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ABSTRACT The condition of masonry arch bridges is predominantly monitored with manual visual inspection. This process has been found 

to be subjective, relying on an inspection engineer’s interpretation of the condition of the structure. This paper initially presents a workflow 

that has been developed that can be used by a future automated bridge monitoring system to determine underlying faults in a bridge and suggest 

appropriate remedial action based on a set of detectable symptoms. This workflow has been used to identify the main classes of defects that an 

automated visual detection system for masonry should be capable of detecting.  

Subsequently, a convolutional neural network is used to classify these identified defect classes from images of masonry. As the mortar joints 

in the masonry are more distinctive than the defects being sought, their effect on the performance of an automated defect classifier is 

investigated. Compared to classifying all the regions of the masonry with a single classifier, it is found that where the mortar and brick regions 

have been classified separately, defect and defect free areas of the masonry have been predicted both with more confidence and with better 

accuracy. 

 

1. Introduction 

Currently the condition of masonry arch bridges is 

predominantly determined through manual visual inspections. 

This involves a detailed inspection conducted from touching 

distance of the structure, which is conducted at intervals of 

between two and twelve years, depending on the country. 

Detailed inspections are supplemented by superficial 

inspections which are conducted from ground level at intervals 

of between a half and one year (Helmerich et al., 2007). The 

manual visual inspection process is known to be subjective, as 

it is heavily dependent on the expertise and competence of the 

inspector. Laefer et al. (2010) assessed the reliability of the 

visual inspection process for detecting cracks in buildings by 

comparing the defects identified by two different inspectors. 

They found that there was a 14% difference in which cracks 

were detected by the inspectors, and that on average only 31% 

of cracks were identified. Furthermore, Phares et al. (2004) 

have performed a study which has demonstrated the variability 

of manual bridge inspections. Here 49 different bridge 

inspectors assigned a condition rating on a ten-point scale 

ranging from a failed condition to an excellent condition for 

seven different highway bridges. They have found that the 

different inspectors had on average assigned each element of 

the bridges between four and five different condition ratings 

out of the possible ten, showing that there is a large variation 

in the determined condition of the bridges between the 

different inspectors. From this study, they have also predicted 

that 78% of the average condition ratings assigned to bridges 

are incorrect at a 95% confidence interval. Automating defect 

detection and consequently the visual inspection process 

therefore has the potential to both increase the frequency and 

reduce the subjectivity of inspections. 

The increasing capability and ease of geometric and 

photographic data acquisition presents an opportunity to create 

a digital visual model of bridges. However, this dataset alone 

has limited use unless it is augmented with information about 

defects on the structure and therefore the structural condition. 

Digital Imaging for Condition Asset Monitoring (DIFCAM) 

was a project in the UK looking to develop a capability for 

tunnel inspection to both capture and augment data with defect 

information. They created a road rail vehicle carrying an array 

of photographic sensors and a laser scanning sensor for data 

acquisition, as well as inertial and GPS sensors for position 

referencing. Digital Image Correlation was used to detect 

changes in the image and geometry data of the tunnel linings 

from one recording to the next. These changes represent 

defects that have developed in the structure between recordings 

(McCormick et al., 2014). This process is therefore unable to 

detect pre-existing defects, just changes in the structure from 

one recording to the next. Additionally, for the complex 

geometries of bridges, where lighting can’t easily be 

controlled, it would be much harder to align the data taken 

between the two recordings to identify the changes. 

Traditional approaches for directly detecting defects have 

relied on the assumption that defects will generally have a 

different intensity from the surrounding pixels. They have 

therefore looked to detect hand crafted features, such as sharp 

changes in pixel intensity or thresholding pixel intensity in 

order to detect defects.  
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More recent approaches have used machine learning to classify 

defects. These approaches can learn from diverse examples of 

defects, making them more robust. Samy et al. (2016) used a 

machine learning approach to detect defects in three 

dimensional images of masonry. They used a Support Vector 

Machine (SVM) to classify masonry images into different 

defect classes based on features extracted from them. The 

masonry images used were taken of a laboratory condition 

uniform brick wall with manually created defects. The image 

noise is therefore significantly less than in the case of a 

timeworn masonry arch bridge. 

Deep learning approaches have the advantage over classical 

machine learning approaches in that they do not rely on 

handcrafted features for devising decision boundaries. 

Convolutional Neural Networks (CNNs) in particular have 

demonstrated state of the art performance for image 

classification tasks (Krizhevsky et al., 2012), and as a result 

they are the most popular network architecture for this purpose. 

Zhang et al. (2016) have compared the performance of a CNN 

to a SVM and a boosting method for detecting the presence of 

cracks in images of asphalt and have found the CNN to be 

superior with an F1 score of 89.65%, 15% better than the other 

methods tested. Similarly Cha et al. (2017) have used a CNN 

to detect the presence of cracking in images of concrete with 

an accuracy of 98%. Chaiyasarn et al. (2018) have applied a 

CNN to images of masonry to detect cracking in image 

patches. They have achieved an accuracy of 74.9% but suggest 

that in some cases the system confuses the mortar joints with 

cracks. 

Much of the focus of existing literature for defect detection has 

been on concrete and road surfaces. These experience many of 

the same defect classes as masonry, so there is potential for 

similar techniques to be applied to masonry as developed for 

concrete and road surfaces. However, Koch et al. (2015) 

reviewed different defect detection methodologies and 

concluded that the performance of defect detection algorithms 

with noisy data is questionable. Masonry images are inherently 

significantly noisier than concrete or road surface images due 

to the mortar joints between the individual masonry units. 

These mortar joints are often the most distinctive feature of 

masonry images, more so than the defects being sought. This 

is demonstrated by McRobbie (2009), who has attempted to 

apply a technique developed for concrete image surfaces to 

masonry image surfaces. He uses the Haar transform and image 

entropy to classify regions of images into those containing 

defects and those not. Whereas reasonable success was shown 

for concrete surfaces, with masonry surfaces the bricks and 

mortar have completely swamped any detected features. 

This paper therefore investigates the effect of mortar joints on 

the performance of automated defect detection in masonry by 

comparing the detection accuracy where the mortar joints have 

been separated from the masonry images and tested for defects 

separately to that with no mortar joint separation. This 

comparison therefore determines the benefit of applying a two-

stage methodology for detecting defects in masonry; first 

detecting and segmenting mortar joints, and then detecting 

defects. The classification is made using a state-of-the-art CNN 

classifier to detect defects in the presented images, therefore 

determining the applicability for similar techniques to those 

developed for concrete and asphalt road surfaces to be used on 

masonry. This is investigated for the detection of the different 

defect classes that are the most important to detect to determine 

the serviceability of masonry arch bridges. 

2. Method  

2.1 Defect classes and problem identification 

Information from the CIRIA documentation for assessing the 

condition of masonry arch bridges (McKibbins et al., 2006) 

and Network Rail standards for the examination of structures 

(Network Rail, 2017) has been linked to determine the severity 

and cause of the different defects that are visible on masonry 

arch bridges. The summary of this is shown in Figure 1, in 

which the different defects that are visible on the structure are 

described under symptoms, and these are linked to their root 

causes – the underlying problem that is causing the visible 

defect. The different repair strategies that are available both for 

correcting the identified underlying problems with the bridge 

and for repairing the visible defects on the bridge are then 

identified. In this way the visible defect on the bridge is linked 

to both its underlying problem and its solution. A future 

automated asset management tool for masonry arch bridges 

could therefore use the information in Figure 1 to determine 

the underlying problem in a bridge, and its required remedial 

treatment based on the detected defects. 

The main classes of visible defects are; distortions in the shape 

of the bridge, irregularities in the mortar joints, cracking, 

spalling and other delamination of brickwork, missing or 

displaced masonry, mortar loss, vegetation, wetness, and 

surface deposits. Distortions in the shape of the bridge would 

be more accurately detected through examining the geometry 

by laser scanning than by visually examining the surface, and 

therefore this defect class has not been considered. The same 

is also true for missing masonry, though this visually resembles 

mortar loss or brickwork delamination, depending on the 

extent of missing masonry. As a result, this paper focuses on 

the visual detection of; cracking, spalling, mortar loss, and 

vegetation in images of masonry surfaces. 

2.2 Dataset generation 

A dataset of bridge images has been generated by closely 

photographing nine multi span masonry arch bridges near 

Cambridge. These bridges show widely differing masonry 

condition and appearance. This has generated approximately 

24,500 images of masonry. From this dataset, 94 images have 

been chosen based on their depiction of defects. These images 

have had perspective distortion corrected, so that the masonry 

in the image is parallel to the image plane, generating image 

textures of the masonry surface. Since it is envisioned that 

defect detection will be performed on image textured three 

dimensional models of masonry arch bridges as part of an 

automated bridge inspection process, image textures of 

masonry surfaces are the expected input of a defect detection 
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algorithm. The image textures have also been resized to ensure 

a constant resolution in all the images. This resolution has been 

determined by standardising the average number of pixels for 

a brick course in each image. The standardised resolution used 

is 155 pixels per brick course, determined by the lowest 

resolution image in the dataset. 

The image textures have been annotated with the different 

defect classes. This has been done by manually annotating the 

pixels in the images where a defect is present. An example of 

this for one of the annotated images is shown in Figure 2. The 

pixels containing mortar joints have also been annotated in 

order to use this dataset to determine the effect of mortar joints 

on defect detection performance.  

Figure 1 Masonry arch bridge defect classes, with the underlying problems and potential solutions 
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Figure 2 Image annotations for recording defect 

locations showing; a) original image, b) mortar joints, c) 

crack locations, d) spalling locations, e) mortar loss 

locations, f) vegetation locations 

 

2.3 Image Window Classification 

The generated images have been segmented into smaller image 

patches, each 100 pixels in size, using a sliding window 

technique. The 100-pixel image size ensures that some image 

windows contain purely brick regions, while others contain a 

mixture of brick and mortar regions, as the height of each brick 

course in the images is 155 pixels. Each image window is 

assigned a class based on the annotations of the pixels it 

contains. Example image window patches for the different 

defect classes are shown in Figure 3. 

The generated image windows are used to train a classifier to 

learn the different defect classes. The classifier used is a CNN 

which has been shown to perform well for classification tasks. 

The structure of CNNs have been inspired by the visual cortex, 

with the convolution layers of the model acting as feature 

extractors, simplifying the pixels of the input image into 

features which are then used to classify the image (Wang and 

Raj, 2017). The GoogleNet Inception v3 architecture (Szegedy 

et al., 2016) is used as it is one of the best performing models 

against the ImageNet classification benchmark. Only much 

more computationally expensive models have achieved 

slightly better performance (Canziani et al., 2017). This 

publicly available model has been pre-trained using the 1000 

classes and 1.4 million images of the ImageNet dataset. 

Transfer learning is used on this pre-trained dataset as it means 

that a much smaller dataset can be used for training than would 

be necessary for training from scratch. Transfer learning fine 

tunes the pre-trained parameters based on the new classes and 

dataset. In this way much of the learning from the pre-training 

of the model can be applied to the new task of identifying 

defects in masonry images. For training, 7000 image window 

patches for each defect class have been used.  

Figure 3 Example image window patches for different 

defect classes 

 

Figure 4 Different defect detection strategies used: a) no 

mortar/brick separation, b) mortar and brick defects labelled as 

separate categories, c) mortar regions and brick regions 

processed separately and merged after classification 

 

2.4 Defect detection strategies 

In order to determine the effect of mortar joints on defect 

detection accuracy, three different classification 

methodologies have been tested. These methodologies are 

summarised in Figure 4. The first strategy, shown in Figure 

4(a), doesn’t use any mortar joint information at all. Here only 
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the five different classes of defect are trained, with image 

window patches showing both mortar regions and brick regions 

being trained as the same relevant defect class. The second 

strategy is shown in Figure 4(b). Here separate defect classes 

are defined for mortar and brick regions, so that there are two 

defect classes for each defect type, one for the defect occurring 

in mortar and one for the defect occurring in brick. The final 

strategy, shown in Figure 4(c), completely separates the mortar 

and brick regions and uses a separate classifier for each. The 

two sets of classified images are then merged so that the image 

windows being classified are the same for all three detection 

methodologies. 

For all three defect classification methodologies, only the 

image window patches that show fully brick regions or are 

centred on mortar regions are examined. Therefore, those 

image window patches that partly contain both brick and 

mortar regions are removed. As there is an overlap between 

image window patches, the whole of the masonry surface is 

still included in at least one examined patch. This step has been 

taken in order to ensure consistency of the data being examined 

by the three classification methodologies. 

3. Results 

The 94 annotated images have all been processed by the 

described methodology and their image window patches have 

been classified using the three classification strategies. For 

every image patch. the classifier assigns the probability that it 

belongs to each class of defect. This is then compared against 

ground truth data in order to determine the accuracy of 

classification for the three different classification strategies. 

Figure 5 shows an example of the predicted output for the three 

different classification strategies, taken from one of the test 

images. To produce these plots, each image window has been 

assigned a shade based on the confidence that there are no 

defects, i.e. that it is a classified as a clean image window. The 

shaded image windows are plotted onto the test image at the 

centre point of the image window patch. It is therefore possible 

Figure 5 Example output showing confidence of clean classification for different strategies: a) no mortar/brick 

separation, b) mortar and brick defects labelled as separate categories, c) mortar and brick regions processed 

separately and merged after classification, d) ground truth 
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to visualise the regions of the test image that the image window 

patches refer to. The performance of the different classification 

strategies can be visualised by comparing Figure 5 (a - c) to 

Figure 5(d), the ground truth data. The ground truth data shows 

that there is a defect that runs down the length of the masonry 

image about in the centre. This is shown in all three of the 

outputs from the classifiers as a lighter area, meaning they have 

predicted a lower probability that the image windows are clean 

in this area. Contrasting Figure 5 (a - c), it is apparent that there 

is a larger contrast between the clean areas and the defect areas 

for the classification strategy where the mortar and brick 

regions are processed separately and then merged, than for the 

other two strategies. This is caused by a greater degree of 

confidence in the clean image windows being clean for this 

detection strategy. Additionally, for all three defect 

classification outputs, the brick areas are generally shaded 

darker than the mortar areas, meaning that they are predicted 

as more likely to be clean. This suggests that all three 

classification strategies are confusing the mortar areas with a 

class of defect.  

This degree of confidence in predicting the correct category is 

measured by the Brier score. The Brier score measures the 

mean squared error between the predicted probability and the 

ground truth, for each defect class assigned in each image 

window. Its formulation for multi-category scoring is shown in 

Equation (1), where 𝑝𝑖𝑐  is the predicted probability and 𝑜𝑖𝑐 is 

the ground truth probability, for image window 𝑖 and class 𝑐. 

Here the total number of image windows and total number of 

classes are 𝑁 and 𝑅 respectively. For each image window, the 

ground truth probability for a defect class is assigned as one 

where the image window contains that class and zero where it 

does not.  

𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ ∑(𝑝𝑖𝑐 − 𝑜𝑖𝑐)2

𝑅

𝑐=1

𝑁

𝑖=1

 (1) 

The Brier score, in this formulation takes values of between 

two as the worst score achievable and zero as the best score 

achievable. Figure 6 shows the Brier score that has been 

calculated for the three different defect classification strategies. 

Here, a slightly better Brier score is achieved by strategy c, 

(where the mortar regions and brick regions have been 

classified separately and merged after classification), then has 

been achieved by the other two strategies. Additionally, the 

distribution peak is higher, particularly for strategy b (where 

defects in mortar and brick regions have been labelled as 

separate classes), but also for strategy c, when compared to 

strategy a (where there is no mortar/brick separation). The 

higher peak is caused by a lower variance in the Brier score 

between the different images of bridges examined. This 

suggests that those classification strategies that incorporate 

mortar joint information (strategies b and c) are more 

consistent in performance, suggesting they cope better where 

the masonry images are noisier. 

Figure 6 Brier score for different classification 

strategies 

 

Additionally, the performance of the three different 

classification strategies for correctly classifying the clean 

image window patches has been measured. Here, the predicted 

class for each image window is set as the class for which the 

predicted probability is the highest. Precision and Recall are 

measures of the performance of a binary classification. 

Precision (Equation 2) measures the proportion of the predicted 

instances of a class that are correctly predicted and recall 

(Equation 3) measures the proportion of the instances of a class 

that have been predicted. The F1 score combines precision and 

recall as a measure of a classification’s accuracy. It is 

computed as the harmonic mean of precision and recall 

(Equation 4). It takes values between zero at its worst and one 

at its best. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (3) 

 𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 𝑓𝑛 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(4) 

Figure 7 shows the F1 score that has been computed for each of 

the three classification strategies for classifying clean image 

regions across all 94 test images. This suggests that strategy c 

(where mortar and brick regions have been classified 

separately) has a better performance than the other two defect 

classification strategies. As was the case for the Brier score, the 

results here also suggest that strategy a (where there is no 
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mortar/brick separation) is less consistent in its performance, 

due to the shorter and wider normal distribution profile. 

Figure 7 F1 score for different classification strategies 

for classifying clean image windows 

 

4. Conclusions 

This paper has initially reviewed the effect of the different 

types of observable defects on the structural condition of 

masonry arch bridges. This has been used to propose a 

workflow that can be used by a future automated bridge 

monitoring system to determine faults in a bridge and suggest 

appropriate remedial action based on a set of detectable 

symptoms. By using the proposed workflow, the main classes 

of defects in masonry that an automated visual detection 

system for masonry should be capable of detecting have been 

identified and have been used for the training of a CNN. 

Three different defect detection strategies for separating the 

mortar and brick regions of masonry during classification have 

been used to determine the effect of the mortar joints on the 

performance of defect classification in masonry. Results 

suggest that separating the mortar and brick regions prior to 

classification causes an improvement in the confidence with 

which a classifier predicts masonry areas are clean. This leads 

to improvements in the Brier score and F1 score for the 

classification. Additionally, less variation in the classification 

performance between different masonry images is found where 

the mortar and brick regions have been separated prior to 

classification, suggesting that this prior segmentation leads to 

the classifier performing better with noisier masonry images. 
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