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We study the control of large scale energy storage operating in a market. Re-optimization of deterministic

models is a common pragmatic approach when prices are stochastic. We apply Lagrangian theory to develop

such a model and to establish decision and forecast horizons when storage trading affects these prices, an

important aspect of some energy markets. The determination of these horizons also provides a simple and

efficient algorithm for the determination of the optimal control. The forecast horizons vary between one and

fifteen days in realistic electricity storage examples. These examples suggest that modelling price impact is

important.
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1. Introduction

Electricity storage is likely to play a significant role in balancing future energy systems. Often,

much of the value of large-scale storage (e.g. pumped storage and hydro) may be captured in

price arbitrage. In the present paper we study the optimal control of storage making its money by

buying electricity when it is cheap, and selling it when it is expensive. Our model includes both

capacity and rate constraints, and the activities of the store are of a sufficient magnitude as to

have market impact, thereby leading to nonlinear convex cost functions associated with buying

and selling. (For example, in many European markets there are substantial differences between

1



Cruise et al.: Control of Energy Storage with Market Impact
2 Article accepted by Operations Research

day and night electricity prices, while the volume of available storage is sufficient to significantly

reduce this differential—see Newbery et al. 2013.) Market prices may be modelled as stochastic.

In this case, for some applied storage control problems, an exact stochastic dynamic programming

approach may be possible—see, e.g. Secomandi (2010), Bäuerle and Riess (2016). An explicitly

stochastic approach to the control of storage with market impact is given by Felix et al. (2012). In

practice assumed probability distributions calibrated to data may be incorrect—for a discussion of

the potentially significant consequences of this in the context of energy storage, see Secomandi et al.

(2015). Thus a common pragmatic approach in a stochastic environment is the use of deterministic

models with re-optimisation at successive time steps—see, for example, Lai et al. (2010), Secomandi

(2010), Wu et al. (2012) and, for more recent further analysis, Secomandi (2015). However, the

literature appears to be missing a deterministic re-optimization method that incorporates market

impact. The present paper fills this gap.

Thus we study a deterministic model, in which it is assumed that the above convex cost functions

are known in advance. We develop the strong Lagrangian theory associated with the optimal

control over some given time period, and use this theory to determine a running forecast horizon

beyond which it is not necessary to know future buying and selling costs in order to determine the

current action. We give a forward algorithm for the determination of both the optimal control and

the forecast and associated decision horizons (see Section 4 for formal definitions). This algorithm

reduces to the solution of a finite number of instances of the problem in which the storage is not

subject to capacity constraints. We use this result to provide a bound on the computational effort

involved. In the realistic electricity storage examples we study, the forecast horizon varies between

one and fifteen days. These examples suggest that modelling price impact is important.

Our model may be viewed as an instance of the classical wheat trading, or warehouse, model

(see, for example, Hartl 1986, Sethi and Thompson 2000 and the references therein). In the present

model the storage, or inventory, process is subject to capacity constraints (but not holding costs)

and we extend the classical model by allowing market impact. The existence of forecast and decision

horizons is here a natural consequence of the bounds on the storage process (as is clear from

the role played by the constraints in our algorithm), coupled with the assumed convexity of the

cost functions (see also Garcia and Smith 2000). Similar horizons exist for many models in the

existing literature in which the level of some stored quantity is controlled. In many cases, e.g. the

early production planning model of Modigliani and Hohn (1955), and the wheat trading model

of Hartl (1986), the storage bound is one-sided, corresponding only to the requirement that the

stored quantity should be nonnegative; however, in such models storage holding costs increase with

the quantity stored. As in the above papers, the forecast horizons obtained for such models are

typically weak, in the sense that some mild conditions are required on costs beyond the forecast
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horizon. For the wheat trading model, an example where storage is subject to a capacity constraint

is given by Sethi and Thompson (2000) and a forecast horizon is obtained without the need for such

additional conditions. A paper by Hartl (1988) considers the more general wheat trading model

of Hartl (1986) with the addition of a capacity constraint, but does not give a general algorithm.

A comprehensive review on the identification and use of such forecast horizons is given by Chand

et al. (2002).

Similar storage control problems to those of the present paper are studied by Bannister and Kaye

(1991), who consider only piecewise linear cost functions, and by Steffen and Weber (2016) who

consider the price-taker case of linear cost functions (see also the references in the latter paper). The

approaches of these papers also rely on the identification of strong Lagrangian, or Kuhn-Tucker,

parameters analogous to those identified in this paper; however, these approaches are otherwise

quite different and do not explicitly identify the forecast horizon of the present approach.

Aside from the control problem studied here, there is a considerable literature on the market

impact of storage—notably in the context of energy storage (see Newbery et al. 2013 and the

references therein)—and on its wider economic consequences, e.g. through price smoothing, within

a competitive environment (see in particular Sioshansi 2010, Felix et al. 2012, Chaton and Durand-

Viel 2013).

An earlier paper by Cruise et al. (2014) considered the application of strong Lagrangian theory

to the present problem, gave sufficient conditions for a control strategy and associated Lagrange

multipliers to solve it, and outlined how these might be identified. Here we give a more extensive

Lagrangian treatment, enhancing also the model to allow for more general convex cost functions

and for time-dependent leakage.

The organisation of the present paper is as follows. Sections 2 and 3 respectively formulate

the mathematical problem for analysis and develop the relevant strong Lagrangian theory. Sec-

tion 4 proves the existence of running forecast and decision horizons, develops an algorithm for

the determination of both horizons and optimal control, and provides a bound on the associated

computational effort. Section 5 includes realistic examples, based on real data for UK electricity

prices. The e-companion to this paper gives the proofs of Theorems 1 and 2 and other results.

2. Problem formulation

Our model is a modest generalisation of that of Cruise et al. (2014), in that we here construct

arguments more carefully to allow for quite general convex cost functions, and we further model

leakage over time. It is convenient to think of the available storage as a single store, seeking to

maximise the profit which can be made by buying and selling. We assume that the activities of
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the store are sufficiently significant as to have market impact, so that the store sees nonlinear cost

functions.

We work in discrete time t= 0,1, . . . , T where T ≥ 2 denotes the final time horizon. We assume

that the store has a total capacity of E (which, in the context of an energy system, would be total

energy which could be stored) and input and output rate constraints of Pi and Po respectively. We

consider two types of (in)efficiency associated with the store. The first of these (and usually much

the more significant in practice) is a time-independent round-trip efficiency η ∈ (0,1] which may

be defined as the fraction of energy bought which is available to sell. This may be incorporated

directly into the cost functions Ct introduced below by suitably rescaling selling prices relative

to buying prices. The second type of (in)efficiency may be regarded as leakage over time, and is

modelled by assuming that at each successive time instant there is lost a fraction 1− ρ, where

ρ∈ (0,1], of whatever is in the store at that time.

Let X = {x : −Po ≤ x ≤ Pi}. Both buying and selling prices at time t may be represented by

a single cost function Ct, which we assume to be convex, and is such that Ct(x) is the cost at

time t of increasing the level of the store contents (after any leakage—see below) by x, positive or

negative. Typically—in a conventional store and with positive prices—we have that each function

Ct is increasing and that Ct(0) = 0; then, for positive x, Ct(x) is the cost of buying x units (for

example of energy) and, for negative x, Ct(x) is the negative of the reward for selling −x units;

however, for some applications, the interpretation of the functions Ct may vary slightly from this,

and only the convexity condition is required. This convexity assumption corresponds, for each

time t, to an increasing cost to the store of buying each additional unit, a decreasing revenue

obtained for selling each additional unit, and every unit buying price being at least as great as every

unit selling price. Incorporating the time-independent (or “round-trip”) efficiency η into the cost

functions Ct, as discussed above, automatically preserves convexity whenever these cost functions

are increasing. (While the model formally allows the possibility that some of the functions Ct

might be decreasing—corresponding to negative prices—the inclusion of round-trip efficiency η < 1

as above would typically modify such functions so as to violate the convexity assumption. For a

discussion of the effect of negative prices on the nature of optimal policies, see Zhou et al. 2016.)

Denote the successive levels of the store by a vector S = (S0, . . . , ST ) where St is the level of the

store at each time t. For each t≥ 1, define also

xt(S) = St− ρSt−1. (1)

Here ρ is the time-dependent leakage measure defined above, so that xt(S) represents the addition

to the store at time t. It is convenient to assume that both the initial level S0 and the final level

ST of the store are fixed in advance at S0 = S∗0 and ST = S∗T . The optimisation problem of interest

may then be expressed as:
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P: (given the convex functions Ct) choose S so as to minimise

T∑
t=1

Ct(xt(S)) (2)

subject to the capacity constraints

S0 = S∗0 , ST = S∗T , 0≤ St ≤E, 1≤ t≤ T − 1, (3)

and the rate constraints

xt(S)∈X, 1≤ t≤ T. (4)

We shall say that a vector S is feasible for the problem P if it satisfies both sets of constraints (3)

and (4). We assume that the set of feasible vectors S is nonempty. This set is then closed and

convex and the function defined by (2) is convex, and strictly so when the functions Ct are strictly

convex. Hence a solution to the problem P always exists, and is unique when the functions Ct are

strictly convex.

In the case where the cost functions Ct are linear, or piecewise linear, the problem P may be

reformulated as a linear programming problem, and solved by, for example, the use of the minimum

cost circulation algorithm (see, e.g., Boyd and Vandenberghe 2004, Ahuja et al. 1993).

3. Lagrangian formulation and characterisation of solution

We apply strong Lagrangian theory (see Boyd and Vandenberghe 2004, Whittle 1971) to the

problem P defined above. Theorem 1, which is a generalisation of a result given by Cruise et al.

(2014) and which is required in the present paper, gives sufficient conditions for a value S∗ of S

to solve the problem. However, we give in the e-companion to this paper a proof which illustrates

the result as essentially an application of the Lagrangian sufficiency theorem (see Whittle 1971

or Courcoubetis and Weber 2003). The Lagrangian theory is here used to manage the capacity

constraints only (dealing with the rate constraints in this way does not result in a simpler theory).

Theorem 1. Suppose that there exists a vector µ∗ = (µ∗1, . . . , µ
∗
T ) and a value S∗ = (S∗0 , . . . , S

∗
T ) of

S such that

(i) S∗ is feasible for the stated problem P,

(ii) for each t with 1≤ t≤ T , xt(S
∗) minimises Ct(x)−µ∗tx in x∈X,

(iii) the pair (S∗, µ∗) satisfies the complementary slackness conditions, for 1≤ t≤ T − 1,
ρµ∗t+1 = µ∗t if 0<S∗t <E,

ρµ∗t+1 ≤ µ∗t if S∗t = 0,

ρµ∗t+1 ≥ µ∗t if S∗t =E.

(5)

Then S∗ solves the stated problem P.
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The vector µ∗ has the interpretation that, for each time t, the quantity µ∗t may be regarded as a

notional reference value per unit volume in storage at that time, i.e. the rate at which the residual

value of the store, optimally operated to time T , increases with respect to increasing the level of

the store at time t. A similar parameter is identified elsewhere in the storage literature—see, for

example, Bannister and Kaye (1991). Thus, in the condition (ii) of the theorem, Ct(x) is the cost

at time t of increasing the level of the store by x (again positive or negative) and µ∗tx may be

regarded as a current offsetting measure of value added to the store; the quantity Ct(x)− µ∗tx is

then to be minimised in x∈X.

Theorem 1 does not require the assumed convexity of the cost functions Ct. This convexity is,

however, sufficient to ensure the existence of the vector µ∗ of that theorem. This follows directly

from Theorem 2 in Section 4. It may also be deduced from strong Lagrangian convexity arguments

(see Boyd and Vandenberghe 2004 or Whittle 1971).

4. Determination of forecast horizon and optimal control

We show how to determine the running forecast horizon and to use this to construct a pair (S∗, µ∗)

satisfying the conditions of Theorem 1, so that in particular S∗ is the optimal solution to the

problem P. Specifically we show how to identify a pair of times 1≤ τ ≤ τ̄ ≤ T such that, given the

cost functions Ct, t≤ τ̄ , the initial segment ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) of the pair (S∗, µ∗) is independent

of the cost functions Ct for times t > τ̄ ; the times τ̄ and τ are then respectively initial forecast

and decision horizons (see Chand et al. 2002). We also show how to construct this initial segment,

summarising the steps in Algorithm 1. This procedure may then be restarted at the time τ to

define the next segment of (S∗, µ∗), and so on, thereby defining an algorithm for the determination

of the entire solution ((S∗1 , µ
∗
1), . . . , (S∗T , µ

∗
T )) of P.

We assume that the cost functions Ct are strictly convex; we show how to relax this assumption

in the e-companion to this paper. For any t such that 1≤ t≤ T and any scalar µ, define x̂t(µ) to be

the unique value of x which minimises Ct(x)−µx in x∈X. Then the function x̂t(·) is continuous

and increasing (though not necessarily strictly so). Again for any scalar µ, define a succession of

levels S(µ) = (S0(µ), . . . , ST (µ)) of the store (not necessarily satisfying the capacity constraints (3))

by

S0(µ) = S∗0 , St(µ) = ρSt−1(µ) + x̂t(ρ
1−tµ), t= 1, . . . , T. (6)

For each t, the function St(·) is similarly continuous and increasing and, by the definition of the

functions xt(·), the path (S0(µ), . . . , ST (µ)) automatically satisfies the rate constraints (4). Allow

also µ=−∞ and µ=∞ and, for t= 1, . . . , T , define St(−∞) =−∞ and St(∞) =∞. From (6) and

the monotonicity of the functions xt(·), for all t1 < t2,

µ1 <µ2, St1(µ1)<St1(µ2) ⇒ St2(µ1)<St2(µ2). (7)
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It is convenient to define, for each time t= 1, . . . , T , the quantities at and bt to be respectively the

upper and lower bounds on the permissible values of St, i.e. at = 0 and bt =E for t= 1, . . . , T − 1

and aT = bT = S∗T . For each time t= 1, . . . , T , let (the scalar quantity) µl,t be such that St(µ
l,t) = at;

in the event that µl,t fails to be thus uniquely defined (as may happen when the functions Ct fail

to be differentiable) take µl,t to be the maximum value satisfying the above condition; if the rate

constraints (defined by X) are such that there is no such µl,t define instead µl,t =−∞. Similarly,

for each t= 1, . . . , T , let µu,t be such that St(µ
u,t) = bt; in the event that µu,t fails to be uniquely

defined take µu,t to be the minimum value satisfying the above condition; if there is no such µu,t

define µu,t =∞. Since the functions St(·) are increasing, it follows from these definitions that, for

t= 1, . . . , T ,

µ>µl,t ⇔ St(µ)>at and µ<µu,t ⇔ St(µ)< bt. (8)

In particular

µl,t <µu,t, 1≤ t≤ T − 1, µl,T ≥ µu,T , (9)

where, since the feasible region for the problem P is assumed to be nonempty and since this would

remain the case were the capacity constraints to be dropped, µl,T and µu,T are necessarily finite.

For each t= 1, . . . , T define also

µ̄l,t = max
1≤t′≤t

µl,t
′
, µ̄u,t = min

1≤t′≤t
µu,t

′
; (10)

it is convenient to define also µ̄l,0 =−∞ and µ̄u,0 =∞. The sequence of partial maxima {µ̄l,t} is

increasing and the sequence {µ̄u,t} of partial minima is decreasing. We refer to the times t≥ 1 such

that µl,t = µ̄l,t as lower record times and the times t≥ 1 such that µu,t = µ̄u,t as upper record times.

We now define τ̄ to be the first time t≤ T such that µ̄l,t ≥ µ̄u,t. It follows from (9) that the time τ̄

is well-defined and that τ̄ ≥ 2. It further follows (see below) that exactly one of the following three

conditions holds:

(a) µ̄u,τ̄ ≤ µ̄l,τ̄−1, in which case define also τ to be the greatest lower record time t < τ̄ , and define

the parameter µ̂= µl,τ = µ̄l,τ = µ̄l,τ̄−1;

(b) µ̄l,τ̄ ≥ µ̄u,τ̄−1, in which case define also τ to be the greatest upper record time t < τ̄ , and define

the parameter µ̂= µu,τ = µ̄u,τ = µ̄u,τ̄−1;

(c) neither (a) nor (b) holds, in which case necessarily τ̄ = T ; here define also τ = T , and define

the parameter µ̂ to be such that ST (µ̂) = S∗T .

For τ̄ ≤ T −1 that exactly one of the conditions (a) or (b) holds follows from (9) and the definition

of the sequences {µ̄l,t} and {µ̄u,t}. For τ̄ = T , it necessarily follows that µ̄l,T−1 < µ̄u,T−1. Since this

implies that at the last time t≤ T − 1 such that µl,t = µ̄l,T−1, we have, from (8), that St(µ̄
l,T−1)<

St(µ̄
u,T−1), it follows from (7) that also ST (µ̄l,T−1)<ST (µ̄u,T−1). We now have that, for τ̄ = T , the
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condition (a), (b) or (c) holds according as S∗T ≤ ST (µ̄l,T−1), S∗T ≥ ST (µ̄u,T−1), or ST (µ̄l,T−1)<S∗T <

ST (µ̄u,T−1).

We now give the algorithm for the determination of the times τ̄ and τ , and hence also the

parameter µ̂. We then define also ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) by

µ∗t = ρ1−tµ̂, S∗t = St(µ̂), 1≤ t≤ τ. (11)

Iterative application of this algorithm yields a pair of vectors (S∗, µ∗) which we show in Theorem 2

satisfies the conditions of Theorem 1 and so forms the optimal solution of the problem P. Since

τ̄ , τ and µ̂ do not depend on the cost functions Ct for times t > τ̄ , it follows that τ̄ and τ are

respectively initial forecast and decision horizons.

The algorithm proceeds inductively by considering successive times 1≤ t < T (the “while” loop

of Algorithm 1). At each such time t it is checked whether τ = t (via either the condition (a) or

the condition (b) above) and if so the corresponding value of τ̄ > t is identified. Thus suppose it is

established that the time t < T is such that τ ≥ t. The latter condition implies in particular that

τ̄ > t, i.e. that µ̄l,t < µ̄u,t. It now follows from the definitions of the times τ̄ and τ above that, for

any t̄ > t, in order that τ̄ = t̄ with τ = t being defined via the condition (a) above, it is necessary

and sufficient that t should be a lower record time, i.e., from (8),

St(µ̄
l,t−1)≤ at, (12)

and further that µl,t
′
< µ̄l,t < µu,t

′
for t < t′ < t̄ and that µ̄l,t ≥ µu,t̄. Given that t is a lower record

time, it follows from (8) that these latter two conditions are equivalent to

at′ <St′(µ̄
l,t)< bt′ , t < t′ < t̄, St̄(µ̄

l,t)≥ bt̄. (13)

(Thus the steps 3.–8. of Algorithm 1 check, for the current value of t, whether τ = t via the

condition (a), and if so determine also τ̄ and µ̂ as required; in this case the algorithm then stops.)

Similarly, for any t̄ > t, in order that τ̄ = t̄ with τ = t being defined via the condition (b) above,

it is necessary and sufficient that t should be an upper record time, i.e. that

St(µ̄
u,t−1)≥ bt, (14)

and further that

at′ <St′(µ̄
u,t)< bt′ , t < t′ < t̄, St̄(µ̄

u,t)≤ at̄. (15)

(Thus the steps 9.–14. of Algorithm 1 similarly check whether τ = t via the condition (b), and if

so determine again τ̄ and µ̂; in this case the algorithm again then stops.)
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Algorithm 1 Algorithm for the determination of the initial forecast and decision horizons τ̄ and τ

respectively, and initial segment ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) of the pair (S∗, µ∗) of Theorem 1.

INPUT: S∗0 , S∗T , E, ρ, functions x̂t(µ) for t= 1, . . . , T

1: set t= 1

2: while t < T do

3: calculate µ̄l,t as given by (10)

4: for t̄= t+ 1, . . . , T do

5: if equations (12) and (13) hold then

6: set τ̄ = t̄ and set τ = t

7: set µ̂= µ̄l,t and calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

8: STOP

9: end if

10: end for

11: calculate µ̄u,t as given by (10)

12: for t̄= t+ 1, . . . , T do

13: if equations (14) and (15) hold then

14: set τ̄ = t̄ and set τ = t

15: set µ̂= µ̄u,t and calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

16: STOP

17: end if

18: end for

19: set t= t+ 1

20: end while

21: set τ = τ̄ = T

22: calculate µ̂ such that ST (µ̂) = S∗T where ST (µ̂) is given via (6)

23: calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

Finally in the event that the algorithm does not find τ = t for any time t < T (so that the

“while” loop of Algorithm 1 terminates with t= T ), then necessarily τ̄ and τ are defined via the

condition (c) above with τ = τ̄ = T . In all cases ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) is then determined as above.

For τ < T the algorithm may then be restarted at the time τ with the time 0 replaced by the

time τ and the initial level S∗0 replaced by the level S∗τ , and this process repeated at such subsequent

times as necessary in order to construct the entire pair (S∗, µ∗) = ((S∗1 , µ
∗
1), . . . , (S∗T , µ

∗
T )). We now

have the following theorem, the proof of which is given in the e-companion, and from which, as
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previously indicated, it follows immediately that the time τ̄ is indeed a forecast horizon for the

determination of the solution of P to the decision horizon τ .

Theorem 2. Under the assumed strict convexity of the functions Ct, the pair (S∗, µ∗) constructed

by the above algorithm satisfies the conditions of Theorem 1. In particular S∗ is the (optimal)

solution to the problem P.

Remark 1. It follows from the above algorithm, by considering separately the conditions (a)–(c)

for the definition of τ and using the continuity of S(µ) in µ, that the defined scalar µ̂ may be varied

by suitable variation of the cost functions Ct for t ≥ τ̄ . Then also S∗1 = S1(µ̂) necessarily varies

(at least when C1 is differentiable). In this sense the identified forecast horizon τ̄ is the shortest

possible for the identification of even (S∗1 , µ
∗
1).

Remark 2. It should further be clear from the definition of the time τ̄—and is illustrated in the

examples of Section 5—that the length of the forecast horizon is typically of the same order as

that of the time for the optimally controlled store to empty or fill. In particular when the store is

emptying and filling in a completely periodic manner, it is not difficult to see that the length of

the forecast horizon does not exceed the period of the cycle.

We now provide a simple bound for the work involved in the implementation of the above

algorithm. We assume an ability to evaluate as necessary the quantities St(µ) defined by (6). This

requires only an ability to evaluate, again as necessary, the quantities x̂t(µ) minimising Ct(x)−µx

in x ∈ X; depending on the cost functions Ct the functions x̂t may be available analytically or

numerically (in particular when Ct is differentiable x̂t(µ) is simply the value of x ∈ X whose

marginal cost C ′t(x) is closest to µ). In the determination of the initial forecast horizon τ̄ and

decision horizon τ , the algorithm is driven by the determination of the sequences {µ̄l,t} and {µ̄u,t}

up to the time τ . For the former, for each time t we have µ̄l,t = µ̄l,t−1 except perhaps where t

is a lower record time, i.e. the condition (12) holds. At such a time t we have µ̄l,t = µl,t; the

latter quantity is the defined as solution of St(µ
l,t) = at and St(µ) is (continuous and) increasing

in µ. Similar remarks apply to the determination of the sequence {µ̄u,t}. It follows from these

observations and from the specification of the algorithm as summarised in Algorithm 1 that, in the

determination of τ̄ and τ and so also of the initial segment ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) of the (optimal)

solution of P, the computation involved consists of at most 2τ one-dimensional searches for the

zero of a monotonic function—together with a finite number of simple evaluations of St(µ) for

given values of t and µ and a finite number of binary comparisons. The algorithm is now restarted

at the time τ , and so ultimately a maximum of 2T such one-dimensional searches are required in

order to determine the optimal control to the time T . In the case where the cost functions Ct have
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an appropriate analytical form, e.g. are linear or quadratic (see Section 5 for a justification of the

latter as first approximation to market impact), the quantities µl,t and µu,t may be determined

analytically and so only a finitely terminating calculation is required in the operation of the entire

algorithm.

5. Examples

We illustrate some of our results with an example storage facility which has market impact. We

use half-hourly time units and a cost series (p1, . . . , pT ) corresponding to the real half-hourly spot

market wholesale electricity prices in Great Britain for the year 2011, as supplied, along with

corresponding total GB demand data, by National Grid plc—see National Grid (2012). (Spot prices

are readily available and used for convenience; ideally one might use forward prices or forecasted

prices.) These prices show a strong daily cyclical behaviour. We assume that the store is large

enough to have market impact on prices, but small enough in relation to the rest of the network

that, at each time t, the unit price at which the store buys sufficient energy to increase its level by

x > 0 units may be approximated by a linear function pt + p′tx, where p′t ≥ 0 is a measure of the

market impact of the store on the price at that time. This linearised dependence of price on modest

variations in overall traded volumes on energy seems a reasonable first approximation to market

impact and is consistent with the existing energy economics literature—see, for example, Sioshansi

(2010, 2014) and the references therein. It follows that the corresponding cost Ct(x) is quadratic

in x. We assume the same linear dependence of price on quantity sold for x< 0; however, since the

round-trip efficiency η of the store means that it only sells back to the market a fraction η of what

it buys, the complete cost function Ct is assumed to be given by

Ct(x) =

{
(pt + p′tx)x if x≥ 0,

(pt + ηp′tx)ηx if x< 0.
(16)

In the following examples, we assume further that each p′t is proportional to the wholesale price pt

at that time, so that p′t = λpt for some λ≥ 0. This reflects the intuition that the market becomes

more price-responsive when prices are high. We assume a common input and output rate constraint

Pi = Po = P and, as before, denote by E the capacity of the store. Finally, we assume throughout

that there is no leakage from the store over time, i.e. that ρ = 1. This assumption is consistent

with the existing literature on energy storage, where round-trip inefficiency (which we do model)

is significant, but where gradual leakage over time is much less so and not usually modelled—see,

for example, Felix et al. (2012), Sioshansi (2010, 2014).

The optimal strategy associated with the cost function (16) is shown in Figure 1 (the upper

plot in each of the four panels) for various choices of parameters. We present the behaviour of the

store over the month of December. The optimisation is started at a point in time sufficiently prior
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Figure 1 Examples in which the parameters associated with the store are varied. In each case, the upper plot

shows the optimal level of storage and the lower plot shows the forecast horizon required at each stage

of the optimisation.

to the beginning of that month that the optimal behaviour of the store throughout that month

is independent of the store level at the earlier starting time. (Since the problem P is invariant

under time reversal, this “lead” interval is of the same order as the running forecast horizon for

the solution of the problem.)

The plot in panel (a) corresponds to a “base” case, with the parameter choices E = 10, P = 1,

η= 0.8 and λ= 0.05. The time E/P = 10 half-hours units for the store to completely fill or empty

and the round-trip efficiency of 0.8 correspond approximately to the Dinorwig pumped storage

facility in Snowdonia in North Wales. On the assumption that the observed relationship between

price and total GB demand throughout the period of the example is approximately that which

would also obtain at any point in time as demand was varied, the available price-demand data

appear reasonably compatible with the modelling assumption p′t = λpt. In particular the prices pt

at their daily peak are approximately twice those at their nightly minimum, and correspond to

an approximate 25 GW variation in demand. The choice of market impact factor λ = 0.05 then

corresponds to the power units of our example being a little less than 2 GW; since the parameter
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P = 1, this implicit 2 GW power unit is also the rate constraint for our example, and again

corresponds closely to that of the Dinorwig facility. The upper portion of the plot in panel (a)

shows the variation of the store level with time t, while the lower portion shows, for each time t,

the corresponding forecast horizon at that time as defined in Section 4. It is seen that, under the

optimal strategy, the store usually completely empties and fills on a daily cycle, with some lull in

activity over the Christmas period. As might then be expected (again see Section 4) the forecast

horizon necessary for an optimal decision is of the order of a day or so.

The plots in the remaining three panels of Figure 1 are each formed by varying one of the

parameters of the base case example, in each case in such a way that the store is less active.

The plot in the panel (b) corresponds to a reduction in the round-trip efficiency of the store from

η = 0.8 to η = 0.6. (The latter figure is something of a lower bound: the round-trip efficiencies of

nearly all forms of storage technologies in significant current use are in the region 0.70–0.85 (see

Manuel 2014). Here it is seen that the store level cycles less frequently and tends to remain at the

same value for longer periods of time than in the base case; further the forecast horizons necessary

for optimal decision making are significantly longer than in the base case. The plot in panel (c)

corresponds to an increase in the “market impact” factor from λ= 0.05 to λ= 0.5, while that in

panel (d) corresponds to a tightening of the rate constraint from P = 1 to P = 0.25, the resulting

ratio E/P = 40 half-hours corresponding to the Cruachan and Foyers pumped storage facilities in

Scotland. In both cases the store is almost continuously active but trades at lower volumes than

in the base case; consequently forecast horizons are considerably longer. The broad similarity of

the behaviour in these two examples may be explained by noting that an increased market impact

factor acts to slow down the activity rate of the store in much the same way as a tightening of the

rate constraint.

Finally we consider the effect of failing to account for market impact when the latter is present.

For the example here, and for the base case parameter choices E = 10, P = 1, η = 0.8, Figure 2

shows the total annual profit (negative cost) of the store as a function of the market impact factor λ,

the behaviour of the store being optimised over the entire year 2011. If the units of power of the

example are gigawatts, then the example corresponds to a store of the approximate size of Dinorwig,

and the units in which the profit is recorded are millions of pounds. Figure 2 further shows, again

as a function of λ, the corresponding profit when the behaviour of the store is optimised on the

assumption λ = 0 but in which the profit of the store is then calculated according to the actual

value of λ. The latter profit decreases linearly in λ and becomes negative at around λ= 0.12—a

value which, as argued above, is not at all unrealistic in the presence of significant storage. As

noted above, forecast horizons increase with increasing λ: mean forecast horizons for λ =0,0.05,

0.10, and 0.15 are respectively 0.87, 1.40, 2.50, and 3.26 days.
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Figure 2 Optimised annual profit as function of market impact factor λ (solid line) and corresponding annual

profit when market impact has been ignored in performing the optimisation (dashed line).

6. Conclusion

In the present paper we have developed the strong Lagrangian theory of the optimal control of

energy storage which is used for arbitrage and whose activities are sufficiently significant as to have

market impact. We have further shown how this theory may be used to determine a simple and

efficient algorithm for the identification of that control and of the associated forecast and decision

horizons. We have given examples based on real GB electricity price data and realistic storage

parameters. These show the relevance of modelling market impart to the optimal control.
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