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Abstract 

 

We show that catalyst pre-treatment conditions can have a profound effect on the chiral distribution 

in single-walled carbon nanotubes chemical vapor deposition. Using a SiO2-supported Cobalt 

model catalyst and pre-treatment in NH3, we obtain a comparably narrowed chiral distribution with 

a downshifted tube diameter range, independent of the hydrocarbon source. Our findings 

demonstrate that the state of the catalyst at the point of nanotube nucleation is of fundamental 

importance for chiral control, thus identifying the pre-treatment atmosphere as a key parameter for 

control of diameter and chirality distributions. 
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1. Introduction 

 

It is well known in heterogeneous catalysis1 in general and in catalytic chemical vapor 

deposition (CVD) of carbon nanotubes2,3 in particular that catalyst pre-treatment conditions can 

strongly affect the properties of the products of the catalyzed reactions. Here, we use a model 

catalyst system for growth of single-walled carbon nanotubes (SWNTs) to study such an influence 

of catalyst pre-treatment on the chiral distribution of the grown SWNTs. 

The remarkable thermal, mechanical and electronic properties of single-walled carbon 

nanotubes are specifically related to their structure, which is uniquely described by their individual 

chiral index (n, m).4 Controlling structural selectivity during the synthesis would thus be beneficial 

for many of the potential applications of SWNTs. A large range of recent reports concentrated on 

growth of SWNTs with a narrow (n, m) distribution by CVD, as this synthesis method is the most 

versatile and promising technique not only in terms of bulk production but also for device 

integration.5–9 

It has previously been suggested that, after an initial pre-treatment step before hydrocarbon 

exposure that determines the distribution of catalyst particle sizes/faceting/reconstructions, two 

factors control the chiral distribution in CVD (Figure 1). First, at the point of SWNT nucleation, the 

relationship between the size/faceting/reconstruction of a given catalyst nanoparticle and a given 

nanotube cap leads to nucleation of a particular (n, m) cap.10–12 Secondly, during continued growth 

of the nanotubes, the growth rate for an already nucleated nanotube can vary with its chiral index.13–

15 This will in turn modify the material fraction of nanotube material with a particular (n, m) in a 

bulk SWNT sample. Thus, the eventual chiral distribution of the nanotube material after CVD, as 

measured by techniques like Raman spectroscopy, is the result of both factors, where it is still under 

debate which factor is governing. 

Chiral selectivity in CVD has previously been achieved by very specific multi-component 

catalyst and/or support designs, including bimetallic catalysts16–22 or mesoporous supports.23–31 

Alternatively, for a given catalyst/support combination, empirically optimized temperature 

profiles26,32–35 or specific growth36–40 or pre-treatment atmospheres12 have resulted in narrowing of 

the dispersion of (n, m) indices. For instance, engineering of the pre-treatment gas mixture 

(Ar/He/H2/H2O) has been shown to result in an increased fraction of metallic SWNTs12. It has also 

been reported that the type of carbon precursor during CVD has an impact on the resulting SWNT 

chiral distribution.17,37,41,42 Likewise, the addition of small amounts of ammonia (NH3) during 

growth was recently shown to change the chiral distribution towards large diameter (n, m)43 for 

SWNT growth and to induce an "epitaxial" growth mode for multi-walled nanotubes.44,45 However, 

the actual mechanisms behind the beneficial effects of the various add-elements and gaseous 
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species, and whether these act during nucleation or growth or during both stages, remain largely 

elusive. This incomplete understanding is mainly caused by the tremendous complexity of the 

multidimensional parameter space of catalyst components, support properties, pre-treatment and 

growth gas mixtures and temperature profiles, where each of these factors could potentially change 

(n, m) distributions. 

Here, to isolate the effect of the catalyst pre-treatment, we use a simple monometallic Co 

catalyst on SiO2 wafer support and expose this model catalyst to a two-step CVD process (Figure 

2a). First, we pre-treat in pure NH3 or, for reference, vacuum or Argon (Ar), which is then followed 

by exposure to an undiluted hydrocarbon species (C2H2 or Ethanol vapor). Multi-wavelength 

Raman spectroscopy on the as-grown SWNTs reveals that for both hydrocarbon precursor gases the 

pre-treatment in NH3 consistently narrows the obtained diameter range and chiral distribution 

towards smaller diameter SWNTs. This suggests that the state of the catalyst particle before 

hydrocarbon exposure and nanotube nucleation is of key importance for the resulting chirality 

distribution. Thus, optimization of the pre-treatment atmosphere is shown to be a crucial parameter 

to control chiral selectivity in CVD. 
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2. Experimental Details 

 

We prepare the model catalyst by thermal evaporation of a Cobalt film, nominally 0.1 nm 

thick, onto silica (SiO2, 200 nm) coated Si wafers. Nominal thickness is measured by an in-situ 

quartz crystal microbalance. Note that the Co film is oxidized during subsequent sample 

transfer/storage in ambient air.32 A custom-built low pressure chemical vapor deposition system is 

employed for CVD (base pressure 10-6 mbar). See Figure 2a for a schematic sketch of the process: 

Firstly, the Co catalyst film is annealed at 700 ºC in undiluted NH3 (10-3 mbar for C2H2 growth and 

5 mbar for Ethanol growth, ramp up in gas 1 min, hold time at temperature 4 min). The NH3 pre-

treatment is compared to pre-treatment anneals in vacuum (10-6 mbar, ramp up in vacuum 1 min, 

hold time at temperature 4 min) or undiluted Ar (10-3 mbar for C2H2 growth, ramp up in Ar 1 min, 

hold time at temperature 4 min). Secondly, the pre-treatment is directly followed (after short pump 

to vacuum, gas exchange time < 30s) by nanotube growth at 700 ºC in either undiluted acetylene 

(C2H2, 10-3 mbar controlled via mass-flow controller) or undiluted Ethanol vapor (CH3CH2OH, 5 

mbar, provided via leak valve from liquid Ethanol reservoir at room temperature). Growth time is 

15 min, after which the hydrocarbon gas is pumped out and the sample is left to cool in vacuum to 

room temperature (~20 min). Note that great care was taken to exclude gas atmosphere related 

cooling effects by cross-checking the sample temperature with a combination of pyrometric and 

thermocouple measurements and adjustment of the electric current through the resistive sample 

heater to obtain a constant temperature across the various treatments.  

The resulting nanotube morphology is characterized by scanning electron microscopy (SEM, 

FEI XL30). The morphology of samples that only underwent pre-treatment (i.e. no hydrocarbon 

exposure) is characterized using atomic force microscopy (AFM, Veeco Dimension in non-contact 

mode). 

Structural assignments of the SWNTs are done by multi-wavelength Raman spectroscopy 

for eight different excitation energies from 1.96 - 2.66 eV. We employ two Raman systems; a 

confocal triple monochromator setup (Dilor XY800) for 2.18 and 2.41 - 2.66 eV, and a Labram 

(HR800, Horiba Jobin Yvon) for 1.96 and 2.33 eV. The monochromated Dilor setup does not 

employ a notch-filter allowing to measure down to low wavenumbers, while the Labram setup has a 

notch-filter cut-off at ~180 cm-1 for 1.96 eV and at ~140 cm-1 for 2.33 eV. All Raman measurements 

are in backscattering geometry and recorded with a charge coupled device on as-prepared SWNTs 

samples. We convert radial breathing mode (RBM) peaks in the Raman spectra to diameters.46 

Assignment to chiral indices (n, m) is done by including the obtained diameters together with the 

excitation energies Elaser in a theoretical Kataura plot.47,48 The abundance A(n, m) of an individual (n, 

m) is estimated by:32 
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with the RBM intensity Iexp(RBM), the Si peak Raman intensity ISi and the maximum Raman 

intensity Itheo(n, m) by theory.48 See ref. 32 for details and limitations of the methods used for 

assignment and abundance estimation. We note that we cross-checked Raman signatures across 

several spots for each sample for selected wavelengths and also confirmed for selected growth 

conditions and selected wavelengths that RBM signatures are reproducible for repeated CVD runs, 

indicating that our measurements indeed capture generic chiral distributions for the growth 

conditions used. We also note that we have previously confirmed that nanotube diameters derived 

by our RBM analysis method are in good agreement with high-resolution transmission electron 

microscopy derived diameters.32 

As a general comment, we note that chiral abundance estimations have to always be 

considered with respect to the method with which they were measured. Integral characterization 

techniques such as Raman spectroscopy (as used here), optical absorption spectroscopy and 

photoluminescence excitation spectroscopy17,29–32,42 probe the material fraction of chiral distribution 

in a given bulk SWNT sample. This implies that these integral techniques do not probe the number 

fraction of SWNTs with a given (n, m), unless all probed tubes are of roughly the same length. In 

contrast, point-localized probes such as electron diffraction39,41,43,49 probe individual tubes and thus 

statistics from such point probe techniques commonly provide number fractions of SWNTs with a 

particular (n, m), unless the length of tubes is considered. 
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3. Results 

 

For all NH3 and vacuum pre-treatments nanotubes are grown in entangled form and 

homogeneously cover the entire wafer surface (SEM micrographs in Figure 2b). A semi-quantitative 

estimation of nanotube yield based on Raman intensities (ratios of nanotube G-peak and Si-

substrate-peak intensities I(G)/I(Si) quoted in Figure 2b) shows that for both C2H2 and Ethanol 

growth the vacuum pre-treatment results in a thicker film/higher coverage of entangled nanotubes 

compared to NH3 pre-treatment i.e. vacuum pre-treatment results in increased nanotube yield. 

Comparing the hydrocarbon sources, Ethanol consistently gives a somewhat higher yield than C2H2. 

In contrast, pre-treatment in Ar resulted in a much lower yield of only sparse nanotubes. 

The result of the chiral assignment for the C2H2-based growth is summarized in Figure 3 

comparing pre-treatment in NH3 (Figure 3a) and vacuum (Figure 3c). The multi-wavelength Raman 

spectra, which are used for the assignments, are shown alongside the chiral maps for both pre-

treatment conditions in Figure 3b and Figure 3d, respectively. For each pre-treatment condition 34 

(n, m) are assigned, but the diameter range for NH3 pre-treatment based on the (n, m) is 0.68 - 1.39 

nm, whereas the diameter range for tubes grown after vacuum pre-treatment is larger with 0.63 - 

1.49 nm (note that the data for vacuum pre-treated growth by C2H2 is taken from ref. 32). We note 

that for C2H2 growth substitution of the NH3 pre-treatment with inert Ar pre-treatment at the same 

total pressure resulted in a strongly reduced growth of nanotubes (which we attribute to incomplete 

formation of active catalyst nanoparticles, see below), impeding chiral assignments for these 

conditions. 

Assigned (n, m) alongside the multi-wavelength Raman spectra for Ethanol-based growth 

are shown in Figure 4 for the pre-treatment in NH3 (Figure 4a,b) compared to vacuum pre-treatment 

(Figure 4c,d). Here, the NH3 pre-treatment results in 39 (n, m) with a diameter range of 0.64 - 1.56 

nm. In contrast, the vacuum pre-treatment yields an assignment of 47 different (n, m) in a diameter 

range of 0.75 - 1.87 nm. We note that for vacuum pre-treated growth by Ethanol the large diameter 

tubes (≥1.7 nm) are extremely difficult to assign because of a strongly increasing number of 

assignment possibilities.32 However, the Raman intensity for tubes in this range is rather low and 

thus the influence on the overall abundance of the (n, m) ensemble is small. 

The estimated abundance is shown by the column height (Figure 3a,c and Figure 4a,c), with 

(n, m) of abundance ≤1% shown in faded blue. Additionally the abundance is plotted as function of 

the SWNT diameter in Figure 5. Note that the raw data of the chiral maps is tabulated in the 

Supporting Information. 

For the C2H2-based growth with NH3 pre-treatment the most abundant tubes are the (6,5) 

(34.5%), (7,5) (14.8%) and (9,2) (8.4%). About 82% of all tubes are semiconducting and 76% of all 
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tubes are in the very narrow diameter interval of 0.75 - 0.90 nm, and we note that only 5 chiralities 

can account for 68% of all tubes. This compares to a wider chiral distribution for C2H2 growth after 

vacuum pretreatment, where the most abundant tubes are the (7,5) (14.3%), (7,6) (11.4%) and 

(10,9) (10.5%). The diameter interval in which about 76% of all tubes are found, is larger with 0.75 

- 1.28 nm. The amount of semiconducting tubes is slightly reduced to 76% and only about half of 

all tubes (53%) are made up by the five most abundant (n, m). Thus for C2H2 growth the NH3 pre-

treatment results in a narrowing of both the chiral distribution and of the SWNT diameter range 

towards smaller diameters. 

The SWNTs grown by Ethanol show a similar behavior. For growth after pre-treatment by 

NH3 the most abundant chiral indices are (7,6) (11.2%), (7,7) (10.5%) and (10,9) (7.7%). The 

majority (75%) of all tubes are in the diameter interval of 0.75 - 1.26 nm and 74% are 

semiconducting. The pre-treatment in vacuum prior to Ethanol growth results in a wider chiral 

distribution and the most abundant chiral indices are (14,9) (12.5%), (9,8) (10.0%) and (10,9) 

(8.9%). About 77% of all tubes are in the diameter range of 1.15 - 1.87 nm and 78% are 

semiconducting. As above for C2H2, the NH3 pre-treatment narrows and downshifts diameter and 

chiral range also for Ethanol growth. 

We note that the overall tube diameter range for Ethanol growth is larger than for C2H2 

growth despite having similar pre-treatment conditions. Generally, highly abundant tubes are 

mainly found at large chiral angles, which is in good agreement with literature for both 

experiment16–21,25,27,34,39 and theory.11,13,15 This may be related to higher growth rates.14 

It has previously been reported that catalyst particle size distributions can change as a 

function of temperature26,32 (constant in this study) as well as pre-treatment atmosphere.50,51 Such 

pre-treatment atmosphere dependent differences in catalyst particle size distributions may in turn 

determine the resulting nanotube diameters. Therefore, we compare catalyst particle sizes for our 

pre-treatment conditions. In Figure 6 we study samples that only underwent pre-treatment (i.e. no 

hydrocarbon exposure) in NH3 or vacuum. Our AFM analysis shows that under our processing 

conditions both NH3 and vacuum pre-treatments give similar distributions of nanoparticle sizes. 

This suggests that under our low pressure pre-treatment conditions the particle size distribution is 

mainly determined by the annealing temperature. This may be related to interfacical stabilistation of 

Co nanoparticles on SiO2, as we have previously shown by in-situ X-ray photoelectron 

spectroscopy.32 
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4. Discussion 

 

Figure 1 had summarized the current model for chiral selectivity selection during CVD: 

First, the selective nucleation of (n, m) nanotube caps results from a relationship between a given 

nanotube cap and the size/faceting/reconstruction of a given catalyst nanoparticle at the point of 

nanotube nucleation.11,12 The size/faceting/reconstruction distribution of a catalyst nanoparticle 

ensemble is in turn determined by the pre-treatment conditions. During further growth of the 

nanotube, the chiral index (n, m) of the initially nucleated cap is then kept because of the high 

energy cost for a change of chirality of an entire nanotube. Therefore, the initial number fraction of 

an individual (n, m) in a nanotube ensemble is determined at the point of nucleation. Secondly, 

however, the growth rates of already nucleated nanotubes can vary with their chiral indices. These 

inhomogeneous growth rates may either be caused by easier addition of carbon atoms to some (n, 

m)-tubes13–15 or by etching effects induced by the process conditions.43 Growth-rate effects will 

influence the material fraction of nanotube material with a given (n, m) within a SWNT bulk 

sample. Thus, the resulting overall abundance (material fraction of nanotube material) of a given 

chiral index (n, m) in a nanotube ensemble results from (n, m)-selective effects during both 

nucleation and growth. It is still under debate whether nucleation or growth-rate effects are 

governing obtainable nanotube chiral distributions. We now discuss our observations in light of this 

question. 

Most importantly, our observation that for constant hydrocarbon exposure conditions the 

diameter range and chiral distribution can be narrowed and downshifted by simply changing the 

pre-treatment condition (NH3 versus vacuum) strongly supports the idea that the state of the catalyst 

at the point of nucleation selects the initial chiral distribution. Thus optimization of the pre-

treatment environment is one of the key parameters in CVD to selectively grow nanotubes of 

particular chiral indices. 

We emphasize that in our experiments the NH3 is used only to pre-condition the catalyst 

before the carbon source is introduced into the CVD system. Therefore, the NH3 atmosphere acts on 

the state of the catalyst nanoparticles before the initial nanotube cap is formed. Our AFM analysis of 

only pre-treated samples (Figure 6) indicates no substantial differences in catalyst particle sizes 

from the different pre-treatments (NH3 vs vacuum). This implies that under our low-pressure pre-

treatment conditions not catalyst nanoparticle size differences but rather additional effects from the 

pre-treatment conditions such as faceting/reconstructions determine the resulting chiral distribution. 

When we compared NH3 pre-treatment with inert Argon pre-treatment at the same total pressure we 

found a strongly decreased nanotube growth from the Ar pre-treatment. This excludes that the total 

pressure difference between vacuum and NH3 pre-treatments is the reason for the change in 
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chirality, and rather implies a chemical interplay of the NH3 with the catalyst. Exposure of transition 

metal catalysts to nitrogen compounds can alter their subsequent carbon uptake characteristics 

during hydrocarbon exposure.44 Cobalt is a known catalyst for decomposition of NH3.52,53 At our 

CVD temperatures NH3 is know to dissociatively adsorb onto Co,54 thus reducing the Co-oxide that 

is initially present due to ambient air exposure of our films. We note however that we have 

previously shown that also the vacuum pre-treatment alone leads to full Co-oxide reduction.32 

Exposing Co(-oxides) to atmospheric pressure NH3 at 700 ºC was reported to lead to formation of 

(metastable) bulk Co nitride nanoparticles55 while for smaller NH3 pressures changes in the faceting 

of metallic Co nanoclusters56 as well as changes in surface reconstructions of similar transition 

metal catalysts1,57 have been reported. We have previously studied the evolution of Co catalyst films 

(similar to the ones used in the present study) during thermal pre-treatments in NH3 for multi-

walled nanotube growth.58 There we found from X-ray photoelectron spectroscopy no evidence of 

bulk Co-nitride formation under similar NH3 pressures as used in the present study. This suggests 

that for the present conditions the NH3 treatment results in the adoption of different faceting/surface 

reconstruction distributions of the Co nanoparticles (as compared to vacuum). The differences in 

faceting/surface reconstruction distributions between pre-treatments then result in different 

distributions of chiral caps formed when the hydrocarbon is introduced (see Table of Contents 

Figure for a schematic illustration). In this context, it has also been recently suggested based on 

theoretical calculations that nitrogen-adsorption on Co catalysts can modify the binding energy 

between the nanoparticles and growing nanotube nuclei, thus modifying the resulting nanotube 

structure.59 While possible chirality dependent effects on growth rate13–15 or etching effects43 may 

also play a role during the continued CVD our data clearly shows that the chirality distribution can 

be selected by the processing prior hydrocarbon exposure i.e. by the pre-treatment. 

Our findings are consistent with previous reports concerning the differences between 

Ar/He/H2/H2O pre-treatments,12 where changes in the pre-treatment atmosphere composition led to 

changes in the SWNT chiral distribution. For the particular effect of nitrogen species, we note that 

our observed shift to smaller diameters from nitrogen-containing pre-treatment is consistent with 

recent work37,38 on acetonitrile addition during CVD that resulted in a downshift of SWNT 

diameters but different to another previous report43 where NH3 addition during growth was found to 

lead to larger SWNT tube diameters (as compared to NH3-free reference growth conditions). This 

implies that the presence of the same element/gas at different points in different CVD recipes with 

different catalyst/support combinations can have drastically different effects. 

 While both C2H2 and Ethanol both consistently showed downshifted and narrower chiral 

distributions after NH3 pre-treatment, both precursors still showed different overall yield and chiral 

distributions. This is in line with previous literature.17,39,41,42 Several suggestions have previously 
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been made to explain (n, m) dependence on carbon source: For instance, selective cap formation 

from particular intermediate carbon species provided by a particular precursor onto a particularly 

facetted catalyst nanoparticle has been suggested41 and theoretical calculations have shown that 

different intermediate carbon species (from different precursor gases) can influence resulting 

chirality.60 Alternatively, the carbon supply rate as a function of the precursor-dependent chemical 

potential/dissociation rate was suggested to select different nanotube diameters from a constant set 

of nanoparticles.61 Finally, also reactions with precursor decomposition by-products, such as 

hydrogen17 or oxygen-containing precursor fragments (e.g. –OH groups from Ethanol62,63), may 

change yield, chirality and diameter distributions between different carbon precursors. 

We have previously obtained a similarly narrow diameter distribution for C2H2 even without 

the use of NH3 from the same Co catalyst by lowering of the growth temperature to 600 ºC while 

using only vacuum pre-treatment.32 However, comparing the (n, m) distribution between these two 

similarly narrow diameter distributions, we find that vacuum/600 ºC leads to a majority (55%) of 

metallic tubes,32 while NH3/700 ºC shows a majority (82%) of semiconducting tubes for C2H2 

growth. This implies that diameter evolution and (n, m) evolution can be independently controlled 

by engineering of growth temperature and pre-treatment atmosphere as individual parameters. 

Finally we want to comment on the limitations of our study: The model in Figure 1 is 

certainly a simplification of the real situation during chiral selective nanotube growth. First, 

nucleation and growth are not as separated steps as implied by the model but are actually two 

interconnected aspects of one single process. Second, catalyst nanoparticles were previously shown 

to not remain static during hydrocarbon exposure and nanotube nucleation but rather to deform 

throughout nanotube growth.64 This implies that catalyst-support interactions will also have an 

impact on chirality selective SWNT growth, in particular since Co nanoparticles can be interfacially 

stabilised on SiO2.32 Third, catalyst nanoparticles may also change their faceting/surface 

reconstructions during the initial moments of hydrocarbon exposure (i.e. after pre-treatment but 

before nanotube nucleation occurs) due to adsorption of carbon precursor fragments.65 As a fourth 

and general point we note that a given pre-treatment (such as NH3) which changes the 

faceting/reconstruction of catalyst particles could change chiral distributions by various 

mechanisms: (a) A given catalyst particle, that is also active without pre-treatment, could nucleate a 

different chirality SWNT due to different faceting from the pre-treatment (leaving the overall 

catalytic activity unaffected, see Table of Contents Figure for a schematic illustration of this 

possible mechanism). (b) A nanoparticle that is inactive without the pre-treatment could nucleate a 

certain (additional) (n, m) when pre-treated (increasing overall catalytic activity). (c) A nanoparticle 

that nucleates a certain chirality without pre-treat could be deactivated by the pre-treatment, thus 

removing that certain chirality via pre-treatment (and reducing overall catalytic activity). 
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Coexistence of all three mechanisms (a-c) is conceivable for a catalyst particle distribution. In our 

data, the reduced nanotube yield from NH3 pre-treatments compared to vacuum pre-treatments for 

both C2H2 and Ethanol (Figure 2b) could indicate a (partial) catalyst deactivation process (as in (c)). 

However, the additional occurrence (for both C2H2 and Ethanol) of chiral indices in our NH3 pre-

treatment samples that are not present in the vacuum pre-treatment samples (Figures 3 and 4) 

excludes that catalyst deactivation is the only mechanism under our conditions and rather implies 

also catalyst activation (as in (b)) or changes in nucleating catalyst-nanotube cap combinations (as 

in (a)) from the NH3 pre-treatment. To conclusively answer which mechanism(s) are occurring 

point-localised information relating Co nanoparticle faceting and SWNT chirality for a statistically 

relevant number of nucleations would be required, which is beyond the scope of this study. 

Nevertheless, our observation that changes in catalyst pre-treatment can change the chiral 

distributions for constant growth conditions underscores the importance of catalyst pre-treatment in 

chirality-selective SWNT growth. 

 

Conclusions 

 

In summary we have shown that the chiral and diameter distribution for CVD grown 

SWNTs can be narrowed towards smaller diameters solely based on the pre-treatment conditions 

(here for NH3), independent of the growth conditions and carbon precursor. This emphasizes that 

the state of the catalyst at the point of nanotube nucleation is of key importance for future strategies 

towards chiral control in single-walled nanotube growth. 
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Figures 

 

 
Figure 1: Schematic sketch of evolution of SWNT chiral abundance, as determined by the two 

discussed factors, exemplified by illustrations for two chiralities (nx, mx) and (ny, my): (From top to 

bottom) Pre-treatment stage: Before introduction of the hydrocarbon precursor, pre-treatment 

conditions determine the state and faceting distribution of a catalyst particle ensemble. Then 

hydrocarbon is introduced: 1. Nucleation stage: First, at the point of SWNT nucleation, the 

relationship between the faceting/reconstruction of a given catalyst nanoparticle and a given 

nanotube cap leads to nucleation of a given (n, m) ensemble. This determines the initial number 

fraction of tubes with a particular chirality in a nanotube ensemble. 2. Continued growth stage: 

Secondly, during further growth of the nanotubes, chirality-dependent growth rates modify the 

material fraction of nanotube material with a particular (n, m) in a bulk sample of SWNTs. The 

focus of this study is the effect of pre-treatment on the chiral distribution, as highlighted with a 

green dashed frame in the sketch. 
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Figure 2: (a) Schematic process diagram for the two-step 700 ºC low pressure CVD growth, 

consisting of ramp up (1 min) and pre-treatment (4 min) in NH3 or, for reference, vacuum, followed 

by introduction of pure hydrocarbon (C2H2 or Ethanol vapor, 15 min). The growth process is 

followed by a cool down in vacuum (times not to scale in sketch). (b) SEM images of the obtained 

nanotubes from the different hydrocarbon (C2H2 vs. Ethanol) and pre-treatment (NH3 vs. vacuum) 

combinations. In the image labels a relative estimation for nanotube coverage for the various 

samples is given by calculating the ratio of the intensity G-peak region and the intensity of the Si-

peak at 521 cm-1 (I(G)/I(Si)). An increase in I(G)/I(Si) indicates an increase in nanotube 

yield/coverage. For Ar pre-treatment the I(G)/I(Si) ratio is ~0.9, consistent with strongly reduced 

nanotube yield in SEM (not shown) for Ar-pretreated samples. (Note that the SEM image for 

C2H2/vacuum is from the same measurements as plotted in ref. 32) 
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Figure 3: C2H2 growth – NH3 versus vacuum pre-treatment: (a) Chiral map and (b) Raman spectra 

for the SWNTs grown by NH3 pre-treatment followed by exposure to pure C2H2 at 700 ºC. (c) 

Chiral map and (d) Raman spectra for CVD by vacuum pre-treatment followed by C2H2 growth at 

700 ºC. In the chiral maps the column height indicates the abundance (with abundances ≤1% in 

faded blue). Note that the data for (c) and (d) was taken from ref 32. The raw data of the chiral maps 

is tabulated in the Supporting Information. 
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Figure 4: Ethanol growth – NH3 versus vacuum pre-treatment: (a) Chiral map and (b) Raman 

spectra for the SWNTs grown by NH3 pre-treatment followed by exposure to pure Ethanol at 700 

ºC. (c) Chiral map and (d) Raman spectra for CVD by vacuum pre-treatment followed by Ethanol 

growth at 700 ºC. In the chiral maps the column height indicates the abundance (with abundances 

≤1% in faded blue). The raw data of the chiral maps is tabulated in the Supporting Information.  

 

 19 



 
Figure 5: Estimated abundance as a function of tube diameter for all assigned (n, m) grown by 

C2H2 (left) and Ethanol (right) after pre-treatment in vacuum (red) or NH3 (green), respectively. 
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Figure 6: (a) AFM scans of samples that underwent pre-treatment in NH3 or vacuum (i.e. no 

hydrocarbon exposure but immediate cooling in vacuum after pre-treatment), confirming 

nanoparticle formation during pre-treatment both NH3 and vacuum pre-treatment (particle density 

estimated to ~1×1010 particles/cm2). Similar AFM scans of samples that underwent pre-treatment in 

Ar (not shown) exhibit in comparison only very few nanoparticles, indicating that the strongly 

reduced nanotube yield from Ar pre-treatment is due to incomplete nanoparticle formation. (b) 

Histograms of particle heights derived from the AFM scans in (a). The particle heights were 

measured using AFM image processing software and manually identifying nanoparticles in 500 nm 

by 500 nm scans. We conclude from the height histograms that no significant differences between 

particle sizes are induced when comparing NH3 and vacuum pre-treatment, indicating that the 

particle size distribution is mainly determined by the pre-treatment temperature under our low-

pressure conditions.32 (For further discussion of particle height/nanotube diameter relationships see 

the Supporting Information.) 
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