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Abstract — To what extent can particulate random media be characterised using direct wave
backscattering from a single receiver/source? Here, in a two-dimensional setting, we show using
a machine learning approach that both the particle radius and concentration can be accurately
measured when the boundary condition on the particles is of Dirichlet type. Although the methods
we introduce could be applied to any particle type. In general backscattering is challenging to
interpret for a wide range of particle concentrations, because multiple scattering cannot be ignored,
except in the very dilute range. Across the concentration range from 1% to 20% we find that the
mean backscattered wave field is sufficient to accurately determine the concentration of particles.
However, to accurately determine the particle radius, the second moment, or average intensity, of
the backscattering is necessary. We are also able to determine what is the ideal frequency range to
measure a broad range of particles sizes. To get rigorous results with supervised machine learning
requires a large, highly precise, dataset of backscattered waves from an infinite half-space filled
with particles. We are able to create this dataset by introducing a numerical approach which
accurately approximates the backscattering from an infinite half-space.
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Under close inspection, many materials are composed of
small randomly distributed particles or inclusions. So it is
no surprise that the need to measure particle properties,
such as their average size and concentration, spans many
physical disciplines. For quick non-invasive measurements,
waves, either mechanical, electromagnetic or quantum, are
the preferred choice. However, measuring a broad range of
particle concentrations and sizes is still an open challenge.
For high concentrations the wave undergoes multiple scat-
tering, which requires specialised methods to compute and
interpret. And further, measuring a wide range of parti-
cle sizes means a wide range of frequencies needs to be
considered.

The type of wave used depends on the type of particle:
acoustic waves are used to measure liquid emulsions [1],
sediment on the ocean floor [2] and polycrystalline ma-
terials [3]. Microwaves are vital in remote sensing of

ice [4]; optics for aerosols [5] and cellular components,
both micrometer [6] and nanoscale [7] structures, among
many other applications. In all these applications, there
are cases when transmission experiments are impractical,
because either the material is too opaque or, for example,
has an unknown depth. The next natural choice is to use
reflected, or backscattered, waves.

Here we ask: can one source/receiver measure the prop-
erties of a random particulate medium? And is it possible
to do so without measuring the backscattering for a range
of scattering angles, and without knowing the depth of the
medium?

Figure 1 illustrates a backscattered wave in time mea-
sured at one point in space. We consider only elastic scat-
tering, and scattered waves that have the same frequency
as the incident wave. We show that, with this simple
setup, it is possible to recover a wide range of concentra-
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Fig. 1: (Colour online) The snapshot above is of a plane-wave
pulse being backscattered by the grey particles, in the region
x > 0, after time ¢ = 20 (non-dimensional). The incident pulse
originated at the line x = xr, then travelled towards the parti-
cles and was then backscattered. The blue line graph shows the
amplitude measured at (zg,0) over time, where around time
t = 25 the backscattered waves begin to arrive. The particles
occupy 10% of the volume and around 150 particles were used
for these simulations.

tions and particle radiuses, even including particles with a
sub-wavelength radius. We also identify which part of the
backscattered signal is sensitive to the concentration and
particle radius. To achieve these goals, we use learning
curves from supervised machine learning, and, in doing
so, we also show how to accurately predict particle radius
and concentration from backscattered waves. Supervised
machine learning in similar contexts has already shown
great promise [8,9]. See [9] for a summary of machine
learning applications in remote sensing.

The long-term goal is to develop a device, as simple as
possible and with little prior information, that can deter-
mine the statistical properties of the particles for a broad
range of random media. To do so will require theoretical
predictions, experiments and simulations of backscattered
waves. A supervised learning approach can then easily
combine data from these different sources to produce an
algorithm that predicts particle statistics. Here we take
the first step towards this goal, by using simulated data,
as it is the most accurate for a broad range of media.

The most common approach to determine particle prop-
erties from backscattering, to date, is to adjust the param-
eters of a mathematical model until it fits the measured
backscattering [2,10]. Ideally, these two approaches could
be combined to produce an accurate method valid for a
large range of parameters.

Simulating near-surface backscattering. — We
consider a simple setting with Dirichlet boundary
conditions, that is, where the scalar wave-field w = 0 on
the boundary of the particles, which for acoustics corre-
sponds to zero pressure, for elasticity corresponds to zero
displacement and for electromagnetism corresponds to
zero electric or magnetic susceptibility, depending on the
polarisation. This case is particularly challenging for many
of the current theoretical approaches, as they can lead to
unphysical results, even for low frequency and low concen-
tration, as we demonstrate below. We restricted ourselves
to two dimensions to lighten the computational load,
which is qualitatively similar to three dimensions [11]. In
the conclusion we discuss extensions to three dimensions.

Consider an incident plane wave e*(@=2r=1) where k is
the wave number of the background medium, and we have
non-dimensionalised by taking the phase velocity of the
background to be 1. We non-dimensionalise because the
theory applies to many different applications. The total
wave w = eF@=Tr=t) L 4 satisfies the two-dimensional
scalar wave equation, where u is the backscattered wave
from the particles within the half-space > 0 and (z g, 0)
is the receiver position, such as shown in fig. 1. If the
receiver is close to the particles, then near-field effects will
dominate and many realisations will be needed to calculate
the statistical moments. To avoid this, we choose zgp =
—10. We use a for particle radius, n for number of particles
per unit area (concentration) and ¢ = a?mn for volume
fraction, and consider a wide range of media:

1% <¢p<21%, 02<a<20 and 0<k<I,

(1)
for instance, these values are typically used in emulsions,
suspensions, and for atmospheric aerosols.

For random media it is convenient to use the moments
of u. That is, if A represents one configuration of particles,
then u = u(A) depends on A and its ensemble average is
(u) = [u(A)p(A)dA, where p(A) is the probability of the
particles being in the configuration A, then the central
moments are

{uhn = ((u — (u)))M/". (2)

We will now associate each medium with a fixed particle
radius, concentration and set of moments (u) and (2).
There are many specialised methods to determine these
moments [12-16]. Those that accurately calculate (u);
for a broad frequency range require (u), and a com-
mon approximation of (u) is to assume that (u) =
e inside the random media, for some effective wave
number k,. For small volume fraction ¢ and direct
backscattering [17,18] this approximation leads to (u) =
—ig(ma®k®)71 Y, Ty (ka)/Hy (ka)e! ™™=k where J,, and
H, are a Bessel and Hankel function of the first kind.
However, this approximation diverges when a — 0, while
¢ is fixed, and leads to the unphysical result |[(u)| > 1.
Even rigorous methods [12], deduced for moderate vol-
ume fraction, present the same problem. This problem is
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Fig. 2: (Colour online) The backscattering of the incident wave
e 0Me—2r=D" from particles of radius a = 0.2 occupying ¢ =
20% of the volume. Left: backscattering from five different
configurations. Right: the moments of 756 configurations. The
height of the black line is (u) the mean response, while the
total thickness of the green and red regions are the second (u)2
(standard deviation) and fourth (u)s4 (kurtosis) moment.

a result of strong scatterers, with w = 0 on their bound-
aries, completely reflecting waves at low frequencies for
any particle volume fraction. This can be seen by inves-
tigating the effective properties [19,20]. The consequence
is that series expansions of (u) for small volume fractions
do not converge for scatterers with w = 0 on their bound-
aries. For other strong scatterers with w =~ 0 on their
boundaries, this series converges very slowly.

It may be possible to accurately describe backscattering
from strong scatterers with integral methods that are valid
for any volume fraction [21,22]. Though, we note, that
methods derived from Lippmann—Schwinger—type equa-
tions are not formally valid for scatterers with discon-
tinuous material properties [23], such as strong acoustic
scatterers.

To accurately determine all the moments over the
range (1), we use a numerical approach based on the
multipole method [24] to calculate u(A) for each con-
figuration A, from which we determine the (u), with
a Monte Carlo method!. In all our convergence tests,
truncation errors and benchmarks were within 1% accu-
racy for each simulation. In the supplementary material
Supplementarymaterial.pdf (SM) we explain how to re-
produce our results, including high-performance software
to simulate the backscattering [26] and implement the ma-
chine learning. The data used in this paper is also publicly
available [27].

Approximating the backscattering from an infinite
halfspace, with a limited computational domain, is chal-
lenging. To overcome this challenge we calculate the
backscattering of the incident time pulse e=0-1(z=2r—1?,
which, for wave numbers 0 < k < 1, results in less than
1% Gibbs phenomena, and receive the backscattering at
(xRr,0). By only receiving the signal for ¢ < 98, we can
exclude from the simulation all particles that would take
more than ¢ = 100 for their first scattered wave to arrive
at the receiver (zg,0). That is, we need only simulate par-
ticles that are near the surface, which is why we call this
near-surface backscattering. See fig. 2 for the incident time

1The alternative would be to piece together different theoretical
methods, whose range of validity is not clear [25].

e
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Fig. 3: (Colour online) An overview of the moments of the
direct backscattering of the incident wave shown in the top
right. Each graph shows —1 < y < 0.35, while the z-axis shows
time 9.5 <t < 98. Each column has the same volume fraction
¢, while each row has the same particle radius a, except in the
top right which is shown to the same scale as the moments,
but with time —9.5 <t < 78 and —0.35 <y < 1.0.

pulse and for (u), (u); and (u)4, where we include (u)4 as
it is known to be sensitive the micro-structure [16,28].

In total we simulated the moments of 205 different
media, evenly sampled from (1), which required 83000
backscattering simulations —each corresponding to one
configuration A. For the larger simulations up to 7600
particles were used. To estimate the quality of the calcu-
lated moments, we used the standard error of the mean.
See fig. 3 for an overview of the simulated moments.

Learning from backscattering. — With a
high-quality data set of backscattered waves, we can
now use supervised machine learning to generate a model
that best fits the radius and a separate model that best
fits the concentration. To test these models, we use them
to predict the concentration and the radius of yet unseen
media using only backscattered waves as input. Our
supervised machine learning method of choice is kernel
ridge regression [29,30], because when using continuous
kernels it can fit any continuous function [31]. This allows
us to establish whether the radius or the concentration
are continuous functions of (u) or (u)s or both. In other
words, we can determine which moments are needed to
predict the radius and concentration. We present the
results for concentration, instead of volume fraction,
because it can be accurately predicted from just (u).

Our training set consists of the simulated backscattered
moments of 205 different media. Using this training set we
train a model, that is to say, we use kernel ridge regression
applied to the training set to generate a model. The hy-
perparameters of the ridge regression were selected using a
7-fold cross-validation. To determine the predictive power
of our model, we generate a test set with 81 randomly cho-
sen media with radius 0.2 < a < 2.0 and volume fraction
1% < ¢ < 21%. Every medium of the test set is distinct
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Fig. 4: (Colour online) This figure shows that to accurately
predict concentration requires only (u), but to accurately pre-
dict the particle radius requires also second moment (u)2. The
top two models were trained using only the mean (u), while
the bottom two were trained using the mean (u) and second
moment (u)2. The best prediction for the concentration gives
R? = 0.98, which results from using low wave numbers, dis-
cussed later.

from the training set. To measure the goodness of fit, we
use the R? coefficient with respect to the mean of the test
set. If R? = 0, then the model has the same predictive
power as the mean of the test set, while R? = 1 shows
that the model has perfect prediction. Finally we tested
two continuous kernels, the Gaussian (or radial basis) and
the Ornstein-Uhlenbeck kernel. Both kernels gave simi-
lar scores through cross-validation, though the Ornstein-
Uhlenbeck kernel had a slightly better R? coefficient on
the test set, so we only report these results.

Results. — We train two models using only (u), one to
predict the concentration and one to predict the radius,
see the top graphs of fig. 4. The top left and top right
graphs show the scatter plot of the concentration and ra-
dius of the test set against the predicted concentration
and radius, respectively. The prediction for the concen-
tration is almost perfect, with R? = 0.96. On the other
hand, the prediction for the radius is almost meaningless
with R? = 0.53. The failure of the first moment (u) alone
to predict the radius is significant, as it indicates that the
radius is not a continuous function of (u).

To accurately predict the radius, the second moment
was necessary. Indeed, training a model on the first and
second moment resulted in an accurate prediction of the
radius with R? = 0.93, see the bottom right panel of fig. 4.

To show that our results, such as the top right panel
of fig. 4, are not due to insufficient data, and likely ex-
tend beyond our data set, we examine the learning curves.
A learning curve shows the R? coefficient as the quality
of the data is increased. For example, if it was possi-
ble to predict the radius from only (u), then the model’s
R? coefficient would increase when improving the training
data’s quality. Contrary to this, if the R? coefficient does

1o, e . R pe— o —
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e -
B ——+—— concentration g
'S 0.6 £ 064
& &
£ ~—— £
o~ oy ——+—— concentration
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Fig. 5: (Colour online) This figure shows how increasing the
maximum wave number does not lead to better predictions of
particle radius when measuring (u). That is, for each point
(z,y) on the graphs, we limit the incident wave numbers of the
training and test set to 0 < k < z, which results in y = RZ.
On the left (right) we used a model trained on only (u) ({u)

and (u)2).
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Fig. 6: (Colour online) This figure shows how well the particle
radius and concentration are predicted, R?, when changing the
quality of the training data. The test set was fixed with a
relative standard error of the mean of 10%. The top two graphs
increase the number of simulations per medium, resulting in a
change of the relative standard error of mean (u) on the z-axis.
The bottom graphs increase the number of media, shown as a
percentage of the full training data on the z-axis. The model
on the left (right) was trained using only (u) ({(u) and (u)2).

not increase, or if there is no clear trend, then the model
cannot predict the radius, no matter the quality of the
training data.

We vary the quality of the training data by changing:
the number of media, the number of simulations for each
medium, and by limiting the maximum wave number k of
the incident wave. For every change in the training data
we re-train the model of the radius and the model of the
concentration. The resulting learning curves are shown in
figs. 5 and 6. The graphs on the left of all these figures
are the result of using a model trained only on (u), and
from them we see that the R? of the radius model does
not tend to 1 when increasing the training data quality.
The simplest explanation for this is that (u) does not by
itself carry information about the radius. On the other
hand, the graphs on the right of figs. 5 and 6 are models
trained on (u) and (u)s, and clearly their R? for the radius
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converges to R? = 1. In contrast, the concentration is
accurately predicted from (u) even when using either 30%
of the number of training media, having large standard
errors of the mean, or using only wave numbers k£ < 0.1.
In fact limiting 0 < k& < 0.1 leads to an R? = 0.98 for the
concentration.

Finally, from fig. 5, we see that the learning curve sat-
urates around a maximum wave number of 0.8. This in-
dicates that 0 < k£ < 0.8 is the ideal range to measure
particles in the range 0 < a < 2.

Conclusions. — Our results indicate that the first di-
rect backscattered moment (u) does not carry information
about a broad range of particle radiuses, for strong scatter-
ers. However, the second moment (u)s does carry this in-
formation. On the other hand, the particle concentration
can be accurately predicted from just (u). We also demon-
strated that only incident wave numbers 0 < k < 0.8
are needed to accurately measure particles with radius
0 < a < 2. This implies that neither theory, simula-
tion or experiments need go beyond ka = 1.6, at least for
strong scatterers. This also means that we are able to ac-
curately recover radiuses that are 20 times smaller than
the smallest incident wavelength.

In this study we did not consider limitations in spatial
and temporal resolution, which, of course, are important
in practice. However, before specialising to one particular
scenario, i.e., typical acoustics and light scattering exper-
iments, we need to know what is possible to measure or
not in an ideal setting. Studies like these are therefore a
vital first step. Another important step is to quantify how
uncertainties in the measurements affect the prediction of
the particle properties. This can be achieved by using
Guassian process regression [32], which is, in a sense, a
Bayesian version of kernel ridge regression.

Ultimately, our machine learning model could be em-
bedded into a device to predict particulate properties.
Though our model is initially trained on simulated data,
our training procedure is simple enough that the model
can be updated using real data. This step of adapt-
ing models trained on simulated data to real applications
has been applied to challenging problems such as robotic
grasping [33], facial recognition [34], 3D pose inference [35]
and optical flow estimation [36] to name a few. These
applications have advanced in strides by using simulated
data, and we see a similar potential for characterising ran-
dom media, such as this work.

Both the simulation (near-surface backscattering) and
machine learning approach we have presented could be ap-
plied to characterise any type of particulate material from
wave backscattering. To extend our approach, to 3D and
other types of particles, computational efficiency is im-
portant. Simulating the backscattered moments would be
faster if the multilevel Monte Carlo methods [37] and fast
multipole methods [38] were used. For instance, it may be
possible to measure the physical properties of the parti-
cles, as well as the size and concentration. Another avenue

to create more backscattering data is to piece together dif-
ferent theoretical models, which could then be validated
with the numeric approach we introduced: near-surface
backscattering in time.
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