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a b s t r a c t 

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique used to modulate cortical ex- 

citability in the human brain. However, one major challenge with rTMS is that the responses to stimulation are 

highly variable across individuals. The underlying reasons why responses to rTMS are highly variable between 

individuals still remain unclear. Here, we investigated whether the response to continuous theta-burst stimula- 

tion (cTBS) – an effective rTMS protocol for decreasing cortical excitability – is related to individual differences 

in glutamate and GABA neurotransmission. We acquired resting-state magnetic resonance spectroscopy (MRS) 

and functional magnetic resonance imaging (fMRI) during semantic processing. Then, we applied cTBS over the 

anterior temporal lobe (ATL), a hub for semantic representation, to explore the relationship between the baseline 

neurochemical profiles in this region and the response to cTBS. We found that the baseline excitation-inhibition 

balance (glutamate + glutamine/GABA ratio) in the ATL was associated with individual cTBS responsiveness 

during semantic processing. Specifically, individuals with lower excitation-inhibition balance showed stronger 

inhibitory effect – poorer semantic performance. Our results revealed that non-responders (subjects who did not 

show an inhibitory effect of cTBS on subsequent semantic performance) had higher excitatory-inhibitory balance 

in the ATL, which led to up-regulated task-induced regional activity as well as increased ATL-connectivity with 

other semantic regions compared to responders. These results disclose that the baseline neurochemical state of a 

cortical region can be a significant factor in predicting responses to cTBS. 
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. Introduction 

Transcranial magnetic stimulation (TMS) is a non-invasive technique

sed to modulate cortical excitability in the human brain. Theta-burst

timulation (TBS), a repetitive TMS protocol induces effective modu-

ation of cortical excitability in the stimulated region for up to an hour

ith a rather short period of stimulation ( Huang et al., 2005 ). However,

ne major challenge with rTMS/TBS is that the responses to stimula-

ion are highly variable across individuals. Recent studies demonstrated

igh inter-individual variability in response to rTMS/TBS in the motor

ystem and suggest that about 50 ∼ 70% of participants either did not

espond or responded in an unexpected manner ( Goldsworthy et al.,

014 ; Hamada et al., 2013 ; Hinder et al., 2014 ; Lopez-Alonso et al.,

014 ; Maeda et al., 2000a ; Muller-Dahlhaus et al., 2008 ). 

The underlying reasons why responses to rTMS/TBS are highly vari-

ble between individuals are not well understood, but several factors
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ome into play, including age, gender, time of the day, regular activity,

ttention, previous history of plasticity, neuromodulation, and genetics

 Ridding and Ziemann, 2010 ). In one of the first studies employing TBS

rotocols in a burst-firing pattern (3 pulses at 50Hz, total 600 pulses),

uang et al. (2005) reported that continuous TBS (cTBS) suppressed

otor evoked potentials (MEPs), whereas intermittent TBS (iTBS de-

ivering 2s train repeated every 10s for 20 repetitions) facilitated it in

he human motor cortex (M1). To examine the inter-individual varia-

ion of the TBS responsiveness, Hamada et al. (2013) stimulated the M1

ith a larger sample size (N = 56) and found approximatley one quar-

er of participants showed the expected response of the TBS protocols.

hey suggested that about 50% of this variation may be accounted for

y differential recruitment of subtypes of cortical interneurons. Recent

tudies combining functional magnetic resonance imaging (fMRI) and

BS demonstrated that the differential recruitment of these interneu-

ons correlated with the functional connectivity of the motor system
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 Volz et al., 2015 ) and the responsiveness to TBS depended on the pre-

nterventional network connectivity of the stimulated region ( Cardenas-

orales et al., 2014 ; Nettekoven et al., 2015 ). 

Moreover, the mechanism underlying rTMS/TBS effects on brain

issue are not clearly defined. Previous studies demonstrated that

TMS alters cortical excitability through changes in synaptic strength

 Chen et al., 1997 ; Cooke and Bliss, 2006 ; Fitzgerald et al., 2006 ;

uang et al., 2005 ; Maeda et al., 2000b ; Pascual-Leone et al., 1994 ).

nimal models provide evidence that TBS protocols are more likely to

nduce long-term potentiation (LTP) and long-term depression (LTD)

 Hess et al., 1996 ; Huemmeke et al., 2002 ; Vickery et al., 1997 ), which

epend on the GABAergic and glutamatergic systems in the cortex

 Funke and Benali, 2011 ; Lenz et al., 2016 ; Trippe et al., 2009 ). In the

uman, the effects of TBS on synaptic transmission have been measured

ndirectly, by administrating pharmacological agents ( Huang et al.,

007 ). Recently, Stagg et al. (2009) used magnetic resonance spec-

roscopy (MRS) to measure local changes in the cortical concentrations

f GABA and glutamate + glutamine (Glx). They demonstrated that cTBS

ncreased the GABA concentrations at the target site. The study provides

irect evidence of GABAergic interneuronal activity for the underlying

echanism of cTBS and suggests a possibility that the GABAergic system

an also be an important factor in rTMS responsiveness. 

Contrary to studies on the motor system, the inter-individual vari-

bility of rTMS responsiveness has not been investigated in higher

ognitive functions such as language and memory. Some studies have

xcluded non-responders and only reported the results of responders

 Pattamadilok et al., 2015 ; Sliwinska et al., 2015 ) or reported contrary

esults from the stimulation protocols (e.g., inhibitory 1Hz rTMS/cTBS

nducing a facilitatory effect) ( Andoh et al., 2006 ; Bonni et al., 2015 ).

iven the dearth of information about the nature of individual differ-

nces in rTMS on higher cognition, in this study, we explored this use

espect to semantic memory, a feature of human higher cognition by

mploying a combination of MRS, fMRI and rTMS. 

Semantic memory is defined as the collective knowledge of the world

ncluding words, pictures, objects, people, and emotions. Converging

vidence indicates that the anterior temporal lobe (ATL) is the site of

 transmodal hub that generates coherent semantic representations by

nteracting with multiple modality-specific brain regions ( Binney et al.,

010 ; Doeltgen et al., 2010 ; Patterson et al., 2007 ; Pobric et al., 2007 ;

ale et al., 2010 ; Todd et al., 2010a ; Todd et al., 2010b ; Visser et al.,

012 ). Thus, perturbing the ATL with inhibitory rTMS/TBS produces

 temporal semantic impairment leading to slower reaction times in

ealthy participants ( Jung and Lambon Ralph, 2016 ; Lambon Ralph

t al., 2009 ; Pobric et al., 2010a , b ; Pobric et al., 2007 ). Although ATL

TMS effects on semantic processing have been repeatedly demonstrated

t the group level, there are often considerable individual differences in

he rTMS effect. 

Here, we investigated the inter-individual variability of rTMS re-

ponsiveness on semantic processing at the behavioural level as well

s at a neural/neurochemical level using a combined MRS and fMRI-

uided cTBS. Previously, we demonstrated that the neurochemical pro-

les of the ATL were associated with task-induced regional activity and

ask performance during semantic processing ( Jung et al., 2017 ). Specif-

cally, GABA concentrations in the ATL were positively correlated with

emantic task performance and negatively associated with task-induced

egional activity in the ATL during semantic processing. Here, we used

he resting-state MRS and fMRI data from our previous study as the

aseline neurochemical profiles including GABA, Glx concentrations,

nd Glx/GABA ratio (excitation and inhibitory balance: EIB). Then, we

sked participants to attend following cTBS sessions. cTBS was deliv-

red at the ATL through individually fMRI-guided TMS neuronaviga-

ion which maximizes rTMS effects at the behavioural level ( Sack et al.,

009 ). Participants were assigned into two groups (responders and non-

esponders) based on their semantic performance changes after cTBS at

he ATL. Based on previous studies showing the involvement of GABAer-

ic and glutamatergic systems in rTMS effects (Funke and Benali, 2011;
2 
enz et al., 2016), we explored the relationship between ATL cTBS re-

ponsiveness in semantic processing and baseline neurochemical pro-

les including GABA, Glx, and EIB in the ATL. Then, we compared the

aseline neurochemical profiles of the ATL between responders and non-

esponders. Our previous investigation demonstrated that the synchro-

ization of the semantic network inclduing the ATL, prefrontal, and pos-

erior temporal cortices were positively associated with the level of ATL

ABA levels and semantic task performance ( Jung et al., 2017 ). Net-

koven et al. (2015) demonstrated that pre-interventional nerual states

redict the TBS responsiveness in the motor system, such that respon-

ers showed decreased functional connectivity in the motor network

ompared to non-responders. Thus, we hyphothesized that the neural

tate of the semantic network prior to the stimulation could be asso-

iated with rTMS responsiveness in semantic processing. Specifically,

esponders would show decreased connectivity in the semantic system

ncluding the ATL compared to non-responders. 

. Materials and methods 

.1. Subjects 

Twenty healthy English native speakers (7 males, mean age = 23

ears ± 4, range from 20 to 36 years) participated in this study. Right-

andedness was confirmed using the Edinburgh Handedness Inventory

 Oldfield, 1971 ). All subjects provided informed written consent. The

tudy was approved by the local ethics committee. 

.2. Experimental design and procedure 

All subjects had an fMRI and MRS at rest at the beginning of the

tudy, which have been previously included in a previous publication

 Jung et al., 2017 ). They performed a semantic association task and a

icture matching task as a control task during fMRI. We used the pic-

ure version of semantic association task employed by previous studies

 Pobric et al., 2010c ; Visser et al., 2012 ). The semantic association task

equired subjects to select which of two pictures was more related in

eaning to a probe picture. Three pictures were presented on the screen,

 probe picture on the top, the target, and unrelated picture at the bot-

om ( Fig. 1 A left). In the control task, subjects had to select which of

wo patterns was identical to a probe pattern ( Fig. 1 A right). The items

or the pattern matching task were created by scrambling the pictures

sed in the semantic association task. An fMRI scanning had 9 blocks

f each task (interleaved order, A-B-A-B). Fixation blocks for 4000ms

ere interleaved with task blocks. A task block had 4 trials of each task

nd a trial started with 500ms fixation followed by the stimuli for the

uration of 4500ms. 

After the MRI, all subjects had two rTMS sessions on different days.

n each session, subjects received rTMS stimulation at the left ATL or

ontrol site (occipital pole). The order of stimulation was counterbal-

nced across subjects. A session consisted of a baseline block (No-TMS)

nd the after TMS block (post cTBS). The baseline was performed be-

ore or 50mins after the stimulation. The order of blocks was counter-

alanced across subjects. In each session, subjects performed the same

emantic association task and the control task. Tasks had 63 trials and

 trial started with 500ms fixation then the stimuli were presented until

esponse or 3000ms. E-prime software (Psychology Software Tools Inc.,

ittsburgh, USA) was used to display stimuli and to record responses. 

.3. fMRI-guided transcranial magnetic stimulation 

To guide a TMS target site, we used the individual fMRI results of the

ontrast of interest (semantic > control). The maximal peak activation

n the ATL (MNI coordinates) was selected and converted to the un-

ransformed individual naïve space coordinate. The target site was used

o guide the frameless sterotaxy, a Brainsight TMS-fMRI co-registration
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Fig. 1. A. Experimental design. Left: semantic association 

task, Right: pattern matching task. B. The procedures of 

cTBS sessions. fMRI-guided individual TMS sites. Red dots 

indicate individual peak coordinates in the ATL during se- 

mantic processing. C. The averaged ATL TMS E-fields for 

responders (left) and non-responders (right). D. The loca- 

tion of volume of interest (VOI) for MRS: ATL and OCC. 

The colour bar indicates the overlapping number of sub- 

jects. 
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Table 1 

fMRI-guided TMS sites for individuals. 

Maximal peak coordinates 

X y z 

sub01 -32 -10 -34 

sub02 -38 -10 -28 

sub03 -48 -16 -29 

sub04 -33 -13 -38 

sub05 -57 -19 -26 

sub06 -45 5 -35 

sub07 -48 5 -32 

sub08 -33 -13 -29 

sub09 -45 11 -32 

sub10 -36 8 -38 

sub11 -39 -16 -26 

sub12 -33 -10 -32 

sub13 -33 2 -36 

sub14 -33 -13 -29 

sub15 -54 -1 -20 

sub16 -48 17 -32 

sub17 -48 8 -35 

sub18 -33 -13 -35 

sub19 -33 -13 -35 

sub20 -48 -1 -35 
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e  
ystem (Rogue Research, Montreal, Canada). TMS target sites were lo-

ated within the left anterior/ventrolateral ATL. Table 1 and Fig. 1 B

ummarise the maximal peak activation and the actual TMS target site

n the normalized brain (the lateral view). occipital pole (Oz) was used

s a control site using international 10-20 system. 

.4. Theta-burst stimulation 

cTBS was delivered over the left ATL using a Magstim Super Rapid

timulator with a figure-of-eight coil (70mm standard coil, MagStim

ompany, Whitland, UK) according to Huang et al. (2013).xxxx cTBS

as applied at 80% of the resting motor threshold (RMT). RMT was

efined as a minimal intensity of stimulation inducing motor evoked

otentials in the contralateral FDI muscle in at least 5 of 10 stimulation

rials at the optimal scalp position. The average stimulation intensity

80% RMT) was 47% ranging from 34% to 60%. 

We used SimNIBS v 3.2 to calculate individual electric field of

TBS ( Thielscher et al., 2015 ). The individual head models were gen-

rated from T1 images using the pipeline by Nielsen and colleagues

 Nielsen et al., 2018 ). The head model consisted of five tissue types

omprising grey matter (GM), white matter (WM), cerebrospinal fluid

CSF), skull, and scalp. We applied the fixed conductivity values imple-

ented in the SimNIBS: 0.275 S/m (GM), 0.126 S/m(WM), 1.654 S/m

CSF), 0.01 S/m (skull), and 0.465 S/m (scalp). Employing Saturnio and

olleagues’ procedure ( 2019 ), the electric field interpolation was con-

ucted to determine the electric field at the target (ATL) within grey

atter and computed the electrical field at the centre of grey matter.

hen, we averaged the individual electric field according to responders

nd non-responders ( Fig. 1 C). There was no significant difference in the

-field strength between responders and non-responders (p = 0.24). 

.5. Definition of responders 

The aim of this study was to investigate whether inter-individual

ifferences in the behavioural performance response to cTBS were re-

ated to the different neural profiles of the stimulated region and the

elated-brain network before the stimulation. Therefore, responders and

on-responders were classified according to their semantic performance

hanges after the ATL stimulation: subjects showing a decrease in task

erformance at the post ATL cTBS compared to the baseline were de-

ned as responders; whereas subjects showing no changes or an in-

rease in their task performance after the ATL cTBS were defined as
4 
on-responders. This criterion ensured that responders had task-specific

TMS effect (inhibitory) as expected by the stimulation protocol. 

.6. fMRI data acquisition and analysis 

fMRI images were acquired on a 3T Philips Achieva scanner us-

ng a 32-channel head coil with a SENSE factor 2.5 using a dual-echo

equence with the following parameters: 42 slices, 96 × 96 matrix,

40 × 240 × 126mm FOV, in-plane resolution 2.5 × 2.5, slice thick-

ess 3mm, TR = 2.8s, TE = 12ms and 35ms, 258 volumes. The se-

uence was developed to maximise signal-to-noise (SNR) in the ATL

y Halai et al. (2014) . A high-resolution T1-weighted structural image

as acquired using a 3D MPRAGE pulse sequence with following pa-

ameters: 200 slices, in-planed resolution 0.94 × 0.94mm slice thickness

.9mm, TR = 8.4ms, TE = 3.9ms. fMRI data were analysed using Statis-

ical Parametric Map (SPM8, http://www.fil.ion.ucl.ac.uk/spm/ ). First,

ual gradient echo images were realigned to the mean image of each

ime series and corrected for slice timing by shifting the signal mea-

ured in each slice relative to the acquisition of the middle slice. Then,

he dual gradient echo images were averaged using in-house MATLAB

ode developed by Halai et al. (2014) . The mean EPI volumes were

oregistered with the structural T1-weighted image. All images were

patially normalized to the MNI template using the DARTEL (diffeo-

orphic anatomical registration through an exponentiated lie algebra)

oolbox ( Ashburner, 2007 ) and smoothed with an isotropic Gaussian

ernel of 8mm full-with at half-maximum. 

A general linear model (GLM) was used for statistical analyses. The

hree experimental conditions (semantic, control, and fixation) were

odelled using boxcar stimulus functions convolved with a canonical

emodynamic response function. Six head motion parameters resulting

rom the realignment were entered as covariates to remove movement-

elated variance. The time series of each voxel were high-pass filtered at

/128Hz. A contrast of interest (sematic > control) for each participant

ere calculated. Voxels were considered significant on the individual

evel if passing a threshold of p uncorrected < 0.001 (for the TMS tar-

et site). For the group-level analysis, the estimations of the contrast of

nterest were entered into one-sample t-tests. Clusters were considered

ignificant when passing a threshold of p FWE-corrected < 0.05, with at

east 100 contiguous voxels. 

Marsbar ( Brett et al., 2002 ) was used for region of interest (ROI) anal-

sis. Six ROIs based on the result of group level analysis were defined

s a sphere with a radius of 5mm from the contrast of interest (semantic

 control). The ROIs defined as the semantic network included the ATL

peak activation left: -36, -6, -36; right: 33, -6, -36), vlPFC (peak activa-

ion left: -48, 21, 24; right: 57, 24, 21), and pMTG (peak activation left:

57, -48, -3; right: 54, -69, 12). 

Functional connectivity toolbox (CONN) ( http://web.mit.edu/

wg/software.htm ) was used for computing temporal correlation be-

ween the defined ROIs. Pre-processed fMRI images were registered

nto the toolbox with the six ROIs. Connectivity analyses provided ROI-

o-ROI functional connectivity estimations for the experimental condi-

ions (semantic, control, and baseline). The head motion parameters

ere entered as regressors and all voxels were filtered (0.01 < ƒ < Inf)

o decrease the effect of low-frequency drift. CompCor strategy imple-

ented in the toolbox removed several sources of noise from white mat-

er, cerebral fluid, and the others. Functional connectivity (Fisher’s Z-

ransformed Pearson correlation coefficient) among ROIs was averaged

or network-level analyses. 

.7. MRS data acquisition and analysis 

GABA-edited MEGA-PRESS spectra were acquired from an ATL voxel

35 × 25 × 15mm) and an occipital control voxel (30 × 30 × 30mm).

he ATL voxel was positioned on the left anterior/lateral temporal lobe,

xcluding hippocampus ( Fig. 1 D). The occipital voxel was aligned with

http://www.fil.ion.ucl.ac.uk/spm/
http://web.mit.edu/swg/software.htm
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Fig. 2. A . cTBS-induced changes in the seman- 

tic task. A red circle represents an individual 

performance and a black diamond represents 

the mean of performance. B. cTBS-induced 

changes in normalized accuracy of the seman- 

tic task. Red lines present the ATL stimulation. 

Black lines indicate the control stimulation. Er- 

ror bar represents standard error. ∗ ∗ p < 0.005. 
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he occipital midline covering both hemispheres ( Fig. 1 D). The follow-

ng parameters were used: repetition time = 2000ms, echo time = 68ms.

pectra were acquired in interleaved blocks of 4 scans with application

f the MEGA inversion pulses at 1.95 ppm to edit the GABA signal and at

.45 ppm as control; 79 repeats at the ATL and 74 repeats at the OCC. A

otal of 1024 sample points were collected at a spectral width of 2 kHz.

ach MRS voxel took approximately 10mins to complete. Quantification

as conducted using the Advanced Magnetic Resonance (AMARES) in

he Java-based magnetic resonance user’s interface (jMRUI.1, EU project

ww.jmrui.eu ) ( Naressi et al., 2001 ). The water resonance was removed

sing the Hankel Lanczos Singular Valve Decomposition (HLSVD) algo-

ithm ( van den Boogaart et al., 1994 ). To improve the display of the

pectra, line broadening of 7 Hz was used. No time-domain filtering

as performed on the data before analysis by AMARES. All metabolite

esonances were measured and a ratio was calculated for NAA, GABA

nd Glx (a combined measure of glutamate and glutamine). No correla-

ions of GABA and Glx levels between the ATL and OCC were found (ps

 0.47). 

To examine partial volume effects on MRS VOIs, the T1-weighted

natomical images were segmented into gray matter (GM), white

atter (WM) and cerebrospinal fluid (CSF) using SPM8. Then

oxel registration was performed using custom-made scripts devel-

ped in MATLAB by Dr. Nia Goulden, which can be accessed at

ttp://biu.bangor.ac.uk/projects.php.en . The scripts generated a mask

or voxel location by combining location information for the Philips

PAR file with orientation and location information contained within

he T1 image. The calculation of partial volume within the voxels pro-

ided the percentage of each tissue type within the relevant voxels. Par-
5 
ial correlation analyses were performed with the percentage of each

issue (GM, WM) as covariates accounting for the partial volume effects

n the voxels. 

. Results 

.1. cTBS-induced plasticity in task performances 

Subjects performed the same fMRI tasks at baseline and follow-

ng the cTBS. Then, based on the semantic task performance changes

aused by cTBS, twelve of the subjects were classified as responders

nd eight as non-responders ( Fig. 2 A). A four-way repeated measures

NOVA with site (ATL vs. Oz), TMS (baseline vs. post cTBS), and task

semantic vs. control) as within subject factors and group (responders

s. non-responders) as a between subject factor in accuracy revealed a

ignificant main effect of the site (F 1, 17 = 34.29, p < 0.001) and an

nteraction effect between task × group (F 1, 17 = 25.86, p < 0.001),

ite × task × group (F 1, 17 = 25.17, p < 0.001), TMS × task × group

F 1, 17 = 17.92, p < 0.001), and site × TMS × task × group (F 1, 17 = 15.57,

 < 0.001). In order to assess semantic performance differences after

TBS between responders and non-responders, we conducted three-way

epeated measures ANOVA with TMS, site and group for each task. In the

emantic task, we found a significant main effect of site (F 1, 17 = 5.23, p

 0.05) as well as an interaction between TMS × group (F 1, 17 = 25.21,

 < 0.001) and site × TMS × group (F 1, 17 = 28.04, p < 0.001) (Supple-

entary Fig. S1). Post-hoc t-tests were performed on the normalized task

erformance thereby reflecting the individual variability in the baseline

erformance ( Fig. 2 A): individual performance was divided by the base-

http://www.jmrui.eu
http://biu.bangor.ac.uk/projects.php.en
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Fig. 3. ATL GABA and Glx concentrations and TMS responsiveness. A. A representative MRS spectrum with estimated peaks. NAA: N-acetylaspartate B. Relationship 

between ATL GABA concentrations and task accuracy with and without ATL cTBS. Semantic task accuracy was from the cTBS sessions. C. Responders showed a 

significant correlation between ATL GABA concentrations and cTBS effects, whereas non-responders did not. D. Non-responders showed a significant correlation 

between ATL Glx concentrations and cTBS effects. Red circles represent responders. Blue circles represent non-responders. 
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ine performance, so the normalized baseline was always ‘1’. cTBS over

he ATL reduced the accuracy in responders when compared to its base-

ine (t = 14.47, p < 0.001) as well as the accuracy after the control

timulation (t = -5.12, p < 0.001) ( Fig. 2 B). Also, responders revealed a

ignificant decrease in accuracy compared to non-responders (t = 5.83,

 < 0.001). On the contrary, cTBS at the ATL increased the accuracy in

on-responders compared to the baseline (t = -5.26, p < 0.001) but no

ifference in it compared to the control stimulation (p > 0.55) ( Fig. 2 B).

hat is, responders showed a task-specific inhibitory ATL cTBS effect in

ccuracy, whereas the non-responders demonstrated a paradoxical fa-

ilitatory effect. There was no other significant effect found in accuracy

uring the control task or after the control stimulation (Supplementary

ig. S2) and in RT (Supplementary Fig. S3). 

.2. Neurochemical profiles of ATL and rTMS responsiveness 

In order to investigate whether GABA and Glx concentrations in

he ATL predict the rTMS responsiveness, we quantified metabolite

oncentrations from MRS ( Fig. 3 A). First, we correlated the baseline

ABA concentrations with semantic task accuracy with and without

he ATL stimulation accounting for the partial volume effects. A signifi-

ant relationship (positive correlation) with semantic task accuracy was

nly found for baseline GABA (pre-intervention) ( Fig. 3 B) ( Jung et al.,

017 ). After cTBS over the ATL, this correlation between GABA and

ccuracy disappeared. The control stimulation showed positive corre-

ations between the ATL GABA concentration and semantic task accu-

acy regardless of the stimulation (Supplementary Fig. S4). Then, par-

ial correlation analyses were conducted between the GABA concentra-

ions and rTMS effects (Post cTBS – baseline) for responders and non-

esponders. A significant correlation was observed in responders only:

esponders with higher GABA concentrations showed bigger rTMS ef-
6 
ects ( Fig. 3 C). Non-responders revealed no significant relationship in

his analysis. Second, we correlated the baseline Glx concentrations with

emantic task performance with and without the ATL cTBS and found

o significant correlations (Supplementary Fig. S5). Then, partial corre-

ation analyses were performed between the ATL Glx levels and rTMS

ffects according to the group. We found a significant negative corre-

ation only for non-responders; higher Glx concentrations were associ-

ted with reduced rTMS effects in non-responders ( Fig. 3 D). However,

here was no difference in the baseline GABA and Glx concentrations

etween responders and non-responders (ps > 0.35) (Supplementary

ig. S6). It is noted that no significant correlations between the OCC

ABA and Glx concentrations and behavioural results were found (all

s > 0.20). 

Our findings showed that both GABA and Glx concentrations seem

o be associated with TMS responsiveness. In order to explore the neu-

ochemical differences between groups, we used the Glx/GABA ratio for

urther analysis, potentially a suitable measure for reflecting excitation-

nhibition balance in the cortex. We correlated the Glx/GABA ratio with

TMS effects and found a positive correlation (p < 0.01) ( Fig. 4 A). Non-

esponders had a significantly higher Glx/GABA ratio than responders

t = 2.30, p < 0.05) ( Fig. 4 B). There was no difference in the OCC

lx/GABA ratio between groups (p > 0.13). The neurochemical pro-

les of the ATL between responders and non-responders illustrated that

hey are not homogenous groups. We examined the baseline task perfor-

ance in order to probe whether this neurochemical difference would

eflect in semantic behaviours. A two-way repeated measures ANOVA

ith site (ATL vs. Oz) as a within subject factor and group (responders

s. non-responders) as a between subject factor in the baseline semantic

ccuracy revealed a significant main effect of group (F 1, 18 = 8.92, p <

.005) ( Fig. 4 C). Non-responders performed the semantic task poorer

han responders even in the baseline, without stimulation. It is noted
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Fig. 4. A. The relationship between Glx/GABA ratio and cTBS effects during 

semantic processing B. Glx/GABA ratio difference between responders and non- 

responders C. Baseline semantic task performance between groups. Error bar 

represents standard error. ∗ ∗ p < 0.005. 
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hat there was no significant effect in the control task performance at

he baseline (all ps > 0.43) (Supplementary Fig. 7). 

.3. Neural differences between responders and non-responders 

Consistent with past studies, the fMRI demonstrated that the se-

antic task relative to the control task evoked increased activation in
7 
ilateral prefrontal, anterior and posterior temporal cortices as well

s cerebellum ( Fig. 5 A). First, we explored the relationship between

TMS effects and baseline task-induced BOLD signal changes in the ATL

uring semantic processing. We found a significant positive correla-

ion between them (r = 0.63, p < 0.005): individuals with less task-

nduced ATL BOLD signal changes showed stronger inhibitory cTBS ef-

ect ( Fig. 5 B). Then, we compared regional BOLD signal changes in the

eft ATL between responders and non-responders. A repeated measure

NOVA with experimental condition (semantic vs. control) according to

he group (responders vs. non-responders) revealed a significant main

ffect of the experimental condition (F 1, 18 = 43.35, p < 0.001) and

roup (F 1, 18 = 5.36, p < 0.05) as well as an interaction between fac-

ors (F 1, 19 = 3.53, p < 0.05). Post-hoc t-tests demonstrated that non-

esponders had stronger ATL BOLD signals than responders regardless

f the experimental condition (semantic: t = 2.01, p = 0.054, control:

 = 2.46, p < 0.05) ( Fig. 5 C). The same analysis was conducted at the

etwork-level (the averaged functional connectivity of semantic net-

ork). The analysis showed a main effect of the experimental condition

F 1, 18 = 10.57, p < 0.005) and the group (F 1, 18 = 7.65, p < 0.05). Post-

oc t-tests also revealed that non-responders showed stronger functional

onnectivity than responders in the semantic and control conditions (se-

antic: t = 2.18, p < 0.05, control: t = 2.24, p < 0.05) ( Fig. 5 D). 

. Discussion 

rTMS has been widely used to modulate human cognitive functions

n healthy and clinical populations. However, only in recent years the

nter-individual variation of rTMS responsiveness has become a focus of

esearch in neuroscience. The current study investigated whether the

re-interventional neural state of the stimulated region is related to

he inter-individual rTMS-responsiveness on human semantic function.

TBS non-responders had higher Glx/GABA ratios compared to respon-

ers, leading to up-regulated task-induced activity in the ATL as well as

elatively stronger ATL-connectivity within the semantic network com-

rising bilateral prefrontal cortex and posterior middle temporal gyrus.

urthermore, responders and non-responders differed in cTBS-induced

ffects on semantic task performance as well as in the neurotransmitters

elated to the cTBS-effects: only responders showed a decrease in seman-

ic task performance and a negative correlation between GABA concen-

rations in the ATL and cTBS effects, whereas non-responders showed an

ncrease in the task performance and a negative correlation between Glx

oncentrations and cTBS effects. Our findings suggest that the baseline

evel of local neurotransmitters in a cortical region can have a significant

mpact on rTMS effects. 

As noted in the Introduction, there are many factors contributing to

he high inter-individual variability observed in response to rTMS/TBS

uch as previous history of activation and the current state of the

timulated cortex, daytime, or genetic polymorphism ( Li et al., 2015 ;

idding and Ziemann, 2010 ). Recently, Nettekoven et al. (2015) showed

 higher baseline resting-state functional connectivity between M1 and

remotor areas in non-responders compared to responders when classi-

ying their participants into responders and non-responders based on

heir MEPs changes after the stimulation. They suggested that high

aseline levels of functional connectivity can preclude further changes

voked by rTMS – a ceiling effect. Likewise, we found a significantly

igher ATL-connectivity as well as ATL activity in non-responders com-

ared to responders during a semantic task. This ceiling effect has been

eported in other studies with a variety of patients ( Huang et al., 2010 ;

och et al., 2008 ; Quartarone et al., 2003 ; Salomons et al., 2014 ).

n particular, Salomons et al. (2014) demonstrated that a high base-

ine of resting-state cortico-thalamic-striatal connectivity was associated

ith poorer rTMS treatment outcome in patients with major depres-

ive disorder. These studies have suggested that ceiling effects in neural

onnectivity might underlie absent intervention effects found in non-

esponders. 
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Fig. 5. A. Brain activation map for the contrast of interest (semantic > control). The black box indicates the ATL MRS VOI. B. The relationship between ATL BOLD 

signal changes and rTMS effects during semantic processing. C. ATL regional activity differences between responders and non-responders across task conditions. 

D. Functional connectivity differences of semantic network between responders and non-responders across task conditions. Error bar represents standard error. 
∗ p FDR-corrected < 0.05. 
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Here, we further investigated the baseline neurochemical traits of

 cortical region in relation to rTMS-responsiveness. First, we demon-

trated that the relationship between the baseline ATL GABA con-

entrations and semantic task performance was modulated by cTBS.

tagg et al. (2009) demonstrated that cTBS increased regional GABA

oncentrations at the target site. cTBS over the ATL might change the re-

ional level of GABA, resulting in disappearance of the positive relation-

hip between the GABA concentrations and baseline semantic task per-

ormance. Thus, our findings support the contention that cTBS can mod-

late GABA neurotransmission in the cortex ( Funke and Benali, 2011 ;

tagg et al., 2009 ; Trippe et al., 2009 ). Secondly, cTBS effects were as-

ociated with differential effects on glutamate and GABA according to

he groups: responders showed a correlation with the GABA concen-

rations, whereas non-responders showed an association with the Glx

oncentrations. Specifically, higher GABA concentrations in responders

ere associated with a stronger cTBS effect and higher Glx concentra-
8 
ions in non-responders was associated with a weaker cTBS effect. The

eurochemical differences between responders and non-responders be-

ame more prominent when the ratio of glutamate to GABA (excitatory

nd inhibitory balance) was used: responders had more GABA relative to

lx; whereas non-responders showed the reverse. In a similar manner to

he neurochemical profiles, non-responders showed ceiling effects in the

TL activity -connectivity, which could possibly be driven by a higher

lx/GABA ratio compared to responders. Moreover, these neural and

eurochemical differences influence the baseline task performance. Re-

ponders performed the semantic task better than non-responders at the

aseline. Our findings suggest that there is a difference in neurochemi-

al profiles of ATL between responders and non-responders, resulting in

eural, behavioural and TBS-related differences. 

In terms of baseline level factors related to rTMS-responsiveness, a

ecent study explored the relationship between genetic variation and

TMS-responsiveness ( Cheeran et al., 2008 ). They examined the brain-
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erived neurotrophic factor gene (BDNF) with respect to several non-

nvasive brain stimulation protocols. Subjects with the Val66Met poly-

orphism of the BDNF gene (non-responders) showed a reduced or ab-

ent response to both cTBS and iTBS, whereas Val66Val carriers (respon-

ers) exhibited expected responses following the TBS protocols. BDNF

s involved in a significant role in promoting changes in synaptic effi-

acy by modulating N-Methyl-D-aspartic acid or N-Methyl-D-aspartate

NMDAR)-dependent LTP and LTD ( Bramham, 2008 ; Figurov et al.,

996 ; Lu et al., 2005 ). As a glutamate receptor, NMDAR plays a crit-

cal role in synaptic plasticity and memory ( Tsien et al., 1996 ) and the

ffects of TBS may rely on NMDARs in the human cortex ( Huang et al.,

007 ). Moreover, recent animal studies have demonstrated that rTMS-

nduced postsynaptic changes are NMDAR-dependent ( Tokay et al.,

014 ; Vlachos et al., 2012 ). Other human and animal studies have

hown that TBS effects were associated with the glutamate and GABA

ystems in the cortex ( Funke and Benali, 2011 ; Huang et al., 2007 ;

enz et al., 2016 ; Trippe et al., 2009 ). 

Recent studies on human motor cortex report that the effects of TBS

rotocols differ from those originally reported ( Goldsworthy et al., 2012 ;

asan et al., 2012 ; Martin et al., 2006 ) and that individual responses can

e variable, resulting in no group-level effect of TBS on cortical excitabil-

ty ( Di Lazzaro et al., 2011 ; Gentner et al., 2008 ; Hamada et al., 2013 ;

opez-Alonso et al., 2014 ; Zafar et al., 2008 ). Here, we firstly attempted

o demonstrate the inter-individual variability of TBS-responsiveness in

 higher cognitive domain: semantics. Although in our cohort of par-

icipants 60% were classified as responders, we did not find a signif-

cant decrease in semantic task performance across the entire sample

fter cTBS (p = 0.09). Previous work on the motor cortex reported

0% ∼ 70% of their subjects to respond as expected after TBS protocols

 Goldsworthy et al., 2014 ; Hamada et al., 2013 ; Hinder et al., 2014 ).

he response rates observed in our study is similar to previous stud-

es, although our data was driven from different measurements used

o define responders and non-responders. Studies on the M1 used the

EP as a physiological measurement of cortical excitability. However,

here is no direct way to measure the cortical excitability for other brain

egions, especially areas related to higher cognitive functions. Here, we

sed behavioural changes induced by cTBS to determine responders and

on-responders. A previous study demonstrated that cTBS over the ATL

educed semantic task-induced regional activity and semantic task per-

ormance ( Jung and Lambon Ralph, 2016 ). Therefore, our approach to

easure the inter-individual variability of rTMS-responsiveness can re-

ect the ATL cortical excitability. 

Taken together, our data suggest that the responsiveness to cTBS de-

ends on the baseline level of local glutamate and GABA balance in the

TL, at least partially, a potential biomarker for individual responsive-

ess to TBS. The baseline of neurochemical profiles of a cortical region

lso influences neural traits including task-induced regional activity as

ell as functional connectivity ( Duncan et al., 2014 ). Our findings may

mply a clinical use of non-invasive brain stimulation – predicting posi-

ive rTMS intervention treatment outcomes according to patients. 
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