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Abstract	
Thesis	title:	Pleiotropy	in	complex	traits	
Name:	Sophie	Hackinger	
	
Genome-wide	 association	 studies	 (GWAS)	 have	 uncovered	 thousands	 of	 complex	 trait	

loci,	many	of	which	are	associated	with	multiple	phenotypes.	The	dedicated	study	of	these	

pleiotropic	 effects	 is	 becoming	 increasingly	 common	 due	 to	 the	 availability	 of	 sample	

collections	with	high-dimensional	phenotype	data,	such	as	 the	UK	Biobank,	and	can	yield	

important	insights	into	the	aetiology	underlying	complex	disorders.	

In	my	PhD,	I	performed	multi-trait	analyses	of	medically	relevant	complex	phenotypes	to	

identify	shared	genetic	factors.	

My	first	project	involved	a	genome-wide	overlap	analysis	of	osteoarthritis	(OA)	and	bone-

mineral	density	(BMD),	using	summary	statistics	from	two	large-scale	GWAS.	OA	and	BMD	

are	known	to	be	 inversely	correlated,	yet	 the	genetics	underlying	 this	 link	remain	poorly	

understood.	I	found	robust	evidence	for	association	with	OA	at	the	SMAD3	locus,	which	is	

known	to	play	a	role	in	bone	remodeling	and	cartilage	maintenance.		

My	second	project	aimed	to	elucidate	the	increased	prevalence	of	type	2	diabetes	(T2D)	

in	schizophrenia	(SCZ)	patients.	I	used	GWAS	summary	statistics	of	SCZ	and	T2D	from	the	

PGC	and	DIAGRAM	consortia,	respectively,	to	perform	polygenic	risk	score	analyses	in	three	

patient	groups	(SCZ	only,	T2D	only,	comorbid	SCZ	and	T2D)	and	population-based	controls.	

I	 find	 that	 the	 comorbid	 patient	 group	 have	 a	 higher	 genetic	 risk	 for	 both	 T2D	 and	 SCZ	

compared	to	controls,	supporting	the	hypothesis	that	the	epidemiologic	link	between	these	

disorders	is	at	least	in	part	due	to	genetic	factors.	

In	my	third	project,	I	leveraged	the	correlation	structure	of	over	274	protein	biomarkers	

and	57	quantitative	 traits	 to	perform	multivariate	GWAS	on	correlated	 trait	 clusters	 in	a	

Greek	 isolated	 population.	 This	 approach	 uncovered	 several	 novel	 cis-associations	 not	

identified	in	single-trait	GWAS,	and	highlights	the	power	advantage	of	multivariate	analysis.	

An	important	consideration	for	future	studies	will	be	the	interpretation	and	follow-up	of	

cross-phenotype	associations,	and	the	translation	of	these	insights	into	clinical	use.	
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Chapter	1	– Introduction	
Since	 their	 inception	 in	 the	early	2000s[1-3],	 genome-wide	association	 studies	 (GWAS)	

have	become	the	tool	of	choice	for	complex	trait	analysis.	In	the	classical	GWAS	approach,	

the	 association	 of	 genetic	 variants	 across	 the	 entire	 genome	with	 a	 single	 phenotype	 of	

interest	is	tested	in	a	group	of	individuals.	However,	genes	exert	their	function	not	as	stand-

alone	 units,	 but	 within	 complex	 networks	 of	 biomolecules	 that	 are	 often	 redundantly	

regulated.	Likewise,	phenotypes	are	 interconnected	by	shared	genetic	and	environmental	

factors.	In	recognition	of	this,	and	due	to	the	increased	availability	of	large-scale	datasets,	

recent	 years	 have	 seen	 a	 shift	 towards	 the	 joint	 analysis	 of	 related	 phenotypes.	 Studies	

aiming	to	identify	cross-phenotype	associations	can	shed	light	onto	the	aetiology	underlying	

epidemiologically	related	traits,	or	even	uncover	hitherto	unknown	links	between	traits	that	

have	seemingly	very	little	in	common.	Additionally,	they	could	provide	important	insights	

into	 genes	 and	 pathways	 specific	 to	 certain	 disease	 subtypes,	 possibly	 leading	 to	 more	

accurate	disease	classifications.		

	

1.1 Advances	and	challenges	in	human	genetics	

1.1.1 The	genetic	basis	of	human	disease	

The	field	of	human	genetics	aims	to	elucidate	how	genetic	variation	affects	differences	in	

phenotypes.	 Understanding	 the	 basis	 of	 heritable	 traits	 requires	 three	 main	 pieces	 of	

information:	the	number	of	genetic	variants	affecting	the	trait;	the	magnitude	of	their	effects;	

and	their	 frequency	at	a	population	 level[4].	Together,	 these	 factors	constitute	 the	genetic	

architecture	of	a	trait[4].		

Originally,	 human	 diseases	 were	 categorised	 either	 as	 ‘monogenic’	 (or	 ‘Mendelian’),	

meaning	that	a	single	gene	or	mutation	explains	almost	the	entire	variation	in	phenotype,	

with	 little	 to	 no	 environmental	 contribution[5];	 or	 as	 ‘polygenic’,	 meaning	 that	 many	

(hundreds	or	thousands)	genetic	variants	each	contribute	a	fraction	of	the	total	genetic	risk,	

together	 with	 environmental	 factors[6].	 The	 mutations	 leading	 to	 Mendelian	 diseases	

typically	lie	within	protein-coding	regions	and	are	therefore	less	common,	as	they	will	have	
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been	subject	to	purifying	selection.	Extending	this	line	of	reasoning	to	complex	traits	led	to	

the	‘common	disease-common	variant’	hypothesis[6]:	since	complex	disorders	often	have	a	

late	 age	 of	 onset	 (i.e.	 post-adolescence),	 they	 have	 a	 comparatively	 small	 impact	 on	

reproductive	fitness;	consequently,	variants	with	small	risk-increasing	effects	should	not	be	

negatively	selected	against	and	over	time	will	have	risen	in	frequency	at	the	population	level.	

The	dichotomised	view	of	mono-	versus	polygenic	has	shifted	in	past	years	as	scientists	

began	to	take	stock	of	the	vast	amount	of	data	generated	by	genetic	association	studies:	for	

many	 traits,	 common	 variants	 only	 explained	 a	 small	 amount	 of	 the	 total	 estimated	

heritability,	 even	 though	 the	 datasets	 used	 obtain	 these	 estimates	were	well-powered[4].	

Furthermore,	 sequencing	 studies	 have	 identified	 rare	 variants	 of	 large	 effect[7-10]	 that	

contribute	to	complex	traits	in	addition	to	common	variants	of	small	effect[11-13].	It	is	now	

believed	that	most	human	traits	lie	on	a	spectrum	ranging	from	mono-	to	oligo-	to	polygenic,	

with	both	common	and	rare	variants	affecting	phenotypic	variation.	

	

1.1.2 From	linkage	to	GWAS	
Before	whole-genome	genotyping	of	large	sample	sizes	became	feasible,	linkage	studies	

based	on	family	data	were	the	mainstay	of	human	genetics	research.	Several	study	designs	

exist	for	the	analysis	of	family	data,	including	parent-offspring	trios,	extended	pedigrees	and	

affected	sibling	pairs[14].	While	analysis	methods	differ	depending	on	the	design	chosen,	the	

basic	 premise	 is	 to	 test	 for	 statistically	 significant	 co-segregation	 (‘linkage’)	 of	 a	 trait	 of	

interest	with	genetic	markers.	Having	become	an	established	method	for	genetic	mapping	in	

model	 organisms,	 linkage	 studies	were	 first	 used	 in	humans	 in	 the	1980s	 and	 led	 to	 the	

successful	 identification	 of	mutations	 responsible	 for	 Huntingdon’s	 disease[15]	 and	 cystic	

fibrosis[16].	Despite	these	successes,	the	method	soon	proved	inadequate	for	the	mapping	of	

loci	 for	 common	 diseases,	 for	 which	 the	 risk	 to	 unaffected	 relatives	 is	 lower	 than	 in	

Mendelian	disorders[17].	In	order	to	overcome	this	obstacle,	complex	disease	research	moved	

towards	 the	 use	 of	 case-control	 data,	 in	which	 allele	 frequencies	 are	 compared	 between	

affected	and	unaffected	individuals.	Although	the	collection	of	unrelated	individuals	is	less	

cumbersome	 than	 that	of	 family	data,	 initial	 efforts	were	hampered	by	 the	availability	of	

genetic	 data:	 the	 systematic	 genotyping	 of	whole	 genomes	was	 not	 yet	 possible	 even	 in	
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modest	 sample	 sizes,	 and	 studies	 therefore	 focused	 on	 candidate	 genes	 suspected	 to	 be	

involved	 in	 disease	 pathogenesis	 based	 on	 the	 function	 of	 their	 gene	 products[17].	

Unfortunately,	 this	 approach	was	 largely	 unsuccessful	 and	most	 published	 findings	were	

irreproducible[18].		

Around	the	turn	of	the	millennium	massively	parallel	genotyping	using	microarray	chips	

became	 feasible[17,	 19,	 20].	 Due	 to	 the	 correlation	 of	 alleles	 at	 nearby	 variants	 (linkage	

disequilibrium),	a	map	of	500,000	variants	across	the	genome	is	sufficient	to	capture	over	

90%	of	the	genetic	variation	in	non-African	populations[17].	This	made	it	possible	to	conduct	

genome-wide	association	studies	of	complex	traits,	which	abolished	the	need	to	have	an	a	

priori	hypothesis	about	which	genes	or	regions	might	harbour	risk	variants.		

Early	 GWAS	 arrays	 were	 aimed	 primarily	 at	 common	 variants	 with	 minor	 allele	

frequencies	 (MAF)	 >	 5%.	 However,	 it	 soon	 became	 clear	 that	 this	 end	 of	 the	 frequency	

spectrum	only	explained	a	fraction	of	the	heritability	of	most	traits	and	diseases	studied[21].	

Whole-genome	(WGS)	and	whole-exome	sequencing	(WES)	provide	a	more	complete	picture	

of	 an	 individual’s	 allelic	 landscape,	 but	 were	 prohibitively	 expensive	 to	 be	 carried	 out	

routinely	for	large	sample	sizes[22,	23].	A	workaround	to	this	problem	was	the	development	of	

genotype	imputation	algorithms,	which	could	predict	genotypes	not	directly	typed	based	on	

a	 reference	 panel	 of	 sequenced	 samples[24-26].	Within	 one	 decade	GWAS	had	 successfully	

identified	 variants	 contributing	 to	 numerous	 disease	 traits,	 including	 autoimmune,	

psychiatric	and	metabolic	disorders,	as	well	as	quantitative	traits	such	as	anthropometric	

measurements	or	blood	metabolite	levels[11,	12,	27-33].	

More	recently,	sequencing-based	GWAS	have	shed	light	onto	rare	variant	contributions	

to	common	complex	traits[7,	8,	34,	35].	

	

1.2 Pleiotropy	in	the	GWAS	era		
In	2011,	a	systematic	evaluation	of	associations	reported	in	the	NIHGR	GWAS	catalogue	

found	 that	4.6%	of	variants	were	associated	with	more	 than	one	 trait[36].	This	number	 is	

likely	to	have	grown,	as	GWAS	signals	have	been	continuously	added	to	the	database.			

Many	cross-phenotype	effects	are	not	surprising.	For	example,	variants	in	the	DSP	gene	

are	associated	with	chronic	obstructive	pulmonary	disease,	as	well	as	pulmonary	fibrosis	
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and	lung	function	traits[37].	Others	are	perhaps	less	intuitive	and	can	shed	light	into	hitherto	

unknown	connections	between	traits:	variants	in	the	ASTN2	gene	have	been	shown	to	affect	

both	risk	to	osteoarthritis[38]	and	migraine[39,	40].	These	seemingly	unrelated	diseases	might	

share	pathways	involved	in	pain	perception.	

Until	 a	 few	 years	 ago,	 the	 focus	 of	 many	 consortia	 was	 to	 combine	 datasets	 of	 one	

phenotype	 for	 large-scale	GWAS	and	meta-analyses[11,	30,	41].	For	many	traits,	 results	 from	

these	 studies	 are	 now	 publicly	 available,	 providing	 an	 excellent	 resource	 for	 cross-

phenotype	analyses	using	summary	statistics.	With	the	growing	appreciation	of	pleiotropic	

effects	 in	 the	 scientific	 community,	 cross-disorder	 analyses	 of	 several	 related	 traits	 have	

been	carried	out	to	disentangle	shared	and	disease-specific	genetic	determinants[42-45].		

The	 establishment	of	 genome-wide	genotyped	biobanks[46]	 and	 cohorts	with	 in-depth	

phenotype	information[47]	has	also	made	it	possible	to	perform	multi-trait	analyses	on	the	

same	sample	set[27,	48],	 for	example	through	phenome-wide	association	studies	(PheWAS),	

where	the	association	of	each	genetic	variant	with	all	phenotypes	in	a	dataset	is	tested[49-52].	

One	challenge	of	the	PheWAS	approach	is	the	high	multiple	testing	burden	that	grows	as	the	

number	of	traits	and	variants	tested	increases[53].	Although	this	can	be	partly	circumvented	

by	 performing	 targeted	 PheWAS	 at	 a	 selected	 number	 of	 variants	 hypothesized	 to	 exert	

pleiotropic	effects[53,	54],	other	challenges	such	as	consistent	phenotyping	and	selection	of	

appropriate	covariates	remain[49].	

	

1.3 Types	of	pleiotropy	
The	term	“pleiotropy”	was	coined	over	100	years	ago	by	German	scientist	Ludwig	Plate	

to	 describe	 the	 phenomenon	 of	 a	 hereditary	 unit	 affecting	 more	 than	 one	 trait	 of	 an	

organism[55].	Since	then,	pleiotropy	has	been	a	topic	of	extensive	research	and	debate.	Before	

human	genetics	began	to	gain	traction	as	a	research	field,	pleiotropy	was	mainly	studied	in	

model	 organisms	 and,	 on	 a	more	 theoretical	 level,	 in	 evolutionary	 biology[55,	 56].Over	 the	

course	of	the	past	decades	there	have	been	several	proposals	on	how	to	classify	different	

types	of	pleiotropy[53,	55,	57,	58].		
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With	regards	to	GWAS,	it	is	important	to	note	that	cross-phenotype	associations	can	arise	

due	 to	 several	 reasons,	 not	 all	 of	 which	 are	 biologically	 meaningful[57,	 58].	 Solovieff	 and	

colleagues[58]	described	three	broad	categories	of	pleiotropy	in	the	context	of	complex	traits:	

In	the	case	of	biological	pleiotropy,	causal	variants	of	different	traits	fall	into	the	same	

gene	 or	 regulatory	 unit	 (e.g.	 transcription	 factor	 binding	 sites)[58].	 In	 GWAS	 this	 could	

manifest	itself	in	the	form	of	two	different	variants	in	the	same	region	tagging	the	same	or	

two	 separate	 causal	 variants	 or	 as	 one	 variant	 tagging	 the	 causal	 one	 (Figure	1.1a-b).	 In	

practice,	 fine-mapping	 and	 molecular	 studies	 are	 required	 to	 confidently	 distinguish	

between	these	different	scenarios[58].	

Mediated	pleiotropy	refers	to	the	case	where	a	variant	directly	affects	one	trait,	which	in	

turn	affects	another	(Figure	1.1c).	GWAS	will	still	pick	up	an	association	of	the	variant	with	

the	second	trait,	but	 this	association	will	disappear	when	conditioned	on	the	 first.	Causal	

inference	 can	 be	 achieved	 through	 Mendelian	 randomisation	 studies,	 which	 have	 been	

widely	used	in	genetic	epidemiology[27,	58-60].	An	example	is	the	association	of	the	FTO	gene	

with	osteoarthritis	(OA)[38],	which	was	shown	to	exert	its	effect	on	OA	through	body	mass	

index	(BMI)[61].		

Finally,	cross-phenotype	associations	can	also	arise	due	to	spurious	pleiotropy.	At	 the	

planning	 stage	 of	 a	 study,	 design	 artefacts	 may	 lead	 to	 inaccurate	 results.	 For	 example,	

ascertainment	bias	or	misclassification	of	cases	can	both	inflate	genetic	overlap	estimates.	

At	the	analysis	stage,	causal	variants	in	different	genes	may	be	tagged	by	the	same	GWAS	

variant	(Figure	1.1d).	A	classic	example	of	this	is	the	human	leukocyte	antigen	(HLA)	region	

on	chromosome	6.	Due	to	its	high	gene	density	and	extensive	linkage	disequilibrium	(LD),	

GWAS	signals	within	the	HLA	region	are	difficult	to	fine-map.	While	the	HLA	locus	has	been	

associated	with	a	range	of	diseases[30,	38,	62-66],	most	prominently	immune-mediated	ones,	it	

remains	unclear	to	what	extent	these	disorders	share	the	same	causal	risk	variants	or	genes.		
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Figure	 1.1.	 Schematic	 representation	 of	 different	 scenarios	 for	 cross-phenotype	 associations.	 Such	
effects	might	arise	due	to	biological	pleiotropy,	whereby	causal	variants	for	two	traits	colocalise	in	the	
same	locus	(a,b),	due	to	mediated	pleiotropy,	whereby	a	variant	exerts	an	effect	on	one	trait	through	
another	one	(c)	,	or	due	to	spurious	pleiotropy,	whereby	causal	variants	for	two	traits	fall	into	distinct	
loci	but	are	in	LD	with	a	variant	associated	with	both	traits	(d).	Adapted	from	Solovieff	et	al.[58]	

	

1.4 Analytical	approaches	
1.4.1 Overview	of	methods	

Multi-trait	analysis	methods	can	be	broadly	classified	into	three	categories	according	to	

the	 level	 at	which	 they	assess	genetic	overlap:	genome-wide,	 regional	and	single	variant.	

Genome-wide	methods	are	currently	only	available	for	pairwise	trait	comparisons	and	can	

be	used	as	an	initial	assessment	of	the	global	genetic	overlap	between	two	traits.	The	latter	

two	approaches	aim	 to	detect	 cross-phenotype	effects	at	distinct	genomic	 regions	and	at	

single	variants,	respectively.		

Region-based	methods	bin	variants	into	groups	based	on	pre-defined	criteria,	such	as	LD-

blocks	or	gene	boundaries,	and	then	test	for	cross-phenotype	effects	within	each	group.	An	

advantage	of	such	approaches	is	that	they	alleviate	the	multiple	testing	penalty	incurred	by	

single-point	 analyses;	 furthermore,	 they	 can	 increase	 power	 by	 combining	 information	

across	biologically	meaningful	units.		



	 7	

Since	 variant-level	 methods	 test	 each	 variant	 separately,	 they	 provide	 the	 highest	

resolution.	 On	 the	 other	 hand,	 they	 are	 less	 powerful	 in	 situations	 where	 each	 trait	 is	

associated	with	a	different	variant	in	the	same	functional	unit,	and	might	fail	to	identify	these	

cross-phenotype	effects	unless	all	relevant	variants	are	in	at	least	moderate	LD.		

The	 above	 analysis	 approaches	 can	 be	 further	 sub-divided	 into	 univariate	 and	

multivariate,	based	on	their	underlying	statistical	framework.	Univariate	methods	combine	

summary	statistics	of	single-trait	GWAS	to	search	for	cross-phenotype	effects.	This	means	

that	analyses	can	be	carried	out	with	each	trait	measured	on	a	distinct	set	of	 individuals.	

Multivariate	methods,	 on	 the	 other	 hand,	 jointly	model	 all	 traits,	which	 requires	 that	 all	

individuals	 included	 in	 the	 study	have	phenotype	 information	 for	all	 traits	 analysed.	The	

statistical	 difference	 between	 uni-	 and	 multivariate	 methods	 is	 best	 illustrated	 by	 the	

example	of	linear	regression	analysis:	for	univariate	regression,	the	response	variable	(i.e.	

the	phenotype)	will	be	a	vector,	with	one	data	point	 for	each	 individual	 in	 the	study;	 for	

multivariate	regression,	the	response	variable	will	be	a	matrix,	where	each	row	represents	

an	 individual	and	each	column	represents	one	phenotype.	Although	there	are	exceptions,	

these	 categories	 are	 often	 analogous	 to	 distinguishing	 between	 methods	 requiring	 only	

summary	data	and	individual-level	information,	respectively.		

Several	 comparisons	 of	 different	 multi-trait	 methods	 have	 been	 conducted	 to	 date,	

testing	power	and	type	I	error	rates,	as	well	as	computational	performance	under	different	

scenarios[67-71].	Since	each	report	includes	a	different	combination	of	methods	and	settings	

(e.g.	MAF,	 sample	 size,	 genetic	 effect	 size	 and	 trait	 number/correlation),	 it	 is	 difficult	 to	

pinpoint	an	overall	winner.	Nevertheless,	some	key	insights	have	emerged	from	this	body	of	

work:	 Generally,	multi-trait	methods,	 both	 uni-	 or	multivariate,	 are	more	 powerful	 than	

testing	 each	 trait	 separately,	 as	 the	 latter	 approach	 incurs	 a	 multiple	 testing	 penalty	

dependent	on	the	effective	number	of	traits[67,	68,	72,	73].	When	inter-trait	correlations	are	high,	

the	effective	number	of	traits	will	be	close	to	one,	resulting	in	a	low	multiple	testing	penalty;	

however,	many	multi-trait	methods	only	perform	a	single	test	of	association	and	additionally	

can	explicitly	model	trait	correlations.		

Multivariate	methods	outperform	univariate	ones	in	most	simulation	scenarios,	whereas	

different	 types	 of	 multivariate	 methods	 perform	 similarly	 well	 in	 most	 simulation	
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scenarios[67,	68,	71].	The	gain	in	power	seems	to	be	highest	if	trait	correlations	are	high	and	

genetic	effects	on	associated	traits	are	in	opposite	direction[67].	However,	it	should	be	noted	

that	this	 loss	of	power	for	univariate	methods	is	 in	large	part	due	to	the	heterogeneity	in	

genetic	effects	for	different	traits,	which	methods	based	on	effect	estimates	do	not	handle	

well.	Even	methods	designed	to	account	for	heterogeneous	effects,	such	as	the	Shet	statistic	

applied	in	Chapter	2,	loses	power	compared	to	multivariate	methods	in	such	scenarios[74].	

Less	data	 is	available	 for	categorical	phenotypes.	Porter	and	O’Reilly	simulated	two	case-

control	datasets	and	found	power	curves	appear	similar	to	those	of	quantitative	traits,	with	

multivariate	methods	performing	best[74].	MAF	does	not	seem	to	influence	power	when	only	

considering	common	variants	(0.05≤MAF≥0.5)[67,	72].	

There	are	some	scenarios	where	the	use	of	summary	statistics-based	univariate	methods	

can	be	advantageous.	For	example,	when	the	tested	genetic	variant	is	associated	with	all	or	

most	 tested	 traits,	 with	 similar	 effect	 sizes,	 and	 traits	 are	 strongly	 positively	 correlated,	

methods	using	summary	data,	such	as	Shet/Shom	or	TATES,	outperform	individual-level	data	

methods[74].	In	practice,	however,	it	is	difficult	to	know	whether	this	scenario	is	the	case	in	

advance.	Perhaps	a	more	relevant	consideration	is	study	design.	Datasets	with	multiple	traits	

measured	on	a	 large	number	of	people	might	not	be	available;	since	power	 is	affected	by	

sample	 size,	 it	 might	 be	 preferable	 to	 combine	 summary	 statistics	 from	 large	 GWAS	 on	

distinct	traits[71].	Even	when	individual-level	data	for	multiple	phenotypes	is	available	at	a	

large	 enough	 sample	 size,	 missingness	 might	 pose	 another	 problem,	 since	 multivariate	

methods	 rely	 on	 complete	 data	 (see	 section	 1.4.6.1).	 Furthermore,	 most	 multivariate	

methods	assume	normally	distributed	phenotypes,	 and	are	 therefore	not	 appropriate	 for	

trait	 combinations	 with	mixed	 distributions.	 Reverse	 regression	models	 circumvent	 this	

problem,	but	lose	power	when	the	number	of	traits	included	is	very	high	(>40).	

It	 is	 advisable	 to	 perform	 both	 multivariate	 and	 univariate	 association	 tests	 in	 a	

complementary	way[75].	This	will	not	only	enable	the	detection	of	additional	signals,	but	also	

aid	 the	 interpretation	 of	 a	multivariate	 association	 (i.e.	 which	 trait(s)	 is/are	 driving	 the	

signal).	 Since	 only	 a	 handful	 of	 currently	 available	 methods	 explicitly	 test	 for	 cross-

phenotype	effects,	considering	univariate	association	statistics	also	guards	against	reporting	

false-positive	multi-trait	associations.		
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When	 combining	 summary	 statistics	 across	multiple	 traits	 in	 a	 univariate	 fashion,	 an	

important	consideration	is	the	power	of	individual	studies.	As	for	regional	or	genome-wide	

methods,	single-point	methods	will	fail	to	detect	cross-phenotype	associations	if	the	input	

datasets	 are	 underpowered.	 Another	 important	 aspect	 is	 the	 ancestry	 of	 input	 study	

samples,	especially	for	methods	requiring	the	specification	of	reference	panels[76],	for	which	

combining	studies	from	different	populations	might	lead	to	spurious	results.	

	

1.4.2 Study	design	considerations	
There	 are	 some	 practical	 considerations	 when	 selecting	 an	 appropriate	 method	 for	

multi-trait	analysis:		

Firstly,	the	type	of	data	available	will	determine	which	statistical	approach	is	applicable.	

Due	to	limitations	of	data	sharing	policies	it	might	not	be	possible	to	obtain	individual-level	

genotype	data	for	all	traits	analysed.		

Secondly,	 the	 type	 and	 number	 of	 traits	 to	 include	 needs	 to	 be	 considered:	 some	

approaches	require	all	traits	to	be	continuous,	while	others	also	allow	for	dichotomous	traits	

or	 a	 combination	 of	 both.	 Several	 methods,	 such	 as	 colocalisation	 tests[77,	 78]	 or	 genetic	

correlation	analyses[79],	can	currently	only	accommodate	two	traits	at	a	time,	while	others	

lose	power	with	an	increasing	number	of	traits[80].	

Finally,	if	each	trait	is	measured	on	a	different	set	of	individuals,	sample	overlap	between	

datasets	will	need	to	be	accounted	for.	This	has	been	implemented	in	several	methods[78,	79,	

81].	 Ideally,	 the	 exact	 number	 of	 overlapping	 individuals	 will	 need	 to	 be	 accounted	 for.	

However,	this	is	often	not	possible	when	using	data	from	publicly	available	GWAS.	One	way	

to	estimate	the	extent	of	overlap	is	to	calculate	the	Pearson’s	correlation	of	the	Z	scores	of	all	

independent,	 non-associated	 variants	 from	 two	 studies[78],	 although	 other	methods	 have	

also	been	proposed[82-84].	

	

1.4.3 Genome-wide	methods	
Polygenic	 risk	 scores	 (PRS;	 or	 genetic	 risk	 scores)	 were	 initially	 used	 in	 genetic	

epidemiology	to	test	how	well	a	set	of	variables	could	predict,	or	distinguish	between,	case-

control	status	in	a	study	sample[85-88].	In	the	context	of	GWAS,	the	risk	variables	comprise	
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variants	known	to	be	associated	with	a	given	trait.	Odds	ratios	(ORs)	for	these	variants	from	

a	 “base”	 GWAS	 are	 then	 used	 to	 construct	 scores	 for	 each	 individual	 in	 an	 independent	

“target”	dataset.	Using	logistic	(binary	trait)	or	linear	(continuous	trait)	regression	to	relate	

phenotype	and	score,	the	proportion	of	phenotypic	variance	explained	in	the	target	data	by	

the	base	risk	variants	can	be	directly	estimated.		

This	 framework	 can	 also	 be	 applied	 to	 two	 different	 traits[42,	 51,	 89,	 90].	 Purcell	 and	

colleagues[89]	showed	that	risk	scores	for	bipolar	disorder	are	significantly	associated	with	

schizophrenia,	and	that	the	variance	in	phenotype	captured	by	the	score	could	be	increased	

by	relaxing	the	p-value	threshold	for	variant	inclusion	(rather	than	using	only	genome-wide	

significant	variants).	One	reason	for	this	could	be	that	many	variants	with	a	true	effect	on	the	

phenotype	did	not	reach	genome-wide	significance	in	the	base	study.	This	is	especially	likely	

in	 the	 case	 of	 highly	 polygenic	 traits,	 for	which	 only	 a	 fraction	 of	 the	 heritability	 can	 be	

explained	by	currently	known	risk	variants.		

Genetic	 correlation	 (rg)	 captures	 the	 extent	 to	 which	 genetic	 factors	 influence	 the	

covariance	 of	 two	 traits.	 While	 there	 are	 multivariate	 methods	 for	 genetic	 correlation	

analysis,	such	as	GCTA[43,	91],	BOLT-REML[92]	and	mvLMM[93],		a	univariate	method	based	on	

LD	score	regression	(LDSC)	has	gained	popularity	in	recent	years[79,	94].	LDSC	only	requires	

summary	statistics,	can	handle	any	combination	of	traits	and	is	not	confounded	by	sample	

overlap.	However,	it	requires	the	specification	of	a	reference	panel	for	LD	estimation,	which	

should	be	chosen	with	care	when	analysing	two	GWAS	performed	in	populations	of	different	

ancestries.	The	LD	Hub	database,	which	acts	as	both	a	central	aggregation	of	public	summary	

statistics	and	an	online	interface	for	LDSC,	enables	systematic	comparisons	between	a	range	

of	traits[95].	As	the	authors	of	LDSC	point	out,	it	is	important	to	distinguish	genetic	correlation	

from	pleiotropy[79].	A	near-zero	estimate	of	genetic	correlation	between	two	traits	does	not	

necessarily	 mean	 that	 they	 share	 no	 common	 risk	 loci.	 For	 example,	 there	 could	 be	 no	

directionality	to	their	genetic	relationship,	i.e.	at	some	shared	loci	the	risk	allele	is	the	same	

for	 both	 traits,	while	 at	 others	 the	 risk	 allele	 for	 one	 trait	 is	 protective	 of	 the	 other.	 An	

example	of	the	latter	scenario	is	the	rs7501939	variant	in	TCF2,	for	which	the	C	allele	confers	

increased	risk	for	prostate	cancer	and	decreased	risk	for	type	2	diabetes[9].	Similar	to	PRS,	if	

either	or	both	of	the	input	datasets	are	underpowered	this	could	also	lead	to	a	falsely	low	
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estimate	of	rg.		Conversely,	in	the	case	of	disease	traits,	genetic	correlation	could	be	inflated	

due	to	ascertainment	bias	or	misclassification	of	cases[58].	

	

1.4.4 Regional	methods	
In	2013	Giambartolomei	and	colleagues	developed	a	Bayesian	colocalisation	model	 to	

identify	genomic	regions	of	colocalising	expression	quantitative	trait	loci	(eQTL)	and	GWAS	

signals[77].	This	method	was	then	extended	to	account	for	sample	overlap,	and	implemented	

in	a	software	package	(gwas-pw)	to	enable	simplicity	of	use	for	the	pairwise	comparison	of	

GWAS	summary	statistics[78].	The	model	integrates	the	effects	of	all	variants	in	a	pre-defined	

region,	such	as	approximately	independent	LD	blocks[96].	It	generates	posterior	probabilities	

for	each	of	five	hypotheses,	the	two	most	relevant	being	that	in	a	given	region	the	traits	share	

one	causal	variant,	and	that	they	each	have	a	separate	causal	variant.	An	advantage	of	this	

approach	over	many	variant-level	methods	is	that	it	evaluates	the	evidence	for	both	traits	

being	 associated	 with	 a	 given	 regions,	 thus	 making	 it	 possible	 to	 distinguish	 from	 the	

scenario	of	one	trait	alone	driving	an	observed	signal[65].		

Multivariate	 methods	 for	 locus-based	 analysis	 include	 extensions	 to	 canonical	

correlation	analysis	(CCA)[76,	97,	98],	functional	linear	models[99],	non-parametric	tests[100]	and	

multivariate	mixed	models[101].	

	

1.4.4.1 Rare	variant	methods	

The	 substantial	 drop	 in	 sequencing	 costs	 over	 the	 past	 decade	 together	 with	 the	

establishment	of	better	reference	panels	 for	 imputation	have	made	association	studies	of	

low	 frequency	and	rare	variants	 feasible[102,	103].	Methods	 for	 rare	variant	 studies	usually	

group	 several	 variants	 together	 and	 perform	 an	 association	 test	 with	 this	 composite	

genotype.	They	are	generally	more	powerful	than	testing	individual	rare	variants[104],	and	

have	been	the	tool	of	choice	for	single-trait	studies[105].	Two	of	the	most	popular	rare	variant	

test	methods	are	kernel-based	tests,	such	as	SKAT[106],	and	collapsing	tests[107].		

While	some	of	the	multi-trait	methods	are	applicable	to	both	common	and	low	frequency	

markers[99-101],	 approaches	 have	 also	 been	 specifically	 designed	 for	 rare	 variants.	 These	

methods	 all	 rely	 on	 individual-level	 data	 with	 phenotypes	 measured	 in	 the	 same	 set	 of	



	 12	

individuals.	 Wu	 and	 Pankow	 extended	 univariate	 SKAT	 for	 the	 application	 to	 multiple	

continuous	 traits[108].	 Another	 method,	 MAAUSS,	 also	 builds	 on	 the	 SKAT	 algorithm,	

including	 a	 variance-covariance	 matrix	 that	 allows	 for	 the	 joint	 modeling	 of	 multiple	

phenotypes[109].	Multiple	binary	or	a	mixture	of	binary	and	continuous	traits	can	be	analysed	

by	 MAAUSS	 through	 integration	 of	 the	 generalised	 estimating	 equation	 framework.	 In	

adaptive	weighting	reverse	regression	(AWRR)[110],	 the	genotypes	 in	a	set	of	variants	are	

first	combined,	weighted	by	the	strength	of	association	and	direction	of	effect	of	each	variant;	

the	resulting	variable	 is	 then	regressed	on	multiple	 traits	and	a	score	 test	used	 to	assess	

significance.	This	reverse	regression	approach	is	similar	to	other	methods	discussed	here	

and	can	incorporate	large	numbers	of	traits	of	any	kind.	Similarly,	multi-phenotype	analysis	

of	rare	variants	(MARV)	uses	reverse	regression	combined	with	a	burden-based	method	to	

combined	rare	variants	 in	a	region[111,	112].	 In	short,	rare	variants	 in	a	genomic	region	are	

combined	into	a	single	variable	denoting	the	proportion	of	minor	alleles	an	individual	carries	

in	that	region.	In	addition	to	the	full	model	where	all	phenotypes	are	included	in	the	analysis,	

MARV	 also	 allows	 for	 a	 models	 selection	 procedure	 where	 all	 possible	 phenotype	

combinations	are	analysed.	One	downside	to	MARV	is	that,	like	other	burden	tests,	it	suffers	

a	loss	of	power	when	the	effects	of	rare	variants	in	a	region	are	in	different	direction,	or	if	

only	a	very	small	number	of	variants	in	a	region	are	associated.	

	

1.4.5 Single-point	univariate	methods	
With	the	increasing	availability	of	summary	data	from	large-scale	GWAS,	an	important	

question	has	been	how	to	harness	these	data	to	perform	pleiotropy	analyses.	Perhaps	the	

simplest	way	to	search	for	cross-phenotype	effects	is	to	decide	on	a	p-value	threshold	and	

declare	all	variants	 that	 fall	below	this	 threshold	 for	a	group	of	 traits	as	cross-phenotype	

associations[58].	However,	 this	approach	can	be	underpowered,	as	even	with	 large	sample	

sizes	truly	associated	variants	with	sub-threshold	p-values	will	be	missed.	Consequently,	a	

number	 of	methods	 to	 statistically	 combine	 summary	 data	 for	multiple	 traits	 have	 been	

developed,	many	of	which	are	based	on	meta-analytic	approaches[80]	[113-116].	

In	meta-analysis	p-values	or	effect	sizes	are	combined	across	multiple	studies	of	the	same	

trait[117].	For	the	latter,	effects	are	typically	either	assumed	to	be	consistent	across	studies	
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(fixed	effects	meta-analysis)	or	allowed	to	vary	(random	effects	meta-analysis).	However,	a	

genetic	variant	might	have	the	opposite	effect	on	two	traits.	While	this	can	be	circumvented	

by	 applying	 a	 directionality-agnostic	 p-value	 based	 meta-analysis,	 there	 are	 some	

limitations,	 such	as	 the	 inability	 to	obtain	 an	overall	 effect	 estimate[117].	 Therefore,	 these	

standard	approaches	are	best-suited	to	groups	of	traits/disorders	assumed	to	have	similar	

underlying	 biological	mechanisms[42].	 The	meta-analysis	 framework	 has	 been	 adapted	 to	

accommodate	this	and	other	issues	that	arise	when	combining	several	different	traits:	

Cotsapas	 and	 colleagues	 developed	 a	 cross-phenotype	meta-analysis	 (CPMA)	method	

that	 tests	 for	 the	presence	of	 two	or	more	trait	associations	at	a	variant[113].	This	has	 the	

advantage	of	protecting	against	the	scenario	of	one	trait	driving	the	association.	CPMA	only	

requires	p-values	as	input	and	is	thus	robust	to	heterogeneous	effect	directions.	Since	CPMA	

compares	 the	 distribution	 of	 p-values	 for	 all	 traits	 at	 a	 variant	 to	 the	 null	 hypothesis	 of	

uniformity,	it	is	well	suited	for	moderate	to	large	numbers	of	phenotypes,	but	less	so	for	pairs	

of	traits.	

In	 a	 generalisation	 of	 fixed-effects	 meta-analysis,	 all	 possible	 subsets	 of	 traits	 are	

evaluated	 to	 identify	 the	 one	with	 the	maximum	 absolute	 Z-statistic	 at	 a	 variant[80].	 The	

approach,	 termed	ASSET,	 takes	effect	estimates	as	 input	and	can	also	be	used	 to	 identify	

disease	 subtypes	within	 case-control	data.	Extensions	were	 also	proposed	 to	 account	 for	

sample	overlap	and	effect	heterogeneity	between	traits[80].	Using	ASSET	investigators	have	

identified	 three	 loci	 associated	 with	 five	 autoimmune	 disorders,	 as	 well	 as	 risk	 loci	

associated	with	different	cancers[118].	

Zhu	and	colleagues	developed	two	meta-analysis	test	statistics	to	detect	cross-phenotype	

associations	 assuming	 homogeneous	 and	 heterogeneous	 effects	 across	 studies,	

respectively[114].	The	tests	are	implemented	in	the	R	package	CPASSOC,	and	work	with	both	

univariate	(i.e.	one	trait	per	cohort)	and	multivariate	summary	statistics	(i.e.	several	traits	

measured	in	each	cohort).		CPASSOC	requires	the	specification	of	an	inter-cohort	correlation	

matrix.	Since	the	true	phenotypic	correlation	is	unknown	in	the	absence	of	raw	data,	this	can	

be	derived	from	summary	statistics	and	–	similarly	to	approaches	outlined	above	–	accounts	

for	overlapping	samples.	Applying	CPASSOC	to	anthropometric	trait	summary	data	from	the	

GIANT	consortium	identified	one	novel	genome-wide	significant	locus	within	the	TOX	gene	

missed	by	conventional	meta-analysis[119].	
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1.4.6 Single-point	multivariate	methods	
As	the	availability	of	large-scale	genetic	datasets	with	multiple	phenotype	measurements	

increases,	 the	 focus	 of	method	 development	 for	multi-trait	 analyses	 has	 shifted	 towards	

multivariate	methods	that	use	individual-level	data	rather	than	summary	statistics[120,	121].	

These	 approaches	 are	 generally	 more	 powerful	 than	 combining	 test	 statistics	 from	

univariate	GWAS,	as	the	inter-trait	covariance	can	be	modelled	directly	from	the	data[67,	121].		

One	 efficient	way	 to	 deal	 with	multivariate	 phenotypes	 is	 to	 first	 apply	 a	 dimension	

reduction	 technique	 that	 collapses	 the	 individual	 trait	 values,	 and	 then	 perform	 an	

association	 between	 genotype	 and	 this	 new	 set	 of	 variables.	 Principal	 component	 and	

canonical	correlation	analysis	(PCA	and	CCA,	respectively)	are	examples	of	such	techniques;	

the	former	derives	linear	combinations	of	the	phenotypes	that	explain	the	greatest	possible	

covariance	between	them[72,	121-124],	whereas	 the	 latter	derives	 linear	combinations	of	 the	

traits	 that	 explain	 the	 greatest	 amount	 of	 covariance	 between	 a	 genetic	 locus	 and	 the	

traits[125]	[97,	98].		

Linear	 mixed	 models	 (LMMs)	 are	 an	 extension	 of	 standard	 regression	 analysis	

incorporating	both	 fixed	and	random	effects	and	have	gained	popularity	 in	GWAS	due	 to	

their	 ability	 to	handle	 relatedness	 amongst	 individuals[126,	 127].	Multivariate	LMMs	can	be	

used	for	association	testing	with	multiple	phenotypes.	They	model	association	between	a	

genetic	marker	and	the	traits	as	the	fixed	effect,	and	the	inter-trait	covariance	as	the	random	

effect[121].	 While	 multivariate	 mixed	 models	 are	 generally	 more	 powerful	 than	 standard	

univariate	association	tests,	they	perform	less	well	when	the	traits	under	consideration	are	

only	weakly	correlated[128].	Korte	and	colleagues	first	applied	multivariate	LMMs	to	pairwise	

quantitative	 trait	measurements	 in	 a	 human	 cohort[128].	 Several	 other	methods	 based	 on	

multivariate	 LMMs	 exist[75,	 93,	 128,	 129],	 including	 a	 multivariate	 extension	 to	 the	 GEMMA	

algorithm[75].		

Bayesian	 statistics	 allow	 for	 a	 model	 comparison	 between	 several	 alternative	

hypotheses,	making	 them	an	 attractive	 tool	 for	 pleiotropy	 analysis[77,	 78,	 130-133].	 A	model-

selection	 framework	 proposed	 by	 Stephens	 returns	 Bayes	 factors	 for	 each	 possible	

partitioning	of	phenotypes	into	one	of	three	categories:	unassociated,	directly	associated,	or	
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indirectly	associated	with	a	genetic	marker[131].	At	markers	where	the	evidence	against	the	

global	null	is	strong,	the	individual	Bayes	factors	can	be	used	to	determine	which	traits	are	

likely	to	drive	the	association.	The	framework	is	implemented	in	the	software	mvBIMBAM	

and	 has	 been	 used	 to	 identify	 variants	 associated	 with	 low-	 and	 intermediate	 density	

lipoprotein	subfractions[134].	

Another	way	to	allow	for	the	inclusion	of	traits	with	mixed	distribution	is	to	reverse	the	

regression	 of	 phenotype	 on	 genotype	 routinely	 employed	 in	 GWAS.	MultiPhen	 performs	

ordinal	 regression	 of	 the	 genotype	 (number	 of	 minor	 alleles	 at	 a	 marker)	 on	 multiple	

phenotypes	and	tests	for	association	using	a	likelihood	ratio	test[74].	An	advantage	over	other	

multivariate	 methods	 is	 the	 MultiPhen	 maintains	 appropriate	 type	 I	 error	 rates	 when	

applied	 to	 non-quantitative	 traits.	MultiPhen	 has	 similar	 power	 to	 detect	 associations	 to	

other	 multivariate	 methods,	 such	 as	 mvBIMBAM	 and	 CCA,	 with	 negative	 phenotypic	

correlations	leading	to	increased	power[67,	71].	SCOPA	is	another	method	relying	on	reversed	

regression,	with	 the	 added	 advantage	 of	 being	 able	 to	model	 dosage	 data	 from	 imputed	

variants[135].	 It	 additionally	 applies	 a	 model	 selection	 procedure	 to	 discern	 which	 traits	

underlie	 an	 association	 signal.	 A	 framework	 for	meta-analysis	 of	 SCOPA-derived	 (META-

SCOPA)	 summary	 statistics	 is	 implemented.	 One	 consideration	 for	 reverse	 regression	

methods	is	that	any	adjustments	to	phenotypes	(e.g.	age,	sex,	population	structure)	must	be	

performed	prior	to	the	association	analysis[135].		

	

1.4.6.1 Handling	of	missing	data	

One	 potential	 obstacle	 of	 multivariate	 methods	 is	 the	 handling	 of	 incomplete	 data.	

Individuals	for	whom	one	or	more	of	the	analysed	traits	are	missing	will	be	excluded	from	

the	analysis,	which	can	lead	to	substantial	sample	loss	and	to	biased	results,	depending	on	

the	missingness	patterns	and	number	of	traits	included.	Considering	the	reason	why	certain	

trait	values	might	be	missing	is	important	in	deciding	on	appropriate	analysis	approaches.	

Data	points	can	either	be	missing	completely	at	random	(MCAR),	missing	at	random	(MAR)	

or	missing	not	at	random	(MNAR)[136-138].	In	the	case	of	MCAR,	the	reason	why	a	trait	value	

is	missing	is	unrelated	to	both	observable	and	unobservable	variables.	MAR	means	that	the	

reason	a	value	is	missing	can	be	entirely	explained	by	an	observed	variable.	For	example,	if	
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young	people	are	less	likely	to	fill	in	survey	questions	related	to	ethnicity,	then	self-reported	

ethnicity	 missingness	 will	 be	 random	 once	 age	 is	 adjusted	 for.	 Conversely,	 in	 MNAR	

situations	 the	 value	 of	 the	missing	 data	 point	 is	 related	 to	 the	 reason	 it	 is	 missing.	 For	

example,	people	suffering	from	severe	depression	might	not	respond	to	surveys	on	mental	

health.	In	practice	it	is	not	possible	to	distinguish	with	certainty	between	MAR	and	MNAR	

scenarios,	 as	 this	would	 require	 the	 researcher	 to	 know	 the	 true	 values	 of	missing	 data	

points.	Retaining	only	complete	cases	when	 there	 is	MNAR	will	 lead	 to	 spurious	analysis	

results.	 If	each	trait	 is	only	measured	once	per	 individual	 included	in	the	study,	complete	

case	analyses	will	not	lead	to	bias	if	the	MAR	(or	MCAR)	assumption	holds[136].	However,	this	

might	 still	 result	 in	 substantial	 sample	 loss.	 Alternatively,	 missing	 values	 can	 be	

recapitulated	 using	 single	 or	 multiple	 imputation	 methods[136,	 137,	 139,	 140].	 As	 the	 name	

suggests,	 single	 imputation	obtains	a	single	estimate	 for	each	missing	value	based	on	the	

imputation	model.	While	fast	and	relatively	easy	to	implement,	a	downside	of	this	approach	

is	that	it	may	result	in	biased	results	due	to	not	accounting	for	the	uncertainty	of	the	imputed	

values[136,	 138].	Multiple	 imputation,	 on	 the	 other	 hand,	 repeats	 the	 imputation	procedure	

multiple	times,	which	can	guard	against	bias,	but	it	relies	on	the	MAR	assumption,	violation	

of	which	might	impact	the	results[136,	140,	141].	For	a	more	detailed	discussion	of	phenotype	

imputation	procedures	see	section	4.4.2.	

	

1.4.7 Inferring	causality	
Determining	whether	the	correlation	between	two	traits	is	due	to	a	causal	link	(i.e.	trait	

1	 is	a	causal	 risk	 factor	 for	 trait	2),	or	due	 to	confounding	 factors	such	as	environmental	

exposures,	 can	be	achieved	 through	Mendelian	 randomisation	 (MR).	Notably,	while	most	

methods	outlined	in	this	chapter	aim	to	detect	biological	pleiotropy	and	are	confounded	by	

mediated	pleiotropy,	the	opposite	is	true	for	MR.	In	MR	one	or	several	genetic	markers	–	so-

called	instrumental	variables	(IVs)	–	are	used	to	infer	whether	or	not	trait	1	(the	exposure)	

causally	influences	trait	2	(the	outcome)	[60,	142-145]	(Figure	1.2).	An	early	example	of	MR	is	a	

study	published	in	2005	which	concluded	that,	contrary	to	prior	belief,	C-reactive	protein	

levels	were	not	causal	for	metabolic	syndrome[60].		



	 17	

In	order	to	be	a	valid	IV,	three	key	assumptions	about	the	genetic	marker	must	be	met:	

first,	 the	marker	 is	associated	with	 trait	1;	second,	 the	marker	 is	not	associated	with	any	

confounding	variables,	such	as	environmental	factors	that	might	affect	trait	2	independently	

of	trait	1;	and	third,	the	marker	is	not	associated	with	trait	2	when	conditioning	on	trait	1.	

The	first	two	assumptions	are	usually	easy	to	fulfill	in	a	GWAS	context.	The	first	assumption	

also	 implies	 that	 the	 function	 of	 the	 gene	 or	 marker	 used	 as	 an	 IV	 is	 known	 a	 priori.	

Consequently,	MR	is	not	a	method	to	detect	new	genotype-phenotype	associations[144].	Some	

consideration	 should	 be	 given	 to	 assumption	 two,	 which	 can	 be	 violated	 in	 the	 case	 of	

population	stratification[144,	146].		

Arguably	 the	 biggest	 uncertainty	 is	 the	 third	 assumption,	 which	 will	 not	 hold	 if	 the	

variant(s)	 used	 independently	 affect	 both	 trait	 1	 and	 trait	 2,	 i.e.	 if	 there	 is	 horizontal	

pleiotropy.	The	risk	of	this	can	be	mitigated	in	several	ways,	all	of	which	rely	on	the	inclusion	

of	more	than	one	genetic	marker	in	the	MR	analysis.	One	is	to	design	the	MR	study	so	that	

the	exposure	of	interest	is	a	protein	biomarker[147].	Proteins	have	the	advantage	that	they	

are	more	proximal	to	the	genetic	effects	acting	on	them,	compared	to	metabolites	or	other	

circulating	biomarkers.	By	restraining	the	selection	of	IVs	to	variants	acting	in	cis	to	the	gene	

encoding	the	protein,	it	should	be	possible	–	in	theory	–	to	minimise	the	chance	of	horizontal	

pleiotropy.	Bioinformatics	approaches	can	also	be	used	to	obtain	functional	annotation	of	

variants	and	support	their	validity	as	IVs[147].	In	addition,	the	included	variants	should	not	

be	in	LD	with	nearby	variants	affecting	the	expression	of	other	proteins,	as	this	might	lead	

to	confounding	if	those	proteins	also	affect	the	outcome[147].	

There	are	several	approaches	to	MR	analysis,	depending	on	the	type	of	data	available	as	

well	as	the	underlying	assumptions	about	the	genetic	markers	and	traits.	If	both	traits	were	

measured	on	the	same	samples,	MR	can	be	performed	via	two-sided	least	squares	analysis,	

where	trait	1	is	first	regressed	onto	the	IVs,	and	trait	2	is	then	regressed	on	the	predicted	

values	of	trait	1	from	the	first	regression;	the	effect	size	derived	from	the	second	regression	

is	the	MR	estimate.	A	downside	to	this	approach	is	that	availability	of	samples	with	multiple	

trait	measurements	is	still	limited	compared	to	the	sample	sizes	achieved	by	GWAS	consortia	

focusing	on	individual	traits.	As	a	result,	a	number	of	approaches	have	been	developed	to	

perform	MR	in	a	setting	where	each	trait	 is	measured	on	distinct	samples	(so	called	two-
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sample	MR).	In	its	most	simplistic	form,	two-sample	MR	can	be	performed	by	obtaining	a	

Wald	estimator	from	the	ratio	of	the	effect	of	the	variant	on	trait	1	over	its	effect	on	trait	

2[148].	 For	 multi-instrument	 MR,	 the	 selected	 variants	 can	 be	 combined	 into	 a	 weighted	

(based	 on	 variant-exposure	 effect	 sizes)	 or	 unweighted	 score	 which	 is	 then	 tested	 for	

association	with	the	outcome	of	interest[149,	150].	

	

Figure	1.2.	Directed	acyclic	graph	of	the	Mendelian	randomisation	model.	IV=instrumental	variable	

Several	 analytical	 approaches	 have	 been	 proposed	 to	 both	 detect	 and	 account	 for	

pleiotropy	in	MR	settings[151-155].	If	all	of	the	variants	satisfy	the	IV	assumptions	there	should	

be	no	heterogeneity	between	their	individual	MR	estimates[144,	151,	156].	In	other	words,	in	the	

case	of	no	pleiotropy	MR	estimates	of	each	variant	will	only	vary	by	chance.	The	Cochran	Q	

statistic	and	the	related	I2	index	can	be	used	to	test	for	heterogeneity	between	individual	IV	

estimates[151].	If	individual-level	data	are	available	and	both	traits	have	been	measured	on	

the	same	sample,	the	Sargan	test	can	be	used	to	assess	evidence	against	the	null	of	all	MR	

estimates	 being	 the	 same[146].	 For	 two-sample	 MR,	 an	 adaptation	 of	 inverse-variance	

weighted	meta-analysis	can	be	used	to	combine	Wald	estimators	across	several	variants[157],	

either	in	a	fixed	or	random	effects	model.	The	former	assumes	that	the	variants	used	are	not	

pleiotropic,	whereas	the	latter	assumes	that	on	average	the	pleiotropic	effects	of	the	variants	

cancel	each	other	out.	In	Egger	regression,	variant-outcome		effect	sizes	are	regressed	on	the	

variant-trait	 1	 effect	 sizes	 with	 an	 unconstrained	 intercept[153].	 An	 intercept	 term	

significantly	different	from	zero	is	indicative	of	pleiotropy.	Bowden	and	colleagues	proposed	

IV

Trait 1

Trait 2

Confounders
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a	summary	data-based	step-wise	analysis	framework	which	applies	all	three	of	the	above	

methods	 to	 differentiate	 between	 the	 scenarios	 of	 no	 pleiotropy,	 pleiotropy	 without	

heterogeneity	 and	 pleiotropy	 with	 heterogeneity[152,	 158].	 By	 applying	 this	 framework	 to	

summary	data	from	two	GWAS	the	authors	showed	that	the	observed	association	between	

plasma	urate	 levels	and	cardiovascular	disease	was	 likely	due	to	pleiotropy	rather	than	a	

causal	link,	as	evident	from	heterogeneity	in	the	MR	estimates	from	the	31	variants	analysed.		

While	 MR	 analyses	 are	 valuable	 tools	 to	 investigate	 causal	 relationships	 between	

complex	phenotypes	without	the	need	to	collect	longitudinal	data,	it	is	not	a	replacement	for	

experimental	 follow-up	and	characterisation	of	 identified	associations.	Even	when	care	 is	

taken	 in	 the	 study	 design	 and	 several	 scenarios	 of	 pleiotropy	 tested,	 the	 possibility	 of	

confounding	 remains.	 In	 two-sample	MR,	where	exposure	and	outcome	are	measured	on	

different	 samples,	 the	 potential	 of	 unmeasured	 environmental	 variables	 to	 influence	 the	

results	cannot	be	completely	excluded.	Furthermore,	non-linear	relationships	between	traits	

will	lead	to	inaccurate	MR	estimates[159].	This	is	also	true	for	genetic	effects	that	do	not	follow	

an	additive	model,	i.e.	dominant	or	recessive	effects.	If	the	relationship	between	exposure	

and	outcome	is	sex-	and/or	age-specific,	ignoring	these	variables	in	the	analysis	will	lead	to	

inaccurate	MR	estimates.	However,	data	 from	age-	and	sex-stratified	GWAS	 is	not	readily	

available	for	many	phenotypes.	Lastly,	if	the	exposure	is	a	trait	comprised	of	more	than	one	

sub-phenotype,	it	is	possible	that	the	effect	on	the	outcome	is	driven	by	one	of	those	rather	

than	the	composite	exposure	trait[160].	

	

1.5 Conclusion	
Investigating	 pleiotropy	 in	 human	 traits	 not	 only	 holds	 the	 potential	 to	 uncover	

additional	 associations,	 but	 could	 also	 help	 to	 redefine	 disease	 classifications.	 This	 is	 of	

particular	 interest	 in	 disorders	 for	 which	 the	 aetiopathology	 is	 unclear,	 and	 for	 which	

current	diagnostic	tools	might	be	inadequate.	For	example,	psychiatric	conditions	are	highly	

comorbid	and	until	recently[30,	161]	have	been	mostly	refractory	to	GWAS[162].	Comparisons	of	

different	 psychiatric	 disorders	 have	 shown	 that	 the	 genetic	 overlap	 among	 them	 is	

extensive[42,	 163],	 and	 that	 certain	 pairs	 of	 diseases	 are	 genetically	 more	 similar	 than	
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others[163].	 Together	 these	 findings	 suggest	 that	 shared	 biological	 mechanisms	 cross	

diagnostic	boundaries	and	might	aid	the	development	of	more	accurate	disease	classification	

systems.		

As	personalised	medicine	becomes	more	established,	pleiotropic	effects	will	need	to	be	

taken	into	account	for	genetic	risk	prediction	and	counselling,	especially	where	variants	have	

opposite	 effects	 on	 disorders.	 For	 example,	 variants	 in	 the	 interleukin-10	 and	 -27	 genes	

increase	the	risk	of	type	1	diabetes,	but	have	protective	effects	for	Crohn’s	disease.	A	more	

comprehensive	understanding	of	pleiotropy	could	also	aid	drug	repurposing	efforts.	

	

1.6 Aims	and	overview	of	this	thesis	
The	overarching	aim	of	my	doctoral	work	was	to	search	for	shared	genetic	determinants	

of	 medically	 relevant	 complex	 traits,	 with	 an	 emphasis	 on	 musculoskeletal	 and	

cardiometabolic	 phenotypes	 reflecting	 the	 main	 focus	 of	 our	 research	 group.	 The	

phenotypes	 investigated	here	were	 chosen	based	on	 their	 established	epidemiologic	 link	

(Chapters	2	and	3)	or	their	correlation	with	each	other	(Chapter	4).	To	explore	the	potential	

of	different	multi-trait	approaches,	I	chose	phenotype	groups	that	would	allow	for	summary	

statistics-based	 approaches	 (Chapter	 2),	 individual-level	 data	 approaches	 with	 both	

phenotypes	measured	on	all	 samples	 (Chapter	3),	 and	 individual-level	methods	aimed	at	

exploring	 data	 with	 high-dimensional	 quantitative	 trait	 measurements	 (Chapter	 4).	 I	

employed	both	uni-	and	multivariate	methods	to	 test	 for	evidence	of	genetic	overlap	at	a	

genome-wide,	regional	and	variant	level.	By	looking	at	different	traits	and	disorders	in	a	joint	

framework,	I	hoped	to	gain	a	better	understanding	of	their	genetic	architecture.	

In	Chapter	2	of	this	thesis,	I	describe	an	overlap	analysis	of	osteoarthritis	(OA)	and	bone	

mineral	density	(BMD)	at	a	genome-wide	scale.	OA	has	until	recently	been	mostly	refractory	

to	GWAS,	and	genetic	mechanisms	influencing	disease	subtype	are	not	well-understood.	 I	

therefore	sought	to	leverage	data	from	two	published	GWAS	on	OA	and	BMD,	respectively,	

to	 identify	 common	 risk	 factors	 between	 those	 two	 traits.	 Increased	 BMD	 has	 been	

associated	with	a	higher	risk	of	OA.	This	epidemiologic	 link	has	been	established	through	

both	 prospective	 and	 ascertained	 studies,	 yet	 the	 underlying	 biological	 reason	 for	 this	
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association	is	still	not	clear.	So	far,	only	a	few	studies	have	looked	at	the	shared	genetics	of	

OA	and	BMD,	and	none	have	used	genome-wide	data.	By	searching	for	evidence	of	genetic	

overlap	between	summary	statistics	of	OA	and	BMD	GWAS,	I	hoped	to	identify	common	loci	

with	potential	biological	relevance.	Furthermore,	I	planned	to	leverage	the	BMD	GWAS	data	

to	prioritise	variants	for	follow-up	and	replication	in	independent	OA	datasets.			

In	Chapter	3,	 I	aimed	to	elucidate	the	genetic	contribution	to	schizophrenia	(SCZ)	and	

type	2	diabetes	(T2D)	comorbidity.	SCZ	patients	are	at	an	elevated	risk	of	developing	T2D	

compared	to	the	general	population.	While	antipsychotic	medications	are	known	to	cause	

metabolic	 side	 effects,	 impaired	 glucose	 homeostasis	 was	 also	 found	 in	 drug-naïve	 SCZ	

patients.	To	assess	the	extent	to	which	this	association	can	be	explained	by	genetics,	I	used	

summary	statistics	from	published	GWAs	on	SCZ	and	T2D,	respectively,	in	conjunction	with	

individual-level	 data	 from	 a	 cohort	 comprising	 patients	 with	 either	 T2D,	 SCZ	 or	 both	

disorders.	

In	Chapter	4,	I	outline	an	analysis	framework	for	multi-trait	GWAS	in	a	sample	collection	

with	high-dimensional	 quantitative	phenotype	 information.	 Including	multiple	 correlated	

traits	 in	 an	 association	 model	 can	 increase	 power	 to	 detect	 associations.	 However,	 as	

datasets	with	hundreds	of	trait	measurement	become	more	common,	selecting	meaningful	

trait	 groups	 is	 not	 always	 straight	 forward.	 For	 this	 project,	 I	 used	 a	 Greek	 isolated	

population	 cohort	 with	 whole-genome	 sequencing	 data	 (average	 of	 22x)	 and	 over	 300	

quantitative	 traits	 to	 perform	 phenotype	 imputation,	 clustering	 and	 association	 analysis	

using	a	multivariate	linear	mixed	model.	

Finally,	in	Chapter	5,	I	summarise	key	lessons	and	insights	gained	throughout	my	PhD	

and	discuss	the	current	landscape	and	future	outlook	of	pleiotropy	research.	
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Chapter	2	– A	 genome-wide	 evaluation	 of	 the	 shared	

aetiology	 between	 osteoarthritis	 and	 bone	 mineral	

density	
	

2.1 Introduction	

2.1.1 Pathobiology	of	osteoarthritis	

Osteoarthritis	(OA)	is	a	degenerative	disease	of	the	synovial	joint	affecting	over	40%	of	

people	 over	 70	 years	 of	 age[164].	 Synovial	 (or	 diarthrodial)	 joints	 connect	 the	 end	of	 two	

bones	through	a	joint	capsule	filled	with	synovial	fluid,	which	provides	lubrication.	They	are	

the	most	common	type	of	joint	in	mammals	and	allow	for	a	variety	of	movements.	Depending	

on	body	site,	the	joint	capsule	may	also	comprise	meniscal	discs	composed	of	fibrocartilage	

(such	 as	 in	 the	 knee).	 The	 bone	 ends	 (epiphyses)	 connected	 by	 the	 joint	 are	 lined	with	

articular	cartilage	that	acts	as	a	shock	absorbent	and	diffuses	friction.		

Hallmarks	 of	 OA	 include	 cartilage	 degradation,	 joint-space	 narrowing,	 formation	 of	

osteophytes	(bony	protrusions)	within	the	joint	and	subchondral	bone	remodeling[165,	166].	

While	the	pathologic	processes	taking	place	in	the	osteoarthritic	joint	are	well	understood	

on	 a	macroscopic	 level,	 their	 timing	 and	 causal	mechanisms	 are	not	 clear.	 Consequently,	

there	are	no	preventive	treatments	or	early	detection	methods	(e.g.	biomarkers),	and	clinical	

diagnosis	 relies	 on	 the	 presence	 of	 radiographic	 features[167].	 Since	 there	 is	 no	 curative	

therapy,	the	main	treatment	strategy	consists	of	pain	management	and,	in	severe	cases,	joint	

replacement	surgery	(arthroplasty)[165].	As	a	result	of	its	high	prevalence	and	lack	of	effective	

therapeutic	options,	OA	poses	a	high	economic	health	burden,	further	motivating	efforts	to	

better	 understand	 risk	 factors	 and	 biological	 processes	 involved	 in	 OA	 onset	 and	

progression.	
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2.1.2 Genetics	of	osteoarthritis	

OA	 is	 a	 complex	 disorder	 with	 the	 27	 currently	 known	 risk	 loci	 accounting	 for	

approximately	 26.3%	 of	 disease	 heritability[168,	 169].	 Until	 recently,	 OA	 had	 been	 mostly	

refractory	 to	 GWAS.	 The	 first	 large-scale	 OA	 GWAS	 was	 conducted	 by	 the	 arcOGEN	

consortium	in	a	two-stage	design,	culminating	in	a	total	discovery	sample	of	7,410	cases	and	

11,009	 controls[38,	 170].	 These	 sample	 numbers	 were	 further	 increased	 by	 collaborative	

efforts	such	as	the	deCODE	project	and	treatOA[171],	as	well	as	more	recently	in	a	GWAS	using	

the	first	release	of	the	UK	Biobank	resource,	with	a	discovery	stage	dataset	of	over	10,000	

cases	 and	 up	 to	 50,000	 matched	 controls[172].	 OA	 is	 a	 heterogeneous	 disorder,	 with	

heritability	varying	depending	on	the	affected	joint.	Of	the	27	published	risk	loci	to	date,	6	

and	 10	 are	 associated	 with	 knee	 OA	 only	 and	 hip	 OA	 only,	 respectively,	 while	 11	 are	

associated	 with	 both	 hip	 and	 knee	 OA[172-174].	 This	 further	 highlights	 how	 phenotypic	

variation	is	reflected	by	genetics,	and	demonstrates	the	need	for	strict	phenotype	definitions.	

	

2.1.3 Bone	mineral	density	

Bone	mineral	density	refers	to	the	mineral	content	in	bone	tissue	and	serves	as	a	clinical	

indicator	of	fracture	risk	and,	consequently,	osteoporosis.	The	most	common	measurement	

method	is	dual	X-ray	absorptiometry	(DXA),	although	other	methods,	such	as	quantitative	

computer	tomography	or	quantitative	ultrasound,	exist.	

BMD	 is	 determined	 by	 a	 set	 of	 interdependent	 processes	 collectively	 termed	 bone	

remodeling.	 Bone	 remodeling	 includes	 both	 bone	 formation	 (osteogenesis;	 mediated	

primarily	 by	 osteoblasts)	 and	 bone	 breakdown	 (resorption;	 mediated	 primarily	 by	

osteoclasts).		

The	heritability	of	BMD	varies	depending	on	body	site,	with	estimates	ranging	from	50	

to	85%[175].	A	GWAS	carried	out	by	the	Genetic	Factors	for	Osteoporosis	(GEFOS)	consortium	

2012	found	56	loci	associated	with	BMD[13].	Three	years	later,	a	rare	variant	of	large	effect	

was	identified	by	GEFOS	combining	whole-genome	sequencing	and	GWAS	imputation[8].	The	

largest	genetic	study	on	BMD	to	date	was	performed	using	heel	bone	estimates	in	almost	

150,000	individuals	of	the	UK	Biobank.	This	effort	almost	tripled	the	number	of	known	BMD	

loci	and	also	provided	extensive	in-silico	functional	follow-up	of	novel	associations[176].	
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2.1.4 Shared	mechanisms	of	osteoarthritis	and	bone	mineral	density	

The	link	between	bone	mineral	density	(BMD)	and	OA	was	first	reported	in	1972	by	Foss	

and	 Byers,	 who	 observed	 higher	 BMD	 in	 femoral	 heads	 excised	 during	 OA-related	 hip	

replacement	surgery[177].	Since	then,	a	number	of	cross-sectional	and	 longitudinal	studies	

have	found	higher	femoral	neck	(FN)	and	lumbar	spine	(LS)	BMD,	as	well	as	total	body	BMD	

to	be	associated	with	incident	OA	at	the	hip,	knee	and	other	joint	sites[178-181].		

Findings	with	 regards	 to	 the	 relationship	 between	BMD	 and	OA	 progression	 are	 less	

clear[182].	Elevated	bone	turnover	–	usually	a	marker	for	decreased	BMD	–	was	reported	in	

patients	 with	 progressive	 knee	 OA	 compared	 to	 patients	 with	 stable	 OA[183].	 Decreased	

baseline	femoral	neck	BMD	(FNBMD)	has	also	been	associated	with	knee	OA	progression[184,	

185].	Conversely,	data	 from	the	Rotterdam	Study	showed	a	non-significant	 trend	of	higher	

odds	or	knee	OA	progression	with	increased	lumbar	spine	BMD	(LSBMD)[186],	while	another	

study	found	no	link	between	knee	OA	progression	and	total	body-	or	FNBMD[178].	

Several	 biological	 mechanisms	 are	 implicated	 in	 both	 OA	 and	 BMD,	 such	 as	 bone	

remodeling,	mesenchymal	stem	cell	differentiation	and	inflammation[13,	38,	165,	187].	RUNX2,	a	

key	 transcription	 factor	 regulating	 endochondral	 ossification	 and	 osteoblast	

differentiation[188,	189],	has	been	associated	with	both	OA	and	BMD	based	on	its	proximity	to	

genome-wide	significant	variants[13,	38].	The	other	locus	with	known	GWAS	hits	for	both	traits	

is	KLHL42	(or	KLHDC5),	although	its	biological	relevance	remains	unclear[13,	38].		

In	 addition,	 Yerges-Armstrong	 et	 al.	 have	 previously	 shown	 nominal	 association	 of	 4	

BMD-linked	single	nucleotide	polymorphisms	(SNPs)	with	knee	OA[190].	However,	despite	

the	long-established	epidemiologic	link	and	shared	biology,	the	genetic	overlap	of	OA	and	

BMD	has	not	yet	been	assessed	on	a	genome-wide	level.	Here,	I	present	results	from	the	first	

genome-wide	analysis	establishing	shared	genetic	aetiology	between	OA	and	BMD.		

	

2.1.5 Chapter	overview	

In	 this	 chapter	 I	 describe	 the	 first	 systematic	 overlap	 analysis	 of	 OA	 and	 BMD	 on	 a	

genome	wide	scale,	using	summary	statistics	from	the	GEFOS	consortium	for	lumbar	spine	
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(n=31,800)	and	femoral	neck	(n=32,961)	BMD,	and	from	the	arcOGEN	consortium	for	three	

OA	 phenotypes	 (hip,	 ncases=3,498;	 knee,	 ncases=3,266;	 hip	 and/or	 knee,	 ncases=7,410;	

ncontrols=11,009).			

First,	 I	 assess	 genome-wide	 correlation	using	pairwise	LD	 score	 regression.	 Second,	 I	

employ	a	Bayesian	colocalisation	method	as	well	as	an	overlap	analysis	based	on	incremental	

p-value	thresholds.	The	former	aims	to	pinpoint	specific	regions	across	the	genome	that	have	

a	high	probability	of	harbouring	pleiotropic	signals;	the	latter	tests	for	an	excess	of	shared	

variants	at	different	 significance	cut-offs	between	 two	datasets.	This	 can	be	used	both	 to	

estimate	genetic	overlap	and	to	follow-up	individual	variants	shared	at	more	stringent	p-

value	thresholds.	

Third,	I	aggregated	the	genome-wide	summary	statistics	of	each	dataset	into	gene-	and	

pathway-level	associations.	Using	a	false	discovery	rate	of	5%	I	then	searched	for	genes	and	

pathways	that	were	significant	for	at	least	one	OA	and	one	BMD	phenotype.	

Fourth,	 I	 took	 forward	143	 variants	 identified	 through	 the	 colocalisation	 and	p-value	

based	overlap	analyses	for	replication	in	two	large-scale	GWAS	of	hip	and/or	knee	OA	in	the	

UK	Biobank	and	 the	deCODE	 cohort.	 I	 subsequently	meta-analysed	 those	 variants	 across	

both	replication	cohorts	and	the	arcOGEN	combined	dataset.	

	

2.1.6 Publication	note	and	contributions	

All	analyses	outlined	in	this	chapter	were	carried	out	by	me,	with	the	exception	of	the	

functional	follow-up	of	SMAD3	and	the	genome-wide	correlation	analysis	between	arcOGEN	

and	 the	 ALSPAC/Generation	 R	 study.	 The	 look-up	 of	 SMAD3	 expression	 in	 cartilage	was	

performed	by	Julia	Steinberg.	The	genetic	correlation	analysis	in	ALSPAC/Generation	R	was	

carried	out	by	Katerina	Trajanoska	using	the	same	parameters	as	described	here	under	the	

section	“2.2.4.	Genome-wide	genetic	correlation	analysis”.		

The	work	described	 in	 this	 chapter	has	been	peer-reviewed	and	published	 in	Human	

Molecular	Genetics[168].	
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2.2 Materials	and	Methods	

2.2.1 Datasets	

The	 analyses	 outlined	 in	 this	 chapter	 were	 conducted	 using	 summary	 association	

statistics	from	the	arcOGEN[38]	and	GEFOS	consortia[13].	The	arcOGEN	data	comprised	three	

OA	 phenotypes:	 knee	 OA,	 hip	 OA,	 and	 knee	 and/or	 hip	 OA	 (combined	 OA).	 A	 detailed	

description	of	the	contributing	studies	and	phenotype	definitions	can	be	found	in	Ref.	6.	OA	

case	status	was	determined	radiographically	as	a	Kellgren-Lawrence	grade	score	≥	2.	Most	

cases	included	in	arcOGEN	had	progressed	to	a	severe	disease	endpoint,	as	evident	from	the	

fact	that	80%	had	undergone	total	joint	replacement	surgery.	Samples	were	genotyped	on	

the	Illumina	Human	610-Quad	BeadChips	(Illumina,	San	Diego,	CA,	USA)	and	variant	QC	was	

performed	for	cases	and	controls	separately:	SNPs	were	excluded	if	they	had	MAF≥5%	and	

call	 rate<95%,	 or	MAF<5%	 and	 call	 rate<99%,	 and	 an	 exact	 HWE	 p<0.0001.	 Population	

stratification	was	assessed	by	PCA,	and	the	first	ten	principal	components	were	included	in	

the	analyses.	Genotype	imputation	was	carried	out	using	IMPUTEv2[191]	with	the	HapMap	III	

reference	 panel	 (all	 populations)[38].	 Case-control	 association	 analyses	 were	 carried	 out	

using	SNPTESTv2[133],	and	additional	GWAS	stratified	by	sex,	joint	replacement	surgery	and	

joint	 site	 were	 also	 performed[38].	 In	 this	 chapter,	 I	 used	 summary	 data	 from	 the	 non-

stratified	combined	OA	GWAS,	as	well	as	from	the	joint	site	stratified	analyses	(hip	only	and	

knee	only).	

The	BMD	data	consisted	of	meta-analysis	summary	statistics	for	FN	and	LSBMD[13].	The	

17	 individual	 studies	 contributing	data	 to	 the	GEFOS	discovery	 stage	 comprised	 samples	

from	North	America,	Europe,	Australia	and	East	Asia.	BMD	was	measured	by	dual-energy	X-

ray	 absorptiometry.	 Genotyping	 using	 chip	 arrays	 was	 performed	 by	 each	 participating	

study	and	genotypes	were	filtered	for	MAF≥1%	for	all	studies,	as	well	as	HWE	p-value	and	

call	rate	at	varying	thresholds	(see	Ref	[13],	Supplementary	Table	18D	for	a	list	of	genotyping	

platforms	 and	 QC	 measures	 applied).	 Genotype	 imputation	 was	 carried	 out	 with	 BIM-

BAM[192],	IMPUTE[191]	or	MACH[193]	using	HapMap	Phase	2	release	22	reference	data	(CEU	or	

Han	 Chinese	 in	 Beijing	 and	 Japanese	 in	 Tokyo	 as	 appropriate.	 Genome-wide	 association	

analyses	for	FN-BMD	and	LS-BMD	were	conducted	by	each	participating	study	separately,	
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using	 an	 additive	 model	 and	 sex-specific	 standardised	 residuals	 adjusted	 for	 and	 age-,	

weight-	 and	 principal	 components.	 Results	 from	 individual	 studies	 were	 meta-analysed	

under	a	 fixed-effects	model,	retaining	only	variants	that	were	present	 in	more	than	three	

studies[13].	

In	addition,	summary	data	for	skull	and	total	body	BMD	of	9,142	samples	from	the	Avon	

Longitudinal	Study	of	Parents	and	their	Children	(ALSPAC)	and	the	Generation	R[194]	study	

were	used	to	calculate	genetic	correlation	with	arcOGEN.		

For	replication,	I	used	summary	statistics	from	two	OA	GWAS:	the	UK	Biobank[46]	and	the	

deCODE	study.	Hospital	episode	statistics	were	used	to	define	case	status	for	OA	in	the	UKBB	

sample.	 Inclusion	 and	 exclusion	 criteria	 were	 based	 on	 the	 International	 Statistical	

Classification	of	Diseases	and	Related	Health	Problems	(ICD).	Cases	were	defined	as	having	

OA	(hip	and/or	knee)	ICD-9	or	ICD-10	codes	only,	and	no	inflammatory	arthritis	syndromes	

or	other	musculoskeletal	disorders.	Age-matched	controls	were	selected	on	the	condition	

that	 they	 did	 not	 have	 a	 hospital	 diagnosed	 (ICD-9	 or	 ICD-10)	 or	 self-reported	

musculoskeletal	disorders	or	symptoms.	

For	the	deCODE	dataset	The	information	on	hip,	knee	and	vertebral	osteoarthritis	was	

obtained	from	Landspitali	University	Hospital	electronic	health	records,	Akureyri	Hospital	

electronic	health	records	and	from	a	national	Icelandic	hip	or	knee	arthroplasty	registry[195].	

Samples	 with	 secondary	 osteoarthritis	 (e.g.	 Perthes	 disease,	 hip	 dysplasia),	 post-trauma	

osteoarthritis	 (e.g.	 anterior	 cruciate	 ligament	 rupture)	 and	 those	 also	 diagnosed	 with	

rheumatoid	 arthritis	 were	 excluded	 from	 these	 lists.	 Only	 those	 diagnosed	 with	

osteoarthritis	after	the	age	of	40	were	included.	Hand	osteoarthritis	patients	were	drawn	

from	a	database	of	over	9,000	hand	osteoarthritis	patients	that	was	initiated	in	1972[196].	The	

study	was	approved	by	the	Data	Protection	Authority	of	Iceland	and	the	National	Bioethics	

Committee	of	Iceland.	Informed	consent	was	obtained	from	all	participants.	

	

2.2.2 Reduced	arcOGEN	GWAS	

For	 the	 p-value	 based	 overlap	 analysis	 as	 well	 as	 the	 gene	 and	 pathway	 analysis	 I	

excluded	 samples	 from	 London-based	 cohorts	 (TwinsUK	 and	 Chingford	 Study)	 from	 the	

arcOGEN	datasets	to	avoid	overlap	with	GEFOS	samples.	The	full	arcOGEN	dataset	was	used	
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for	 all	 other	 analyses	 described,	 since	 these	 methods	 are	 either	 not	 biased	 by	 sample	

overlap[79]	or	can	correct	for	it	via	the	correlation	of	summary	statistics[78].	After	exclusion	

of	714	samples,	I	carried	out	genome-wide	association	analyses	on	the	arcOGEN	dataset	for	

each	of	the	three	phenotype	groups	using	the	“--method	score”	option	in	SNPTEST	v2.5[133].	

Table	2.1.	Sample	numbers	for	datasets	analysed	in	this	chapter.	

	

2.2.3 Estimating	sample	overlap	

The	GEFOS	summary	 statistics	used	here	are	 the	 result	of	 a	 large-scale	meta-analysis	

consisting	of	17	cohorts.	Since	I	did	not	have	access	to	individual-level	genotype	data	for	the	

participating	studies,	it	was	not	possible	to	perform	identity	checks	with	samples	included	

in	arcOGEN.		

Several	methods[78,	82,	197]	have	been	proposed	to	estimate	the	extent	of	sample	overlap,	

which	can	arise	due	to	duplicated	samples	across	studies	or	due	to	relatedness,	based	on	

only	summary	data.	I	use	two	correlation	estimates	to	quantify	the	extent	of	sample	overlap	

between	 each	 GEFOS	 and	 arcOGEN	 dataset:	 Pearson’s	 and	 tetrachoric	 correlation	 of	 Z-

scores[82].	The	advantage	of	using	tetrachoric	correlation	over	Pearson’s	correlation	lies	in	

the	fact	that	the	former	truncates	all	Z-scores	into	two	bins	(0	or	1),	depending	on	whether	

they	are	positive	or	negative.	This	effectively	attenuates	the	effect	of	significant	associations,	

which	 might	 otherwise	 contribute	 to	 an	 inflated	 correlation	 estimate.	 To	 calculate	

tetrachoric	 correlation	 between	 arcOGEN	 and	 GEFOS,	 I	 transformed	 the	 Z-scores	 of	 the	

intersection	of	SNPs	to	a	binomial	distribution	as	described	above	and	constructed	a	2x2	

table	 of	 the	 resulting	 counts.	 I	 then	 computed	 tetrachoric	 correlation	 using	 the	 “psych”	

package	in	R[198].	

	 arcOGEN	 arcOGEN	excl.	London	 GEFOS	 deCODE	 UK	
Biobank	

	 combined	 hip	 knee	 combined	 hip	 knee	 LSBMD	 FNBMD	 combined	 combined	

Cases	 7,410	 3,498	 3,266	 6,694	 3,032	 3,088	 -	 -	 9,429	 6,586	
Controls	 11,009	 11,009	 11,009	 10,968	 10,968	 10,968	 -	 -	 199,421	 26,384	
Total	 18,419	 14,507	 14,275	 17,662	 14,000	 14,056	 31,800	 32,961	 208,850	 32,970	
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In	 the	 second	approach	 I	 computed	Pearson’s	 correlation	of	 summary	statistics	using	

only	independent,	non-associated	variants[119,	197]:	

𝑐𝑜𝑟𝑟(𝑇&, 𝑇() =
∑ (𝑇,& − 𝜇&)(𝑇,( − 𝜇(),

/∑ (, 𝑇,& − 𝜇&)((𝑇,( − 𝜇()(
	

Where	T1	and	T2	correspond	to	the	test	statistics	(Z-scores)	for	each	SNP	i	for	study	1	and	

2,	and	µ1	and	µ2	correspond	to	their	means.	For	each	pairwise	combination	of	the	OA	and	

BMD	traits	I	took	the	intersection	of	SNPs	and	kept	only	those	that	were	not	associated	with	

either	trait	(-1.96	>	Z-score	<	1.96).	I	then	LD-pruned	this	set	of	SNPs	in	PLINK[199],	using	a	

window	size	of	250kb	shifted	by	200	variants	at	each	iteration	and	an	r2		threshold	of	0.2;	

the	 unimputed	 genotypes	 from	 the	 full	 arcOGEN	 data	 were	 used	 to	 calculated	 LD.	 An	

estimate	of	sample	overlap	was	obtained	by	calculating	Pearson’s	correlation	of	the	Z-scores	

of	 all	 independent	 SNPs.	 Both	 methods	 gave	 low,	 non-significant	 correlation	 estimates,	

indicating	that	the	effect	of	sample	overlap	is	minimal	(Table	2.2).		

	

Datasets	 Pearson’s	(95%	CI)	 Tetrachoric	(95%	CI)	
allOA	and	LSBMD	 -0.0001	(-0.0061-0.0058)	 0.0033	(-0.002-0.005)	
allOA	and	FNBMD	 	0.0045	(-0.0014-0.0105)	 0.0013	(-0.003-0.002)	
hipOA	and	LSBMD	 	0.0041	(-0.0019-0.0102)	 0.0018	(-0.002-0.003)	
hipOA	and	FNBMD	 	0.0036	(-0.0023-0.0097)	 0.0034	(-0.002-0.005)	
kneeOA	and	LSBMD	 -0.0014	(-0.0070-0.0041)	 0.0025	(-0.005-0.004)	
kneeOA	and	FNBMD	 	0.0017	(-0.0038-0.0073)	 0.0002	(-0.0005-0.0006)	

Table	2.2.	Sample	overlap	between	each	pairwise	OA	and	BMD	dataset	as	estimated	by	Pearson’s	and	
tetrachoric	correlation.	95%	confidence	intervals	(CI)	are	given	in	parentheses.	

	

2.2.4 Genome-wide	genetic	correlation		

I	performed	LD	score	regression	analysis[79]	on	each	pairwise	combination	between	the	

arcOGEN	and	GEFOS	datasets,	using	pre-computed	LD	scores	based	on	the	European	(EUR)	

sample	of	the	1000	Genomes	Project[94].	In	addition,	LD	score	regression	was	also	performed	

by	 our	 collaborators	 (see	 “2.1.6.	 Publication	 note	 and	 contributions”)	 between	 all	 three	

arcOGEN	datasets	and	a	paediatric	BMD	sample.		
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LD	score	regression	relies	on	the	assumption	that	variants	 in	strong	LD	with	a	causal	

variant	will	have	a	higher	association	statistic	 than	variants	 in	 low	LD.	 	 In	a	 single-study	

scenario,	this	fact	can	be	harnessed	to	assess	whether	genome-wide	inflation	of	test	statistics	

is	due	to	true	polygenicity	or	to	confounding	factors	such	as	cryptic	relatedness;	in	the	latter	

case	inflation	will	not	correlate	with	LD	between	variants.	To	assess	the	relative	contribution	

of	polygenicity	and	confounding	in	a	GWAS,	one	can	regress	the	association	statistics	on	LD	

scores,	which	are	given	by:	

𝑙1 =2 𝑟13(
3

	

Where	𝑟13( 	is	the	LD	between	the	index	variant	j	and	another	variant	k[94].	Thus,	LD	score	

can	 be	 interpreted	 as	 the	 extent	 of	 genetic	 variation	 captured	 by	 the	 index	 variant	 j.	

Extending	this	to	a	two-study	scenario	gives	the	following	regression	framework:	

𝐸5𝑧&1𝑧(7𝑙18 =
/𝑁&𝑁(𝜌;

𝑀 𝑙1 +
𝜌𝑁>
/𝑁&𝑁(

	

where	zij	is	the	Z-score	for	study	i	and	variant	j,	Ni	is	the	number	of	samples	in	study	i,	rg	

denotes	 the	 genetic	 covariance	 between	 the	 studies,	 M	 is	 the	 number	 of	 variants	 with	

MAF≥5%	present	in	the	reference	panel	used	for	LD	score	calculation,	NS	is	the	number	of	

samples	 overlapping	 between	 the	 two	 studies	 and	 r	 is	 the	 trait	 correlation.	 Genetic	

correlation	can	then	be	calculated	by	dividing	rg	by	the	SNP	heritabilities	of	both	studies.	

Sample	size	for	binary	traits	is	defined	as	total	sample	size	(cases	and	controls)	(see	Ref	[79],	

Supplementary	Note	section	1.4,	page	6).		

	

2.2.5 Assessment	of	shared	association	signals	

For	 each	 pairwise	 combination	 between	 the	 two	 BMD	 and	 three	 OA	 phenotypes	 I	

assessed	the	extent	of	shared	association	signals	at	different	p-value	cutoffs,	following	the	

approach	described	by	Elliott	and	colleagues[200].	I	filtered	both	datasets	to	a	common	set	of	

SNPs	on	which	p-value-informed	linkage	disequilibrium	pruning	was	performed.	To	this	end	

SNPs	were	sorted	based	on	their	association	with	OA,	as	this	was	our	primary	trait	of	interest	

and	we	therefore	aimed	to	maximise	retention	of	associated	variants.	Starting	with	the	top	

SNP	(i.e.	the	lowest	p-value),	any	SNP	in	LD	with	that	index	SNP	(r2>0.05)	was	removed.	A	
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more	stringent	LD	threshold	was	used	here	 than	 for	 the	estimation	of	sample	overlap,	 in	

order	 to	 minimise	 the	 potential	 for	 inflating	 the	 test	 statistics.	 The	 next	 most-strongly	

associated	 SNP	was	 then	 considered;	 if	 this	 SNP	 had	 already	 been	 excluded	 based	 on	 a	

previous	 iteration,	 it	was	skipped.	This	process	was	repeated	until	an	 independent	 list	of	

SNPs	was	generated.	

I	assessed	the	extent	of	shared	association	signals	between	OA	and	BMD	by	constructing	

2x2	contingency	tables	of	the	number	of	overlapping	variants	above	and	below	ten	different	

p-value	thresholds	(Pt:	0.5,	0.1,	0.05,	0.04,	0.03,	0.02,	0.01,	0.005,	0.001,	5	x	10-5).	To	test	for	

significance	of	overlap,	a	chi-squared	test	was	performed	at	each	Pt.	

Empirical	 overlap	 p-values	 were	 obtained	 by	 repeating	 the	 chi-squared	 test	 after	

randomly	permuting	the	GEFOS	p-values.	This	was	done	1,000,000	times	to	obtain	a	null	

distribution	 of	 overlap	 p-values	 against	 which	 the	 original	 overlap	 p-value	 could	 be	

compared.		

	

2.2.6 Colocalisation	analysis	

I	employed	a	Bayesian	colocalisation	method	to	search	for	genomic	regions	harbouring	

cross-phenotype	 associations	between	OA	and	BMD[78].	 This	 is	 an	 extension	of	 a	method	

previously	 developed	 by	 Giambartolomei	 et	 al[77].,	 with	 the	 added	 option	 to	 correct	 for	

sample	overlap.		The	model	uses	Z-scores	and	standard	errors	from	two	association	studies	

to	generate	posterior	probabilities	for	each	of	five	hypotheses:	

	

H0:	the	region	contains	no	variants	associated	with	trait	1	or	trait	2	

H1:	the	region	contains	one	variant	associated	with	trait	1	

H2:	the	region	contains	one	variant	associated	with	trait	2	

H3:	the	region	contains	one	variant	associated	with	both	trait	1	and	trait	2	

H4:	 the	 region	 contains	 one	 variant	 associated	 with	 trait	 1	 and	 a	 second	 variant	

associated	with	trait	2	

	

Splitting	 the	 genome	 into	 uniform	 segments	without	 accounting	 for	 LD	 structure	 can	

result	 in	 the	 double-counting	 of	 signals	 if	 segment	 boundaries	 happen	 to	 fall	 within	 an	
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associated	region.		I	used	LD-blocks	pre-computed	using	the	LDetect	algorithm[96]	and	the	

European	sample	of	the	1000	Genomes	Phase	1	data[201].	

	

2.2.7 Gene	and	pathway	analysis	

Gene-	 and	 pathway	 analyses	 were	 performed	 on	 each	 OA	 and	 BMD	 dataset	 using	

MAGMA[202].	First,	SNPs	are	assigned	to	genes,	which	are	tested	for	their	association	with	the	

phenotype.	 Results	 from	 this	 step	 are	 then	 combined	 into	 pathway-based	 association	

statistics.		

	

Database	 URL	
BioCarta	 http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways	
KEGG	 http://www.genome.jp/kegg	
Matrisome	 http://matrisomeproject.mit.edu	
Pathway	Interaction	Database	 http://pid.nci.nih.gov	
Reactome	 http://www.reactome.org	
SigmaAldrich	 http://www.sigmaaldrich.com/life-science.html	
Signaling	Gateway	 http://www.signaling-gateway.org	
Signal	Transduction	KE	 http://stke.sciencemag.org	
SuperArray	 http://www.superarray.com	

Table	 2.3.	Pathway	 databases	 included	 in	 the	Molecular	 Signatures	 Database	 Canonical	 Pathways	
collection.	

For	 the	 gene	 analysis,	 I	 grouped	variants	 into	 genes	using	 SNP	 locations	 from	dbSNP	

version	135	and	NCBI	37.3	gene	definitions.	 I	performed	this	step	twice,	once	annotating	

SNPs	to	a	gene	only	if	they	fell	within	the	gene’s	transcription	start	and	stop	site,	and	once	

including	SNPs	that	fell	within	a	20	kilobase	window	of	the	gene.		

I	 ran	 two	 separate	 pathway	 analyses,	 one	 using	 the	 Molecular	 Signatures	 Database	

canonical	pathways	collection[203],	comprising	1,329	manually	curated	gene-sets	from	nine	

databases	 (Table	 2.3),	 and	 one	 using	 6,166	 gene-sets	 from	 the	 Gene	 Ontology	 pathway	

database[204].	Significance	was	defined	using	a	5%	FDR	equivalent	to	a	q-value	of	0.05	for	

both	the	gene	and	pathway	analyses[205].	
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2.2.8 Cross-phenotype	meta-analysis	

I	 used	 a	 multi-trait	 meta-analysis	 approach	 to	 search	 for	 novel	 associations	 in	 each	

pairwise	combination	of	arcOGEN	and	GEFOS	datasets[114].	The	method,	CPASSOC,	requires	

only	summary	data	and	generates	two	test	statistics:		

The	 first,	 Shom,	 assumes	 homogeneous	 effects	 across	 studies	 and	 is	 equivalent	 to	

performing	an	inverse	variance	weighted	meta-analysis	if	no	sample	overlap	between	the	

studies	 exists.	 The	 second,	 Shet,	 is	 more	 powerful	 if	 effects	 are	 heterogeneous	 between	

studies.	Both	statistics	require	the	specification	of	a	correlation	matrix	of	dimensions	KxK,	

where	 K	 is	 the	 number	 of	 studies	 or	 traits	 included.	 I	 used	 tetrachoric	 correlation	 to	

construct	this	matrix	as	described	in	section	“2.2.3.	Estimating	sample	overlap”.	

To	investigate	whether	any	of	the	genome-wide	significant	signals	were	novel,	I	extracted	

a	list	of	independent	top	variants	(r2<0.1	with	any	SNP	within	500	kb)	for	both	Shet	and	Shom	

in	each	analysis.	I	then	looked	up	their	p-value	in	GEFOS	and	arcOGEN	to	see	whether	the	

signal	could	be	explained	entirely	by	either	of	the	cohorts.	Variants	that	did	not	fall	within	a	

genome-wide	 significant	 OA	 or	 BMD	 locus	 (r2>0.2	 or	 within	 500	 kb	 of	 genome-wide	

significant	 SNPs)	 were	 followed-up	 using	 the	 GWAS	 catalogue	 resource	

(https://www.ebi.ac.uk/gwas,	date	accessed:	23/03/2017).	I	performed	an	in-silico	lookup	

in	the	UK	Biobank	hip	and/or	knee	OA	data	of	top	SNPs	with	p	<	5x10-8	in	any	of	the	CPASSOC	

analyses	that	did	not	fall	into	known	OA	or	BMD	loci.	

	

2.2.9 Replication	and	meta-analysis	for	OA	

I	took	forward	a	total	of	143	SNPs	for	in	silico	replication.	This	set	comprises	the	two	most	

strongly	 associated	 variants	 (one	 for	 each	 trait)	 in	 each	 region	 from	 the	 Bayesian	

colocalisation	test,	as	well	as	all	variants	overlapping	at	Pt=0.005	in	the	SNP-based	overlap	

analyses.	 I	 used	 the	METAL[206]	 software	 package	 to	 perform	 inverse	 variance	weighted	

meta-analysis	of	 these	SNPs	 in	using	summary	statistics	 from	the	arcOGEN	combined	OA	

dataset	 (including	London	samples),	 the	UK	Biobank[46]	 and	 the	deCODE[207]	 study.	 I	 first	

performed	a	meta-analysis	across	the	replication	datasets	(UK	Biobank	and	deCODE)	and	

then	across	all	three	datasets	(UK	Biobank,	deCODE	and	arcOGEN)	(Appendix	A).	
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2.2.10 Functional	follow-up	of	SMAD3	

Details	 of	 sample	 description	 and	 processing	 can	 be	 found	 elsewhere[208].	 Briefly,	

articular	 cartilage	was	 obtained	 from	12	 patients	 undergoing	 total	 joint	 replacement	 for	

knee	 OA,	 and	 9	 patients	 for	 hip	 OA.	 Cartilage	 was	 graded	 using	 the	 OARSI	 cartilage	

classification	system[209,	210].	

	

2.3 Results	

2.3.1 Genome-wide	genetic	correlation		

I	used	linkage	disequilibrium	(LD)	score	regression	to	estimate	the	genome-wide	genetic	

correlation	between	OA	and	BMD.	There	was	a	significant	correlation	between	combined	OA	

and	 LSBMD	 (r2=0.18;	 p=0.022),	 as	 well	 as	 combined	 OA	 and	 peadiatric	 total	 body	 BMD	

(r2=0.22;	p=0.019,	Figure	2.1).		

	

2.3.2 Extent	of	shared	association	signals	

I	 found	 evidence	 for	 significant	 overlap	 of	 association	 signals	 at	 different	 p-value	

thresholds	(Pt)	between	all	three	OA	categories	and	LSBMD	(permutation	adjusted	p-value	

(pperm)<0.05)	(Table	2.4).		

Analysis	of	the	combined	OA	and	LSBMD	data	resulted	in	significant	overlap	p-values	at	

Pt=0.001	 and	 0.005,	 as	 well	 as	 at	 less	 stringent	 Pt.	 Four	 SNPs	 overlap	 at	 Pt=5x10-4		

(rs17158899,	 rs4536164,	 rs11826287	 and	 rs630765),	 one	 of	 which	 (rs11826287)	 is	

genome-wide	significantly	associated	with	FNBMD	(p=3.61x10-14)	and	maps	to	an	intron	in	

LRP5.	 The	 highest	 overlap	 was	 observed	 between	 hip	 OA	 and	 LSBMD,	 with	 six	 SNPs	

overlapping	at	Pt=5x10-4	(pperm=5.7x10-5).	Two	of	these	SNPs	are	genome-wide	significantly	

associated	with	BMD	 in	GEFOS	 (rs1524928,	 p=5.29x10-9	 and	 rs716255,	 p=2.07x10-11).	 A	

significant	overlap	was	also	observed	for	Pt	of	0.001,	0.005	and	0.01	in	the	hip	OA-LSBMD	

comparison.		Compared	to	the	hip	OA	and	LSBMD	analysis,	overlap	p-values	for	the	knee	OA	

and	LSBMD	comparison	were	at	least	one	order	of	magnitude	smaller.		 	
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Figure	 2.1.	 Genetic	 correlation	 between	 osteoarthritis	 (OA)	 and	 bone	 mineral	 density	 (BMD)	 as	
estimated	by	LD	score	regression.	Correlations	were	calculated	between	each	pairwise	comparison	of	
phenotypes	in	arcOGEN	and	GEFOS	(a),	and	arcOGEN	and	a	paediatric	BMD	cohort	(b).	Rectangles	show	
the	correlation	estimate	(middle	horizontal	line)	and	standard	errors	(upper	and	lower	bounds)	of	each	
comparison.			Rectangles	are	coloured	according	to	the	strength	of	correlation.	Significant	correlation	
estimates	are	marked	by	an	asterisk.	LSBMD=lumbar	spine	BMD;	FNBMD=femoral	neck	BMD	

	 	

a)	

b)	
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Four	SNPs	(rs7104420,	rs9466056,	rs881803	and	rs4536164)	overlapped	at	Pt=5x10-4	

in	 this	 analysis	 (pperm	 =4.21x10-3).	 Two	 of	 these,	 rs4536164	 and	 rs9466056,	 fall	 within	

known	BMD	risk	loci[13].	

Overlap	signal	was	much	weaker	for	the	OA	and	FNBMD	comparisons,	with	only	five	Pt	

reaching	statistical	significance	(Pt=0.001	 for	knee	OA,	Pt=0.005	and	0.01	 for	hip	OA,	and	

Pt=0.001	and	Pt=0.005	for	combined	OA).	The	SNP	overlapping	at	Pt=5x10-4	for	hip	OA	and	

FNBMD	 (rs1524928)	 was	 also	 among	 the	 six	 SNPs	 identified	 in	 the	 hip	 OA	 and	 LSBMD	

analysis.	Two	SNPs	overlapped	at	this	Pt	for	knee	OA,	one	being	rs9466056	and	the	other	

rs1283614,	which	maps	to	an	intron	of	the	BMD	locus	MEF2C[211].	

	
2.3.3 Evidence	for	colocalising	regions	

I	 employed	 a	 regional	 Bayesian	 colocalisation	 test	 that	 measures	 the	 posterior	

probabilities	for	each	of	four	alternative	hypotheses	compared	to	one	global	null	hypothesis	

(i.e.	no	associations	 for	either	 trait	 in	 that	 region).	 I	 identified	 four	 independent	genomic	

regions	with	a	high	posterior	probability	of	harbouring	one	causal	variant	common	to	both	

traits	analysed	(posterior	probability	for	hypothesis	3≥0.9)	(Table	2.5).		

	

	 Analysis	 SNPs	 Chr	 Start	(bp)	 Stop	(bp)	 Top	SNP	BMD	 Top	SNP	OA	 PP	

H
yp
ot
he
si
s	
3 	

allOA	and	LSBMD	 817	 chr14	 91297823	 93129850	 rs1286147;	
rs1286063	

rs1286077	 0.95	

hipOA	and	FNBMD	 817	 chr14	 91297823	 93129850	 rs1286147	 rs1286077	 0.98	
hipOA	and	LSBMD	 817	 chr14	 91297823	 93129850	 rs1286147;	

rs1286063	
rs1286077	 0.99	

hipOA	and	LSBMD	 1242	 chr10	 78708452	 80875213	 rs7071206	 rs716255	 0.92	
hipOA	and	LSBMD	 531	 chr1	 44974119	 46897698	 rs7554123	 rs7545984	 0.91	
kneeOA	and	FNBMD	 1235	 chr6	 19208477	 21677746	 rs9466056	 rs9466056	 0.99	

H
yp
ot
he
si
s	
4	

	

hipOA	and	LSBMD	 268	 chr4	 696848	 1415698	 rs3755955	 rs3755920	 0.97	

kneeOA	and	LSBMD	 382	 chr16	 14464538	 16152940	 rs4985155	 rs9935327	 0.95	

kneeOA	and	LSBMD	 1070	 chr6	 150255029	 151910904	 rs4869742	 rs9384514	 0.90	

Table	2.5.	Regions	with	strong	evidence	of	pleiotropy.	For	each	region	the	number	of	SNPs,	start	and	
stop	 position	 in	 basepairs	 (bp)	 and	 most	 strongly	 associated	 SNPs	 for	 OA	 and	 BMD	 are	 given.	
Chromosome	 coordinates	 are	 in	 hg19.	 Hypothesis	 3=one	 causal	 variant;	 hypothesis	 4=two	 distinct	
causal	variants;	PP=posterior	probability	
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The	region	containing	the	RPS6KA5	gene	was	identified	by	three	comparisons	(combined	

OA	and	LSBMD,	hip	OA	and	LSBMD,	and	hip	OA	and	FNBMD).	The	most	strongly	associated	

SNPs	in	this	region	lie	in	introns	of	RPS6KA5	and	are	genome-wide	for	increased	BMD	at	both	

the	 lumbar	spine	and	femoral	neck	(rs1286147	and	rs1286063,	p<5x10-8)	and	nominally	

significant	associations	with	increased	risk	of	combined	and	hip	OA	(rs1286077,	p<0.05);	

the	three	SNPs	are	in	perfect	LD	(r2=1.00	for	each	pairwise	combination).	

Two	further	regions	were	identified	in	the	hip	OA	and	LSBMD	analysis.	The	first	spans	a	

known	 LSBMD	 locus	 upstream	 of	 the	KCNMA1	 gene	 on	 chromosome	 10	 and	 contains	 a	

regulatory	variant	in	a	CTCF	binding	site	that	is	nominally	significant	for	hip	OA	(rs716255,	

p=0.001).	The	second	lies	on	chromosome	1	and	contains	two	nominally	significant	variants	

for	LSBMD	(rs7554123,	p=	1.12x10-4)	and	hip	OA	(rs7545984,	p=1.29x10-4),	respectively,	

which	both	fall	within	an	intron	of	RNF220.	

	The	region	identified	in	the	knee	OA	and	FNBMD	analysis	contains	one	lead	SNP	for	both	

traits,	rs9466056,	which	is	associated	with	high	FNBMD	(p=1.8x10-8)	and	decreased	risk	of	

knee	OA	(p=1.1x10-4),	mapping	to	an	intergenic	region	between	CDKAL1	and	SOX4.		

I	also	identified	three	regions	(Table	2)	with	a	high	posterior	probability	of	harbouring	

two	distinct	causal	variants	(PP	for	hypothesis	4≥0.9).	All	three	of	these	contain	a	known	

BMD	locus,	with	the	top	SNPs	for	LSBMD	mapping	to	introns	of	IDUA,	CCDC170	and	PDXDC1.	

The	top	SNPs	for	knee	and	hip	OA	are	nominally	associated	(p<0.05)	with	these	respective	

phenotypes	in	arcOGEN.	

	

2.3.4 Gene	and	pathway	analysis		

Of	 the	 individual	genes	significantly	associated	 (q<0.05)	with	at	 least	one	OA	or	BMD	

phenotype,	SUPTH3,	COL11A1,	and	APCDD1	overlapped	between	OA	and	BMD	(Table	2.6).		

All	three	include	variants	that	were	identified	in	the	SNP-wise	overlap	analysis	and	taken	

forward	for	replication.	
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Gene	 Combined	OA	 Hip	OA	 Knee	OA	 LSBMD	 FNBMD	
COL11A1	 3.40E-01	 1.04E-02	 8.08E-01	 2.31E-02	 4.46E-04	
SUPT3H	 1.40E-01	 3.74E-02	 7.55E-01	 7.27E-04	 6.98E-01	
APCDD1	 3.72E-02	 9.14E-01	 3.58E-02	 4.16E-02	 3.62E-01	

Table	2.6.	False	discovery	rate	corrected	p-values	(q-values)	for	the	three	genes	significantly	associated	
with	at	least	one	osteoarthritis	(OA)	and	one	bone	mineral	density	(BMD)	phenotype.	LSBMD=lumbar	
spine	BMD;	FNBMD=femoral	neck	BMD	

There	were	no	pathways	significantly	associated	with	any	OA	phenotype	in	any	of	the	

analyses.	 One	 of	 the	 CP	 pathways	 was	 associated	 with	 FNBMD	 (“basal	 cell	 carcinoma”,	

q=0.02)	when	allowing	a	20	kilobase	(kb)	window	around	genes.	 	Using	GO	annotations	a	

total	 of	 33	 unique	 pathways	were	 associated	with	 either	 BMD	phenotype	 using	 strict	 or	

lenient	 gene	 definitions	 (Table	 2.8;	 Table	 2.7),	 including	 several	 with	 direct	 biological	

relevance,	such	as	“regulation	of	ossification”	or	“osteoblast	development”.	

	

Pathway	 Genes	 Beta	 SE	 P	 PBH	
Skeletal	System	Development	 438	 0.189	 0.04	 8.90E-06	 2.74E-02	
Positive	Regulation	Of	Cartilage	Development	 28	 0.657	 0.16	 2.14E-05	 4.41E-02	
Positive	Regulation	Of	Chondrocyte	
Differentiation	

19	 0.836	 0.19	 6.04E-06	 2.74E-02	

Table	2.7.	GO	pathways	significantly	associated	with	FNBMD	when	including	a	20kb	window	around	
genes.	P=raw	p-values;	PBH=false	discovery	rate	corrected	p-values(q-values)	
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Pathway	 Genes	 Beta	 SE	 P	 PBH	

Formation	Of	Primary	Germ	Layer	 107	 0.30	 0.08	 5.58E-05	 2.06E-02	

Negative	Regulation	Of	Fat	Cell	Differentiation	 41	 0.64	 0.15	 6.41E-06	 6.39E-03	

Branch	Elongation	Of	An	Epithelium	 17	 1.13	 0.27	 9.87E-06	 6.39E-03	

Mammary	Gland	Epithelium	Development	 51	 0.51	 0.12	 1.33E-05	 7.45E-03	

Skeletal	System	Development	 438	 0.20	 0.05	 8.78E-06	 6.39E-03	

Embryo	Development	 861	 0.13	 0.03	 2.12E-05	 1.01E-02	

Canonical	Wnt	Signaling	Pathway	 87	 0.38	 0.09	 9.15E-06	 6.39E-03	

Somitogenesis	 57	 0.42	 0.12	 1.56E-04	 3.85E-02	

Phosphate	Containing	Compound	Metabolic	Process	 1875	 0.08	 0.02	 8.98E-05	 2.52E-02	

Gastrulation	 147	 0.24	 0.07	 1.75E-04	 4.11E-02	

Mammary	Gland	Development	 112	 0.30	 0.08	 8.33E-05	 2.52E-02	

Positive	Regulation	Of	Peptidyl	Threonine	Phosphorylation	 24	 0.78	 0.17	 1.44E-06	 2.96E-03	

Embryonic	Morphogenesis	 524	 0.14	 0.04	 2.00E-04	 4.11E-02	

Regulation	Of	Catenin	Import	Into	Nucleus	 26	 0.58	 0.16	 1.91E-04	 4.11E-02	

Mammary	Gland	Alveolus	Development	 16	 1.48	 0.22	 1.71E-11	 5.27E-08	

Regulation	Of	Peptidyl	Threonine	Phosphorylation	 35	 0.65	 0.15	 5.59E-06	 6.39E-03	

Mammary	Gland	Lobule	Development	 16	 1.48	 0.22	 1.71E-11	 5.27E-08	

Osteoblast	Development	 18	 0.99	 0.24	 1.58E-05	 8.14E-03	

Dorsal	Ventral	Axis	Specification	 20	 0.74	 0.18	 2.49E-05	 1.10E-02	

Mammary	Gland	Epithelial	Cell	Proliferation	 12	 1.16	 0.27	 1.04E-05	 6.39E-03	

Muscle	Cell	Differentiation	 230	 0.22	 0.06	 7.21E-05	 2.34E-02	

Phosphorylation	 1160	 0.09	 0.03	 1.99E-04	 4.11E-02	

Somite	Development	 72	 0.42	 0.11	 3.96E-05	 1.63E-02	

Embryonic	Organ	Development	 391	 0.21	 0.05	 4.84E-06	 6.39E-03	

Axis	Elongation	 26	 0.69	 0.18	 5.69E-05	 2.06E-02	

Regulation	Of	Ossification	 170	 0.25	 0.07	 1.85E-04	 4.11E-02	

Regulation	Of	Stem	Cell	Differentiation	 113	 0.30	 0.08	 8.77E-05	 2.52E-02	

Beta	Catenin	Destruction	Complex	 14	 0.79	 0.22	 1.22E-04	 3.13E-02	

Protein	Complex	Scaffold	 66	 0.44	 0.12	 6.37E-05	 2.18E-02	

Glutamate	Receptor	Binding	 35	 0.55	 0.16	 2.16E-04	 4.30E-02	

G	Protein	Coupled	Receptor	Binding	 245	 0.23	 0.06	 9.39E-05	 2.52E-02	

Table	2.8.	GO	pathways	significantly	associated	with	LSBMD	when	including	a	20kb	window	around	
genes.	P=raw	p-values;	PBH=false	discovery	rate	corrected	p-values(q-values)	
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2.3.5 Cross-phenotype	meta-analysis	

To	 search	 for	 potential	 novel	 associations	 not	 identified	 by	 single-trait	 GWAS,	 I	

performed	a	cross-phenotype	meta-analysis	between	each	pairwise	combination	of	OA	and	

BMD	datasets	(Figure	2.2;	Figure	2.3;	Figure	2.4;	Figure	2.5).	Using	the	CPASSOC	method[114],	

I	 computed	 two	 statistics,	 Shom	 and	 Shet,	which	 assume	 homogeneous	 and	 heterogeneous	

effects	across	studies,	respectively.	I	identified	13	independent	associations	not	previously	

reported	for	BMD	or	OA,	which	I	followed	up	in	the	UK	Biobank	combined	OA	dataset	(Table	

2.9).	One	SNP,	rs11164649,	was	nominally	significant	(p<0.05).	This	SNP	lies	in	an	intron	of	

the	COL11A1	gene	and	is	in	strong	LD	(r2=0.92)	with	a	variant	(rs1903787)	identified	in	the	

SNP-wise	overlap	analysis	which	was	taken	forward	for	replication.		

	

SNP	 CHR	 POS	 EA	 NEA	 P	 BETA	 SE	
rs7545984	 1	 45003893	 C	 T	 7.78E-01	 0.014	 0.048	
rs12060207	 1	 98335381	 T	 C	 5.65E-01	 0.018	 0.031	
rs11164649	 1	 103444679	 G	 T	 3.83E-02	 0.036	 0.017	
rs17578878	 4	 37900725	 T	 C	 6.24E-01	 -0.013	 0.026	
rs7735525	 5	 95981203	 G	 A	 4.89E-01	 -0.055	 0.080	
rs1748234	 6	 45140853	 T	 C	 5.91E-01	 -0.009	 0.016	
rs7853022	 9	 18930055	 T	 G	 5.33E-01	 0.014	 0.022	
rs996793	 9	 23676631	 G	 A	 2.55E-01	 -0.061	 0.054	
rs10491510	 9	 35040245	 T	 C	 5.56E-01	 0.041	 0.070	
rs11188469	 10	 97511901	 T	 G	 7.42E-01	 0.010	 0.031	
rs7908390	 10	 100147247	 C	 T	 3.51E-01	 0.267	 0.279	
rs17098135	 14	 61689992	 C	 A	 9.38E-01	 -0.005	 0.064	
rs2197166	 18	 10493908	 A	 G	 7.41E-01	 -0.006	 0.018	

Table	2.9.	In-silico	look	up		in	the	UK	Biobank	combined	OA	data	of	top	SNPs	that	reached	genome-wide	
significance	in	any	of	the	CPASSOC	analyses	for	Shet	or	Shom,	and	are	not	known	osteoarthritis	(OA)	or	
bone	mineral	density	(BMD)	loci.	For	each	SNP	summary	statistics	in	the	form	of	effect	estimates	(BETA),	
standard	errors	(SE)	and	p-values	(P).	EA=effect	allele;	NEA=non-effect	allele	
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Figure	2.2.	Manhattan	plots	of	multi-trait	meta-analysis	between	osteoarthritis	(OA)	and	lumbar	spine	
bone	mineral	density	(LSBMD).	The	CPASSOC	method	was	used	to	calculate	the	Shom	(a-c)	and	Shet	(d-
f)	statistics	for	combined	OA	and	LSBMD	(a,d),	hip	OA	and	LSBMD	(b,e)	and	knee	OA	and	LSBMD	(c,f).	

	 	

a)	

b)	

c)	

d)	

e)	

f)	
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Figure	2.3.	Quantile-quantile	plots	of	multi-trait	meta-analysis	between	osteoarthritis	(OA)	and	lumbar	
spine	bone	mineral	density	(LSBMD).	The	CPASSOC	method	was	used	to	calculate	the	Shom	(a-c)	and	
Shet	(d-f)	statistics	for	combined	OA	and	LSBMD(a,d),	hip	OA	and	LSBMD	(b,e)	and	knee	OA	and	LSBMD	
(c,f).	

	 	

a)	

b)	

c)	

d)	

e)	

f)	
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Figure	2.4.	Manhattan	plots	of	multi-trait	meta-analysis	between	osteoarthritis	(OA)	and	femoral	neck	
bone	mineral	density	(FNBMD).	The	CPASSOC	method	was	used	to	calculate	the	Shom	(a-c)	and	Shet	(d-
f)	statistics	for	combined	OA	and	FNBMD(a,d),	hip	OA	and	FNBMD	(b,e)	and	knee	OA	and	FNBMD	(c,f).	

	 	

a)	

b)	

c)	

d)	

e)	

f)	
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Figure	 2.5.	 Quantile-quantile	 plots	 of	 multi-trait	 meta-analysis	 between	 osteoarthritis	 (OA)	 and	
femoral	neck	bone	mineral	denisty	(FNBMD).	The	CPASSOC	method	was	used	to	calculate	the	Shom	(a-
c)	and	Shet	(d-f)	statistics	for	combined	OA	and	FNBMD(a,d),	hip	OA	and	FNBMD	(b,e)	and	knee	OA	and	
FNBMD	(c,f).	
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2.3.6 Replication	and	meta-analysis	for	OA	

	I	took	forward	a	total	of	143	SNPs	identified	in	the	colocalisation	and/or	p-value	based	

overlap	analysis	for	replication	in	UK	Biobank	and	deCODE	(Appendix	A).	None	of	the	SNPs	

taken	forward	are	genome-wide	significantly	associated	in	arcOGEN.		

I	subsequently	meta-analysed	the	above	list	of	SNPs	across	UK	Biobank	and	deCODE,	and	

then	across	arcOGEN,	UK	Biobank	and	deCODE.	I	found	a	significant	excess	of	independent	

SNPs	with	 the	 same	direction	of	 effect	 among	 variants	with	pmeta<0.05	 in	 the	 replication	

cohorts	(binomial	sign	test	p=	2.62x10-06)	and	across	all	three	cohorts	(binomial	sign	test	

p=7.75x10-11),	 as	 well	 as	 all	 independent	 SNPs	 included	 in	 the	 meta-analysis	 of	 the	

replication	cohorts	 (binomial	 sign	 test	p=0.002)	and	all	 three	cohorts	 (binomial	 sign	 test	

p=0.03).	

Variants	within	several	genes	linked	to	bone,	cartilage	and	extracellular	matrix	biology,	

including	APCDD1,	SUPTH3,	COL11A1,	NOTCH4,	SEMA3A,	LGR4,	PTCH1	and	RPS6KA5,	were	

associated	at	pmeta<0.05	(Appendix	A).		

Two	variants	reached	genome-wide	significance	 in	 the	meta-analysis	across	arcOGEN,	

deCODE	and	UK	Biobank:	rs12901071	(OR	1.08	[95%	CI	1.05-1.11],	pmeta=3.12x10-10)	and	

rs10518707	 (OR	 1.07,	 [95%	 CI	 1.03-1.09],	 pmeta=2.15x10-8).	 They	 were	 also	 nominally	

significant	 in	 the	 UK	 Biobank-deCODE	 meta-analysis	 (rs12901071:	 p=2.46x10-07;	

rs10518707:	p=7.90x10-06).	Both	are	 intronic	variants	 in	 the	SMAD3	 gene	(r2=0.645)	and	

were	identified	in	the	SNP-wise	overlap	analysis	of	combined	OA	vs.	LSBMD	and	hip	OA	vs.	

LSBMD,	respectively	(Figure	2.6).		

Both	 new	 genome-wide	 significant	 SNPs	 for	 OA	 were	 imputed	 in	 the	 arcOGEN	 data	

(imputation	info	score>0.95)	and	are	nominally	associated	with	combined	OA	(Appendix	A).	

They	 are	 also	 nominally	 associated	 with	 increased	 LSBMD	 in	 GEFOS	 (rs12901071,	

p=1.58x10-3	and	rs10518707,	p=3.47x10-5),	but	not	FNBMD	(rs12901071,	p=3.72x10-1	and	

rs10518707,	 p=2.46x10-1).	 SMAD3	 is	 associated	 (p<0.05)	 with	 LS	 and	 FNBMD,	 hip	 and	

combined	 OA	 in	 the	 gene	 analysis	 (Table	 2.10),	 although	 this	 association	 only	 holds	 for	

LSBMD	when	using	false	discovery	rate	(FDR)	correction	(q=6.92x10-6).		
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In	 the	 colocalisation	 analysis,	 the	 region	 in	 which	 both	 top	 SNPs	 reside	

(chr15:67,095,629-69,017,421)	has	a	posterior	probability	of	containing	a	single	pleiotropic	

variant	associated	with	hip	OA	and	LSBMD	(hypothesis	3)	of	0.88.	

	

	

Figure	2.6.	Regional	association	plot	of	SMAD3.	The	-log(p-values)	of	SNPs	in	the	arcOGEN	combined	
osteoarthritis	(OA)	data	(top)	and	GEFOS	lumbar	spine	bone	mineral	density	(LSBMD)	data	(bottom)	
are	plotted	against	their	chromosomal	position.	The	meta-analysis	p-value	of	rs12901071	is	plotted	as	
a	golden	diamond.	Protein	coding	genes	are	represented	by	green	bars.	

	

Trait	 Variants	 P	 PBH	
Combined	OA	 100	 4.96E-03	 3.45E-01	
Hip	OA	 99	 9.18E-04	 2.17E-01	
Knee	OA	 100	 4.43E-01	 9.21E-01	
FNBMD	 202	 3.79E-03	 1.98E-01	
LSBMD	 202	 1.11E-08	 6.92E-06	

Table	2.10.	Results	for	SMAD3	in	the	gene	analysis.	P=raw	p-values;	PBH=false	discovery	rate	corrected	
p-values(q-values)	
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2.3.7 Functional	follow-up	of	SMAD3	

Using	 RNA	 sequencing	 data,	 I	 confirmed	 the	 expression	 of	 SMAD3	 in	 low-grade	

degenerate	 articular	 cartilage	 of	 12	 knee	 and	 9	 hip	 OA	 patients	 undergoing	 total	 joint	

replacement[208]		(Figure	2.7).	SMAD3	is	among	the	30%	most	expressed	genes	in	the	knee	

articular	cartilage	samples,	and	among	the	15%	most	expressed	genes	in	the	hip	articular	

cartilage	samples.		

	

	

Figure	2.7.	Mean	expression	of	15,418	genes	in	low-grade	degenerate	articular	cartilage	of	the	knee	
(left)	and	16,296	genes	in	intact	articular	cartilage	of	the	the	hip	(right).	Mean	SMAD3	expression	is	
shown	by	a	red	line.	FPKM:	fragments	per	kilobase	per	million	mapped	reads.	Boxplots	represent	the	
median	(white	dot),	interquartile	range	(IQR;	black	box)	and	the	lowest	and	highest	value	still	within	
1.5	IQR	of	the	lower	and	upper	quartile,	respectively	(whiskers).	

	

2.4 Discussion	

The	 analysis	 of	 shared	 genetic	 aetiology	 across	 epidemiologically	 linked	 traits	 can	

enhance	power	to	 identify	disease	variants	and	shed	light	 into	the	biological	mechanisms	

underpinning	these	associations.	I	conducted	the	first	genome-wide	overlap	analysis	of	BMD	

and	OA	using	summary	statistics	from	two	large-scale	GWAS	of	these	traits,	respectively.	It	
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should	be	note	that	test	statistics	from	individual	analyses	were	not	corrected	for	multiple	

testing.	Bonferroni	correction	would	have	been	overly	conservative,	as	the	the	OA	and	BMD	

datasets	were	comprised	of	highly	correlated	phenotypes,	respectively.	A	more	appropriate	

approach	for	multiple	testing	correction	would	have	been	calculating	the	effective	number	

of	 phenotypes	 among	 the	 five	 OA	 and	 BMD	 groups;	 however,	 this	 was	 not	 possible	 as	

individual-level	data	was	not	available	for	BMD.	

	

2.4.1 Differential	overlap	of	FN-	and	LSBMD	with	OA	

There	was	a	stronger	overlap	between	OA	and	LSBMD	than	for	OA	and	FNBMD,	both	in	

the	SNP-based	and	genetic	correlation	analyses.	The	fact	that	only	the	correlation	between	

combined	OA	and	LSBMD	was	significant	could	be	due	to	the	bigger	sample	size	in	this	OA	

dataset	compared	to	the	hip	or	knee	OA	data.	While	the	FN-	and	LSBMD	datasets	are	very	

similar	in	size,	the	knee	OA	and	hip	OA	datasets	each	contain	approximately	half	the	number	

of	cases	compared	to	the	combined	OA	dataset.	This	difference	in	power	might	at	least	partly	

explain	 why	 the	 genetic	 correlation	 estimates	 for	 joint-specific	 OA	 and	 LSBMD	 did	 not	

achieve	statistical	significance.		

Epidemiological	data	from	the	Chingford	study	have	shown	increased	baseline	BMD	to	

be	associated	with	incident	radiographic	knee	OA,	with	the	mean	increase	in	LSBMD	being	

approximately	twice	as	high	as	the	 increase	 in	FNBMD[179,	184].	 Incident	knee	OA	was	also	

linked	 to	higher	baseline	LSBMD,	but	not	FNBMD,	 in	 the	Baltimore	Longitudinal	Study	of	

Ageing[212].	The	reasons	for	this	differential	association	of	FN-	and	LSBMD	with	OA	remain	

unclear.	 One	 possible	 explanation	 could	 be	 the	 comorbidity	 of	 knee	 and	 spinal	 OA,	

characterised	by	spinal	osteophytes,	which	could	lead	to	increased	LSBMD	measurements.	

However,	in	one	study,	adjustment	for	the	presence	of	osteophytes	at	the	lumbar	spine	did	

not	 change	 the	 strength	of	 association	between	OA	and	LSBMD[179].	Damage	 to	 the	 spine	

accumulates	over	time	and	can	lead	to	changes	such	as	breakdown	of	the	invertebral	discs,	

scoliosis	and	osteochondrosis,	a	process	also	referred	to	as	degenerative	disc	disease	(DDD).		

Although	the	association	between	DDD	and	LSBMD	remains	unclear[213-216],	it	is	known	that	

the	presence	of	degenerative	features	can	increase	LSBMD	measurements	obtained	via	dual	

X-ray	 absorptiometry[217].	While	 this	might	 have	 contributed	 to	 the	 observed	 association	
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between	LSBMD	and	OA,	I	found	genetic	correlations	of	a	similar	magnitude	between	OA	and	

skull,	as	well	as	total	body	BMD	measurements	in	a	paediatric	cohort[218].	As	DDD	and	related	

features	such	as	osteophytes	are	unlikely	to	be	present	in	young	individuals,	these	results	

suggest	that	the	correlation	between	OA	and	LSBMD	is	not	purely	artefactual.	

	

2.4.2 Genetics	of	hip	vs	knee	OA	

Both	LD	score	regression	and	the	SNP-based	overlap	analysis	showed	a	greater	degree	

of	overlap	between	hip	OA	and	both	BMD	measurements	than	between	knee	OA	and	BMD.	

Hip	OA	is	estimated	to	have	a	higher	heritability	than	knee	OA[219,	220],	with	environmental	

risk	factors	such	as	physical	activity	and	BMI	more	strongly	associated	with	the	latter[221].	A	

recent	study	of	9,000	twin	pairs	also	found	that	genetics	explained	73%	of	variation	in	hip	

arthroplasty	 due	 to	 OA	 were	 explained	 by	 genetics,	 compared	 to	 45%	 in	 knee	

arthroplasty[219].	In	other	words,	these	findings	suggest	that	progression	to	severe	OA	at	the	

hip	is	more	strongly	influenced	by	genetics	than	at	the	knee.	The	same	study	also	showed	a	

stronger	dependence	of	knee	arthroplasty	on	BMI.	

	

2.4.3 Variants	and	regions	with	potential	pleiotropic	effects	

I	identified	143	variants	with	evidence	for	potential	pleiotropic	effects	on	OA	and	BMD.	

Many	of	these	reside	in	or	near	biologically	relevant	genes,	two	of	which	(KLHL42/KLHDC5	

and	SUPT3H/RUNX2)	are	established	loci	for	both	traits[13,	38].	Variants	in	three	loci	(SUPTH3,	

APCDD1,	and	 COL11A1)	were	 also	 significantly	 associated	with	 at	 least	 one	OA	and	BMD	

phenotype	 in	 the	 gene	 analysis.	 APCDD1	 is	 an	 inhibitor	 of	WNT	 signaling[222],	 which	 is	

implicated	in	both	OA	and	BMD.	COL11A1	encodes	collagen	type	11,	an	important	component	

of	cartilage	and	bone,	and	has	been	associated	with	OA	in	a	candidate	gene	meta-analysis[223].	

Other	examples	include	the	LGR4	gene,	in	which	a	rare	variant	in	the	Icelandic	population	

has	 been	 associated	 with	 low	 BMD	 and	 osteoporotic	 fractures[224];	 	 and	 SEMA3A,	 which	

affects	bone	remodeling	in	rats[225].	

RNF220,	which	was	 identified	 in	 the	 hip	OA-LSBMD	 colocalisation	 analysis,	 increases	

canonical	 Wnt	 signaling[226],	 a	 key	 pathway	 involved	 in	 bone	 remodeling	 and	
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osteoarthritis[189,	 227].	 The	 protein	 product	 of	 RNF220	 de-ubiquitinates	 beta-catenin	 by	

forming	a	complex	with	a	ubiquitin-specific	peptidase[226].	

	

2.4.4 SMAD3	as	a	novel	osteoarthritis	risk	locus	

I	identified	novel	genome-wide	significant	associations	at	two	intronic	SNPs	in	SMAD3,	

and	confirm	expression	of	this	gene	in	primary	chondrocytes	from	articular	cartilage	of	OA	

patients	undergoing	total	joint	replacement	surgery.	Activated	SMAD3	acts	downstream	of	

TGF-β,	repressing	osteoblast	differentiation	and	the	production	of	bone	matrix[228,	229].	It	also	

represses	the	cartilage-degrading	enzyme	matrix	metalloproteinase	13	in	chondrocytes[229].	

Missense	mutations	in	a	conserved	protein	domain	of	SMAD3	have	been	linked	to	aneurysm-

osteoarthritis	syndrome,	a	congenital	disorder	characterised	by	arterial	aneurysms,	heart	

abnormalities	and	early-onset	OA[230].		

Due	to	its	role	in	bone	and	cartilage	biology,	SMAD3	has	been	previously	assessed	in	a	

candidate	gene	study	of	hip	and	knee	OA[231].	Despite	 their	small	sample	size	(number	of	

cases<400),	the	investigators	found	nominal	associations	(p<0.05)	for	both	OA	phenotypes	

in	their	discovery,	which	were	 further	strengthened	 in	a	meta-analysis	(hip	OA	p=4x10-4;	

knee	OA	p=7.5x10-6).	Notably,	their	top	signal	(rs12901499)	maps	to	the	same	locus	as	the	

lead	SNP	(r2=0.645)	in	the	meta-analysis	presented	here.	

More	 recently,	 two	 studies	 have	 shown	 SMAD3	 expression	 to	 be	 correlated	with	 the	

genotype	at	a	3’UTR	SNP[232],	 and	 to	be	 significantly	higher	 in	 cartilage	 from	OA	patients	

compared	to	healthy	controls[233].	The	authors	postulate	that	this	could	be	a	compensatory	

mechanism	to	counteract	existing	cartilage	damage,	or	that	SMAD3	expression	levels	outside	

a	narrow	range	have	detrimental	effects.	The	top	SNP	in	the	arcOGEN-deCODE-UKBB	meta-

analysis,	 rs12901071,	 is	 associated	with	 increased	 SMAD3	 expression	 in	 skeletal	muscle	

tissue	(p=	7.5x10-6)	in	GTEx[234].	
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2.4.5 Limitiations	and	future	work	

This	work	exemplifies	the	potential	to	uncover	new	disease	risk	loci	by	combining	data	

of	 epidemiologically	 linked	 traits.	 Methods	 combining	 univariate	 summary	 statistics	 of	

different	traits	–	such	as	the	colocalisation	analysis	employed	here[78]	–	often	do	not	require	

a	locus	to	be	genome-wide	significantly	associated	in	any	of	the	individual	studies	in	order	

to	 detect	 a	 cross-phenotype	 association.	 Hence,	 they	 can	 increase	 power	 to	 identify	

associated	variants	or	regions	without	the	need	to	collect	larger	sample	sizes[58].	A	downside	

of	such	approaches	is	that	they	do	inherently	rely	on	the	assumption	that	bot	input	datasets	

are	 well-powered	 to	 detect	 associations.	 Again,	 using	 the	 example	 of	 the	 colocalisation	

method,	a	failure	to	detect	any	regions	with	strong	evidence	for	a	shared	causal	variant	could	

be	due	to	the	lack	of	shared	signals	or	the	fact	that	one	or	both	datasets	are	underpowered.	

There	is	a	stark	difference	in	sample	size	and,	consequently,	statistical	power	between	the	

arcOGEN	and	GEFOS	GWAS	datasets.	Larger	datasets	where	phenotype	information	for	both	

OA	and	BMD	is	available	in	the	same	individuals	will	aid	in	further	disentangling	the	extent	

of	shared	genetics	between	them.	The	full	UK	Biobank	dataset,	which	was	released	in	early	

2018,	comprises	half	a	million	people	of	European	ancestry	and	includes	both	clinical	and	

self-reported	OA	phenotypes.	While	only	a	small	subset	of	participants	currently	have	DXA	

BMD	 measurements,	 heel	 BMD	 measured	 by	 quantitative	 ultrasound	 is	 available	 for	

approximately	270,000	individuals,	and	has	been	used	to	successfully	identify	novel	BMD	

loci	in	the	first	release	UK	Biobank	samples[176].	

There	 is	 currently	 no	 early	 detection	 protocol	 for	 osteoarthritis[235],	 and	 diagnosis	

consequently	occurs	only	when	the	disease	has	become	symptomatic,	i.e.	patients	present	

with	joint	pain	and	discomfort.	Lifestyle	changes	such	as	weight	management	and	modified	

exercise	 are	 not	 as	 effective	 at	 a	 point	 where	 tissue	 degradation	 and	 localised	 bone	

remodeling	 has	 already	 taken	 place	 in	 the	 affected	 joint(s)[236].	 Similarly,	 regenerating	

degraded	cartilage	in	progressive	OA	is	currently	not	feasible,	and	most	putative	drugs	are	

aimed	at	halting	degenerative	processes[237].	Measurable	biomarkers	hold	 the	promise	of	

identifying	individuals	at	high	risk	of	developing	OA	and	could	facilitate	early	intervention	

before	more	severe	damage	occurs[238].	Coupled	with	genetic	screening	(and	imaging	data	



	 53	

where	appropriate),	biomarkers	could	additionally	help	to	stratify	patients	not	only	based	

on	affected	joint	site,	but	molecular	as	well	as	physiological	endophenotypes[239].		

In	this	chapter,	I	identified	genes	with	potential	involvement	in	both	OA	and	BMD.	Their	

RNA	and	protein	expression	levels	will	need	to	be	explored	in	OA	cases	and	healthy	controls,	

and	 should	 be	 cross-checked	 with	 the	 presence	 of	 osteophytes.	 The	 identification	 of	

pleiotropic	loci	could	potentially	help	to	determine	whether	patients	are	“bone	formers”	and	

at	an	increased	risk	of	osteophytes,	bone	cysts	and	elevated	bone	turnover.	Such	molecular	

phenotyping	could	not	only	facilitate	early	detection,	but	also	reveal	pathways	for	potential	

pharmacological	 intervention.	 Currently	 the	 main	 line	 of	 medication	 for	 OA	 consists	 of	

analgesics	 to	 alleviate	 pain[165].	 Several	 drugs	 aimed	 at	 cartilage	 or	 bone	 remodeling	 are	

being	 trialed	 for	 their	 use	 in	 OA	 treatment,	 but	 are	 either	 counter-indicated	 due	 to	 side	

effects	or	show	limited	efficacy[165,	236,	240].	A	better	understanding	of	the	molecular	processes	

underlying	different	hallmarks	of	OA	will	 enable	more	 refined	drug	 targeting.	Recent	OA	

GWAS	have	also	 found	OA-associated	genes	with	effects	on	osteoclast	differentiation	and	

bone	remodeling,	further	highlighting	the	link	between	joint	and	bone	health[172,	241].	

A	flipside	of	these	findings	is	that	they	reveal	the	high	degree	of	pleiotropy	in	many	OA-

associated	 pathways.	 For	 example,	 the	 effects	 of	 TGF-beta	 signaling	 encompass	 cartilage	

maintenance,	bone	remodeling	and	immune	cell	function[242].	Consequently,	drugs	targeting	

these	 pathways	 will	 need	 to	 act	 locally	 in	 the	 affected	 joint	 (e.g.	 administered	 via	

injection)[243]	and/or	target	a	protein	downstream	in	the	signaling	chain	with	a	more	specific	

function	to	avoid	systemic	side	effects.	

	

2.4.6 Conclusion	

The	analyses	outlined	here	present	 the	 first	comprehensive	evaluation	of	genetic	overlap	

between	BMD	and	radiographic	OA.	Our	results	 lend	further	support	to	the	hypothesis	of	

common	genetic	factors	underlying	these	two	traits	and	establish	SMAD3	as	a	genome-wide	

significant	 risk	 locus	 for	 OA	with	 a	 potential	 pleiotropic	 effect	 on	 BMD.	 Pinpointing	 the	

common	 biological	 pathways	 of	 these	 two	 complex	 traits	 will	 provide	 insight	 into	 the	

underlying	mechanisms	of	OA,	facilitating	the	identification	of	novel	therapeutic	targets	or	

drug	repurposing	opportunities	for	its	treatment.		
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Chapter	3	– Evidence	 for	 genetic	 contribution	 to	 the	

increased	risk	of	type	2	diabetes	in	schizophrenia	
	

3.1 Introduction	

Schizophrenia	(SCZ)	is	a	psychiatric	disorder	characterised	by	an	inability	to	distinguish	

what	is	real	from	what	is	not.	The	most	common	symptoms	include	delusions,	hallucinations	

and	paranoia	(collectively	referred	to	as	positive	symptoms),	as	well	as	loss	of	motivation,	

social	 withdrawal	 (negative	 symptoms)	 and	 cognitive	 impairment[244].	 The	 lifetime	

prevalence	 for	 SCZ	 is	 around	 1%[244],	 and	 initial	 symptoms	 commonly	 appear	 during	

adolescence	or	early	adulthood[245];	however,	a	diagnosis	is	often	only	made	following	the	

progression	to	psychosis	and	subsequent	hospitalisation.		

SCZ	patients	are	at	an	elevated	risk	of	developing	metabolic	syndrome	compared	to	the	

general	population,	and	are	also	1.5-2	times	more	likely	to	develop	type	2	diabetes	(T2D)[246],	

whose	 hallmarks	 include	 isnulin	 resistance,	 high	 blood	 sugar	 and	 decreased	 insulin	

secretion	 by	 pancreatic	 beta	 cells[247].	 Several	 theories	 regarding	 the	 cause	 of	 this	

epidemiologic	link	exist,	including	the	use	of	antipsychotic	medication	and/or	shared	genetic	

aetiology[246,	 248-250].	 In	 addition,	 environmental	 factors	 are	 thought	 to	 play	 a	 role	 in	 the	

observed	comorbidity.	For	example,	patients	with	severe	mental	illness	often	lead	a	more	

sedentary	life	and	are	more	likely	to	smoke	compared	to	the	general	population[250]	–	both	

risk	factors	for	T2D.		

	

3.1.1 Metabolic	effects	of	psychotropic	drugs	

Although	psychosis	is	episodic	in	nature,	negative	symptoms	of	SCZ	tend	to	be	chronic,	

and	 require	 long-term	 management	 consisting	 of	 pharmacological	 intervention,	

psychotherapy	 and	 social	 support.	 Antipsychotic	 drugs	 are	 classified	 as	 first	 or	 second	

generation.	 The	 former	 includes	 compounds	 such	 as	 haloperidol	 and	 chlorpromazine,	

discovered	serendipitously	during	the	1950s.	While	these	drugs	were	effective	in	reducing	
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psychotic	symptoms,	they	also	caused	severe	side	effects	including	metabolic	perturbation	

and	medication-induced	motor	 disorders	 (known	 as	 extrapyramidal	 symptoms).	 Second	

generation	 antipsychotics	 (also	 known	 as	 “atypicals”),	 such	 as	 clozapine,	 risperidone	 or	

olanzapine,	are	less	likely	to	cause	these	motor	control	side	effects,	however,	they	are	more	

likely	 to	 cause	 metabolic	 imbalances	 and	 often	 lead	 to	 significant	 weight	 gain[251].	 Such	

perturbations	have	been	aggregated	into	the	umbrella	term	“metabolic	syndrome”,	which	

encompasses	 cardiovascular,	 anthropometric	 and	 physiological	 measures	 such	 as	

hyptertension,	obesity	and	insulin	resistance[252].	

Several	 studies	have	 found	an	association	between	psychotropic	medication	and	T2D	

risk[253-255],	but	it	is	still	unclear	to	what	extent	interactions	between	different	medications,	

life-style	 and	 inter-patient	 variability	 affect	 this	 association[250].	 It	 is	 conceivable	 that	 the	

metabolic	effects	of	antipsychotics	are	at	least	partly	mediated	by	genetic	predisposition.	So	

far,	studies	on	the	genetics	of	antipsychotic	response	have	been	small	(n	<	400)	and	unable	

to	identify	replicating	associations[256,	257].	

	

3.1.2 Impaired	metabolic	regulation	in	drug-naïve	SCZ	patients	

While	the	epidemiologic	link	between	SCZ	and	T2D	is	often	attributed	to	the	side	effects	

of	 psychotropic	 medication,	 there	 is	 evidence	 that	 metabolic	 dysregulation	 in	 SCZ	 may	

precede	pharmacologic	treatment.	Proteomic	studies	have	revealed	perturbed	expression	of	

proteins	 involved	 in	 glucose	 metabolism	 in	 brain	 tissue	 and	 elevated	 insulin	 levels	 in	

peripheral	blood	of	first-episode	SCZ	patients	compared	to	controls[258,	259].	More	recently,	a	

large	study	following	over	2.5	million	Danish	individuals	found	that	antipsychotic-naïve	SCZ	

patients	were	 three	 times	more	 likely	 to	 develop	T2D	 than	 the	 general	 population,	with	

antipsychotic	 drug	 use	 further	 increasing	 that	 risk[260].	 This,	 along	 with	 findings	 from	 a	

systematic	review	and	meta-analysis[261],	suggests	that	impaired	glucose	homeostasis	may	

already	be	present	in	drug-naïve	SCZ	patients.		
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3.1.3 Genetic	basis	of	SCZ	and	T2D	

It	 is	also	plausible	that	the	observed	overlap	between	SCZ	and	T2D	is	due	to	common	

susceptibility	 variants[248].	 Both	diseases	 are	 highly	 polygenic,	with	heritability	 estimates	

around	80%	for	SCZ[244]	and	35%	for	T2D[247].	Efforts	to	aggregate	genetic	data	for	GWAS	

and	 meta-analysis	 by	 the	 DIAGRAM	 consortium	 for	 T2D[11,	 262-264]	 and	 the	 Psychiatric	

Genomics	 Consortium	 (PGC)	 for	 SCZ[30,	 265,	 266]	 	 have	 successfully	 identified	 a	 substantial	

number	of	risk	loci	for	both	disorders,	which	explain	roughly	20%	of	heritability	for	T2D[267]	

and	7%	for	SCZ[30].	Functional	analyses	showed	that	risk	variants	for	SCZ	are	enriched	for	

enhancers	mapping	 to	pancreatic	beta	 cells[30].	 Furthermore,	 variants	mapping	 to	 central	

nervous	system	pathways	have	been	associated	with	BMI	–	a	key	risk	factor	for	T2D[41].		

Genetic	research	into	the	shared	pathobiology	of	SCZ	and	T2D	has	been	limited	to	date,	

and	has	mainly	focused	on	patients	with	one	of	the	two	disorders[248].	If	SCZ	without	T2D	

comorbidity	and	SCZ	with	T2D	are	partly	underpinned	by	different	genetic	aetiologies,	such	

study	designs	will	fail	to	identify	risk	factors	predisposing	to	the	latter.	

	

3.1.4 Chapter	overview	

Here,	 I	 investigate	 the	 presence	 of	 shared	 genetic	 risk	 factors	 for	T2D	 and	 SCZ	using	

genotype	data	from	a	Greek	cohort	comprising	three	patient	groups:	SCZ	only	(n=924),	T2D	

only	(n=822),	and	comorbid	SCZ	and	T2D	(n=505).	Samples	from	two	separate	Greek	cohorts	

were	used	as	population-based	controls	(n=1,125).	I	used	genome-wide	summary	statistics	

from	 two	 large-scale	 GWAS	 of	 SCZ	 and	 T2D	 from	 the	 PGC	 and	 DIAGRAM	 consortia,	

respectively,	to	perform	genetic	overlap	analyses.	First,	I	assess	the	genetic	overlap	between	

the	 two	disorders	using	polygenic	 risk	 scores;	next,	 I	 conduct	genome-wide	comparisons	

between	 all	 three	 patient	 groups,	 as	well	 as	 population	 controls;	 finally,	 I	 use	 summary	

statistics	from	published	GWAS	to	search	for	genetic	risk	factors	shared	between	SCZ	and	

T2D.		
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3.1.5 Publication	note	and	contributions	

All	analyses	outlined	 in	 this	chapter	are	my	own	work,	with	the	 following	exceptions:	

Bram	Prins	conducted	the	individual-level	QC	in	GOMAP	up	to	the	step	of	sample	relatedness,	

as	well	as	the	case-case	GWAS	in	GOMAP.	The	work	outlined	in	this	chapter	has	been	peer	

reviewed	and	published	in	Translational	Psychiatry[268].	

	

3.2 Methods	

3.2.1 Sample	description	

The	 GOMAP	 (Genetic	 Overlap	 between	 Metabolic	 and	 Psychiatric	 disorders)	 study	

comprises	a	collection	of	2,880	samples	from	four	different	patient	categories:	T2D	patients,	

SCZ	patients,	individuals	with	both	SCZ	and	T2D	(referred	to	from	here	on	as	SCZplusT2D),	

and	 individuals	 with	 a	 different	 psychiatric	 diagnosis	 (this	 last	 group	 was	 not	 used	 in	

analyses	 reported	 here).	 SCZ	 patients	 with	 and	 without	 T2D	 were	 recruited	 at	 the	

Dromokaitio	Psychiatric	Hospital	 and	Dafni	Psychiatric	Hospital	 in	Athens.	 SCZ	diagnosis	

was	determined	by	structured	clinical	interview	of	the	Diagnostic	and	Statistical	Manual	of	

Mental	 Disorders	 4th	 edition	 (DSM-IV)[269].	 T2D	 participants	 were	 recruited	 from	 the	

diabetes	outpatient	clinics	at	Hippokrateio	General	Hospital	and	Laiko	General	Hospital.	T2D	

status	was	assessed	in	all	participants	based	on	criteria	outlined	by	the	American	Diabetes	

Association[270].	 All	 participants	 gave	written	 informed	 consent.	A	detailed	description	of	

sample	collection	has	been	previously	published[271].	

For	the	risk	score	and	summary	statistics-based	analyses	I	used	summary	data	from	the	

DIAGRAMv3	 meta-analysis	 of	 T2D[263]	 (http://diagram-consortium.org/downloads.html),	

and	 the	 PGC	 meta-analysis	 for	 SCZ[30]	 (https://www.med.unc.edu/pgc/results-and-

downloads).	 The	 DIAGRAMv3	 study	 included	 12,171	 T2D	 cases	 and	 56,862	 controls	 of	

mostly	European	descent.	Each	contributing	study	had	performed	imputation	based	on	the	

HapMap3	reference	panels,	resulting	in	up	to	2.5	million	variants	in	the	meta-analysis.	The	

SCZ	study	consisted	of	46	European	and	3	Asian	case-control	datasets,	amounting	to	a	total	

of	34,241	cases	and	45,604	controls,	as	well	as	three	parent-offspring	trio	collections	(1,235	
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trios).	Genotypes	in	each	dataset	were	imputed	to	the	1000	Genomes	reference	panel	and	

approximately	9	million	variants	were	used	for	the	combined	meta-analysis.	

	

Sample	Group	 Pre-QC	 Post-QC	

SCZ	 977	 924	
T2D	 885	 822	
SCZplusT2D	 542	 505	
Other		 342	 331	

Total	 2,747	 2,582	

Table	3.1.	Sample	numbers	in	the	three	phenotype	groups	in	GOMAP	before	and	after	QC	

3.2.2 Quality	control		

A	total	of	2,747	GOMAP	samples	and	538,448	markers	were	successfully	genotyped	on	

the	 Illumina	 HumanCoreExome	 12v1.0	 BeadChip	 (Illumina,	 San	 Diego,	 CA,	 USA)	 at	 the	

Wellcome	Trust	Sanger	Institute,	Hinxton,	UK	(Table	3.1).	Quality	control	(QC)	of	genotype	

data	was	performed	following	a	standard	protocol[272]	using	the	PLINK[199]	software	package.	

Individuals	were	removed	if	they	had	a	call	rate	below	90%,	discordant	values	for	genotyped	

and	reported	sex	or	had	heterozygosity	rates	deviating	more	than	three	standard	deviations	

from	 the	mean.	 For	 duplicates	 and	 related	 sample	 pairs	 (pi_hat>0.2)	 I	 excluded	 one	 and	

retained	the	other	at	random.		

In	order	to	identify	potential	ethnic	outliers,	I	performed	multidimensional	scaling	(MDS)	

in	PLINK[199]	on	GOMAP	together	with	different	reference	datasets.	Prior	to	this,	I	filtered	the	

variants	 in	 each	dataset	 for	MAF	>	0.001	and	excluded	variants	 in	 complex	 regions	with	

extended	LD	or	 long-range	translocations,	as	these	might	bias	MDS	analysis	(Table	3.2).	 I	

then	pruned	each	dataset	using	the	 --indep	flag	 in	PLINK[199]	with	a	window	size	of	50kb	

shifted	by	5kb	at	the	end	of	each	iteration,	and	a	variance	inflation	factor	cut-off	of	1.25.	The	

variance	 inflation	 factor	 is	equal	 to	1/(1-R2),	where	R2	denotes	 the	coefficient	of	multiple	

correlation	when	one	SNP	is	regressed	on	all	other	SNPs	in	the	current	window.	I	merged	

the	pruned	datasets	and	computed	pi_hat	estimates	which	served	as	the	input	for	MDS.		

I	initially	used	the	1000	Genomes	populations	as	a	reference	dataset	(Figure	3.1).	When	

using	the	position	of	the	rightmost	1000	Genomes	sample	along	the	component	1	axis	as	a	
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cut-off	for	inclusion	(Figure	3.1.a),	this	would	have	resulted	in	the	exclusion	of	150	GOMAP	

samples.	This	sample	spread	is	also	observable	when	performing	MDS	on	GOMAP	alone,	with	

two	distinct	clusters	forming	outside	the	main	cluster	(Figure	3.2).		

	

Chromosome	 Start	position	 End	position	
1	 48287980	 52287979	
2	 86088342	 101041482	
2	 134666268	 138166268	
2	 183174494	 190174494	
3	 47524996	 50024996	
3	 83417310	 86917310	
3	 88917310	 96017310	
5	 44464243	 50464243	
5	 97972100	 100472101	
5	 128972101	 131972101	
5	 135472101	 138472101	
6	 25392021	 33392022	
6	 56892041	 63942041	
6	 139958307	 142458307	
7	 55225791	 66555850	
8	 7962590	 11962591	
8	 42880843	 49837447	
8	 111930824	 114930824	
10	 36959994	 43679994	
11	 46043424	 57243424	
11	 87860352	 90860352	
12	 33108733	 41713733	
12	 111037280	 113537280	
20	 32536339	 35066586	

Table	3.2.	Chromosomal	regions	excluded	from	MDS	analysis	(aligned	to	GRCh38)	
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Figure	3.1.	MDS	of	GOMAP	and	1000	Genomes.	MDS	analysis	of	GOMAP	combined	with	1000	Genomes.	
GOMAP	 samples	 are	 represented	 by	 circles,	 coloured	 in	 by	 diagnostic	 category.	 a)	 The	 main	 three	
clusters	correspond	to	European	(middle	left),	Asian	(top	right)	and	African	(bottom	right)	populations.		
b)	Zoom	in	of	the	European	cluster.	c)	Zoom	of	the	European	cluster	with	only	Italian	(TSI),	Spanish	
(IBS),	 British	 (GBR)	 and	 Central	 European	 (CEU)	 populations	 shown.	 Vertical	 dashed	 line	 marks	
potential	 inclusion	 threshold	 based	 on	 the	 rightmost	 individual.	 d)	 Legend	 of	 1KG	 populations	 and	
GOMAP	diagnostic	categories	

	 	

a)	 b)	

c)	 d)	
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Based	on	their	parental	country	of	origin	all	individuals	in	these	two	clusters	are	Greek.	

While	self-reported	ancestry	information	can	be	inaccurate	(e.g.	due	to	uncertain	biological	

parentage),	it	is	unlikely	that	the	observed	spread	is	solely	due	to	such	confounding	factors.	

A	 more	 plausible	 explanation	 is	 that	 it	 simply	 reflects	 genetic	 variation	 within	 Greece:	

although	 all	 participants	 were	 recruited	 in	 Athens,	 they	 come	 from	 a	 diverse	 range	 of	

regions,	which	would	have	experienced	different	degrees	of	 isolation	and	admixture	over	

time.	The	majority	of	samples	falling	into	the	smallest	cluster	self-identified	as	Pontic	Greeks;	

the	area	of	Pontus	 lies	 in	modern-day	Turkey	and	has	been	the	scene	of	many	migratory	

events,	especially	in	the	20th	century[273].	

	

Figure	3.2.	MDS	analysis	of	GOMAP	only.		Samples	are	coloured	in	according	to	diagnostic	category.	
Two	distinct	batches	of	samples	form	clusters	proximal	to	the	major	cluster	(yellow	dashed	line:	n	=	136;	
purple	dashed	line:	n	=	60).		

I	 next	 chose	 three	Greek	 sample	 cohorts	 as	 a	 reference:	TEENAGE[274],	 a	 collection	of	

adolescents	from	the	general	Greek	population,	HELIC-Pomak[272]	and	HELIC-MANOLIS[275],	

two	Greek	isolated	population	collections.	The	rationale	was	that	since	we	were	not	planning	

to	use	GOMAP	in	conjunction	with	other	non-Greek	samples	(e.g.	as	controls),	these	datasets	

would	be	more	suited	to	detect	subtle	sub-structure	within	GOMAP.	GOMAP,	TEENAGE	and	
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HELIC-MANOLIS	formed	a	tight	cluster,	with	HELIC-Pomak	forming	three	distinct	clusters.	

The	Pomaks	are	a	Muslim	minority,	inhabiting	villages	in	a	mountainous	region	in	Northern	

Greece.	 They	 are	 both	 geographically	 and	 religiously	 isolated	 from	 the	 general	 Greek	

population.	Compared	to	TEENAGE	and	MANOLIS,	they	show	longer	runs	of	homozygosity	

as	 well	 as	 a	 higher	 inbreeding	 coefficient,	 both	 of	 which	 indicate	 a	 larger	 degree	 of	

isolation[272].	 I	 removed	seven	 individuals	 from	GOMAP	as	outliers	based	on	 the	 first	and	

second	MDS	components	(Figure	3.3).		

	

Figure	3.3.	MDS	in	GOMAP,	TEENAGE	and	HELIC.	Components	1	and	2	from	multidimensional	scaling	
(MDS)	analysis	of	GOMAP	(pre-QC),	HELIC-POMAK,	HELIC-MANOLIS	and	TEENAGE.	Each	data	point	
represents	one	individual.	Black	diamond	shapes	depict	individuals	excluded	as	ethnic	outliers.	

A	total	of	2,611	samples	passed	QC	(Table	3.3).	After	removal	of	individuals	failing	QC,	

variants	 were	 filtered	 for	 call	 rates	 lower	 than	 98%,	 a	 Hardy-Weinberg	 Equilibrium	

deviation	p-value	<	1x10-4	and	cluster	separation	scores	below	0.4.	In	addition,	I	removed	X-

chromosomal	markers	not	within	the	pseudo-autosomal	region	with	heterozygous	haploid	

genotypes	in	males.	A	total	of	524,271	autosomal	and	X-chromosomal	markers	passed	QC	

(Table	3.4).	
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Total	samples	before	QC	 2,747	
QC	step	 Exclusions	
Call	rate	<	90%		 5	
Sex	mismatch	 42	
Heterozygosity	outliers	(±	3	SD),	MAF	≥1%		 32	
Heterozygosity	outliers	(±	3SD),	MAF	<1%	 16	
Related	and	duplicated	samples	 61	
Sample	ID	mismatch	 17	
Ethnic	outliers	 7	
Total	unique	exclusions	 138	

Total	samples	left	 2,582	

Table	3.3.	Number	of	individuals	excluded	during	QC	in	GOMAP.	“Total	samples”	refers	to	SCZ,	T2D	
and	SCZplusT2D	sample	groups.	

Total	variants	before	QC	 538,403	
QC	step	 Exclusions	
Non-autosomal,	non-chrX	nonPAR	 2,512	
Call	rate	<	98%		 8,949	
HWE	deviation	p	<	1x10-4	 829	
cluster	separation	score	<	0.4	 1,126	
chrX-nonPAR	and	heterozygous	haploid	 716	
Total	exclusions	 14,132	
Total	variants	left	 524,271	

Table	3.4.	Number	of	variants	excluded	during	QC	in	GOMAP	

Since	GOMAP	is	a	cases-only	sample	collection,	I	selected	two	independent	Greek	sample	

collections,	 TEENAGE[276]	 and	 ARGO,	 as	 control	 datasets.	 ARGO	 comprises	 osteoarthritis	

cases	and	healthy	controls	from	Larissa,	Greece.	Samples	from	all	three	collections	formed	a	

single	cluster	in	MDS	analysis	(Figure	3.4).	
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Figure	 3.4.	 Components	 1	 and	 2	 from	 MDS	 analysis	 of	 GOMAP	 (post-QC),	 HELIC-POMAK,	 HELIC-
MANOLIS,	ARGO	and	TEENAGE.	Each	data	point	represents	one	individual.	

3.2.3 Imputation	

Following	 QC	 I	 merged	 GOMAP	 with	 413	 samples	 from	 TEENAGE[274]	 and	 712	 from	

ARGO,	an	in-house	Greek	sample	collection.	I	performed	pre-phasing	of	the	merged	dataset	

in	SHAPEIT[277]	 and	 imputed	 the	phased	haplotypes	with	 IMPUTE2[191]	using	a	 combined	

reference	 panel	 consisting	 of	 UK10K[278],	 1000	 Genomes[201]	 and	 HELIC-MANOLIS[275].	 I	

filtered	 imputed	genotypes	 for	Hardy-Weinberg	equilibrium	deviation	(p-value	<	1x10-4),	

IMPUTE2	info	scores	<	0.4,	and	a	minor	allele	frequency	(MAF)	<	1%.	A	total	of	14,528,340	

markers	passed	imputation	QC.		

	

3.2.4 GWAS	

Power	 to	 detect	 genetic	 associations	 in	 GOMAP	 was	 estimated	 using	 the	 software	

package	QUANTO[279],	using	the	following	parameters:	MAF=0.45;	disease	prevalence=0.01	

(equivalent	to	the	prevalence	of	SCZ);	sample	size=950.		I	carried	out	a	GWAS	for	each	case-
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case	 and	 case-control	 combination	 in	 GOMAP	 using	 the	 ‘method	 --expected’	 option	 in	

SNPTEST	version	2.5[133],	which	performs	an	additive	association	test.	I	adjusted	for	the	first	

ten	MDS	 components	 from	 the	MDS	 analysis	 including	GOMAP,	TEENAGE,	ARGO,	HELIC-

MANOLIS	and	HELIC-Pomak.		

	

3.2.5 Polygenic	risk	scores	

I	used	summary	statistics	from	DIAGRAM	and	PGC	(the	“base”	datasets)	to	construct	T2D	

and	SCZ	polygenic	risk	scores,	respectively,	in	GOMAP	(the	“target”	dataset).	The	risk	score	

analyses	 are	divided	 into	 two	 stages:	 first,	 I	 computed	 scores	using	only	 established	 risk	

variants	 for	 each	 disease	 (see	 section	 3.2.5.2);	 next,	 I	 relaxed	 the	 inclusion	 criteria	

incrementally	by	using	all	variants	falling	below	a	given	p-value	threshold	in	the	respective	

base	dataset	(see	section	3.2.5.3).		

Before	 conducting	 risk	 score	analyses	 I	harmonized	 the	data	between	DIAGRAM/PGC	

and	GOMAP.	I	converted	chromosome	positions	in	DIAGRAMv3	from	NCBI	build	36	to	the	

Genetic	Reference	Consortium	human	build	37	(GRCh37),	in	order	to	match	GOMAP.	I	then	

matched	variants	between	GOMAP	and	DIAGRAMv3	and	PGC-SCZ,	 respectively,	 based	on	

chromosome	position.	

	

3.2.5.1 Risk	score	construction	

I	 used	 PRSice	 version	 1.25[90]	 to	 calculate	 the	 risk	 scores	 in	 GOMAP	 and	 test	 for	 an	

association	between	scores	and	phenotype.	For	each	variant	the	number	of	risk	alleles	in	the	

target	data	(GOMAP)	is	multiplied	by	the	log(OR)	from	the	base	data	(DIAGRAM	or	PGC).	The	

total	score	 for	an	 individual	 is	 the	average	score	across	all	SNPs	 in	 the	set.	Following	the	

approach	described	by	Purcell	et	al.[89],	two	logistic	regression	models	are	used	to	obtain	the	

variance	in	phenotype	explained	(Nagelkerke’s	pseudo	R2):	

Full	model:		

	 Phenotype	~	Score	+	C1	+	C2	+	C3	+	C4	+	C5	+	C6	+	C7	+	C8	+	C9	+	C10	

Null	model:		

	 Phenotype	~	C1	+	C2	+	C3	+	C4	+	C5	+	C6	+	C7	+	C8	+	C9	+	C10	
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In	the	full	model,	phenotypes	are	regressed	on	risk	scores	adjusting	for	the	first	ten	MDS	

components	 (C1-C10);	 in	 the	 null	model,	 phenotypes	 are	 regressed	 on	MDS	 components	

only.	The	final	pseudo	R2	estimate	is	obtained	by:	

	 R2final	=	R2full	–	R2null		

A	p-value	for	association	of	score	with	phenotype	was	obtained	from	the	full	model.	Risk	

score	 analysis	 was	 carried	 out	 in	 each	 pairwise	 comparison	 between	 the	 three	 disease	

groups	and	controls	in	GOMAP.	

	

3.2.5.2 Established	variant	risk	scores	

For	SCZ,	I	obtained	odds	ratios	(ORs)	of	125	autosomal	risk	variants	from	the	psychiatric	

genomics	consortium	(PGC)[30]	(Appendix	B).		I	excluded	three	X-chromosomal	markers	of	

the	original	128	independent	variants	identified	by	Ripke	et	al.[30],	since	calculating	scores	

for	non-autosomal	alleles	is	not	straightforward.	

I	used	73	variants	identified	in	a	trans-ethnic	meta-analysis[11]	for	the	T2D	risk	score.	In	

order	to	match	the	ancestry	of	the	base	data	as	closely	to	GOMAP	as	possible,	I	looked	up	

summary	 statistics	of	 all	 independent	 variants	 (76	 in	 total)	 identified	 in	 the	 trans-ethnic	

study[11]		in	the	DIAGRAMv3	stage	1	meta-analysis[263](Appendix	C).	Three	of	the	76	variants	

were	not	present	in	the	DIAGRAMv3	data	and	therefore	excluded.	

To	assess	whether	the	sample	size	difference	between	the	single-disease	and	comorbid	

groups	 in	GOMAP	affected	 the	power	 to	detect	 associations	between	phenotype	and	 risk	

scores,	I	randomly	down-sampled	the	SCZ-only	and	T2D-only	group	to	500	individuals	each	

and	performed	risk	score	analyses	with	this	reduced	set.	I	repeated	this	process	5,000	times	

and	computed	average	pseudo	R2	and	p-values	to	compare	to	the	full	analysis.	

	

3.2.5.3 Genome-wide	risk	scores	

In	addition	to	calculating	risk	scores	based	on	established	genome-wide	significant	risk	

variants,	 I	 also	 performed	 PRS	 at	 ten	 cumulative	 p-value	 thresholds,	 including	 all	

independent	variants	that	fall	below	a	given	threshold.	I	used	PRSice[90]	for	this,	a	pipeline	

automating	 data	 preparation	 in	 PLINK[199]	 and	 risck	 score	 regression	 in	 R.	 First,	 p-value	
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informed	 LD	 clumping	 was	 performed	 on	 the	 intersection	 of	 SNPs	 between	 the	 base	

summary	statistics	(DIAGRAMv3[263]	and	PGC-SCZ[30])	and	target	data	(GOMAP),	using	an	r2	

threshold	of	0.1	and	a	window	size	of	250kb.	Next,	alleles	were	matched	between	the	base	

and	 target	 data	 and	 ambiguous	 variants	 (A/T	 and	 G/C	 variants,	 which	 preclude	 the	

distinction	 between	 flipped	 alleles	 and	 different	 strand	 alignments	 between	 datasets)	

removed	 to	 produce	 a	 final	 list	 of	 clumped	 variants	 used	 for	 the	 risk	 scores.	 Score	

calculations	 and	 regression	 analyses	 are	 conducted	 following	 the	 same	 procedure	 as	

outlined	for	the	established	risk	variants.	I	performed	risk	score	analyses	at	ten	cumulative	

p-value	thresholds,	meaning	that	all	variants	below	a	given	threshold	in	the	base	data	were	

included	in	the	score:	p<5x10-8,	p<0.001,	p<0.005,	p<0.05,	p<0.1,	p<0.2,	p<0.3,	p<0.4,	p<0.5,	

p<1.	

	

3.2.6 Summary	statistics-based	overlap	analyses	

I	obtained	genome-wide	summary	data	for	T2D	from	the	DIAGRAMv3	meta-analysis[263],	

and	for	SCZ	from	the	PGC	meta-analysis[30].	To	assess	the	genetic	overlap	between	the	two	

datasets	 I	 performed	 four	 complementary	 analyses	 –	 LD	 score	 regression[79],	 extent	 of	

shared	 signals	 analysis[200],	 Bayesian	 colocalization	 analysis[78]	 and	 gene	 and	 pathway	

analysis[202]	 –	 which	 have	 been	 described	 in	 chapter	 2	 (sections	 2.2.4,	 2.2.5,	 2.2.6,	 and	

2.2.7)[168].			

	

3.3 Results	

3.3.1 GWAS	

I	performed	six	case-case	and	case-control	genome-wide	association	studies	in	GOMAP	

and	population	controls.	There	was	no	indication	of	inflation	of	test	statistics,	with	lambda	

values	 ranging	 from	 0.99	 to	 1.04	 (Figure	 3.5;	 Figure	 3.6).	 Power	 to	 detect	 genome-wide	

significant	associations	of	small	to	moderate	effects	was	low	given	the	limited	sample	size	

(Figure	3.7).	
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Figure	3.5.	Case-control	GWAS	in	GOMAP.	In	the	Manhattan	plots	(left),	the	-log10	of	each	variant	p-
value	is	plotted	against	its	chromosomal	location.	In	the	QQ	plots	(right),	the	observed	-log10	p-value	is	
plotted	against	its	expected	value.	a)	SCZ	vs	controls,	b)	T2D	vs	controls,	c)	SCZplusT2D	vs	controls	

	 	

c)	

b)	

a)	
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Figure	3.6.	Case-case	GWAS	in	GOMAP.	In	the	Manhattan	plots	(left),	the	-log10	of	each	variant	p-value	
is	plotted	against	its	chromosomal	location.	In	the	QQ	plots	(right),	the	observed	-log10	p-value	is	plotted	
against	its	expected	value.	a)	SCZ	vs	SCZplusT2D,	b)	T2D	vs	SCZplusT2D,	c)	SCZ	vs	T2D	 	

c)	

b)	

a)	
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Figure	 3.7.	 Power	 calculations	 for	 GOMAP	 assuming	 a	 disease	 prevalence	 of	 1%	 (equivalent	 to	
population	risk	of	SCZ),	a	minor	allele	frequency	of	45%	and	a	sample	size	of	950.	Estimated	power	is	
plotted	against	effect	size	(odds	ratio)	for	three	different	significance	thresholds.	

I	identified	two	genome-wide	significant	signals	in	the	SCZplusT2D	vs	controls	analysis	

(Figure	3.5;	Table	3.5	).	The	most	strongly	associated	variant	resides	within	an	intron	of	the	

PACRG	gene	(chr6:163319442_G/A,	effect	allele	(EA)	G,	effect	allele	frequency	(EAF)	0.91,	

OR	3.81	[95%	CI	3.32-4.29],	p-value=5.46x10-9).	The	second	signal	is	located	in	an	intron	of	

RP11-587H10.2	on	chromosome	8	(rs1449245,	EA	A,	EAF	0.79,	OR	1.96	[95%	CI	1.77-2.20],	

p-value=2.58x10-8).		

Three	further	signals	reached	genome-wide	significance	in	other	analyses	(Table	3.5):	an	

intronic	SNP	in	TCF7L2	(rs7903146,	EA	T,	EAF	0.38),	a	well-established	T2D	risk	gene[263],	in	

the	 T2D	 vs	 controls	 (OR	 1.66	 [95%	 CI	 1.50-1.80],	 p-value=3.31x10-11)	 and	 T2D	 vs	 SCZ	

analyses	 (OR	 1.53	 [95%	 CI	 1.39-1.67],	 p-value=1.09x10-9);	 an	 intronic	 SNP	 in	 BMPR1B		

(rs17616243,	EA	T	EAF	0.16,	OR	2.03	[95%	CI	1.79-2.27],	p-value=3.26x10-9)	in	the	SCZ	vs	

controls	GWAS;	and	an	intronic	SNP	in	PCSK6	in	the	T2D	vs	controls	GWAS	(rs6598475,	EA	

T,	EAF	0.36,	OR	1.56	[95%	CI	1.40-1.72],	p-value=1.95x10-8).		
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SNP	 GWAS	 EA	 NEA	 EAF	 OR	(95%	CI)	 Info	 P	

chr6:163319442	
SCZplusT2D	vs	
Controls	

G	 A	 0.91	 3.81	(3.32-4.29)	 0.56	 5.46E-09	

rs1449245	 SCZplusT2D	vs	
Controls	

A	 G	 0.79	 1.96	(1.71-2.2)	 0.85	 2.58E-08	

rs7903146	 T2D	vs	Controls	 T	 C	 0.38	 1.66	(1.5-1.81)	 1.00	 3.31E-11	
rs7903146	 T2D	vs	SCZ	 T	 C	 0.38	 1.53	(1.39-1.67)	 1.00	 1.09E-09	
rs17616243	 SCZ	vs	Controls	 T	 C	 0.16	 2.03	(1.79-2.27)	 0.72	 3.26E-09	
rs6598475	 T2D	vs	Controls	 T	 G	 0.36	 1.56	(1.4-1.72)	 0.93	 1.95E-08	

Table	3.5.	Top	SNPs	of	genome-wide	significant	signals	in	the	GOMAP	GWAS	analyses.	EA=effect	allele;	
NEA=non-effect	allele;	EAF=effect	allele	frequency;	OR=odd	ratio;	CI=confidence	interval	

	

3.3.2 Genetic	risk	scores	

I	performed	genetic	risk	score	analyses	of	SCZ	and	T2D	for	each	pairwise	case-case	and	

case-control	combination	in	GOMAP	(Figure	3.8).	In	the	case-control	analyses,	risk	scores	for	

SCZ	and	T2D	were	significantly	associated	with	these	respective	disorders	(SCZ	R2=1.7%,	p-

value=5.25x10-9;	 T2D	R2=6.8%,	 p-value=6.12x10-27),	 serving	 as	 a	 positive	 control	 for	 the	

validity	of	the	included	variants	and	patient	groups.	Conversely,	risk	scores	for	one	disorder	

were	not	associated	with	the	other	in	the	case-control	comparisons.	In	the	comorbid	sample	

both	SCZ	and	T2D	risk	scores	were	significantly	associated	with	phenotype	(SCZ	risk	score	

p-value=7.17x10-5;	T2D	risk	score	p-value=4.14x10-4),	with	R2	values	lower	than	those	in	the	

single-disease	groups	(SCZ	risk	score	R2=1%;	T2D	R2=0.8%).		
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Figure	3.8.	Genetic	risk	scores	of	established	risk	variants	for	SCZ	and	T2D	in	GOMAP.	For	each	analysis	
Nagelkerke’s	pseudo	R2	values	are	plotted	and	p-values	for	association	between	score	and	phenotype	
are	denoted	above	each	bar.	Risk	scores	are	shown	for	the	full	GOMAP	data	(top)	and	for	GOMAP	with	
the	SCZ	and	T2D	groups	each	down-sampled	to	500	cases	(bottom).	 	
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Figure	3.9.	Mean	risk	scores	and	95%	confidence	 intervals	 for	established	SCZ	and	T2D	loci	 in	each	
sample	group	in	GOMAP.	Risk	scores	are	constructed	based	on	the	effect	sizes	of	73	and	125	variants	
from	DIAGRAMv3	and	PGC-SCZ,	respectively.	Scores	are	the	weighted	sum	of	risk	alleles	present	in	an	
individual	divided	by	the	number	of	variants	included	in	the	score.	

In	the	comparison	between	T2D	and	SCZ	cases,	risk	scores	for	T2D	explained	9.3%	of	

variance	 (p-value=8.04x10-28)	 and	 risk	 scores	 for	 SCZ	 explained	 3.4%	 of	 variance	 (p-

value=8.06x10-12).	These	R2	values	may	be	higher	than	in	the	case-control	analyses	due	to	

the	fact	that	controls	are	population	based	and	not	ascertained	for	either	SCZ	or	T2D	status;	

it	is	therefore	plausible	that	a	subset	of	controls	carries	risk	alleles	for	these	disorders.	In	the	

comparison	of	individuals	with	SCZ	to	those	with	SCZ	and	T2D,	SCZ	risk	scores	and	their	R2	

values	were	not	significantly	associated	with	disease.	This	is	expected,	as	both	sample	groups	

are	likely	to	be	enriched	for	SCZ	risk	alleles.	Interestingly,	the	R2	estimate	of	the	T2D	variant	

risk	 scores	 in	 the	 T2D	 vs	 SCZplusT2D	 analysis	 was	 intermediate	 in	 magnitude	 to	 that	

measured	in	the	SCZ	vs	SCZplusT2D	and	the	SCZ	vs	T2D	analyses.	This	can	be	recapitulated	

by	examining	the	average	T2D	scores	across	the	different	sample	groups	(Figure	3.9):	the	

average	score	of	the	SCZplusT2D	sample	is	higher	than	for	the	SCZ-only	sample	but	lower	

than	for	the	T2D-only	sample,	indicating	that	the	comorbid	group	is	enriched	for	T2D	risk	

alleles	compared	to	the	SCZ-only	group.	
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Figure	3.10.	Polygenic	risk	score	analyses	 for	SCZ	 in	GOMAP.	Nagelkerke's	pseudo-R2	estimates	are	
plotted	at	ten	cumulative	p-value	thresholds.	Note	that	the	y-axis	scales	differ	between	plots.	
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Figure	3.11.	Polygenic	risk	score	analyses	for	T2D	in	GOMAP.	Nagelkerke's	pseudo-R2	estimates	are	
plotted	at	ten	cumulative	p-value	thresholds.	Note	that	the	y-axis	scales	differ	between	plots	

	 	



	 77	

To	 determine	 whether	 the	 observed	 strength	 of	 association	 of	 the	 risk	 scores	 was	

influenced	by	the	difference	in	sample	size	among	the	single-disease	and	comorbid	groups,	I	

repeated	the	risk	score	analyses	with	equally-sized	(n=500),	randomly	down-sampled	T2D-	

and	SCZ-only	cases.	Risk	scores	significantly	associated	with	phenotype	using	the	full	dataset	

remained	significant	even	with	the	decreased	sample	size	(p<0.05)	(Figure	3.8).	

It	has	been	shown	that	the	inclusion	of	variants	not	reaching	genome-wide	significance	

can	 enhance	 the	 power	 of	 genetic	 risk	 scores[89].	 I	 constructed	 polygenic	 scores	 at	 ten	

cumulative	p-value	thresholds	using	the	same	base	datasets	(DIAGRAMv3	and	PGC-SCZ)	as	

for	 the	 established	 variant	 scores.	 For	 the	 SCZ	 scores,	 the	 most	 stringent	 threshold		

(p<5x10-8)	 resulted	 in	 lower	 levels	 of	 association	 and	 pseudo-R2	 estimates	 than	 the	

established	variant	score,	most	likely	due	to	the	fact	that	some	of	the	variants	included	in	the	

latter	 had	 p>5x10-8	 in	 the	 PGC-SCZ	 discovery	 data,	 which	 was	 used	 here,	 and	 will	 have	

therefore	been	excluded.	At	more	permissive	p-value	thresholds	the	strength	of	association	

increased	by	several	orders	of	magnitude	compared	to	the	established	variant	scores	for	all	

but	the	SCZ	vs	SCZplusT2D	and	T2D	vs	Controls	analyses	(Figure	3.10).	While	pseudo-R2	also	

increased	 at	 the	 first	 increments	 of	 variant	 inclusion,	 they	 plateaued	 or	 even	 decreased	

slightly	 for	 thresholds	 with	 p>0.005.	 While	 more	 relaxed	 thresholds	 will	 include	 more	

variants	with	true	effects,	 they	will	 inevitably	also	add	more	null	variants	contributing	to	

noise.	Unlike	 the	SCZ	 score,	T2D	scores	demonstrated	decreasing	 levels	of	 association	as	

more	variants	were	included	in	the	risk	score	(Figure	3.11).	

	

3.3.3 Summary	statistics-based	overlap	analyses	

I	investigated	the	genetic	overlap	between	summary	data	from	the	DIAGRAMv3	meta-

analysis	 for	 T2D[263]	 and	 the	 PGC	meta-analysis	 for	 SCZ[30]	 using	 both	 genome-wide	 and	

regional	approaches.		

	

3.3.3.1 LD	score	regression		

There	was	 no	 significant	 correlation	 between	 these	 datasets	 on	 a	 genome-wide	 scale	

(r2=-0.01,	SE=0.04,	p-value=0.82),	as	previously	reported	elsewhere[79].		
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3.3.3.2 Colocalisation	analysis	

I	 employed	 a	 Bayesian	 colocalisation	 analysis	 to	 search	 for	 genomic	 regions	 that	

potentially	 exert	 pleiotropic	 effects.	 For	 each	 region,	 the	 method	 returns	 posterior	

probabilities	for	the	five	tested	hypotheses,	as	well	as	the	maximum	absolute	Z-scores	found	

in	each	of	the	two	input	datasets;	in	some	cases,	there	is	more	than	one	variant	with	the	same	

Z-score	(i.e.	effect	estimate)	in	a	region.		

There	were	no	regions	with	a	high	posterior	probability	(>0.9)	of	containing	one	causal	

variant	common	to	both	diseases.	Five	regions	had	a	high	posterior	probability	of	harbouring	

two	distinct	causal	variants	(Table	3.6).	The	first	of	these	regions	is	located	on	chromosome	

2	 and	 includes	 nominally	 significant	 SCZ	 variant	 (top	 variant	 in	 PGC:	 rs10189857,	

p=5.14x10-7)[30]	in	an	intron	of	BCL11A,	and	a	T2D	risk	locus	upstream	of	the	same	gene	(top	

variant	in	DIAGRAM:	rs243021,	p=3x10-15)[280].		

The	second	region	falls	within	the	major	histocompatibility	complex	on	chromosome	6,	

which	 is	 known	 to	 harbour	 several	 SCZ	 and	T2D	 loci[30,	 263].	 This	 region	 contained	 three	

variants	 with	 the	 same	 effect	 size	 for	 T2D,	 one	 of	 which	 lies	 in	 an	 intron	 of	 SLC44A	

(rs9267658,	OR	0.89,	95%	CI	0.85-0.94,	p=2.2x10-5).	The	strongest	SCZ	signal	occurred	at	

rs3117574	(OR	0.85,	95%	CI	0.82-0.89,	p=6.71x10-19),	a	variant	in	the	5’	untranslated	region	

of	MSH5,	 a	 protein	 involved	 in	 meiotic	 recombination	 and	 DNA	 mismatch	 repair.	 Both	

SLC44A	and	MSH5	have	been	previously	associated	with	SCZ	in	the	Japanese	population[281].	

The	 third	 region	 resides	 on	 chromosome	 7,	 harbouring	 both	 a	 known	 T2D	 locus	

downstream	of	KLF14	(top	variant	in	DIAGRAM:	rs10954284,	p=1.20x10-8)	and	a	known	SCZ	

variant	at	rs7801375	(PGC	p=2.26x10-8)[30].		

The	fourth	region,	identified	on	chromosome	8,	does	not	contain	any	known	T2D	or	SCZ	

associated	variants.	The	strongest	signals	in	that	region	occur	at	rs11993663	for	SCZ	(PGC	

p=1.46x10-7)	and	rs17150816	for	T2D	(DIAGRAM	p=1.60x10-5).		
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Finally,	a	region	identified	on	chromosome	15	encompasses	a	known	SCZ	locus	 in	the	

VPS13C	gene	(top	variant	in	PGC:	rs12903146,	p=3.00x10-10),	as	well	as	the	C2CD4A-C2CD4B	

locus,	which	has	been	associated	with	T2D	in	East	Asian	populations	and	also	replicated	in	

Europeans	(top	variant	in	DIAGRAM:	rs8026735,	p=2.50x10-7)[282].	

	

3.3.4 Extent	of	shared	signals	

I	assessed	the	extent	of	shared	association	signals	between	DIAGRAMv3	and	PGC-SCZ	at	

ten	different	p-value	thresholds	(Pt)	and	found	significant	evidence	for	overlap	(pperm<0.05)	

at	all	but	one	Pt	(Table	3.7).	Of	the	19	variants	overlapping	at	Pt=0.001,	five	are	located	in	

known	T2D	loci,	and	 four	within	known	SCZ	 loci.	One	of	 the	variants	 identified	at	 this	Pt,	

rs6488868,	 is	 a	 synonymous	 SNP	 in	 SBNO1,	 and	 in	 partial	 LD	 with	 both	 a	 known	 T2D	

(rs1727313,	 r2=0.53)	 and	 a	 known	 SCZ	 (rs2851447,	 r2=0.45)	 risk	 variant.	 The	 two	 risk	

variants	lie	in	the	3’UTR	and	in	an	intron	of	MPHOSPH9,	respectively,	and	are	also	in	LD	with	

each	other	(r2=0.79).	Other	variants	fall	within	or	around	several	genes	previously	linked	to	

SCZ	or	T2D,	such	as	CACNA1,	HLA-B,	PROX1	and	BCL11A[30,	263]	(Table	3.8).	

	

Pt	 Variants	 χ2	 P	 Pperm	
0.5	 58504	 1.4	 2.30E-01	 2.32E-01	
0.1	 6247	 39.7	 3.00E-10	 0.00E+00	
0.05	 2324	 40.9	 1.60E-10	 0.00E+00	
0.04	 1749	 53.5	 2.50E-13	 0.00E+00	
0.03	 1180	 49	 2.50E-12	 0.00E+00	
0.02	 658	 32.4	 1.30E-08	 0.00E+00	
0.01	 287	 41.4	 1.30E-10	 0.00E+00	
0.005	 125	 37.7	 8.10E-10	 0.00E+00	
0.001	 19	 14.2	 1.70E-04	 8.30E-04	
5.00E-04	 10	 13.8	 2.00E-04	 2.00E-03	

Table	3.7.	Overlap	analysis	between	DIAGRAM	and	PGC	summary	statistics.	For	each	p-value	threshold	
(Pt)	the	number	of	independent	SNPs	overlapping	at	this	threshold	is	given,	along	with	the	resulting	chi-
squared	statistic	(χ2),	p-value	(P)	and	empirical	p-value	obtained	by	permutations	(Pperm).	
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Gene	 Chr	 Start	 Stop	 Strand	 QDIAGRAMv3	 QPGC	 Known	
PROX1	 1	 214161278	 214214853	 +	 2.24E-02	 9.89E-03	 T2D	
UBE2D3*	 4	 103715540	 103790050	 -	 2.16E-02	 6.52E-04	 No	
CISD2*	 4	 103749224	 103813964	 +	 2.18E-02	 6.61E-04	 No	
SLC9B1*	 4	 103806205	 103947552	 -	 2.06E-02	 1.30E-06	 No	
SLC9B2*	 4	 103946647	 103998480	 -	 2.04E-02	 9.32E-04	 SCZ	
SSR1*	 6	 7281283	 7313541	 -	 3.70E-02	 4.12E-02	 T2D	
CDKAL1	 6	 20534688	 21232635	 +	 4.73E-06	 2.63E-02	 T2D	
HLA-B	 6	 31321649	 31324989	 -	 4.67E-02	 1.69E-10	 T2D;SCZ	
MICB	 6	 31462054	 31478901	 +	 3.68E-02	 2.63E-06	 No	
MCCD1	 6	 31496739	 31498008	 +	 2.94E-02	 2.37E-05	 No	
DDX39B	 6	 31497996	 31510252	 -	 2.06E-02	 6.80E-04	 No	
ATP6V1G2	 6	 31512228	 31514625	 -	 2.06E-02	 2.61E-03	 No	
NFKBIL1	 6	 31514628	 31526606	 +	 2.24E-02	 2.57E-03	 No	
NEU1	 6	 31826829	 31830709	 -	 2.28E-02	 8.92E-11	 SCZ	
SLC44A4	 6	 31830969	 31846823	 -	 2.02E-02	 4.73E-11	 No	
EHMT2	 6	 31847536	 31865464	 -	 2.02E-02	 4.16E-10	 No	
ZBTB12	 6	 31867394	 31869769	 -	 8.57E-03	 2.43E-04	 No	
PRRT1	 6	 32116140	 32119720	 -	 2.06E-02	 8.02E-03	 No	
HLA-
DRB1*	

6	 32546546	 32557613	 -	 2.33E-02	 1.21E-06	
T2D;	SCZ	

KCNJ11*	 11	 17406795	 17410878	 -	 3.99E-02	 1.56E-02	 T2D	
EHBP1L1	 11	 65343509	 65360121	 +	 2.94E-02	 2.63E-02	 No	
KCNK7	 11	 65360326	 65363467	 -	 4.18E-02	 4.32E-03	 No	
TSPAN8*	 12	 71518877	 71551779	 -	 2.02E-02	 2.49E-02	 T2D	
ZFAND6*	 15	 80351910	 80430735	 +	 1.75E-02	 7.25E-03	 T2D	
UNC45A	 15	 91473410	 91497323	 +	 2.71E-02	 3.56E-02	 No	
RCCD1	 15	 91498106	 91506355	 +	 2.02E-02	 4.98E-02	 T2D	
UBE2Z	 17	 46985731	 47006422	 +	 4.88E-02	 5.51E-03	 No	
SNF8	 17	 47007458	 47022484	 -	 4.84E-02	 3.35E-03	 No	
GIP	 17	 47035918	 47045955	 -	 2.66E-02	 9.32E-04	 No	

Table	3.9.	Genes	significantly	associated	(q-value<0.05)	in	DIAGRAM	and	PGC	after	FDR	correction.	Q-
values	shown	are	from	the	'lenient'	gene	annotation	allowing	a	20kb	window	around	the	transcription	
start	and	stop	sites.	Genes	marked	with	an	asterisk	were	also	significantly	associated	using	strict	gene	
annotations.	 Start	 and	 stop	 positions	 are	 aligned	 to	 GRCh	 build	 37.	 “Known”	 refers	 to	 previously	
reported	associations	with	SCZ	and/or	T2D	in	a	given	gene.	
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3.3.4.1 Gene	and	pathway	analysis		

I	tested	for	enrichment	of	association	signals	in	genes	and	pathways	in	the	DIAGRAM	and	

PGC	summary	statistics.		I	did	not	identify	any	pathways	that	were	significantly	associated	

(q-value	<	0.05)	with	both	SCZ	and	T2D.	In	the	gene-level	analysis,	29	genes	had	a	q-value	<	

0.05	in	both	datasets	(Table	3.9).	Ten	of	the	genes	have	been	previously	associated	with	SCZ	

and/or	T2D.	Of	note,	variants	in	or	in	close	proximity	to	ZFAND6,	PROX1,	and	HLA-B	were	

also	 found	 to	 overlap	 at	 Pt=0.001.	 SLC44A4,	 which	 is	 strongly	 associated	 with	 SCZ	 (q-

value=4.73x10-11),	falls	within	the	region	on	chromosome	6	identified	in	the	colocalisation	

analysis.	

	

3.4 Discussion	

I	investigated	the	genetic	overlap	between	SCZ	and	T2D,	using	summary	statistics	from	

large-scale	meta-analyses	and	genome-wide	genotype	data	 from	a	dedicated	collection	of	

individuals	 with	 SCZ,	 T2D	 or	 both	 disorders.	 The	 work	 presented	 here	 benefits	 from	

clinically	ascertained	diagnoses	and	robust	base	datasets	used	to	construct	the	risk	scores.	

	

3.4.1 GWAS	

Due	 to	 the	 limited	 sample	 size	 and,	 consequently,	 low	 power	 to	 detect	 genetic	

associations	in	GOMAP,	I	did	not	expect	to	identify	novel	genome-wide	significant	loci,	but	

rather	to	harness	the	presence	of	the	comorbid	patient	group	for	risk	score	analyses.	The	

two	genome-wide	significant	signals	identified	in	the	SCZplusT2D	vs	controls	GWAS	map	to	

introns	of	PACRG	and	RP11-587H10.2.	PACRG	has	been	associated	with	the	risk	of	leprosy[283],	

while	RP11-587H10.2,	a	long	non-coding	RNA,	is	of	unknown	function.	Replication	of	these	

newly	arising	signals	in	independent	datasets	is	required	to	establish	or	refute	them	as	true	

associations.		
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3.4.2 Polygenic	risk	scores	

The	 main	 novel	 finding	 of	 this	 project	 arises	 from	 the	 risk	 score	 analyses,	 which	

demonstrated	 that	 the	 SCZplusT2D	 sample	 is	 enriched	 for	 both	 SCZ	 and	T2D	 risk	 alleles	

compared	 to	 controls;	 this	 is	 in	 line	 with	 the	 increased	 prevalence	 of	 T2D	 among	

schizophrenia	patients	being	at	 least	partly	due	to	genetic	predisposition[248,	249].	Patients	

suffering	from	both	diseases	had	SCZ	risk	scores	comparable	to	the	SCZ-only	group	but	fell	

between	the	SCZ-only	and	T2D-only	groups	for	T2D	risk	scores.	This	implies	that	patients	

with	comorbid	SCZ	and	T2D	have	almost	 the	same	SCZ	risk	allele	profile	as	SCZ	patients	

without	T2D	but	 carry	 fewer	 risk-increasing	variants	 for	T2D	 than	T2D	patients	without	

comorbid	SCZ.	Two	conclusions	might	be	drawn	from	this:	first,	at	least	part	of	the	risk	for	

T2D	in	SCZ	patients	is	driven	by	genetic	predisposition	to	T2D,	rather	than	antipsychotic	use	

alone;	and	second,	the	comorbid	group	appears	to	have	a	less	strong	T2D	genetic	risk	profile	

compared	 to	 T2D-only	 patients.	 This	 is	 in	 line	 with	 environmental	 factors,	 including	

response	to	antipsychotic	treatment	and	sedentary	lifestyle,	contributing	to	T2D	risk.	Such	

factors	might	exacerbate	an	otherwise	moderate	genetic	predisposition	to	T2D.	

To	my	knowledge,	three	other	studies	have	to	date	compared	risk	scores	for	T2D	and	

SCZ[89,	284,	285].	Purcell	et	al.	first	performed	SCZ	risk	scores	analysis	in	a	T2D	sample	but	did	

not	identify	a	significant	correlation	between	scores	and	phenotype[89],	potentially	due	to	the	

relatively	 low	sample	 sizes	available	at	 the	 time	 (~3,300	cases	 for	SCZ;	~1,900	cases	 for	

T2D).	More	 recently,	 a	 study	 investigating	 the	 genetic	 liability	 to	 SCZ	 in	 immune-related	

disorders	found	a	weak	association	between	SCZ	risk	scores	and	T2D[285].	The	investigators	

used	an	earlier	release	of	the	PGC-SCZ	summary	data[265]	with	lower	sample	numbers	than	

currently	 available.	 One	 study	 has	 previously	 reported	 an	 association	 between	 T2D	 risk	

scores	and	self-reported	diabetes	(any	type)	in	individuals	with	psychosis,	but	did	not	detect	

an	association	when	repeating	the	analysis	for	SCZ	risk	scores[284].		

It	should	be	noted	that	although	both	LD	score	regression	and	PRS	can	provide	useful	

insights	into	the	shared	genetic	architecture	of	two	traits,	they	suffer	from	a	bias	towards	

common	variants	resulting	from	the	pre-analysis	pruning	step.	While	common	variants	do	

make	up	a	large	proportion	of	the	heritability	of	common	disorders,	low-frequency	and	rare	

polymorphisms	of	larger	effects	offer	important	insights	into	disease	biology	and	affected	
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pathways,	as	they	often	occur	within	coding	regions.	As	briefly	touched	upon	in	Chapter	1,	a	

non-significant	genetic	correlation	estimate	does	not	necessarily	imply	that	two	traits	share	

no	pleiotropic	variants.	For	example,	it	is	possible	that	they	share	specific	affected	genes	or	

pathways	rather	than	having	a	similar	pathobiology	overall.		

	

	

3.4.3 Shared	risk	loci	

The	SNP-based	overlap	analysis	highlighted	one	region	where	a	known	T2D	and	a	known	

SCZ	 signal	 map	 to	 the	 same	 locus	 in	 the	 MPHOSPH9	 gene[11,	 30],	 which	 codes	 for	 a	

phosphoprotein	 highly	 expressed	 in	 the	 cerebellum.	 This	 gene	 has	 been	 previously	

associated	with	multiple	sclerosis[286];	however,	 its	 function	is	not	well	understood.	 I	also	

identify	PROX1	as	a	potentially	pleiotropic	locus	based	on	the	gene-based	analysis	and	the	

SNP-based	overlap	test.	PROX1	has	been	previously	implicated	in	both	T2D	and	SCZ,	and	acts	

either	as	a	transcriptional	activator	and	repressor	depending	on	the	cellular	context.	It	has	

been	 implicated	 in	 murine	 beta-cell	 development[287],	 as	 well	 as	 in	 neurogenesis	 in	

humans[288].	 While	 functional	 investigation	 of	 the	 genes	 identified	 here	 is	 necessary,	 an	

emerging	 hypothesis	 is	 that	 pleiotropic	 loci	 might	 influence	 T2D	 and	 SCZ	 by	 acting	 in	

different	biological	pathways.		

	

3.4.4 Conclusions	and	future	directions	

The	 work	 in	 this	 chapter	 lends	 further	 support	 to	 the	 theory	 that	 the	 observed	

comorbidity	between	SCZ	and	T2D	is	in	part	mediated	by	genetics.	It	also	highlights	several	

genes	and	loci	with	putative	pleiotropic	effects.	The	greatest	limitation	of	this	study	is	the	

lack	of	power	in	the	GOMAP	data,	as	well	as	its	observational	nature,	which	precludes	any	

analyses	on	outcomes	associated	with	disease	progression,	such	as	response	to	medication,	

change	in	BMI	or	metabolic	measures.	Furthermore,	potential	confounding	factors,	such	as	

smoking	 status	 or	 diet	 and	 exercise,	might	 have	 biased	 the	 results,	 and	 these	 issues	 are	

further	discussed	under	5.2.	
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Establishing	 large	SCZ	sample	collections	with	 in-depth	phenotype	data	 is	challenging	

considering	the	nature	of	the	disease;	conceivably,	people	suffering	from	delusions	and/or	

paranoia	may	be	less	likely	to	agree	to	share	their	genetic	material	along	with	detailed	health	

data.	This	is	also	evident	in	the	SCZ	sample	numbers	in	the	full	UK	Biobank	dataset:	only	728	

out	of	roughly	500,000	individuals	had	a	SCZ	diagnosis	code,	compared	to	14,803	with	T2D.	

Based	on	the	prevalence	estimates,	one	would	expect	almost	10-times	as	many	SCZ	patients,	

whereas	the	number	of	T2D	patients	matches	prevalence	rates	more	closely.	

There	 are	 several	ways	 in	which	 the	 finding	 of	 a	 genetic	 component	 to	 SCZ	 and	T2D	

comorbidity	could	be	used	for	further	research	and	clinical	management	of	SCZ:	

First,	 if	 the	 finding	 that	 T2D	 risk	 variants	 are	 enriched	 in	 SCZ	 patients	 with	 T2D	 is	

replicated	by	independent	studies,	this	could	make	a	case	for	stratifying	patients	according	

to	risk	profiles	and	targeting	treatments	accordingly.	The	incorporation	of	genetic	variants	

into	risk	scores	based	on	non-genetic	factors,	such	as	BMI	or	family	history,	has	been	shown	

to	lead	to	improved	predictive	accuracy[289-292].	However,	even	if	SCZ	patients	at	high	risk	of	

developing	 T2D	 could	 be	 confidently	 identified	 early	 on,	 choosing	 an	 antipsychotic	with	

minimal	metabolic	 impact	might	 not	 be	 straightforward,	 since	most	 antipsychotic	 drugs	

have	 some	 metabolic	 side	 effects[293],	 and	 patients	 might	 not	 respond	 to	 the	 specific	

medication	 chosen	 or	 might	 suffer	 from	 non-metabolic	 side	 effects	 (e.g.	 motor	 control	

impairment).	 Nevertheless,	 investigating	 the	 shared	 genetic	 basis	 of	 SCZ	 and	 T2D	 is	

important	to	assess	the	validity	of	current	diagnostic	boundaries.		

Second,	elucidating	common	affected	genes	and	pathways	between	SCZ	and	T2D	could	

also	aid	drug	development	and	repurposing	efforts.	The	discovery	of	new	therapeutic	agents	

for	psychiatric	conditions	has	been	stagnant	for	over	three	decades	[294],	owing	to	the	lack	of	

clear	molecular	targets	and	the	difficulty	of	obtaining	relevant	tissue	samples.	As	evidence	

for	a	link	between	SCZ	and	T2D	independent	of	antipsychotic	side	effects	accumulates[259-261,	

295-298],	identifying	specific	shared	pathways	and	their	involvement	in	disease	mechanisms	

could	reveal	targets	for	intervention.	The	summary	statistics-based	overlap	analyses	in	this	

chapter	highlighted	several	genes	with	evidence	of	association	in	both	SCZ	and	T2D.	Their	

exact	function	and	relevance	to	both	disorders	will	need	to	be	explored.	If	their	association	

with	 SCZ	 and	 T2D,	 respectively,	 is	 due	 to	 biological	 pleiotropy	 and	 not	 confounding	 or	

statistical	artefacts,	they	might	highlight	potential	aetiopathological	mechanisms	underlying	
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metabolic	abnormalities	in	drug-naïve	SCZ	patients[298].	While	past	repositioning	efforts	of	

metabolic	drugs	for	SCZ	have	shown	limited	success[299],	the	identification	of	shared	genes	

might	reveal	novel	molecular	targets.		

Third,	 SCZ	 is	 a	heterogeneous	disorder,	 and	 it	 is	 conceivable	 that	 impaired	glycaemic	

control	might	present	a	distinct	subtype	of	the	disease.	Pleiotropic	genes	whose	expression	

in	peripheral	blood	can	be	linked	to	disease	status	could	potentially	be	used	as	biomarkers	

for	early	detection/classification	of	disease.	

Future	 studies	 with	 larger	 sample	 sizes	 and	 detailed	 phenotype	 information	 (ideally	

including	longitudinal	medication	data)	will	be	necessary	to	precisely	disentangle	the	shared	

genetic	basis	of	SCZ	and	T2D.	
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Chapter	4	– Multi-trait	 association	 analyses	 of	 high-

depth	sequencing	data	in	population	isolates	
	

4.1 Introduction	

4.1.1 Advantages	of	population	isolates	in	genetic	studies	

The	majority	of	genetic	association	studies	to	date	have	been	carried	out	in	cosmopolitan	

populations	of	mostly	European	descent.	This	 is	partly	due	to	the	possibility	of	collecting	

large	 sample	 sizes	 leading	 to	 increased	 statistical	 power	 and	 more	 opportunities	 for	

replication.	 Furthermore,	 the	 genetic	 make-up	 of	 samples	 drawn	 from	 the	 general	

population	 can	 be	 expected	 to	 be	 representative	 of	 that	 population,	 and	 findings	 from	

association	studies	will	be	more	generalisable.	Nevertheless,	isolated	populations	afford	a	

number	of	potential	advantages	for	the	study	of	complex	traits:	

Isolated	populations	arise	from	one	or	multiple	founding	events,	such	as	migration	and	

subsequent	settlement	at	a	geographically	remote	location	or	drastic	reduction	in	population	

size	due	to	adverse	conditions	(e.g.	natural	disaster,	famine,	epidemic)[300].	Restricted	gene	

flow	 and	 endogamy	 over	 multiple	 generations	 then	 lead	 to	 an	 increase	 in	 genetic	

homogeneity	 and	 random	 allele	 frequency	 fluctuations	 (genetic	 drift)[301].	 As	 a	 result,	

functional	 variants	 may	 rise	 in	 frequency[302]	 and	 can	 thus	 be	 more	 easily	 identified	 in	

association	studies.	This,	together	with	the	lower	degree	of	genetic	heterogeneity,	can	lead	

to	 increased	 power	 to	 detect	 trait-associated	 variants.[303]	 For	 example,	 a	 study	 in	 2,575	

Greenlandic	 individuals	 found	 a	 protein-altering	 variant	 in	TBC1D4	with	 large	 effects	 on	

glycaemic	traits	and	T2D	risk	(OR=10.3)[7].	While	the	deleterious	variant	was	observed	at	a	

frequency	 of	 17%	 in	 the	 study	 population,	 it	 is	 only	 found	 in	 one	 individual	 in	 all	 1000	

Genomes	samples.	

Environmental	factors	such	as	diet	will	be	more	homogeneous	within	isolates	than	in	the	

general	populations,	minimising	the	possible	confounding	of	association	results.		While	this	

is	also	 important	 for	single-trait	 studies,	multi-trait	analyses	relying	on	 the	covariance	of	
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several	 phenotypes	 are	 especially	 susceptible	 to	 such	 biases.	 Extreme	 environmental	

conditions	may	exert	selective	pressures	leading	to	a	change	in	allele	frequency	for	variants	

affecting	the	pertinent	phenotype.	For	example,	 indigenous	people	of	 the	Tibetan	Plateau	

were	 found	 to	have	significantly	higher	 frequency	of	variants	 in	EPAS1	 compared	 to	Han	

Chinese	and	other	populations	not	residing	at	high	altitude[304-306].	EPAS1	is	a	transcription	

factor	involved	in	increased	erythrocyte	production	in	response	to	hypoxic	conditions,	and	

the	alleles	found	in	Tibetans	are	associated	with	increased	haemoglobin	concentrations[304],	

suggesting	that	the	observed	difference	in	allele	frequency	is	a	result	of	natural	selection.	

	

4.1.2 Leveraging	proteomics	data	for	locus	discovery	

When	conducting	multi-trait	analyses,	it	can	be	advantageous	to	utilise	intermediate	trait	

measurements,	such	as	metabolite	or	inflammatory	markers,	rather	than	disease	endpoints.	

If	 one	 assumes	 that	morbidity	 results	 in	 part	 from	 the	 perturbation	 of	multiple	 proteins	

acting	in	biological	pathways,	then	studying	these	proteins	should	yield	a	more	fine-grained	

resolution	of	the	phenotypic	variance	explained	by	genotypes.		

Until	recently,	biomarker	GWAS	have	focused	on	a	small	number	of	traits	with	known	or	

at	least	hypothesised	involvement	in	disease.	As	many	fields	of	genetic	research	have	moved	

into	the	“high-throughput”	era,	assays	for	the	quantification	of	hundreds	of	biomolecules	on	

large	sample	sizes	are	now	available[307,	308].	

The	availability	of	these	tools	offers	unprecedented	breadth	of	molecular	information.	To	

maximise	the	 insights	that	can	be	gleaned	from	these	data,	 it	will	be	necessary	to	 look	at	

them	not	as	 independent	traits,	but	 in	the	context	of	biological	networks.	Most	studies	of	

plasma	proteins	to	date	have	conducted	univariate	GWAS	of	each	protein	separately[32,	309-

312].	The	few	multivariate	biomarker	studies	that	have	been	carried	out	mostly	involved	a	

small	number	of	biomarkers	selected	based	on	their	shared	biological	function[131,	134,	313].	In	

possibly	the	largest	multi-trait	biomarkers	study	to	date,	Inouye	et	al.	used	data	of	more	than	

100	metabolite	measures	 (broken	up	 into	 clusters	 to	 facilitate	 analysis)[314].	Multivariate	

GWAS	of	these	trait	clusters	lead	to	a	nearly	two-fold	increase	of	detected	association	signals,	

several	 of	which	were	 confirmed	 as	 expression	 QTLs	 for	metabolites	 in	 their	 respective	
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clusters.	This	exemplifies	the	power	advantages	of	performing	multi-trait	association	studies	

on	proteomics	data.		

	

4.1.3 Multivariate	analysis	in	the	context	of	sample	relatedness	

To	date	there	has	been	one	study	using	multivariate	association	analysis	in	an	isolated	

population[313].	 As	 outlined	 in	 Chapter	 1,	 there	 are	 numerous	methods	 available	 for	 the	

analysis	 of	multi-trait	 data.	When	 individual-level	 data	 are	 available,	 and	 the	 traits	 to	be	

analysed	 have	 been	measured	 on	 the	 same	 set	 of	 samples,	multivariate	 approaches	 that	

explicitly	model	the	inter-trait	correlation	structure	are	preferable.	A	further	consideration	

is	the	degree	of	relatedness	between	study	samples.	Several	methods	allow	for	the	inclusion	

of	 covariates.	 Population	 structure	 and	 cryptic	 relatedness	 can	 thus	 be	 accounted	 for	 by	

including	principal	components	in	the	analysis.	However,	in	the	case	of	isolates,	the	first	ten	

or	 so	 PCs	 usually	 included	 as	 covariates	 might	 not	 capture	 the	 extensive	 degree	 of	

relatedness	among	samples[315].	In	standard	univariate	GWAS,	the	use	of	mixed	models	has	

gained	 some	 popularity:	 phenotypes	 are	 modelled	 as	 dependent	 on	 both	 fixed	 effects	

(genotypes,	covariates)	and	random	effects	(a	relatedness	matrix).		

	

4.1.4 Chapter	overview	

In	 this	 chapter	 I	 perform	multi-trait	GWAS	 in	 the	HELIC-MANOLIS	 cohort	 comprising	

samples	from	a	Greek	population	isolate.	All	samples	have	high-depth	(22x)	sequencing	data	

available,	as	well	as	57	quantitative	trait	measurements.	In	addition	to	these	traits,	I	also	use	

expression	data	from	275	plasma	proteins	measured	on	the	metabolic,	cardiovascular	II	and	

cardiovascular	III	panels	of	the	Olink	platform.	

I	first	describe	the	dataset	as	well	as	a	phenotype	imputation	procedure	I	used	to	estimate	

missing	phenotype	values	across	all	 traits	 in	MANOLIS.	 I	 then	outline	how	I	selected	trait	

groups	for	analysis,	followed	by	multivariate	GWAS	and	comparison	to	univariate	(single-

trait)	 results.	 The	 initial	 focus	 of	 this	 project	 was	 to	 use	 multivariate	 GWAS	 to	 identify	

variants	 associated	 with	 osteocalcin,	 due	 to	 its	 relevance	 for	 both	 cardiometabolic	 and	

musculoskeletal	physiology	–	 two	major	 themes	of	 this	 thesis.	 I	 therefore	performed	two	
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multivariate	GWAS	on	osteocalcin	and	manually	selected	traits	based	on	their	correlation	

with	 and/or	 biological	 link	 to	 osteocalcin.	 I	 then	 used	 a	 clustering	 approach	 to	 identify	

additional	trait	groups	among	the	phenotypes	available	in	MANOLIS.	

Finally,	I	discuss	the	findings	from	these	analyses,	current	challenges	in	the	field,	as	well	

as	ongoing	and	future	work.	

	

4.1.5 Contributions	

All	 analyses	 outlined	 in	 this	 chapter	 have	 been	 carried	 out	 by	me	with	 the	 following	

exception:	univariate	GWAS	of	unimputed	phenotypes	were	carried	out	by	Young-Chan	Park	

for	Olink	 traits,	 and	Karoline	Kuchenbäcker	 for	 non-Olink	 traits.	 Transformation	 of	 non-

Olink	traits	had	been	previously	performed	by	Karoline	Kuchenbäcker,	and	transformation	

of	 Olink	 traits	 by	 Young-Chan	 Park	 (I	 repeated	 this	 transformation	 after	 recovering	

previously	 excluded	values	based	on	 the	 assay	 limit	 of	 detection,	 as	described	 in	 section	

4.2.4).	 The	 effective	 number	 of	 variants	 in	 HELIC-MANOLIS	 22x	 sequencing	 data	 was	

calculated	by	Young-Chan	Park.	

	

4.2 Methods	

4.2.1 Datasets	

The	work	 described	 in	 this	 chapter	 is	 based	 on	 the	 Hellenic	 Isolates	 Cohort	 (HELIC)	

MANOLIS	 (n=1,457)	 sample	 collection	 from	 the	 Mylopotamos	 villages	 Anogia,	 Zoniana,	

Livadia	and	Gonies	(estimated	total	population	size	of	6,000)	in	Crete,	Greece.	Samples	were	

whole-genome	sequenced	to	high-depth	(average	of	22x)	on	the	Illumina	HiSeqX	platform.	

Quality	control	had	been	performed	previously[316].	

	

4.2.2 Phenotypes	

I	used	information	from	57	quantitative	traits	in	MANOLIS	assessed	at	the	time	of	sample	

collection.	These	can	be	broadly	classified	as	metabolic,	haematological	and	anthropometric.	

Phenotype	QC	and	transformation	had	been	previously	carried	out	on	all	traits[275].	Briefly,	
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trait	values	lying	more	than	3,	4	or	5	SDs	away	from	the	mean	were	set	to	missing;	sex	was	

adjusted	for	if	it	was	significantly	associated	with	phenotype	(Wilcoxon	rank	sum,	p<0.05);	

traits	were	 transformed	 to	 follow	 a	 standard	normal	 distribution	 (inverse	 normal	 or	 log	

normal	transformation),	and	residuals	from	age-,	age2-	and	(for	some	traits)	BMI-adjusted	

regressions	were	used	for	association	analyses.	

In	addition,	I	used	protein	expression	data	of	275	blood	biomarkers	measured	on	1,325	

MANOLIS	 samples	using	 the	Olink	platform	 (Olink	Bioscience,	Uppsala,	 Sweden).	 Protein	

measurements	 were	 performed	 on	 three	 Olink	 panels	 (cardiovascular	 disease	 (CVD)	 II,	

CVDIII	 and	metabolism	 (META))	 using	 a	 proximity	 extension	 assay[317].	 Since	 only	 1,325	

individuals	in	MANOLIS	had	Olink	measurements,	I	used	this	subset	of	the	full	1,457	samples	

for	all	analyses	outlined	in	this	chapter.	

	

4.2.3 Phenotype	imputation	

Multivariate	mixed	models	rely	on	complete	phenotype	data,	meaning	that	a	sample	will	

be	excluded	if	it	is	missing	information	for	at	least	one	of	the	analysed	traits.		This	can	lead	

to	substantial	sample	loss	and,	consequently,	a	drop	in	power	if	the	missingness	patterns	of	

analysed	traits	do	not	overlap	completely.	To	circumvent	this	problem,	 I	used	a	Bayesian	

phenotype	imputation	tool,	PHENIX[318],	to	recapitulate	missing	trait	values.	PHENIX	jointly	

models	 multiple	 phenotypes	 in	 an	 LMM	 where	 the	 random	 effects	 are	 defined	 by	 the	

relatedness	matrix,	which	can	be	estimated	from	genetic	data.	I	performed	imputation	across	

all	57	quantitative	traits	and	274	Olink	protein	biomarkers	available	in	HELIC-MANOLIS.		

I	did	not	exclude	any	traits	based	on	missingness	prior	to	imputation;	my	rationale	was	

that	while	phenotypes	with	high	missingness	(e.g.	more	than	40%)	might	not	be	imputed	

accurately,	they	should	also	not	decrease	the	imputation	quality	of	other	traits	as	they	will	

add	comparatively	little	information	to	the	imputation	algorithm.		

By	 default,	 PHENIX	 masks	 about	 5%	 of	 non-missing	 values	 for	 each	 phenotype	 and	

computes	the	correlation	between	the	true	value	and	the	imputed	one	(referred	to	from	here	

on	as	“imputation	accuracy”).	To	allow	for	comparisons	across	multiple	imputation	runs	and	

(potentially)	different	imputation	software	packages,	I	randomly	sampled	the	values	to	mask	

for	each	trait	in	R	and	hard-coded	them	in	the	PHENIX	script.	The	authors	of	PHENIX	suggest	
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to	use	the	correlation	between	true	and	imputed	values	in	a	similar	fashion	to	the	IMPUTEv2	

info	 score,	 and	propose	 an	 exclusion	 threshold	 of	 0.36.	While	 this	 threshold	might	 seem	

lenient,	 it	 is	worthwhile	 to	 keep	 in	 data	 and	 then	 apply	 careful	 post-association	 analysis	

filtering	to	traits	that	had	low	imputation	accuracy	and/or	high	missingness.	I	therefore	only	

excluded	imputed	values	for	traits	whose	imputation	accuracy	was	below	0.4,	and	did	not	

filter	based	on	missingness.	

	

4.2.4 Inclusion	of	Olink	below-LOD	measurements	

Olink	 assays	 are	 reported	 as	 normalised	 protein	 expressions,	 and	 need	 to	 undergo	 a	

series	 of	 pre-processing	 and	 QC	 steps	 before	 being	 used	 for	 analyses.	 This	 includes	 the	

exclusion	of	measurements	that	fall	below	the	limit	of	detection	(LOD)[319].	The	LOD	value	

differs	for	each	assay	(i.e.	biomarker)	and	is	calculated	as:	

	
𝐿𝑂𝐷BCCDE = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛PQ;DR,SQTUVRWUX) + 3 ∗ 𝑆𝐷BCCDE	

	
However,	analysts	have	found	that	this	exclusion	criterion	is	conservative	and	that	the	

inclusion	 of	 below-LOD	 data	 points	 increases	 power	 by	 preserving	 sample	 size	 without	

sacrificing	 specificity	 (Anders	 Mälarstig	 and	 Arthur	 Gilly,	 personal	 communication).	 To	

explore	whether	phenotype	imputation	accuracy	could	be	improved	by	the	inclusion	of	more	

samples	per	trait	(in	effect,	complete	data	for	all	Olink	traits),	I	recovered	below-LOD	values	

for	Olink	traits	and	repeated	the	phenotype	imputation	for	Olink	and	non-Olink	traits.	Since	

PHENIX	 expects	 normally	 distributed	 phenotypes,	 I	 also	 repeated	 the	 transformation	 of	

Olink	proteins	prior	to	imputation.	I	followed	the	same	transformation	procedure	that	had	

been	 previously	 applied:	 I	 regressed	 each	 Olink	 protein	 on	 age,	 age2,	 sex,	 sample	 plate	

number	(to	adjust	for	potential	batch	effects),	and	season	at	sample	collection	(summer	or	

winter;	 this	 is	 to	 account	 for	 seasonal	 expression	 differences	 of	 some	 proteins);	 I	 then	

standardised	all	proteins	using	an	inverse	normal	transformation.	
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4.2.5 Selecting	trait	groups	for	analysis	

When	dealing	with	high-dimensional	datasets	comprising	hundreds	of	phenotypes,	the	

selection	of	appropriate	trait	groups	to	analyse	together	is	not	straightforward.	One	obvious	

solution	is	to	go	by	prior	knowledge,	such	as	biological	pathways	or	epidemiology.	However,	

this	 approach	 is	 restrictive	 as	 it	 inevitably	 limits	 the	number	of	 trait	 groups	 that	will	 be	

selected,	and	will	miss	potentially	interesting	trait	pairings	whose	connection	has	not	been	

previously	 studied.	 Especially	 for	 biomarkers,	which	 often	 act	 in	multiple	 pathways	 and	

show	high	degrees	of	interconnectedness,	a	hypothesis-free	approach	to	identify	trait	groups	

is	preferable.	Here,	I	used	both	approaches:		

First,	 I	 chose	 traits	 known	 to	 be	 biologically	 linked	 to	 or	 highly	 correlated	 with	

osteocalcin,	which	was	the	initial	focus	of	this	project	(see	section	4.1.4).	I	then	used	network	

analysis	to	define	trait	groups	that	satisfied	a	given	threshold	of	inter-trait	correlation.		

	

Table	4.1.	Trait	clusters	taken	forward	to	analysis.	All	clusters	except	cluster	18	and	19	were	identified	
through	network	analysis	in	the	igraph	R	package.	

Cluster	index	 Included	traits	 Number	of	traits	
1	 Hip,	Waist,	Weight,	Height	 4	
2	 TR,	Fe_iron	 2	
3	 LYMPC,	GRANPC	 2	
4	 WBC,	GRAN,	MID	 3	
5	 HGB,	HCT	 2	
6	 MPV,	PDW,	LPCR	 3	
7	 MCV,	RDW,	MCH	 3	
8	 PLT,	PCT	 2	
9	 CD84,	CD40L	 2	
10	 LPL,	PRELP,	HO1,	MERTK,	XCL1	 5	
11	 TM,	TRAILR2,	PGF,	TNFRSF10A,	TNFRSF11A	 5	
12	 PRTN3,	MMP9,	MPO,	PGLYRP1,	RNASE3,	AZU1,	RETN	 6	
13	 JAMA,	PECAM1,	CASP3	 3	
14	 CPB1,	CPA1	 2	
15	 CCDC80,	MEPE,	CHRDL2	 3	
16	 PDGFSUBUNITA,	PAI	 2	
17	 FKBP4,	THOP1,	QDPR,	BAG6,	ENO2,	KYAT1	 6	
18	 BGP,	MEPE,	COL1A1,	OPN,	ROR1	 5	
19	 BGP,	leptin,	adiponectin,	RI,	RG,	BMI	 6	
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For	 the	osteocalcin	 analyses,	 I	 initially	 chose	 adiponectin,	 leptin,	 random	glucose	 and	

random	 insulin,	 as	 these	 traits	are	known	 to	be	either	directly	or	 indirectly	 regulated	by	

osteocalcin	 levels[320-323].	 I	 chose	 random	 glucose	 and	 insulin	 measurements	 instead	 of	

fasting	 ones,	 as	 only	 a	 small	 subset	 of	 people	 in	 MANOLIS	 had	 fasting	 measurements	

available.	All	of	those	four	traits	are	weakly	correlated	with	osteocalcin.		

	

Figure	4.1.	Phenotype	correlations	between	the	66	individual	traits	analysed	in	at	least	one	trait	cluster.	

I	subsequently	also	searched	for	suitable	traits	across	Olink	and	standard	traits	that	were	

significantly	(p<3x10-4;	equivalent	to	0.05/Meff	=	0.05/165)	correlated	with	osteocalcin	at	an	

absolute	 correlation	 value	 of	 at	 least	 0.2.	 All	 ten	 traits	 that	 passed	 this	 filter	were	Olink	
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proteins.	 I	 sorted	 these	 traits	 by	 their	 correlation	 p-value	 and	 took	 forward	 the	 4	most	

significant	ones	(COL1A1,	OPN,	MEPE	and	ROR1).		

The	power	of	multivariate	association	models	 is	 in	part	dependent	on	 the	correlation	

structure	of	 the	 included	 traits,	 as	well	 as	on	 the	effect	 sizes	of	 a	variant	on	 those	 traits.	

Generally,	trait	correlations	of	less	than	-0.3	or	more	than	0.7	result	in	the	greatest	gain	in	

power	 compared	 to	 conducting	multiple	 univariate	 analyses	 and	pooling	 the	 results	 in	 a	

meta-analytic	approach[71].	For	the	hypothesis-free	selection	of	trait	groups,	I	computed	a	

correlation	matrix	in	R	of	all	Olink	and	standard	traits	in	MANOLIS,	using	directly	measured	

as	well	as	 imputed	values	 for	all	 traits	 that	passed	 imputation	QC,	and	directly	measured	

values	only	for	those	that	did	not.	I	then	used	the	igraph	R	package	(v	1.0.0)	to	build	networks	

of	 trait	clusters.	As	 input	 igraph	requires	a	data	 frame	containing	a	 list	of	edges	(i.e.	 trait	

pairs)	pre-filtered	for	a	certain	correlation	threshold.	To	choose	an	appropriate	threshold,	I	

looked	at	the	number	and	size	of	trait	clusters	at	incremental	absolute	correlation	values,	

ranging	from	0	to	1.	In	terms	of	both	computational	burden	and	interpretability	of	results,	it	

is	preferable	to	have	a	higher	number	of	trait	clusters	each	consisting	of	a	relatively	small	

number	 (n<10)	 of	 traits.	 I	 therefore	 chose	 an	 absolute	 correlation	 cut-off	 of	 0.7,	 which	

resulted	in	27	trait	clusters	ranging	in	size	from	2	to	44	traits.	I	filtered	this	list	manually	and	

excluded	clusters	where	traits	were	derivations	of	one	another	(e.g.	systolic	blood	pressure	

and	systolic	blood	pressure	adjusted	for	BMI)	or	traits	were	measurements	of	the	same	value	

(e.g.	random	and	fasting	glucose,	where	the	latter	is	a	subset	of	the	former);	I	also	excluded	

the	 cluster	of	44	 traits,	 as	analysis	 and	 interpretation	would	have	been	 intractable.	After	

applying	these	exclusion	criteria,	there	were	19	trait	clusters	left,	each	containing	between	

2	and	6	traits	(Table	4.1).	In	total,	66	traits	across	Olink	and	the	standard	traits	were	included	

in	at	least	one	cluster	(Appendix	D;	Appendix	E).	

	

4.2.6 Multi-	and	univariate	GWAS	

I	 conducted	 19	 multivariate	 GWAS	 using	 the	 GEMMA	 software	 v0.94[75].	 GEMMA	

implements	 both	 univariate	 and	 multivariate	 mixed	 models,	 which	 can	 account	 for	

relatedness	 between	 samples	 through	 the	 inclusion	 of	 a	 random	 effects	 term	 (the	

relatedness	 matrix).	 While	 there	 are	 other	 implementations	 of	 multivariate	 mixed	
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models[101,	128],	I	chose	GEMMA	due	to	its	computational	efficiency	(implemented	in	C++),	as	

well	as	to	facilitate	comparisons	with	previous	analyses	carried	out	in	HELIC.		

In	addition	to	the	multi-trait	GWAS,	I	also	performed	univariate	association	studies	on	

each	individual	trait	included	in	any	of	the	multivariate	trait	groups	to	obtain	marginal	p-

values	and	effect	sizes.	This	is	helpful	in	determining	whether	a	multivariate	signal	is	driven	

by	a	subset	of	traits.		I	used	imputed	QCed	phenotype	data	for	all	analyses.		The	relatedness	

matrix	specified	had	been	previously	computed	using	GEMMA	v0.94	on	all	1,457	individuals	

in	MANOLIS	 and	 genotypes	 filtered	 for	MAF>5%	and	HWE	p-value>1x10-5.	 The	 p-values	

reported	here	are	based	on	the	score	test	(option	“-lmm	3”).	

I	 filtered	 all	 association	 results	 for	MAF>0.1%,	 sample	missingness<1%	 and	HWE	 p-

value>1x10-5.	I	used	PeakPlotter	with	a	p-value	threshold	of	2.66x10-10	and	default	settings	

otherwise	 to	 obtain	 a	 list	 of	 independent	 signals	 (https://github.com/wtsi-

team144/peakplotter).	Briefly,	PeakPlotter	sorts	all	variants	satisfying	the	set	significance	

threshold	by	their	p-values,	and	then	iterates	over	them,	retaining	only	the	top	signal	within	

each	500kb	window.	

	

 GEMMA	version	issues	

I	 initially	 used	 the	 latest	 stable	 release	 (v0.97)	 of	 GEMMA	 to	 run	 both	 multi-	 and	

univariate	 GWAS.	 Since	 the	 univariate	 GWAS	 had	 previously	 been	 conducted	 on	 the	

unimputed	phenotypes	by	my	colleagues,	I	cross-checked	my	results	with	theirs.	I	noticed	

that	the	results	differed	considerably	from	the	unimputed	GWAS	(Figure	4.2).	This	could	be	

expected	 for	 traits	 where	 missingness	 is	 high	 and	 imputation	 accuracy	 low,	 leading	 to	

spurious	 associations.	 However,	 I	 observed	 these	 discrepancies	 even	 for	 traits	 with	 low	

missingness	and	good	imputation	accuracy.	A	comparison	of	imputed	and	unimputed	GWAS	

runs	using	both	mine	and	a	colleague’s	pipeline	revealed	that	the	variation	in	results	was	

due	to	different	GEMMA	versions	used	for	the	imputed	and	unimputed	GWAS.	The	latter	had	

used	 a	 pre-release	 version	 (v0.94,	 available	 from	 http://www.xzlab.org/software.html),	

while	 I	 had	 used	 the	 preview	 version	 of	 the	 latest	 stable	 release	 (v0.97,	 October	 2017,	

https://github.com/genetics-statistics/GEMMA/releases/tag/v0.97).	 	 Since	 Plink[199]	 gave	
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results	 in	 line	 with	 those	 of	 GEMMAv0.94	 (Table	 4.2),	 I	 repeated	 all	 analyses	 with	 this	

GEMMA	version.	

	

Figure	4.2.	Discrepancies	between	GEMMA	versions	0.97	(top)	and	0.94	(bottom).	Results	shown	are	
from	univariate	GWAS	of	CCDC80	(left)	and	HCT	(right).	All	results	were	filtered	for	MAF>0.001.	

	

Software	 beta	 SE	 P	

GEMMA	v0.97-preview	 0.073	 0.040	 6.95E-02	

GEMMA	v0.97-release	 0.073	 0.040	 6.95E-02	

GEMMA	v0.94	 -0.351	 0.039	 1.25E-17	

Plink	v1.9	 -0.359	 0.038	 1.00E-20	

Table	4.2.	Association	 summary	 statistics	 for	 variant	 rs1973612	 (chr4:186248013,	T/C,	MAF=0.48)	
from	a	univariate	GWAS	of	CCDC80	levels	using	unimputed	trait	values.	
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4.2.7 Significance	threshold	and	effective	number	of	traits	

One	of	 the	 (many)	unanswered	questions	 in	multi-trait	analyses	 is	how	to	correct	 for	

multiple	 testing	 and	 choose	 an	 adequate	 significance	 threshold.	 In	 frequentists	 statistics,	

significance	is	often	set	at	a	level	that	controls	the	family-wise	error	rate	(i.e.	the	probability	

of	falsely	rejecting	the	null	hypothesis	at	least	once	in	a	group	of	tests	when	it	is	in	fact	true	

for	all	tests)	at	0.05.	Bonferroni	correction	(0.05	divided	by	the	number	of	tests)	is	a	simple	

and	straightforward	way	to	adjust	the	significance	threshold	when	dealing	with	independent	

tests.	This,	however,	is	not	the	case	in	GWAS:	alleles	of	nearby	variants	will	co-occur	more	

often	 than	 those	 of	 variants	 on	 different	 chromosomes.	 Likewise,	 different	 phenotypes	

correlate	with	each	other	at	varying	degrees.	Simply	dividing	by	the	number	of	variants	and	

traits	tested	will	therefore	lead	to	an	overly	conservative	significance	estimate.		Instead,	one	

can	adjust	for	the	effective	number	of	tests:	

𝑃 =
0.05

𝑁Q`` ∗ 𝑀Q``
	

where	Neff	 the	 effective	 number	 of	 variants	 and	Meff	 is	 the	 effective	 number	 of	 traits	

analysed.	 Neff	 can	 be	 computed	 based	 on	 the	 LD	 structure	 across	 the	 genome	 by	 only	

retaining	independent	variants	that	are	not	correlated	with	each	other.	Similarly,	Meff	can	be	

determined	by	considering	the	inter-trait	correlation	structure.	One	approach	is	to	simply	

take	all	individual	traits	tested	in	at	least	one	analysis	and	compute	Meff	based	on	these.	In	

practice,	this	approach	is	conservative	in	a	multi-variate	setting	as	traits	analysed	together	

in	one	GWAS	do	not	contribute	to	the	multiple	testing	burden.	However,	as	I	also	report	the	

marginal,	single	trait	GWAS,	it	is	an	appropriate	adjustment	in	this	context.	

Here,	I	calculated	the	effective	number	of	traits	across	all	OLINK	and	standard	traits	in	

MANOLIS	using	three	different	methods.	The	first	determines	Meff	from	the	eigenvalues	of	

the	phenotype	correlation	matrix	and	resulted	in	an	estimate	of	33.5	effective	traits[324].	The	

second	is	based	on	the	same	approach,	but	estimates	Meff	based	only	on	the	integral	part	of	

the	eigenvalues[325].	This	approach	estimated	Meff=37.	The	third	method	conducts	a	PCA	and	

declares	 Meff	 as	 the	 number	 of	 PCs	 cumulatively	 explaining	 a	 90%	 or	 95%	 of	 the	 total	

variance	(39	PCs	in	this	case;	Figure	4.3).	
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Figure	 4.3.	 Cumulative	 variance	 explained	 by	 principal	 components	 derived	 from	 66	 phenotypes.	
Horizontal	dashed	lines	mark	90	and	95%	of	cumulative	variance,	respectively.	The	vertical	dashed	line	
marks	the	number	of	principal	components	that	cumulatively	explain	95%	of	variance.	

	

For	the	traits	included	in	the	multivariate	GWAS	analyses	presented	in	this	chapter,	I	set	

Meff=37.	The	effective	number	of	variants	in	the	15x	MANOLIS	data	was	previously	calculated	

by	 filtering	 for	 MAC>10	 and	 LD-pruning	 in	 Plink	 with	 the	 “--indep”	 option	 and	 a	 50kb	

window-size,	a	5	variant	increment	and	variance	inflation	factor	of	2.	The	variance	inflation	

factor	is	equal	to	1/(1-R2),	where	R2	denotes	the	coefficient	of	multiple	correlation	when	one	

SNP	is	regressed	on	all	other	SNPs	in	the	current	window.	This	resulted	in	a	Neff	estimate	of	

5,078,182,	 and	 the	 significance	 for	 all	 GWAS	 outlined	 in	 this	 chapter	 is	 therefore:	

0.05/(5,078,182*40)=2.66x10-10.	From	here	on,	I	will	refer	to	this	threshold	as	the	“study-

wide”	significance	threshold,	and	to	p<5x10-8	as	the	“genome-wide”	one.	

	

4.3 Results	

4.3.1 Phenotype	imputation	

I	imputed	missing	phenotype	values	for	all	OLINK	and	standard	traits	with	PHENIX.	The	

average	imputation	accuracy	across	all	traits	was	0.74.	Imputation	accuracy	was	only	weakly	

correlated	with	missingness	(Figure	4.4;	Pearson’s	correlation=-0.13,	p=0.017),	and	several	
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traits	with	high	missingness	(>20%	of	samples	missing)	had	imputation	accuracy	exceeding	

0.9.	Conversely,	I	found	strong	associations	between	imputation	accuracy	and	the	number	of	

additional	traits	a	given	phenotype	is	highly	correlated	with	(absolute	r2>0.7)	(Figure	4.4).	

This	underpins	the	advantage	of	imputation	algorithms	that	model	the	inter-trait	covariance,	

rather	than	considering	each	trait	separately	(such	as	the	BSLMM	algorithm	implemented	in	

GEMMA[75]).		

I	also	repeated	the	imputation	after	including	Olink	trait	values	that	fell	below	the	LOD	

cut-off	and	had	therefore	been	excluded.	Imputation	accuracy	was	on	average	lower	for	the	

run	including	below-LOD	values	(Figure	4.4).	This	is	in	line	with	the	finding	that	accuracy	

depends	 more	 strongly	 on	 the	 inter-trait	 correlation	 structure	 than	 on	 the	 degree	 of	

missingness	 (Figure	 4.4).	 Even	 if,	 as	 others	 have	 found	 (Anders	 Mälarstig,	 personal	

communication),	the	LOD	cut-off	 is	too	stringent	and	leads	to	the	exclusion	of	some	high-

quality	trait	measurements,	one	would	still	expect	a	 large	number	of	the	below-LOD	trait	

values	to	be	inaccurate.	Feeding	these	into	the	imputation	algorithm	will	then	cause	a	drop	

in	 overall	 accuracy	 as	 the	 low-quality	 values	will	 affect	 all	 traits	 correlated	with	 the	one	

under	consideration.		
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Figure	4.4.	Phenotype	imputation	of	330	traits	in	MANOLIS.	Number	of	traits	with	imputation	accuracy	
greater	than	a	given	threshold	(top	left).	Imputation	accuracy	plotted	against	sample	missingness	(top	
right)	 and	 the	 average	 correlation	 of	 each	 trait	 with	 all	 other	 traits	 in	 the	 datasets	 (bottom	 left).	
Comparison	of	imputation	accuracy	when	Olink	trait	values	below	the	LOD	were	excluded	vs	when	they	
were	included	(bottom	right).	

	



	 104	

	

Figure	4.5.	Venn	diagram	of	unique	independent	genome-wide	(p<5x10-8)	signals	in	the	single-trait	
GWAS	using	unimputed	and	imputed	phenotype	data.	

To	 assess	 the	 effect	 of	 phenotype	 imputation	 on	 association	 analysis,	 I	 compared	 the	

results	of	the	single-trait	GWAS	for	all	66	traits	performed	using	unimputed	values	with	the	

results	from	the	imputed	GWAS.	I	looked	at	the	signal	concordance	between	the	imputed	and	

unimputed	runs	at	genome-wide	significance	(p<5x10-8)	after	 filtering	 for	MAF>0.1%.	 	 In	

total,	there	were	72	independent	genome-wide	significant	signals	in	the	unimputed	GWAS,	

and	64	in	the	imputed	ones.	Of	these,	33	were	unique	to	the	unimputed,	and	25	were	unique	

to	the	imputed	analyses	(Figure	4.5).	The	majority	(52%	of	the	unimputed	and	68%	of	the	

imputed)	of	these	“private”	loci	were	driven	by	rare	variants	(MAF<1%).		

Out	of	the	66	traits,	27	had	discrepant	signals	between	the	two	GWAS	runs,	and	16	traits	

out	 of	 these	 had	 a	 pre-imputation	 missingness	 greater	 than	 14%	 (equivalent	 to	

approximately	190	samples).	Even	though	imputation	accuracy	for	those	27	traits	was	high	

(>80%	for	all	but	7	traits),	inaccurately	imputed	phenotype	values	for	even	a	small	subset	of	

samples	can	induce	spurious	effects	at	rare	variants	if	these	samples	happen	to	be	carriers	

of	the	rare	allele.	This	might	explain	the	observed	discrepancies,	but	further	inspection	of	

these	signals,	as	well	as	comparisons	at	more	lenient	p-value	thresholds	–	or	even	across	all	

included	 variants	 –	 are	 needed	 to	 fully	 evaluate	 the	 strengths	 and	 weaknesses	 of	 the	

phenotype	imputation	tool	used	here.	
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4.3.2 Multivariate	GWAS	

I	conducted	19	multivariate	GWAS	different	trait	combinations	of	66	traits.	The	number	

of	traits	 included	in	each	analysis	ranged	from	2	to	6	(Table	4.1).	Study-wide	significance	

was	 set	 at	 p<2.66x10-10.	 There	was	 no	 sign	 of	 inflation	 for	 any	 of	 the	 trait	 clusters	 after	

filtering	 for	 MAF>0.1%	 (lambda	 values	 ranging	 from	 0.96	 to	 1.00);	 however,	 five	 trait	

clusters	had	a	large	excess	of	spurious	signals	across	the	genome	(see	section	4.3.2.1).		

	

4.3.2.1 Problematic	trait	groups	

Filtering	 for	 MAF>0.1%	 and	 “low-quality”	 variants	 (sample	 missingness>1%	 and/or	

HWE	 p-value<1x10-5)	 should	 eliminate	 most	 spurious	 associations.	 However,	 the	 GWAS	

results	from	trait	clusters	2,	7,	8,	11	and	17	showed	a	high	degree	of	noise,	as	evident	from	

inspection	of	their	Manhattan	plots	(e.g.	Figure	4.6).	The	lambda	values	for	these	clusters	

ranged	 from	0.97	to	1.00,	showing	no	sign	of	systematic	 inflation	and	ruling	out	possible	

causes	 such	 as	 cryptic	 relatedness	 or	 population	 structure	 (which	 should	 have	 been	

accounted	for	by	the	inclusion	of	the	relatedness	matrix	in	the	mixed	model).	When	applying	

a	MAF>1%	filter,	the	vast	majority	of	noisy	signals	disappear	(Figure	4.6).	This	inflation	in	

the	low	MAF	range	did	not	occur	in	the	GWAS	of	any	of	the	marginal	traits	for	these	clusters.		

	

	 	



	 106	

	
	

Figure	4.6.	Example	of	p-value	inflation	in	the	low	allele	frequency	range.	The	results	shown	are	from	
a	 multivariate	 GWAS	 using	 imputed	 (top	 and	 middle)	 and	 unimputed	 (bottom)	 phenotypes	 of	
transferrin	receptor	and	iron	levels	(TR	and	Fe_iron).	There	is	a	systematic	excess	of	signal	when	only	
filtering	 for	 MAF>0.001	 in	 the	 imputed	 data	 (top)	 which	 disappears	 when	 filtering	 for	 MAF>0.01	
(middle).	 This	 low-MAF	 inflation	 is	 not	 observed	 in	 the	 unimputed	 GWAS	 filtered	 for	 MAF>0.001	
(bottom)	 	
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Figure	4.7.	Missing	trait	values	before	imputation	(top	panel)	and	imputation	accuracy	(bottom	panel)	
for	 each	 of	 the	 traits	 contained	 in	 the	 trait	 clusters	with	 inflation	 in	 the	 low	MAF	 range.	 Bars	 are	
coloured	in	by	cluster	membership.	For	Olink	traits,	trait	names	are	preceded	by	their	respective	panel.	

I	next	looked	at	phenotype	missingness	and	imputation	quality	for	these	traits.	One	thing	

that	 stood	out	was	 that	 the	 individual	 traits	within	 each	 cluster	 had	 an	 almost	 complete	

overlap	in	sample	missingness	(Figure	4.7).	For	the	blood	trait	clusters	(PLT-PCT	and	MCV-

RDW-MCH)	this	could	be	due	to	inadequate	sample	quality,	while	for	the	Olink	traits	it	might	

reflect	batch	effects	(note	that	all	traits	within	each	cluster	are	from	the	same	panel,	except	

FKBP4).	Although	imputation	accuracy	was	high	for	most	of	these	traits	(Figure	4.7),	given	

that	almost	the	same	individuals	within	each	cluster	will	have	imputed	phenotype	values,	

this	could	lead	to	spurious	associations	with	rare	variants.	Indeed,	when	re-running	those	

clusters	with	unimputed	phenotypes,	most	of	the	low-MAF	associations	disappear	(Figure	

4.6).	
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4.3.2.2 Summary	of	multivariate	GWAS	results	

In	 total,	 there	were	82	 independent	 study-wide	 significant	 signals	 in	 the	multivariate	

GWAS,	68	of	which	were	not	found	in	the	univariate	analyses.	All	15	study-wide	significant	

signals	 found	 in	 imputed	 univariate	 analyses	 showed	 even	 stronger	 association	 in	 the	

multivariate	GWAS.	

Of	the	new	signals,	37	consisted	of	a	single	variant	(i.e.	no	peak	of	variants).	All	of	these	

single-variant	 signals	 also	had	a	MAF<1%;	while	 it	 is	possible	 that	 some	of	 these	 signals	

constitute	 real	 effects,	 it	 is	 likely	 that	 they	 are	 false	 positives,	 possibly	 arising	 due	 to	

inaccurately	 imputed	 phenotypes.	 I	 therefore	 did	 not	 take	 these	 37	 variants	 forward	 for	

further	inspection	at	this	stage.	In	the	sections	below,	I	briefly	describe	newly	arising	loci	of	

potential	biological	interest.		

	

4.3.2.3 Newly	discovered	loci	

I	performed	 two	multivariate	GWAS	of	osteocalcin:	one	with	adiponectin,	 leptin,	BMI,	

random	glucose	and	random	insulin	(trait	cluster	19),	and	another	with	OPN,	MEPE,	COL1A1	

and	ROR1	(trait	cluster	18).	Osteocalcin	is	a	bone	matrix-derived	protein	found	in	plasma	

that	plays	a	role	 in	both	bone	maintenance	and	glucose	metabolism[320,	322,	326,	327].	So	 far,	

studies	of	the	genetics	underlying	variation	in	circulating	osteocalcin	levels	have	not	yielded	

replicating	associations[328].	

	

rsID	 chr:pos	 A1,A1	 MAF	 Gene	 PMV	 PBGP	 PCOL1A1	 PMEPE	 POPN	 PROR1	

rs7679698	 chr4:87936047	 G,A	 0.405	
MEPE	
	(-89kb)	 5.85E-16	 8.32E-01	 5.88E-01	 3.29E-01	 4.14E-10	 5.88E-01	

rs142201367	chr4:186235350	 Indel	 0.484	 KLKB1	 4.92E-26	 7.93E-01	 3.38E-01	 3.54E-21	 3.52E-05	 4.46E-01	

rs991353408	chr17:50304344	 C,G	 0.019	
TMEM92	
(-22kb)	 1.09E-11	 2.19E-01	 1.58E-06	 6.16E-01	 5.02E-01	 2.64E-01	

Table	4.3.	Study-wide	significant	peaks	in	multivariate	GWAS	of	BGP	(osteocalcin),	MEPE,	COL1A1,	and	
ROR1.	Chromosome	positions	are	aligned	to	GRCh	build	38.	A1	is	the	effect	and	minor	allele.	Closest	gene	
within	a	1Mb	range	is	given	for	each	signal,	followed	by	the	multivariate	(PMV)	and	univariate	p-values.	 	
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GWAS	of	trait	cluster	19	did	not	result	in	any	study-wide	significant	peaks,	whereas	trait	

cluster	 18	 yielded	 three	 study-wide	 significant	 signals	 (Table	 4.3).	 Two	 of	 these	 lie	 on	

chromosome	4	and	were	also	detected	in	the	single-trait	GWAS:	the	first	signal	(top	variant:	

rs142201367,	chr4:186235350,	p=2.52x10-24)	lies	89,320	bp	downstream	of	MEPE	and	was	

also	study-wide	significant	in	the	MEPE	GWAS	(p=3.54x10-21),	and	the	second	(top	variant:	

rs7679698,	 chr4:87936047,	 p=1.98x10-16)	 in	 the	 OPN	 GWAS,	 albeit	 with	 a	 different	 top	

variant	(rs2126651,	chr4:87922658,	p=4.14x10-10,	LD	with	rs7679698:	r2=0.77).	While	both	

of	these	signals	could	be	detected	in	the	single-trait	GWAS,	the	strength	of	association	was	

several	orders	of	magnitude	larger	in	the	multi-trait	analysis.		

	The	third	signal	 lies	on	chromosome	17	and	was	not	observed	in	any	of	the	marginal	

GWAS.	The	top	SNP	(rs991353408;	p=1.05x10-10)	 lies	 in	an	intergenic	region.	The	closest	

protein-coding	gene	is	TMEM92	(22kb	upstream),	a	trans-membrane	protein	identified	as	a	

putative	therapeutic	target	in	prostate	cancer[329].		Interestingly,	the	gene	encoding	COL1A1	

lies	 103kb	 upstream	 of	 rs991353408.	 This	 variant	was	 also	 nominally	 significant	 in	 the	

COL1A1	GWAS	(p=1.58x10-06),	but	not	in	any	of	the	other	marginal	GWAS	(p>0.1	for	BGP,	

MEPE,	 and	OPN),	making	 it	plausible	 that	 the	association	 is	driven	by	a	 variant	 affecting	

COL1A1	protein	expression.		

	

rsID	 chr:pos	 A1,A1	 MAF	 Gene	 PMV	 PMCH	 PMCV	 PRDW	

rs1022764735	3:48791054	 T,C	 0.002	 PRKAR2A	 3.95E-12	 6.70E-01	 9.48E-01	 4.20E-03	

rs543237404	 4:78208876	 A,C	 0.002	 FRAS1	 7.03E-11	 3.04E-01	 4.96E-01	 4.94E-01	

novel	 11:131106748	 G,C	 0.002	 SNX19		
(-190kb)	

4.91E-14	 2.01E-01	 3.54E-01	 7.23E-03	

novel	 16:1726791	 G,C	 0.002	 MAPK8IP3	 1.10E-11	 9.90E-01	 8.37E-01	 1.55E-02	

rs867469149	 16:7015419	 T,A	 0.002	 RBFOX1	 6.26E-11	 6.51E-01	 8.77E-01	 5.06E-03	

rs546767097	 22:37390261	 A,G	 0.003	 ELFN2	 8.98E-13	 1.75E-01	 2.93E-01	 3.00E-02	

Table	4.4.	Study-wide	significant	peaks	 in	multivariate	GWAS	of	MCH,	MCV	and	RDW.	Chromosome	
positions	are	aligned	to	GRCh	build	38.	A1	is	the	effect	and	minor	allele.	Closest	gene	within	a	1Mb	range	
is	given	for	each	signal,	followed	by	the	multivariate	(PMV)	and	univariate	p-values.	

Trait	clusters	3-8	are	all	comprised	of	haematological	measurements	routinely	obtained	

as	part	of	full	blood	counts	and	used	as	diagnostic	markers	for	a	variety	of	health	outcomes.	

Six	 signals	 (Table	 4.4)	 were	 found	 in	 the	 multivariate	 GWAS	 of	 MCV,	 RDW	 and	 MCH	 –	
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measures	used,	for	example,	to	distinguish	between	different	types	of	anemia.	All	but	one	of	

the	 signals	 fall	within	 introns	 of	 protein-coding	 genes,	 the	 exception	 being	 an	 intergenic	

signal	at	chr11:131106748.	None	of	 the	genes	 in	or	around	these	signals	have	any	direct	

documented	link	with	blood	biomarkers.		

	

rsID	 chr:pos	 A1,A1	 MAF	 Gene	 PMV	 PLPCR	 PMPV	 PPDW	

rs180950569	 4:132130160	 C,T	 0.002	 none	 2.57E-10	 2.81E-03	 3.17E-03	 1.06E-01	

rs551490559	 4:126614700	 A,C	 0.002	 none	 6.33E-12	 3.14E-03	 1.61E-03	 1.30E-01	

rs573664301	 14:21356884	 C,T	 0.002	 SUPT16H	 1.62E-12	 1.22E-08	 1.84E-08	 5.14E-06	

Table	4.5.	Study-wide	significant	peaks	in	multivariate	GWAS	of	LPCR,	MPV	and	PDW.	Chromosome	
positions	are	aligned	to	GRCh	build	38.	A1	is	the	effect	and	minor	allele.	Closest	gene	within	a	1Mb	range	
is	given	for	each	signal,	followed	by	the	multivariate	(PMV)	and	univariate	p-values.	

Three	signals	reached	study-wide	significance	in	the	cluster	comprised	of	LPCR,	MPV	and	

PDW	–	 indices	of	platelet	 reactivity	used	as	markers	 for	 thrombosis[330]	 (Table	4.5).	Two	

signals	 are	 intergenic;	 the	 third	 signal	 maps	 to	 an	 intron	 of	 SUPT16H,	 which	 encodes	 a	

chromatin	factor	that	facilitates	transcription	by	disassembling	nucleosomes.	

One	 signal	was	 found	 in	 the	 analysis	 of	 PLT	 and	 PCT,	 two	measurements	 of	 platelet	

abundance	that	can	indicate	bone	marrow	problems	or	excessive	platelet	destruction.	The	

top	variant	(rs1249792881,	chr2:34210095,	p=1.26x10-10)	was	also	nominally	significant	in	

the	PCT	GWAS	(p=8.27x10-6),	and	lies	in	an	intron	of	LINC01317,	a	long	non-coding	RNA	of	

unknown	function.	

The	CPA1-CPB1	GWAS	contained	a	signal	at	a	regulatory	variant	5.6	kb	upstream	of	CPA1	

(top	variant:	rs13240039,	p=6.34x10-11).	CPA1	and	CPB1	are	pancreatic	secretory	enzymes	

that	have	been	associated	with	pancreatic	cancer	and	chronic	pancreatitis[331].	Variants	in	

the	CPA1	locus	have	also	been	associated	with	waist	circumference	adjusted	for	BMI[332].		
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Trait	cluster	17,	comprised	of	FKBP4,	THOP1,	QDPR,	BAG6,	ENO2	and	KYAT1,	yielded	a	

study-wide	significant	signal	in	THOP1,	as	well	as	five	additional	intronic	signals	and	one	in	

an	intergenic	region	(Table	4.6).	The	proteins	 in	this	cluster	broadly	reflect	 immune-	and	

neuronal	functions.	THOP1	is	an	enzyme	involved	in	the	cleavage	of	neuropeptides	and	the	

generation	 of	 amyloid-forming	 polypeptides.	 The	 THOP1	 locus	 has	 previously	 been	

associated	with	total	cholesterol	levels	in	East	Asians[333].			

	

Analysis	of	 trait	 cluster	10	(LPL,	PRELP,	HO1,	MERTK	and	XCL1)	 led	 to	a	signal	at	an	

intron	of	LPL	(rs116135967,	chr8:19902655,	EA=C,	EAF=0.29%	p=8.61x10-20),	which	also	

reached	genome-wide	significance	in	the	marginal	LPL	analysis	(3.34x10-08),	but	none	of	the	

other	included	traits	(p>0.1).		

	

Multivariate	 GWAS	 of	 cluster	 11	 (TM,	 TRAILR2,	 PGF,	 TNFRSF10A	 and	 TNFRSF11A),	

which	 broadly	 represents	 angiogenesis-	 and	 apoptosis-related	 proteins(Appendix	 E),		

identified	a	cis	pQTL	for	TM	in	the	THBD	gene,	which	encodes	thrombomodulin	(TM)	and	is	

involved	in	blood	clotting[334].	The	top	SNP	at	this	signal	is	a	missense	variant	(rs1042579,	

chr20:23048087,	EA=A,	EAF=8.4%)	leading	to	the	replacement	of	an	alanine	amino	acid	by	

valine	 (p.Ala473Val).	 It	 has	 been	 associated	 with	 hemolytic-uremic	 syndrome[335].	 	 The	

variant	also	reached	genome-wide	significance	in	the	TM	univariate	GWAS	(p=1.16x10-11),	

but	is	not	associated	with	any	of	the	other	individual	traits	in	the	cluster	(p>0.1).			

Another	signal	occurred	at	an	intron	of	ANKS1B	(rs150347635,	chr12:99608373,	EA=T,	

EAF=0.02%,	pmultivariate=4.06x10-15).	 The	 top	 SNP	 is	 also	 suggestively	 associated	with	PGF	

levels	(p=6.43x10-08),	but	not	with	any	of	the	other	traits	included	in	that	cluster	(p>0.1).		

ANKS1B	is	involved	in	the	maintenance	of	endothelial	permeability[336].		

	

Trait	 cluster	 12	was	 the	 largest	 trait	 cluster,	 consisting	 of	 six	 protein	measurements	

(PRTN3,	MMP9,	MPO,	PGLYRP1,	RNASE3,	AZU1,	RETN	and	PTX3).		Multivariate	GWAS	lead	

to	the	identification	of	five	putative	cis-pQTLs	for	proteins	contained	in	the	cluster	(Table	

4.7).	The	first	is	driven	by	a	rare	splice	acceptor	variant,	rs35897051,	in	the	myeloperoxidase	

(MPO)	gene	and	was	suggestively	significant	in	the	univariate	MPO	analysis	(p=1.02x10-05).	

The	second	falls	into	a	regulatory	region	approximately	7kb	upstream	of	PGLYRP1	and	was	
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suggestively	significant	at	P<10-2	 in	 the	PGLYRP1	and	MMP9	analyses.	The	third	 is	also	a	

regulatory	region	variant	1kb	upstream	of	RETN	and	reached	genome-wide	significance	in	

the	marginal	RETN	GWAS.	The	fourth	signal	lies	in	an	intron	of	PRTN3	and	was	also	genome-

wide	significant	for	the	protein	product	of	that	gene.	Lastly,	multivariate	GWAS	identified	a	

variant	 overlapping	 a	 promoter	 region	 of	 RNASE3the	 same	 signal	 was	 suggestively	

significant	in	the	RNAS3	GWAS.			

	
One	pQTL	signal	was	 identified	 in	 the	analysis	of	 trait	cluster	13	(JAMA,	PECAM1	and	

CASP3)	in	an	intron	of	the	ABO	locus,	specifically	the	ABO-201	transcript.	The	top	variant	is	

an	 indel	 (chr9:133263362,	 alleles=GCGCCCACCACTA/G,	 MAF=48%,	 p=1.26x10-36;	 closest	

1000	 Genomes	 variant:	 rs8176686,	 chr9:133263373)	 and	 also	 reached	 suggestive	

significance	in	the	PECAM1	marginal	GWAS	(p=7.39x10-07),	but	had	p>0.1	in	the	JAMA	and	

CASP3	analyses.	The	ABO	locus	encodes	a	glycosyltransferase	which	is	abundantly	expressed	

in	several	tissues	and	whose	activity	determines	an	individual’s	blood	group.	The	enzyme	is	

responsible	 for	 modifying	 cell	 surface	 antigens	 bound	 by	 platelet	 glycoproteins	 such	 as	

PECAM1[337]	or	platelet	receptor	such	as	JAMA[338].		
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4.4 Discussion	

In	this	chapter	I	have	outlined	a	framework	for	multivariate	GWAS	analysis	in	datasets	

with	high-dimensional	phenotype	data.	Compared	to	the	single-trait	analyses,	multi-variate	

GWAS	uncovered	9	new	study-wide	significant	signals	with	putative	cis-effects	for	one	of	the	

analysed	proteins,	as	well	as	several	other	loci	of	potential	biological	relevance.	Multivariate	

analysis	also	successfully	recapitulated	univariate	signals,	with	an	average	11-fold	increase	

in	 association	 strength.	 Overall,	 this	 highlights	 the	 advantages	 of	 leveraging	 inter-trait	

correlations	for	locus	discovery.	There	are,	however,	a	few	pitfalls	to	multivariate	GWAS,	and	

additional	work	will	be	necessary	to	gain	a	more	comprehensive	picture	of	those.	I	discuss	

this	 further	 in	 the	 below	 sections,	 and	 also	 outline	 possible	 approaches	 for	 follow-up	 of	

signals	as	well	as	future	analyses.	

	

4.4.1 Advantages	and	challenges	of	multivariate	GWAS	

Jointly	analysing	multiple	phenotypes	in	a	multivariate	GWAS	framework	can	increase	

power	to	detect	associations,	as	well	as	refine	existing	ones.	In	line	with	previous	reports,	all	

marginal	 signals	 are	 recapitulated	 by	 multivariate	 analysis	 with	 increased	 strength	 of	

association[128],	supporting	multivariate	GWAS	as	a	robust	tool	for	the	identification	of	trait-

associated	 loci.	 Even	 for	 cis-loci	 primarily	 affecting	 one	 trait,	 leveraging	 the	 correlation	

between	the	trait	of	 interest	and	others	in	the	dataset	can	result	 in	a	stronger	signal.	The	

number	of	independent	study-wide	significant	signals	increased	almost	5-fold	compared	to	

univariate	GWAS,	however,	this	number	should	be	taken	with	a	grain	of	salt:	more	than	half	

of	these	new	signals	consisted	of	a	single	variant.	While	some	of	these	might	constitute	real	

associations	(for	example,	if	the	variant	is	rare	and	not	in	LD	with	any	nearby	variants),	they	

could	also	be	statistical	artefacts	and	need	to	be	investigated	further.	Moreover,	48	of	the	68	

new	multivariate	signals	arise	from	two	trait	clusters	(clusters	4	and	17,	Table	4.1).	These	

trait	clusters	were	among	the	five	that	had	to	be	re-run	with	unimputed	phenotypes	due	to	

signal	 inflation	 in	the	 lower	MAF	range.	Discarding	the	 imputed	phenotypes	removed	the	

majority,	but	not	all,	of	these	spurious	associations,	and	the	results	from	these	GWAS	should	

therefore	be	interpreted	with	caution.		
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Since	multivariate	analyses	in	a	GWAS	setting	are	only	beginning	to	gain	traction,	there	

is	no	standardised	analysis	pipeline.	Here,	 I	 chose	a	mixed	model	 in	order	 to	account	 for	

between-sample	relatedness;	Shen	et	al.	chose	to	first	adjust	phenotypes	for	relatedness	in	

a	mixed	model	and	use	the	adjusted	residuals	to	perform	MANOVA,	while	Inouye	et	al.		used	

canonical	 correlation	 analysis	 (CCA).	 While	 one	 can	 certainly	 argue	 about	 the	 relative	

advantages	of	these	methods,	they	are	all	statistically	sound,	yet	result	in	different	outputs.	

CCA	 returns	 trait	 loadings	 for	 each	 variant	 that	 capture	 the	 extent	 to	 which	 each	 trait	

contributes	 to	 the	observed	genetic	effect.	Multivariate	 linear	models,	on	 the	other	hand,	

return	 matrices	 of	 beta	 estimates	 and	 covariances,	 respectively.	 Replication	 and	 meta-

analysis	are	therefore	not	as	simple	as	in	a	univariate	setting,	and	further	work	is	needed	to	

establish	a	clear	framework	for	such	studies.		

	

4.4.2 Caveats	of	phenotype	imputation	

The	requirement	of	multivariate	models	for	complete	phenotype	data	will	in	many	cases	

necessitate	 the	 imputation	 of	 missing	 values,	 unless	 sample	 sizes	 are	 very	 large	 and	

missingness	 patterns	 between	 phenotypes	 do	 not	 lead	 to	 significant	 samples	 loss.	

Furthermore,	performing	a	complete	cases	analysis	(i.e.	excluding	all	samples	with	missing	

trait	 values)	 can	 lead	 to	 biased	 results	 if	 missingness	 is	 informative	 and	 the	 variables	

associated	with	missingness	 are	not	 included	 in	 the	 analysis.	As	 shown	here,	 even	when	

imputation	accuracy	is	good,	careful	inspection	of	the	results	is	necessary	to	guard	against	

spurious	associations.	In	this	chapter,	I	used	PHENIX[318]	to	impute	missing	trait	values,	but	

a	number	of	other	methods	exist.	These	can	be	broadly	 categorised	as	 single	or	multiple	

imputation	 methods.	 Single	 imputation,	 of	 which	 PHENIX	 is	 an	 example,	 imputes	 each	

missing	 value	 only	 once	 based	 on	 a	 pre-specified	 model	 that	 incorporates	 known	

information	(e.g.	other	phenotypes,	genetic	data,	or	relatedness).	This	leads	to	overly	small	

standard	 errors	 and	 biased	 results,	 since	 the	 uncertainty	 implicit	 in	 the	 imputation	

procedure	 is	 not	 accounted	 for.	 Once	 missing	 values	 are	 imputed,	 they	 are	 treated	 no	

differently	from	measured	values.	

Conversely,	in	multiple	imputation	each	missing	value	is	imputed	multiple	times	from	its	

predictive	distribution	based	on	the	observed	data[136,	339].	After	each	imputation	‘cycle’,	the	
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model	 of	 interest	 (e.g.	 logistic	 regression	 for	 binary	 traits,	 or	 linear	 regression	 for	

quantitative	ones)	is	fitted	to	the	complete	dataset;	the	imputation	and	model	fitting	steps	

are	repeated	a	given	number	of	times.	After	each	iteration,	the	obtained	test	statistics	will	

differ	slightly,	since	the	imputed	values	will	not	be	exactly	the	same.	The	overall	association	

estimates	 	 and	 standard	 errors	 can	 be	 calculated	 by	 averaging	 test	 statistics	 across	 all	

iterations[136].	 This	way,	 the	 obtained	 results	 should	 accurately	 reflect	 the	 uncertainty	 of	

imputing	 missing	 data	 points.	 In	 recent	 years,	 multiple	 imputation	 in	 epidemiological	

research	has	gained	popularity	as	a	more	robust	tool	for	handling	missing	data	compared	to	

traditional	approaches	such	as	complete	case	analysis	or	last	value	carried	forward	approach	

(for	data	with	multiple	time	points)[136].		

Multiple	imputation	by	chained	equation	(MICE)	is	an	R	package	implementing	a	multiple	

imputation	 framework	 that	 iterates	 over	 each	phenotype	 in	 the	 data,	 fitting	 a	 univariate	

model	to	predict	missing	values	based	on	all	other	phenotypes/variables	in	the	dataset[340].	

A	downside	of	this	approach	is	that,	unlike	PHENIX,	it	does	not	take	into	account	phenotypic	

correlations,	which	can	lead	to	less	accurate	imputation	estimates[318].	On	the	other	hand,	

MICE	allows	for	more	flexibility	with	regards	to	the	distribution	of	individual	phenotypes.	If	

one	only	wants	to	obtain	imputation	estimates	for	missing	values,	the	association	analysis	

after	 each	 imputation	 step	 can	be	omitted	and	 the	 final	 reported	 imputed	value	 for	 each	

missing	observation	is	the	average	across	all	repetitions	(five	by	default).	Thus,	MICE	could	

have	been	used	to	obtain	a	complete	dataset	of	HELIC	phenotypes	to	use	for	multivariate	

GWAS	in	GEMMA.		

Another	caveat	of	MICE	is	that	by	default	rests	on	the	assumption	that	missing	data	are	

missing	 at	 random	 (see	 section	 1.4.6.1).	 In	 practice,	 it	 is	 impossible	 to	 test	whether	 this	

assumption	 holds.	 In	 case	 of	 the	 Olink	 protein	 measurements,	 MAR	 might	 be	 plausible	

because	 it	 is	 unlikely	 that	 the	 level	 of	 protein	 expression	 is	 predictive	 of	missingness	 –	

assuming	assay	quality	and	calibration	is	more	or	less	uniform	across	all	proteins.	However,	

if	for	example	very	low	protein	levels	were	more	likely	to	be	excluded	based	on	LOD,	MAR	

would	 be	 violated	 and	 MICE	 might	 lead	 to	 bias.	 Simulations	 have	 shown	 that	 under	

missingness	 not	 at	 random,	 both	 PHENIX	 and	 MICE	 lose	 accuracy,	 but	 PHENIX	 still	

outperforms	MICE	(Ref	[318],	Supplementary	Figure	6).		
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In	 summary,	 although	 multiple	 imputation	 has	 several	 advantages	 over	 single	

imputation,	it	also	requires	a	more	detailed	assessment	of	the	data	and	model	specifications.	

Phenotype	imputation	is	only	beginning	to	gain	traction	in	genetic	research,	and	regardless	

of	the	exact	method	used	careful	inspection	of	results	and/or	sensitivity	analyses[341]	should	

be	carried	out	to	guard	against	false	inference.	

	

4.4.3 Selection	of	biologically	meaningful	trait	groups	

In	this	chapter	I	have	shown	that	choosing	trait	groups	based	solely	on	the	 inter-trait	

correlation	can	aid	the	detection	of	pQTL	signals.	This	is	an	encouraging	lesson	for	future	

work	done	in	high-dimensional	datasets	with	hundreds	(or	even	thousands)	of	proteomic	

measurements.	The	approach	I	used	here	has	the	advantage	of	being	easy	to	implement	and	

straightforward	to	interpret:	all	traits	included	in	one	cluster	will	have	satisfied	the	specified	

correlation	threshold.	A	downside	is	that,	depending	on	the	dataset	and	phenotypes,	there	

might	be	a	trade-off	between	choosing	an	appropriate	correlation	threshold	and	getting	very	

large	clusters	of	more	than	a	dozen	traits.	In	this	case,	individual	clusters	could	be	further	

broken	up	by	changing	the	correlation	threshold	for	each	one	individually.	

Other	 approaches	 may	 also	 be	 used,	 such	 as	 the	 unsupervised	 clustering	 algorithm	

employed	by	 Inouye	 et	 al.[314]	 to	 form	 trait	 groups	 from	130	metabolites[342].	 In	 order	 to	

maximise	biological	relevance	of	the	resulting	clusters,	one	could	also	incorporate	additional	

data	such	as	Gene	Ontology	annotations	or	pathways.		

	

4.4.4 Interpretation	of	multivariate	signals	

Compared	to	other	multifactorial	or	disease	traits,	proteins	and	RNA	expression	levels	

are	more	proximal	 to	 the	 genetic	 code,	 and	 thus	 allow	 for	 a	more	direct	 investigation	of	

genetic	effects	when	used	as	quantitative	traits	in	GWAS.		While	this	may	increase	power	to	

detect	associations,	it	also	makes	the	subsequent	interpretation	of	these	more	challenging.	

Connections	between	proteins	might	not	be	immediately	obvious,	such	as	here	for	the	cluster	

surrounding	FKB4.	Proteins	themselves	are	often	pleiotropic,	meaning	they	act	in	different	

pathways	and	their	functional	consequences	are	therefore	context-specific.		



	 119	

A	caveat	of	proteomic	analyses	is	that,	similar	to	gene	expression	studies,	relationships	

between	genotype	and	protein	levels	are	only	reflective	of	the	tissue	the	samples	were	drawn	

from.	This	is	of	special	importance	when	studying	pleiotropy,	which	can	be	tissue-	or	even	

developmental	stage-specific.		

Relating	QTL	associations	to	disease	states	constitutes	a	further	challenge.	One	question	

to	ask	is	whether	perturbed	expression	levels	precede	onset	of	disease	or	whether	they	are	

in	fact	a	result	of	it.	In	the	absence	of	longitudinal	data,	where	this	can	be	explicitly	modelled,	

Mendelian	randomisation	might	be	employed	to	infer	causality.	This	is	made	more	complex	

when	trying	to	disentangle	cross-phenotype	effects:	does	a	QTL	only	truly	affect	expression	

of	one	of	the	proteins	in	question,	which	then	in	turn	has	a	knock-on	effect	on	other	proteins?	

Or	 does	 the	 causal	 locus	 perhaps	 affect	 transcription	 of	 several	 genes,	 whose	 protein	

products	are	involved	in	a	disease-relevant	pathway?	To	truly	answer	these	questions,	one	

would	 need	 access	 to	 samples	 of	 diseased	 and	 healthy	 tissues	 (ideally	 from	 the	 same	

individual,	to	minimise	inter-individual	variability).	As	outlines	in	Chapter	1,	this	option	is	

not	unrealistic	for	disorders	where	the	affected	tissue	is	both	known	and	readily	available,	

such	as	osteoarthritis.	For	many	others,	however,	this	is	still	a	challenge.	

A	 more	 realistic	 approach	 might	 be	 to	 overlay	 association	 results	 with	 other	 omics	

information	from	publicly	available	datasets	such	as	the	Roadmap	Epigenomics	Consortium,	

which	 contains	 data	 on	 epigenetic	 modifications	 and	 gene	 expression.	 Colocalisation	

analysis	between	pQTL	and	disease	associations	might	also	shed	light	onto	the	mechanism	

of	action	for	some	loci.	This	type	of	analysis	has	been	widely	used	to	relate	gene	expression	

QTLs	to	GWAS	hits,	and	could	also	help	to	refine	cross-phenotype	effects.	The	GTEx	Project	

comprises	 gene	 expression	 data	 across	 over	 40	 tissues[234,	 343]	 and	 thus	 constitutes	 a	

comprehensive	resource	for	functional	analysis	of	GWAS	data[344].		

	

4.4.5 Future	work	

 Follow-up	and	replication	

While	the	results	presented	in	this	chapter	are	encouraging,	further	work	is	required	to	

robustly	establish	and	characterise	newly	found	association	signals,	as	well	as	to	fine-tune	

phenotype	imputation	and	post-association	QC	procedures.		
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So	far,	I	have	only	compared	multivariate	signals	with	univariate	results	from	the	traits	

included	in	at	least	one	cluster.	In	order	to	determine	whether	they	are	truly	novel,	they	will	

need	to	be	cross-checked	with	univariate	GWAS	results	of	all	Olink	and	standard	traits	 in	

MANOLIS.	

Novel	multivariate	signals	will	need	to	be	replicated	in	an	independent	cohort.	Ideally,	

replication	would	 involve	 both	multi-	 and	 univariate	 analyses	 of	 the	 same	 trait	 clusters.	

However,	in	practice	this	is	often	not	feasible,	and	several	associations	originally	reported	

from	multivariate	 analyses[131]	 have	 then	 been	 replicated	 in	 univariate	 GWAS	 of	 one	 or	

several	 of	 the	 traits[345].	 A	 potential	 avenue	 for	 seeking	 replication	 in	 this	 context	 is	 the	

HELIC-Pomak	cohort,	for	which	we	are	exploring	the	option	of	Olink	measurements.	Another	

option	 is	 the	replication	 in	a	general	population	sample	with	proteomic	data,	such	as	 the	

INTERVAL	 study[32].	 A	 caveat	 of	 this	 approach	 is	 that	 effect	 sizes	 and	 lead	 SNPs	 at	 an	

associated	locus	might	differ	from	those	in	MANOLIS	and/or	Pomak,	reflecting	the	variation	

in	genetic	architecture	of	complex	traits	in	population	isolates.	

	

 Further	analyses	

In	addition	to	follow-up	of	the	signals	identified	here,	there	are	several	other	analyses	

that	 could	 be	 explored.	 For	 one,	 the	 19	 trait	 clusters	 analysed	 here	 are	 by	 no	means	 an	

exhaustive	 list	 of	 possible	 groupings,	 and	 there	 are	 undoubtedly	 additional	 trait	

combinations	 and	 clustering	 methods	 that	 can	 be	 explored.	 For	 example,	 the	 cluster	

comprising	44	traits	returned	by	the	igraph	algorithm	and	excluded	from	further	analysis	

could	be	broken	down	further	by	inter-trait	correlation	and	biological	functions.		

A	 comparison	 of	 other	 phenotype	 imputation	 tools	 might	 also	 reveal	 performance	

advantages	under	different	scenarios	(e.g.	high	missingness,	weak	inter-trait	correlation,	low	

heritability	of	traits).		

Finally,	 to	 fully	 harness	 the	 potential	 of	 population	 isolates	 coupled	with	 high-depth	

sequencing	data,	multi-trait	burden	analysis	could	be	carried	out	to	identify	rare	variants	

associated	with	multiple	traits.		
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Chapter	5	– Discussion	and	future	outlook	

5.1 Thesis	summary	

Together,	the	results	presented	in	this	thesis	highlight	the	potential	of	the	joint	analysis	

of	phenotypes	to	increase	power	to	detect	novel	associations,	prioritise	sub-genome-wide	

significant	variants	for	replication	and	investigate	the	genetic	basis	of	comorbidities.	While	

results	 from	Chapters	2	and	3	 focus	on	 two	trait	pairs	 that	have	established	medical	and	

epidemiologic	connections,	Chapter	4	makes	a	case	for	selecting	trait	groups	based	on	their	

correlation	rather	than	prior	documented	links.		

In	Chapter	2,	I	applied	four	overlap	analysis	tools	on	summary	statistics	from	an	OA	and	

a	BMD	GWAS,	respectively.	I	followed	up	variants	with	evidence	of	cross-trait	association	in	

independent	OA	datasets,	which	lead	to	the	identification	of	a	new	OA	risk	locus	at	SMAD3.	

This	gene	has	previously	been	studied	as	a	candidate	risk	locus	for	osteoarthritis	due	to	its	

role	in	cartilage	maintenance,	but	could	not	be	robustly	associated	with	the	disorder.	This	

exemplifies	the	potential	of	identifying	novel	trait	loci	by	using	summary	statistics	of	related	

phenotypes	 for	 variant	 prioritisation.	 Despite	 the	 caveats	 this	 approach	 suffers	 from	

(inability	to	control	for	confounding	factors	or	stratify	samples	due	to	lack	of	individual-level	

data),	 I	 identified	 several	 loci	 in	 or	 near	 genes	 relevant	 to	 OA	 and/or	 BMD	 through	

association	or	functional	studies.	As	multivariate	analyses	on	high-dimensional	datasets	are	

becoming	the	gold-standard	for	pleiotropy	research,	these	results	highlight	that	using	data	

from	existing	studies	can	be	a	fast	and	efficient	way	to	assess	the	genetic	overlap	between	

two	traits.	

In	Chapter	3,	I	investigated	the	genetic	contribution	to	SCZ	and	T2D	comorbidity.	I	used	

results	 from	published	GWAS	 for	each	of	 these	disorders,	 in	conjunction	with	 individual-

level	 data	 from	 a	 cohort	 comprising	 patients	with	 T2D	 and/or	 SCZ.	 Polygenic	 risk	 score	

analyses	showed	that	patients	with	both	disorders	had	a	higher	burden	of	T2D	risk	variants	

than	 patients	 with	 only	 SCZ.	 This	 further	 supports	 the	 hypothesis	 that	 the	 observed	

comorbidity	of	SCZ	and	T2D	is	not	solely	due	to	environmental	factors.	It	also	shows	that	risk	
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scores	 constructed	based	on	well-powered	GWAS	 summary	 statistics	 can	be	 successfully	

applied	to	smaller	datasets.	

In	Chapter	4,	I	assessed	a	framework	for	multi-trait	analyses	in	an	isolated	population	

with	 15x	 sequencing	 data.	 This	 project	 serves	 as	 a	 proof-of-concept	 for	 statistical	 trait	

clustering	 in	 high-dimensional	 data.	 It	 also	 exemplifies	 the	 added	 power	 for	 cis-signal	

identification	afforded	by	including	correlated	traits	with	the	“driver”	trait	of	the	association.	

The	 results	 from	 uni-	 and	 multivariate	 GWAS	 demonstrate	 the	 utility	 of	 phenotype	

imputation	to	recapitulate	missing	data	points,	while	also	pointing	to	filtering/QC	criteria	

(e.g.	 sample	 missingness	 not	 at	 random)	 that	 could	 be	 applied	 to	 avoid	 false	 positive	

associations.	

	

5.2 Limitations	of	this	thesis	

There	 are	 several	 limitations	 to	 the	 type	 of	 data	 used	 in	 this	 thesis	which	warrant	 a	

cautious	interpretation	of	the	obtained	results.	Chapter	2	focuses	on	the	shared	genetics	of	

OA	and	BMD,	a	disease	and	a	quantitative	trait	known	to	be	inversely	correlated.	The	data	

used	relies	on	summary	statistics	from	published	GWAS;	while	individual-level	information	

was	available	for	the	arcOGEN	OA	dataset,	this	was	not	the	case	for	the	GEFOS	discovery	data,	

which	 consisted	 of	 a	 meta-analysis	 of	 17	 studies.	 Since	 it	 was	 not	 possible	 to	 obtain	

information	on	OA	disease	status	in	GEFOS,	and	BMD	measurements	were	not	available	in	

arcOGEN,	the	possibility	of	inflated	overlap	estimates	due	to	the	presence	of	OA	cases	in	the	

BMD	data	cannot	be	excluded.	Several	of	the	studies	participating	in	GEFOS	are	aimed	at	a	

range	of	 complex	disorders[13],	 including	OA	(e.g.	 the	Rotterdam	study);	 furthermore,	 the	

average	age	in	most	GEFOS	discovery	studies	exceeded	50	years,		making	it	likely	that	the	

proportion	of	OA	cases	present	 in	 the	GEFOS	meta-analysis	 is	higher	 than	 in	 the	general	

population.		

Furthermore,	arcOGEN	cases	were	ascertained	for	severe	OA,	with	about	two	thirds	of	

participants	having	undergone	joint	replacement	surgery[38].	This	selection	process	might	

lead	to	an	artificial	enrichment	for	high	BMD	that	is	not	due	to	shared	genetics:	if,	 in	fact,	

BMD	lies	on	a	causal	pathway	to	OA,	then	selecting	for	severe	OA	might	also	to	some	extent	
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select	for	higher	BMD.	An	overlap	analysis	with	a	BMD	dataset	might	then	result	in	significant	

overlap,	despite	the	fact	that	there	is	only	mediated,	not	biological	pleiotropy	between	the	

two	traits[58].	Another	possibility	is	that	people	with	OA	who	also	happen	to	be	genetically	

predisposed	to	higher	BMD	have	more	severe	symptoms,	e.g.	more	pain	due	to	bone	spurs;	

it	 is	conceivable	that	those	people	are	more	likely	to	participate	 in	genetic	studies,	which	

would	lead	to	inflated	overlap	estimates.		

The	GOMAP	study	presented	in	Chapter	3	suffers	from	similar	limitations.	The	finding	

that	 patients	 comorbid	 for	 SCZ	 and	T2D	have	 a	 higher	 burden	of	T2D	 risk	 variants	 than	

controls	or	patients	with	SCZ	supports	the	idea	that	the	increased	prevalence	of	T2D	in	SCZ	

patients	 is	 not	 purely	 environmental.	 However,	 the	 increased	 genetic	 risk	 of	 T2D	 in	 the	

comorbid	patient	group	might	simply	reflect	the	population	risk	of	the	condition:	if	a	certain	

proportion	of	the	general	population	carries	a	higher	load	of	risk	variants	for	T2D,	then	so	

will	 a	 proportion	 of	 patients	 who	 have	 SCZ.	 By	 ascertaining	 for	 T2D	 status	 among	 SCZ	

patients,	one	also	indirectly	selects	for	SCZ	patients	likely	to	carry	more	T2D	risk	variants.		

It	is	furthermore	possible	that	the	comorbid	patients	in	GOMAP	represent	a	“high	risk”	

subgroup	 of	 SCZ	 patients,	 having	 both	 a	 genetic	 predisposition	 as	 well	 as	 the	 added	

metabolic	 burden	 of	 antipsychotic	medication.	 This	may	make	 them	 susceptible	 to	more	

severe	metabolic	side	effects	and/or	earlier	onset	of	T2D	compared	to	SCZ	patients	with	no	

genetic	 predisposition.	 Similar	 to	 the	 possibility	 of	 ascertainment	 bias	 in	 arcOGEN,	 this	

elevated	disease	burden	might	motivate	patients	to	participate	in	a	study	aimed	at	better	

understanding	their	specific	health	issues.	

Another	consideration	 is	 the	potential	 for	disease	misclassification	 in	SCZ[346,	347]	 (and	

psychiatry	 in	 general[348]).	 The	 DSM-IV	 diagnostic	 criteria	 for	 SCZ	 overlap	 with	 other	

psychiatric	disorders,	such	as	bipolar	disorder[349,	350],	schizoaffective	disorder	or	psychotic	

depression.	 Such	 blurred	 boundaries	 between	 different	 diagnoses	 could	 affect	 genetic	

overlap	 estimates	 with	 other	 disorders	 (such	 as	 PRS	 analyses).	 For	 these	 effects	 to	 be	

significant,	misclassification	rates	must	be	relatively	high	(>10%)[351].	Longitudinal	studies	

examining	the	reclassification	of	initial	SCZ	and	bipolar	diagnoses	found	that	approximately	

15%	and	4-6%,	respectively,	were	later	revised[352,	353].	If	the	misdiagnosis	rate	in	the	GOMAP	

and/or	PGC	SCZ	cases	was	similar,	this	could	have	led	to	over-	or	underestimate	of	genetic	

overlap	between	SCZ	and	T2D.	



	 124	

The	phenotypes	used	 in	 chapter	4	 are	 less	 likely	 to	 suffer	 from	 the	 above-mentioned	

biases,	as	they	are	quantitative,	do	not	rely	on	diagnostic	classification	systems,	and	(in	case	

of	 the	Olink	 protein	measurements)	 are	more	 proximal	 to	 the	 genetic	 code	 than	 disease	

traits.	Nevertheless,	measurement	errors	due	to	assay	performance	or	sample	degradation,	

as	well	as	environmental	confounding	cannot	be	completely	ruled	out.	It	has	been	previously	

shown	that	long	time	storage	(over	six	months)	of	serum	samples	significantly	affected	read	

intensity	of	proteins[354].	While	the	measurement	method	used	by	the	authors	differs	from	

that	of	Olink	(mass	spectrometry	vs	proximity	extension	assay),	it	is	possible	that	the	four	

years	 between	 the	 HELIC	 sample	 collection	 and	 the	 application	 of	 the	 Olink	 assay	 had	

confounding	effects	on	the	protein	measurements.	

	

5.3 Interpreting	multi-trait	associations	

An	 important	 question	 moving	 forward	 in	 multi-trait	 and	 -omics	 analyses	 is	 what	 a	

statistical	 association	 at	 a	 locus	 means	 biologically.	 The	 functional	 follow-up	 and	

characterisation	of	an	association	with	a	single	trait	already	requires	substantial	resources.	

With	the	inclusion	of	several	traits	and	data	sources,	 the	interpretation	of	a	significant	p-

value	becomes	even	more	complicated.		The	first	step	is	to	determine	which	trait(s)	a	signal	

is	likely	driven	by,	which	can	be	achieved	by	inspecting	the	marginal	betas	and	p-values	from	

univariate	analyses.	This	might	already	offer	some	hints	as	to	which	of	a	group	of	traits	are	

truly	affected	by	the	associated	variant(s).	 If	a	variant	shows	at	 least	nominal	association	

with	more	than	one	trait,	the	possibility	of	only	one	phenotype	driving	the	signal	can	already	

be	excluded.	This	leaves	three	broad	scenarios	that	could	underlie	a	multi-trait	association:		

First,	the	variant	might	truly	influence	all	traits,	for	example	by	altering	transcription	of	

a	relevant	gene	or	multiple	genes	that	each	in	turn	affect	one	of	the	studied	traits.		

Second,	the	association	might	arise	due	to	mediated	pleiotropy,	meaning	there	exists	a	

causal	 chain	 between	 the	 included	 traits.	 This	 can	 be	 formally	 tested	 in	 a	 statistical	

framework	through	MR	analysis,	although	results	should	be	interpreted	with	caution	(see	

section	1.4.7).	As	outlined	in	Chapter	1,	there	are	a	number	of	caveats	to	this	approach,	such	

as	collider	bias	when	stratifying	study	samples	by	a	factor	that	is	itself	associated	with	the	
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instrumental	 variables.	MR	 studies	 have	 helped	 to	 untangle	 epidemiological	 associations	

between	several	complex	trait	pairs[355-358],	such	as	BMI	and	OA[61].		

Third,	 the	 multi-trait	 association	 signal	 might	 be	 an	 artefact	 caused	 by	 confounding	

factors.	For	example,	environmental	factors	might	induce	a	correlation	between	two	traits,	

leading	to	a	variant	causal	for	trait	one	to	also	be	associated	with	trait	two.		

Of	the	above	scenarios,	only	the	first	can	be	classified	as	“true”	biological	pleiotropy,	and	

this	 classification	 itself	 has	 several	 sub-categories	 depending	 on	 the	 causal	 mechanism	

underlying	 an	 association[57].	 Determining	 whether	 an	 association	 signifies	 biological	

pleiotropy	 is	 not	 straightforward,	 as	 it	 requires	 in-depth	 information	 on	 the	 functional	

consequences	of	a	variant	for	the	analysed	traits.	In	the	absence	of	such	data,	the	broader	

functional	consequences	of	a	variant	may	be	examined	instead:	

For	example,	MR	analysis	has	been	adapted	to	link	mRNA	expression	levels	to	complex	

traits[159].	 This	 approach,	 SMR,	 does	 not	 require	 that	 expression	 and	phenotype	 data	 are	

measured	 in	 the	 same	 individuals.	 Publicly	 available	 functional	 datasets	 derived	 from	

multiple	cell	types	and	tissues,	such	as	GTEx[359,	360],	Roadmap[361]	or	Blueprint[362],	can	be	

used	instead.	While	such	resources	are	useful	to	predict	functional	consequences	of	GWAS	

loci,	they	also	have	several	shortcomings[363]:	since	phenotype	information	is	not	available,	

it	is	not	possible	to	distinguish	whether	differences	in	functional	measurements	(e.g.	gene	

expression)	are	due	to	normal	variation	or	disease.	The	absence	of	individual-level	sample	

information	also	precludes	 the	adjustment	 for	environmental	confounding	 factors.	Lastly,	

gene/protein	expression	and	epigenomic	marks	change	over	time,	and	the	age	or	even	time	

of	year	of	sample	collection	might	themselves	affect	the	traits	measured	(especially	in	post-

mortem	samples,	which	GTEx	is	comprised	of).		

While	 statistical	 frameworks	might	 be	 used	 to	 gain	 initial	 insights	 as	 to	 whether	 an	

association	 independently	 affects	 all	 analysed	 traits,	 they	 ultimately	 do	 not	 replace	

functional	follow-up	of	a	signal.	It	is	therefore	important	that	datasets	with	comprehensive	

phenotype	and	omics	measurements	are	set	up,	and	to	fully	harness	such	data	collaborative	

analysis	approaches	will	be	paramount.	In	the	below	sections	I	discuss	the	prospects	for	the	

evolving	field	of	multi-omic/multi-trait	research,	as	well	as	some	of	the	challenges	that	still	

lie	ahead.	
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5.4 The	measured	man	–	the	growing	field	of	phenomics	

We	now	have	access	to	an	unprecedented	breadth	of	information	describing	the	state	of	

an	individual’s	health,	from	ICD-10	codes	to	biomarkers	measurements	and	imaging	data.	

Biobanks	with	links	to	electronic	health	records	are	slowly	becoming	the	norm	rather	than	

the	 exception.	 With	 this	 wealth	 of	 data	 at	 our	 fingertips,	 we	 can	 for	 the	 first	 time	

comprehensively	 characterise	 the	 human	 “phenome”.	 This	 brings	 with	 it	 a	 new	 set	 of	

challenges	quite	different	from	the	ones	posed	by	studying	genomic	variation.	

	

5.4.1 Prioritising	phenotypes	to	analyse	

Sequencing	 costs	 have	 dropped	 drastically,	 and	 other	 high-throughput	 omics	

technologies	 such	 as	 RNA-seq	 and	 protein	 expression	 assays	 are	 following	 this	 trend.	

Nevertheless,	 extensive	 molecular	 phenotyping	 in	 large	 sample	 sizes	 is	 often	 still	

prohibitively	costly,	necessitating	a	prioritisation	step	when	deciding	which	traits	to	assay.	

Houle	et	al.	distinguish	between	intensive	and	extensive	phenotyping[364].	The	former	refers	

to	very	detailed	characterisation	of	one	or	a	small	number	of	phenotypes	across	multiple	

time	points,	tissues	or	even	cell	types,	whereas	the	latter	refers	to	efforts	to	obtain	data	on	

as	many	phenotypes	as	possible.	Extensive	phenotyping	has	 the	advantage	 that	 it	 can	be	

carried	out	on	very	 large	sample	sizes.	An	example	of	 this	kind	of	study	set	up	 is	 the	UK	

Biobank	 study,	where	 hundreds	 of	 phenotypes,	 including	 questionnaire	 data	 and	 clinical	

records	 (hospital	 episode	statistics)	are	available	 for	approximately	500,000	participants	

from	the	general	UK	population.	

	

When	 deciding	 between	 an	 extensive	 or	 intensive	 phenotyping	 approach,	 a	 key	

consideration	is	how	much	additional	information	can	be	gleaned	from	each	phenotype	that	

is	measured[56].	For	example,	the	Olink	protein	expression	panels	each	contain	92	proteins	

chosen	 based	 on	 their	 (presumed)	 relevance	 to	 a	 broad	 biological	 domain	 or	 disease	

category	 (e.g.	 cardiovascular,	 immuno-oncology,	 neurology,	 or	 metabolism).	 As	 a	

consequence,	within-panel	correlations	of	protein	measurements	are	relatively	high	(Figure	

5.1).	 On	 the	 one	 hand,	 this	 is	 useful	 as	 it	 allows	 in-depth	 investigation	 of	 the	 pathways	
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represented	 in	a	panel.	On	 the	other	hand,	 if	 the	main	goal	 is	 to	obtain	a	 comprehensive	

“snapshot”	 of	 the	 human	 proteome,	 maximising	 the	 number	 of	 non-correlated	

measurements	 would	 be	 more	 cost-effective,	 albeit	 with	 the	 downside	 of	 decreased	

resolution.		

	

	

Figure	5.1.	Correlograms	of	protein	levels	included	in	each	of	the	three	Olink	panels	measured	in	the	
HELIC-MANOLIS	cohort,	as	outlined	in	Chapter	4.	

	

Even	 when	 assay	 cost	 is	 not	 a	 primary	 issue,	 specimen	 availability	 poses	 another	

potential	restriction	on	how	many	traits	can	be	measured.	Especially	for	existing	collections,	

there	may	be	a	limited	quantity	of	tissue	samples	–	most	commonly	serum	or	plasma	–	that	

can	be	used	for	molecular	assays.		

A	 compromise	 between	 an	 intensive	 and	 extensive	 phenotyping	 approach	 can	 be	

achieved	by	extensively	phenotyping	a	 large	 study	cohort,	 and	 then	performing	more	 in-

depth	 molecular	 assays	 on	 a	 subset	 of	 individuals.	 This	 approach	 has	 been	 used	 in	 the	

LifeLines	cohort,	a	multi-generational	Dutch	study	of	over	167,000	individuals.	A	sub-sample	

of	these	comprised	of	1,539	individuals	(LifeLines	DEEP)	were	taken	forward	for	detailed	

multi-omics	 measurements,	 including	 RNA-seq,	 proteomics,	 gut	 microbiome	

characterisation	and	methylation[365].	

	

Cardiovascular	II Cardiovascular	III Metabolic 
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5.4.2 Rethinking	diagnostic	criteria	

The	question	of	how	to	define	a	trait	has	perhaps	been	most	relevant	to	health-related	

phenotypes,	many	of	which	have	conventionally	been	modelled	as	categorical	variables,	e.g.	

disease	 vs	no	disease.	However,	 this	may	 lead	 to	 a	 loss	of	 information	 as	 the	underlying	

biological	changes	will	almost	always	be	quantitative.	The	use	of	endophenotypes	as	well	as	

analyses	of	disease	subtypes	have	been	proposed	to	help	bridge	the	gap	between	genetic	

variation	 and	 current	 disease	 classifications.	 In	 psychiatry,	 where	 current	 diagnostic	

boundaries	 are	 widely	 deemed	 inadequate[346,	 366,	 367],	 the	 investigation	 of	 disease	 sub-

categories	has	provided	evidence	in	support	of	continuous	disease	models[368].		For	disorders	

where	diagnostic	criteria	rely	on	clinical	tests	and	are	relatively	robust,	patient	stratification	

can	 elucidate	 genetic	 heterogeneity	 and	 refine	 treatment	 approaches.	 For	 example,	

osteoarthritis	patients	can	be	stratified	by	affected	joint	site[38]	or	presence	of	radiographic	

features[369,	 370].	 It	 should	 be	 noted	 that	 stratification	 or	 subtype	 analysis	 requires	 large	

sample	sizes	to	prevent	a	loss	of	power,	and	thus	only	make	such	approaches	practical	in	big	

sample	collections,	such	as	the	UK	Biobank[172].	Another	caveat	is	that	existing	datasets	might	

lack	the	detailed	information	needed	to	perform	such	analyses.		

Of	course,	endopheno-	or	subtype	definitions	are	often	based	on	the	same	framework	as	

disease	classifications,	and	may	therefore	themselves	be	inaccurate.		Bilder	et	al.	suggested	

“dynamic	 phenotyping”	 in	 the	 context	 of	 behavioural	 traits,	 referring	 to	 the	 “iterative	

refinement	of	phenotype	assays	based	on	prior	genotype-phenotype	associations”[371].	The	

possibility	 of	 such	 fine-tuning	 of	 disease	 definitions	 based	 on	 molecular	 data	 has	 been	

employed	in	oncology	(e.g.	estrogen-sensitive/insensitive	breast	cancer[372]),	and	is	now	also	

on	the	horizon	for	immune-mediated	and	other	disorders[373,	374].	Nevertheless,	a	lot	of	work	

still	 lies	 ahead	 to	 establish	 and	 then	 successfully	 mine	 the	 deeply	 phenotyped	 datasets	

necessary	for	such	studies.	
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5.5 Study	designs	

5.5.1 	Experimental	setup	

To	 study	 the	 genetic	 effects	 on	 individual	 diseases,	 ascertained	 samples	 comprising	

healthy	and	affected	individuals	are	most	frequently	used.	This	type	of	sample	selection	does	

not	work	well	when	the	aim	is	 to	establish	a	“phenomic”	dataset.	 Instead,	cohort	studies,	

ideally	with	longitudinal	data,	can	be	used.	The	set-up	and	maintenance	of	such	projects	is	

time-consuming	 and	 expensive.	 Even	 the	 initial	 planning	of	which	 type	of	 data	 to	 collect	

requires	considerable	resources,	as	discussed	in	section	5.3.	Unlike	our	DNA	sequence,	which	

is	assigned	at	birth	and	does	not	change	over	time,	phenotypes	can	vary	over	developmental	

stages	 and	 across	 different	 environments.	 The	 genetic	 effects	 on	 phenotypic	 variation	

therefore	 have	 a	 temporal	 component	 that	 is	 disregarded	 unless	 longitudinal	 data	 is	

available	and	different	time	points	modelled	explicitly[128].	While	for	some	types	of	data	it	is	

possible	to	obtain	measurements	retrospectively	from	stored	samples	(e.g.	proteomics	data	

from	blood	collected	at	the	initial	assessment),	some	need	to	be	assessed	at	the	time	point	of	

interest	 (e.g.	 imaging	 data).	 For	 clinical	 phenotypes,	 longitudinal	 data	 is	 often	 available	

through	electronic	health	records.	The	downside	is	that	this	information	does	not	routinely	

encompass	molecular	phenotypes	and	can	be	noisy	due	to	the	lack	of	standardisation	(e.g.	

subjectivity	of	physicians,	irregularity	in	hospital	or	doctor	visits).	The	establishment	of	birth	

cohorts	or	prospective	studies,	where	a	group	of	 individuals	 is	 followed	over	a	period	of	

several	 years	 or	 decades,	 can	 eliminate	 this	 problem,	 but	 both	 approaches	 are	 resource-

intensive.		

Another	 aspect	 of	 experimental	 design	 is	 which	 genotyping	 method	 to	 use.	 High-

throughput	sequencing	of	whole	exomes	or	genomes	is	now	feasible	for	large	sample	sizes,	

but	is	still	more	costly	and	time-intensive	than	array-based	methodologies.	WES	has	been	

successfully	used	to	study	rare	deleterious	mutations	in	protein-coding	genes[375,	376].	On	the	

other	hand,	the	majority	of	associated	loci	for	complex	traits	localise	to	intergenic	regions	

whose	function	has	not	been	clearly	characterised.	Deep	phenotyping	coupled	to	WGS	could	

help	to	bridge	this	knowledge	gap.	To	reduce	costs,	array-based	genotyping	can	also	be	used	

in	 conjunction	with	WGS	 on	 a	 subset	 of	 individuals,	 allowing	 for	 imputation	 of	 untyped	
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variants	 based	 on	 the	 whole-genome	 sequenced	 haplotypes[363].	 This	 approach	 was	

successfully	used	in	Iceland	to	recapitulate	rare	variants	in	over	100,000	individuals	based	

on	 sequencing	 data	 of	 another	 2,636[207].	 External	 reference	 panels	 can	 further	 boost	

imputation	 accuracy:	 the	 Haplotype	 Reference	 Consortium	 spans	 over	 32,000	

predominately	European	samples,	with	plans	to	include	more	diverse	ancestries	in	future	

releases[103].	

	

5.5.2 Choice	of	population	

The	overwhelming	majority	of	genetic	association	studies	to	date	have	been	carried	out	

in	individuals	of	European	descent.	However,	studying	genotype-phenotype	relations	across	

different	ethnicities	has	a	number	of	advantages.	The	most	obvious	one	is	that	combining	

data	 across	 ancestries	 increases	 sample	 size	 and	 therefore	 power.	 One	 caveat	 of	 trans-

ancestry	 GWAS	 or	 meta-analyses	 could	 be	 that	 allelic	 heterogeneity	 could	 offset	 the	

aforementioned	gain	in	power.	This	concern	was	alleviated	by	findings	that	risk	alleles	and	

effect	sizes	of	most	GWAS	hits	appear	to	be	shared	across	ancestries[11,	12,	377-379],	suggesting	

that	the	true	(often	unknown)	causal	variants	at	these	loci	arose	before	migratory	events	

that	 separated	populations,	 and	 that	 these	 causal	variants	are	 likely	 common[380].	 	At	 the	

same	time,	several	studies	have	identified	population-specific	risk	variants[7,	262].	Such	loci	

not	only	add	to	our	understanding	of	the	genetic	architecture	of	complex	traits,	but	might	

also	reveal	gene-gene	or	gene-environment	interactions.	

Allele	frequencies	and	linkage	disequilibrium	vary	between	different	populations,	which	

can	be	harnessed	for	fine-mapping	of	association	signals	and	to	pinpoint	causal	variants[381].	

For	example,	trait-associated	loci	discovered	in	European	samples	might	be	followed	up	in	

individuals	of	African	ancestry,	who	exhibit	much	shorter	LD	blocks[28].		

Several	 complex	 disorders	 have	 markedly	 different	 prevalence	 estimates	 between	

different	 ethnic	 groups[382],	 which	 are	 not	 entirely	 due	 to	 environmental	 factors[383].	

Consequently,	it	might	be	easier	to	collect	large	numbers	of	affected	individuals	by	selecting	

an	 ancestral	 group	 where	 the	 disease	 or	 trait	 of	 interest	 is	 observed	 at	 a	 higher	 rate.	

Furthermore,	 contrasting	 phenotypic	 profiles	 of	 different	 ethnic	 groups	 could	 help	 to	

disentangle	causal	chains	and	reduce	the	risk	of	collider	bias	in	MR	study	designs.	Perhaps	
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most	importantly,	a	more	complete	understanding	of	ancestry-specific	genetic	effects	will	

inform	risk	prediction	and	clinical	management[384].		

	

5.6 Methodological	challenges	

5.6.1 A	case	for	quality	over	quantity	

Method	development	 is	a	necessary	aspect	of	modern	genetic	research.	However,	one	

aspect	 that	 in	 my	 opinion	 has	 not	 garnered	 enough	 attention	 is	 the	 maintenance	 and	

evaluation	(both	in	terms	of	statistics	and	performance)	of	existing	methods.	So	far,	there	

have	 been	 few	 comparison	 studies	 of	 multivariate	 and/or	 univariate	 methods	 involving	

simulations	 and/or	 real	 data	 to	 evaluate	 power	 and	 type	 I	 error	 rates	 under	 different	

scenarios[67,	 69-71,	 385].	 For	 univariate	 GWAS,	 which	 is	 now	 an	 established	 tool	 in	 genetic	

research,	there	are	a	handful	of	widely	used	software	implementations	of	the	most	common	

statistical	 models	 (linear/logistic	 regression,	 mixed	models)	 that	 are	 being	 updated	 and	

maintained	 regularly[199,	 386,	 387].	 This	 is	 not	 (yet)	 the	 case	 for	 multi-variate	 GWAS,	 both	

because	they	are	a	comparatively	new	field	and	because	they	require	the	consideration	of	

additional	factors,	such	as	phenotype	covariance.	Despite	this,	there	are	already	a	number	of	

software	 implementations	 with	 flexible	 parameter	 settings,	 efficient	 runtimes,	 and	 good	

scalability[75,	101,	125].	It	would	perhaps	benefit	the	scientific	community	if	more	focus	was	put	

on	further	developing	and	properly	maintaining	those.		

	

5.6.2 Replication	and	meta-analysis	

One	caveat	of	multivariate	methods	is	that	they	do	not	give	a	single	effect	estimate	per	

variant,	hampering	effect	size-based	meta-analysis	across	studies.	To	overcome	this,	Shen	et	

al.	suggested	to	transform	all	analysed	traits	 into	one	phenotypic	score	based	on	which	a	

beta	coefficient	of	association	with	genotype	can	then	be	calculated[388].	A	dedicated	method	

for	multivariate	meta-analysis	was	 recently	 developed	 that	 extends	 the	 classical	 random	

effects	meta-analysis	to	incorporate	a	vector	of	beta	estimates	and	corresponding	covariance	

matrix[116].	 Finally,	Ried	et	 al.	 showed	 that	deriving	average	principal	 components	across	
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multiple	studies	adequately	models	multiple	anthropometric	measurements[124].	While	this	

approach	is	quite	elegant,	it	requires	all	participating	studies	to	share	the	PCA	results	from	

their	data.	This	is	only	practical	in	the	case	of	multi-centre	studies	or	large	consortia,	where	

the	 pooling	 of	 data	 is	 planned	 from	 the	 early	 stages	 of	 a	 project.	 However,	 association	

analyses	are	often	conducted	in	one	dataset	and	replication	is	then	sought	 independently	

through	collaborators.	In	this	case,	it	would	be	necessary	to	have	summary	statistics	that	can	

be	combined	across	studies	without	prior	data	harmonisation.	

	

5.6.3 Data	harmonisation	and	sharing	

As	sample	sizes	and	number	of	phenotypes	grow,	so	does	the	need	for	digital	storage	and	

computational	speed.	Analyses	are	increasingly	carried	out	in	collaborative	efforts	spanning	

different	 institutions	 and	 geographic	 region.	Options	 for	 fast	 and	 secure	 data	 access	 and	

sharing	across	analysis	groups	is	therefore	another	important	consideration.	Some	research	

groups	and	consortia	have	already	embraced	cloud	computing	and	are	leading	by	example,	

showcasing	infrastructures	for	distributing	and	analysing	large-scale	datasets[389].		

With	 the	 increased	sharing	and	combining	of	datasets	derived	 from	different	cohorts,	

scrutiny	 will	 also	 need	 to	 be	 applied	 to	 how	 different	 traits	 were	 measured[363].	

Technological	 advances	 have	 led	 to	 a	 shift	 from	 array-based	 to	 sequencing	methods	 for	

genotyping,	 gene	 expression,	 and	 epigenomic	 assays.	 For	 protein	 expression	 studies,	

combining	data	from	different	assays	can	also	introduce	considerable	noise	due	to	varying	

specificity/sensitivity.	 Similar	 problems	 also	 exist	 for	 microbiome	 analyses.	 These	

disparities	 between	 datasets	 are	 likely	 to	 grow	 due	 to	 the	 speed	 with	 which	 assaying	

technologies	are	improved	and	developed.	The	use	of	imputation	algorithms	to	recapitulate	

unmeasured	datapoints,	as	well	as	correction	for	methodological	noise	through	non-genetic	

principal	 components[390]	 can	 help	 to	 alleviate	 these	 problems.	 Prospective	 data	

harmonisation	through	centralised	assay	and	analysis	pipelines	may	also	be	put	in	place[363].	
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5.7 Concluding	remarks	

Not	 too	 long	 ago,	 the	 central	 dogma	 of	 molecular	 biology,	 “DNA	 makes	 RNA	 makes	

protein”,	 painted	 a	 fairly	 linear	 picture	 of	 genetic	 causality.	 Along	 this	 line	 of	 thinking,	 a	

theory	 formed	 that	 the	 genome	 could	 be	 partitioned	 into	 relevant	 regions	 comprised	 of	

protein-coding	 genes	 and	 close-by	 regulatory	 elements,	 and	 largely	 irrelevant	 regions	 of	

“junk	DNA”,	artefacts	of	our	evolutionary	journey.	This	idea	had	to	be	revised	considerably	

with	the	finding	that	so-called	junk	DNA	contained	an	abundance	of	functional	elements	with	

important	 consequences	 for	 our	 phenotypic	 makeup.	 Just	 as	 the	 definition	 of	 what	

constitutes	a	gene	has	changed	with	our	advanced	understanding	of	molecular	mechanisms,	

our	definitions	of	what	constitutes	disease	are	likely	to	shift.	Current	diagnostic	criteria	for	

some	disorders	are	inadequate,	and	early	detection	as	well	as	effective	treatment	options	

limited	 for	many	others.	 In	 light	of	 the	growing	body	of	work	on	multi-trait	genetics,	 the	

question	of	how	to	leverage	information	on	pleiotropy	for	clinical	use	arises.		

As	we	uncover	more	and	more	connections	across	different	levels	of	molecular	function,	

the	hope	is	that	(both	research	and)	medicine	will	slowly	move	away	from	binary	nosologic	

categories,	and	towards	a	more	comprehensive	understanding	of	human	health.	
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Appendix	A. Replication of 143 variants identified in the OA-BMD analyses. EA=effect allele; NEA=non-
effect allele, Meta-analysis 1=deCODE and UKBB; Meta-analysis 2=arcOGEN, deCODE and UKBB	
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Appendix	 B.	Established	 risk	 variants	 for	 SCZ	 used	 for	 genetic	 risk	 score	 analysis.	 Shown	 are	 125	
autosomal	variants	associated	with	schizophrenia	in	Ref.	11	that	were	used	to	construct	genetic	risk	
scores	in	GOMAP.	For	each	variant,	chromosome	position,	effect	(EA)	and	alternative	(NEA)	allele,	as	
well	as	odds	ratios	with	95%	confidence	interval	and	p-values	are	given.	

Variant	 Chr	 Pos	(hg18)	 EA	 NEA	 OR	(95%	CI)	 P	
rs115329265	 6	 28712247	 A	 G	 1.21	(1.18-1.25)	 3.86E-32	
rs11191419	 10	 104612335	 A	 T	 0.91	(0.88-0.93)	 9.24E-18	
rs2007044	 12	 2344960	 A	 G	 0.91	(0.89-0.93)	 2.63E-17	
rs1702294	 1	 98501984	 T	 C	 0.89	(0.86-0.92)	 2.79E-17	
chr2_200825237_I	 2	 200825237	 AT	 A	 0.91	(0.88-0.93)	 1.78E-14	
rs2851447	 12	 123665113	 C	 G	 0.91	(0.89-0.94)	 2.19E-14	
chr7_2025096_I	 7	 2025096	 A	 ACT	 0.92	(0.90-0.94)	 6.12E-14	
chr10_104957618_I	 10	 104957618	 CA	 C	 0.84	(0.80-0.89)	 1.04E-13	
rs12887734	 14	 104046834	 T	 G	 1.09	(1.07-1.11)	 1.17E-13	
rs4391122	 5	 60598543	 A	 G	 0.92	(0.90-0.95)	 1.73E-13	
rs4129585	 8	 143312933	 A	 C	 1.08	(1.06-1.10)	 2.03E-13	
rs13240464	 7	 110898915	 T	 C	 1.08	(1.06-1.11)	 6.16E-13	
rs9636107	 18	 53200117	 A	 G	 0.93	(0.91-0.95)	 9.09E-13	
rs35518360	 4	 103146890	 A	 T	 0.87	(0.83-0.90)	 9.56E-13	
rs8042374	 15	 78908032	 A	 G	 1.09	(1.07-1.12)	 1.87E-12	
rs4702	 15	 91426560	 A	 G	 0.92	(0.90-0.95)	 2.30E-12	
rs11682175	 2	 57987593	 T	 C	 0.93	(0.91-0.95)	 2.54E-12	
rs10791097	 11	 130718630	 T	 G	 1.08	(1.06-1.10)	 2.88E-12	
rs6704768	 2	 233592501	 A	 G	 0.93	(0.91-0.95)	 3.15E-12	
rs75968099	 3	 36858583	 T	 C	 1.08	(1.06-1.10)	 3.39E-12	
rs72934570	 18	 53533189	 T	 C	 0.87	(0.82-0.91)	 3.67E-12	
rs55661361	 11	 124613957	 A	 G	 0.92	(0.90-0.95)	 3.68E-12	
rs12826178	 12	 57622371	 T	 G	 0.85	(0.80-0.89)	 5.30E-12	
rs9607782	 22	 41587556	 A	 T	 1.09	(1.07-1.12)	 6.76E-12	
rs11693094	 2	 185601420	 T	 C	 0.93	(0.91-0.95)	 7.13E-12	
rs75059851	 11	 133822569	 A	 G	 1.10	(1.07-1.12)	 1.23E-11	
rs6434928	 2	 198304577	 A	 G	 0.93	(0.90-0.95)	 1.48E-11	
chr18_52749216_D	 18	 52749216	 I2	 D	 1.08	(1.05-1.10)	 1.75E-11	
chr11_46350213_D	 11	 46350213	 I2	 D	 0.90	(0.88-0.93)	 1.97E-11	
chr22_39987017_D	 22	 39987017	 TA	 T	 0.93	(0.91-0.95)	 2.20E-11	
rs7893279	 10	 18745105	 T	 G	 1.12	(1.09-1.15)	 3.56E-11	
rs2535627	 3	 52845105	 T	 C	 1.07	(1.05-1.09)	 3.96E-11	
rs17194490	 3	 2547786	 T	 G	 1.10	(1.07-1.13)	 4.87E-11	
rs7432375	 3	 136288405	 A	 G	 0.93	(0.91-0.95)	 5.27E-11	
chr3_180594593_I	 3	 180594593	 TA	 T	 0.91	(0.89-0.94)	 5.35E-11	
rs6065094	 20	 37453194	 A	 G	 0.93	(0.91-0.95)	 5.52E-11	
rs7907645	 10	 104423800	 T	 G	 1.14	(1.10-1.18)	 5.82E-11	
rs950169	 15	 84706461	 T	 C	 0.92	(0.90-0.95)	 7.62E-11	
rs12704290	 7	 86427626	 A	 G	 0.90	(0.87-0.93)	 1.04E-10	
rs36068923	 8	 111485761	 A	 G	 0.92	(0.89-0.94)	 1.05E-10	
rs12691307	 16	 29939877	 A	 G	 1.07	(1.05-1.09)	 1.30E-10	
rs12129573	 1	 73768366	 A	 C	 1.07	(1.05-1.09)	 2.35E-10	
rs7405404	 16	 13749859	 T	 C	 1.08	(1.06-1.11)	 3.93E-10	
rs2514218	 11	 113392994	 T	 C	 0.93	(0.91-0.95)	 4.09E-10	
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rs11210892	 1	 44100084	 A	 G	 0.93	(0.91-0.95)	 4.97E-10	
rs4766428	 12	 110723245	 T	 C	 1.07	(1.05-1.09)	 7.09E-10	
chr6_84280274_D	 6	 84280274	 GC	 G	 1.07	(1.05-1.09)	 8.57E-10	
rs140505938	 1	 150031490	 T	 C	 0.91	(0.88-0.94)	 9.34E-10	
rs2973155	 5	 152608619	 T	 C	 0.93	(0.91-0.96)	 1.02E-09	
rs12903146	 15	 61854663	 A	 G	 1.07	(1.05-1.09)	 1.04E-09	
rs4523957	 17	 2208899	 T	 G	 1.07	(1.05-1.09)	 1.04E-09	
rs1498232	 1	 30433951	 T	 C	 1.07	(1.05-1.09)	 1.28E-09	
rs111294930	 5	 152177121	 A	 G	 1.09	(1.06-1.12)	 1.31E-09	
rs6002655	 22	 42603814	 T	 C	 1.07	(1.05-1.09)	 1.48E-09	
rs2332700	 14	 72417326	 C	 G	 1.08	(1.05-1.10)	 1.69E-09	
rs6984242	 8	 60700469	 A	 G	 0.94	(0.92-0.96)	 1.76E-09	
rs77502336	 11	 123394636	 C	 G	 1.07	(1.05-1.09)	 2.01E-09	
chr1_8424984_D	 1	 8424984	 GA	 G	 1.07	(1.05-1.09)	 2.03E-09	
rs6466055	 7	 104929064	 A	 C	 1.07	(1.05-1.09)	 2.46E-09	
rs11139497	 9	 84739941	 A	 T	 1.07	(1.05-1.09)	 3.09E-09	
rs11027857	 11	 24403620	 A	 G	 1.06	(1.04-1.09)	 3.21E-09	
rs2053079	 19	 30987423	 A	 G	 0.93	(0.91-0.95)	 3.79E-09	
rs4648845	 1	 2387101	 T	 C	 1.07	(1.05-1.09)	 4.03E-09	
rs77149735	 1	 243555105	 A	 G	 1.33	(1.23-1.42)	 4.40E-09	
rs3849046	 5	 137851192	 T	 C	 1.06	(1.04-1.09)	 4.83E-09	
rs2239063	 12	 2511831	 A	 C	 1.07	(1.05-1.09)	 5.39E-09	
rs9922678	 16	 9946319	 A	 G	 1.07	(1.05-1.09)	 6.72E-09	
rs8082590	 17	 17958402	 A	 G	 0.94	(0.91-0.96)	 6.84E-09	
rs2905426	 19	 19478022	 T	 G	 0.94	(0.92-0.96)	 6.92E-09	
rs3735025	 7	 137074844	 T	 C	 1.07	(1.04-1.09)	 7.75E-09	
rs75575209	 2	 58138192	 A	 T	 0.90	(0.86-0.93)	 1.01E-08	
rs10520163	 4	 170626552	 T	 C	 1.06	(1.04-1.08)	 1.02E-08	
chr2_146436222_I	 2	 146436222	 TC	 T	 1.08	(1.06-1.11)	 1.07E-08	
rs59979824	 2	 193848340	 A	 C	 0.94	(0.91-0.96)	 1.08E-08	
rs78322266	 18	 53063676	 T	 G	 1.19	(1.13-1.25)	 1.10E-08	
rs11685299	 2	 225391296	 A	 C	 0.94	(0.92-0.96)	 1.11E-08	
rs1106568	 4	 176861301	 A	 G	 0.93	(0.91-0.96)	 1.15E-08	
rs12325245	 16	 58681393	 A	 T	 0.92	(0.89-0.95)	 1.15E-08	
rs215411	 4	 23423603	 A	 T	 1.07	(1.04-1.09)	 1.22E-08	
rs1501357	 5	 45364875	 T	 C	 0.93	(0.90-0.95)	 1.24E-08	
rs16867576	 5	 88746331	 A	 G	 1.10	(1.07-1.13)	 1.36E-08	
rs2693698	 14	 99719219	 A	 G	 0.94	(0.92-0.96)	 1.38E-08	
rs55833108	 10	 104741583	 T	 G	 1.08	(1.05-1.10)	 1.42E-08	
rs9841616	 3	 181167585	 A	 T	 0.92	(0.89-0.95)	 1.65E-08	
rs117074560	 6	 96459651	 T	 C	 0.86	(0.80-0.91)	 1.66E-08	
rs10803138	 1	 243555219	 A	 G	 0.93	(0.91-0.96)	 1.79E-08	
rs7819570	 8	 89588626	 T	 G	 1.08	(1.05-1.11)	 1.90E-08	
rs73229090	 8	 27442127	 A	 C	 0.91	(0.87-0.94)	 1.95E-08	
rs10043984	 5	 137712121	 T	 C	 1.07	(1.05-1.09)	 2.18E-08	
rs12522290	 5	 152797656	 C	 G	 1.09	(1.06-1.11)	 2.23E-08	
rs7801375	 7	 131567263	 A	 G	 0.92	(0.89-0.95)	 2.26E-08	
rs832187	 3	 63833050	 T	 C	 0.94	(0.92-0.96)	 2.58E-08	
chr2_149429178_D	 2	 149429178	 AT	 A	 0.86	(0.80-0.91)	 2.62E-08	
rs10503253	 8	 4180844	 A	 C	 1.07	(1.05-1.10)	 2.69E-08	
chr1_243881945_I	 1	 243881945	 AT	 A	 1.07	(1.04-1.09)	 3.11E-08	
rs8044995	 16	 68189340	 A	 G	 1.08	(1.05-1.11)	 3.27E-08	
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rs6704641	 2	 200164252	 A	 G	 1.08	(1.05-1.11)	 3.40E-08	
rs715170	 18	 53795514	 T	 C	 0.94	(0.91-0.96)	 3.47E-08	
rs79212538	 5	 151993104	 T	 G	 1.15	(1.10-1.20)	 3.84E-08	
rs11740474	 5	 153680747	 A	 T	 0.94	(0.92-0.96)	 3.94E-08	
rs2068012	 14	 30190316	 T	 C	 0.93	(0.91-0.96)	 4.14E-08	
rs2909457	 2	 162845855	 A	 G	 0.94	(0.92-0.96)	 4.38E-08	
rs56205728	 15	 40567237	 A	 G	 1.07	(1.05-1.09)	 4.92E-08	
rs1023500	 22	 42340844	 T	 C	 1.08	(1.05-1.10)	 5.04E-08	
rs12148337	 15	 70589272	 T	 C	 1.06	(1.04-1.08)	 5.33E-08	
rs4330281	 3	 17859366	 T	 C	 0.94	(0.92-0.96)	 5.51E-08	
rs9420	 11	 57510294	 A	 G	 1.06	(1.04-1.09)	 6.65E-08	
rs1339227	 6	 73155701	 T	 C	 0.94	(0.92-0.96)	 6.86E-08	
rs679087	 12	 29917265	 A	 C	 0.94	(0.92-0.96)	 7.06E-08	
rs190065944	 15	 78859610	 A	 G	 1.08	(1.05-1.11)	 7.22E-08	
rs10860964	 12	 103596455	 T	 C	 1.06	(1.04-1.08)	 9.92E-08	
rs4388249	 5	 109036066	 T	 C	 1.07	(1.05-1.10)	 1.03E-07	
rs4240748	 12	 92246786	 C	 G	 0.94	(0.92-0.96)	 1.03E-07	
rs6670165	 1	 177280121	 T	 C	 1.07	(1.05-1.10)	 1.16E-07	
rs7267348	 20	 48131036	 T	 C	 0.94	(0.91-0.96)	 1.18E-07	
rs3768644	 2	 72361505	 A	 G	 0.91	(0.88-0.95)	 1.30E-07	
rs14403	 1	 243663893	 T	 C	 0.93	(0.91-0.96)	 1.31E-07	
rs76869799	 1	 97834525	 C	 G	 0.85	(0.79-0.91)	 1.44E-07	
rs7523273	 1	 207977083	 A	 G	 1.06	(1.04-1.08)	 1.61E-07	
rs12421382	 11	 109378071	 T	 C	 0.94	(0.92-0.96)	 1.72E-07	
rs324017	 12	 57487814	 A	 C	 0.94	(0.92-0.96)	 2.13E-07	
rs56873913	 19	 50091199	 T	 G	 1.07	(1.04-1.09)	 2.19E-07	
chr7_24747494_D	 7	 24747494	 C	 CTA	 1.09	(1.06-1.13)	 3.59E-07	

chr5_140143664_I	 5	 140143664	

CAT
TGA
AAG
AAA	 C	 1.05	(1.03-1.08)	 3.60E-07	

rs211829	 7	 110048893	 T	 C	 1.06	(1.04-1.08)	 5.47E-07	
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Appendix	 C.	 Established	 risk	 variants	 for	 T2D	 used	 for	 genetic	 risk	 score	 analysis.	 Shown	 are	 74	
autosomal	variants	associated	with	T2D	in	Ref.	10	that	were	used	to	construct	genetic	risk	scores	in	
GOMAP.	For	each	variant,	chromosome	position,	effect	(EA)	and	alternative	(NEA)	allele,	as	well	as	odds	
ratios	with	95%	confidence	interval	and	p-values	are	given.	

Variant	 Chr	 Pos	(hg18)	 EA	 NEA	 OR	(95%	CI)	 P	
rs7903146	 10	 114758349	 T	 C	 1.40	(1.35-1.46)	 5.50E-65	
rs7756992	 6	 20679709	 G	 A	 1.20	(1.16-1.25)	 1.30E-22	
rs1111875	 10	 94462882	 C	 T	 1.15	(1.11-1.18)	 1.10E-15	
rs10811661	 9	 22134094	 T	 C	 1.18	(1.13-1.23)	 1.50E-13	
rs3802177	 8	 118185025	 G	 A	 1.16	(1.11-1.22)	 2.10E-11	
rs4402960	 3	 185511687	 T	 G	 1.13	(1.09-1.17)	 2.70E-11	
rs9936385	 16	 53819169	 C	 T	 1.13	(1.09-1.18)	 4.70E-11	
rs849135	 7	 28196413	 G	 A	 1.12	(1.08-1.16)	 3.40E-10	
rs1801282	 3	 12393125	 C	 G	 1.16	(1.11-1.22)	 5.00E-09	
rs13233731	 7	 130437689	 G	 A	 1.10	(1.06-1.13)	 4.30E-08	
rs17791513	 9	 81905590	 A	 G	 1.21	(1.13-1.30)	 1.00E-07	
rs2261181	 12	 66212318	 T	 C	 1.16	(1.10-1.23)	 1.00E-07	
rs12571751	 10	 80942631	 A	 G	 1.09	(1.06-1.13)	 1.80E-07	
rs4458523	 4	 6289986	 G	 T	 1.09	(1.06-1.13)	 1.90E-07	
rs1552224	 11	 72433098	 A	 C	 1.13	(1.08-1.19)	 4.90E-07	
rs17168486	 7	 14898282	 T	 C	 1.13	(1.08-1.18)	 6.90E-07	
rs516946	 8	 41519248	 C	 T	 1.10	(1.06-1.15)	 7.30E-07	
rs10830963	 11	 92708710	 G	 C	 1.11	(1.07-1.16)	 7.30E-07	
rs1359790	 13	 80717156	 G	 A	 1.10	(1.06-1.14)	 9.20E-07	
rs12427353	 12	 121426901	 G	 C	 1.12	(1.07-1.17)	 1.00E-06	
rs6878122	 5	 76427311	 G	 A	 1.13	(1.07-1.18)	 1.20E-06	
rs10203174	 2	 43690030	 C	 T	 1.15	(1.08-1.21)	 1.50E-06	
rs7593730	 2	 161171454	 C	 T	 1.11	(1.06-1.15)	 1.50E-06	
rs2943640	 2	 227093585	 C	 A	 1.09	(1.05-1.12)	 1.80E-06	
rs4430796	 17	 36098040	 G	 A	 1.13	(1.07-1.19)	 2.40E-06	
rs7955901	 12	 71433293	 C	 T	 1.09	(1.05-1.13)	 3.20E-06	
rs5215	 11	 17408630	 C	 T	 1.08	(1.05-1.12)	 4.40E-06	
rs9505118	 6	 7290437	 A	 G	 1.08	(1.05-1.12)	 6.10E-06	
rs11634397	 15	 80432222	 G	 A	 1.09	(1.05-1.13)	 7.30E-06	
rs11717195	 3	 123082398	 T	 C	 1.09	(1.05-1.14)	 9.70E-06	
rs243088	 2	 60568745	 T	 A	 1.09	(1.05-1.13)	 1.00E-05	
rs7845219	 8	 95937502	 T	 C	 1.08	(1.04-1.12)	 1.40E-05	
rs702634	 5	 53271420	 A	 G	 1.08	(1.04-1.12)	 1.80E-05	
rs163184	 11	 2847069	 G	 T	 1.09	(1.05-1.13)	 1.90E-05	
rs3130501	 6	 31136453	 G	 A	 1.09	(1.05-1.13)	 2.00E-05	
rs7202877	 16	 75247245	 T	 G	 1.15	(1.08-1.22)	 2.30E-05	
rs12899811	 15	 91544076	 G	 A	 1.09	(1.04-1.13)	 3.30E-05	
rs6813195	 4	 153520475	 C	 T	 1.08	(1.04-1.12)	 6.10E-05	
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rs2075423	 1	 214154719	 G	 T	 1.08	(1.04-1.12)	 6.70E-05	
rs7178572	 15	 77747190	 G	 A	 1.08	(1.04-1.12)	 1.00E-04	
rs12970134	 18	 57884750	 A	 G	 1.08	(1.04-1.12)	 1.10E-04	
rs6808574	 3	 187740523	 C	 T	 1.08	(1.04-1.12)	 1.30E-04	
rs11063069	 12	 4374373	 G	 A	 1.10	(1.05-1.15)	 1.50E-04	
rs10842994	 12	 27965150	 C	 T	 1.09	(1.04-1.13)	 1.50E-04	
rs6795735	 3	 64705365	 C	 T	 1.07	(1.03-1.10)	 2.30E-04	
rs2796441	 9	 84308948	 G	 A	 1.07	(1.03-1.12)	 2.50E-04	
rs10923931	 1	 120517959	 T	 G	 1.10	(1.05-1.16)	 3.10E-04	
rs10401969	 19	 19407718	 C	 T	 1.13	(1.05-1.21)	 5.40E-04	
rs2334499	 11	 1696849	 T	 C	 1.07	(1.03-1.11)	 7.30E-04	
rs4275659	 12	 123447928	 C	 T	 1.06	(1.03-1.10)	 8.80E-04	
rs7612463	 3	 23336450	 C	 A	 1.10	(1.04-1.16)	 9.80E-04	
rs17106184	 1	 50909985	 G	 A	 1.10	(1.04-1.17)	 1.10E-03	
rs7163757	 15	 62391608	 C	 T	 1.06	(1.02-1.10)	 1.30E-03	
rs8108269	 19	 46158513	 G	 T	 1.06	(1.02-1.11)	 3.10E-03	
rs4812829	 20	 42989267	 A	 G	 1.07	(1.02-1.12)	 9.10E-03	
rs7041847	 9	 4287466	 A	 G	 1.05	(1.01-1.09)	 9.90E-03	
rs11257655	 10	 12307894	 T	 C	 1.06	(1.01-1.11)	 1.30E-02	
rs10278336	 7	 44245363	 A	 G	 1.05	(1.01-1.09)	 2.00E-02	
rs459193	 5	 55806751	 G	 A	 1.05	(1.01-1.09)	 2.10E-02	
rs780094	 2	 27741237	 C	 T	 1.04	(1.00-1.08)	 2.50E-02	
rs3923113	 2	 165501849	 A	 C	 1.04	(1.00-1.08)	 3.10E-02	
rs2028299	 15	 90374257	 C	 A	 1.04	(1.00-1.09)	 3.50E-02	
rs831571	 3	 64048297	 C	 T	 1.03	(0.99-1.08)	 1.60E-01	
rs1802295	 10	 70931474	 T	 C	 1.02	(0.98-1.06)	 2.80E-01	
rs3786897	 19	 33893008	 A	 G	 1.02	(0.98-1.06)	 3.10E-01	
rs7403531	 15	 38822905	 T	 C	 1.02	(0.98-1.06)	 3.60E-01	
rs16861329	 3	 186666461	 C	 T	 1.03	(0.97-1.09)	 3.90E-01	
rs6467136	 7	 127164958	 A	 G	 1.01	(0.98-1.05)	 5.30E-01	
rs10886471	 10	 121149403	 T	 C	 1.01	(0.97-1.05)	 5.90E-01	
rs6723108	 2	 135479980	 T	 G	 1.01	(0.97-1.04)	 7.10E-01	
rs9470794	 6	 38106844	 T	 C	 1.01	(0.95-1.08)	 8.00E-01	
rs17584499	 9	 8879118	 T	 C	 1.00	(0.95-1.06)	 9.40E-01	
rs391300	 17	 2216258	 C	 T	 1.00	(0.96-1.04)	 9.50E-01	
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Appendix	 D.	Olink	 protein	 biomarkers	 included	 in	 at	 least	 one	 cluster	 for	multivariate	 analysis	 in	
HELIC-MANOLIS.	The	“Panel”	column	defines	whether	a	trait	is	a	plasma	protein	measured	on	one	of	
the	Olink	panels	(META=metabolic;	CVDII=cardiovascular	II;	CVDIII=cardiovascular	III).	NMISS=sample	
missingness	prior	to		phenotype	imputation;	R2Imp	=imputation	accuracy.	

Panel	 Protein	 Trait	description	 Comments	 NMISS	R2Imp	

CVDII	 CD40L	 Cluster	of	Differentiation	40	
Ligand	

Expressed	on	T	cell	surfaces;	modulates	B	
cell	function	by	binding	CD40	on	B	cell	
surface	

24	 0.80	

CVDII	 CD84	 Cluster	of	Differentiation	84	
Membrane	glycoportein;	modulates	
immune	cell	function	through	ligand-
receptor	interactions	(similar	to	CD40L)	

24	 0.81	

CVDII	 HO1	 Heme	oxygenase	
(decycling)	1	

Enzyme	involved	in	heme	catabolism;	anti-
inflammatory	effects	through	upregulation	
of	IL-10	and	IL-1RA	expression	

24	 0.88	

CVDII	 LPL	 Lipoprotein	lipase	
Enzyme	found	on	luminal	surface	of	
endothelial	cells;	hydrolyses	triglycerides	
found	in	lipoproteins	

24	 0.79	

CVDII	 MERTK	 Proto-oncogene	tyrosine-
protein	kinase	MER	

Transmembrane	protein	involved	in	several	
processes,	including	cell	survival,	migration	
and	phagocytosis	

24	 0.88	

CVDII	 PGF	 Placental	growth	factor	
Key	regulator	of	angiogenesis;	associated	
with	inflammation	and	neovascularisation	
in	artherosclerosis	

24	 0.81	

CVDII	 PRELP	 Prolargin	
Extracellular	matrix	protein	tethering	
basement	membrane	to	connective	tissue;	
interacts	with	type	I	and	type	II	collagens	

24	 0.82	

CVDII	 PTX3	 Pentraxin-related	protein	
PTX3	

Expressed	in	several	cell	types	and	released	
during	inflammatory	response.	Involved	in	
classical	complement	pathway	activation	
and	pathogen	recognition.	

33	 0.82	

CVDII	 TM	 Thrombomodulin	
Cofactor	for	thrombin	expressed	on	surface	
of	endothelial	cells;	reduces	blood	
coagulation	

24	 0.86	

CVDII	 TNFRSF10A	 Death	receptor	4		 Cell	surface	receptor	of	the	TNF-
receptor	superfamily;	mediates	apoptosis	 24	 0.64	

CVDII	 TNFRSF11A	 Receptor	activator	of	
nuclear	factor	κ	B		

Cell	surface	receptor	of	the	TNF-
receptor	superfamily;	reeptor	for	RANK	
ligand	(RANKL)	and	involved	in	several	
processes,	including	bone	remodeling	and	
immune	function	

24	 0.84	
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CVDII	 TRAILR2	 Death	receptor	5	 Cell	surface	receptor	of	the	TNF-
receptor	superfamily;	mediates	apoptosis	

24	 0.91	

CVDII	 XCL1	 Chemokine	(C	motif)	ligand	
Small	cytokine	involved	in	immune	
function;	involved	in	the	activation	of	
cytotoxic	T	cells		

45	 0.82	

CVDIII	AZU1	 Azurocidin	
Antimicrobial	serine	protease	expressed	in	
neutrophil	granules	and	involved	in	
inflammation	

2	 0.91	

CVDIII	CASP3	 Caspase	3	 Member	of	the	caspase	superfamily	which	
plays	a	central	role	in	apoptosis	 2	 0.94	

CVDIII	COL1A1	 Collagen,	type	I,	alpha	1	
Major	component	of	type	I	collagen,	the	
fibrillar	collagen	found	in	most	connective	
tissues,	including	cartilage	

2	 0.74	

CVDIII	CPA1	 Carboxipeptidase	A1	
Pancreatic	enzyme	involved	in	blocking	
activation	of	precursor	enzymes	
(zymogens)	

2	 0.87	

CVDIII	CPB1	 Carboxipeptidase	B1	
Pancreatic	enzyme	involved	in	blocking	
activation	of	precursor	enzymes	
(zymogens)	

2	 0.89	

CVDIII	 JAMA	 Junctional	adhesion	
molecule	A	

Member	of	the	immunoglobulin	
superfamily,	involved	in	formation	of	tight	
juncitons	between	epithelial	cells	

2	 0.94	

CVDIII	MEPE	 Matrix	Extracellular	
Phosphoglycoprotein	

Calcium-binding	secreted	phosphoprotein	
found	in	extracellular	matrix	of	bone;	
regulates	bone	mineralisation	

351	 0.73	

CVDIII	MMP9	 Matrix	metallopeptidase	9	 Enzyme	involved	in	extracellular	matrix	
degradation	 2	 0.87	

CVDIII	MPO	 Myeloperoxidase	 Lysosomal	enzyme	with	antimicrobial	
function,	stored	in	neutrophil	granules	 3	 0.83	

CVDIII	OPN	 Osteopontin	
Secreted	phosphoprotein	found	in	bone	and	
other	tissues;	involved	in	bone	remodeling	
and	immune	function	

3	 0.81	

CVDIII	PAI	 Plasminogen	activator	
inhibitor-1	

Serine	protease	inhibitor	that	blocks	
breakdown	of	blood	clots	(fibrinolysis)	 2	 0.77	

CVDIII	PDGFSUBUNITA	Platelet-derived	growth	factor	subunit	A	
Member	of	the	PDGF	family	invovled	in	cell	
growth	and	division	 2	 0.78	

CVDIII	PECAM1	 Platelet	endothelial	cell	
adhesion	molecule	

Immunoglobulin	molecule	found	on	cell	
surface	of	certain	immune	cells;	involved	in	
angiogenesis	and	integrin	activation	

2	 0.94	

CVDIII	PGLYRP1	 Peptidoglycan	recognition	
protein	1	

Protein	with	bactericidal	function,	found	
mainly	in	neutrophil	granules	 2	 0.91	
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CVDIII	PRTN3	 Proteinase	3	 Serine	protease	primarily	expressed	in	
neutrophils	

2	 0.91	

CVDIII	RETN	 Resistin	 Peptide	hormone	involved	in	innate	
immune	response	 2	 0.87	

CVDIII	TR	 Transferrin	receptor	
protein	1	

Transmembrane	glycoprotein	involved	in	
iron	import	into	cells	 2	 0.73	

META	 BAG6	
Large	proline-rich	protein	
BAG6	

Cleaved	by	caspase	3	and	involved	in	
apoptosis	 12	 0.86	

META	 CCDC80	 Coiled-coil	domain-
containing	protein	80	

Promotes	cell	adhesion	and	matrix	
assembly	 16	 0.91	

META	 CHRDL2	 Chordin	Like	2	

Secreted	protein	expressed	in	osteoblasts	
and	associated	with	TGF-beta	activity;	
negatively	regulates	cartilage	formation,	
implicated	in	tumor	angiogenesis	

46	 0.78	

META	 ENO2	 Enolase	2	 Enzyme	found	in	neuronal	cells;	used	as	
biomarker	in	lung	cancer	 12	 0.89	

META	 FKBP4	 FK506-binding	protein	4	
Member	of	immunophilin	family	involved	in	
immunoregulation	and	protein	
folding/trafficking	

205	 0.76	

META	 KYAT1	 Kynurenine—oxoglutarate	
transaminase	1	

Cytosolic	enzyme	whose	activity	produces	
reactive	metabolites	associated	with	
nephro-	and	neurotoxicity	

12	 0.77	

META	 QDPR	 Quinoid	dihydropteridine	
reductase	

Enzyme	involved	in	phenylalanine	
metabolism	 12	 0.92	

META	 RNASE3	 Ribonuclease	III	 Cleaves	double-stranded	RNA,	involved	in	
RNA	silencing	 16	 0.85	

META	 ROR1	
Tyrosine-protein	kinase	
transmembrane	receptor	
ROR1	

Cell	surface	receptor	tyrosine	kinase	
involved	in	neurite	growth	regulation;	
putative	role	in	metastasis	of	cancer	cells		

12	 0.92	

META	 THOP1	 Thimet	oligopeptidase	1	
Metallopeptidase	cleaving	cytosolic	and	
short	neuropeptides	 12	 0.90	
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Appendix	 E.	Quantitative	 traits	 included	 in	 at	 least	 one	 cluster	 for	multivariate	 analysis	 in	HELIC-
MANOLIS.	 Presented	are	measurement	units,	 exclusion	 criteria,	 transformation	applied	and	missing	
samples	 before	 phenotype	 imputation	 as	 well	 as	 imputation	 accuracy	 (R2Imp).	 INT=inverse	 normal	
transformation	

Trait	 Trait	description	 Unit	 Exclusions	 Transform.	 NMISS	 R2Imp	

Adiponectin	 Adiponectin	 µg*mL-1	 ±4σ,	after	sex	stratification	 log-normal	 196	 0.91	

BGP	 Bone-growth	protein	
(osteocalcin)	

ng*mL-1	 ±4σ	 log-normal	 65	 0.68	

BMI	 Body-mass	index	 kg*m-2	 none	 log-normal	 231	 0.99	

Fe_iron	 Iron	 µg*dL-1	 ±4σ,	after	sex	stratification	 none	 15	 0.64	

GRAN	 Granulocytes	 109*L-1	 ±4σ	 log-normal	 310	 0.99	

GRANPC	 Granulocytes	(%)	 %	 none	 none	 301	 1.00	

HCT	 Haematocrit	 hct	 ±4σ,	after	sex	stratification	 none	 220	 1.00	
Height	 Standing	height	 cm	 none	 none	 210	 0.88	

HGB	 Haemoglobin	 g*dL-1	 ±4σ,	after	sex	stratification	 none	 218	 1.00	

Hip	 Hip	circumference	 cm	 none	 log-normal	 196	 0.99	

Leptin	 Leptin	 ng*mL-1	 ±4σ,	after	sex	stratification	 log-normal	 399	 0.51	

LPCR	 Large	platelet	
concentration	ratio	 %	 ±4σ	 none	 299	 0.99	

LYMPC	 Lymphocytes	(%)	 %	 >60	 none	 222	 1.00	

MCH	 Mean	corpuscular	
haemoglobin	 pg	 none	 INT	 217	 0.99	

MCV	 Mean	corpuscular	
volume	 fL	 none	 INT	 217	 0.99	

MID	 Mid-range	absolute	
count	

103*L-1	 >1.1	 none	 285	 0.89	

MPV	 Mean	platelet	volume	 fL	 ±4σ	 none	 222	 0.87	

PCT	 Plateletcrit	 µg*L-1	 ±4σ	 none	 279	 0.99	

PDW	 Platelet	distribution	
width	 fL	 none	 INT	 276	 0.97	

PLT	 Platelets	 109*L-1	 ±4σ,	after	sex	stratification	 none	 222	 0.98	

RDW	
Red	cell	distribution	
width	 fL	 none	 INT	 297	 0.97	

RG	 Random	glucose	 mmol*L-1	 >15	 INT	 19	 0.98	

RI	 Random	insulin	 µIU*mL-1	 none	 log-normal	 20	 0.98	

Waist	 Waist	circumference	 cm	 none	 none	 192	 1.00	

WBC	 White	blood	cells	 109*L-1	 ±4σ	 none	 225	 0.97	
Weight	 Current	weight	 kg	 none	 INT	 219	 0.98	
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