology

Before performing any calculations, we were required to pinpoint the methodological

details, such as structural parameters for the considered BP and hBN layers, the kinetic-

energy cutoff, and the optimal size of the supercells in ONETEP.

The exchange-correlation functional was chosen to be optB88-vdW, since previous studies

[36] have shown that its ab-initio description of the van-der-Waals interaction predicts

the correct structure and binding energies in weakly bound layers. We have employed

the PAW formalism for most of the ONETEP calculations that will be mentioned from

this point onwards, in order to have access to all-electron quantities in a cost-effective

manner. We chose the PAW datasets developed by Garrity et al [70], as they have been

extensively validated for elemental structures and simple covalent compounds, and have

proven effective in our previous study on MoS2/MoSe2 heterostructures[36]. The P and

N atoms contain 5 valence electrons (2s2, 2p3 for N / 3s2, 3p3 for P), while B has only 3

valence electrons (2s2, 2p1).

Since the initial convergence tests were performed using Quantum Espresso[71], we also

use the equivalent ultra-soft pseudopotential (USPP) versions of these PAW datasets.
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While requiring a higher charge density cutoff, Garrity et al. [70] showed that USPPs

produce essentially identical results to the PAW datasets.

First, we have determined the structures of the considered materials. Few-layered hexag-

onal boron nitride (hBN) was synthesised at the same time as graphene [2]. Its structure

is rather simple, having a hexagonal symmetry (space group P63/mmc), with one B and

one N atom per each periodic unit, each occupying a different sub-lattice site. The mono-

layer structure is shown in Fig. 3.1.a; in an previous paper, I have shown that the bilayer

form is most stable in the AA’ stacking form [72], where the B in one layer eclipses the N

in the other layer, and vice versa (Fig. 3.1.b). The BP monolayer, however, has a more

complicated structure. Its puckered orthorhombic structure (space group D18
2h) contains

two subplanes of P atoms, with each BP monolayer unit containing 4 atoms (Fig. 3.1.d).

For the bilayer, the AB stacking (Fig. 3.1.e) is the most stable [73], but in this study

we will also be interested in the slightly less stable AA stacking (Fig. 3.1.f). The latter

configuration is conceptually easier to envision, and the BP stacking type does not change

our qualitative conclusions.

For both hBN and BP, the in-plane lattice vectors have been denoted as a, b, the out of

plane vector as c (relevant only for the bulk structure), and the interlayer distance as d

(relevant for the bilayer cases). In the case of bilayer BP, d is redefined as the distance

between the lower P subplane of the top monolayer and the upper P subplane of the

bottom monolayer (Fig. 3.1.d)

For optimising the structures of each separate material, we have used small unit cells

and the QuantumEspresso [71] plane-wave DFT code. In the following, all the geometry

optimisation were run at a large 1, 000 eV kinetic energy cutoff, with a 10, 000 eV charge-

density cutoff. The force tolerance was set to 10−4 a.u./bohr (≈ 5 · 10−3 eV/Å) in all

cases except for the phosphorene bilayers, which could not be converged beyond 5 · 10−4

a.u./bohr (≈ 2.5 · 10−2 eV/Å); the stress threshold was set to 0.25 kbar. The Brillouin

zone was sampled by a 12×12×1 k-point mesh for hBN and a 13×10×1 one for BP; in

the bulk structures we have also considered 4 out-of-plane k-points. For the monolayers

and bilayers, the simulation cell was chosen to have a height of 30 Å, in order to avoid

interactions between periodic images.
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Figure 3.1: Top and side view of a 4x4 supercell of the hBN monolayer (a), and bilayer

in AA’ stacking (b); the red(blue) spheres are N(B) atoms. Brillouin zone for the BP

monolayer/bilayer (c). Top and side view of a 2x2 supercell, as well as band-structure

plots, for the BP monolayer (d), bilayer in AB-stacking (e) and AA-stacking (f). For

clarity, the P atoms in the lower(upper) sub-plane of each monolayer are grey(black).

In all cases, a, b are the in-plane lattice vectors, and d is the interlayer distance. The

reference for the band-structure energy scale is the mid-gap level.
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We first optimised the lattice parameters of the bulk structures (see Table 3.1), as uncon-

troversial experimental data was already available for both hBN and BP in bulk form.

Note that the BP bulk has AB stacking (Fig. 3.1.e), while the hBN bulk has AA’ stacking

(Fig. 3.1.b).

Table 3.1: Calculated lattice parameters (in Å) for bulk BP and hBN, experimental values

(EXP.) and other theoretical (THEO.) DFT or higher-order results.

bulk hBN EXP.

bulk hBN

[74]

THEO.

bulk hBN

[72]

bulk BP EXP.

bulk BP

[75]

THEO.

bulk BP

[73]

a [Å] 2.51 2.50 2.49 3.36 3.31 3.34

b [Å] 2.51 2.50 2.49 4.48 4.38 4.48

c [Å] 6.60 6.66 6.68 10.75 10.48 10.73

The results are a testament to the behaviour of the optB88-vdW functional: for hBN,

our results almost perfectly agree with the experimental ones, with a maximum relative

error of ≈ 1%, while for BP the difference is < 3%. With such encouraging results for the

bulk structures, we have also optimised the monolayers and bilayers, as shown in Table

3.2.

Table 3.2: Optimised lattice parameters (in Å) for BP and hBN monolayer (mono) and

bilayers (bi-“stacking”).

mono hBN bi-AA’ hBN mono BP bi-AB BP bi-AA BP

a [Å] 2.51 2.50 3.34 3.35 3.34

b [Å] 2.51 2.50 4.59 4.54 4.53

d [Å] 3.33 3.20 3.49

The lattice parameters for hBN match both experiment [76] and higher-order MP2 theory

[72]. While experimental structural parameters for BP monolayers and bilayers could not

be found, our results agree perfectly with other DFT works employing the optB88-vdW

[73], PBE [24, 47], vdW-DF2 and PBE-D2 [47] functionals. The interlayer distance for

the bilayer BP in the AB stacking is 0.29 Å smaller than for the AA stacking, in perfect

agreement with Dai et al. [73]. Consequently, we shall use all these converged values in

constructing the BP/hBN heterostructures (see section 3.1.3).
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Some explanations are necessary regarding the bandstructures of the monolayer and bi-

layer BP (bottom insets of Fig. 3.1.d,e,f). For clarity, the orthorhombic Brillouin zone

of BP is shown in Fig. 3.1.c. As we have mentioned in the introduction, there is a sig-

nificant quantum confinement effect upon the stacking of the BP layers: DFT predicts a

significant band gap reduction from 0.84 eV in the monolayer case, to 0.44 eV and 0.33

eV for the AB and AA stacking of the bilayer, respectively. These values are in agreement

with others [14], although unsurprisingly underestimated with respect to experiment [15],

hybrid-DFT [73, 77] and GW+BSE [14] calculations. In all the cases, the anisotropy of

the hole effective mass is obvious, as the mass in the zig-zag direction (3.08 m0 along

Γ−X) is much higher than the one in the armchair direction (0.16 m0 along Γ− Y ), in

agreement with experimental studies [17, 18, 78, 20]. While structural differences between

the AA and AB stackings for BP bilayers are obvious (Fig. 3.1.e,f), the bandstructures

are almost identical, the most major differences being a reduction of the band gap in

the AA-case by 0.11 eV and a slightly lower hole effective mass along Γ − X for the

AB stacking. This obvious similarity between the electronic band-structures of the AA

and AB alignments has proven useful in our choice of heterostructures construction (Sec.

3.1.3).

In QuantumEspresso, the kinetic energy (KE) cutoff controls the number of plane waves

used to describe the Kohn-Sham orbitals, in a similar manner to how the KE cutoff fixes

the psinc grid spacing in ONETEP. Thus, the minimal KE cutoff required for sufficient

convergence in QuantumEspresso can be assumed to be adequate for any equivalent

ONETEP calculation [79].

For this test, the convergence criterion was taken to be the interlayer binding energy of a

hBN AA’-bilayer (Fig. 3.1.b) and a BP AB-bilayer (Fig. 3.1.d), respectively. Apart from

the KE cutoff, we have maintained all the previously discussed parameters. The results

are shown in Table 3.3.

It is clear that the values are well converged (� 1.0 meV/bilayer-unit) even for small

kinetic energy cutoffs. However, to ensure a sufficient sampling of the NGWFs in the

ONETEP calculations, we have chosen a reasonable value of 800 eV for the KE cut-

off.



20 Chapter 3. Two-dimensional heterostructures

Table 3.3: Convergence test for the KE cutoff. Binding energy (meV/bilayer-unit) for

the hBN AA’-bilayer and the BP AB-bilayer.

K.E. [eV] hBN ∆E [meV] BP ∆E [meV]

500 -124.24 -441.94

600 -124.10 -441.99

700 -124.10 -442.01

800 -124.06 -442.04

900 -124.05 -442.05

1000 -124.05 -442.06

Another important parameter that needs to be converged is the k-point sampling in

QuantumEspresso. In the case of ONETEP, this is equally important: as ONETEP only

considers the Γ point in reciprocal space, the k-point sampling in traditional DFT is

equivalent to the supercell size in ONETEP. Therefore, the minimum required k-point

sampling was determined by once again performing a convergence test in QuantumE-

spresso, with the binding energies for the hBN and BP bilayers being the convergence

criterion. The results are shown in Table 3.4:

Table 3.4: Convergence test for in-plane k-point sampling. Binding energy (meV/bilayer-

unit) for bilayered hBN (AA’ stacking) and BP (AB stacking).

sampling hBN ∆E

[meV]

sampling BP ∆E [meV]

6x6 -123.98 8x6 -442.65

9x9 -124.04 11x8 -442.14

12x12 -124.05 13x10 -442.06

15x15 -124.05 16x12 -442.06

Clearly, all the considered cases provide sufficient convergence, even for sparse k-point

sampling. We have therefore chosen the minimum k-point sampling to be 12×12 for hBN

(19.95 points Å2) and 11×8 (34.16 points Å2) for BP. This was equivalent to the condition

that the hBN/BP heterostructures need to contain at least a 11x8 supercell of BP and a

12x12 supercell of hBN.
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3.1.2 NGWF selection

In order to study the hBN/BP heterostructures in ONETEP, we had to transition from

the QuantumEspresso convergence tests to the parameters utilised in the ONETEP cal-

culation.

Thus, the remaining task was to determine the minimum NGWF radius that would

ensure sufficient accuracy for our calculations. The convergence tests from the previous

subsections allow us to employ a kinetic energy cutoff of 800 eV, and as test system we

once again chose the hBN AA’-bilayer and the BP AB-bilayer, but now in the form of

a 12x12 supercell for hBN and a 11x8 supercell for BP. Once again, the simulation cell

height was set to 30.0 Å in order to avoid interaction between periodic images.

First, we needed to fix the number of NGWFs. As explained in the beginning of the

chapter, the PAW sets consider 5 valence electrons for N (2s2, 2p3), 3 valence electrons

for B (2s2, 2p1) and 5 valence electrons for P (3s2, 3p3). In general we need one NGWF

to describe the s-shell, three for the p-shell and five for the d-shell. Thus, the minimum

number of NGWFs for all three atom types is 4, since only s and p shells contribute.

However, upon testing we found that the NGWFs on P atoms require additional polari-

sation for the calculation to converge, meaning that we also include d-shell NGWFs for

P. In the end, we use 4 NGWFs for B and N, and 9 for P.

By default, the NGWFs are considered converged when the RMS value for the NGWF

gradient is smaller than 2 · 10−6. While this proved sufficient for hBN, the BP bilayer

required a stricter value (1.5 · 10−6) for sufficient accuracy. Moreover, BP also proved

more pretentious regarding the fine-grid sampling, on which the density and potentials

are mapped: while a factor of 2 between the standard-grid (defined by the kinetic-energy

cutoff) and the fine-grid was sufficient for hBN, BP required a factor of 4. With all the

parameters in place, we calculated the binding energy as a function of NGWF radius

(Table 3.5):

Once again, the hBN binding energy was well-converged even for small values of the

NGWF radius. However, in the BP case, sufficient convergence (energy change of ≤ 1.0

meV/bilayer-unit) was achieved for a minimum radius of 11.0 bohr.
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Table 3.5: Convergence test for NGWF localisation radius (r). Binding energy

(meV/bilayer-unit) for the hBN AA’-bilayer and the BP AB-bilayer.

r [a.u.] hBN ∆E [meV] BP ∆E [meV]

9.0 -124.30 -452.20

10.0 -124.98 -450.00

11.0 -125.18 -445.19

12.0 -125.34 -444.82

In conclusion, our calculations on hBN/BP heterostructures utilise NGWFs with a radius

of 11.0 bohr for both hBN and BP. The other parameters will be set according to the

results of our previous convergence tests: 800 eV kinetic energy cutoff, a fine grid scale

factor of 4.0, and a minimum supercell size of 11x8 for BP and 12x12 for hBN.

3.1.3 Heterostructure construction

We also present the construction technique of the hBN/BP heterostructures. Not only do

these materials have different periodicity patterns (hexagonal for hBN and orthorhombic

for BP), but also significantly different lattice constants, meaning that their superposition

will produce Moiré patterns. Thus, for our purposes we have adopted the work of K.

Hermann [80], who describes construction techniques for coincidence cells of such Moiré

patterns.

Since it is easier to obtain coincidence cells for materials belonging to the same crystal

family, we have created an orthorhombic unit cell for hBN, containing two primitive hBN

units; afterwards we could simply follow the instructions of K. Hermann seamlessly [80].

We had to maintain the supercell-size constraints determined in Sec. 3.1.1: each BP

monolayer needs to have at least 11x8 units, while each hBN monolayer needs to contain

at least 288 atoms (i.e. 12x12 units).

To limit the size of the simulation cells, we have adopted two strategies: first, we chose

specific values of the rotation angle between the hBN and BP layers which keep the

supercell size relatively small. Secondly, we allowed a small strain in the BP layers, i.e.

1.0% in both the armchair and zig-zag direction, a value smaller than the 2.0% required

to noticeably modify the BP electronic structure [24]. We chose to strain the monolayer
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BP (41.3 GPa and 106.4 GPa in the armchair and zig-zag directions, respectively [81])

instead of the monolayer hBN (716–977 GPa [82]) because the smaller elastic modulus of

the former would make it more prone to in-plane deformations.

The resulting hBN/BP/hBN and BP/hBN/BP heterostructures [69] are shown in Fig.

3.2.f and 3.2.g, respectively. Both of them have identical lattice constants (i.e. R1 =

39.90 Å and R2 = 46.07 Å) and a rotation angle of 40.89◦ between the hBN and BP

layers. Each BP layer contains 12x10 primitive unit cells (i.e. 480 atoms) and each

hBN layer has 672 atoms; thus, the entire hBN/BP/hBN supercell has 1824 atoms, while

the BP/hBN/BP one has 1632 atoms, meaning that it is impractical to simulate such

interfaces with traditional plane-wave DFT.

In both heterostructures, the outlying layers are identical, meaning that in the BP/hBN/BP

heterostructure the BP layers are actually in the AA stacking (Fig. 3.1.f), instead of the

slightly more stable AB stacking (Fig. 3.1.e). However, using the AA stacking reduces

the complexity of the tunnelling calculations outlined in section 3.1.4. Also, the band-

structures in the AA and AB configurations of BP are very similar (Sec. 3.1.1); since our

goal was to decouple the BP layers with a hBN spacer, our conclusions are transferable

to any initial BP stacking.

Lastly, no other work considers using hBN as a spacer between BP sheets at the time of

writing this thesis, but there are several papers addressing hBN/BP/hBN heterostruc-

tures [83, 84]. In the aforementioned sources, the authors have used a rather large (3.0%)

strain in BP, thus obtaining much smaller supercells, with a 0◦ interlayer rotation. How-

ever, too much strain can affect the electronic properties of BP [24], so we believe that

a value of 3.0% is significant. Furthermore, the relative rotation between hBN and BP

in our structures is useful for future comparisons between interfaces with and without

interlayer twist.

3.1.4 Results and discussion

We have used the computational setup described in the end of section 3.1.2 to perform a

relaxation of the atomic positions for the hBN/BP/hBN and BP/hBN/BP interfaces in



24 Chapter 3. Two-dimensional heterostructures

ONETEP. The only difference is the simulation cell height, which we have set at a higher

value of 40.0 Å, since the heterostructures are thicker than the bilayers.

The force tolerances were set to 2 · 10−3 a.u./bohr (≈ 10−2 eV/Å), an acceptable value

for such large structures. For BP/hBN/BP, the default NGWF RMS (root mean square)

gradient threshold (2.0·10−6) and an energy tolerance of 3.0·10−7 a.u./atom were sufficient

to achieve an accurately converged result; however, for the hBN/BP/hBN structure,

we had to use tighter tolerances: 1.5 · 10−6 for the NGWF RMS gradient and 2.0 ·
10−7 a.u./atom for the energy tolerance. Both calculations were highly computationally

demanding, due to the large number of atoms. We also needed the optimised structures

of the monolayer BP and bilayer BP in AA stacking; however, by simply constructing

11x8 supercells (in agreement with our convergence tests in section 3.1.1) of the primitive

units we had previously optimised in QuantumEspresso, the force tolerances were directly

below the selected threshold.

In the optimised hBN/BP/hBN, the distance between the top hBN layer and the top

P subplane of BP was d1 = 3.54 ± 0.03 Å, while the distance between the bottom hBN

layer and the bottom P subplane was d2 = 3.58 ± 0.02 Å. These values were within the

range defined by the values of Cai et al.[83] (3.46 Å) and Rivero et al. [84] (3.68 Å),

both being for hBN/BP heterostructures without interlayer rotation. The BP layer also

remained rather rigid, with the corrugation of the P atoms being < 0.05 Å throughout

the heterostructure.

However, for the BP/hBN/BP structure, the distance between the bottom subplane of

the top BP layer and the hBN sheet was d1 = 3.39± 0.12 Å, while the distance between

the top subplane of the bottom BP layer and the hBN sheet was d2 = 3.60±0.12 Å. Thus,

the corrugation of the hBN layer is much more significant, being ≈ 0.24 Å across the unit

cell. The BP once again remains rather rigid, with the interlayer distance between the

BP layers varying by only 0.10 Å.

One of the main goals of this work [69] was to observe if any significant alterations occur to

the electronic-structure of BP when it is either encapsulated by hBN or when hBN is used

as a spacer. As a measure of such effects, we have utilised the one-particle Kohn-Sham

spectral function Akj,kj(ω), the concept of which has been presented in Sec. 2.3.
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Figure 3.2: Unfolded spectral function for the BP monolayer (a), the top BP sheet in

the BP AA-stacked bilayer (c), the BP layer in the hBN/BP/hBN interface (d), and the

top BP sheet in the BP/hBN/BP interface (e). Primitive-cell Brillouin-zone sampling

path depicted in (b). Local densities of states of BP and hBN shown for hBN/BP/hBN

(d) and BP/hBN/BP (e). Energy scales are with respect to the mid-gap level. Black

arrows in (d),(e) highlight band discontinuities due to hBN-BP interactions. Schematic

representation, and top/side views of hBN/BP/hBN (f) and BP/hBN/BP (g) – P atoms

are black spheres.

Bandstructure effects

Firstly, we investigated whether hBN encapsulation degrades any of the desirable prop-

erties of monolayered BP, such as the direct band gap at Γ, or the large carrier effective

masses. This served as a link to previous theoretical studies researching monolayer BP
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which was either encapsulated by hBN [83, 84, 85] or interfaced with other semiconduct-

ing materials [86], while our large-scale approach also allowed the simulation of rotated

interfaces. Therefore, our large, relatively unstrained, and rotated hBN/BP/hBN het-

erostructure provided a realistic representation of hBN-encapsulation. We have compared

the unfolded spectral function of the independent BP monolayer (Fig. 3.2.a) with that

of the BP sheet in hBN/BP/hBN (Fig. 3.2.d). It is clear that no alterations have oc-

curred to the DFT-predicted band gap (0.84 eV), nor to the shape of the bands near

the Fermi level. The tendency of DFT to significantly underestimate experimental band

gap values [14] was of little consequence to us, since we were only interested in the

relative band-gap changes in hBN/BP interfaces. The local density of states (LDOS)

plot in Fig. 3.2.d clearly indicates that the hBN/BP/hBP interface has a type-I (strad-

dled) band-alignment, a conclusion which also applies to BP/hBN/BP (Fig. 3.2.e). For

both hBN/BP/hBN and BP/hBN/BP (Fig. 3.2.d,e), the black arrows mark band dis-

continuities; these occur due to interactions between hBN and BP at energies where the

hBN-associated DOS is non-zero, i.e. >0.5 eV below the valence band maximum at Γ.

Therefore, we find that encapsulation with hBN sheets produce no undesired effects to

the electronic structure of pristine monolayer BP. Moreover, it is experimentally known

[39] that hBN substrates are usually free of charged impurities and shield from unwanted

scattering potentials, while hBN overlayers protect from interactions with air [38, 35, 39].

Consequently, we expect hBN-encapsulation to benefit realistic BP layers, in agreement

with the experimentally observed increased carrier mobilities [87], reliable transistor op-

eration in ambient conditions [38], or improved n-type charge transport [35, 39].

Secondly, we have proved that hBN spacers (i.e. BP/hBN/BP interfaces from Fig. 3.2.g)

can be utilised to counteract the near-IR to mid-IR absorption shift that occurs in multi-

stacked BP sheets[14]. This effect is clearly observed as the transition from a 0.84 eV

DFT-predicted band gap in monolayer BP (Fig. 3.2.a) to, for instance, a 0.34 eV gap in the

AA-stacked bilayer BP (Fig. 3.2.c). To the best of our knowledge, the electronic-structure

implications of such an arrangement have not been studied in any other theoretical work.

We started by comparing the spectral function representation of the top BP sheet in

the AA-stacked BP bilayer (Fig. 3.2.c) with the spectral function of the top BP sheet in

BP/hBN/BP interface (Fig. 3.2.e).
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Consequently, in BP/hBN/BP the interaction between the BP sheets is significantly

diminished by the monolayer hBN spacer, as evidenced by the almost complete reversion

to the monolayer bandstructure of BP. The spacer limits the degeneracy breaking between

the states of two BP layers, greatly reducing the splitting of the Γ-point conduction

band (CB) valley and valence band (VB) peak in BP/hBN/BP compared to the BP

AA-bilayer: 0.14 eV for the CB (0.49 eV for the bilayer) and 0.06 eV for the VB (0.68

for the bilayer). Most importantly, the band gap of the combined system is increased

from 0.34 eV in the bilayer case to 0.82 eV in the BP/hBN/BP heterostructure. This

is explained by the presence of the hBN spacer, which increases the distance between

the BP layers, leading to a stringent reduction in the overlap between their individual

states. In essence, a BP bilayer is transformed into a loosely interacting stack of BP

single layers. We have thus demonstrated that monolayer BP and BP/hBN/BP interfaces

share a similar band gap, which could be used to greatly enhance the external quantum

efficiency of BP optoelectronics in the near-IR spectrum, as the use of thicker hBN-spaced

BP multilayers instead of BP monolayers would enable increased light absorption. We

note that our qualitative conclusions are generally applicable to any BP stacking in the

case of hBN-spaced BP multilayers.

Electric fields and TFETs

The residual coupling between the BP layers in BP/hBN/BP, evident from the remaining

non-zero splitting of the valence band maximum (VBM) and conduction band minimum

(CBM), can be effectively eliminated by using vertical electric fields. In Fig. 3.3 we have

plotted the unfolded spectral function and density of states for BP/hBN/BP (with the

difference that we have projected on each BP monolayer separately via Eq. 2.3.3), and

we have analysed the results as a function of the applied vertical electric field.

In the zero-field state (Fig. 3.3.a), the band edges are split into equally-weighted compo-

nents in both the bottom and top layers, due to the symmetry of the degeneracy-breaking

interactions. However, by applying even a modest vertical field of 0.7 V/nm (Fig. 3.3.b),

the spectral weights of the intrusions from one layer into the other decrease dramatically.

More specifically, in each split band-pair, the weight of one band decreases by a factor of
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Figure 3.3: Spectral function representations along the Γ-Y direction for the bottom (left

insets) and top (right insets) BP layers in BP/hBN/BP, under constant vertical electric

fields: 0.0 V/nm (a), 0.7 V/nm (b), and 1.4 V/nm (c); white bands have much lower

spectral weight than red bands. Center insets show the projected DOS of each BP layer.

Dashed lines highlight the split-band edges.
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≈30, while the other doubles in weight, effects which are reversed in the other BP sheet,

and which are more pronounced for larger fields (Fig. 3.3.c). In essence, the BP layers

are independent in the presence of vertical electric fields. In a realistic setup, substrate

effects or impurities would probably break the degeneracy between the BP films even

without an external field, achieving the same spectral weight redistribution effect. By

vertically displacing the BP films, the hBN spacer induces a larger potential difference

between them for a constant field. Thus, the band gap of the composite BP/hBN/BP

system is highly tunable under electric fields, showing a linear dependence with a slope of

0.29 eV nm/V; this tunability far exceeds what was previously encountered in pristine BP

[73]. The field-induced band shifts in the projected density of states of each layer (Fig. 3.3

- center insets) point toward a spatial separation of charge carriers, with electrons being

on the bottom BP layer, while the holes are on the top BP layer.

This careful control of the energy levels achieved through electric fields warranted consid-

eration of the BP/hBN/BP interface as a potential candidate for Tunnelling Field Effect

Transistor (TFET) architectures. A model arrangement is shown in Fig. 3.4.a, where the

BP/hBN/BP heterostructure is placed between a 4-layer hBN dielectrics and a graphene

gates on each side; gate voltages (VBG, VTG) controled the carrier concentrations on each

BP layer, while a bias voltage (VDS) was also maintained between the BP films. More

details can be found in Appendix B.

In conventional Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), TMDC

channels are generally preferred over BP channels, since the smaller band gap of BP leads

to smaller on/off current ratios [12, 16]. A smaller band gap implies that thermal ex-

citations can more easily inject electrons from one layer into the other in the off-state,

leading to a non-negligible off-state current and implicitly worse switching capabilities.

However, in a TFET arrangement (Fig. 3.4.a), the hBN barrier (Fig. 3.4.b) in between

the BP layers strongly inhibits interlayer thermal carrier injection, leaving only quantum

tunnelling as a current-generation mechanism. Furthermore, the TFET concept is resur-

facing in the context of 2D materials, since layered structures ensure cleaner interfaces,

without dislocations or trap states, the main causes for slower switching and increased

background current in 3D TFETs. Consequently, our proposal of a BP/hBN/BP TFET
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−1

]

-4.2 -4.0 -3.8 -3.6

EVB [eV]

-0.35
0

0.35

kx [Å
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Figure 3.4: (a) Schematic of BP/hBN/BP transistor, also showing induced charges in the

dielectrics; corresponding charges in BP have opposite sign. (b) Band diagram, with gate

work-function φM, BP electron affinity χ, and Fermi levels of the top and bottom BP

layers EF,T and EF,B; EF,B taken as energy reference. (c) Region (red) in the BP primitive-

cell Brillouin-zone that was sampled in calculating the energy dispersion relation, as well

as the coupling matrix terms. (d) The BP energy levels used in our model (highest

valence band and lowest conduction), as seen in the sampled reciprocal-space region.
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showed promise due to the superior quality of 2D interfaces, and the possibly reduced

thermally-induced currents.

We calculate the tunnelling current in the spirit of the Bardeen formalism [88]:

I =
4πe

h̄

∑

i,j

∑

kB ,kT

|Oij(kB,kT )|2 δ
[
EiB(kB)− EjT (kT )

] (
fiB − fjT

)
, (3.1.1)

where kB and kT are the in-plane momentum vectors in the bottom (B) and top (T )

layers, and EiB(kB) are eigenvalues of the bottom layer eigenvectors i. The sum over

eigenvectors only contains the highest valence band and the lowest conduction band for

each individual BP layer (Fig. 3.4.d), and they are defined only in the reciprocal-space

region with only one peak (valley) in the valence (conduction) band, i.e. the red shaded

area in Fig. 3.4.c. We enforce this constraint through our implicit choice of drain-source

and gate voltages, such that most generated electrons and holes, as well as the BP

Fermi levels, are at most 0.15 eV below the valence band maximum (VBM) and 0.30 eV

above the conduction band minimum (CBM). This boundary is only valid when |VID|-
EG (Fig. 3.4) is smaller than the minimum between the aforementioned VB depth and

CB height. Moreover, having previously shown that electric fields fully decouple the BP

layers in BP/hBN/BP (Fig. 3.4), we can utilise the bandstructure of the independent

BP monolayer. Previous works have employed simple parabolic dispersions, but here,

with access to the full E-k dispersion relation, we can instead sample it explicitly in the

relevant region of reciprocal space. The δ-function enforces tunnelling between bands

with the same energies, condition which can be relaxed through the use of a Gaussian

broadening σE instead. The fiB and fjT terms are bottom and top-layer Fermi occupation

factors corresponding to levels i and j (with energies EiB(kB) and EjT (kT )); their role is

to prevent transitions between similarly-occupied levels.

We note that both the shifts in energy and Fermi levels are implicitly dependent on the

bias and gate voltages. Their positions are determined by solving a system of non-linear

equations for each set of gate and bias voltages, as explained in detail in Appendix B.

The coupling matrix term Oij(kB,kT ) [88] from Eq. 3.1.1 represents the probability that

a carrier can tunnel through a barrier from one momentum state into another:

Oij(kB,kT ) = 〈ψ̃iB(kB) | V | ψ̃jT (kT )〉 , (3.1.2)
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where V is the scattering barrier potential of hBN and ψ̃jT (kT )/ψ̃iB(kB) are primitive-cell

eigenvectors from the top and bottom BP layers, respectively. Similar to the expression for

the spectral function representation, Eq. 3.1.2 was evaluated through an unfolding proce-

dure, detailed in Appendix B. One can relax the strict enforcement of in-plane momentum

conservation (Eq. 3.1.2) by using a Gaussian broadening of effective width σq, the inverse

of which (σ−1
q ) is essentially a real-space coherence length. According to this definition,

large coherence lengths are equivalent to small momentum-space Gaussian broadenings,

which relate to sharper and larger current peaks upon resonant tunnelling.

Previous studies on TFETs[41, 89, 90] have used simple analytical expressions for the bar-

rier V. In this work, because the full system has been explicitly simulated via LS-DFT,

we can utilise a realistic form, obtained from the local potentials (pseudo, Hartree and

exchange-correlation). This approach implicitly takes into consideration the interlayer

distances and atom corrugation patterns, both of which are accurately described by our

chosen ab-initio nonlocal van-der-Waals functional. For these reasons, our coupling ma-

trix terms Oij(kB,kT ), derived entirely from DFT-calculated quantities, can be expected

to be more realistic than purely analytical expressions.

To make our simulations as relevant as possible to future experiments, we employ rather

conservative parameters, indicative of an imperfect system. The presence of random

impurities was accounted for by setting the band-energy broadening (σE) to 20 meV,

room temperature was assumed unless specified, and the coherence length was set to a

modest value of σ−1
q =25.4 nm, well within the range of coherence lengths encountered

in other studies[41]. Surprisingly, even in these suboptimal conditions, our simulated

BP/hBN/BP TFET shows promise in each of the three studied operating regimes. To

ensure a thorough exploration, in Appendix B we have also considered a smaller coherence

length (σ−1
q =6.4 nm) and a larger energy broadening (σE = 40 meV).

In the first mode (Fig. 3.5.a), we have utilised our TFET as a Zener diode, in reverse

bias. The operating principle is revealed by observing the relative band alignments of

the BP films, as shown in the miniature band diagrams from Fig. 3.5; the energy levels

that can contribute to tunnelling in the T=0 K limit are highlighted by darker shades of

red (for the bottom BP) or blue (for the top BP). In this particular case, the current
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Figure 3.5: Operation modes for the BP/hBN/BP TFET. The top-gate voltage (VTG)

is fixed for each case, the back-gate voltage (VBG) is varied in steps of 0.50 V for (a)

and 0.25 V for (b),(c). Band diagrams show energy levels of the top (blue) and bottom

(red) BP layers – forbidden-energy gaps are white, energy levels involved in tunnelling at

0 K are dark red/blue, Fermi levels in each layer are black lines. (a) Left inset: current

dependence on bias voltage for the reverse-bias/Zener regime. Right inset: current (red)

and subthreshold swing (blue) dependence on the back-gate voltage, at fixed bias voltage

VDS=-0.6 V; dotted blue line shows the theoretical limit for SS in MOSFETs. (b) Left

inset: negative differential resistance (NDR) peak for broken-gap arrangement, in forward

bias. All solid I-V curves are at 300 K, while the dotted one is at 100 K. (c) Left inset:

NDR peak for the aligned-gap arrangement, at low gate voltages. Right inset: peak-to-

valley ratio (PVR) for different back-gate voltages, for coherence lengths σ−1
q =25.4 nm

and σ−1
q =6.4 nm; the valley current is measured at a bias voltage 0.2 V larger the NDR

peak position, while σE = 20 meV throughout.
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is generated by valence electrons from the p-doped top layer tunnelling to unoccupied

conduction states in the p-doped bottom layer. In this regime, the subthreshold swing

(SS), defined as the change in gate voltage required to increase the current tenfold, reflects

the on/off switching capabilities. In MOSFETs, the thermal carrier injection mechanism

limits SS to a minimum value of 60 mV/dec [42]. In contrast, the TFET architecture is

not constrained by a lower bound in switching speed, as predicted for TMDC TFETs

[89]. In fact, by calculating SS for a range of back gate voltages (right inset of Fig. 3.5.a),

we have observed a lower SS than the theoretical limit for MOSFETs, over a current

range spanning six orders of magnitude. This essentially implies that a BP/hBN/BP

TFET could switch between the on and off state faster than any MOSFET in existence.

This shows outstanding potential for high speed electronics, even under our conservative

assumptions regarding impurities in BP and lack of in-plane momentum conservation

during tunnelling. In our model, the SS is lower than 60 mV/dec only for currents as

large as 10−5 A/µm2, when the transistor is not fully on.

The effect of realistic imperfections on this mode (Fig. B.1, Appendix B) could be shown

by comparing different combinations of coherence lengths (σ−1
q =25.4 nm and 6.4 nm)

and energy broadenings (σE=20 meV and 40 meV). We have found that the coherence

length has no effect on the general shape of the I-V characteristics or the SS, except for

a reduction of the current by a factor of 10. However, a change from σE=20 meV to

σE=40 meV has more significant effects: while the current values are largely maintained,

the I-V curves in Fig. B.1 (Appendix B) are much broader, with fewer defined features

and peaks. More importantly, the SS is much larger, with its minimum value being

144.4 mV/dec for σE = 40 meV, instead of 41.7 mV/dec as for σE = 20 meV. Thus, the

switching speed is highly correlated to the impurity concentration in BP (linked to σE),

but rather independent of the BP/hBN interface quality (linked to σ−1
q ).

The main characteristic of the second operational mode (Fig. 3.5.b), was the presence of

a negative differential resistance (NDR) peak [40]. Such NDR peaks have applications

in oscillatory circuits, memory devices, and even multi-valued logic [91]. This mode was

revealed by switching to forward bias in the previously discussed regime (Fig. 3.5.a). As

before, the band diagrams (Fig. 3.5.b - right insets) indicate a broken gap arrangement,
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but now both BP films require degenerate doping for the NDR peak to occur, with the

bottom (top) layer being of n (p) type. The tunnelling carriers are clearly the conduction

electrons in the bottom layer (dark red shade) and holes in the top layer (dark blue

shade). Once the bias is increased, the energy levels of the top layer shift down, until

the top-BP Fermi level aligns with the bottom-BP conduction band minimum, leading

to a maximum current (point 2 in Fig. 3.5.b). For even higher bias, the forbidden energy

gaps truncate the number of tunnelling-capable states, thus decreasing in current (point

3 in Fig. 3.5.b).

Without the hBN interlayer barrier, carriers from the n-side conduction band would

eventually be thermally injected into the p-side empty states. This effect would lead to

a valley in the current, followed by an increase; this is a behaviour generally observed

in Esaki diodes, such as a recent realisation of a 2D BP/SnSe2 diode[92]. Such thermal

excitations lead to a lower peak-to-valley ratio in devices exhibiting NDR. However, the

hBN barrier shifts this thermally-driven current increase to higher forward-bias voltages,

thus extending the range over which the tunnelling current can decrease, and increasing

the peak-to-valley ratio. Note that if the temperature is lowered to 100 K, the current

peak is more pronounced, due to the sharpening of the Fermi factors in Eq. 3.1.1. Such

a behaviour is in perfect agreement with the experimentally-observed temperature de-

pendence of NDR peaks in MoS2/WSe2 TFETs [93]. We note that this operation mode

exhibits the same dependencies on the coherence length and energy broadening (see Fig.

B.2) as described in the previous TFET regime. On the other hand, this mode suf-

fers from low energy efficiency, due to the requirement of large gate voltages. These

are needed to enable the degenerate doping of the BP layers and ensure a broken-gap

arrangement.

On the other hand, the third operational mode (Fig. 3.5.c), also showing NDR behaviour,

has proven to be highly energy efficient, due to the lower required gate voltages. Since the

band gaps of the BP films needed to be aligned in this case, there was no need for large

bias or gate voltages. While the currents are an order of magnitude lower than in the

previous regime, the position of the NDR peak is significantly more tunable under changes

in gate voltage, a useful prospect for memory devices. The band diagrams of Fig. 3.5.c
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show the two-fold current generation, between the bottom conduction electrons and the

top unoccupied conduction states, and from the bottom valence electrons to the top

holes. By perfectly aligning the bands through an increase in bias (point 2 in Fig. 3.5.c),

a maximum number of tunnelling carriers is obtained, leading to a maximum current. For

even larger bias (point 3 in Fig. 3.5.c) the number of carriers is maintained, but the current

drops. This is due to the momentum-mismatch caused by the band misalignment, which

decreases the coupling matrix terms |Oij(kB,kT )| between the top (kT ) and bottom (kB)

momentum vectors. Clearly, the change in current due to momentum-mismatch would

be most significant in TFETs with same-material films, such as our BP/hBN/BP case or

previously studied TMDC/hBN/TMDC architectures [41], and is highly dependent on

the coherence length σ−1
q (see Appendix B). Since we did not compute thermally-induced

currents, we could not precisely pinpoint the value and position of the valley current in

the I-V curves from Fig. 3.5.c. However, in the spirit of Campbell et al.[41] we have

defined the valley current at a fixed offset of 0.2 V from the NDR peak; using this, we

could obtain a measure of the peak-to-valley ratio (PVR) dependence on the back-gate

voltage.

As shown in the right inset of Fig. 3.5.c, there are two distinct means for large PVR to

occur: either at low bias (VDS), for back-gate voltages (VBG) with the same sign as the

fixed top-gate voltage (VTG=-1.00 V), or at large bias for back-gate voltages of opposite

sign as the top-gate voltage. In the former case, one has the advantage of energy efficiency,

due to low required bias; however, the generated peak currents are also low. In the latter

case, the peak currents, as well as the PVRs increase dramatically, but at the cost of

larger gate bias voltages. Therefore, one has a choice between low-power/low-current

and high-power/large-PVR operation, depending on the technological application.

An important observation is that our obtained PVRs are of the same order of magnitude

(≈ 2 · 108) as those predicted by Campbell et al. [41] (≈ 109) for TMDC/hBN/TMDC

TFETs. These results imply that BP can be just as meaningful as TMDCs in TFET

applications, as opposed to the case of MOSFETs where BP layers exhibit on/off cur-

rent ratios [16] three orders of magnitude smaller than TMDC films [94]. Furthermore,

BP multilayers have significantly smaller band gaps than TMDCs, requiring only small
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voltage changes to switch between the different operational modes presented in our work

(Fig. 3.5.a,b,c).

As a last note, a change in coherence length produces profound changes in this operation

mode, as shown in Fig. B.3 from Appendix B. Firstly, if the coherence length is reduced

fourfold (from 25.4 nm to 6.4 nm), the current decreases by a factor of 500, while the NDR

peak current becomes more sensitive to the back-gate voltage. These effects are explained

by the enhanced momentum-coupling between alike bands (as in Fig. 3.5.c), as opposed

to bands of different character (as in Fig. 3.5.a,b). The peak-to-valley ratios (PVRs) are

also highly dependent on the coherence length. For instance, upon a fourfold reduction

in coherence length, the maximum PVR is reduced by three orders of magnitude, from

1.92 · 108 to 1.59 · 105. If subsequently the energy broadening is doubled from 20 meV

to 40 meV, the maximum PVR is further reduced by another three orders of magnitude,

to 1.22 · 102. Therefore, both the current values and the peak-to-valley ratios from the

aligned-band NDR regime are highly sensitive to the BP/hBN interface quality and the

intrinsic purity of monolayer BP.
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3.2 TMDC heterostructures

In this section we discuss the simulations of transition metal dichalcogenide (TMDC)

heterostructures, which have been performed in conjunction with our experimental col-

laborators at the University of Warwick and University of Washington. Most of the

results presented here have been published in Ref. [44]. The theoretical results are

entirely my contribution, while all experimental data and results belong to my collabora-

tors. In the end, my calculations matched experimental angular-resolved photoemission

micro-spectroscopy (ARPES) observations, while also identifying the coexistence of com-

mensurate and incommensurate phases in such interfaces at small twist-angles.

3.2.1 Methodology

The methodology is very similar to what I have previously described in hBN/BP inter-

faces. Therefore, for individual-layers and aligned-heterostructures, I have once again

employed the Quantum Espresso [71] plane-wave DFT package. The monolayer struc-

tures were optimised using the ultrasoft potentials of Garrity et al. [70] until forces were

smaller than 5·10−5 a.u./bohr (≈ 2.5·10−3 eV/Å) for monolayers, and 2.5·10−4 a.u./bohr

(10−2 eV/Å) for bilayers and bulk, while stresses were constrained to be smaller than 0.5

kbar. Odd-numbered TMDC stacks are well known for their strong spin-orbit coupling

[95], which induces a large split between energy-bands at the K high-symmetry point

(the corner of the hexagonal Brillouin Zone). Subsequently, the bandstructures were cal-

culated using the high-accuracy fully-relativistic PAW potentials of Dal Corso [96], such

that spin-orbit interaction was included. As before, we have employed the optB88-vdW

[97] functional.

Convergence tests for binding energy as a function of the k-point in-plane sampling (Table

3.6) have revealed the optimum grid to be 9×9 in all TMDCs, with four out-of-plane k-

points for the bulk. Moreover, I have utilised a 800 eV plane-wave energy cutoff with a

8000 eV charge density cutoff. The simulation cell height was 30.0 Å, to avoid interaction

between periodic images.

As for pinpointing the geometry, I have optimised the lattice parameters of our MoSe2,
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Table 3.6: Convergence of binding energy (in meV/bilayer-unit) of bilayer MoSe2, WSe2,

and WS2 with respect to the in-plane k-point sampling.

in-plane grid MoSe2 WSe2 WS2

6×6 -232.33 -232.54 -222.30

9×9 -231.33 -231.48 -221.45

12×12 -231.36 -231.49 -221.45

15×15 -231.36 -231.49 -221.45

Figure 3.6: Structure of the TMDC layers, side-view (left inset) and top-view (right

inset), with lattice vector a and interlayer distance d.

WS2, and WSe2 layers, as shown in Table 3.7. TMDC monolayers consists of stacked

chalcogen (X) - transition metal (M) - chalcogen (X) films with hexagonal symmetry

(space group P63/mmc), as shown in Fig. 3.6. The primitive unit cell has anti-aligned

stoichiometric units (MX2) in the case of the bulk and bilayer, and a single stoichiometric

unit in the case of the monolayer. The distance between the M-planes (d in Fig. 3.6) is

generally regarded as the interlayer separation.

Table 3.7: Lattice constants of the MoSe2, WS2, and WSe2 monolayers, bilayers and

bulk. The bilayers and bulk are in the standard anti-aligned stacking, and d is the

distance between the transition metal planes.

MoSe2 WS2 WSe2

monolayer a [Å] 3.323 3.193 3.324

bilayer a [Å] 3.326 3.194 3.328

d [Å] 6.668 6.265 6.555

bulk a [Å] 3.329 3.196 3.329

d [Å] 6.593 6.272 6.622

Utilising the well-known experimental lattice constants as reference, there is a good agree-

ment with my obtained values: a 1.2% in-plane and 2.0% out-of plane relative difference



40 Chapter 3. Two-dimensional heterostructures

for MoSe2 (aexp = 3.288 Å, dexp = 6.465 Å)[98], 0.5% in-plane and 0.4% out-of plane dif-

ference for WS2 (aexp = 3.180 Å, dexp = 6.250 Å)[99], and 1.2% in-plane and 2.1% out-of

plane difference for WSe2 (aexp = 3.290 Å, dexp = 6.485 Å)[99]. The agreement between

the interlayer distances is, as in the case of hBN/BP interfaces (Section 3.1) a testament

to the good van-der-Waals description provided by the non-local correlation component of

optB88-vdW. Clearly, WS2/WSe2 is lattice-mismatched, while MoSe2/WSe2 has similar

lattice parameters, implying that the latter can have a strongly-coupled commensurate

phase at 0◦ rotation.

Similarly to hBN/BP heterostructures, misaligned TMDC interfaces form coincidence

cells that are impractical to simulate using plane-wave DFT. Thus, I have once again

employed the ONETEP [1] linear-scaling DFT approach. Equivalently to the smaller

Quantum Espresso calculations, I have used the same functional (optB88-vdW), kinetic-

energy cutoff (800 eV), and PAW potentials [70]. The utilised projector-augmented wave

(PAW) datasets of Garrity et al. [70] were non-relativistic, but I have included spin-

orbit interaction in a perturbative manner. The advantage of PAW is that one requires

a coarser charge-density grid to match the accuracy of ultra-soft pseudopotentials [70].

The Mo and W atoms both contained 14 valence electrons (4s2,4p26,4d5,5s1 for Mo,

5s2,5p6,5d4,6s2 for W), while S and Se contained only 6 valence electrons (3s2,3p4 for S,

4s2,4p4 for Se). This resulted in our use of 13 NGWFs for W and Mo (10 for the valence

electrons, 3 supporting additional polarisation) and 9 for S and Se (4 for the valence

electrons, 5 for additional variational freedom). All NGWFs were chosen to have a large

cut-off radius (13.0 bohr), and the convergence criterion was that the root mean square

of the NGWF gradient should be < 2 · 10−6. For each NGWF conjugate-gradient step, 8

self-consistent density-kernel iterations were performed, without truncation of the density

kernel. The geometry optimisation of the heterostructures was performed by relaxing the

internal atomic coordinates until the forces were below 0.1 eV/ Å, a reasonable value

considering that our systems contained ≈ 800 atoms.

In order to slightly reduce the coincidence cells of the overlayed WS2/WSe2 and MoSe2/WSe2

rotated monolayers, I have allowed a 1% strain in WS2 and MoSe2, a value which was

shown not to affect TMDC electronic properties [100]. As previously discussed (Section
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3.1), the ONETEP supercell size is equivalent to the k-point sampling. Thus, the con-

vergence test shown in Table 3.6 acts as a requirement for each layer in our interfaces to

contain at least 81 unit cells (243 atoms).

3.2.2 WS2/WSe2 and MoSe2/WSe2

I started by observing the band-structure changes upon stacking different TMDC layers,

in particular the WS2/WSe2 and MoSe2/WSe2 interfaces, the structures of which are

shown in Figs. 3.7.a,d. The supercell was constructed such that the rotation angle is

non-zero but small, matching the experimentally induced twist, while trying to also limit

the structure size. Taking into account the previously discussed constraints, the supercells

have 762 (363 for WSe2, 399 for WS2) and 873 atoms (432 for WSe2, 441 for MoSe2), with

the layers being rotated by 4.3◦ (WS2/WSe2) and 8.2◦ (MoSe2/WSe2), respectively..

There is no need to pricisely match the experimental angles, as in a previous publication

I have shown that the interlayer coupling is almost invariant to rotation in such lattice-

mismatched heterostructures [36]. In order to observe the bandstructure effects of each

layer in the presence of the other, I have calculated the unfolded spectral function (as

described in Section 2.3), which was projected selectively on each of the component layers,

as shown in Fig. 3.7.b,c,e,f. I have assumed that the independent and stacked versions of

each monolayer have the same energy at their respective valence band maximum (VBM)

at K - this shall also be proven later in the section. My reasoning is that bands at K

bands are known to be rather independent of interlayer stacking, since they are generated

by intra-plane interactions between the transition metal d-orbitals and chalcogen px and

py functions.

Firstly, Figs. 3.7.c,f reveal that all independent monolayers have a direct band gap at

their respective K-points, as is already well known [44]. The energy splitting at K induced

by spin-orbit coupling is replicated in my calculations, with the values (0.18 eV and 0.47

eV for monolayered MoSe2 and WSe2) being in agreement with experiment [44] (0.24

eV and 0.49 eV, respectively). This shows that the perturbative spin-orbit coupling

implementation in ONETEP is well behaved.
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Figure 3.7: Structure of the misaligned WSe2/WS2 (a) and MoSe2/WSe2 interfaces (d).

Unfolded spectral function projected on the component WSe2 (b-left) and WS2 (b-right)

monolayers, as well as on the independent WSe2 (c-left) and WS2 (c-right) monolayers.

Similarly for the WSe2 (e-left) and MoSe2 (e-right) monolayers and their stand-alone

counterparts (f). The Brillouin zones are rotated by 4.3◦ and 8.2◦, respectively. The

energy reference is the energy of the valence band maximum (VBM) at K in the het-

erostructure.
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By comparing Fig. 3.7.b with c, and Fig. 3.7.e with f, it is clear that when independent

films are stacked, there are low spectral-weight bands (the white ones) protruding from

one monolayer into the other. Moreover, Figs. 3.7.b and Figs. 3.7.c, reveal that stacking

interactions raise the valence band maximum (VBM) at Γ of WSe2 by 200 meV, and

lower the VBM of WS2 by 20 meV. This trend is in agreement with the experimental

findings of our collaborators, while the values were found to be 150 meV and 50 meV,

respectively. Similarly, Figs. 3.7.e,f show that the VBM at Γ of WSe2 is raised by 202

meV, while the MoSe2 VBM is lowered by 67 meV, close to the experimental 250 meV

and 90 meV, respectively [44].

In both interfaces, the global valence band maximum (VBM) is at the K of WSe2,

while the global conduction band minimuma (CBM) are at the K of WS2 and the K

of MoSe2, respectively - this implies that both WS2/WSe2 and MoSe2/WSe2 are type II

heterostructures. Since the Γ-K directions are rotated, the positions of the VBM and

CBM form an indirect gap; however, when compared to homo-structural TMDC multi-

layers, which generally have a Γ - Λ (halfway point between Γ and K) indirect band-gap,

the momentum-space separation between the CBM and VBM is much smaller in the

heterostructured interface. Note that the valence band offset at K between WSe2 and

WS2 is 0.55 eV, in good agreement with the 0.62 eV obtained by Kang et al. (using

the hybrid HSE functional [101]). However, the valence band offset between WSe2 and

MoSe2 is 0.29 eV, significantly lower than the 0.43 eV predicted by Kang et al. [101],

but in perfect agreement with the experimentally observed 0.30 eV [44]. Thus, interlayer

interactions induced by stacking are crucial for the correct modelling of band offsets, with

the independent-layer approximation proving to be insufficient.

3.2.3 Commensurate and incommensurate domains

Experimentally, in the MoSe2/WSe2 interface with a low twist angle (≈ 1◦) one observes

an unusual behaviour: the presence of three highest valence bands close in energy at

Γ (Fig. 3.8), instead of the expected two spin-degenerate bands for the bilayer mono-

MoSe2/mono-WSe2 [44], and four bands instead of the three spin-degenerate levels for

the trilayer bi-MoSe2/mono-WSe2. My theory is that commensurate/incommensurate
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transitions occur in the micro-flake, as previously observed for graphene/hBN [102]. Since

the flake orientation is very close to 0◦, there would be regions where MoSe2 and WSe2,

having almost identical lattice parameters, are perfectly commensurate and aligned, and

regions where they are misaligned, and thus significantly less coupled.

Figure 3.8: Courtesy of Wilson et al. [44]: ARPES slice along Γ-K for a nearly-aligned

(A) and misaligned (C) MoSe2/WSe2 interface. Energy distribution curve at Γ (B). The

DFT predicted band positions at Γ of the purely commensurate heterobilayer (two bands,

marked in blue), and interacting monolayers (two bands, marked in red for WSe2 and

green for MoSe2) are also shown in (B), along with the band positions at Γ for the isolated

monolayers (two bands, marked in red for WSe2 and green for MoSe2).

As I have previously shown [36], if one has a bilayer structure formed out of materials

with the same lattice constant, there is significant coherence between the layers only

in the perfectly aligned or anti-aligned cases (including any lateral translations between

the layers). If the layers are rotated even slightly from perfect alignment, they become

decoupled to a large extent, but the average electronic densities still interact. The latter

case would imply significantly less repelling (i.e. smaller energy difference) between the

highest valence bands at Γ, as compared to the perfectly commensurate case.

The commensurate phase can easily be simulated in Quantum Espresso, since the mono-

layer MoSe2 (a = 3.323 Å), bilayer MoSe2 (a = 3.326 Å) and WSe2 (a = 3.324 Å) have

almost identical same in-plane lattice constants (Table 3.7). Thus, the bandstructures

of the anti-aligned mono-MoSe2/mono-WSe2 and bi-MoSe2/mono-WSe2 interfaces are

shown in Fig. 3.9.

Clearly, in the commensurate case one observes the intuitive number of spin-degenerate

highest valence bands at Γ: two for mono-MoSe2/mono-WSe2 and three for bi-MoSe2/mono-
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Figure 3.9: Bandstructure of the perfectly anti-aligned mono-MoSe2/mono-WSe2 (top-

left) and bi-MoSe2/mono-WSe2 (top-right). Charge density isosurfaces (bottom) at the

four highest valence bands at for K point in mono-MoSe2/mono-WSe2. The crossing

occurs at the encircled red point, but it is not visible in the bandstructure due to the

plotting method.

WSe2. In both cases the VBM is at K; however, while the CBM for mono-MoSe2/mono-

WSe2 is at K, for bi-MoSe2/mono-WSe2 it is at Λ (65 meV lower than the CBM at

K), making the latter an indirect band-gap heterostructure. As a last note on the

commensurate-case bandstructures, one observes that at the K point of mono-MoSe2/mono-

WSe2, the bands corresponding to each layer are crossed, as shown by the isosurfaces in

Fig. 3.9.c. The aforementioned isosurfaces clearly show that the spin-split highest VBs

at K are generated by the hybridisation of the W or Mo d-orbitals and the S or Se px and

py functions, not by interactions between the layers. We observe only a slight increase in
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the splitting of each spin-polarised band corresponding to each layer: 205 meV for MoSe2

(compared to 188 meV in the independent layer) and 494 meV in WSe2 (compared to 479

meV in the independent layer). These values illustrate the reduced effect that stacking

has on the spin-orbit induced splitting at K - this is a step towards proving the assumption

that the VBM at K of monolayers can be used as reference even in stacked forms.

For the misaligned case, I start with a simple but instructive approximation. I have

shown in the WS2/WSe2 interface (Fig. 3.7) and other situations [36] that in spite of the

reduced interlayer coupling in incommensurate heterostructures, hybridisation between

bands of the stacked monolayers is always present near Γ. However, one could naively

approximate the bandstructure of misaligned stacks as a simple superposition of the

independent layers. This can easily be simulated in Quantum Espresso by using the com-

mensurate heterostructure cases, and displacing the component layers further apart until

the bandstructure stops changing. The results of this procedure are shown in Fig. 3.10.

In the end, we can apply the necessary corrections to the independent-layer band edge

positions, as obtained from the ONETEP calculations on the misaligned MoSe2/WSe2

interface (Fig. 3.7).

As previously discussed, the energy reference for the spectral function unfolding calcu-

lations (Fig. 3.7) was taken to be the VBM at K. Indeed, upon the transition from

the maximally coupled (“MC”) state (∆d = 0 Å in Fig. 3.10) to the decoupled (“D”)

state (∆d >= 2.0 Å), the reference value varies by less than 40 meV. I also consider

the ONETEP corrections applied to the fully decoupled state, which will be denoted as

“D+”. As a reminder, these corrections specify that in mono-MoSe2/mono-WSe2, the

EΓ
HOMO of WSe2 is up-shifted by 202 meV in misaligned stacks, while EΓ

HOMO of MoSe2

(i.e. EΓ
HOMO-1 of the heterostructure) is down-shifted by 67 meV.

Starting with mono-MoSe2/mono-WSe2 (Fig. 3.10-top), it is clear that in both the “D”

and “D+” cases, the energy differences between VBMs of the monolayers at Γ are signif-

icantly smaller than the ones at the “MC” state. The second-highest VB at Γ (EΓ
HOMO-1)

remains at roughly the same position in the “MC”, “D” and “D+” cases, while the high-

est VB at Γ (EΓ
HOMO) is by 340 meV lower in “D” or 138 meV lower in “D+” than it was

at the optimum interlayer distance. Thus, considering a superposition between the “MC”
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Figure 3.10: Changes in the highest VB energy at Γ for the perfectly anti-aligned mono-

MoSe2/mono-WSe2 bilayer (left) and bi-MoSe2/mono-WSe2 trilayer (right), as the layers

are pulled apart. The energy reference is the highest VB (HOMO) at K for each case, the

absolute energy of which changes by < 40 meV under displacement. Each plot contains an

inset showing the valence bands and energy levels of interest for the commensurate mono-

MoSe2/mono-WSe2 (left) and bi-MoSe2/mono-WSe2 (right). The dashed lines (denoted

by “misaligned” in the top plot represent the decoupled levels after being corrected by

the ONETEP calculations on rotated mono-MoSe2/mono-WSe2.

and “D” or “D+” cases, one would indeed observe 3 bands in the ARPES measurements:

the “D”/“D+”-state EΓ
HOMO, the MC-state “EΓ

HOMO”, and lastly, a nearly-degenerate

combination of EΓ
HOMO-1 from the “MC” and “D”/“D+” situations. Consequently, for

mono-MoSe2/mono-WSe2, my prediction of a commensurate/incommensurate superpo-

sition is in perfect agreement with the experimental ARPES results.

In the case of the bi-MoSe2/mono-WSe2 (Fig. 3.10-bottom), however, the situation is

slightly different. EΓ
HOMO-2 maintains a relatively constant position between the “MC”

and “D” cases. On the other hand, as the layers interact less, EΓ
HOMO and EΓ

HOMO-1

both decrease by 140 meV while maintaining a constant energy difference of 210 meV

between them. Therefore, at first glance, by superimposing the HOMO, HOMO-1, and

HOMO-2 from the “MC” and “D” cases, one would obtain five spin-degenerate bands,

instead of the experimentally observed four: EΓ
HOMO of “MC”, EΓ

HOMO of “D”, EΓ
HOMO-1 of

“MC”, EΓ
HOMO-1 of “D”, and the nearly-degenerate bands of the “MC”-state and “D”-state
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EΓ
HOMO-2. However, the “D”-state EΓ

HOMO and “MC”-state EΓ
HOMO-1 are only separated

by 60 meV. This small energy difference, accompanied by potential corrections from the

realistic ONETEP calculations on this trilayer, might result in the near-degeneracy of the

“D” EΓ
HOMO and “MC” EΓ

HOMO-1. This would explain the experimentally-observed four

bands instead of the intuitive five, further strengthening our prediction of a commensu-

rate/incommensurate transition occuring in MoSe2/WSe2 heterostructures. No ONETEP

calculations were performed for the misaligned trilayer, due to their large cost on this

large structure given the employed methodology. However, the ONETEP corrections did

not change the qualitative picture for mono-MoSe2/mono-WSe2, so one would expect

that the “MC” and “D” states for bi-MoSe2/mono-WSe2 are sufficient to describe the

underlying physical principle.

In conclusion, I have shown that such commensurate and incommensurate domains can

occur in MoSe2/WSe2 heterostructures with low but non-zero twist angles. This enables

access to different electronic-structures within the the same flake, surely an interesting

concept for integrated circuit applications.
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Chapter 4

Linear-response phonons

4.1 Introduction

As discussed in the introduction, one of the long term goals of the ONETEP community

is to implement linear-scaling Raman spectroscopy capabilities. As a brief overview,

in the case of nonresonant Raman scattering, the Stokes process involves an incoming

photon (frequency ωI , polarisation eI) being scattered to an outgoing photon (frequency

ωO = ωI − ωP , polarisation eO) by creating a phonon of frequency ωP . Thus, in order to

obtain an actual Raman spectrum, one needs to know the Raman tensor αP corresponding

to the previously mentioned induced phonon mode with frequency ωP (details in Ref.

[103]):

αijP ∝
∑

k′,β

d3E

dτk′β dεi dεj
εiεju

k′β
P , (4.1.1)

where E is the total energy of the system (including any external potentials), d
dτk′β

is

a perturbation of the atomic position of atom k′ in the direction β, d
dεi

and d
dεj

are

perturbations due to external electric fields, and uk
′β
P is the eigenvector of the phonon

created by perturbing atom k′ along β.

It is thus clear that for the Raman tensor we first need the third-order change in energy

(with respect to the perturbation of two electric fields and one atomic displacement), and

also the phonon eigenvectors. Since our goal is to make the computation of Eq. 4.1.1

as fast as possible, we need to implement a fast and efficient method for computing the

phonon eigenvectors and the third-order energy terms. In this thesis, as a starting step

to the implementation of Raman spectroscopy, we concentrate on obtaining the phonon

frequencies and eigenvectors in the LS-DFT framework of the ONETEP code [1].

While ONETEP already has a finite-differencing (FD) phonon scheme, this method is not

suitable for use in large systems, such as our 2D heterostructures. Therefore, we chose
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to compute phonon frequencies in the density-functional perturbation theory (DFPT /

linear-response) framework. At zero phonon wavevectors, a linear-response calculation

has the same runtime as a finite-differencing scheme, due to the identical number of

perturbations. However, density functional perturbation theory is significantly faster at

non-zero wavevectors, since one does not require supercells to obtain dynamical matrices

at arbitrary phonon wavevectors. We will develop this linear-response scheme for the

projector augmented wave (PAW) formalism, in insulators, in the LS-DFT framework of

ONETEP.

The aforementioned phonon mode frequencies (ωP ) and eigenvectors (uk
′β
P in Eq. 4.1.1)

can be obtained from the generalised eigenvalue problem:

∑

k′,β

Dkα,k′β(q)uk
′β
P (q) = ω2

Pu
kα
P (q) , (4.1.2)

where q is the phonon wave-vector, k and k′ are atomic indices and α, β are the perturba-

tion directions, while Dkα,k′β(q) are terms of the dynamical matrix, expressed in general

as:

Dkα,k′β(q) =
1√

MkMk′

1

Ncells

∑

R,R′

e−iq·RΦkαR,k′βR′ e
iq·R′ , (4.1.3)

where R,R′ are multiples of the simulation cell lattice vectors, Ncells is the number of

considered cells, and ΦkαR,k′βR′ are force-constant matrix elements. The latter term is the

second-order energy changes due to atomic displacements performed in cells with origins

at R and R′, respectively:

ΦkαR,k′βR′ =
d2E

dτkαR dτk′βR′
(4.1.4)

Therefore, in the following we will derive the force constant matrix terms in ONETEP,

within the PAW framework, for insulators. Also, since ONETEP is utilised for simulating

large systems, the considered ground-state wavefunctions have a 0 wave-vector (Γ-point),

unless specified otherwise.

Lastly, we note that our implementation differs from DFPT implementations in other

plane-wave codes (VASP [104], QuantumEspresso [105, 106, 107] or Abinit [108]), since

we avoid the use of eigenstates in order to preserve linear scaling. As the reader will see,

this approach requires novel optimisation methods and a reformulation of the theoretical
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framework. Firstly, in subsections 4.2.1 – 4.2.3 we build upon the Abinit [108] imple-

mentation with the addition that we also include q-wavevector dependencies. The rest

of the chapter is exclusively our novel work, in which we adapt the DFPT formalism to

the ONETEP framework of density kernels and adaptive local orbitals.

4.2 Force-constant matrix

4.2.1 Preliminaries

To determine the second order energy, one requires the first order wavefunction ([108]),

as variation-perturbation theory dictates that the n-th order wavefunction is sufficient

for the knowledge of the energy of order 2n and 2n+ 1. Therefore, for q = 0 we expand

the pseudo (PS) wavefunction as:

|ψ̃i[λ, ε]〉 = |ψ̃i〉+
∑

R

λR |ψ̃i
1λR〉+

∑

R′

εR′ |ψ̃i
1εR′ 〉 , (4.2.1)

where λR, εR′ are each perturbations (of one or multiple atoms, each in a certain direction)

performed only in cell-images displaced by R and R′. The perturbation-dependencies

of the wavefunctions are indicated by “[ ]”, and the index i takes values in the range

[0 : Ne/2], due to spin-degeneracy. A perturbation of the system (for instance εR′) is

equivalent to applying ûε · d
dRε

in a cell with the origin at R′, where ûε is the perturbation

direction unit vector, and Rε is the position of the moved atom within cell R′. This

means that ε and λ are combined indices, denoting both the atom and the direction of the

perturbation. While d
dλR

and d
dεR′

are real displacements, the q-vector counterparts

d

dλ∗q
=
∑

R

e−iq·R
d

dλR

and
d

dεq
=
∑

R′

eiq·R
′ d

dεR′
(4.2.2)

are complex quantities obeying the equivalence λ∗q = λ−q and ε∗q = ε−q.

One can easily extend the wavefunction expansion from Eq. 4.2.1 to non-zero q-points:

|ψ̃i[λq, εq]〉 = |ψ̃i〉+ λq |ψ̃1λq
i 〉+ λ−q |ψ̃1λ−q

i 〉+ εq |ψ̃1εq
i 〉+ ε−q |ψ̃1ε−q

i 〉

〈ψ̃i[λq, εq]| = 〈ψ̃i|+ λ∗q 〈ψ̃1λq
i |+ λ∗−q 〈ψ̃

1λ−q

i |+ ε∗q 〈ψ̃1εq
i |+ ε∗−q 〈ψ̃

1ε−q

i | (4.2.3)

= 〈ψ̃i|+ λ−q 〈ψ̃1λq
i |+ λq 〈ψ̃1λ−q

i |+ ε−q 〈ψ̃1εq
i |+ εq 〈ψ̃1ε−q

i |
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Therefore, the first-order wavefunctions themselves are defined as:

|ψ1εq
i 〉 =

d

dεq
|ψ̃i〉 =

1√
Ncells

∑

R′

eiq·R
′ |ψ̃1εR′

i 〉 and

〈ψ1εq
i | = |ψ

1εq
i 〉

†
=

d

dε−q

〈ψ̃i| =
1√
Ncells

∑

R′

e−iq·R
′ 〈ψ̃1εR′

i | (4.2.4)

Note that the conjugate transpose of 〈r|ψ1εq
i 〉 is indeed denoted as 〈ψ1εq

i |r〉, while

〈r|ψ1εq
i 〉 = 〈r|ψ1ε−q

i 〉† = 〈ψ1ε−q

i |r〉 (4.2.5)

due to the fact that the ground-state wavefunction |ψ̃i〉 is at Γ, meaning that q is the

only wave-vector present.

In general, it is crucial in the context of density-functional perturbation theory to work

with phase-factorised quantities, which have the same periodicity as the underlying lat-

tice. To obtain this, we define phase-factorised position-dependent quantities (with a bar

overhead) as

〈r|ψ1εq
i 〉 = e−iq·r 〈r|ψ1εq

i 〉 and 〈ψ1εq
i |r〉 = eiq·r 〈ψ1εq

i |r〉 (4.2.6)

One could repeat the perturbative expansion from Eq. 4.2.1 in the densities, starting with

the pseudo-density:

ρ̃[λq, εq](r) =

Ne/2∑

i

fi

[
〈ψ̃i|+ λ∗q 〈ψ̃i

1λq |+ λ∗−q 〈ψ̃i
1λ−q |+ ε∗q 〈ψ̃i

1εq |+ ε∗−q 〈ψ̃i
1ε−q |

]
|r〉

〈r|
[
|ψ̃i〉+ λq |ψ̃i

1λq〉+ λ−q |ψ̃i
1λ−q〉+ εq |ψ̃i

1εq〉+ ε−q |ψ̃i
1ε−q〉

]
(4.2.7)

ρ̃1λ−q(r) =
dρ̃

dλ−q

(r) =

Ne/2∑

i

fi

[
〈ψ̃1λq

i |r〉 〈r|ψ̃i〉+ 〈ψ̃i|r〉 〈r|ψ̃1λ−q

i 〉
]

=

Ne/2∑

i

2fi 〈r|ψ̃i〉 〈ψ̃1λq
i |r〉

where fi = 2 is the occupation number for the non-spin polarised case and for the last

equality we have used Eq. 4.2.5 and the fact that the ground-state wavefunction at Γ

ψ̃i(r) is real.

As with the first-order wavefunction (Eq. 4.2.6), we can also define the phase-factorised

pseudo-density ρ̃1λ−q(r) in the same manner (but with q→ −q):

ρ̃1λ−q(r) = eiq·rρ̃1λ−q(r) =

Ne/2∑

i

2fi 〈r|ψ̃i〉 〈ψ̃1λq
i |r〉 (4.2.8)
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This will make integration between such local position-dependent first-order quantities

significantly easier, especially since it is obvious that:

∫
f 1λ−q(r)g1εq(r) dr =

∫
f 1λ−q(r)e−iq·r g1εq(r)eiq·r dr =

∫
f 1λ−q(r)g1εq(r) dr , (4.2.9)

which can easily be computed as a sum of Fourier components since the phase-factorised

functions share the periodicity of the simulation cell. It is also clear that there is no

distinction between factorised and non-factorised quantities at the phonon Gamma point

(q = 0).

For the other densities, we need the projector density kernel ρab (Eq. 2.2.8), which can

also be perturbatively expanded:

ρab[λq, εq] =

Ne/2∑

i

fi

[
〈ψ̃i|+ λ∗−q 〈ψ̃i

1λ−q |+ λ∗q 〈ψ̃i
1λq |+ ε∗q 〈ψ̃i

1εq |+ ε∗−q 〈ψ̃i
1ε−q |

]
|p̃a〉

〈p̃b|ψ̃i + λ−qψ̃i
1λ−q

+ λqψ̃i
1λq

+ εqψ̃i
1εq

+ ε−qψ̃i
1ε−q〉 (4.2.10)

The first-order equivalent takes the form of:

ρab 1λ−q =
∑

n

fn

[
〈ψ̃1λq

n |p̃a〉 〈p̃b|ψ̃n〉+ 〈ψ̃n|p̃a 1λ−q〉 〈p̃b|ψ̃n〉+

〈ψ̃n|p̃a〉 〈p̃b 1λq |ψ̃n〉+ 〈ψ̃n|p̃a〉 〈p̃b|ψ̃1λ−q
n 〉

]
=

∑

n

fn

[
〈p̃a|ψn〉 〈ψ̃1λq

n |p̃bq〉+ 〈p̃b|ψ̃n〉 〈ψ̃1λq
n |p̃aq〉+

〈p̃a 1λq |ψ̃n〉 〈ψ̃n|p̃b〉+ 〈p̃b 1λq ||ψ̃n〉 〈ψ̃n|p̃a〉
]

(4.2.11)

where 〈p̃a 1λq | = |p̃a 1λq〉† are the first-order phase-factorised projectors, whose implemen-

tation is described in Sec. 4.3. Moreover,

p̃aq(r) = e−iq·r p̃a(r) =
∑

G

eiG·r e−i(G+q)·Ra p̃a(G + q) (4.2.12)

are defined to be q-dependent projectors.

At this point, we make a useful approximation: terms defined only in the augmentation

sphere are assumed to move with the reference frame of the perturbed atom. Thus, they

are not perturbation-dependent when present inside integrals on spheres, but we stress

that they are perturbation-dependent in the reference frame of the simulation cell. These
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are the partial waves (ϕ̃a, ϕa) and the charges ρc, ρ̃c, ρZc , ρ̃Zc . This approximation does

not apply to the projectors, as their movement changes their overlap with the PS wave-

function. The same approximation also applies to the multipole moments Q̂ab(r).

Consequently, since ϕ̃a and ϕa are not-perturbation dependent, only the projector density

kernel ρab[λ−q, εq] is perturbation-dependent in the expanded augmentation densities

(Eq. 2.2.7):

ρ̃1[λ−q, εq](r) =
∑

a,b

ρab[λ−q, εq]ϕ̃a(r)ϕ̃b(r)

ρ1[λ−q, εq](r) =
∑

a,b

ρab[λ−q, εq]ϕa(r)ϕb(r) , (4.2.13)

with their phase-factorised first-order equivalents being proportional to ρab 1λ−q (Eq. 4.2.11).

The indices a, b run over all the projectors in the simulation cell. The compensation charge

on the simulation cell grid has the following form:

ρ̂[λ−q, εq](r) =
∑

a,b

ρab[λ−q, εq]Q̂ab[λ−q, εq](r) (4.2.14)

Note that on the atom-centered radial grid, according the the previously discussed approx-

imations, the multipole moments Q̂ab would have no perturbation dependence. However,

on the simulation cell grid the un-factorised and phase-factorised first-order compensation

charge is:

ρ̂1λ−q(r) =
∑

a,b

ρab 1λ−q Qab(r) +
∑

a,b

ρab Q̂
1λ−q

ab (r)

ρ̂1λ−q(r) =
∑

a,b

ρab 1λ−q Qab,−q(r) +
∑

a,b

ρab Q̂
1λ−q

ab (r) , (4.2.15)

where Q̂
1λ−q

ab (r) are phase-factorised multipole moments (as described in Sec. 4.3), while

Qab,−q(r) = eiq·r Qab(r) (4.2.16)

are q-dependent versions of the multipole moments Q̂ab(r). Since the projector density

kernel is essentially envisioned as the overlap between the global (throughout all cells)

wavefunction with the projectors from only within the original cell, the global q-dependent

multipole moments (Eq. 4.2.16) and projectors (Eq. 4.2.12) can simply be considered to

be duplicates (with the cell periodicity) of their original cell values. This train of thought
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is dependent on the fact that both the projectors and the multipole moments are highly

localised within the PAW spheres. We present a formal proof for our statement in Sec.

4.3.3.

With all the necessary densities and their expansions known, we write the perturbation-

expanded electronic component of the energy functional (including the Lagrange multi-

pliers enforcing wavefunction-orthonormality):

EEL
TOT[λ−q, εq] =

Ne/2∑

i

fi
(
〈ψ̃|+ λq 〈ψ̃1λ−q

i |+ ε−q 〈ψ̃1εq
i |
)[
− 1

2
∇2 + vH

[
ρ̃Zc [λ−q, εq]

]](
|ψ̃i〉+

λ−q |ψ̃1λ−q

i 〉+ εq |ψ̃1εq
i 〉

)
+
∑

a,b

ρab[λ−q, εq]

{∫
vH

[
ρ̃Zc [λ−q, εq]

]
Q̂ab[λ−q, εq] dr+ (4.2.17)

〈ϕa| −
1

2
∇2 + vH

[
ρZc
]
|ϕb〉 − 〈ϕ̃a| −

1

2
∇2 + vH

[
ρ̃Zc
]
|ϕ̃b〉 −

∫

Ω

vH

[
ρ̃Zc
]
Q̂ab dr

}
+

EH

[
ρ̃[λ−q, εq] + ρ̂[λ−q, εq]

]
+ EXC

[
ρ̃[λ−q, εq] + ρ̂[λ−q, εq] + ρ̃c[λ−q, εq]

]
+ EH

∣∣∣
Ω

[
ρ1[λ−q, εq]

]
+

EXC

∣∣∣
Ω

[
ρ1[λ−q, εq] + ρc

]
− EH

∣∣∣
Ω

[
ρ̃1[λ−q, εq] + ρ̂[λ−q, εq]

]
− EXC

∣∣∣
Ω

[
ρ̃1[λ−q, εq] + ρ̂[λ−q, εq] + ρ̃c

]
−

Ne/2∑

i,j=1

∑

k

fi

[
Λijk[λ−q, εq]

(
〈ψ̃i|+ λq 〈ψ̃1λ−q

i |+ λ−q 〈ψ̃1λq
i |+ 〈ε−qψ̃

1εq
i |+ 〈εqψ̃

1ε−q

i |
)
Ŝ

(
|ψ̃j,k〉+ λ−q |ψ̃1λ−q

j,k 〉+ λq |ψ̃1λq
j,k 〉+ εq |ψ̃1εq

j,k 〉+ ε−q |ψ̃1ε−q

j,k 〉
)
− δijδ0,k

]
− E ·Pδq,0

where Λijk[λ−q, εq] are perturbation-dependent Lagrange multipliers that enforce the or-

thonormality constraints. Notice that we have generalised the orthogonality constrains

to also take into account different k-points k, but one will see in Appendix A that se-

lection rules restrict the value for k to either 0, q or −q. The term E · Pδq,0 pertains

to the interaction of the system with an external electric field E, while P is the system

polarisation vector, explored in section 4.5.

Moreover, we will also need the derivative of general Hartree or exchange-correlation

energies with respect to atomic perturbations, for a generic density ρ:

d

dλ−q

EH/XC

[
ρ[λ−q, εq]

]
=

∫
δEH/XC

δρ(r)︸ ︷︷ ︸
=vH/XC[ρ](r)

dρ[λ−q, εq](r)

dλ−q

dr, (4.2.18)

where we have used the definition of the Hartree/XC potential as the functional derivative

of the Hartree/XC energy. For the ground-state case the Hartree potential is linear with
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respect to density, but this is not the case for the phase-factorised first-order Hartree

potential at non-zero q-wavevector:

v
1λ−q

H

[
ρ[λ−q, εq]

]
6= vH

[
ρ1λ−q

]
, (4.2.19)

since the Hartree kernel 1
|r−r′| is non-local. However, if one considers the perturbation

without phase-factoring, the linearity is once again recovered:

v
1λ−q

H

[
ρ[λ−q, εq]

]
= vH

[
ρ1λ−q

]
, (4.2.20)

a property which will be very useful in deriving the response-NGWF gradient, as ex-

plained in Sec. 4.4.6. Thus, the perturbations of the Hartree and exchange-correlation

potential are delicate matters, and are fully described in Sec. 4.3.5 and 4.3.6, respectively.

Note that the first-order XC potential is indeed linear with respect to the first-order den-

sities, for local (LDA) and semi-local (GGA) XC functionals.

4.2.2 Second-order expansion and Sternheimer Equation

We derive the second-order energy term by taking the mixed derivative of the expanded

PAW energy functional in Eq. 4.2.17. We only show the resulting formula, while the full

derivation is available in Appendix A. The variational total second-order energy is:

d2ETOT

dλ−qdεq
=
d2
(
EEL−1

TOT + EEL−2
TOT + EEL-3

TOT + EEL-4
TOT + EEL-5

TOT

)

dλ−qdεq
+

∂2

∂λ−q∂εq
EIon,core =

Ne/2∑

i=1

fi

{
〈ψ̃i
∣∣∣Âλ−qεq − εi

∂2Ŝ

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i |Ĥ − εiŜ

∣∣∣ψ̃1εq
i 〉+ 2 〈ψ̃1λq

i |B̂εq − εi
∂Ŝ

∂εq

∣∣∣ψ̃i〉

+ 2 〈ψ̃i|
dĤ

dλ−q

− εi
∂Ŝ

∂λ−q

∣∣∣ψ̃1εq
i 〉

}
+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃1εq
c (r) dr+ (4.2.21)

∫
vXC[ρ̃+ ρ̂+ ρ̃c](r)

∂2ρ̃c(r)

∂λ−q∂εq
dr−

Ne/2∑

i,j=1

fi

[
Λ

1εq
ijq

(
〈ψ̃1λq

i |Ŝ|ψ̃j,q〉+ 〈ψ̃1λq
j,−q|Ŝ|ψ̃i〉+

〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉
)

+ Λ
1λ−q

ij−q

(
〈ψ̃j,q|Ŝ|ψ̃1εq

i 〉+ 〈ψ̃j,q|Ŝ1εq |ψ̃i〉+ 〈ψ̃i|Ŝ|ψ̃1εq
j,−q〉

)]
+

Ne/2∑

i=1

2fi
∂
−→
E

∂ε0
· 〈ψ̃1λ0

i |
−→̂
D|ψ̃i〉 δq,0 +

Ne/2∑

i=1

2fi
∂
−→
E

∂λ0

· 〈ψ̃i|
−→̂
D|ψ̃1ε0

i 〉 δq,0+

∂2

∂λ−q∂εq

[
1

2

∫

Ω

∫

Ω

ρZc(r)ρZc(r)

|r− r′| drdr′ + U

]
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The H̃ term is the pseudo-Hamiltonian from Eq. 2.2.11. The red term contains the second-

order core self-interaction and Ewald energy, added to the electronic energy. Note that the

self-interaction component in the red term disappears under perturbation, as ρZc is rigidly

bound to the atom reference frame and strictly localised in the PAW sphere. The green

term pertains to the variation of the orthonormality conditions and the associated first-

order Lagrange multipliers (to be fixed by a gauge choice). Operators Âλ−qεq and B̂εq are

discussed in Eqs. 4.2.28 and 4.2.29. A keen observer will note that this variational form

has a term which is quadratic in first-order wavefunctions. While apparently difficult

to calculate, the diagonal components of the variational form will be crucial for the

optimisation of the first-order NGWFs, as will be discussed in section 4.4.6.

The two terms before the red one in Eq. 4.2.21 are only present in electric-field per-

turbations and only at q = 0, meaning that for atomic perturbation they are 0. The

first-order polarisation may be expanded by using the considerations at the end of section

4.5. It is crucial to observe that if λ−q, εq are electric-field perturbations, then all the

perturbations of rigid quantities not related to the electric field itself (such as the core

charges, multipole moments, ions, projectors) are 0. The only changes that occur are in

the pseudo-wavefunctions.

We can improve the variational second-order energy by employing phase-factorised quan-

tities (using Eq. 4.2.6 for instance), such that all quantities have the periodicity of the

underlying lattice. Note that phase factorisation,denoted by the overline bar, is not re-

quired for second-order local position-dependent quantities, since they are equivalent to

those calculated at q = 0 (Sec. 4.3.4). There are several non-intuitive transformations

from the original formulation to the phase-factorised one, but the details are explained

in the Sec. 4.3, containing implementation details. Thus, the second-order energy be-

comes:

d2ETOT
dλ−q dεq

=

N/2∑

i=1

fi

{
〈ψ̃i
∣∣∣Âλ−qεq − εi

∂2Ŝ

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i |Ĥq,q − εiŜq,q

∣∣∣ψ̃1εq
i 〉+

2 〈ψ̃i|(H̃1λ−q)0,q − εi(Ŝ1λ−q)0,q

∣∣∣ψ̃1εq
i 〉+ 2 〈ψ̃1λq

i |(B̂1εq)q,0 − εi(Ŝ1εq)q,0

∣∣∣ψ̃i〉
}

+

∂2U

∂λ−q∂εq
+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃
1εq
c (r) dr +

∫
vXC [ρ̃+ ρ̂+ ρ̃c]

∂2ρ̃c
∂λ−q∂εq

dr−
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Ne/2∑

i,j=1

fi

[
Λ

1εq
ijq

(
〈ψ̃1λq

i |Ŝq,q|ψ̃j,q〉+ 〈ψ̃1λq
j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉
)

+ (4.2.22)

Λ
1λ−q

ij−q

(
〈ψ̃j,q|Ŝq,q|ψ̃1εq

i 〉+ 〈ψ̃j,q|Ŝ1εq
q,0 |ψ̃i〉+ 〈ψ̃i|Ŝ|ψ̃1εq

j,−q〉
)]

+

Ne/2∑

i=1

fi

[
2
∂E

∂λ0

· 〈ψ̃i|D̂|ψ̃1ε0
i 〉+ 2

∂E

∂ε0
· 〈ψ̃1λ0

i |D̂|ψ̃i〉
]
δq,0

In the previous expression we have defined the following ground-state operators (under

the assumption that the potentials are all local):

〈r|H̃q,q|r′〉 = e−iq·r 〈r|H̃|r′〉 eiq·r′ = e−iq·r 〈r|
[
− ∇

2

2

]
|r′〉 eiq·r′+ (4.2.23)

δr,r′
[
v[ρ̃Zc ] + vH[ρ̃+ ρ̂] + vXC[ρ̃+ ρ̂+ ρ̃c]

]
(r) +

∑

a,b

e−iq·rp̃a(r) Dab p̃
b(r′)eiq·r

′

〈r|Ŝq,q|r′〉 = δrr′ +
∑

a,b

e−iq·rp̃a(r)
[
〈ϕa|ϕb〉 − 〈ϕ̃a|ϕ̃b〉

]
p̃b(r′)eiq·r

′
(4.2.24)

By using the definition of the q-dependent projector (Eq. 4.2.12) we can rewrite the

previous operators as:

〈r|H̃q,q|r′〉 =e−iq·r 〈r|
[
− ∇

2

2

]
|r′〉 eiq·r′ + δr,r′

[
v[ρ̃Zc ] + vH[ρ̃+ ρ̂] + vXC[ρ̃+ ρ̂+ ρ̃c]

]
(r)+

∑

a,b

〈r|p̃aq〉 Dab 〈p̃bq|r′〉 (4.2.25)

〈r|Ŝq,q|r′〉 =δrr′ +
∑

a,b

〈r|p̃aq〉
[
〈ϕa|ϕb〉 − 〈ϕ̃a|ϕ̃b〉

]
〈p̃bq|r′〉 (4.2.26)

Also, the first-order Lagrange multipliers are defined as:

Λ
1λ−q

ij,−q =
d

dλ−q

〈ψ̃j,−q|H̃|ψ̃i〉 = 〈ψ̃1λq
j,−q|H̃|ψ̃i〉+ 〈ψ̃i|H̃1λ−q |ψ̃j,q〉+ 〈ψ̃1λq

i |H̃|ψ̃j,q〉 =

〈ψ̃1λq
j,−q|H̃|ψ̃i〉+ 〈ψ̃i|H̃1λ−q

0,q |ψ̃j,q〉+ 〈ψ̃1λq
i |H̃q,q|ψ̃j,q〉 (4.2.27)

where we have used the time-reversal symmetry of wavefunctions ψ̃j,−q(r) = ψ̃∗j,q(r).

Lastly, keeping in mind that the the presence or absence of overlines is significant, oper-

ators Âλ−qεq and (B̂εq)q,0 are:

Âλ−qεq =
∂2vH[ρ̃Zc ]

∂λ−q∂εq
(r) +

∑

a,b

|p̃a〉 〈p̃b|
(∫

ṽ1λ−q
eff (r′) Q̂

1εq
ab (r′) dr′ +

∫
ṽeff(r′)

∂2Q̂ab(r
′)

∂λ−q∂εq
dr′+

∫
v

1εq
H [ρ̃Zc ](r

′)Q̂
1λ−q

ab (r′) dr′ +

∫
∂2vH[ρ̃Zc ]

∂λ−q∂εq
(r′)Q̂ab(r

′) dr′

)
+ (4.2.28)
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∑

a,b

[
|p̃a 1εq〉 〈p̃b|+ |p̃a〉 〈p̃b 1ε−q |

]
d
(
D1
ab − D̃1

ab + D̂ab

)

dλ−q

+
∑

a,b

[
|p̃a 1λ−q〉 〈p̃b|+ |p̃a〉 〈p̃b 1λq |

]

(∫
ṽeff(r′) Q̂

1εq
ab (r′) dr +

∫
v

1εq
H [ρ̃Zc ](r

′)Q̂ab,−q(r′) dr′

)
+
∑

a,b

[
| ∂2p̃a

∂λ−q∂εq
〉 〈p̃b|+

|p̃a 1λ−q〉 〈p̃b 1ε−q |+ |p̃a 1εq〉 〈p̃b 1λq |+ |p̃a〉 〈 ∂2p̃b

∂λq∂ε−q

|
](
D1
ab − D̃1

ab + D̂ab

)

and

(B̂εq)q,0 =v
1εq
H [ρ̃Zc ](r) +

∑

a,b

|p̃aq〉 〈p̃b|
(∫

ṽeff(r′) Q̂
1εq
ab (r′) dr′ +

∫
v

1εq
H [ρ̃Zc ](r

′) Q̂ab,−q(r′) dr′

)
+

∑

a,b

[
|p̃a 1εq〉 〈p̃b|+ |p̃aq〉 〈p̃b 1ε−q |

](
D1
ab − D̃1

ab + D̂ab

)
, (4.2.29)

where we used the various PAW definitions from Eqs. 2.2.11 and 2.2.12. Moreover, we

define the first-order overlaps

(Ŝ1λ−q)0,q =
∑

a,b

[
|p̃a 1λ−q〉 〈p̃b|+ |p̃a〉 〈p̃b 1λq |

]
eiq·r =

∑

a,b

[
|p̃a 1λ−q〉 〈p̃bq|+ |p̃a〉 〈p̃b 1λq |

]

(Ŝ1εq)q,0 =
∑

a,b

[
|p̃a 1εq〉 〈p̃b|+ |p̃aq〉 〈p̃b 1ε−q |

]
, (4.2.30)

while the first-order Hamiltonian (H̃1λ−q)0,q is thoroughly discussed in Sec. 4.2.4, and

D
1λ−q

ab = d
dλ−q

(D̂ab +D1
ab − D̃1

ab) is also derived in Sec. 4.2.5.

From this variational second-order energy, one can obtain the first-order wavefunction

through the associated Euler Lagrange equation (for perturbation εq for instance):

∂

∂ |ψ̃1εq
i 〉

( d2

dλ−qdεq
ETOT

)
=2fi 〈ψ̃1λq

i | [H̃q,q − εiŜq,q] + 2fi 〈ψ̃i|
[
(H̃1λ−q)0,q − εi(Ŝ1λ−q)0,q

]
+

2fi
∂E

∂λ0

· 〈ψ̃i| D̂ δq,0 −
Ne/2∑

j=1

fiΛ
1λ−q

ij,−q 〈ψ̃j,q| Ŝq,q = 0 (4.2.31)

Obviously, the red term is problematic, as it includes the first-order Lagrange multiplier.

To eliminate it, we define an out-of-valence-manifold projector P̂c q,q which has the prop-

erty that 〈ψ̃j,q| Ŝq,qP̂c q,q = 0, while also requiring its idempotency P̂c q,qP̂c q,q = P̂c q,q.

One form that fulfils these purposes is

P̂c q,q =
∑

n∈all

|ψ̃n,q〉 〈ψ̃n,q|
︸ ︷︷ ︸

Ŝ−1
q,q

Ŝq,q −
∑

n∈occ

|ψ̃n,q〉 〈ψ̃n,q| Ŝq,q

︸ ︷︷ ︸
P̂v q,q

= 1̂− P̂v q,q , (4.2.32)
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where |ψ̃n,q〉 = e−iq·r |ψ̃n,q〉 is a cell-periodic function derived by phase-factoring the

ground-state wavefunction at q.

Thus, by combining Eqs. 4.2.31 and 4.2.32 we obtain:

〈ψ̃1λq
i | [H̃q,q − εiŜq,q]P̂c q,q = −〈ψ̃i|

[
(H̃1λ−q)0,q − εi(Ŝ1λ−q)0,q +

( ∂E

∂λ0

· D̂
)
δq,0

]
P̂c q,q ,

(4.2.33)

with i being restricted to the occupied states only.

We can further restrict the solution space by employing a parallel transport gauge through

a unitary transformation on the wavefunctions (see Sec. 4.3.1 for details). This gauge

enforces the first-order wavefunctions to follow:

〈ψ̃1λq
i |Ŝq,q|ψ̃j,q〉 = 〈ψ̃i|Ŝ|ψ̃1λ−q

j,q 〉 = −1

2
〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 , (4.2.34)

Note that the exact form of the gauge transformation is at the convenience of the user,

since the final second-order energies should be invariant with respect to the gauge choice.

By applying the conduction projector (Eq. 4.2.32) on 〈ψ̃1λq
i |, and using Eq. 4.2.34, we

obtain:

〈ψ̃1λq
i | (P̂ †c )q,q = 〈ψ̃1λq

i | −
∑

j

〈ψ̃1λq
i |Ŝq,q|ψ̃j,q〉 〈ψ̃j,q| =

〈ψ̃1λq
i |+

1

2

∑

j

〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 〈ψ̃j,q| (4.2.35)

meaning that

〈ψ̃1λq
i | = 〈ψ̃

1λq
i | (P̂ †c )q,q −

1

2
〈ψ̃i| |Ŝ1λ−q

0,q

∑

j

|ψ̃j,q〉 〈ψ̃j,q|
︸ ︷︷ ︸

Ŝ−1
q,qP̂

†
v q,q

(4.2.36)

Therefore, we can replace 〈ψ̃1λ−q

i | from Eq. 4.2.33 with the relation derived in Eq. 4.2.36.

The second term of Eq. 4.2.36 can be shown to disappear in this context, further simpli-

fying our deductions:

〈ψ̃j,q| [H̃q,q − εiŜq,q]P̂c q,q = 〈ψ̃j,q| Ŝq,qP̂c q,q︸ ︷︷ ︸
0

(εj,q − εi) = 0 (4.2.37)

Thus, the final Sternheimer equation in the parallel transport gauge is:

〈ψ̃1λq
i | (P̂ †c )q,q[H̃q,q − εiŜq,q]P̂c q,q+ (4.2.38)
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〈ψ̃i|
[
(H̃1λ−q)0,q − εi(Ŝ1λ−q)0,q +

( ∂E

∂λ0

· D̂
)
δq,0

]
P̂c q,q = 0

In essence, all the terms present in this final equation have the periodicity of the sim-

ulation cell, which simplifies its solving. For q = 0, Eq. 4.2.38 matches the equation

for the plane-wave PAW case in Abinit[108], except for the additional blue term present

in electric-field perturbations; in the case of atomic displacements the blue term is null.

For electric field perturbations, the perturbation of the overlap operator in Eq. 4.2.30 is

null, while the blue term in the Sternheimer Equation is non-zero. Lastly, the derivations

related to the first-order Hamiltonian (H̃1λ−q)0,q can be studied in Sec. 4.2.4.

4.2.3 Non-variational second-order energy

One can obtain a non-variational form of the second-order total energy, which presents

itself as an inexpensive method of obtaining the final energy terms at the end of the

optimisation procedures. Thus, for the converged first-order wavefunction, one can apply

〈ψ̃1ε−q

i | to the right of the initial form of the Sternheimer equation (Eq. 4.2.31), obtain-

ing:

2fi 〈ψ̃1λq
i |H̃q,q − εiŜq,q|ψ̃1εq

i 〉+ 2fi 〈ψ̃i|(H̃1λ−q)0,q − εi(Ŝ1λ−q)0,q|ψ̃1εq
i 〉+ (4.2.39)

2fi
∂E

∂λ0

· 〈ψ̃i|D̂|ψ̃1εq
i 〉 δq,0 =

Ne/2∑

j=1

fiΛ
1λ−q

ij,−q 〈ψ̃j,q|Ŝq,q|ψ̃1εq
i 〉 =

Ne/2∑

j=1

fiΛ
1λ−q

ij,−q 〈ψ̃
1εq
j,−q|Ŝ|ψ̃i〉 =

− 1

2

Ne/2∑

j=1

fiΛ
1λ−q

ij,−q 〈ψ̃j,q|Ŝ
1εq
q,0 |ψ̃i〉 ,

where the last equality was enforced by our gauge choice (Eq. 4.2.34). Therefore, by re-

placing Eq. 4.2.39 into the variational second-order energy (Eq. 4.2.22), we arrive at:

d2ETOT
dλ−q dεq

=

N/2∑

i=1

fi

{
〈ψ̃i
∣∣∣Âλ−qεq − εi

∂2Ŝ

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i |(B̂1εq)q,0 − εi(Ŝ1εq)q,0

∣∣∣ψ̃i〉
}

+

∂2U

∂λ−q∂εq
+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃
1εq
c (r) dr +

∫
vXC [ρ̃+ ρ̂+ ρ̃c]

∂2ρ̃c
∂λ−q∂εq

dr− (4.2.40)

Ne/2∑

i,j=1

fi

[
Λ

1εq
ijq

(
〈ψ̃1λq

i |Ŝq,q|ψ̃j,q〉+ 〈ψ̃1λq
j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉
)

+ Λ
1λ−q

ij−q 〈ψ̃j,q|Ŝ
1εq
q,0 |ψ̃i〉

]

+

Ne/2∑

i=1

2fi
∂E

∂ε0
· 〈ψ̃1λ0

i |D̂|ψ̃i〉 δq,0



62 Chapter 4. Linear-response phonons

However, by observing the gauge choice (Eq. 4.2.34), it becomes clear that the green term

in the previous equation is actually 0:

〈ψ̃1λq
i |Ŝq,q|ψ̃j,q〉+ 〈ψ̃1λq

j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 =

〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 −
1

2
〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 −
1

2
〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 = 0 (4.2.41)

Consequently, the fully simplified form of the non-variational second order energy be-

comes:

d2ETOT
dλ−q dεq

=

N/2∑

i=1

fi

{
〈ψ̃i
∣∣∣Âλ−qεq − εi

∂2Ŝ

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i |(B̂1εq)q,0 − εi(Ŝ1εq)q,0

∣∣∣ψ̃i〉
}

+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃
1εq
c (r) dr +

∫
vXC [ρ̃+ ρ̂+ ρ̃c]

∂2ρ̃c
∂λ−q∂εq

dr−

(4.2.42)

Ne/2∑

i,j=1

fiΛ
1λ−q

ij 〈ψ̃j,q
∣∣∣Ŝ1εq

q,0

∣∣∣ψ̃j〉+

Ne/2∑

i=1

2fi
∂E

∂ε0
· 〈ψ̃1λ0

i |D̂|ψ̃i〉 δq,0 +
∂2U

∂λ−q∂εq

while the first-order Lagrange multiplier can be further manipulated to read:

Λ
1λ−q

ij,−q = 〈ψ̃1λq
j,−q|H̃|ψ̃i〉︸ ︷︷ ︸

εi〈ψ̃
1λq
j,−q|Ŝ|ψ̃i〉

+ 〈ψ̃i|H̃1λ−q

0,q |ψ̃j,q〉+ 〈ψ̃1λq
i |H̃q,q|ψ̃j,q〉︸ ︷︷ ︸

εj,q〈ψ̃
1λq
i |Ŝq,q|ψ̃j,q〉

= (4.2.43)

− 1

2
εi 〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉+ 〈ψ̃i|H̃1λ−q

0,q |ψ̃j,q〉 −
1

2
〈ψ̃i|Ŝ1λ−q

0,q |ψ̃j,q〉 εj,q

where in the underbraces we have used the Schrödinger equation, and the second equality

was enabled through the gauge choice. Furthermore, the Schrödinger equation further

tells us that εi 〈ψ̃i| = 〈ψ̃i| H̃Ŝ−1 and εj,q |ψ̃j,q〉 = Ŝ−1
q,qH̃q,q |ψ̃j,q〉, which finally leads us

to

Λ
1λ−q

ij,−q = −1

2
〈ψ̃i|H̃Ŝ−1Ŝ

1λ−q

0,q |ψ̃j,q〉+ 〈ψ̃i|H̃
1λ−q

0,q |ψ̃j,q〉 −
1

2
〈ψ̃i|Ŝ1λ−q

0,q Ŝ−1
q,qH̃q,q|ψ̃j,q〉 (4.2.44)

Finally, we rewrite the following sum of products containing the first-order Lagrange

multipliers:

Ne/2∑

i,j

fiΛ
1λ−q

ij−q 〈ψ̃j,q|Ŝ
1εq
q,0 |ψ̃i〉 =

Ne/2∑

i,j

fi

{
− 1

2
〈ψ̃i|H̃Ŝ−1Ŝ

1λ−q

0,q |ψ̃j,q〉 〈ψ̃j,q|Ŝ1εq
q,0 |ψ̃i〉+ (4.2.45)

〈ψ̃i|H̃1λ−q

0,q |ψ̃j,q〉 〈ψ̃j,q|Ŝ1εq
q,0 |ψ̃i〉 −

1

2
〈ψ̃i|Ŝ1λ−q

0,q Ŝ−1
q,qH̃q,q|ψ̃j,q〉 〈ψ̃j,q|Ŝ1εq

q,0 |ψ̃i〉
}
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where we have used the definition for the q-dependent valence projector P̂v q,q in the

underbrace of Eq. 4.2.32 and s = 2 is the occupation number for the non spin-polarised

case.

Crucially, all the self-consistent perturbative terms only depend on the λ−q perturbation

(such as ṽ
λ−q

eff from Âλ−qεq in Eq. 4.2.28), while the εq perturbation appears in a non-

self-consistent manner (such as in perturbed fixed charges or pseudopotentials). This

implies that by determining a single first-order wavefunction (ψ̃
1λq
i ), one can afterwards

non-variationally build an entire row of the force-constant matrix.

However, it is important to note that this energy form is not suitable for minimisation,

for which only the variational form can be used. Under the parallel-gauge constraint the

green terms in the variational form (Eq. 4.2.22) disappear, leaving an expression without

the first-order Lagrange multipliers.

4.2.4 First-order Hamiltonian

Having appeared frequently in the previous section, the expression for the first-order

Hamiltonian operator is:

(H̃1λ−q)0,q =v
1λ−q

H

[
ρ̃Zc
]
(r) + v

1λ−q

H [ρ̃+ ρ̂](r) + v
1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)+

∑

a,b

[
|p̃a 1λ−q〉 〈p̃bq|+ |p̃a〉 〈p̃b 1λq |

](
D̂ab +D1

ab − D̃1
ab

)
+ (4.2.46)

∑

a,b

|p̃a〉 〈p̃bq|
d

dλ−q

(
D̂ab +D1

ab − D̃1
ab

)

︸ ︷︷ ︸
D

1λ−q
ab

,

where the first-order phase-factorised potentials are described in Sec. 4.3.5 and 4.3.6.

The q-dependent and first-order projectors are also described in Sec. 4.3.3. Therefore

the only unknown term of the first-order Hamiltonian is the first-order nonlocal term

D
1λ−q

ab , discussed in detail further.

4.2.5 First-order Dab terms

We first express the general equation for the first-order nonlocal energy terms Dab under

a perturbation λ−q (leaving out terms containing perturbations of core charges, partial
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waves, or multipole moments on the atom-centered grid):

d

dλ−q

(
D̂ab +D1

ab − D̃1
ab

)
=

{∫
v

1λ−q

H

[
ρ̃Zc
]
(r)Q̂ab(r) dr +

∫
vH
[
ρ̃Zc
]
(r)Q̂

1λ−q

ab (r) dr+

∫
vH
[
ρ̂+ ρ̃

]
(r)Q̂

1λ−q

ab (r) dr +

∫
v

1λ−q

H

[
ρ̃+ ρ̂

]
(r)Q̂ab(r) dr+

∫
v

1λ−q

XC

[
ρ̃+ ρ̂+ ρ̃c

]
(r)Q̂ab(r) dr +

∫
vXC

[
ρ̃+ ρ̂+ ρ̃c

]
(r)Q̂

1λ−q

ab (r) dr

}
+

{∫

Ω

v
1λ−q

H

[
ρ1
]
(r)ϕa(r)ϕb(r) dr +

∫

Ω

v
1λ−q

XC

[
ρ1 + ρc

]
(r)ϕa(r)ϕb(r) dr

}
− (4.2.47)

{∫

Ω

v
1λ−q

H

[
ρ̃1 + ρ̂

]
(r)

(
ϕ̃a(r)ϕ̃a(r) + Q̂ab(r)

)
dr+

∫

Ω

v
1λ−q

XC

[
ρ̃1 + ρ̂+ ρ̃c

]
(r)

(
ϕ̃a(r)ϕ̃a(r) + Q̂ab(r)

)
dr

}
=

d

dλ−q

D̂ab +
d

dλ−q

DH
ab +

d

dλ−q

DXC
ab

In the last equality we have split the first-order nonlocal energies using a similar approach

as for the zeroth-order Dab:
d

dλ−q
DH
ab contains the sphere Hartree terms, and d

dλ−q
DXC
ab

contains the sphere exchange-correlation part. While the previously mentioned terms are

computed on radial grids, d
dλ−q

D̂ab needs to be computed on the standard grid. Phase

factorisation can also be used for the latter term, making it:

d

dλ−q

D̂ab =

∫
v

1λ−q

H

[
ρ̃Zc
]
(r)Q̂ab,q(r) dr +

∫
vH
[
ρ̃Zc
]
(r)Q̂

1λ−q

ab (r) dr+

∫
vH
[
ρ̂+ ρ̃

]
(r)Q̂

1λ−q

ab (r) dr +

∫
v

1λ−q

H

[
ρ̃+ ρ̂

]
(r)Q̂ab,q(r) dr+ (4.2.48)

∫
v

1λ−q

XC

[
ρ̃+ ρ̂+ ρ̃c

]
(r)Q̂ab,q(r) dr +

∫
vXC

[
ρ̃+ ρ̂+ ρ̃c

]
(r)Q̂

1λ−q

ab (r) dr

We remind the reader of our implicit approximations: in quantities expressed in the

atom’s reference frame, terms that are tightly bound to the ion itself have a 0 in first

order expansion; this includes the pseudo and all-electron partial waves (ϕ, ϕ̃), the core

and pseudo-core charges (ρc, ρ̃c and ρ̃Zc, ρ̃Zc), as well as the multipole moments (Q̂ab).

However, Q̂
1λ−q

ab is non-zero in the d
dλ−q

D̂ab terms, since it is computed on the standard

grid, in the reference frame of the simulation cell.

Hartree terms

Firstly, one must remember the expression for the zero-order DH
ab terms

DH
ab = 〈ϕa|vH [ρ1]|ϕb〉 − 〈ϕ̃a|vH [ρ̃1 + ρ̂]|ϕ̃b〉 −

∑

LM

∫

Ω

vH [ρ̃1](r)Q̂LM
ab (r) dr−
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∑

LM

∫

Ω

vH [ρ̂](r)Q̂LM
ab (r) dr =

∑

k,l

ρkleabkl , (4.2.49)

where eabkl is a fourth-rank tensor that is already computed in ONETEP, while the

multipole moments are defined as:

Q̂ab(r) =
∑

LM

Q̂LM
ab =

∑

LM

qLMab gL(r) SLM(r̂) , (4.2.50)

where qLMab is once again a pre-calculated quantity, gL(r) is a radial shape function for

angular-momentum L, and SLM(r̂) are real-valued spherical harmonics.

Upon perturbation, only the projector density kernel ρab changes, as the quantities related

to the fourth-rank tensor εabkl move together with the ion core under perturbation. Thus

the first order DH
ab (red item in Eq. 4.2.47) is simply expressed as:

d DH
ab

dλ−q

=
∑

k,l

ρkl 1λ−q eabkl , (4.2.51)

with the first-order projector density-kernel being defined in Eq. 4.2.11.

Exchange-correlation (XC) terms

For the first-order XC sphere terms (blue items in Eq. 4.2.47), one needs to first express

the XC potential on a radial grid. It is assumed that the density near the atom core is

almost spherical, meaning that one can perform a second-order expansion of the density

with respect to its L = 0,M = 0 channel:

vXC [ρ] = vXC
[
ρ00

]
+
(
ρ(r)− ρ00(r)

)dvXC
dρ

[
ρ00

]
+

[
ρ(r)− ρ00(r)

]2

2

d2vXC
dρ2

[
ρ00

]
(4.2.52)

where ρ is a generic density on the radial grid. However, using the obvious relation

ρ(r)− ρ00(r) =
∑

L>0,M

ρLM(r)SLM(r̂) , (4.2.53)

along with the expression for the L,M channels for the radial vXC potential

vXCLM [ρ](r) =

∫
vXC [ρ](r)SLM(r̂) dr̂ , (4.2.54)

one obtains the final expression for vXC [ρ]LM(r):

vXCLM [ρ](r) =





√
4πvXC

[
ρ00

]
+ 1

2
√

4π

d2vXC
dρ2

[
ρ00

]∑
L′>0,M ′

(
ρL′M ′(r)

)2

, if L = 0

ρLM(r)dvXC
dρ

[
ρ00

]
+ 1

2
d2vXC
dρ2

[ρ00]
∑

L′>0,M ′,L′′>0,M ′′ ρL′M ′(r)·
· ρL′′M ′′(r)GLM

L′M ′L′′M ′′ , if L > 0

(4.2.55)
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The derivatives in Eq. 4.2.55 are calculated using a central finite-difference method (with

δ being an infinitesimal parameter):

dvXC
dρ

[ρ00](r) =
vxc[ρ00(1 + δ)](r)− vxc[ρ00(1− δ)](r)

2δρ00(r)

d2vXC
dρ2

[ρ00](r) =
vxc[ρ00(1 + δ)](r) + vxc[ρ00(1− δ)](r)− 2vxc[ρ00](r)

δ2ρ2
00(r)

(4.2.56)

However, from Eq. 4.2.47, it is clear that we also need the first-order quantities d
dλ−q

vXC [ρ](r)

on the radial grid. We denote these them as exchange-correlation kernels f
λ−q

XC [ρ](r), and

we calculate them using a central finite-difference approach:

f
λ−q

XC [ρ](r) =v
1λ−q

XC [ρ](r) =
vXC [ρ+ δρ1λ−q ](r)− vXC [ρ− δρ1λ−q ](r)

2δ

=
∑

L,M

vXCLM [ρ+ δρ1λ−q ](r)− vXCLM [ρ− δρ1λ−q ](r)

2δ
SLM(r̂) (4.2.57)

Thus, it is obvious that the L,M -channel component for f εXC [ρ](r) takes the form:

f
λ−q

XC LM [ρ](r) =
vXCLM [ρ+ δρ1λ−q ](r)− vXCLM [ρ− δρ1λ−q ](r)

2δ
(4.2.58)

Consequently, we can derive a more explicit form for the first-order DXC
ab by expanding

the blue terms in Eq. 4.2.47:

d

dλ−q

DXC
ab =

∑

L,M

∫
f
λ−q

XC LM [ρ1 + ρc](r) ϕnala(r)ϕnblb(r) G
LM
lamalbmb

dr− (4.2.59)

∑

L,M

∫ ∫

Ω

f
λ−q

XC LM [ρ̃1 + ρ̂+ ρ̃c](r)SLM(r̂)

(
ϕ̃nala(r)

r

ϕ̃nblb(r)

r
Slama(r̂)Slbmb(r̂)+

∑

L′,M ′

qL
′M ′

ab gL′(r)SL′M ′(r̂)

)
r2 drdr̂ ,

where GLM
lamalbmb

=
∫
SLM(r̂)SlamaSlbmb(r̂)(r̂) dr̂ are Gaunt coefficients, while φnala(r) and

φ̃nala(r) are the radial components of the all-electron and pseudo partial waves.

By explicitly integrating over all solid angles r̂ and using both the orthogonality of the

real-valued spherical harmonics and the definition of the Gaunt coefficients, we obtain

the final expression:

d

dλ−q

DXC
ab =

∑

L,M

∫
f
λ−q

XC LM [ρ1 + ρc](r) ϕnala(r)ϕnblb(r) G
LM
lamalbmb

dr− (4.2.60)
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∑

L,M

∫
f
λ−q

XC LM [ρ̃1 + ρ̂+ ρ̃c](r)

[
ϕ̃nala(r)ϕ̃nblb(r)G

LM
lamalbmb

+ r2 qLMab gL(r)

]
dr

However, it is clear from Eqs. 4.2.58 and 4.2.55 that we also need the L,M -channel

components for all the first-order densities. In general, these take the form:

[
ρ1λ−q

]
LM

(r) =

∫

Ω

[
ρ1λ−q

]
(r) SLM(r̂) d(r̂) (4.2.61)

We know that the first-order sphere densities (expressed on the atom-centered grid)

are:

ρ1 1λ−q(r) =
∑

kl

ρkl 1λ−q
ϕnklk(r)ϕnlll(r)

r2
SlkmkSllml(r̂)

ρ̃1 1λ−q(r) =
∑

kl

ρkl 1λ−q
ϕ̃nklk(r)ϕ̃nlll(r)

r2
SlkmkSllml(r̂) (4.2.62)

ρ̂1λ−q(r) =
∑

kl

ρkl 1λ−q

∑

LM

Q̂LM
kl (r) =

∑

kl,LM

ρkl 1λ−qqLMkl gL(r)SLM(r̂) ,

Therefore, by combining Eqs. 4.2.61 and 4.2.62, one obtains the final form for the L,M

channel contribution of the sphere densities:

[
ρ1 1λ−q

]
LM

(r) =
∑

i,j

ρij 1λ−q
ϕnili(r)

r

ϕnj lj(r)

r
GLM
limiljmj

[
ρ̃1 1λ−q

]
LM

(r) =
∑

i,j

ρij 1λ−q
ϕ̃nili(r)

r

ϕ̃nj lj(r)

r
GLM
limiljmj

(4.2.63)

[
ρ̂ 1λ−q

]
LM

(r) =
∑

ij

ρij 1λ−qqLMij gL(r)

4.2.6 Ion-ion interaction

Zero-order

In ONETEP, the Ewald (ion-ion) interaction is based on the following equation:

U =
Ncells

2

NI∑

i,j=1

∑

R

ZiZj
|Ri −Rj + R|

[
1− erf(η|Ri −Rj + R|)

]
+ (4.2.64)

2πNcells

V

NI∑

i,j=1

∑

G6=0

ZiZj
G2

e−
G2

4η eiG·(Ri−Rj) − π

2V η2

( NI∑

i=1

Zi
)2 − η√

π

NI∑

i=1

Z2
i ,
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where η is a fixed system-dependent parameter, V is the simulation-cell volume, Zi is

the bare charge of ion i, NI is the number of atoms in the system, Ncells is the number

of cells in the sum, and “erf” denotes the error-function. The red term is denoted as

UREAL, while the blue one is URECIP, with the names being reminiscent of the types of

sums involved in each term. In UREAL, the sum over real-space cells and ions must avoid

the term |Ri −Rj + R| = 0, while in URECIP, the G = 0 terms must be avoided.

Second-order

The derivation of the second-order Ewald terms is quite lengthy, but it does not involve

complicated mathematical artefacts. Therefore, in the following we simply give the final

result, split into the real-space and reciprocal-space sums. Note that the weights for each

perturbation are encoded in the direction vectors û.

∂2UREAL

∂λ−q∂εq
=

NI∑

i,j=1

∑

R

ZiZj
2r3

ijR

(1 + eiq·R)[(uε(j) · uλ(i) − uε(i) · uλ(i))]
[
erfc(ηrijR)+ (4.2.65)

2√
π
ηrijRe

−η2r2ijR
]
−

NI∑

i,j=1

∑

R

ZiZj
2r5

ijR

(1 + eiq·R)[(uε(j) · rijR)(uλ(i) · rijR)−

(uε(i) · rijR)(uλ(i) · rijR)]
[
3erfc(ηrijR) +

2√
π
ηrijRe

−η2r2ijR(3 + 2η2r2
ijR)

]

where erfc(x) = 1− erf(x), and the sum over R is such that rijR = |rijR| = |Ri−Rj +R|
is not 0 at any point. Similarly, the reciprocal-space term is:

∂2URECIP

∂λ−q∂εq
= −

NI∑

i,j=1

∑

G,G6=0

4πZiZj
VG2

e−G2/(4η2)(uε(i) ·G)(uλ(i) ·G) cos
[
G · (Ri −Rj)

]
+

(4.2.66)

NI∑

i,j=1

∑

G,G+q 6=0

4πZiZj
V (G + q)2

e−(G+q)2/(4η2)
(
uε(i) · (G + q)

)(
uλ(j) · (G + q)

)
e−i(G+q)·(Ri−Rj)

Finally, ∂2U
∂λ−q∂εq

is simply the sum of the terms in Eqs. 4.2.65 and 4.2.66.

4.3 Implementation details

In this section, we explicitly show how most first-order quantities are calculated either in

real or reciprocal space, on the standard grid. In the following, it is important to note
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that we use the concept of generalised collective perturbation. For instance, in the case

of atom displacements, perturbation ε displaces all atoms, with atom I being displaced

along the unit vector uε(I), itself scaled by a weight wε(I). In most plane-wave calculations,

what we call ε(I) is non-zero only for a single atom I at a time, while the weight wε(I) is

1.

4.3.1 Gauge choice

We require a gauge choice such that the following is enforced:

〈ψ̃1λq
i |Ŝ|ψ̃j,q〉 = 〈ψ̃i|Ŝ|ψ̃1λ−q

j,q 〉 (4.3.1)

Therefore, this would mean that the first-order orthonormality constraint

d

dλ−q

〈ψ̃i|Ŝ|ψ̃j,q〉︸ ︷︷ ︸
δijδ0,q

= 〈ψ̃1λq
i |Ŝ|ψ̃j,q〉+ 〈ψ̃i|Ŝ|ψ̃1λ−q

j,q 〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉 = 0 (4.3.2)

would imply that

〈ψ̃1λq
i |Ŝ|ψ̃j,q〉︸ ︷︷ ︸

〈ψ̃1λq
i |Ŝq,q|ψ̃j,q〉

= −1

2
〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉︸ ︷︷ ︸
〈ψ̃i|Ŝ

1λ−q
0,q |ψ̃j,q〉

, (4.3.3)

where in the underbraces we have simply used the phase-factorisation definition. To

obtain this gauge, we apply a perturbation-dependent unitary transform to the wave-

functions:

|ψ̃′i,k[λ]〉 =
∑

j,p

Uik,jp[λ] |ψ̃j,p[λ]〉 (4.3.4)

with the wavefunctions having the form in Eq. 4.2.3, and the unitary transformation

being:

Uik,jp[λ] = δijδk,p + λ−qU
1λ−q

ik,jp + λqU
1λq
ik,jp (4.3.5)

Consequently, the zero-order wavefunctions remain unchanged (ψ̃′ik = ψ̃ik), while the

first-order ones take on the following form:

|ψ̃′ 1λ−q

i,k 〉 = |ψ̃1λ−q

i,k 〉+
∑

j,p

U
1λ−q

ik,jp |ψ̃j,p〉

〈ψ̃′ 1λq
i,k | = 〈ψ̃1λq

i,k |+
∑

j,p

(
U

1λq
ik,jp

)†
〈ψ̃j,p| (4.3.6)
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Thus, by expanding Eq. 4.3.1 using the definitions in Eqs. 4.3.5 and 4.3.6, we get:

〈ψ̃1λq
i |Ŝ|ψ̃j,q〉+

∑

n,k

〈ψ̃nk|Ŝ|ψ̃jq〉︸ ︷︷ ︸
δnjδk,q

(
U

1λq
i0,nk

)†
− 〈ψ̃i|Ŝ|ψ̃1λ−q

j,q 〉 −
∑

n,k

〈ψ̃i|Ŝ|ψ̃n,k〉︸ ︷︷ ︸
δinδ0k

U
1λ−q

jq,nk = 0 ,

(4.3.7)

resulting into the final condition for the unitary wavefunction transformation

U
1λ−q

jq,i0 −
(
U

1λq
i0,jq

)†
= 〈ψ̃1λq

i |Ŝq,q|ψ̃j,q〉 − 〈ψ̃i|Ŝ|ψ̃1λ−q

j,q 〉 (4.3.8)

4.3.2 Periodicity of q-dependent projectors

We can deduce the overlap between a NGWF and a q-dependent projector through two

different methods, both of them utilising reciprocal space representations. Thus, we first

calculate the overlap by using the mathematical definition of the q-dependent projectors,

which are still required to have the cell periodicity:

〈φα|p̃iq〉 = 〈φα|e−iq·r|p̃i〉 =

∫
φ∗a(r) e−iq·r p̃i(r) dr =

∑

G,G′

∫
e−iG·rφα(G)∗ e−iq·r eiG

′·(r−Ri)

p̃i(G′) dr =
∑

G,G′

δG′,q+G φα(G)∗ e−iG
′·Ri p̃i(G′) =

∑

G

φα(G)∗e−i(q+G)·Ri p̃i(q + G)

(4.3.9)

In the first line we have simply used the Fourier expansion of both φα(r) and p̃i(r),

which we know to have the periodicity of the simulation cell. G,G′ are multiples of the

reciprocal-space lattice vectors. The phase factor containing Ri simply translates the

projector to the corresponding atom (PAW sphere) location.

For the second method, we must first construct a cell-periodic q-dependent projector by

calculating its Fourier expansion coefficients:

p̃iq(G) =

∫
e−iG·rp̃iq(r) dr =

∫
e−i(q+G)·rp̃i(r) dr =

∑

G′

∫
e−i(q+G)·r eiG

′·(r−Ri) p̃i(G′) dr =

∑

G′

δG′,q+Ge
−iG′·Ri p̃i(G′) = e−i(q+G)·Ri p̃i(G + q) (4.3.10)

Consequently, the second expression for the NGWF-projector overlap is:

〈φα|p̃iq〉 =

∫
φ∗α(r) p̃iq(r) dr =

∑

G,G′

∫
e−iG·r φα(G)∗ eiG

′·r p̃iq(G′) dr =
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∑

G

φα(G)∗ p̃iq(G) =
∑

G

φα(G)∗e−i(q+G)·Ri p̃i(q + G) (4.3.11)

It is clear that the results of Eqs. 4.3.9 and 4.3.11 are identical, meaning that we can

certainly think of the q-dependent projectors as having the periodicity of the simula-

tion cell. This exact same approach also applies to the q-dependent multipole moments

Q̂ab,q(r).

4.3.3 First-order (phase-factorised) atom-centred quantities

The first example is that of a projector perturbed by εq. In the following, Ia denotes the

atom of projector a, RIa the position of atom Ia from the cell origin, s(a) is the species

of projector a, while R′ is a multiple of the real-space lattice vector.

p̃a 1εq(r) = e−iq·rp̃a 1εq(r) = e−iq·r
∑

R′

eiq·R
′ ∂

∂εR′
p̃a(r−R′) = e−iq·r

∑

R′

eiq·R
′
uε(Ia)·

(
− ∂

∂r

)
p̃a(r−R′) = −

∑

R′

e−iq·(r−R′) uε(Ia) ·
∂

∂r
p̃a(r−R′)

︸ ︷︷ ︸
(4.3.12)

The term above the brace clearly has the periodicity of the simulation cell, since it is

invariant to a translation r → r + R. We can therefore apply a forward and backward

Fourier transform upon that term:

p̃a 1εq(r) = −
∑

G

eiG·r
∫ ∑

R′

e−iG·r
′
e−iq·(r

′−R′) uε(Ia) ·
∂

∂r′
p̃a(r′ −R′) dr′ (4.3.13)

If we perform a change in variable r′′ = r′ −R′, we obtain:

p̃a 1εq(r) =−
∑

G

eiG·r
∑

R′

e−iG·R
′

︸ ︷︷ ︸
1

∫
e−i(q+G)·r′′ uε(Ia) ·

∂

∂r′′
p̃a(r′′) = (4.3.14)

−
∑

G

eiG·r
∫
e−i(q+G)·r′′ uε(Ia) ·

∂

∂r′′

[
1

N

∑

G′

eiG
′·(r′′−RIa )p̃s(a)(G′)

]
dr′′

In the first line of Eq. 4.3.14 we used the fact that G · R′ is a multiple of 2π, and in

the second line we simply expressed the periodic function p̃a(r′′) as an inverse Fourier

transform; as in the previous subsection, the presence of RIa in the phase factor displaces

the projector atom to the cell origin. Consequently, we reach the final expression:

p̃a 1εq(r) =−
∑

G,G′

iuε(Ia) ·G′ eiG·r
∫
ei(G

′−q−G)·r′′ dr′′

︸ ︷︷ ︸
∝ δG′,q+G

e−iG
′·RIa p̃s(a)(G′) ∝
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− iwε(Ia)
V

N

∑

G

eiG·r

[
(q + G)ε(Ia) e

−i(q+G)RIa p̃s(a)(q + G)

]
, (4.3.15)

where (q+G)ε(Ia) is a component (along the perturbation direction) of vector q+G. This

expression is very easy to calculate by using the current ONETEP subroutines designed

for integration by summing Fourier components, with the simple addition that one uses

q + G instead of just G.

More importantly, this exact approach can be applied to the first-order multipole mo-

ments on the standard grid:

Q̂
1εq
ab (r) ∝ −iwε(Ia)

∑

G

eiG·r

[
(q + G)ε(Ia) e

−i(q+G)RIa (gLSLM)s(a)(q + G)

]
, (4.3.16)

where [gLSLM ](q + G) is simply a Fourier coefficient of the product between the atom-

centred radially dependent shape function and the associated real spherical harmonic.

This can also be applied to the first-order phase-factorised pseudo-core charges ρ̃c, with

an added sum over atoms:

ρ̃
1εq
c (r) ∝

∑

I

(−iwε(I))
V

N

∑

G

eiG·r

[
(q + G)ε(I) e

−i(q+G)RI ρ̃s(I)c (q + G)

]
(4.3.17)

4.3.4 Second-order projectors

∂2

∂λ−q∂εq
p̃a(r) =

∑

R,R′

e−iq·R
∂2

∂λR∂εR′
p̃a(r) eiq·R

′
(4.3.18)

However, due to the strict localisation of the PAW sphere, if one applies perturbations

λR and εR′ in the case of R 6= R′ (i.e. different cells), the result would be 0. Thus, one

is restricted to R = R′, meaning:

∂2

∂λ−q∂εq
p̃a(r) =

∑

R,R′

e−iq·R
∂2

∂λR∂εR′
p̃a(r) eiq·R

′
δR,R′ =

∑

R

∂2

∂λR∂εR
p̃a(r)

− wε(Ia)wλ(Ia)
V

N

∑

G

Gε(Ia)Gλ(Ia)e
iG·(r−RIa ) p̃s(a)(G) (4.3.19)

where to obtain the second line we have used an almost identical approach as in Eq. 4.3.15,

with the difference that q = 0. This implies that second-order rigid perturbations need

to be calculated only once, at q = 0. As before, this method can be duplicated in the

case of core (and pseudo-core) charges, multipole moments and other quantities that are

rigidly perturbed on the standard grid.
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4.3.5 First-order (phase-factorised) Hartree potential

The most accessible method of obtaining the phase-factorised first-order Hartree potential

is to manipulate its Fourier coefficients. Therefore:

v
1εq
H [ρ](r) =e−iq·rv

1εq
H [ρ](r) = e−iq·r

d

dεq

∫
ρ(r′)

|r′ − r| dr′ = e−iq·r
∫
ρ1εq(r′)

|r′ − r| dr′ =

e−iq·r
∫
eiq·r

′
ρ1εq(r′)

|r′ − r| dr′ =

∫
eiq·(r

′−r)

|r′ − r|
∑

G

eiG·r
′
ρ1εq(G) dr = (4.3.20)

∑

G

eiG·r
∫
eiq·∆r

|∆r| e
iG·∆r d∆r

︸ ︷︷ ︸
4π

(G+q)2

ρ1εq(G) =
∑

G

eiG·r
4πρ1εq(G)

(G + q)2

︸ ︷︷ ︸
v
1εq
H [ρ](G)

This expression is very similar to what one would use to calculate the ground-state Hartree

potential, with the difference that q 6= 0 and instead of ρ1εq(G) one would have ρ(G).

It is worth noting the term in which G + q = 0 produces a divergence and is therefore

skipped.

4.3.6 First-order (phase-factorised) XC potential

For q = 0 (where phase factorisation is not relevant), we express the first-order exchange-

correlation potential as:

v1λ0
XC [ρ̃+ ρ̂+ ρ̃c](r) =

∫
δvXC[ρ̃+ ρ̂+ ρ̃c](r)

δ
(
ρ̃(r′) + ρ̂(r′) + ρ̃c(r′)

)
︸ ︷︷ ︸

fXC(r,r′)

(
ρ̃1λ0(r′) + ρ̂1λ0(r′) + ρ̃1λ0

c (r′)

)
dr′

(4.3.21)

We note that this form does not apply for q 6= 0. The analytical form of the exchange-

correlation kernel fXC(r, r′) would involve modifying all the currently-implemented XC

functionals to contain the derivative of the potential with respect to the density. More-

over, such an analytical formula would produce an irregular behaviour for small densities.

Therefore, under the assumption that the XC potential is local (fXC(r, r′) = fXC(r, r′)δr,r′)

we adapt the approach of T. Zuehlsdorff [109] to use a central finite-differencing approach

for the first-order XC potential:

v1λ0
XC [ρ̃+ ρ̂+ ρ̃c](r) =

1

2δ

{
vXC

[
ρ̃+ ρ̂+ ρ̃c + δ

(
ρ̃1λ0 + ρ̂1λ0 + ρ̃1λ0

c

)]
(r)− (4.3.22)
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vXC

[
ρ̃+ ρ̂+ ρ̃c − δ

(
ρ̃1λ0 + ρ̂1λ0 + ρ̃1λ0

c

)]
(r)

This locality approximation is suitable for LDA and GGAs without Hartree-Fock ex-

change.

As a last note, we have used the term v
1λ−q

eff in Eqs. 4.2.28 and 4.2.29. In this context,

this is now defined to be:

v
1λ−q

eff (r) = v
1λ−q

H [ρ̃Zc ] + v
1λ−q

H [ρ̃+ ρ̂](r) + v
1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r) (4.3.23)

4.3.7 Integrals

In many situations we have integrals of the form
∫
A∗(r)e−iq·r B(r) dr, where A(r) and

B(r) have the cell periodicity, and one can also have q = 0 or q→ −q. These integrals

are best calculated in reciprocal space, as follows:

∫
A∗(r)e−iq·r B(r) dr =

∑

G,G′

∫
e−iG·rA∗(G) e−iq·reiG

′·r B(G′) dr = (4.3.24)

∑

G,G′

δG′,q+G A∗(G) B(G′) =
∑

G

A∗(G)B(q + G) ,

where if A(r) is real, one has A∗(G) = A(−G)

4.4 Adapting to NGWF format

4.4.1 Preliminaries

Since ONETEP uses a localised orbital (NGWF) basis, we adopt the same framework

to the linear-response phonons formalism. In doing so, we shall depart significantly

from any other linear-response implementation, treading into novel territory. Firstly, we

cannot use the eigenvalues themselves (in Eq. 4.2.38), as their calculation would ruin the

linear-scaling operation. We thus use the Schrödinger equation to express:

εi |ψ̃i〉 = Ŝ−1H̃ |ψ̃i〉 (4.4.1)
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Furthermore, it will be useful to redefine the out-of-valence projector (Eq. 4.2.32) as a

product between a “conduction” density kernel and the overlap operator:

P̂c q,q = K̂c q,qŜq,q , (4.4.2)

with the valence equivalent being:

P̂v q,q =
∑

j

|ψ̃j,q〉 〈ψ̃j,q| Ŝq,q = K̂v q,qŜq,q , (4.4.3)

We note that in ONETEP, the valence NGWFs (|φα〉) are optimised to represent only the

valence manifold, but they cannot guarantee an accurate representation of higher-energy

states. Therefore, a separate set of “first-order” NGWFs is needed to describe the optimal

subspace of perturbed states. Henceforth, the first-order and valence NGWFs are {δφ}
and {φ}, respectively. While it seems intuitive to represent Kc only in the first-order

NGWF basis |δφα〉, this scheme would not ensure the idempotency of Kc (similarly to

the valence density kernel in Eq. 2.1.6). The solution [109] for this is to use a joint basis

{θ} consisting of the union between the response and valence NGWFs {δφ} ∪ {φ}.

The first step is to define the inverse q-dependent overlap operator (θ superscript implies

a joint-NGWF representation) as:

Ŝ−1
q,q = |θα〉

(
Sθ−1

q,q

)αβ
〈θβ| , (4.4.4)

with Sθ−1
q,q being the inverse matrix of Sθq,q. We can test that this is indeed valid by

applying Ŝ−1
q,qŜq,q to a NGWF |θγ〉:

Ŝ−1
q,qŜq,q |θγ〉 = |θα〉

(
Sθ−1

q,q

)αβ
〈θβ| Ŝq,q |θγ〉 = |θα〉

(
Sθ−1

q,q

)αβ(
Sθq,q

)
βγ︸ ︷︷ ︸

δαγ

= |θγ〉 , (4.4.5)

making it clear that Ŝ−1
q,qŜq,q = 1̂. From Eqs. 4.4.2 and 4.2.32, we can deduce that the

operator K̂c q,q has this form:

K̂c q,q = Ŝ−1
q,q

[
Ŝq,q − Ŝq,q

∑

k

|ψ̃k,q〉 〈ψ̃k,q| Ŝq,q

]
Ŝ−1

q,q (4.4.6)

Therefore, by expanding the inverse overlap (as in Eq. 4.4.4) and density (Eq. 2.1.4)

operators, one can obtain the q-dependent out-of-valence projector in NGWF represen-

tation:

Kθ
c q,q =

(
Sθq,q

)−1 −
(
Sθq,q

)−1
Sθφq,qKq,qSφθq,q

(
Sθq,q

)−1

, (4.4.7)
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where we calculate the valence density kernel at q (Kq,q) in a non-selfconsistent manner

from quantities (such as NGWFs or q-dependent Hamiltonian) already obtained during

the ground state calculation at Γ. The essential point about this kernel is that it should

obey the idempotency condition:

Kq,qSq,qKq,q = Kq,q (4.4.8)

Moreover, the conduction-projector operator itself is expressed as:

K̂c q,q = |θα〉
(
Kθ
c q,q

)αβ
〈θβ| , (4.4.9)

where from now on we assume an implicit summation over Greek indices, and the lack of

any q index implies that the quantity is calculated at q = 0. An identical approach can

be taken for the valence projector, yielding:

Kθ
v q,q =

(
Sθq,q

)−1
Sθφq,qKq,qSφθq,q

(
Sθq,q

)−1

, (4.4.10)

with:

K̂v q,q = |θα〉
(
Kθ
v q,q

)αβ
〈θβ| , (4.4.11)

First, let us check that the “out-of-valence” kernel projects out of the valence manifold

at the q wavevector:

Kθ
c q,qSθφq,qKq,q =

[(
Sθq,q

)−1 −
(
Sθq,q

)−1
Sθφq,qKq,qSφθq,q

(
Sθq,q

)−1]
Sθφq,qKq,q = (4.4.12)

(
Sθq,q

)−1

Sθφq,qKq,q −
(
Sθq,q

)−1

Sθφq,q Kq,qSφθq,q

(
Sθq,q

)−1

Sθφq,qKq,q

︸ ︷︷ ︸
Kq,qSq,qKq,q

=

(
Sθq,q

)−1

Sθφq,qKq,q −
(
Sθq,q

)−1

Sθφq,qKq,q = O

where for the last equality we have used the idempotency of Kq,q (Eq. 4.4.8) on the braced

terms. Similarly, it can be proven that the “out-of-valence” kernel is also idempotent,

i.e. Kθ
c q,qSθq,qKθ

c q,q = Kθ
c q,q, meaning that our chosen NGWF-representation for this

projector (Eq. 4.4.7) is indeed valid.

For simplicity, quantities in a purely valence (φ) representation have no θ or φ index, but

the superscript θφ suggests a combined joint-valence representation:

(
Sθφq,q

)
αβ

= 〈θα| Ŝq,q |φβ〉 =

∫
θ∗α(r)φβ(r) dr +

∑

a,b

〈θα|p̃aq〉Oab 〈p̃bq|φβ〉 , (4.4.13)
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The next quantity of interest from Eq. 4.2.38 is |ψ̃1λq
i 〉 〈ψ̃i| =

(
|ψ̃i〉 〈ψ̃1λq

i |
)†

. Since for the

ground-state one has
∑

i |ψ̃i〉 〈ψ̃i| = |φα〉Kαβ 〈φβ|, we can define a response kernel P 1λq θφ

which describes the changes of the molecular orbital coefficients under perturbation:

N/2∑

i

|ψ̃1λq
i 〉 〈ψ̃i| = |θα〉

(
P 1λq θφ

)αβ
〈φβ| and

N/2∑

i

|ψ̃i〉 〈ψ̃1λq
i | = |φβ〉

(
P 1λq θφ

)† αβ
〈θα|

(4.4.14)

Since ψ̃
1λq
i has been explicitly defined to have the periodicity of the simulation cell, it is

reasonable to represent it using joint NGWFs (θ) which also have the periodicity of the

simulation cell. The spin factor (2 for spin-unpolarised systems) will always be explicitly

provided separately. It is intuitive to express the response kernel in a mixed joint-valence

representation, as it represents the “transition” of a ground-state valence electron into

an excited state induced by a perturbation. A similar approach is used in the ONETEP

linear-response TDDFT module [109].

As a last note, the only contra-variant quantities that we will need are the density kernel

terms Kαβ,
(
Kθ
c q,q

)αβ
,
(
Kθ
v q,q

)αβ
, and

(
P 1λq θφ

)αβ
, and the inverse overlap matrices

(
Ŝ−1

)αβ
,
(
Ŝ−1

q,q

)αβ
, and

(
Ŝθ −1

q,q

)αβ
.

4.4.2 Gauge choice constraint

The previously derived Sternheimer equation (Eq. 4.2.38) implicitly assumes that the

response wavefunction obeys the parallel transport gauge (Eq. 4.2.36). Therefore, we

must also explicitly represent the gauge choice in NGWF format. To make use of the

definitions in the previous subsection, some steps need to be applied to Eq. 4.2.36:

1. Apply Ŝq,q |θβ〉 to the right

2. Apply 〈φα|S̃|ψ̃i〉 to the left

3. Sum over i, the wavefunction band index

The resulting equation, in which we have color-coded terms related to the response wave-

function (red) and the unperturbed wavefunction (blue), is thus:

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃1λq
i | Ŝq,q |θβ〉 −

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃1λq
i | P̂ †c q,qŜq,q︸ ︷︷ ︸

Ŝq,qK̂c q,qŜq,q

|θβ〉+
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1

2

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃i| Ŝ1λ−q

0,q K̂v q,qŜq,q |θβ〉 = (4.4.15)

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃1λq
i |Ŝq,q|θβ〉 −

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃1λq
i |Ŝq,q|θη〉 (Kθ

c q,q)ηρ
(
Sθq,q

)
ρβ

+

1

2

∑

i

〈φα|Ŝ|ψ̃i〉 〈ψ̃i|Ŝ1λ−q

0,q |θη〉 (Kθ
v q,q)ηρ

(
Sθq,q

)
ρβ

=

Sαγ
(
P 1λq θφ

)† γδ(
Sθq,q

)
δβ
− Sαγ

(
P 1λq θφ

)† γδ(
Sθq,q

)
δη

(
Kθ
c q,q

)ηρ(
Sθq,q

)
ρβ

+

1

2
SαγK

γδ
(
S

1λ−q φθ
0,q

)
δη

(
Kθ
v q,q

)ηρ(
Sθq,q

)
ρβ

= 0

where
(
S

1λ−q φθ
0,q

)
δη

= 〈φδ|Ŝ1λ−q

0,q |θη〉. By applying S−1 to the left and Sθ −1
q,q to the right

of Eq. 4.4.15, while requiring that the response kernel is invariant to a right-hand side

projection on the valence manifold (ensuring the orthonormality of the valence wave-

functions in Eq. 4.4.14), we obtain the matrix-representation of the gauge choice in the

NGWF formalism:

(
P1λq θφ

)†
= KS

(
P1λq θφ

)†
Sθq,qKθ

c q,q −
1

2
KSK︸ ︷︷ ︸

K

S
1λ−q φθ
0,q Kθ

v q,q , (4.4.16)

where KSK = K is the idempotency condition for the valence density kernel at Γ

(Eq. 2.1.6). Note the difference between P1λq θφ and P1λq θφ: as in the case of the valence

density-kernel, we first optimise an auxiliary response kernel P1λq θφ that is afterwards

forced to obey the gauge constraint through Eq. 4.4.16, thus finally obtaining the true

response kernel P1λq θφ. This last form is the one used to build the densities, potentials,

and Hamiltonian operators (both zero-order and first-order).

4.4.3 Variational second-order energy

The most difficult part in converting the variational second-order energy (Eq. 4.2.22) to

NGWF format is dealing with the terms quadratic in first-order wavefunctions. For the

variational form we will only need the diagonal perturbations d2

dλ−qdλq
ETOT, which greatly

simplifies our task. We thus note the following:

Tr
{

P1λq θφSP1λq θφ †Hθ
q,q

}
=
(
P 1λq θφ

)αγ
Sγδ

(
P 1λq θφ

)† δβ(
Hθ

q,q

)
βα

=

N/2∑

i

N/2∑

j

〈ψ̃i| Ŝ |ψ̃j〉︸ ︷︷ ︸
δij

〈ψ̃1λq
j | H̃q,q |ψ̃1λq

i 〉 =

N/2∑

i

〈ψ̃1λq
i | H̃q,q |ψ̃1λq

i 〉 (4.4.17)
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and

Tr
{

P1λq θφHP1λq θφ †Sθq,q

}
=
(
P 1λq θφ

)αγ
Hγδ

(
P 1λq θφ

)† δβ(
Sθq,q

)
βα

=

N/2∑

i

N/2∑

j

〈ψ̃i| H̃ |ψ̃j〉︸ ︷︷ ︸
εiδij

〈ψ̃1λq
j | S̃q,q |ψ̃1λq

i 〉 =

N/2∑

i

εi 〈ψ̃1λq
i | Ŝq,q |ψ̃1λq

i 〉 (4.4.18)

Since H̃q,q and Ŝq,q are hermitian, εi is real, and |ψ̃1λq
i 〉

†
= 〈ψ̃1λq

i | (where † implies the

conjugate transpose), it is clear that the terms in Eqs. 4.4.17 and 4.4.18 are real. These

expressions match the quadratic terms in the variational second-order energy, apart from

the spin factors. Thus, remembering that the first-order Lagrange multipliers in Eq. 4.2.22

disappear in the parallel-transport gauge, one obtains the NGWF-form of the variational

second-order energy (s = 2 is the spin factor for spin-unpolarised systems):

d2 EVar

dλ−qdλq

= sTr

{
K

[
Aλ−qλq −HS−1S2λ−qλq

]}
+ 2sTr

{
P1λq θφS

(
P1λq θφ

)†
Hθ

q,q

}
−

2sTr

{(
P1λq θφH

(
P1λq θφ

)†
Sθq,q)

}
+ 2sTr

{
(
H

1λ−q

0,q

)φθ
P1λq θφ

}
+ 2sTr

{(
P1λq θφ

)†(
B
λq
q,0

)θφ
}
−

2sTr

{
P1λq θφHS−1

(
S

1λ−q

0,q

)φθ
}
− 2sTr

{
(
S

1λ−q

0,q

)φθ †
S−1H

(
P1λq θφ

)†
}

+ (4.4.19)

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃
1λq
c (r) dr +

∫
vXC [ρ̃+ ρ̂+ ρ̃c](r)

∂2ρ̃c
∂λ−q∂λq

(r) dr +
∂2 U

∂λ−qλq

+

2sTr

{
∂
−→
E

∂λ0

·
[−→
Dθφ

(
P 1λ0 θφ

)†
+
−→
DφθP 1λ0 θφ

]}
δq,0

We remind the reader that Âλ−qλq is defined in Eq. 4.2.28, B̂
1λq
q,0 in Eq. 4.2.29, and H̃

1λ−q

0,q

in Eq. 4.2.46. In the previous equation, terms in red have no dependence on the first-order

NGWFs.

4.4.4 Sternheimer Equation

We obtain the Sternheimer equation (Eq. 4.2.38) in the NGWF framework by minimis-

ing the variational second-order energy (Eq. 4.4.19) with respect to the auxiliary re-

sponse kernel P 1λqθφ. Therefore, one first needs to replace the response kernel P 1λqθφ

from Eq. 4.4.19 with the gauge constraint expression that contains the auxiliary version

(Eq. 4.4.16). Furthermore, all first-order density terms depend on the adjoint P 1λqθφ †
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(Eqs. 4.2.8 and 4.4.14), and it is standard practice to consider P 1λqθφ as independent of

P 1λqθφ † in variational problems. Thus, the minimisation of the variational second-order

energy
δ

δ
(
P 1λqθφ

)αβ
d2 EVar

dλ−qdλq

= 0 (4.4.20)

yields the sought-after Sternheimer equation in matrix format:

SKS

(
P1λqθφ

)†
Sθq,qKθ

c q,qHθ
q,qKθ

c q,qSθq,q − SKH

(
P1λqθφ

)†
Sθq,q Kθ

c q,qSθq,qKθ
c q,q︸ ︷︷ ︸

Kθ
c q,q

Sθq,q =

− SKH
1λ−q φθ
0,q Kθ

c q,qSθq,q + HKS
1λ−q φθ
0,q Kθ

c q,qSθq,q − SK
(
δq,0

∂
−→
E

∂λ0

·Dφθ
)
Kθ
c q,qSθq,q

(4.4.21)

Within the minimisation, we have also used Kq,qSφθq,qKθ
c q,q = Kq,qHφθ

q,qKθ
c q,q = 0, due

to the orthogonality between the valence and “out-of-valence” manifolds at wave-vector

q.

We can apply S−1 from the left without changing the result, but a right-hand side sim-

plification requires more thought. If we were to apply the inverse overlap in the joint

NGWF-basis Sθ −1
q,q from the right, we would essentially mix elements from the zero-order

and first-order NGWF vector-spaces, which has proven to be devastating on the optimi-

sation of first-order NGWFs δφ. Thus, one needs to project in disjoint NGWF manifolds

by multiplying with a block-diagonal matrix:
[(
Sδφq,q

)−1
0

0 S−1
q,q

]
(4.4.22)

By applying the aformentioned matrix to the right, as well as a conjugate transpose

operation on the entire object, we end up with the final form of the Sternheimer equation,

which takes a generalised Sylvester form:

AθXθφB + CθXθφD = Eθφ
fixed + Eθφ

variable︸ ︷︷ ︸
Eθφ

, (4.4.23)

with

Xθφ = P1λ−q θφ Aθ =

[(
Sδφq,q

)−1
Sδφθq,q

S−1
q,qSφθq,q

]
Kθ
c q,qHθ

q,qKθ
c q,qSθq,q B = SK

Cθ = −
[(

Sδφq,q
)−1

Sδφθq,q

S−1
q,qSφθq,q

] [(
Sδφq,q

)−1
Sδφθq,q ; S−1

q,qSφθq,q

]
Kθ
c q,qSθq,q D = SKHK (4.4.24)
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Eθφ
fixed =

[(
Sδφq,q

)−1
Sδφθq,q

S−1
q,qSφθq,q

]
Kθ
c q,q

(
S

1λ−q φθ
0,q

)†
S−1HK−

[(
Sδφq,q

)−1
Sδφθq,q

S−1
q,qSφθq,q

]
Kθ
c q,q

(∂−→E
∂λ0

· −→D θφ
)
Kδq,0

Eθφ
variable = −

[(
Sδφq,q

)−1
Sδφθq,q

S−1
q,qSφθq,q

]
Kθ
c q,q

(
H

1λ−q φθ
0,q

)†
K

It is thus clear that we optimise the auxiliary response kernel P1λ−q θφ. Matrix Eθφ
fixed

does not require self-consistency, but Eθφ
variable depends self-consistently on the response

kernel P1λ−q θφ (obtained from P1λ−q θφ) through H
1λ−q φθ
0,q . Note that

−→
E is the external

electric field (if present at all), while
−→D θφ (Eq. 4.5.14) is the vector of dipole matrices, in

joint-valence NGWF representation.

We stress that Eq. 4.4.23 is highly non-standard, and is not encountered in traditional-

DFT formalisms for linear-response phonons. The reason for this unique formulation

comes from the need to eliminate explicit eigenvalues in a linear-scaling DFT formalism;

in turn, this determines the appearance of matrices B and D (Eq. 4.4.24). If the latter

were both the identity matrix, Eq. 4.4.23 could have been solved through a standard

conjugate-gradient approach. However, it turns out that we need to employ a quasi-

Newton optimisation approach to solve for Xθφ, as explained in Section 4.6.

4.4.5 Non-variational second-order energy

By transforming Eqs. 4.2.42 and 4.2.45 into a NGWF-basis formulation, one easily ob-

tains:

d2 ENon-var

dλ−qdεq
= sTr

{
K

[
Aλ−qεq −HS−1S2λ−qεq

]}
+ 2sTr

{(
P1λq θφ

)†
(Bεq)θφq,0

}
−

2sTr

{
(S1εq)θφq,0 S−1H

(
P1λq θφ

)†
}

+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃
1εq
c (r) dr+ (4.4.25)

∫
vXC [ρ̃+ ρ̂+ ρ̃c](r)

∂2ρ̃c
∂λ−q∂εq

(r) dr +
∂2 U

∂λ−qεq
+ 2sTr

{
∂
−→
E

∂ε0
· −→Dθφ

(
P1λ0 θφ

)†
}
δq,0+

1

2
sTr

{
KHS−1

(
S

1λq
q,0

)θφ †
Kθ
v q,q

(
S

1εq
q,0

)θφ
}

+
1

2
sTr

{
K
(
S

1λq
q,0

)θφ †
Sθ −1

q,q Hq,qKθ
v q,q

(
S

1εq
q,0

)θφ
}
−

sTr

{
K
(
H

1λ−q

0,q

)φθ
Kθ
v q,q

(
S

1εq
q,0

)θφ
}
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4.4.6 First-order NGWF gradient

Apart from solving for the response kernel, we also need to optimise the first-order NG-

WFs δφ, as one needs both components to obtain the first-order wavefunction. The de-

pendence of the variational second-order energy (Eq. 4.4.19) on δφ comes in two flavours:

explicit (through matrices in the joint set θ representation) and implicit (through first-

order densities). Thus, for clarity, we calculate the different gradient components sepa-

rately. Varying the energy with respect to 〈θ| implies

|
(
gθ
)η〉 =

δ

δ 〈θη|

[
d2ETOT

dλ−qdλq

]
= |
(
gθIMP

)η〉+ |
(
gθEXP

)η〉 (4.4.26)

For the remainder of this section, when the superscript “1λ−q” appears above a position-

dependent quantity (such as a density or potential), it implies that perturbation d
dλ−q

has

been applied. When a matrix element has that superscript, it only means that the oper-

ator associated to the matrix was perturbed, i.e.
(
H

1λ−q θφ
0,q

)
αβ

= 〈θα|H̃1λ−q

0,q |φβ〉.

Implicit terms

|
(
gθIMP

)η〉 =sKβα
δA

λ−qλq
αβ

δ 〈θη|
+ 2s

(
P 1λq θφ

)† αβ 〈θβ|
δ B̂

λq
q,0

δ 〈θη|
|φα〉+

2s 〈φα|
δH

1λ−q

0,q

δ 〈θη|
|θβ〉

(
P 1λq θφ

)βα
+ 2s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B̂
λq
q,0 |φα〉+ (4.4.27)

2s 〈φα| H̃1λ−q

0,q

δ |θβ〉
(
P 1λq θφ

)βα

δ 〈θη|
+

∫
δv

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
ρ̃

1λq
c (r′) dr′ ,

where we have implicitly used the variation chain rule:

δ

δ 〈θη|
(
P 1λq θφ †B

λq θφ
q,0

)α
α

=
δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B̂
λq
q,0 |φα〉+

(
P 1λq θφ

)† αβ 〈θβ|
δ B̂

λq
q,0

δ 〈θη|
|φα〉 ,

(4.4.28)

but the variation of contra-variant matrix elements, such as
(
P 1λq θφ

)αβ
is more complex

and will be discussed later.

By looking at the definitions of the Aλ−qλq and B
λq
q,0 operators in the main text (Eqs.

4.2.28 and 4.2.29 where ε was replaced with λ), as well as the form of H̃
1λ−q

0,q in Eq. 4.2.46,



4.4. Adapting to NGWF format 83

one can expand this gradient component as:

|
(
gδφIMP

)η〉 =s
∑

a,b

Kαβ 〈φβ|p̃a〉 〈p̃b|φα〉
∫
δṽ

1λ−q

eff (r′)

δ 〈θη|
Q̂

1λq
ab (r′) dr′ + s

∑

a,b

Kαβ
[
〈φβ|p̃a 1λq〉 〈p̃b|φα〉+

〈φβ|p̃b 1λq〉 〈p̃a|φα〉
]δD1λ−q

ab

δ 〈θη|
+ 2s 〈φα|

δṽ
1λ−q

eff (r′)

δ 〈θη|
|θβ〉

(
P 1λq θφ

)βα
+ (4.4.29)

2s
∑

a,b

〈φα|p̃a〉 〈p̃bq|θβ〉
δD

1λ−q

ab

δ 〈θη|
(
P 1λq θφ

)βα
+

∫
δv

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
ρ̃

1λq
c (r′) dr′+

2s
δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B
λq
q,0 |φα〉+ 2s 〈φα|H1λ−q

0,q

δ |θβ〉
(
P 1λq θφ

)βα

δ 〈θη|︸ ︷︷ ︸
=0

By remembering the definitions of the zero-order and first-order projector density-kernel

ρab 1λ−q (Eq. 4.2.10), as well as the first-order pseudo-density (Eq. 4.2.7), we can coalesce

some terms into a simpler expression:

|
(
gδφIMP

)η〉 =

∫
δṽ

1λ−q

eff (r′)

δ 〈θη|
[
ρ̃1λq(r′) +

∑

a,b

ρabQ̂
1λq
ab (r′)

]
dr′ +

∫
δv

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
ρ̃

1λq
c (r′) dr′+

∑

a,b

ρab 1λq
δD

1λ−q

ab

δ 〈θη|
+ 2s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B̂
λq
q,0 |φα〉 (4.4.30)

We can make further simplifications by observing that the first-order pseudo-potential

ṽ
1λ−q

H [ρ̃Zc ] has no dependence on θ, implying:

δṽ
1λ−q

eff (r′)

δ 〈θη|
=
δṽ

1λ−q

H [ρ̃+ ρ̂](r′)

δ 〈θη|
+
δṽ

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
(4.4.31)

Lastly, we can expand D
1λ−q

ab as described in Sec. 4.2.5:

δ

δ 〈θη|
D

1λ−q

ab =
δ

δ 〈θη|
{∫ [

ṽ
1λ−q

eff (r′)Q̂ab,q(r′) + ṽeff(r′)Q̂
1λ−q

ab (r′)
]

dr′ +D
1λ−q

H ab +D
1λ−q

XC ab

}
=

∫
δṽ

1λ−q

eff (r′)

δ 〈θη|
Q̂ab,q(r′) dr′ +

δ

δ 〈θη|
[
D

1λ−q

H ab +D
1λ−q

XC ab

]
(4.4.32)

However, by looking at the expression of D
1λ−q

H ab and D
1λ−q

XC ab in Sec. 4.2.5, it is clear that

their sum can be expressed as a tensor contraction
∑

i,j ρ
ij 1λ−q tijab, meaning that

∑

a,b

ρab 1λq
δ

δ 〈θη|
[
D

1λ−q

H ab +D
1λ−q

XC ab

]
=
∑

a,b,i,j

ρab 1λq
δρij 1λ−q

δ 〈θη|
tijab = (4.4.33)

∑

i,j

δρij 1λ−q

δ 〈θη|
[
D

1λq
H ij +D

1λq
XC ij

]
=
∑

a,b

δρab 1λ−q

δ 〈θη|
[
D

1λq
H ab +D

1λq
XC ab

]
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By applying Eqs. 4.4.31, 4.4.32, 4.4.33 to the implicit NGWF gradient (Eq. 4.4.30) we

arrive at:

|
(
gδφIMP

)η〉 =

∫
δṽ

1λ−q

H [ρ̃+ ρ̂](r′)

δ 〈θη|
[
ρ̃1λq(r′) +

∑

a,b

ρabQ̂
1λq
ab (r′) +

∑

a,b

ρab 1λqQ̂ab,q(r′)

︸ ︷︷ ︸
ρ̂1λq (r′)

]
dr′+

∫
δṽ

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
[
ρ̃1λq(r′) +

∑

a,b

ρabQ̂
1λq
ab (r′) +

∑

a,b

ρab 1λqQ̂ab,q(r′)

︸ ︷︷ ︸
ρ̂1λq (r′)

+ρ̃
1λq
c (r′)

]
dr′+

∑

a,b

δρab 1λ−q

δ 〈θη|
[
D

1λq
H ab +D

1λq
XC ab

]
+ 2s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B
λq
q,0 |φα〉 (4.4.34)

Also, we can expand these first-order Hartree and XC potentials into their kernel expres-

sions (note that the presence or absence of phase factorisation is highly relevant):

ṽ
1λ−q

H [ρ̃+ ρ̂](r′) = eiq·r
′
ṽ

1λ−q

H [ρ̃+ ρ̂](r′) =

eiq·r
′
∫
fH[ρ̃+ ρ̂](r′, r′′)

[
ρ̃1λ−q(r′′) + ρ̂1λ−q(r′′)

]
dr′′ (4.4.35)

ṽ
1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′) = eiq·r

′
ṽ

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′) =

eiq·r
′
∫
fXC[ρ̃+ ρ̂+ ρ̃c](r

′, r′′)
[
ρ̃1λ−q(r′′) + ρ̂1λ−q(r′′) + ρ̃1λ−q

c (r′′)
]

dr′′ ,

where fH/XC is simply the functional derivative of ṽH/XC. Therefore, Eq. 4.4.35 allows us

to rewrite some terms from the implicit gradient as:

∫
δṽ

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
[
ρ̃1λq(r′) + ρ̂1λq(r′) + ρ̃

1λq
c (r′)

]
dr′ =

∫
δṽ

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r
′)

δ 〈θη|
[
ρ̃1λq(r′) + ρ̂1λq(r′) + ρ̃1λq

c (r′)
]

dr′ = (4.4.36)

∫ ∫
fXC[ρ̃+ ρ̂+ ρ̃c](r

′, r′′)
δ[ρ̃1λ−q + ρ̂1λ−q + ρ̃

1λ−q
c ](r′′)

δ 〈θη|
[
ρ̃1λq + ρ̂1λq + ρ̃1λq

c

]
(r′) dr′dr′′ =

∫
ṽ

1λq
XC [ρ̃+ ρ̂+ ρ̃c](r

′′)
δ[ρ̃1λ−q(r′′) + ρ̂1λ−q(r′′) + ρ̃

1λ−q
c (r′′)]

δ 〈θη|
dr′′ =

∫
ṽ

1λq
XC [ρ̃+ ρ̂+ ρ̃c](r

′)
δ[ρ̃1λ−q(r′) + ρ̂1λ−q(r′)]

δ 〈θη|
dr′

where we have implicitly used that δ
δ〈θη | ρ̃

1λ−q
c = 0. An identical procedure can be applied

to the first-order Hartree potential term in Eq. 4.4.34. Thus, we end up with:

|
(
gδφIMP

)η〉 =

∫ [
ṽ

1λq
XC [ρ̃+ ρ̂+ ρ̃c](r

′) + ṽ
1λq
H [ρ̃+ ρ̂](r′)

]δ[ρ̃1λ−q(r′) + ρ̂1λ−q(r′)]

δ 〈θη|
dr′+
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∑

a,b

δρab 1λ−q

δ 〈θη|
[
D

1λq
H ab +D

1λq
XC ab

]
+ 2s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B
λq θφ
q,0 |φα〉 (4.4.37)

Moreover, by expanding the variation of the first-order densities as

δρ̃1λ−q(r′′)

δ 〈θη|
= 2s 〈r′′|φα〉

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

|r′′〉 (4.4.38)

and

δρ̂1λ−q(r′′)

δ 〈θη|
=
∑

a,b

[δρab 1λ−q

δ 〈θη|
Q̂ab,−q(r′′) + ρab

δQ̂
1λ−q

ab (r′′)

δ 〈θη|︸ ︷︷ ︸
0

]
=
∑

a,b

δρab 1λ−q

δ 〈θη|
Q̂ab,−q(r′′) ,

(4.4.39)

one obtains

|
(
gδφIMP

)η〉 = 2s
δ(P 1λq θφ)† αβ 〈θβ|

δ 〈θη|
[
ṽ

1λq
H + ṽ

1λq
XC

]
|φα〉+ 2s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

B
λq
q,0 |φα〉+

∑

a,b

δρab 1λ−q

δ 〈θη|
[ ∫ (

ṽ
1λq
H (r′) + ṽ

1λq
XC (r′)

)
Q̂ab,−q(r′) dr′ +D

1λq
H ab +D

1λq
XC ab

]
(4.4.40)

By expressing the variation of the first-order projector density kernel (Eq. 4.2.11):

δρab 1λ−q

δ 〈θη|
= s

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

[
|p̃bq〉 〈p̃a|+ |p̃aq〉 〈p̃b|

]
|φα〉 (4.4.41)

one finally obtains:

|
(
gδφIMP

)η〉 =s
δ(P 1λq θφ)† αβ 〈θβ|

δ 〈θη|

{
2ṽ

1λq
H + 2ṽ

1λq
XC + 2B̂

λq
q,0 +

∑

a,b

(
|p̃bq〉 〈p̃a|+ |p̃aq〉 〈p̃b|

)

[∫ (
ṽ

1λq
H (r′) + ṽ

1λq
XC (r′)

)
Q̂ab,−q(r′) dr′ +D

1λq
H ab +D

1λq
XC ab

]}
|φα〉 (4.4.42)

However, a keen observer can see that the operators marked by red are actually identical

to 2
(
H̃

1λ−q

0,q

)†
(see the form of B̂

λq
q,0 in Eq. 4.2.29), leaving us with a compact and simple

form for the implicit NGWF gradient terms:

|
(
gδφIMP

)η〉 = 2s
δ(P 1λq θφ)† αβ 〈θβ|

δ 〈θη|
(
H̃

1λ−q

0,q

)† |φα〉 (4.4.43)

In an almost identical manner, one can prove that the complex conjugate of the implicit

gradient (obtained through δ
δ|θη〉) is:

〈
(
gδφIMP

)η| = 2s 〈φα| H̃1λ−q

0,q

δ |θβ〉 (P 1λq θφ)βα

δ |θη〉
(4.4.44)
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Explicit terms

The remaining term of the gradient, containing only explicit dependencies of the joint

NGWFs θ, can be easily obtained as:

|
(
gδφEXP

)η〉 =2s
δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

[
H̃q,q |θγ〉

(
P 1λq θφS

)γ
α
− Ŝq,q |θγ〉

(
P 1λq θφH

)γ
α
+

∂
−→
E

∂λ0

·
−→̂
D |φα〉 δq,0 −

(
S

1λ−q

0,q

)† |φγ〉
(
S−1H

)γ
α

]
(4.4.45)

Total gradient

By combining the explicit and implicit forms of the first-order NGWF gradient, we obtain

the rather compact expression:

|
(
gδφEXP

)η〉 =2s
δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

[
H̃q,q |θγ〉

(
P 1λq θφS

)γ
α
− Ŝq,q |θγ〉

(
P 1λq θφH

)γ
α
+

∂
−→
E

∂λ0

·
−→̂
D |φα〉 δq,0 +

(
H̃

1λ−q

0,q

)† |φα〉 −
(
S

1λ−q

0,q

)† |φγ〉
(
S−1H

)γ
α

]
(4.4.46)

In order to obtain
δ
(
P 1λq θφ

)† αβ
〈θβ |

δ〈θη | , we turn to the gauge constraint relation (Eq. 4.4.16),

along with the expression for the conduction kernel (Eq. 4.4.7) and the identity operator

in the joint basis (|θα〉
(
Sθ −1

)αβ
〈θβ| Ŝ = 1̂):

δ
(
P 1λq θφ

)† αβ 〈θβ|
δ 〈θη|

=
[
KS
(
P 1λq θφ

)†]αη −
[
KS
(
P 1λq θφ

)†]αη
Ŝq,q |φµ〉Kµν

qq 〈φν |

(4.4.47)

where we have approximated the auxiliary response kernel P 1λq θφ to be independent of

the joint basis θ. By defining a matrix Xq,0 as:

Xq,0 αβ =
[(
H

1λ−q

0,q

)†
+Hφθ

q,qP
1λq θφS − Sφθq,qP

1λq θφ H +
∂
−→
E

∂λ0

· −→Dδq,0 −
(
S

1λ−q

0,q

)†
S−1H

]
αβ
,

(4.4.48)

we can plug Eqs. 4.4.47 and 4.4.48 into the total gradient expression (Eq. 4.4.46) and

obtain the final expression for the total contra-variant gradient:
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|
(
gθ
)η〉 = 2s H̃q,q |θα〉

(
P 1λq θφS

(
P 1λq θφ

)†
)αη

+ 2s S̃q,q |θα〉
(
− P 1λq θφHKS

(
P 1λq θφ

)†
)αη

+

2s Ŝq,q |φα〉
(
−Kq,qXq,0KS

(
P 1λq θφ

)†
)αη

+ 2s
(
Ŝ

1λ−q

0,q

)† |φα〉
(
− S−1HKS

(
P 1λq θφ

)†
)αη

+

2s
(
H̃

1λ−q

0,q

)† |φα〉
[
KS
(
P 1λq θφ

)†]αη
+ 2s

∂
−→
E

∂λ0

·
−→̂
D |φα〉

[
KS
(
P 1λq θφ

)†]αη
δq,0 (4.4.49)

The conjugate gradient 〈
(
gθ
)η| can be obtained in exactly the same manner as outline

above, and it turns out that it is unsurprisingly equal to |
(
gθ
)η〉†. Note the use of both

the auxiliary response kernel P 1λq θφ and the gauge-constrained response kernel P 1λq θφ

in Eq. 4.4.49.

In order to update the first-order NGWFs, one needs the covariant gradients 〈r|
(
gθ
)
η
〉

and 〈r|
(
gθ
)
η
〉†, which are obtained directly from the previously discussed contra-variant

ones. Therefore, we aim to update the basis functions as:

θ′(r) = θ(r) +
[
gθη(r) + (gθ †η (r))†

]
∆ = θ(r) + 2 gθη(r)∆ , (4.4.50)

where ∆ is a line step. The individual covariant gradients (for each NGWF subset in the

joint set) are obtained as gδφη (r) =
(
gδφ
)µ

(r)
(
S
δφ
q,q

)
µη

and gφη (r) =
(
gφ
)µ

(r)
(
Sq,q

)
µη

.

However, the difficulty lies in the fact that we cannot update all the functions in the

θ = {δφ, φq} set, but only the {δφ} subset. Therefore, in order to get to the global solution

faster, we need to use a covariant gradient that fully compensates for the change in the

first-order waverunction, while only modifying {δφ}. For this, one requires that:

|φ+ gφη∆〉
(
P 1λq φφ

)ηα
+ |δφ+ gδφη ∆〉

(
P 1λq δφφ

)ηα ≈

|φη〉
(
P 1λq φφ

)ηα
+ |δφη + gδφ

′

η ∆〉
(
P 1λq δφφ

)ηα
(4.4.51)

The exact solution to this predicament is to define the equivalent covariant gradient for

the first-order NGWFs {δφ} as:

|gδφ′η 〉 = |
(
gδφ
)µ〉
(
Sδφq,q

)
µη

+ |
(
gφ
)µ〉
(
Sq,q

)
µν

(
P 1λq φφ

)να([
P 1λq δφφ

]−1)
αη
≈ (4.4.52)

|
(
gδφ
)µ〉
(
Sδφq,q

)
µη

+ |
(
gφ
)µ〉
(
Sq,q

)
µν

(
P 1λq φφ

)να
Sαη ,

where we have used the approximation on the last line simply because we do not have

access to the inverse of the P 1λq δφφ component of the auxiliary response kernel. Thus,
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we can employ this approximation such that only {δφ} is modified, leaving the joint set

{θ} as a common ground between first-order {δφ} and valence NGWFs {φ}.

4.4.7 Perturbation basis transformation

Throughout the first-order wavefunction optimisation, if we perturb only one atom, we

risk having zero-valued response NGWFs (Sec. 4.4.6) far away from the perturbation,

which would lead to failures in the inversion of overlap matrices. Therefore, it is more

efficient to perturb all the NGWFs at once, and initialise them with (the negative of)

the rigid real-space gradient of the valence orbitals ∂φα(r)
∂r

. In order to achieve this, one

needs to transform the perturbation basis from a 1-atom 1-direction scheme (with weight

1) to an all-atoms 1-direction scheme, (with various weighting factors). For instance, the

force-constant matrix would transform as

ΦΛiΛj
= (OΛ←λ)ikΦλkλl(Oλ←Λ)lj , (4.4.53)

where λi are perturbation-basis row-vectors in the 1-atom 1-direction scheme, Λi are

vectors in the all-atoms 1-direction approach, and O is the transformation matrix of

size 3Natoms × 3Natoms. Analytically, we have the advantage that the 1-atom 1-direction

perturbation-basis vectors are actually simply unit vectors, with only one non-zero quan-

tity in their 3Natoms entries. Thus, we have:




λ1

λ2

...

λ3Natoms


 = I3Natoms , (4.4.54)

where I3Natoms is the identity matrix. Consequently, since we know that the inverse

transformation matrix is defined as:

Oλ←Λ =




λ1

λ2

...

λ3Natoms



(
ΛT

1 |ΛT
2 |...|ΛT

3Natoms

)
, (4.4.55)

it is clear that the transformation matrix from the λ-basis to the Λ-basis can be defined

as

OΛ←λ =
(
ΛT

1 |ΛT
2 |...|ΛT

3Natoms

)−1
(4.4.56)
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Thus, it is practical to calculate the force-constant matrix in the compound Λ basis;

if we require the force-constant matrix in the 1-atom 1-direction basis, we can simply

transform back by using:

Φλiλj = O−1
ik ΦΛkΛl

Olj , (4.4.57)

The only remaining difficulty is to construct this transformation matrix O. Our reasoning

was that only the relative atom movements are relevant, since the studied systems will be

periodic, so the vibrational frequencies are independent of cell translations. Thus, moving

a certain atom by one unit in a direction is equivalent to moving the same atom by 0.5

units in the same direction, while moving all the others 0.5 units in the opposite direction.

Therefore, as discussed in the beginning of the subsection, we manage to perturb all the

ions at once, allowing for an efficient initialisation of the first-order NGWFs.

We have found that other seemingly equivalent approaches, such as products of rotation

matrices, produce perturbation weights that vary significantly in magnitude between

ions. While in principle a linear transformation should not affect the results at all, the

NGWF CG optimisation induces a non-linear component. Therefore, the best transfor-

mation matrices are those that result in weights with similar absolute values for all moved

atoms.

Lastly, we note that QuantumEspresso [105, 106, 107] also utilises collective atom move-

ments, but it determines the weights by first performing a symmetry analysis to approx-

imate the vibrational mode coefficients.

4.5 Polarisation for periodic systems

In this section we describe the theoretical formalism that has allowed us to calculate

the dipole operator D̂ and its associate quantities in the expression for the second-order

energy (Eq .4.4.19).

4.5.1 Zeroth-order

As starting point we use the account of Kudin et al. [110] on the modern theory of

polarisation in systems with local orbitals (such as our NGWFs), to which we have also
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added PAW correction terms. Thus, the polarisation vector is defined as:

P = PI − s
V

(2π)3
(γ1 − γ2) , (4.5.1)

where s is the spin factor, V is the cell volume, and PI is the ion-induced polarisa-

tion:

PI =
∑

i

Zi(Ri −Rc) , (4.5.2)

with Rc =
∑

j RjZj/
∑

l Zl being a reference position which we call the centre of ionic

charge.

Starting with γ2, it is described by:

γ2 = i

N/2∑

n

∫

BZ

dkM † µ
n (k)Sµν(k)

d

dk
Mν

n(k) = −Im
{

ln

Nk∏

j=1

det
[
M †(kj)S(kj)M(kj+1)

]}

(4.5.3)

In the previous expression, Mν
n(k) are molecular-orbital elements obtained from the def-

inition of the pseudo-eigenvector (R are multiples of the real-space lattice vectors):

ψ̃n,k(r) =
∑

R

eik·Rφν(r−R)Mν
n(k) (4.5.4)

If one recalls that Ŝ is the PAW overlap operator (Eq. 2.2.6), Oab is the partial-wave

overlap (Eq. 2.2.6), and if we define φR
ν (r) to be the duplicate of φν(r) in a periodic cell

displaced by R from the origin, then the overlap matrix between the NGWFs is:

Sµν(k) =
∑

R

eik·R 〈φµ|Ŝ|φR
ν 〉 =

∑

R

eik·R
[ ∫

φ∗µ(r)φν(r−R) dr+

∑

a,b

(∫
φ∗µ(r)p̃a(r) dr

)
Oab

(∫
p̃b(r′)φν(r

′ −R)dr′
)]

(4.5.5)

Also, Nk is the number of discretised k-points in the Brillouin Zone (BZ), meaning that

kNk+1 = k1. This offers us relief in the case of Γ-point sampling only (where Nk = 1 and

k = 0), because it implies that:

γ2 = −Im
{

ln det
[
M †(0)S(0)M(0)

]}
= −Im

{
ln det

[
Id
]}

= 0 , (4.5.6)

where we have used the orthonormality of the wavefunctions belonging to the same k-

point. Thus, for Γ-point calculations, the γ2 contribution is of no concern.
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As for γ1, one has:

γ1 =

N/2∑

n

∫

BZ

dkM † µ
n (k)

[∑

R

eik·R
(
Z0R
µν −RS0R

µν

)]
Mν

n(k) , (4.5.7)

where R is once again a multiple of lattice vectors. We also require the definitions

S0R
µν = 〈φµ|Ŝ|φR

ν 〉 =

∫
φµ(r)φν(r−R) dr+

∑

a,b

(∫
φµ(r)p̃a(r) dr

)
Oab

(∫
p̃b(r′)φν(r

′ −R)dr′
)

(4.5.8)

and

Z0R
µν = 〈φµ|τ̂ †(r−Rc)τ̂ |φR

ν 〉 =

∫
φµ(r)(r−Rc)φν(r−R) dr +

∑

a,b

{∫
φµ(r)p̃a(r) dr

[
〈ϕa|(r−Rc)|ϕb〉 − 〈ϕ̃a|(r−Rc)|ϕ̃b〉

] ∫
p̃b(r′)φν(r

′ −R)dr′

}
= (4.5.9)

−RcS
0R
µν +

∫
φµ(r) r φν(r−R) dr +

∑

a,b

{∫
φµ(r)p̃a(r) dr

[
〈ϕa|r|ϕb〉 − 〈ϕ̃a|r|ϕ̃b〉

)∫
p̃b(r′)φν(r

′ −R)dr′

}

where r is the position vector with respect to the cell origin. However, for practical

implementation purposes we wish to have the NGWFs from outside the original cell

being as the “bra” term. Thus, by switching the NGWFs around in Eq. 4.5.8, we clearly

see that S0R
µν = SR0

νµ at the Γ point (where orbitals are real):

SR0
νµ = 〈φR

ν |Ŝ|φµ〉 =

∫
φν(r−R)φµ(r) dr+

∑

a,b

(∫
φν(r−R)p̃a(r) dr

)
Oab

(∫
p̃b(r′)φµ(r′)dr′

)
(4.5.10)

Similarly, Z0R
µν = ZR0

νµ . Furthermore, the ONETEP implementation of overlaps between

NGWFs is based on the dissociation of r into rµ + RFFT
µ , where rµ is with respect to

center of function (FFT box) µ, while RFFT
µ is the position of the function (FFT box)

with respect to the cell origin. Similarly, in the integral between partial waves, r is split

into RI(b) + rb, where RI(b) is the position of the associated atom, while rb is with respect

to the center of that atom. Consequently, one has

ZR0
νµ =−RcS

R0
νµ + RFFT

µ

∫
φν(r−R)φµ(r) dr +

∫
φν(r−R) rµ φµ(r) dr+ (4.5.11)
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∑

a,b

RI(b)

(∫
φν(r−R)p̃a(r) dr

)
Oab

(∫
p̃b(r′)φµ(r′)dr′

)
+

∑

a,b

∫
φν(r−R)p̃a(r) dr

[
〈ϕa|rb|ϕb〉 − 〈ϕ̃a|rb|ϕ̃b〉

] ∫
p̃b(r′)φµ(r′)dr′

However, it is clear that ZR0
νµ terms do not have any explicit phase associated to the cell

in which the calculation is done, so we can use the existing ONETEP subroutines and

simply calculate:

Zνµ =
∑

R

ZR0
νµ = −RcSνµ + RFFT

µ 〈φν |φµ〉+ 〈φν |rµ|φµ〉+
∑

I

RI

∑

a,b∈I

〈φν |p̃a〉Oab 〈p̃b|φµ〉+

∑

I

∑

a,b∈I

〈φν |p̃a〉
(
〈ϕa|rb|ϕb〉 − 〈ϕ̃a|rb|ϕ̃b〉

)
〈p̃b|φµ〉 (4.5.12)

Considering that we only utilise the Γ-point ground state wavefunctions, meaning that

the eigenvectors (Mn) are real and that Kµν = Kνµ is real and symmetric, one finally

has:

P =
∑

I

ZI(RI −Rc)− s
[
Zνµ −

∑

R

RSR0
νµ

]
Kµν (4.5.13)

Fortunately, due to the fact that the NGWFs cannot exceed the simulation cell size, we

can limit the sum over R to only the nearest neighbours (i.e. 27 terms, out of which most

will be 0).

After some manipulation, one can write the polarisation by defining a dipole operator

vector:

D̂ = τ̂ †
[ ∫
|r〉 r 〈r| dr

]
τ̂ −RcŜ −

∑

R

[ ∫
|r−R〉R 〈r| dr

]
Ŝ , (4.5.14)

where τ̂ is the PAW projection operator (Eq. 2.2.1), Ŝ is the PAW overlap operator

(Eq. 2.2.6), Rc is the centre of ionic charge, and R is a multiple of the lattice vectors.

Therefore, we can write the polarisation in an elegant manner:

P =
∑

I

ZI(RI −Rc)− s 〈φν | D̂ |φµ〉Kµν =
∑

I

ZI(RI −Rc)− s
Ne/2∑

i=1

〈ψi| D̂ |ψi〉 (4.5.15)

4.5.2 First-order polarisation: Born charges

The Born charges (ZB
λ0

) are defined as the change in polarisation due to the perturbation

of atoms at q = 0. Starting with the nuclear term, and remembering that the center of
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ionic charge is Rc =
∑

j RjZj/
∑

l Zl, we can show that it is conveniently null:

d

dλ0

∑

i

Zi(Ri −Rc) =
∑

R

Ziuλ(i)wλ(i) −
∑

R

(∑

i

Zi

)∑
j Zjuλ(j)wλ(j)∑

l Zl
= 0 (4.5.16)

where uλ(i) is the direction of perturbation λ that is imposed on atom i, while wλ(i) is

the weight of the aforementioned quantity. Therefore, we are left only with the electronic

term, which in the limiting case of Γ-point ground-state calculations is:

ZB
λ0

= −s d

dλ0

[
Zνµ −

∑

R

RSR0
νµ

]
Kµν = −s

[
Zθφ
νµ−

∑

R

RSR0 θφ
νµ

](
P 1λ0 θφ †

)µν
− (4.5.17)

s
[
Zφθ
νµ −

∑

R

RSR0 φθ
νµ

](
P 1λ0 θφ

)µν
− s
[
Z1λ0
νµ −

∑

R

R
(
S1λ0 R0
νµ

)]
Kµν ,

where the first order terms contain perturbations of the ionic charge center and projec-

tors:

S1λ0 R0
νµ =

∑

I

∑

a,b∈I

(∫
φν(r−R)

∂p̃a(r)

∂λ0(I)
dr
)
Oab

(∫
p̃b(r′)φµ(r′)dr′

)
+

∑

I

∑

a,b∈I

(∫
φν(r−R)p̃a(r) dr

)
Oab

(∫ ∂p̃b(r′)

∂λ0(I)
φµ(r′)dr′

)
(4.5.18)

and

Z1λ0
νµ = −

∑

I

ZI∑
J ZJ

uλ0(I)wλ0(I)Sνµ −RcS
1λ0
νµ +

∑

I

RI

∑

a,b∈I

[
〈φν |

∂p̃a

∂λ0(I)
〉Oab 〈p̃b|φµ〉+

〈φν |p̃a〉Oab 〈
∂p̃b

∂λ0(I)
|φµ〉

]
+
∑

I

∑

a,b∈I

[
〈φν |

∂p̃a

∂λ0(I)
〉
(
〈ϕa|rb|ϕb〉 − 〈ϕ̃a|rb|ϕ̃b〉

)
〈p̃b|φµ〉+

〈φν |p̃a〉
(
〈ϕa|rb|ϕb〉 − 〈ϕ̃a|rb|ϕ̃b〉

)
〈 ∂p̃b

∂λ0(I)
|φµ〉

]
+
∑

I

uλ0(I)wλ0(I)

∑

a,b∈I

〈φν |p̃a〉Oab 〈p̃b|φµ〉

(4.5.19)

4.5.3 First-order polarisation: electric field perturbation

In the case of electric field perturbations, the formula for the first-order polarisation is

the one described in Eq. 4.5.17, with the only difference that Z1ε0
νµ = 0 and S1ε0 R0

νµ = 0

(i.e. D̂1ε0 = 0), as no projectors or ions are moved:

dP

dε0
=− s 〈θν | D̂ |φµ〉

(
P 1ε0 θφ

)† µν
− s 〈φν | D̂ |θµ〉

(
P 1ε0 θφ

)µν
= (4.5.20)
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−
Ne/2∑

i=1

fi 〈ψ1ε0
i | D̂ |ψi〉 −

Ne/2∑

i=1

fi 〈ψi| D̂ |ψ1ε0
i 〉

Since in the derivation of the Sternheimer Equation for electric field perturbations (Eq. 4.2.38)

we need the ∂

∂〈ψ̃1ε0
i |

of the previously-derived first-order polarisation, it is clear from

Eq. 4.5.20 that:

∂

∂ 〈ψ̃1ε0
i |

dP

dε0
= −fiD̂ |ψ̃i〉 , (4.5.21)

where D̂ was defined in Eq. 4.5.14. Notice that we have only considered q = 0 since this

is the only q-vector needed to obtain the dielectric matrix.

4.6 Solving for the response kernel

In this section we elaborate on how we solve the equation governing the auxiliary response

kernel (Xθφ in Eq. 4.4.23). As previously explained, this takes the form of a generalised

Sylvester equation, with the added complication that Eθφ also depends on the auxiliary

response Xθφ.

Our algorithm combines elements from a number of works by Chehab et al. [111, 112, 113]

and other authors [114, 115, 116, 117, 118, 119]. However, we warn the readers that in

Ref. [113] there are several mistakes, which have been corrected in this thesis. We start

by defining a linear matrix operator:

F(Xθφ) = A(Xθφ)− Eθφ , (4.6.1)

with

A(Xθφ) = AθXθφB + CθXθφD , (4.6.2)

where the involved matrices have been defined in Eq. 4.4.23 and 4.4.24. By optimising

the response kernel we aim to minimise the residual of the equation F(Xθφ) = 0, or

equivalently, the square of the Frobenius norm of F(Xθφ):

f(Xθφ) = ||F(Xθφ)||2F = 〈 F(Xθφ),F(Xθφ) 〉 = Tr
{[
F(Xθφ)

]†F(Xθφ)
}

(4.6.3)

The adjoint of a linear operator (A†) is generally defined such that 〈A†(X),X〉 = 〈X,A(X)〉.
By applying that in the context of the article of Chehab et al. [113], we can extend his
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formula for the gradient of f(Xθφ) to the case of complex matrices, thus obtaining:

∇f(Xθφ) = 2Re
[(

Aθ
)†
F(Xθφ) B† +

(
Cθ
)†
F(Xθφ) D†

]
. (4.6.4)

This gradient will be useful in the line-search formula of the algorithm.

Since we aim for the linear-response phonon formalism to be as fast as possible, we are

required to find a suitable preconditioning strategy for our algorithm. Thus, by using the

Newton method, the iterations take the form:

Xθφ
k+1 = Xθφ

k − αkλk F ′(Xθφ
k )
−1F(Xθφ

k )︸ ︷︷ ︸
Zθφk

, (4.6.5)

where F ′(Xθφ
k ) is the Fréchet (i.e. a generalised) derivative of F at Xθφ

k , Zθφ
k is the

preconditioned search direction, αk is a back-tracking constant (as explained later) and

λk is the line step, as proposed by Glunt et al. [116] and Luengo et al. [119]:

λk = λk−1

∣∣∣∣∣
〈Zθφ

k−1,F(Xθφ
k−1)〉

〈Zθφ
k−1,F(Xθφ

k )−F(Xθφ
k−1)〉

∣∣∣∣∣ (4.6.6)

Since analytically inverting the Fréchet derivative is not an option, we must build a

suitable approximation to the search direction Zθφ
k .

4.6.1 Preconditioned and constrained search direction

Using the approach of Chehab et al. [112, 113], the preconditioned direction is the steady

state of:
dZθφ

k

dt
= F(Xθφ

k )−F ′(Xθφ
k )Zθφ

k , (4.6.7)

obtainable through a time marching scheme. Thus, we approximate F ′(Xθφ
k )Zθφ

k through

a finite-differencing scheme, but the result turns out to be independent of any infinitesimal

differencing parameter τ :

F ′(Xθφ
k )Zθφ

k =
F(Xθφ

k + τZθφ
k )−F(Xθφ

k )

τ
= A(Zθφ

k ) (4.6.8)

Therefore, the ordinary differential equation (ODE) that needs to be solved is:

dZθφ
k

dt
= F(Xθφ

k )−A(Zθφ
k ) = F(Xθφ

k − Zθφ
k ) , (4.6.9)

for which we employ the “Enhanced-Cauchy 2” time marching scheme [113]:
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1. Given the old search direction Zθφ
k−1, copy it to a temporary matrix Yθφ

1

2. For p = 1, Nprec (Nprec is the maximum number of preconditioning iterations), define

Gθφ
k,p = F

(
Xθφ
k −Yθφ

p

)
and do:

• Calculate A
(
Gθφ
k,p

)
, A2

(
Gθφ
k,p

)
= A

(
A
(
Gθφ
k,p

))
and A3

(
Gθφ
k,p

)

• Calculate the following set of real parameters:

a = Re 〈A
(
Gθφ
k,p

)
,A
(
Gθφ
k,p

)
〉 b = Re 〈A2

(
Gθφ
k,p

)
,A2

(
Gθφ
k,p

)
〉

c = Re 〈A3
(
Gθφ
k,p

)
,A3

(
Gθφ
k,p

)
〉 d = Re 〈A

(
Gθφ
k,p

)
,Gθφ

k,p〉

e = Re 〈A2
(
Gθφ
k,p

)
,Gθφ

k,p〉 f = Re 〈A3
(
Gθφ
k,p

)
,Gθφ

k,p〉

g = Re 〈A2
(
Gθφ
k,p

)
,A
(
Gθφ
k,p

)
〉 µ = Re 〈A3

(
Gθφ
k,p

)
,A
(
Gθφ
k,p

)
〉

ν = Re 〈A3
(
Gθφ
k,p

)
,A2

(
Gθφ
k,p

)
〉

• Advance one time step:

Mθφ
1 = Gθφ

k,p = F(Xθφ
k −Yθφ

p )

Mθφ
2 = F(Xθφ

k −Yθφ
p −∆tMθφ

1 )

Mθφ
3 = F(Xθφ

k −Yθφ
p −∆tMθφ

2 )

Yθφ
p+1 = Yθφ

p +
3∑

i=1

βi∆tM
θφ
i

where

∆t =
−µνe− gνf + µfb+ dν2 − dcb+ gce

g2c+ µ2b− acb+ aν2 − 2µνg

β1 =
νf − ν∆tµ+ ∆t2ν2 −∆t2bc− ec+ ∆tgc

−∆t2bc+ ∆t2ν2

β2 = −∆tνf − µ∆t2ν −∆tec+ ∆t2gc− fb+ ∆tµb+ νe− ν∆tg

−∆t3bc+ ∆t3ν2

β3 = 1− β1 − β2

These expressions for these quantities (∆t, β1, β2, β3) can be demonstrated by

minimising the norm of the updated residual with respect to their values.

3. When the iterations are finished, Yθφ
Nprec

becomes the new preconditioned direction

Zθφ
k+1
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4.6.2 The full algorithm

We can now present the full algorithm for solving the generalised Sylvester equation

of Eq. 4.4.23, and we will comment afterwards on some of the steps involved and the

parameters used.

For k = 1, N (N is the maximum number of iterations), do:

1. Update Eθφ, as a part of it depends on the response kernel. For this one first needs

to construct the response kernel P1λ θφ from the auxiliary kernel Xθφ by using

4.4.16, and then utilise P1λ θφ to rebuild the first-order densities and first-order

hamiltonian H
1λ−q

0,q . Construct F(Xθφ
k ), f(Xθφ

k ) and ∇f(Xθφ
k ), according to Eqs.

4.6.1, 4.6.3, and 4.6.4. If
√
f(Xθφ

k ) is sufficiently small the calculation is converged

and the algorithm is stopped.

2. If k = 1, the line step is λk = λ0.

3. If k > 1, use Eq. 4.6.6 to determine the line-step λk. Check if λk ∈ [σmin;σmax]; if

not, set λk to be equal to the closest of σmin and σmax.

4. Build the preconditioned direction Zθφ
k , using the steps from subsection 4.6.1.

5. Set the initial value of the backtracking parameter α = α0

6. Start the backtracking procedure:

• If |f(Xθφ
k −λkαZθφ

k )| < |f(Xθφ
k )−γαλk 〈∇f(Xθφ

k ),Z〉 | then set αk = α, Xθφ
k+1 =

Xθφ
k − λkαkZθφ

k , λk = λkαk and move onto k = k + 1.

• Else, quadratically interpolate the backtracking parameter:

αnew =
λk
2

α2| 〈∇f(Xθφ
k ),Zθφ

k 〉 |
|f(Xθφ

k − αλkZθφ
k )− f(Xθφ

k ) + λkα 〈∇f(Xθφ
k ),Zθφ

k 〉 |

– If (αnew < τ1α) and (αnew > τ2α), set α = αnew and repeat step 6

– Else, if the interpolation fails, set α = α/2 and repeat step 6

Some clarifications are in order. In step 3, we make sure that the determined spectral

line step is within certain limits ([σmin, σmax] = [10−3, 103]). While in our tests the line
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step seems to be quite stable, and far away from the limits, one cannot guarantee that

this will always be the case.

In step 5, the initial value of the backtracking parameter (α0) is usually set to 1 in

literature [113, 119]. Lastly, step 6 represents the backtracking procedure, inspired by

the non-monotone line search technique of Grippo et al. [117]. This checks if the current

line-step not only ensures that the residual decreases (f(Xθφ
k − λkαZθφ

k ) < f(Xθφ
k )), but

that it decreases by more than |γαλk 〈∇f(Xθφ
k ),Z〉 |, where we found the optimal value

of the dampening parameter γ to be γ = 10−4. This condition is also called the sufficient-

decrease condition.

4.7 Validation tests

In order to verify the validity of the implementation, we have utilised our code to simulate

the vibrational properties of molecules and crystals.

For the molecular system, we have chosen a simple ethene dimer (C2H4), which was

simulated using LDA in a cubic cell of 30.0 bohr lateral size, and which was optimised

until forces were smaller than 10−4 a.u/bohr (≈ 5 · 10−3 eV/Å). We have employed both

norm-conserving (NC) and projector-augmented-wave (PAW) potentials (Garrity et al.

[70]), a 800 eV kinetic energy cutoff, NGWFs of 10.0 bohr radius (one for each H, four

for each C).

First, we tested the behaviour of our novel response kernel optimisation (section 4.6). For

this, we observed how the response kernel convergence (i.e. decrease in residual
√
f(Xθφ)

from Eq. 4.6.3) is affected by the number of preconditioning iterations. In the left inset

of Fig. 4.1 one can easily observe the linear convergence behaviour of the quasi-Newton

algorithm, enabled by our preconditioning scheme. The number of preconditioning steps

seems to be more important for smaller residuals, but as little as 10 preconditioning steps

are enough to ensure a well-defined behaviour. The right inset of Fig. 4.1 shows the

conjugate gradient (CG) algorithm used for the optimisation of the first-order NGWFs.

Due to the much larger variational freedom, it first exhibits linear behaviour but quickly

becomes sublinear near convergence. The reason for this mildly suboptimal behaviour



4.7. Validation tests 99

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20

√

f
(X

)

ITERATIONS

Nprec=2

Nprec=5

Nprec=10

Nprec=1

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 2 4 6 8 10 12 14

R
M
S

ITERATIONS

PAW CG

NC CG

Figure 4.1: Left inset: residual minimisation for quasi-Newton algorithm used in the

response kernel optimisation, as a function of the number of preconditioning loops. Right

inset: root mean square (RMS) minimisation for conjugate-gradient algorithm used in

first-order NGWF optimisation, for PAW and NC pseudopotentials.

was explained at the end of Sec. 4.4.6.

Concerning the vibrational frequencies, in Table 4.1 we have compared our results with

an equivalent norm-conserving linear-response phonon calculation performed with the

CASTEP plane-wave code [120, 121]. We also include a ONETEP finite-difference phonon

calculation, with displacements of 0.1 bohr. We have not included rotational and vibra-

tional frequencies (six in total for molecules), since they have been projected out through

the acoustic sum rules for the dynamical matrix

∑

k′

Dkα,k′β(q = 0) = 0 (4.7.1)

and the Born charges
∑

k

ZB
kαβ = 0 (4.7.2)

where k, k′ are atoms, and α, β are perturbation directions. These rules ensure that

the vibrational properties of a system are not affected by global translations or possibly

rotations (depending on system dimensionality). We also show a graphical representation

of the phonons density of states in Fig. 4.2. It is clear that our linear-response results

for both NC and PAW cases match very well both the finite-differencing benchmark of

ONETEP, as well as the CASTEP linear-response results. Lastly, in table 4.2, we can



100 Chapter 4. Linear-response phonons

Table 4.1: Vibrational frequencies (in cm−1) for the ethene dimer, obtained from CASTEP

linear-response, ONETEP finite-difference (FD), and ONETEP linear-response (LR)

phonons using NC and PAW pseudopotentials. Acoustic mode frequencies (correspond-

ing to translation and rotations) are projected out through acoustic sum rules. All units

are in cm−1.

Mode CASTEP NC ONETEP FD

NC

ONETEP LR

NC

ONETEP LR

PAW

7 804.52 824.74 816.75 807.27

8 932.01 946.47 939.37 931.11

9 946.18 950.71 943.57 938.89

10 1033.54 1050.53 1033.60 1030.05

11 1192.40 1195.70 1190.77 1180.30

12 1325.99 1332.11 1329.54 1320.10

13 1403.29 1404.69 1405.63 1394.27

14 1641.93 1648.43 1639.42 1647.73

15 3027.28 3039.51 3034.51 3050.77

16 3040.48 3049.48 3047.61 3064.28

17 3106.44 3118.41 3113.70 3129.45

18 3133.87 3147.39 3140.78 3153.97
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Figure 4.2: Vibrational density of states for ethene dimer, using a broadening of 20 cm−1.
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show a direct comparison between the Born charges (Sec. 4.5) obtained with CASTEP

and those obtained by our linear-response calculations - for brevity, only the PAW results

are shown. Clearly, the agreement is once again very good, proving once again that our

code safe to use in molecular systems. Moving onto the periodic crystal system, we have

Table 4.2: Born charges (in é) for the ethene dimer, obtained from CASTEP linear-

response and ONETEP linear-response (LR) phonons with PAW pseudopotentials.

Mode CASTEP ONETEP

1 0.0235 -0.0251 -0.0251 0.0240 -0.0266 -0.0255

2 -0.0607 0.0265 -0.0891 -0.0583 0.0253 -0.0868

3 -0.0494 -0.0870 0.0888 -0.0472 -0.0852 0.0860

4 0.0242 0.0321 0.0142 0.0246 0.0330 0.0154

5 0.0677 0.0207 -0.0852 0.0651 0.0198 -0.0831

6 0.0385 -0.0874 0.0938 0.0365 -0.0855 0.0917

7 0.0242 0.0321 0.0142 0.0246 0.0330 0.0154

8 0.0677 0.0207 -0.0852 0.0651 0.0198 -0.0831

9 0.0385 -0.0874 0.0938 0.0365 -0.0855 0.0917

10 0.0235 -0.0251 -0.0251 0.0239 -0.0266 -0.0254

11 -0.0607 0.0265 -0.0891 -0.0583 0.0253 -0.0868

12 -0.0494 -0.0870 0.0888 -0.0472 -0.0852 0.0860

13 -0.0476 -0.0070 0.0109 -0.0485 -0.0064 0.0101

14 -0.0070 -0.0472 0.1743 -0.0068 -0.0451 0.1699

15 0.0109 0.1744 -0.1826 0.0107 0.1707 -0.1777

16 -0.0476 -0.0070 0.0109 -0.0486 -0.0064 0.0101

17 -0.0070 -0.0472 0.1743 -0.0068 -0.0451 0.1699

18 0.0109 0.1744 -0.1826 0.0108 0.1707 -0.1777

used hexagonal boron nitride (hBN) as test subject, in order to verify the usefulness of

the code in the context of two-dimensional materials. Our cell needed to be larger than

the NGWF diameter; since hBN is well behaved even for small NGWF radii (Sec. 3.1.2),

we have utilised 8.0 bohr NGWFs and a 4×4 supercell. Otherwise, we have used the same

parameters as for the ethene dimer, with the exception that now the cell has a height of

10.0 Å, which is sufficient for avoiding interactions with periodic images. The comparison

between the vibrational frequencies obtained with different methods is shown in Fig. 4.3.

It is clear that the frequencies obtained from ONETEP-FD and CASTEP calculations

are displaced by a few tens of cm−1 due to the inherently non-linear terms present in
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Figure 4.3: Vibrational density of states for a 4×4 hBN supercell, using a broadening of

20 cm−1.

the finite-difference calculation. Moreover, some well defined peaks from the CASTEP

results become split in the ONETEP-FD ones. This is due to the presence of symmetry-

equivalent atoms in the former code, while the latter does not yet have the capability

for symmetry analysis. However, ONETEP-FD does identify a three-fold degeneracy

in the vibrational frequencies of hBN. The linear-response ONETEP calculations much

better with CASTEP than the ONETEP-FD ones, and our linear-response calculation

also identifies the three-fold degeneracy observes in hBN without the need of explicit

symmetry-equivalent atoms. We thus conclude that our code is also suitable for periodic

crystals at q = 0.

Lastly, we note that we have indeed implemented the framework for non-zero phonon

q-wavevectors, electric field perturbations, and acoustic-sum rule enforcement. However,

these capabilities still require extensive testing and debugging, the scope of which is

beyond this thesis.
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Chapter 5

Conclusions

5.1 Two-dimensional heterostructures

As a conclusion to Chapter 3, we have shown that hBN encapsulation does not worsen

the desirable electronic properties of pristine monolayer BP. This offers the prospect of

stable passivated flakes, allowing BP devices to function in ambient conditions [38, 35].

Moreover, hBN spacers can be used to counteract the band gap reduction in stacked

BP, thus improving the efficiency of BP optoelectronic devices in the near-IR range,

and allowing more control over light absorption frequencies. Furthermore, based on the

tunability of the BP/hBN/BP band gap under electric fields, we have proposed and

simulated a tunnelling field effect transistor built from such spaced BP bilayers. Lastly,

different operational modes were identified for this transistor, with applications ranging

from ultra-fast switching to low-power operation, or enormous peak-to-valley ratios as

part of negative differential resistance regimes.

We have also studied TMDC heterostructures, the use of which is more widespread

throughout the 2D-material research community. Our work has proven that LS-DFT

applied to such interfaces can reliably account for bandstructure effects observed with

experimental ARPES [44]. Moreover, our results explicitly show that commensurate

and incommensurate domains coexist in MoSe2/WSe2 heterostructures with low-rotation

angles, effects which can be generalised to other TMDC pairs.

I believe that simulating 2D vertical heterostructures should remain a priority for future

research; there is no danger of running out of candidates, considering that there are

more than 500 layered materials [122], most of which are unexplored. Moreover, the 2D

community is aware that stacking different layers can combine their qualities, so the field

of van-der-Waals heterostructures is unlikely to become outdated in the future.
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5.2 Linear-response phonons

To summarise the second part of the report, we have derived the theoretical details for a

linear-response phonon routine for insulators, using the PAW formalism, in the LS-DFT

framework of the ONETEP code. Due to ONETEP using a basis of localised NGWFs, we

were required to consider innovative methods for optimising the first-order wavefunction,

and for displacing the atoms. While linear-response phonons using PAW has already been

implemented in plane-wave codes, to the best of our knowledge this is the first instance

of such a framework being implemented for localised atomic orbitals, in a linear-scaling

manner.

Even if we have set up an initial working system for linear-response phonons, many im-

provements can still be made in terms of algorithm optimisation, finalising developments

and tests for non-zero wave-vectors and electric-field perturbations, and extension to

third-order energy terms required for Raman spectroscopy. However, the latter terms

would still only require the self-consistent first-order wavefunction, the formalism for

which we have already developed and tested. Therefore, the ONETEP community has

a functional platform to which it can add the remaining non-selfconsistent components

necessary for linear-scaling Raman spectroscopy, of crucial interest to the 2D commu-

nity.
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Appendix A

Variational second-order energy

We split the total contribution into five terms (
d2EEL−iTOT

dλ−qdεq

∣∣∣
λ−q,εq=0

, with i = 1, 5), and

calculate them separately. The first one, dealing with kinetic and local pseudopotential

terms, is:

d2EEL−1
TOT

dλ−q dεq
=

Ne/2∑

i

fi

{
〈ψ̃i
∣∣∣∂

2vH [ρ̃Zc ]

∂λ−q∂εq

∣∣∣ψ̃i〉+ 〈ψ̃1λq
i

∣∣∣∂vH [ρ̃Zc ]

∂εq

∣∣∣ψ̃i〉+ 〈ψ̃i
∣∣∣∂vH [ρ̃Zc ]

∂εq

]∣∣∣ψ̃1λ−q

i 〉+

〈ψ̃1ε−q

i

∣∣∣∂vH [ρ̃Zc ]

∂λ−q

]∣∣∣ψ̃i〉+ 〈ψ̃i
∣∣∣∂vH [ρ̃Zc ]

∂λ−q

]∣∣∣ψ̃1εq
i 〉+ 〈ψ̃1ε−q

i

∣∣∣
[
− 1

2
∇2 + vH [ρ̃Zc ]

]∣∣∣ψ̃1λ−q

i 〉+

〈ψ̃1λq
i

∣∣∣
[
− 1

2
∇2 + vH [ρ̃Zc ]

]∣∣∣ψ̃1εq
i 〉

}
= 2 〈ψ̃1λq

i

∣∣∣
[
− 1

2
∇2 + vH [ρ̃Zc ]

]∣∣∣ψ̃1εq
i 〉

}
+ (A.0.1)

Ne/2∑

i

fi

{
〈ψ̃i
∣∣∣∂

2vH [ρ̃Zc ]

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i

∣∣∣∂vH [ρ̃Zc ]

∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃i
∣∣∣∂vH [ρ̃Zc ]

∂λ−q

]∣∣∣ψ̃1εq
i 〉

The second term acts as a constraint for the orthogonality between wavefunctions of

different bands and k-points:

d2EEL−2
TOT

dλ−q dεq
= − d2

dλ−q dεq

Ne/2∑

i,j=1

∑

k

fiΛijk[λ−q, εq]
[
〈ψ̃i[λ−q, εq]|Ŝ|ψ̃j,k[λ−q, εq]〉 − δijδ0,k

]
=

− d2

dλ−q dεq

Ne/2∑

i,j=1

∑

k

fi

[
Λijk[λ−q, εq]

(
〈ψ̃i|+ λq 〈ψ̃1λ−q

i |+ λ−q 〈ψ̃1λq
i |+ 〈ε−qψ̃

1εq
i |+ 〈εqψ̃

1ε−q

i |
)

Ŝ

(
|ψ̃j,k〉+ λ−q |ψ̃1λ−q

j,k 〉+ λq |ψ̃1λq
j,k 〉+ εq |ψ̃1εq

j,k 〉+ ε−q |ψ̃1ε−q

j,k 〉
)
− δijδ0,k

]
= (A.0.2)

−
Ne/2∑

i,j=1

∑

k

fi

{[
Λ

1λ−q

ijk

(
〈ψ̃j,−k|Ŝ|ψ̃1εq

i 〉+ 〈ψ̃j,−k|Ŝ1εq |ψ̃i〉+ 〈ψ̃i|Ŝ|ψ̃1εq
j,k 〉

d2Λijk

dλ−q dεq

(
〈ψ̃i|Ŝ|ψ̃j,k〉 − δijδ0,k

)
+ Λ

1εq
ijk

(
〈ψ̃1λq

i |Ŝ|ψ̃j,k〉+ 〈ψ̃1λq
j,−k|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃j,k〉

))]
+

+ Λijk

[
〈ψ̃j,−k|Ŝ1λ−q |ψ̃1εq

i 〉+ 〈ψ̃1λq
j,−k|Ŝ|ψ̃

1εq
i 〉+ 〈ψ̃λqi |Ŝ1εq |ψ̃j,k〉+ 〈ψ̃1λq

j,−k|Ŝ1εq |ψ̃i〉+

〈ψ̃1λq
i |Ŝ|ψ̃

1εq
j,k 〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃1εq

j,k 〉+ 〈ψ̃i|Ŝ1λ−q1εq |ψ̃j,k〉
]}
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In the last equality, we have rearranged some terms by using the time-reversal symmetry

of wavefunctions (〈r|ψ̃jk〉 = 〈ψ̃j−k|r〉). The red term is exactly the wavefunction orthonor-

mality condition, meaning that it reduces to zero. Moreover, it can be shown that the

overlap between wavefunctions (both ground-state and perturbed) at different k-points

imposes certain selection rules for k to be either 0, q or −q in this case. Therefore, we

can finally write the second-order energy term as:

d2EEL−2
TOT

dλ−q dεq
= −

Ne/2∑

i,j=1

fi

{
Λ

1εq
ijq

(
〈ψ̃1λq

i |Ŝ|ψ̃j,q〉+ 〈ψ̃1λq
j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉

)
+ (A.0.3)

Λ
1λ−q

ij−q

(
〈ψ̃j,q|Ŝ|ψ̃1εq

i 〉+ 〈ψ̃j,q|Ŝ1εq |ψ̃i〉+ 〈ψ̃i|Ŝ|ψ̃1εq
j,−q〉

)
+ Λij

[
〈ψ̃j|Ŝ1λ−q |ψ̃1εq

i 〉+ 〈ψ̃1λq
j |Ŝ|ψ̃

1εq
i 〉+

〈ψ̃λqi |Ŝ1εq |ψ̃j〉+ 〈ψ̃1λq
j |Ŝ1εq |ψ̃i〉+ 〈ψ̃1λq

i |Ŝ|ψ̃
1εq
j 〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃1εq

j 〉+ 〈ψ̃i|Ŝ1λ−q1εq |ψ̃j〉
]}

By remembering that Λij = εiδij, we obtain:

d2EEL−2
TOT

dλ−q dεq
= −

Ne/2∑

i,j=1

fi

[
Λ

1εq
ijq

(
〈ψ̃1λq
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j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉

)
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Λ
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ij−q

(
〈ψ̃j,q|Ŝ|ψ̃1εq
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)]
−
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i

fiεi

[
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1εq
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]}

Moving on to the third term, we can simplify expressions by omitting perturbed terms

on the atom-centered grid, an approximation which we have previously described in the

main text. Thus, we obtain:

d2EEL−3
TOT

dλ−q dεq
=

d

dλ−q

∑

a,b

{
dρab

dεq
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(A.0.5)

By explicitly performing the second differentiation, one obtains:
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TOT
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Now, we obtain the fourth term in the second-order electronic energy:
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Upon the explicit differentiation of Eq. A.0.7, and by expanding outside the potentials

the augmentation densities (Eq. 4.8) and the compensation density (Eq. 4.9) one ob-

tains:
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ρab 1λ−qQ̂
1εq
ab (r)

)
dr +

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)

(
ρ̃1εq(r)+

∑

a,b

ρab∂Q̂
1εq
ab (r) +

∑

a,b

ρab 1εqQ̂ab(r) + ρ̃1εq
c (r)

)
dr +

∫
vXC[ρ̃+ ρ̂+ ρ̃c](r)

(
d2ρ̃

dλ−qdεq
(r)+

∑

a,b

d2ρab

dλ−qdεq
Q̂ab(r) +

∑

a,b

ρab
∂2Qab

∂λ−q∂εq
(r) +

∑

a,b

ρab 1εqQ̂
1λ−q

ab (r) +
∑

a,b

ρab 1λ−qQ̂
1εq
ab (r)+

∂2ρ̃c
∂λ−q∂εq

(r)

)
dr +

∫

Ω

(
v

1λ−q

H [ρ1](r) + v
1λ−q

XC [ρ1 + ρc](r)

)∑

a,b

ρab 1εqϕa(r)ϕb(r) dr+
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∫

Ω

(
vH [ρ1](r) + vXC[ρ1 + ρc](r)

)∑

a,b

d2ρab

dλ−qdεq
ϕa(r)ϕb(r) dr−

∫

Ω

∑

a,b

ρab 1εq

(
ϕ̃a(r)ϕ̃b(r) + Q̂ab(r)

)(
v

1λ−q

H [ρ̃1 + ρ̂](r) + v
1λ−q

XC [ρ̃1 + ρ̂+ ρ̃c](r)

)
dr−

∫

Ω

(
vH [ρ̃1 + ρ̂](r) + vXC [ρ̃1 + ρ̂+ ρ̃c](r)

)∑

a,b

d2ρ̃ab

dλ−qdεq

(
ϕ̃a(r)ϕ̃b(r) + Q̂ab(r)

)
dr

As for the last term in the second order energy, it is related to the interaction with

external electric fields, if any is present. Moreover, it is only considered for the Gamma

point (q = 0) case. Thus, one has:

d2EEL−5
TOT

dλ0dε0
δq,0 = δq,0

d2

dλ0ε0

Ne/2∑

i=1

fi

(
−−→E · 〈ψ̃i|(−

−→̂
D )|ψ̃i〉

)
= δq,0

d

dλ0

Ne/2∑

i=1

fi

[

∂
−→
E

∂ε0
· 〈ψ̃i|

−→̂
D|ψ̃i〉+

−→
E · 〈ψ̃1ε0

i |
−→̂
D|ψ̃i〉+

−→
E · 〈ψ̃i|

−→̂
D|ψ̃1ε0

i 〉+
−→
E · 〈ψ̃i|

d
−→̂
D
dε0
|ψ̃i〉

]
= (A.0.9)

Ne/2∑

i=1

fi
∂
−→
E

∂ε0
·
[
〈ψ̃1λ0

i |
−→̂
D|ψ̃i〉+ 〈ψ̃i|

d
−→̂
D
dλ0

|ψ̃i〉+ 〈ψ̃i|
−→̂
D|ψ̃1λ0

i 〉
]
δq,0+

Ne/2∑

i=1

fi
∂
−→
E

∂λ0

·
[
〈ψ̃1ε0

i |
−→̂
D|ψ̃i〉+ 〈ψ̃i|

d
−→̂
D
dε0
|ψ̃i〉+ 〈ψ̃i|

−→̂
D|ψ̃1ε0

i 〉
]
δq,0+

Ne/2∑

i=1

fi
−→
E ·

[
〈ψ1λ0

i |
−→̂
D|ψ1ε0

i 〉+ 〈ψ1ε0
i |
−→̂
D|ψ1λ0

i 〉+ 〈ψ1λ0
i |

d
−→̂
D
dε0
|ψi〉+ 〈ψi|

d
−→̂
D
dε0
|ψ1λ0
i 〉+

〈ψ1ε0
i |

d
−→̂
D
dλ0

|ψi〉+ 〈ψi|
d
−→̂
D
dλ0

|ψ1ε0
i 〉+ 〈ψi|

d2
−→̂
D

dλ0dε0
|ψi〉

]
δq,0 +

Ne/2∑

i=1

fi
∂2−→E
∂λ0∂ε0

· 〈ψi|
−→̂
D|ψi〉 δq,0

Some simplifications can be made to the previous relation, however. Since the presence

of an electric field is of interest to us only when we need to obtain the dielectric matrix

(i.e. under electric field perturbations), we can safely assume that, for the time being,

Eq. A.0.9 is nonzero only when λ and ε are electric field perturbations, and not atom

displacements. Therefore, since the dielectric matrix does not depend on the electric

field, all perturbations of
−→̂
D are 0 in this case. Similarly, since λ and ε are essentially

electric field components in this case, it is clear that ∂2
−→
E

∂λ0∂ε0
is also 0.

The final step consists of grouping the terms in Eqs. A.0.1, A.0.4, A.0.6, A.0.8 and A.0.9

in order to obtain the total variational second-order energy. After expanding ρ̃ and ρab

and their derivatives (according to Eqs. 4.6 and 4.7), one obtains the following (U is the
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Ewald energy, and we have worked in the limit of zero
−→
E ):

d2ETOT
dλ−qdεq

∣∣∣
λ−q,εq,

−→
E=0

=
d2
(
EEL−1
TOT + EEL−2

TOT + EEL−3
TOT + EEL−4

TOT + EEL−5
TOT

)

dλ−qdεq
+

∂2

∂λ−q∂εq
EIon,core =

Ne/2∑

i=1

fi

{
〈ψ̃i
∣∣∣Âλ−qεq − εi

∂2Ŝ

∂λ−q∂εq

∣∣∣ψ̃i〉+ 2 〈ψ̃1λq
i |Ĥ − εiŜ

∣∣∣ψ̃1εq
i 〉+ 2 〈ψ̃i|

dĤ

dλ−q

− εi
∂Ŝ

∂λ−q

∣∣∣ψ̃1εq
i 〉+

2 〈ψ̃1λq
i |B̂εq − εi

∂Ŝ

∂εq

∣∣∣ψ̃i〉
}

+

∫
v

1λ−q

XC [ρ̃+ ρ̂+ ρ̃c](r)ρ̃1εq
c (r) dr+ (A.0.10)

∫
vXC[ρ̃+ ρ̂+ ρ̃c](r)

∂2ρ̃c(r)

∂λ−q∂εq
dr−

Ne/2∑

i,j=1

fi

[
Λ

1εq
ijq

(
〈ψ̃1λq

i |Ŝ|ψ̃j,q〉+ 〈ψ̃1λq
j,−q|Ŝ|ψ̃i〉+ 〈ψ̃i|Ŝ1λ−q |ψ̃j,q〉

)
+

Λ
1λ−q

ij−q

(
〈ψ̃j,q|Ŝ|ψ̃1εq

i 〉+ 〈ψ̃j,q|Ŝ1εq |ψ̃i〉+ 〈ψ̃i|Ŝ|ψ̃1εq
j,−q〉

)]
+

∂2

∂λ−q∂εq

[
1

2

∫

Ω

∫

Ω

ρZc(r)ρZc(r)

|r− r′| drdr′ + U

]
+

Ne/2∑

i=1

2fi
∂
−→
E

∂ε0
· 〈ψ̃1λ0

i |
−→̂
D|ψ̃i〉 δq,0 +

Ne/2∑

i=1

2fi
∂
−→
E

∂λ0

· 〈ψ̃i|
−→̂
D|ψ̃1ε0

i 〉 δq,0
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Appendix B

Tunnelling BP/hBN/BP FET

In this appendix we show our complete mathematical formalism for the computation of

the tunnelling current and associated coupling matrix terms (Eqs. 3.1.1 and 3.1.2) in

BP/hBN interfaces.

B.1 Derivation of the coupling matrix terms

Since our simulation cell contains large black phosphorus supercells, the coupling matrix

terms Oij(kB,kT )

Oij(kB,kT ) = 〈ψ̃iB(kB) | V | ψ̃jT (kT )〉 (B.1.1)

can only be calculated by using an unfolding procedure similar to that employed for the

spectral function [36]. Working in the supercell reference frame, we start by inserting two

identity operators (in the reference frame of the supercell)

N∑

B=1

|φBK〉 〈φBK| Ŝ =
N∑

B=1

[
N∑

A=1

|φAK〉
(
S−1

)AB
(K)

]
〈φBK| Ŝ = 1 (B.1.2)

on either side of the scattering potential V, at the supercell k-points K and K′. Ŝ is

the PAW-augmented overlap operator,
(
S−1

)AB
are elements of the representation of its

inverse, and φA,K is a complex NGWF with index A (running from 1 to N - the number

of NGWFs in the supercell) at the supercell k-point K. Any complex NGWF can be

written in terms of the real-space NGWFs φAR, where R is a multiple of the supercell

lattice vectors:

|φAK〉 =
1√
L

∑

R

eiK·R |φAR〉 , (B.1.3)

where L is the number of simulation cell duplicates considered in the sum (over R).

Consequently, the identity operator in Eq. B.1.2 becomes:

1

L

N∑

A,B=1

∑

R,R′

eiK·(R−R′) |φA,R〉
(
S−1

)AB
(K) 〈φB,R′ | Ŝ = 1 (B.1.4)
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With the identity operators in place, the transfer matrix term now has the form:

Oij(kB,kT ) =
1

L2

∑

K,K′

∑

R,R′

∑

R′′,R′′′

N∑

A,B=1

N∑

C,D=1

eiK·(R−R′) 〈ψ̃iB(kB)| P̂ †B Ŝ |φA,R〉

(
S−1

)AB
(K) 〈φB,R′|V |φC,R′′〉

(
S−1

)CD
(K′) 〈φD,R′′′ | ŜP̂T |ψ̃jT (kT )〉 eiK′·(R′′−R′′′)

(B.1.5)

Since a prerequisite to unfolding a function is to project the latter onto the monolayer of

interest[36], in Eq. B.1.5 we were required to place projection operators for the bottom

(P̂ †B = Ŝ
∑

ρ∈B |φρ〉 〈φρ|) and top monolayers (P̂T =
∑

η∈T |φη〉 〈φη| Ŝ) between the previ-

ously discussed identity operators and the primitive-cell eigenvectors of the bottom (B)

and top (T ) BP layers (ψ̃iB(kB) and ψ̃jT (kT )). These wavefunctions can be expanded

as

|ψ̃iB(kB)〉 =
n∑

α=1

Mα
iB(kB) |φαkB〉 =

1√
l

n∑

α=1

Mα
iB(kB)

∑

r

eikB·r |φαr〉 , (B.1.6)

where Mα
iB(kB) is the molecular-orbital coefficient of NGWF α with respect to the

bottom primitive-cell eigenvector i at the primitive-unit k-point kB. In Eq. B.1.6, one

sums over l duplicates of the primitive-cell, with their position vector r being a multiple

of the primitive cell lattice vectors; also, n = 36 is the number of NGWFs in a primitive

cell of the black phosphorus monolayer (9 functions for each P atom).

At this point, we need to clarify the notations behind the NGWF indices. The capital

letters (A, B, C, D), as well as the Greek letters from the middle of the alphabet (η,

µ, ρ, π) correspond to NGWFs of the supercell, i.e. they take values from 1 to N .

Letters from the beginning of the Greek alphabet (α, β, α’) correspond to NGWFs in

the representation of the primitive cell, i.e. they take values from 1 to n.

Consequently, by plugging Eq. B.1.6 into expression for the coupling matrix terms (Eq. B.1.5),

one obtains:

Oij(kB,kT ) =
∑

K,K′
A,B,C,D

∑

α,β

1

l L2
M† α

iB(kB)Mβ
jT (kT )

(
S−1

)AB
(K)

(
S−1

)CD
(K′)

∑

r,R

e−ikB·r e−iK·R 〈φαr|P̂ †BŜ|φAR〉
∑

R′,R′′

e−iK·R
′
eiK

′·R′′ 〈φBR′|V |φCR′′〉

(B.1.7)
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∑

r′,R′′′

e−iK
′·R′′′ eikB·r

′′ 〈φDR′′′ |ŜP̂T |φβr′′〉

In the previous expression (Eq. B.1.7), the middle term can be simplified as:

∑

R′,R′′

ei[K
′·R′′−K·R′] 〈φBR′|V |φCR′′〉 =

∑

R′,∆R′

eiK
′·(R′+∆R′) e−iK·R

′ 〈φB0|V |φC∆R′〉 =

=
∑

R′

ei(K
′−K)·R′

∑

∆R′

eiK
′·∆R′′ 〈φB0|V |φC∆R′〉 = LδK,K′VBC(K′)

(B.1.8)

In Eq. B.1.8, for the first equality we have used the translational symmetry of the NG-

WFs

〈φBR′ |V |φCR′′〉 = 〈φB0|V |φCR′′−R′〉 = 〈φB0|V |φC∆R′〉 , (B.1.9)

while for the last equality we have utilised the definition:

∑

∆R′

eiK
′·∆R′′ 〈φB0|V |φC∆R′〉 = VBC(K′) (B.1.10)

Now, we focus on the first term of Eq. B.1.5:

∑

r,R

e−ikB·r eiK·R 〈φαr| Ŝ
∑

ρ∈B

|φρ〉 〈φρ|
︸ ︷︷ ︸

P̂ †B

Ŝ |φAR〉 , (B.1.11)

where |φρ〉 is the NGWF-dual, defined as:

|φρ〉 =
∑

π

|φπ〉
(
S−1

)πρ
(B.1.12)

By plugging Eq. B.1.12 into Eq. B.1.11, one obtains:

∑

r,R
ρ∈B

e−ikB·r eiK·R
∑

π

Sαr,π

(
S−1

)πρ

︸ ︷︷ ︸
δ ρ
αr

Sρ,AR =
∑

r,R

e−ikB·r eiK·R Sαr,AR , (B.1.13)

with the primitive-cell /supercell NGWF indices αr / AR now being constrained only to

the bottom Black Phosphorus layer. From previous derivations for the spectral function

unfolding [36, 123], we know that the cross-overlap between NGWFs in the supercell and

primitive-cell representation takes the form:

Sαr,AR =
∑

k

1

l
eik·
[
r−R−r0(A)

]
Sαα′(A)(k) (B.1.14)
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Consequently, by replacing Eq. B.1.14 into Eq. B.1.13, we now obtain:

∑

r,R

e−ikB·r eiK·R
∑

k

1

l
eik·
[
r−R−r0(A)

]
Sαα′(A)(k) =

=
∑

k

1

l
e−ik·r0(A)

∑

r

eir·(k−kB)

︸ ︷︷ ︸
lδk,kB

∑

R

eiR·(K−k)

︸ ︷︷ ︸
L
∑

G δkB−G,K

Sα,α′(A)(k) =

= L
∑

G

e−ikB·r0(A) δkB−G,K Sαα′(A)(kB)

(B.1.15)

Moving up to the last term of Eq. B.1.5, we have:

∑

r′,R′′′

eikT ·r
′
e−iK

′·R′′′ 〈φDR′′′ | ŜP̂T |φβr′〉 =
∑

r′,R′′′
η∈T

eikT ·r
′
e−iK

′·R′′′ 〈φDR′′′ |

Ŝ |φη〉
∑

µ

(
S−1

)ηµ 〈φµ|Ŝ|φβr′〉 =
∑

r′,R′′′

eikT ·r e−iK
′·R′′′ SDR′′′,βr′

(B.1.16)

where βr′ and DR′′′ are indices for NGWFs corresponding only to the top Black Phospho-

rus layer. We can further simplify this relation by considering Eqs. B.1.8 and B.1.15, more

specifically the terms δK,K′ and δK,kB−G; consequently, Eq. B.1.16 becomes, considering

(kB = kT + q):

∑

r′,R′′′

eikT ·r
′
e−i(kB−G)·R′′′ SDR′′′,βr′ =

∑

R′′′

eiG·R
′′′

︸ ︷︷ ︸
=1

∑

r′

eikT ·r
′
e−i(kT +q)·R′′′ SDR′′′,βr′ =

∑

R′′′

e−iq·R
′′′∑

r′

eikT ·(r
′−R′′′) SD0,β r′−R′′′ = L δq,0 SDβ(kT ) = L δq,0 SDβ(kB − q)

(B.1.17)

Putting all the terms together, the coupling matrix term becomes:

Oij(kB,kT = kB − q) =
L

l

∑

K,G

N∑

B,C=1

∑

D∈T
A∈B

n∑

α,β=1

M† α
iB(kB)Mβ

jT (kB − q) e−ikB·r0(A)

δkB−G,K Sαα′(A)(kB)
(
S−1

)AB
(K) VBC(K)

(
S−1

)CD
(K) δ0,q SDβ(kB − q) ,

(B.1.18)

where n is the number of NGWFs present in a primitive cell of Black Phosphorus (i.e.

n = 36). Further simplifications can be employed in the limit of identical independent

layers (i.e. ψ̃iB(kB) and ψ̃jT (kT ) reside in independent Hilbert spaces) and of small

in-plane momentum variation (|q| << |kB|), one can assume:

Mβ
jT (kB − q) ≈Mβ

jB(kB − q) ≈Mβ
jB(kB) (B.1.19)
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In the first approximation of Eq. B.1.19, one assumes that the eigenvectors of the different

layers have the same corresponding molecular orbital coefficients, differing only through

the position of the atoms (i.e. associated NGWFs).

However, we have access only to the supercell representation of the orbital coefficients,

but not to the primitive cell ones. Thus, we must transition from one reference frame to

another, in several steps.

Firstly, in order to eliminate entirely the primitive-cell orbital coefficients Mβ
iB, Mβ

jB

from the transfer matrix terms (Eq. B.1.18), we must (temporarily) sum over all state

pairs ij. To prove that the aforementioned statement, we first define:

Xβα(kB) =
n∑

i,j=1

M† α
iB(kB) Mβ

jB(kB) , (B.1.20)

where n is the total number of eigenstates in the primitive BP monolayer unit. Af-

terwards, due to the orthonormality of the valence and conduction eigenvectors of the

independent bottom BP layer, one has:

n =
n∑

i,j=1

〈ψ̃iB(kB)|Ŝ|ψ̃jB(kB)〉 =
∑

α,β=1,n
i,j=1,n

1

l
M† α

iB(kB) Mβ
jB(kB)

∑

r,r′

eikB·(r−r′) 〈φαr′|Ŝ|φβr〉 =

n∑

α,β=1

n∑

i,j=1

1

l
M† α

iB(kB) Mβ
jB(kB)

[∑

r,∆r

eikB·∆r 〈φα0|Ŝ|φβ∆r〉
]

︸ ︷︷ ︸
=
∑

r Sαβ(kB)=lSαβ(kB)

=
n∑

α,β=1

Xβα(kB) Sαβ(kB)

(B.1.21)

where for the underbrace we have used the definition of the k-dependent overlap matrix

in the primitive-cell representation:

∑

r

eik·r 〈φα0|Ŝ|φβr〉 = Sαβ(k) (B.1.22)

Clearly, the first and last terms in Eq. B.1.21 are equal if

n∑

i,j=1

M† α
iB(kB) Mβ

jB(kB) = Xβα(kB) =
(
S−1

)βα
(kB) (B.1.23)

Eq. B.1.23 does not come as a surprise, since it is known that the inverse overlap is a

sum over all occupied and unoccupied eigenvector products

(
S−1

)βα
(kB) =

n∑

i=1

M† α
iB(kB) Mβ

iB(kB) , (B.1.24)
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and that the additional sum over j from Eq. B.1.22 has no effect due to the orthogonality

between different eigenstates. Thus, by summing over the state pairs ij in Eq. B.1.18

and by utlising Eq. B.1.23, one obtains:

∑

i,j

Oij(kB,kT = kB − q) =
L

l

∑

K,G

∑

D∈T

∑

A∈B

∑
β δ

β

α′(A)︷ ︸︸ ︷∑

α,β

(
S−1

)βα
(kB) Sαα′(A)(kB)

e−ikB·r0(A)
[∑

B,C

(
S−1

)AB
(K) VBC(K)

(
S−1

)CD
(K)

]
δ0,q

∑

r

ei(kB−q)·r SD0,βr

︸ ︷︷ ︸
SDβ(kB−q)

,

(B.1.25)

which simplifies to

n∑

i,j=1

Oij(kB,kT = kB − q) =
L

l

∑

K,G

∑

D∈T

∑

A∈B

δkB−G,K δ0,q

∑

r

eikB·[r−r0(A)] e−iq·r

[∑

B,C

(
S−1

)AB
(K) VBC(K)

(
S−1

)CD
(K)

]
SD0,α′(A)r ,

(B.1.26)

While in Eq. B.1.26 we did eliminate the primitive-cell orbital coefficients, we are es-

sentially averaging over the state-pairs for the coupling matrix terms. To regain the

individual coupling matrix terms for each state pair, we first need to expand the inverse

overlap in the supercell representation as a sum of supercell molecular orbital coefficients

(supercell-frame equivalent of Eq. B.1.24). Thus, we obtain:

n∑

i,j=1

Oij(kB,kT = kB − q) =
L

l

∑

K,G

∑

D∈T

∑

A∈B

δkB−G,K δ0,q
∑

r

eikB·[r−r0(A)] e−iq·r

[∑

B,C

N∑

I=1

M† B
I (K) MA

I(K)

︸ ︷︷ ︸(
S−1
)AB

(K)

VBC(K)
N∑

J=1

M† D
J (K) MC

J(K)

︸ ︷︷ ︸(
S−1
)CD

(K)

]
SD0,α′(A)r ,

(B.1.27)

Finally, from previous works detailing spectral function unfolding procedures [36, 123],

we know that for each primitive cell k-point, each (non-degenerate) band in the primitive

cell is the unfolded equivalent of an unique supercell band. This implies that for each

primitive cell band index i or j (at kB) there is a single supercell band index I or J (at K),

respectively. Therefore, we can drop the sums over i, j, I and J in Eq. B.1.27 by requiring

that I (J) is the supercell equivalent of primitive-cell i (j). The actual equivalences

are obtained from the unfolded spectral function of the BP/hBN/BP heterostructure,

projected on each BP layer, for each considered primitive-cell k-point in our model; a
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slice along Γ-Y of the aforementioned dependence can be seen in seen in Fig. 3.3.a. Thus,

one simply needs to see for each primitive-cell i which (unique) supercell I unfolds with

a non-negligible spectral weight. Consequently, the final expression for a coupling matrix

term is:

Oij(kB,kT = kB − q) =
1

np

∑

K,G

∑

D∈T

∑

A∈B

δkB−G,K δ0,q
∑

r

eikB·[r−r0(A)] e−iq·r

[∑

B,C

M† B
I (K) MA

I(K) VBC(K) M† D
J (K) MC

J(K)

]
SD0,α′(A)r ,

(B.1.28)

where the non-zero q is attempting to model the lack of in-plane momentum conservation

during tunnelling. K is a k-vector in the supercell Brillouin zone (BZ), and G is a

multiple of the supercell reciprocal lattice vectors. np = l/L = 120 is the number of black

phosphorus primitive cells in each monolayer supercell. A,B,C,D are NGWF indices

in the perspective of the supercell, while α′(A) is the NGWF index in the primitive-cell

reference of the supercell NGWF A. Furthermore, r is a primitive cell real-space lattice

vector, r0(A) is the position of the primitive unit containing NGWF A, while S denotes

the augmented overlap-matrix in the supercell representation. VBC are terms of the hBN

barrier potential in NGWF representation, while terms of the formMC
J(K) are molecular

orbital coefficients from the BP/hBN/BP supercell DFT calculation.

Eq. B.1.28 forces an implicit in-plane momentum conservation (δ0,q); however, to simulate

a realistic device behaviour, we must relax this condition by replacing the 2D delta-

function with a 2D Gaussian. Thus, the average coupling-matrix term for the case where

in-plane momentum conservation is not imposed becomes:

Oij(kB,kT = kB − q) =
1

np

∑

K,G

∑

D∈T

∑

A∈B

δkB−G,K

[
1

2πσqxσqy
e
− q2x

2σ2qx e
−

q2y

2σ2qy

]∑

r

e−iq·r

eikB·[r−r0(A)]

[∑

B,C

M† B
I (K) MA

I(K) VBC(K) M† D
J (K) MC

J(K)

]
SD0,α′(A)r ,

(B.1.29)

where i (j) is the unfolded equivalent of I (J). In the end, the final expression for the

tunnelling current is:

I =
4πe

h̄

∑

i,j

∑

kB,q

|Oij(kB,kT = kB − q)|2 δ
[
EiB(kB)− EjT (kB − q)

] (
fiB − fjT

)
,

(B.1.30)
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where the i, j are indices for the primitive-cell eigenvectors; in our case, each can represent

either the highest valence state or the lowest conduction state of a BP layer.

B.2 Sampling the reciprocal space

Since our final expression for the coupling matrix terms is not purely analytical, it must

be computed at a finite number of k-points, within a pre-established region of the Black

Phosphorus primitive-cell Brillouin-zone (BZ). This aforementioned zone is limited by

our model constraints, which assumes a single valley for the conduction band, and a

single peak for the valence band, as shown in Fig. reffig-4.d. Thus, we are interested

only in |kx| ≤ 0.323 Å−1, |ky| ≤ 0.124 Å−1. We sample this region using a grid of 31x15

k-points.

The in-plane momentum change (q = kB−kT ) also needs to be sampled, and this is done

by using a 15x15 grid. We chose a sampling region within three standard deviations of the

Gaussian distributions employed in Eq. B.1.29. Thus, |qx| ≤ 3σqx and |qy| ≤ 3σqy , where

σqx , σqy are the aforementioned Gaussian widths. As for their values, we chose them such

that 3σqx = 0.5% gx (i.e. σqx = 0.0032 Å−1) and 3σqy = 0.5% gy (i.e. σqy = 0.0023 Å−1),

where gx and gy are the values of the reciprocal lattice vectors along the x and y directions.

We can define a |σq|−1 =
√
σ2
qx + σ2

qy

−1

(i.e. |σq|−1 = 25.4 nm ) as an effective coherence

length, closely related to how much in-plane momentum change is allowed; for instance,

if the coherence length is infinite, Oij(kB,kT = kB − q) is non-zero only for q = 0.

For the actual numerical results, we first calculate Oij(k,k − q) on the previously dis-

cussed k and q grids. However, in order to obtain a more accurate result, we interpolate

Oij(k,k− q) to a finer grid of q-points (having 10 times the linear density of the coarse

q-grid) by using cubic splines. The spline interpolation was performed using the Alglib

[124] library routines.

We obtained the dispersion relation of the energy terms (i.e. EiB(kB), EjT (kT ) from

Eq. 3.1.1 in the main text) by sampling the E(k) surface on the previously introduced

k-point grid, only for both the highest valence band and the lowest conduction band.

Afterwards, E(k− q) was computed by using cubic spline interpolation from the initial
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values of E(k). This approach offers superior accuracy to the analytical fits employed in

other studies [41, 89, 90].

B.3 Voltage dependent doping

The role of the top/back (VTG/VBG) gate voltages is to control the carrier densities in

the top/bottom BP layers, which are themselves subjected to a bias voltage (VDS), as

shown in Fig. 3.4.a.

From Fig. 3.4.a, and from the requirement that the BP layers must be charge-neutral,

one can deduce:

−(−QTD +QID) + e(pT − nT ) = 0

−(−QBD −QID) + e(pB − nB) = 0 ,
(B.3.1)

where QTD, QBD, and QID are the charges induced in the top (TD), bottom (BD) and

interlayer (ID) hBN dielectrics, while nB/nT and pB/pT are the bottom/top-BP electron

and hole concentrations, respectively. Note that the QTD, QBD, and QID charges will

have opposite signs at the corresponding BP-layer interfaces, leading to the minus sign

in the beginning of each line in Eq. B.3.1. In the limit of the dielectrics acting as ideal

capacitors, Eq. B.3.1 becomes:

CTDVTD − CIDVID + e(pT − nT ) = 0

CBDVBD + CIDVID + e(pB − nB) = 0
(B.3.2)

For the capacitances, we used CID=12.4µF/cm2 for the single-sheet interlayer hBN dielec-

tric, and CTD=CBD=3.1µF/cm2 for the top and bottom 4-layer hBN dielectric [41].

The carrier concentrations can only be determined if the Fermi-level position is known

in each BP sheet. In this sense, the band diagram in Fig. 3.4.b is self-explanatory, and

implies that:

eVTD = eVTG − φM + χ+ eφn,T − eVDS

eVBD = χ+ EG − eφp,B − (φM − eVBG)

eVID = eVDS + EG − eφn,T − eφp,B

(B.3.3)
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where we have assumed that both the bottom and top gates are made from graphene

(with work-function φM = 4.5 eV [125]) and both black phosphorus layers have the same

electron affinity (χ = 3.9 eV [77]).

By combining Eqs. B.3.2 and B.3.3, and using the general formulae for carrier densities

(g(E) is the density of states, ECBM is the conduction band minimum energy, EVBM is

the valence band maximum energy):

n =

∫ ∞

ECBM

g(E)/
[
1 + e

eφn+E−ECBM
kBT

]
dE

p =

∫ EVBM

−∞
g(E) ·

(
1− 1/

[
1 + e

−eφp−(EVBM−E)

kBT

])
dE ,

(B.3.4)

one obtains the non-linear equations that need to be solved, such that φn,T and φp,B can

be determined:

CTD

(
VTG − VDS −

φM − χ
e

)
+ CTD · φn,T −

CID(VDS +
EG
e

) + CID(φn,T + φp,B) + e(pT − nT ) = 0

CBD

(
VBG −

φM − χ
e

+
EG
e

)
− CBD · φp,B +

CID(VDS +
EG
e

)− CID(φn,T + φp,B) + e(pB − nB) = 0 ,

(B.3.5)

where the carrier concentrations for the top or bottom layers are calculated using B.3.4,

and for each layer eφn = EG − eφp. We have solved this non-linear system of equations

using a hybrid Powell scheme, as part of the Eigen C++ library [126]; the analytical form

of the associated Jacobian (for Eq. B.3.5) was also required for accurate results.

For the density of states (g(E)), instead of a numerical approach

g(E) =
1

A

∑

k

δE−E(k) ≈
∫

1

σg
√

2π
e−

(E−Ek)2

2σ2 dk , (B.3.6)

we preferred using the anisotropic parabolic approximation for the BP valence and con-

duction bands

g(E) =
m∗h/e

πh̄2 , (B.3.7)

wherem is the density-of-states effective massm∗h/e =
√
m∗h/e Γ−X m∗h/e Γ−Y , withm∗h/e Γ−X

and m∗h/e Γ−Y are the effective masses for holes/electrons along Γ-X and Γ-Y, respectively.
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After fitting the energy-momentum relation over the sampled Brillouin-zone region (red

area in Fig. 3.4.c), we obtained the effective masses: m∗h Γ−X=3.78 m0, m∗h Γ−Y =0.20 m0,

m∗e Γ−X=1.47 m0, and m∗e Γ−Y =0.22 m0 (m0 is the rest electron mass).

B.4 Effect of coherence length and energy broaden-

ing
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Figure B.1: Reverse-bias/Zener regime for the BP/hBN/BP TFET, at multiple coherence

lengths and energy broadenings: σ−1
q =25.4 nm and σE=20 meV (a), σ−1

q =25.4 nm and

σE=40 meV (b), σ−1
q =6.4 nm and σE=20 meV (c), σ−1

q =6.4 nm and σE=40 meV (d).

The top-gate voltage (VTG) is fixed for each case, the back-gate voltage (VBG) is varied

in steps of 0.50 V. Left insets: current dependence on bias voltage. Right insets: current

(red) and subthreshold swing (blue) dependence on the back-gate voltage, at fixed bias

voltage VDS=-0.6 V; dotted blue line shows the theoretical limit for SS in MOSFETs.
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Figure B.2: Negative differential resistance (NDR) peaks in the broken-gap arrange-

ment for the BP/hBN/BP TFET, at multiple coherence lengths and energy broadenings:

σ−1
q =25.4 nm and σE=20 meV (a), σ−1

q =25.4 nm and σE=40 meV (b), σ−1
q =6.4 nm and

σE=20 meV (c), σ−1
q =6.4 nm and σE=40 meV (d). The top-gate voltage (VTG) is fixed

for each case, the back-gate voltage (VBG) is varied in steps of 0.25 V. All solid I-V curves

are at a temperature of 300 K, while the dotted one is at 100 K, with the same settings

as the solid red line.
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Figure B.3: NDR peak in the aligned-gap arrangement for the BP/hBN/BP TFET, at

multiple coherence lengths and energy broadenings: σ−1
q =25.4 nm and σE=20 meV (a),

σ−1
q =25.4 nm and σE=40 meV (b), σ−1

q =6.4 nm and σE=20 meV (c), σ−1
q =6.4 nm and

σE=40 meV (d). The top-gate voltage (VTG) is fixed for each case, the back-gate voltage

(VBG) is varied in steps of 0.25 V. Right inset: peak-to-valley ratio (PVR) for different

back-gate voltages; the valley current is measured at a bias voltage 0.2 V larger the NDR

peak position.
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