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Abstract
The non-smooth, jerky movements of microstructures under external forcing in minerals are explained by avalanche theory 
in this review. External stress or internal deformations by impurities and electric fields modify microstructures by typical 
pattern formations. Very common are the collapse of holes, the movement of twin boundaries and the crushing of biominerals. 
These three cases are used to demonstrate that they follow very similar time dependences, as predicted by avalanche theories. 
The experimental observation method described in this review is the acoustic emission spectroscopy (AE) although other 
methods are referenced. The overarching properties in these studies is that the probability to observe an avalanche jerk J is a 
power law distributed P(J) ~ J−ε where ε is the energy exponent (in simple mean field theory: ε = 1.33 or ε = 1.66). This power 
law implies that the dynamic pattern formation covers a large range (several decades) of energies, lengths and times. Other 
scaling properties are briefly discussed. The generated patterns have high fractal dimensions and display great complexity.
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Introduction

Minerals contain microstructures and much of what miner-
als can tell us about past geological processes, and about 
their own intrinsic properties, is related to microstructures. 
This balances the importance of microstructures with the 
actual crystallographic structure. Through the enormous 
progress in nanotechnology over the past decade, our per-
spective of materials in general and minerals in particular 
has shifted towards a much better understanding of micro-
structures. Microstructures cover a huge range of length 
scales from coarse twinning (mm scale), fine twins (typically 
on a micrometer scale) and tweed structures with repetition 
scales between 10 and 100 nm. On an even smaller scale we 
have structural disruptions, like kinks and domain wall bend-
ings, so-called wobbles, inside these microstructures (Salje 
et al. 2017a; He et al. 2018; Wang et al. 2018; Nataf et al. 

2020). These small disruptions appear as shifts of atomic 
positions and are typically measured on a pm scale (e.g. Van 
Aert et al. 2012 for the perovskite structure). The smallest 
range is reflected by electron microscopists who often use 
the term ‘nanoscopy’ to emphasise that the relevant scales 
for domains do not end at some micrometres. The range of 
length scales often covers some nine decades, which has led, 
in the field of correlated systems, to the hypothesis of ‘scale 
invariance’ indicating that certain aspects of microstructural 
physics are applicable over the full range of length scales.

A second development relates to the time scales on which 
microstructures change. Such changes are either induced 
by external forcing, like stress, electric or magnetic fields, 
oxygen fugacities, etc., or during creep experiments without 
external forcing (Salje et al. 2018). Geological processes 
do not always act on ‘geological’ time scales of longer than 
103 years but they can also be very fast. Structural changes 
during radiation damage, for example, take only ca. 5 femto-
seconds (10–15 s) and the propagation of a twin wall requires 
times between 10–8 s and 10–3 s in many cases. The fun-
damental question is then: what determines the origin of 
time scales? In this paper we argue that for avalanche pro-
cesses there is not a ‘typical’ time scale but, instead, a large 
dynamic range of time scales.

Microstructures often evolve in a non-smooth manner. 
The shift of a domain boundary is virtually never continuous 
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but occurs in a stop-and-go fashion. Cracks do not progress 
along straight trajectories but wobble, bifurcate and form 
complex patterns on an atomistic length scale. The appro-
priate description of such processes lies in the concept of 
avalanches. Their discovery, which was sometimes ignored 
in mineralogy, is probably the most important progress in 
the design and application of high-tech devices and covers 
a novel branch of scientific endeavour, referred to a ‘ava-
lanche science’ with several books published in this field 
(e.g. Salje et al. 2017b). Historically, its importance stems 
from the intrinsic properties of microstructures, like holes, 
inclusions, twin boundaries, dislocation lines, twin junctions 
and so on. We know today that a transistor, as an example, 
does not need bulk materials to operate but is often local-
ized in tiny areas inside twin boundaries or near junctions 
between boundaries. The same holds for ferroic memories 
and memristive conductors (Salje et al. 2017a; He et al. 
2019; Bak et al. 2020; Lu et al. 2020a; Zhang et al. 2020; 
Salje 2021) where only a few atoms near domain bounda-
ries move. The diameters or thicknesses of these functional 
regions are a few inter-atomic distances (Lu et al. 2019, 
2020b; McCartan et al. 2020). Emerging properties such 
as ferroic memory elements are based inside twin bounda-
ries while the surrounding crystal matrix is simply there to 
keep domain walls in place (Salje et al. 2016c; Salje 2020). 
Predesigned domain wall structures are constructed in the 
field of ‘domain boundary engineering’, which has become 
a very powerful approach in many recent applications (Salje 
2010). We will allude to its relevance in mineral physics in 
this paper.

Most examples in this review are taken from the field 
of mineral physics. If the reader wishes to pursue the topic 
further for other minerals, we recommend consulting Salje 
and Dahmen (2014) as a reference paper which includes the 
major ideas of physical avalanche systems.

Avalanches

Crackling noise is encountered when a material is subjected 
to external forces with jerky responses spanning over a wide 
range of sizes and energies. The Barkhausen effect of pinned 
domain walls (Harrison et al. 2002; Robinson et al. 2002; 
Roberts et al. 2017, 2019) during magnetization processes 
(Durin and Zapperi 2006), martensitic transitions (Vives 
et al. 1994; Gallardo et al. 2010), plastic deformation in sol-
ids (Csikor et al. 2007; Weiss et al. 2007; Salje et al. 2009; 
Puchberger et al. 2017, 2018), or materials failure (Zapperi 
et al. 1997; Aue and De Hosson 1998) is well documented. 
Upon variation of an external field, avalanches show a spec-
tacular absence of time and length scales. Crackling noise 
is often related to critical behaviour of avalanches, which 
stem from intrinsic inhomogeneities or by jamming of 

microstructures (Salje et al. 2011a). In all these cases one 
finds that the internal structures of the domain boundaries or 
the domain patterns display a high degree of complexity—
very much in contrast to the early perception of Barkhausen 
noise (Barkhausen 1919; Tebble et al. 1950).

Crackling noise avalanches, like the well-known snow 
avalanches, are collective motions, which follow well-
defined statistical rules while their exact time-dependent 
behaviour of any part of the avalanche remains unknown. 
Collapse avalanches have been thoroughly analysed in 
porous minerals, like SiO2 based glass (Vycor) (Salje et al. 
2011b), goethite (Salje et al. 2013), porous alumina (Cas-
tillo-Villa et al. 2013) and berlinite (Nataf et al. 2014b), to 
name just a few prototypic examples. Their statistical char-
acteristics share many similarities with seismicity such as 
the Earth crust failure due to stresses originated from plate 
tectonics (Davidsen et al. 2007; Kawamura et al. 2012). 
These similarities go beyond the avalanche statistics and 
include the statistics of aftershocks and waiting times of 
acoustic emission or earthquakes (Baró et al. 2013). More 
specifically, it is shown that the Gutenberg–Richter law, the 
modified Omori’s law, the law of aftershock productivity 
and the universal scaling law for the waiting time distri-
bution typically used in statistical seismology hold for all 
avalanches, often in a broad range of at least six decades 
of jerk energies with exponents similar to those obtained in 
earthquakes. Similar results were found in other collapsing 
minerals.

The following fundamental parameters are essential for 
our further discussions.

Amplitude A

The amplitude A(t) is a function of time t and captures the 
evolution of the conjugate parameter to the external force. 
In many cases, the force originates from the external stress 
(or strain), so that the amplitude parameter is the strain (or 
stress) in the sample due to the hole collapses. The time 
evolution of the amplitude is typically initiated by an incu-
bation period where A(t) increases exponentially leading to 
the maximum amplitude, called Amax. It then decays with 
a long tail of strain signals until the avalanche terminates. 
Amplitudes can display very complex evolution patterns, 
in particular when several avalanches coincide. Sometimes 
they develop ‘eternal’ avalanches, which never fully end 
but just diminish and resurge. The obvious analogy to dis-
ease spreading mechanisms highlights the close similarity 
between these two areas of research.
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Duration D

The duration is the time period over which an avalanche 
survives. Experimental time scales typically extend from a 
few microseconds to many milliseconds.

Energy E

The energy is the time integral over the local squared ampli-
tude A(t)2, integrated over the full duration of the avalanche:

This means that for avalanches which represent a short 
δ-function excitation at the time tmax, A(t) = Amax δ (t–tmax) 
will always display a scaling E ~ Amax

2. This is not true for 
long and smooth A(t) functions. Various scalings E ~ AX with 
2 < x < 3 are discussed in literature (Casals et al. 2019, 2020, 
2021a, b; McFaul et al. 2020).

Size S

The size of the amplitude indicates the number of parti-
cles that move during the avalanche. While this parameter 
appears intuitive in geometrical terms like a ‘patch’ of trans-
formed material, this is not correct. If areas transform, they 
can do so in compact regions where every atom takes part 
in the transformation. They can also transform by selecting 
some of these atoms, forming some ‘sponge-like’ areas. The 
fractal dimension of these transformed areas becomes then 
paramount and while ‘size’ is popular in the general descrip-
tion of avalanches, the meaning of such ‘size’ parameter can 
be surprisingly complex. It is, therefore, recommended to 
explore the scaling of size with the amplitude or energy as 
a more fundamental parameter. As an example, if the move-
ment relates to low-dimensional dynamical patterns, the 
relationship is linear S ~ A while in magnetic systems with 
high fractal dimensions we find S ~ A2. This already high-
lights that model calculations are often required to determine 
this S(A) scaling and that scaling depends sensitively on the 
fractal dimension of the domain patterns (Casals et al. 2019, 
2021a; Nataf et al. 2020; Xu et al. 2020).

Waiting time or inter‑event time tw

The two names are used interchangeably. They denote the 
time between avalanches, i.e. the time the system needs 
to recover after an avalanche has happened. In neural net-
works, these inter-event times are the ‘sleeping periods’ 
after high neural activity. Their probability distributions are 
typically power laws with two different, approximate expo-
nents for short and long times, P(tw) ~ tw−1 and P(tw) ~ tw−2, 

E = ∫
D

o

A
2
⋅dt

respectively. Note that in these scaling relationships the 
negative sign in the exponent is often included in the equa-
tion so that the term ‘exponent’ often means the value after 
the minus sign. These exponents represent the results in 
the simplest mean field (ML) theory (Salje and Dahmen 
2014). Similar values have been observed experimentally 
and deviations from ML predictions are analysed in terms 
of specific physical models (Christensen et al. 1996; Corral 
and Paczuski 1999; Navas-Portella et al. 2016).

In addition, there is a multitude of secondary scaling laws, 
in particular those describing aftershock activities (Baró 
et al. 2013, 2018; Nataf et al. 2014a) and inter-correlations 
of times (Baró et al. 2016a, 2018) with several important 
practical extensions for mineral behaviour, as described in 
(Jiang et al. 2017).

Acoustic emission (AE) spectroscopy

During 100 years of research many experimental methods 
were developed to quantify avalanches. They range from 
magnetic measurements to electrical depolarization cur-
rents in ferroelectrics and optical observations of crack pat-
terns and the determination of fractal dimensions (Lung and 
Zhang 1989; Xie and Sanderson 1995; Lhotel et al. 2008; 
McHugh et al. 2009). Some experiments are conducted 
under in vivo conditions where the actual changes of domain 
structures are determined; others are post-mortem analyses 
where, e.g. the fractal dimension of cracks are measured 
(Chen et al. 2020). All methods have advantages and dis-
advantages and evolved with the purpose of the specific 
research. Over the past decade the emphasis has moved 
towards a deeper understanding of avalanche science rather 
than a more general determination of stabilities of miner-
als in geomechanics. With this movement came the desire 
to measure the main avalanche parameters, as listed above, 
with the highest possible accuracy. The current method of 

Fig. 1   Schematic representation of the composition of an avalanche 
signal in acoustic emission experiments
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choice is in this case the acoustic emission (AE) spectros-
copy. The acoustic waves emitted by a sample during chang-
ing fields is detected by piezoelectric receivers and analysed 
using straightforward amplification devices. A simple sum-
mary is found in (Chen et al. 2019; Xie et al. 2019).

Figure 1 shows schematic representation of the composi-
tion of an avalanche signal in acoustic emission experiments. 
The size of the sample and the detector is some 5 mm, the 
detector covers often a large part of the sample. During local 
switching, an avalanche emits a strain signal which propa-
gates through the sample and is eventually measured by the 
detector. During the propagation, the signal generates the 
ringing of the sample and is modified by elastic wave reflec-
tions on surfaces, scattering on lattice imperfections. The 
profile of a source delta function would generate T(t), the 
so-called transfer function. The measured AE profile AAE(t) 
is the convolution of the source function with the transfer 
function. (Modified from Casals et al. 2021a, b).

While AE spectroscopy is probably the best way to detect 
avalanches under in-vivo conditions, it has a serious draw-
back. The measured AE spectrum, i.e. the macroscopic jerk 
spectrum of a sample, is not exactly the initial avalanche 
distribution V(t) nor does it reproduce exactly the predictions 
of theory. There are two main reasons. First, the measured 
AE spectrum is modified by the transfer function by the trav-
elling sound waves. This modification is most notorious if 
the time and frequency scales of the initial avalanche for-
mation (some microseconds in many cases) differs greatly 
from the inverse frequency of the sample ringing and hence 
the transfer time scale. Ringing times are typically between 
several microseconds and some milliseconds. This time 
scale depends on the sample size (decreasing transfer time 
with decreasing sample size) and the nature of the initial 
avalanche. Crack propagation and dislocation dynamics are 
fairly similar in their local duration D while ferroelectric and 
ferroelastic domain movements are often much slower. Nev-
ertheless, the energy probability function is hardly affected 
by these modifications and there is a large amount of litera-
ture which elucidates some of the intricacies of AE spec-
troscopy (Chi-Cong and Weiss 2020; Vu et al. 2020; Yang 
et al. 2020). The avalanche duration is not easily determined 
while the rise time R during the incubation period often cor-
rectly represents the avalanche formation and propagation 
much better. It is close to the atomic rise time and is less 
polluted by the effect of the transfer function (Salje et al. 
2017a; Casals et al. 2021a, b).

Porous collapse

Minerals are often lighter than their chemical composi-
tion would suggest. Defect chemistry traditionally points 
to vacancies as a reason for the weight loss. This is not 

always the case. In fact, vacancies are simply the smallest 
version of holes and cavities in mineral structures. Holes 
can also be envisaged as empty inclusions, so that much 
what is known about holes can be extended to other inclu-
sions. Holes are also structural elements in porous materials, 
which are widely used as filters, fillers, low thermal conduc-
tion materials and so on. Porous materials are particularly 
important due to their relevance in the collapse forecast of 
both natural and artificial structures such as mines (Jiang 
et al. 2016), buildings (Salje 2015), or bones (Baró et al. 
2016b). It has been shown that when mining materials are 
subjected to a compressive stress, failure can be heralded 
by a significant precursor activity (Salje et al. 2011b; Jiang 
et al. 2017). In the precursor regime, the response of the 
system to the applied compressive stress is not smooth as 
classically expected for elastoplastic materials, but instead 
occurs as a sequence of avalanches. Typical minerals where 
pores were induced by burning carbon inclusions are shales 
(Baró et al. 2016a), porous quartz (Nataf et al. 2014a), ber-
linite (Nataf et al. 2014b), corundum (Castillo-Villa et al. 
2013) and goethite (Salje et al. 2013). Avalanche behaviour 
was found in all these materials, and the energy exponents 
varied between 1.33 and 2 with another common value at 
1.66. These values coincide with the predictions of mean 
field theory, MF, as described in Salje and Dahmen (2014).

A prototype of porous materials is the tuff-like Vycor, 
which is a porous material based on SiO2 with holes cover-
ing a very wide range of diameters. The smallest hole diam-
eter is ca. 5 nm. Understanding holes requires to understand 
their strain fields. Vacancies (and other inclusions) exert 
large strain fields, which were summarized in Markenscoff 
et al. (2015). Depending on the underlying symmetry of the 
mineral structure, they are either dipolar or quadrupolar 
in symmetry, but rarely monopolar. Defects with isotropic 
forces do not interact because each defect changes the vol-
ume of the sample and, if the sample is unbounded, such 
volume-change generates no energy. This situation changes 
dramatically when the sample size is bound by external 
forces. Interaction energies in general decay as 1/rn in space 
with n = 3 or 5 for dipoles and quadrupoles. While n = 5 
restricts interactions to close neighbour holes, n = 3 has a 
more invasive characteristic: it produces ‘non-local’ forces. 
One defect in the sample changes the shape of the entire 
sample and two holes will always interact (Peyla and Mis-
bah 2003). In case of surfaces, such as the inner surfaces 
of holes, the interaction is even more long-ranging with 
n = 2 dipole–dipole interactions and n = 3 for dipole–quad-
rupole interactions (Kukta et al. 2002). Such effects have 
been widely investigated and it was shown that in particular 
dipolar strain fields lead to characteristic microstructures 
such as tweed and very high densities of twin boundaries 
(Bratkovsky et al. 1994; Marais et al. 1994). When the strain 
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fields are strong enough, i.e. when they exceed the Griffith 
strength, cracks will occur around holes (Fig. 2).

Cracks and hole–hole interactions have in common that 
they do not form simple microstructures. Like cracks in scat-
tered window glass, they form complex patterns where the 
crack propagation does not follow linear trajectories but pro-
gress by junctions, bifurcations, spirals and specific patterns, 
like Turing patterns (Scott 2020). Similarly, strain fields of a 
multitude of cavities form patterns of great complexity (and 
beauty). These patterns are virtually always fractal, even 
when the holes are man-made in a periodic fashion (Whyte 
et al. 2014). Any simple description for such patterns for 
cracks and clouds of holes (Salje et al. 2016a; Kustov et al. 
2018, 2020) remains on a rather coarse length scale because 
the knowledge of any finer details still exceeds our current 
ability to understand patterns. Local configurations matter 
greatly for the macroscopic properties of the mineral. One 
particularly impressive property is that such disordered pat-
terns are always piezoelectric and are often polar even when 
the crystal structure is centro-symmetric (Lu et al. 2019, 
2020b).

We now explore what happens when stress is applied 
to a porous sample and refer to the extended literature for 
samples with crack propagation (here the crack propagation 
in granite is a particularly nice example how AE and ava-
lanche physics helped to determine the thermal stability of 

minerals (Xie et al. 2019)). When stress is imposed, a hole 
will eventually collapse. This collapse emits strain waves 
that further destroy interacting holes. As the interactions are 
mainly non-local, many other holes are affected. This leads 
to a collective collapse of holes which progresses over very 
short time scales. After this collapse is terminated, another 
primary hole may collapse and destroy another group of 
secondary holes which survived previous collapses, and so 
on. Each such event is seen macroscopically as a ‘jerk’ of 
the mineral. During jerks, the number of collapsing holes 
varies widely. As a jerk emits strain waves, namely sound 
waves at some frequency in the approximate range between 
0.5 kHz and 100 MHz, the process is aptly described as 
‘crackling noise’ (Sethna et al. 2001). The association with 
the crackling noise of a wood fire (namely the bursting of 
water inclusions in wood) is correct because it follows the 
same time sequence as the porous collapse and, as will be 
argued, many other statistical properties.

The AE during the uniaxial compression experiments of 
SiO2-Vycor with 40% porosity is shown as an example in 
Fig. 3. Vycor was loaded at a constant compression rate R 
for three different experiments at R = 0.2, 1.6 and 12.2 kPa/s. 
The external forces in most avalanche experiments are 
changed with extremely slow rates (one experiment can 
often last 3 days) in order to have little time overlap between 
events. Compression is applied without lateral confinement 
until the shrinkage of the samples is above 20%, leading 
to multifragmentation. Simultaneous recording of acoustic 
emission (AE) is performed by using a detector coupled to 
the upper compression plate. The signal is then preampli-
fied (60 dB), band filtered (between 20 kHz and 2 MHz) 

Fig. 2   Sample height (a), the square of its time derivative (b), AE 
activity (c), amplitude (d), duration (e), and energy (f) of AE signals 
recorded during the compression experiment of the sample of porous 
SiO2 (Gelsile 2.6). The vertical scales are logarithmic in (b), (c), (e), 
and (f) [after Nataf et al. (2014a)]

Fig. 3   a Example of the outcome of a compression experiment of 
SiO2-Vycor at a rate R = 1.6 kPa/s, showing the change in the speci-
men’s height h versus time (proportional to stress) and the energy of 
the AE avalanches, on a logarithmic scale. b Time evolution of the 
AE activity rate and of the total number N of events. [after Baró et al. 
(2013)]
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and analysed by a multi-channel analyser. An AE avalanche 
event starts at the time ti when the preamplified signal V(t) 
crosses a fixed threshold of 26 dB and finish when the signal 
remains below a threshold for more than 200 μs. The energy 
Ei associated with each event i is computed as the integral 
of V2(t) for the duration of the event divided by a reference 
resistance. More details of the experiment can be found in 
Salje et al. (2011b).

Figure 3a shows an example of the raw data of Vycor 
under compression for an experiment with R = 1.6 kPa/s. 
The jerky evolution of the specimen’s height is apparent, 
as well as the broad range of values of the event energy 
detected at the transducer. Another view of this intermit-
tent dynamics is provided in Fig. 3b by the AE activity rate 
r(t) (counting events every 60 s) and the cumulative number 
of events, N(t) = ∫ t

o
r(t) ⋅ dt . Despite an apparent correla-

tion between the most energetic events and large changes in 
height, one observes also regions with high acoustic activ-
ity not associated with noticeable sample shrinkage. The 
simple shape change of a mineral is not necessarily a good 
measure for the associated noise emission. Figure 4 shows 
the histograms that estimate the probability densities of the 
energies (Salje et al. 2011b; Baró and Vives 2012), con-
sidering time windows of 3 × 103 s. The distributions show 
a power-law behaviour P(E) ∝ E

−� , with an exponent near 
ε = 1.39 ± 0.07, which is stable for the whole experiment. 
This remarkably stationary energy dissipation varies greatly 
for other minerals. A greater heterogeneity of the sample 
will lead to strongly non-stationary behaviour because dif-
ferent parts of the sample will collapse at different stresses.

The next step in a typical AE analysis is the computa-
tion of the number of aftershocks (AS) in order to compare 

with Omori’s law for avalanches (also in Earthquakes). We 
define as mainshocks (MS) all the events with energies in a 
certain predefined energy interval. After each MS we study 
the sequence of subsequent events until an event with an 
energy larger than the energy of the MS is found. This ter-
minates the AS sequence. Then we divide the timeline from 
the MS towards the future in intervals, for which we count 
the number of AS in each interval. Averages of the different 
sequences corresponding to all MS in the same energy range 
are performed, normalizing each interval by the number of 
sequences that reached such a time distance. The results 
compiled in Fig. 5a, b show the tendency to follow Omori’s 
law in Vycor, in some cases for up to 6 decades, compared 
with Sornette and Ouillon (2005). Foreshocks, obtained in 
an analogous way, show a similar behaviour, with a slightly 
smaller value of p.

One of the most intricate examples of collapsing holes, 
which mix with sliding dislocations, is described in Ho-
doped Mg metal. The microstructure is shown in Fig. 6.

The AE spectrum is dominated by a separation of sig-
nals which correspond to the hole collapse and sliding 
dislocations. Their respective fingerprints are very differ-
ent and relate to their individual signal strengths. Porous 
collapse generates very strong AE signals while dislocation 
movements create more but weaker signals. This allows a 
separation of the two processes even though they almost 
always coincide temporarily. The porous collapse follows 
approximately the predictions of mean-field behaviour of 
short, independent avalanches (ε = 1.4, τ’ = 1.82, α = 2.56, 
x = 1.93, χ = 1.95) (mean field scaling) (Salje and Dahmen 
2014). The resulting microstructure is highly fractal. The 
exponents for dislocation movement are greater (ε = 1.92, 

Fig. 4   Distribution of avalanche energies of SiO2-Vycor during the 
full experiment with R = 1.6  kPa/s and during seven different sub-
periods. The line shows the behaviour corresponding to εψ = 1.39. 
The inset shows the maximum-likelihood exponent ε as a function 
of a lower threshold Emin for the three experiments. [after Baró et al. 
(2013)]
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(b)

Fig. 5   a Distribution of waiting times for different values of Emin and 
the compression rate R. b The same data under rescaling, including 
also the results of the ETAS model and earthquakes from Southern-
California (Bak et  al. 2002; Corral 2004) for the period Jan 1984–
Jun 2011. The similarity of the scaling over some 10 decades dem-
onstrates the close similarity of aftershock time scales between AE 
events and Earth Quakes. (Baró et al. 2013)
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τ’ = 2.44, α = 3.0, x = 1.7, χ = 1.42). Here another theory is 
approximately correct (the so-called force integrated mean-
field predictions) where the progression of avalanches 
involves full structural relaxations of the mineral between 
individual avalanches (Salje and Dahmen 2014). The Omori 
scaling is similar for both mechanisms. This study by (Chen 
et al. 2019) represents the most advanced study of a real-life, 
complex microstructural change in any material (here an 
alloy, the same is envisaged for minerals) with more than 
2 million AE events experimentally observed.

Moving twin boundaries

The observation that many minerals are twinned is as old as 
mineralogy itself. So why became the investigation of twins, 
or more precisely of boundaries between twins, so popular 
during the past decade? There are two aspects to clarify. 
First, we know almost nothing about the detailed structure 
of boundaries between growth twins and research in this 
field has hardly started. Boundaries between ferroelastic 
twins, on the other hand, are much better understood (Jan-
ovec et al. 1994; George et al. 2003; Salje and Ding 2016; 
Schiaffino and Stengel 2017; Casals et al. 2018; Royo and 
Stengel 2019; Warwick et al. 2019; Zhao and Iniguez 2019) 
and virtually all previous work relates to ferroelastic materi-
als (Salje 2012). The main result of ferroelastic twin walls is 
that two twins do not just join in the boundary without topo-
logical defects but that they generate a thin layer of materials 
which has a different crystal structure from the bulk mate-
rial. In a first approach Landau, see, e.g. a text book (Salje 

1993), assumed that the local structure in the boundary is 
simply the high symmetry, para-elastic structure. Starting 
from this assumption, the profile of a twin boundary can be 
derived from reasonable potentials as follows:

where Q is the ferroelastic order parameter (proportional 
to the shear strain, i.e. the twin angle, in our case), Q0 is its 
bulk value and the tanh-functions describe the profile of the 
boundary. When the space coordinate x becomes zero in 
the middle of the boundary, the order parameter becomes 
zero and describes hence the paraelastic phase. Research-
ers argued since the 1990s that this restriction to one-order 
parameter is insufficient and that domain walls are much 
more complex (Conti et al. 2011; Houchmandzadeh et al. 
1991, 1992a, b) involving the cooperation of several state 
parameters. This approach of order parameter coupling 
was first considered heretical but was then confirmed by 
more detailed first-principle approaches and MD simula-
tions using simplified potentials (Salje et al. 2016b). The 
prediction of all these approaches was that new (~ ‘emerg-
ing’) properties exist in the domain walls which cannot be 
seen anywhere else in the structure (Morozovska et al. 2007, 
2020a, b; Viehland and Salje 2014; Biancoli et al. 2015; Dzi-
augys et al. 2020). The first experimental confirmation was 
achieved by (Van Aert et al. 2012; Gonnissen et al. 2016) 
together with observation of polarity and enhanced conduc-
tivity of domain walls. This development has progressed to 
the point that domain walls are now perceived as the loci of 
the active devices while the bulk is there to hold the device 

Q = Q0 tanh (x∕W),

Fig. 6   TEM figure shows Ho granule with surrounding dislocations (a) and dislocations in Mg matrix (b) in the sample after compression. 
(Chen et al. 2019)
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in place. This perception is somewhat oversimplified, how-
ever. The domain walls can move under external forcing in 
the bulk so that we have now the unique opportunity to have 
a thin layer of a device, which can be shifted and positioned 
in a matrix. The full implications of this discovery are still 
not fully understood but it has certainly triggered a major 
research effort in domain boundary engineering (Salje 2010, 
2020).

Much progress is expected from research on mineral 
structures over the coming years, not only in the discovery of 
novel twin boundaries based on growth phenomena, but also 
in the exploration of boundary mobilities. Mineral physics 
follows metallurgy where such studies are more advanced. 
Martensites and many alloys were investigated using AE 
spectroscopy to identify how twin boundaries move (Salje 
et al. 2011a). The result of these studies is that the move-
ments are a mix of avalanches and smooth behaviour. A first 
breakthrough was the quantitative observation of the dynam-
ics of domain switching. After observations of jerk-like 
switching, similar to Barkhausen noise (Shur et al. 2002) and 
the measurement of jerky propagation of needle domains 
under stress in ferroelastics (Harrison and Salje 2010) and 
the investigation of acoustic noise in martensites (Salje 
et al. 2011a), a full set of dynamical switching parameters 
in BaTiO3 and some other ferroelectric materials were meas-
ured (Salje et al. 2019; Xu et al. 2020). In most studies, the 
switching currents constituted a first indicator for avalanche 
switching dynamics (Casals et al. 2020; Tan et al. 2019). The 
time resolution of more detailed investigations was greatly 
improved by using the acoustic emission (AE) technique to 
measure the switching energy, amplitude, time sequence, 
aftershock probability and correlations (Salje et al. 2019). 
The results of these experiments show that switching pro-
ceeds by avalanches of correlated domain wall movements. 
Several full sets of avalanche parameters were determined 
(Salje and Dahmen 2014; Salje et al. 2019). In addition, 
much milder, smoother domain propagation (Zhang et al. 
2020) coexists. This schism is captured by the notion that 
we observe ‘wild’ and ‘mild’ processes where wild means 
that spiky energy emission, so-called ‘jerks’, dominate the 
domain wall movements (Weiss et al. 2015, 2019; Yang et al. 
2020; Salje 2020, 2021).

The mild movements still constitute avalanches in the 
description of (Salje and Dahmen 2014). Coexistence of 
mild and wild movements is well known for restructuring 
processes in many materials under external forcing, like ice 
(Weiss 2019), martensites (Chen et al. 2019), dislocation 
(Pan et al. 2019) and in crack propagation (Bonamy et al. 
2008; Laurson et al. 2010). Mild processes are much more 
difficult to observe than spiky jerks (Casals et al. 2019) 
where the optical observation of domain wall movements 
proved particularly useful (Casals et al. 2020). Mild move-
ments produce very little strain although they are potentially 

visible in AE at very low noise level. A second development 
relates to the current in domain walls and associated chemi-
cal changes. Ever since the discovery of superconductivity in 
domain walls (Aird and Salje 1998) and subsequent studies 
of highly conducting walls (Seidel et al. 2010), the concept 
of domain wall electronics was developed rapidly and was 
reviewed by Catalan et al. (2012) and Evans et al. (2020).

An important step forward was the idea that domain 
wall transport includes chemical changes during electronic 
conduction. This impacts on the origin of memristor prop-
erties of ferroelastic domain walls (Bibes and Barthelemy 
2008; Garcia et al. 2009). In fact, networks of ferroelec-
tric domains have similar properties as arrays of memris-
tors (Chanthbouala et al. 2012). A typical nanostructure is a 
needle domain approaching a perpendicular wall, leading to 
the formation of a junction between domain walls or tweed 
microstructures (Salje and Parlinski 1991; Hayward et al. 
1998a, b; Hayward and Salje 1999; Salje and Ding 2016). 
If the walls are superconducting, the connection between 
the two walls’ orientations constitutes a Josephson junction. 
An additional effect is that the current provokes chemical 
changes in the walls or in the needle domain itself. Such 
modifications may lead to a percolation criticality when the 
needle touches an orthogonal wall, an interface or the sur-
face of the sample (Novak et al. 2002; Zhao et al. 2019).

As an example, we now consider a perovskite structure, 
BaTiO3, which is not only ferroelastic but also ferroelectric. 
The relevant domain boundaries are twin walls. They can be 
shifted by electric fields and by external stress. In this exam-
ple we use the electric field as driving field. The experiment 
takes typically one night to increase and decrease the field 

Fig. 7   Jerk spectrum of acoustic noise of BaTiO3 during domain 
switching (red signals). The noise is measured as time evolution of 
the energy of AE signals. The electric field (blue line) is ramped 
between − 1000 and 1000  V with a rate of 0.5  V/s (right axis). In 
total six loops (from 1000 to − 1000 V back to 1000 V) were meas-
ured. The scale for the jerk energy (in attojoule) is logarithmic and 
stretches over five decades (Salje et al. 2019)
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six times (blue line in Fig. 7). The moving twin walls pro-
gress in avalanches and emit AE signals. The AE spectrum 
is seen in Fig. 7.

The energy of the jerks that constitute the avalanche is 
power law distributed with an overall exponent ε = 1.65 
(Fig. 8). All other avalanche parameters have been evalu-
ated by Salje et al. (2019) and were confirmed by optical 
microscopy by Casals et al. (2021a).

Bio‑mineralisation

To discuss avalanches in bio-minerals we choose microbi-
ally induced calcite precipitation (MICP), which is a com-
mon process in bio-geotechnical engineering. Laboratory 
tests have demonstrated that MICP treatment of granular 
soils improves their strength by three orders of magnitude 
(DeJong et al. 2006, 2010, 2014; Whiffin et al. 2007; Al 
Qabany and Soga 2013; Chu et al. 2013) and increases the 
small-strain stiffness (Montoya and DeJong 2015; Feng 
and Montoya 2016). Current in-situ applications of MICP 

treatment include large-scale ground improvements (DeJong 
et al. 2014; Gomez et al. 2017; Nassar et al. 2018) and the 
protection and consolidation of heritage buildings and 
sculptures (Jroundi et al. 2017). The treatment time (few 
hours–several days) and the spatial distribution are con-
trolled according to engineering requirements by adjust-
ing the metabolic activity of the bacteria (Chekroun et al. 
2004; DeJong et al. 2010; Achal et al. 2015). The resulting 
cemented soil exhibits significant improvement of strength 
and stiffness, which is hard to produce by other means (Ter-
zis and Laloui 2018).

In order to test the MICP material, uniaxial compres-
sion was applied to calcareous sand grains, sands without 
cementation and bio-cemented sand samples treated by 
MICP. The sand composition was mainly aragonite and Mg-
bearing calcite, the carbonate component was above 97%. 
The microstructure is characterized by accumulated insol-
uble MICP calcite bridging sand grains. The SEM image 
of a bio-cemented sand sample shows that sand particles 
are bridged by microbial induced calcite (Xiao et al. 2018, 
2019). Uniaxial compression force was applied with a rate 
of 0.1 mm/min.

Stress–strain relationships and AE spectra for calcareous 
sand grains and a bio-cemented sand sample are shown in 
Fig. 9. The compressive strength of sands is very weak and 
cannot be detected by conventional loading systems. The 
AE parameters such as energies E, amplitudes A and waiting 
time δ were extracted from the AE spectra. The strain–stress 
curve of sand grains is almost stationary besides the initial 
incubation time in the elastic compression regime. This is 
not the case for the bio-cemented sand sample where we see 
no incubation time. Instead, we observe silent intervals with 
no AE activity (Fig. 9b) during the course of the compres-
sion experiment. The inserts in Fig. 9a, b show the samples 
after testing.

The probability distribution function (PDF) of ava-
lanche energies is shown in Fig. 10a. It follows a power law 
P(E) ~ E−ε. Figure 10a shows the distribution of AE energy 
from grains, bio-cemented sand samples and sands with 
ε-exponents of 1.37, 1.46 and 1.7, respectively. To inves-
tigate the exponents in more detail, we use the maximum 
likelihood method (Fig. 10b) [see Salje et al. (2017c) for 
detail]. The horizontal dashed lines indicate the PDF slopes 
and hence the exponents. The ML curves of bio-cemented 
sand samples show increases with increasing Emin indicating 
that the AE signals are damped by absorption or scattering 
of the acoustic signals (Salje et al. 2017c).

Grains show excellent plateaus with ε = 1.4 remarkably 
close to the theoretical MF result 4/3. The energy exponent 
for sands is 1.7, which is near another MF prediction value 
of 5/3. MICP ceramics show an overall energy exponent 
1.46. The most important observation is that in MICP ceram-
ics, but not in sand or gains, different time windows show 

Fig. 8   The probability distribution function (binned data, top panel) 
shows a power-law distribution. The maximum likelihood graph (bot-
tom panel) is used to determine the energy exponent. The energy 
exponent is 1.65 as average over all loops (Salje et al. 2019)
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variable values (Fig. 10c) between 1.35 and 1.6. These ava-
lanches are a combination of the AE energies of sands and 
grains with variable proportions. This observation allows us 
to conclude that the collapse mechanism is the breaking of 
the bio-mineralized bridges between the hard grains. This 
process starts at very low stress and is not visible by the 
macroscopic shape change. Compression leads to a ‘rubble’ 
of grains mixed with larger bio-mineralized segments. The 
grains are constrained by neighbours, which hinders their 
rotations. This makes the materials harder for compression 
than sand. Once the sample is compressed further it trans-
forms back to sand with a dusting of MICP particles.

Conclusion

Changes of microstructures often progress in a wild, non-
smooth manner. Experimental evidence rules out simple cat-
astrophic events, like one big step when a twin wall moves. 
Instead, we find universal behaviour with multitudes of 
small ‘jerks’ which can cut down the big step into millions of 
small steps. This phenomenon appears in many systems, and 
only three of them were briefly reviewed here. The overall 
behaviour of the totality of the jerks follows very strict rules. 
These rules are the same as what is theoretically expected 
for avalanches, which establishes a close link between ava-
lanches and microstructural evolution. As the probability to 
find a ‘jerk’ with an energy E follows a power law with well-
defined exponents, which appear to be universal for many 
systems. The power law is important because it is ‘scale 
invariant’. To illustrate the scale invariance, let us consider 
the energy probability P(E) = E−ε. Consider an energy inter-
val between E and 2E; then the probabilities are between 
E−ε and (2E)−ε. We now scale the energy by a factor x. The 
interval is now from xE to 2xE and the probabilities change 
to (x E)−ε and 2−ε (x E)−ε. The common numerical prefac-
tor x−ε is irrelevant for the functional form, which remains 
exactly the same as before. This proves that the power-law 
distributions are scale invariant. Note that this is a special 
property of the power law and that other functions are not 
scale invariant. Furthermore, combinations of power laws 
are not power laws and hence not scale invariant.

The scale invariance in avalanches is not restricted to 
energies but holds equally for the amplitudes, durations 
and, with some modification, for waiting times. In practi-
cal terms, anything we see in a space (or time) interval is 
exactly the same as in any other. The limits are given by 
cut-offs, such as the atomic diameter or the sample size, but 
the region between these cut-offs can reach many orders of 
magnitude. AE allows us to estimate this range and we find 
that 6–8 orders of magnitude of energy are not uncommon 
for microstructural changes. The question on which length 
scale do structural changes happen is hence ill-posed: there 

is a large interval of length scales and wherever we situate 
our experiment we will see the same change.

This powerful approach is important for minerals where 
defects and lattice imperfections favour avalanches. The 
induced behaviour is then independent of these obstacles 
and significant similarities are found in a multitude of dif-
ferent minerals. For reasons alluded to in the introduction, 
the full power of this method has been used to solve several 
problems in solid-state physics and metallurgy, but much 
less in mineral physics. There is a wide range of mineralogi-
cal research waiting to be done in future.
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