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Thesis Summary 
Characterising DNA methylation in tissue & liquid samples from patients with renal tumours 

Sabrina Helena Rossi 
 
The incidence of renal cell carcinoma (RCC) and small renal masses (SRMs), defined as <4cm in diameter, 
is increasing dramatically. SRMs encompass a variety of potential diagnoses, including benign and 
malignant tumours, the most common of which is clear cell RCC (ccRCC). Current methods are unable to 
confidently distinguish pathological subtypes of SRMs, meaning patients with benign tumours are 
undergoing unnecessary invasive surgery. In addition, there are difficulties risk stratifying patients with 
ccRCC and predicting outcomes. Genomic alterations, such as mutational analysis, may have a role in RCC 
diagnosis and prognostication, but are unlikely to be sufficient alone due to low recurrence rates and 
significant intra-tumoral heterogeneity (ITH), which limit detection. Changes in DNA methylation are 
abundant and often early events in tumorigenesis, which may overcome these challenges as potential 
tumour markers both in tissue and liquid biopsies. 
 
To address the aforementioned diagnostic challenge, I characterised DNA methylation and gene 
expression in tissue from patients with benign and malignant renal tumours to elucidate similarities and 
differences between tumour subtypes. Subsequently, DNA methylation data were combined on over 
1200 tissue samples and these were used to train and test MethylBoostER (Methylation and XGBoost for 
Evaluation of Renal tumours), a machine learning model to predict common pathological subtypes of 
renal tumours. MethylBoostER was externally validated on four independent publicly available datasets 
(N=518), demonstrating a high accuracy (receiver operating characteristic area under the curve; AUC 
>0.90). MethylBoostER predicted consistent classification of multi-region samples from the same patient 
in 90% of individuals, suggesting ITH does not limit model applicability in a biopsy setting. 
 
Subsequently, I undertook a systematic evaluation of methylation heterogeneity in ccRCC, exploring 
associations with clinical/prognostic parameters and highlighting implications for biomarker selection. I 
evaluated multi-region tissue samples (N=135) from ccRCC patients (N=18) and assessed heterogeneity 
between patients, within a patient and within a sample. Inter-patient heterogeneity dominated over 
intra-tumoural heterogeneity. My analysis represents the first evaluation of epipolymorphism, a measure 
of methylation heterogeneity within a sample, in ccRCC. Significant differential epipolymorphism was 
noted in ccRCC versus normal kidney at the promoter region of genes known to be implicated in kidney 
cancer and this finding was externally validated in an independent cohort (N=71). Although changes in 
epipolymorphism are believed to be a stochastic process, my results suggest that disordered methylation 
may accumulate in functionally relevant loci which are known to contribute to ccRCC tumorigenesis. 
 
Circulating tumour DNA (ctDNA) represents a promising target for non-invasive liquid biopsy in both 
diagnostic and prognostic applications. Mutational analyses of ctDNA have produced disappointing 
detection rates in ccRCC, possibly hampered by low ctDNA levels and high mutational ITH. I therefore 
performed targeted methylation analysis of ctDNA using a novel method- Nimbus (Non-destructive 
Integration of Methylation to Boost Underlying Signals). Targeted analysis of hypomethylated regions in 
plasma ctDNA distinguished ccRCC from cancer-free controls with an AUC of 0.96 and produced superior 
detection rates compared to mutational analysis (93% vs 50%). My results suggest that tumour signal 
may be enriched in post-biopsy fluid (proximal sample) compared to plasma (distal sample), a strategy 
that could be useful in patients with SRMs to complement the current diagnostic pathway and overcome 
low concentrations of plasma ctDNA. 
 
In summary, I comprehensively characterise DNA methylation in tissue and liquid samples derived from 
patients with renal tumours. In the future, DNA methylation analysis of renal tumour biopsy tissue 
and/or liquid biopsy samples could enable improved diagnosis of patients with SRMs as well as 
facilitating prognostic stratification. 
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Chapter 1 Overview 
 
Renal cell carcinoma (RCC), also known as kidney cancer, is the 6th most common cancer in men and 

10th most common cancer in women in the UK [15, 16]. RCC, defined as an adenocarcinoma arising 

from the renal tubular epithelial cells, comprises >90% of adult renal cancer. The incidence of RCC 

has been rising steadily in the UK, with incidence rates increasing faster than most other 

malignancies [17]. Despite advances in detection and management, mortality rates have only 

minimally improved [18, 19], meaning there is a need to focus research efforts on interventions 

which are most likely to benefit patients. Therefore, we developed an international collaboration 

amongst clinicians, scientists and patients, ‘The Renal Gap Analysis Collaborative’, to identify 

research priorities in RCC using a transparent, rigorous methodology and a patient centred 

approach. I led this initiative, with support from the Collaborative Steering Committee, which 

resulted in the identification of 14 key research gaps published as a Platinum Priority editorial in 

European Urology [1, 2]. Three of these research priorities are the need for: 1/ improved 

characterisation of small renal masses (SRMs); 2/ biomarkers that may be applied to renal biopsies 

to evaluate and overcome molecular heterogeneity; and 3/ biomarkers to enable risk stratification 

and aid management decisions in localised RCC. This thesis aims to characterise DNA methylation in 

kidney tissue and liquid samples from patients with malignant and benign renal tumours, to explore 

and address these key research questions. 

 

In summary, Chapter 2 provides the background for this thesis, contextualising existing knowledge 

regarding the current clinical pathways, genetic and epigenetic landscape in RCC and the rationale 

for DNA methylation markers. Chapter 3 synthesizes this information and justifies my aims and 

objectives. The materials and methods, including experimental procedures and statistical analysis, 

are summarised in Chapter 4, as these are shared methods used across all subsequent chapters. 

Three results chapters are presented (Chapters 5 to 7), which cover the following topics: 

differentiating pathological subtypes of renal tumours, characterising methylation heterogeneity in 

ccRCC tissue and circulating tumour DNA (ctDNA) detection in liquid samples, respectively. Chapter 8 

consists of an integrated discussion and conclusion, emphasising future plans. All the work 

mentioned in this thesis was undertaken by me, unless specifically mentioned in the text (Chapter 4 

delineates collaborator contributions in detail). 
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Chapter 2 Background 
 

2.1 The clinical landscape of renal cancer 
 
The following section provides the background to the two main clinical questions addressed in my 

thesis, namely diagnostic challenges associated with differentiating small renal masses and 

difficulties predicting prognostic outcomes in patients with ccRCC. 

 Small renal masses represent a diagnostic challenge 

 
The incidence of RCC has increased by 47% over 10 years [20], making it one of the fastest 

accelerating cancers and this is projected to rise further in future. This dramatic increase is 

attributed to both a true rise in the disease (which may be related to rising prevalence of risk factors 

such as age, obesity, hypertension and diabetes), but also due to increasing incidental detection 

during imaging for other complaints [19, 20]. Use of computed tomography (CT) has surged in recent 

decades due to technological advances (enabling superior resolution, reduced scanning times and 

lower radiation dose), widening availability and reducing costs [21, 22]. As the use and sensitivity of 

CT imaging increases, so has the incidental detection of small renal masses (SRMs), defined as <4cm 

in diameter. Welch et al report that 43% of individuals aged 65–85 years on Medicare in the USA 

undergo either a chest or abdominal CT over a 5-year period and renal lesions are amongst the most 

common incidental findings [22, 23]. The number of CTs performed was significantly correlated with 

the number of nephrectomies: it is estimated that performing 1000 additional CTs is associated with 

4 additional nephrectomies [22]. SRM is a broad term which encompasses a mixture of potential 

diagnoses: including clear cell (ccRCC), papillary (pRCC), chromophobe (chRCC) RCC, or benign 

disease, such as oncocytoma or angiomyolipoma (AML). Each of these pathological subtypes has 

characteristic genetic and molecular features, such that it is argued that RCC is not a single      

disease [24].  

 

ccRCC, derived from the proximal convoluted tubule in the renal cortex, accounts for approximately 

75% of RCC (Figure 2.1) [25]. Microscopically, cells contain cytoplasm with a high lipid and glycogen 

content, which dissolves upon histopathological processing to create the distinctive clear 

appearance that gives rise to the name [26]. A minority of cases demonstrate eosinophilic, granular 

cytoplasm, and these may be mistaken for oncocytoma on renal biopsy. pRCC, also derived from the 

proximal convoluted tubule, accounts for 10-15% of cases of RCC and can be subdivided into types 1 
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and 2 (Figure 2.1) [25]. chRCC, which is derived from the distal nephron, represents 5% of RCC cases. 

Histological subtype is a major predictor of survival (Figure 2.1). The best prognosis is noted in chRCC 

and type 1 pRCC, with progressively worsening survival outcomes in type 2 pRCC, ccRCC and a subset 

of pRCC named CpG island methylator phenotype (CIMP) [24]. Oncocytomas are benign tumours 

derived from the intercalated cells of the distal nephron, which may be misdiagnosed as RCC (Figure 

2.1). Indeed, it is the most common benign diagnosis found on nephrectomy [26, 27]. 

Microscopically, oncocytomas are characterised by eosinophilic cytoplasm and abundance of 

mitochondria. 

 

 

 
 
 
 

 
Figure 2.1: Kidney tubule anatomy and putative cell of origin for different tumour types 
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Patients with SRMs may be offered a number of management options depending on the most likely 

diagnosis, fitness levels and individual choice [27]. Options include nephrectomy (which is usually 

partial but may be radical), ablative therapy or active surveillance (AS). Local ablative therapy (which 

includes radiofrequency and cryo- ablation) is minimally invasive and can be used in patients with 

SRMs who are poor surgical candidates, though repeated treatments may be necessary [28]. 

Patients with benign or low-grade disease, or those with limited life expectancy, could benefit from 

AS. However, current imaging techniques and renal biopsy are unable to distinguish benign from 

malignant disease with confidence [29]. Contrast enhanced CT, ultrasound and magnetic resonance 

imaging may be used to aid diagnosis. The presence of enhancement, i.e. a change of ≥ 15 

Hounsfield Units (HU) before and after contrast administration on CT, is considered the most 

important criterion for the differentiation of malignant from benign SRMs [27]. Enhancement 

delineates vascularity, can help distinguish cystic from solid lesions, as well as demonstrating specific 

patterns for each pathological subtype (for example oncocytomas classically exhibit a central stellate 

scar and segmental enhancement inversion) [29]. However, enhancement results in only 60% 

sensitivity and 73% specificity to discriminate benign lesions [30]. There is an increasing likelihood of 

malignancy and higher grade with increasing lesion size, however few imaging features are 

discriminatory, highlighting the need for additional specific markers [31].  

 

Renal core biopsy is currently recommended by the European Association of Urology (EAU) 

Guidelines for individuals with indeterminate SRMs following imaging. In addition, biopsy may be 

used to obtain a tissue diagnosis prior to ablative therapy, AS or inclusion in a clinical trial [27]. The 

procedure, done under local anaesthetic, is now considered very safe, although there are known 

risks: pain, bleeding, infection/sepsis or accidental damage to adjacent structures (e.g. 

pneumothorax or abdominal organ injury) [32]. Of these, the most common complication is 

bleeding, which tends to be self-limiting (e.g. perinephric haematoma or visible haematuria in ~10% 

cases), but may require blood transfusion (~1% cases) or intervention (0.3% cases) [32, 33]. Reports 

of tumour seeding along the needle tract, although rare, have been published [34] and contribute to 

caution in the adoption of this procedure. Use of a co-axial needle is recommended as this may 

mitigate both seeding and bleeding by minimising punctures. Renal biopsy is a very helpful 

diagnostic tool but can be inconclusive due to a number of reasons. There may be difficulty in 

accessing the tumour due to anatomical location or small lesion size, leading to limited sampling, or 

presence of necrosis (biopsy is non-diagnostic in ~10% of cases) [35]. Importantly, pathologists face 

difficulties assigning tumour type from small tissue biopsy samples, in particular, differentiating 

oncocytomas from the eosinophilic variant of chRCC and ccRCC. A meta-analysis demonstrated one 
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in four renal biopsies reported as oncocytoma are found to be RCC following surgical excision [36]. 

Hybrid oncocytic/chromophobe tumours (HOCT), which fortunately are rare, include areas of both 

chRCC and oncocytoma. There are also difficulties differentiating chRCC (which tends to have low 

aggressive potential) from ccRCC (which is generally associated with a worse prognosis) [24]. 

Therefore, erring on the side of caution, patients with SRMs are often offered surgery and AS is 

under-utilised [37]. As a result, approximately 20%-30% of SRMs removed at surgery are found to be 

benign post-operatively [38, 39]. This means that a significant number of patients are undergoing 

surgery for a benign condition, with associated post-operative risks of morbidity and mortality, and 

long-term impact on renal function. The rates of post-operative complications following minimally 

invasive surgery are: blood transfusion (5%), re-operation (2-5%), respiratory complications (1-7%) 

and even death (4%) [40]. Although complication rates are reducing with advancements in 

techniques and technologies, the risk of severe complications in elderly patients is 6% [41]. 

Increasing the use of AS (which has been shown to be non-inferior to primary intervention) 

especially in patients with comorbidities who may have a limited life expectancy, could reduce over-

treatment [42]. This needs to be balanced with the risks of a missed or delayed diagnosis of 

aggressive RCC. The majority of SRMs are slow growing and have low metastatic potential, though 

identifying aggressive disease remains a challenge (growth rates of SRMs are discussed more in 

detail below). Getting the diagnosis right is crucial and additional diagnostic tools are needed to 

improve the current pathway. 

 

In addition to diagnostic challenges relating to SRMs (i.e. differentiation of pathological subtypes), 

there are also complexities relating to patient risk stratification and prognosis. Determinants of 

aggressive clinical course include: pathological subtype (where pRCC type 2 and ccRCC have the 

worse prognosis and chRCC and pRCC type 1 have the best), higher lesion grade, size, stage and 

tumour growth rate [43]. Unfortunately, these major determinants of prognosis in patients with 

SRMs cannot be reliably determined with current standard of care methods (imaging and biopsy). 

ccRCC is characterised by intra-tumoural heterogeneity (ITH) meaning renal biopsy may be limited 

by tumour sampling [44]. In up to 25% of cases, malignant RCC have coexisting areas of both low and 

high tumour grade [45, 46]. Stage may also be misclassified as the sensitivity and specificity of CT for 

perinephric extension, venous invasion, metastatic adenopathy and organ invasion is 46, 78, 83 and 

60%, respectively, and 98, 96, 88 and 100%, respectively [29]. 10-40% of SRMs demonstrate 

evidence of local invasion, meaning the tumour is <4cm in diameter on imaging but ³T3 on 

pathological staging determined post-operatively [47], though fortunately more recent studies have 

estimated this rate to be <10% [48, 49]. In addition, MRI may aid assessment of vena cava invasion 
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and improve the staging accuracy of CT [29]. 3-12% of SRMs will either present with concurrent 

metastases or will develop metastases at a later date [47]. SRMs on AS show very different rates of 

growth and clinical progression. Up to one-third of SRMs exhibit aggressive potential (rapid growth 

>0.5cm/year or doubling time <12 months), with the remainder growing slowly or remaining stable 

in size [50, 51]. Recently a growing number of observational studies are being performed which are 

increasing our understanding of the natural history of the disease [42, 52]. However, there is a lack 

of validated scores that will differentiate malignant SRMs that will progress rapidly on AS compared 

to those that have a more indolent course. Linear growth rate has been proposed as a marker for 

aggressiveness, but this has recently been challenged, as it did not correlate with overall outcome, 

and similar average growth rates were observed for benign and malignant (low and high grade) 

SRMs [53, 54]. Therefore, there is a risk for both overdiagnosis and overtreatment of indolent 

masses, as well as undertreatment of aggressive disease, highlighting the need for better diagnostic 

and prognostic markers. 

 

 

 Differentiating indolent from aggressive ccRCC represents a prognostic 

challenge  

 
Accurately predicting outcomes in patients with localised ccRCC remains a research priority [1]. In 

patients with non-metastatic ccRCC undergoing surgery with curative intent, 30% of individuals will 

subsequently develop a recurrence [55]. An improved ability to predict risk of recurrence would 

enable tailored patient counselling, individualised post-operative follow-up and potentially 

neoadjuvant or adjuvant treatment [56]. Appropriate post-operative surveillance (using imaging or 

ideally a biomarker test) is particularly crucial to identify recurrence early, whilst minimizing the 

burden of follow-up on the patients’ quality of life and impact on health care resources. Although 

tyrosine kinase inhibitors in the adjuvant setting have been largely disappointing [57], early data on 

immunotherapies appear to be more promising. The KEYNOTE-564 trial has recently shown an 

improvement in two-year disease-free survival in intermediate-high and high-risk patients with 

ccRCC randomised to adjuvant pembrolizumab monotherapy compared to placebo [58]. Longer 

follow-up and impact on overall survival (OS) are pending. These considerations have prompted the 

development of clinical and biomarker predictive models for localised ccRCC. 
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Table 2.1: Commonly used prognostic risk scores for non-metastatic RCC 

Adapted from [5, 27]. 
 

Risk score Factors evaluated Risk classification 
Leibovich score 

[59] 
Points awarded for: 
• T classification (pT1a: 0, pT1b: 1, pT2:3, pT3-4: 

4 points) 
• N classification (pNx/N0: 0, pN+: 2 points) 
• Tumour size (< 10 cm: 0, ≥10 cm: 1 point) 
• Grade (G1-2: 0, G3: 1, G4: 3 points) 
• Tumour necrosis (absent: 0, present: 1 point) 

• Low risk: 0-2 points 
• Intermediate risk: 3-5 points 
• High risk: ≥6 points 
 

University of 
California Los 

Angeles 
Integrated 

Staging System 
(UISS) [60] 

• Eastern Cooperative Oncology Group 
performance status (ECOG PS) 

• T classification 
• N classification (N+ classified as metastatic) 
• Grade (G) 

• Low risk: T1N0M0 G1–2, 
ECOG PS 0  

• High risk: T3N0M0 G2–4, 
ECOG PS ≥1 OR T4N0M0 

• Intermediate risk: Any other 
N0M0 

Stage, Size, 
Grade and 

Necrosis score 
(SSIGN) [61] 

• Stage (T, N, M) 
• Tumour size 
• Grade 
• Necrosis 

• Increasing score (score 0-15) 
associated with worse 
prognosis  

Karakiewicz 
score [62] 

• T stage 
• N stage 
• M stage 
• Tumour size 
• Fuhrman grade 
• Symptom classification 

• Nomogram giving continuous 
quantification of risk 

 

Sorbellini score 
[63] 

• TNM stage 2002 
• Tumour size 
• Fuhrman grade 
• Necrosis 
• Vascular invasion 
• Clinical presentation (incidental asymptomatic, 

local symptoms or systemic symptoms) 

• Nomogram giving continuous 
quantification of risk 

 

Grade, Age, 
Nodes and 

Tumour score 
(GRANT) [64] 

• Age > 60 years 
• T classification = T3b, pT3c or pT4 
• N classification = pN1 
• Fuhrman grade = G3 or G4 

• Favourable risk: 0-1 factors 
• Unfavourable risk: ≥2 factors 
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A number of anatomical, histological and clinical prognostic parameters have been identified in the 

literature. Anatomical factors include tumour size, local invasion (venous or collecting system, 

adrenal, Gerota’s perinephric fascia) and stage. Histological factors consist of tumour grade, 

pathological subtype, sarcomatoid or rhabdoid differentiation, necrosis, microvascular and 

lymphovascular invasion. Clinical factors (such as symptoms and performance status) are used in 

metastatic but not non-metastatic RCC [56]. Serum biochemistry and haematology tests which have 

been shown to have prognostic potential include: calcium, albumin, LDH, C-reactive protein, 

haemoglobin, platelet count and neutrophil-to-lymphocyte ratio [5, 19]. However, although these 

are routinely available blood tests, they are not recommended as prognostic markers in clinical 

practice [27]. A number of prognostic scores have been developed integrating different 

combinations of the above-named factors in order to predict outcomes in localised disease, 

including the well-known Leibovich score and the University of California Los Angeles Integrated 

Staging System (UISS) (Table 2.1) [56, 65]. Although the EAU guidelines advocate the use of 

prognostic scores, no specific score is recommended as none have been demonstrated to be 

superior [27]. We recently performed a comprehensive, systematic review of prognostic models in 

RCC [5]. The main finding of the review is that there is no clear single ‘best’ model, however the 

SSIGN (cited in the ESMO guidance) and the UISS model (cited in both ESMO and EAU guidelines) 

perform relatively poorly. Three other models (Sorbellini, Karakiewicz and Leibovich) performed 

highly in all three outcomes evaluated (recurrence free survival, cancer specific survival and OS), 

suggesting these may be more appropriate alternatives. However, clinical models are still limited in 

their ability to predict recurrence, particularly in intermediate risk patients, which has driven the 

search for predictive biomarkers in this setting. Though hundreds of studies have been published 

evaluating prognostic biomarkers in ccRCC (the most relevant are described in section 2.3), none 

have been adopted in clinical practice [66-69]. 

 
 

2.2 The genetic landscape of renal cancer 
 
Although >95% of cases are sporadic, a number of hereditary RCC syndromes have been identified, 

which have contributed to our overall understanding of the disease process (Table 2.2). Large scale 

initiatives, such as The Cancer Genome Atlas (TCGA), have made significant advances elucidating the 

genetic landscape of sporadic RCC [24, 70]. It is hoped that this knowledge may translate to 

improvements in biomarker development.  
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RCC is characterised by a high prevalence of distinct patterns of somatic copy number alterations 

(SCNA), which are associated with each of the pathological subtypes. Recurrent SCNAs most often 

involve whole chromosome or chromosome arms [70]. ccRCC is characterised by loss of 

chromosome 3p which results in loss of heterozygosity (LOH) of RCC driver genes that are also 

recurrently mutated in ccRCC (VHL, PBRM1, BAP1 and SETD2) [71]. Mitchell et al identified complex 

structural rearrangements associated with LOH at 3p and gains at 5q, which may occur in 

adolescence through a chromothripsis event decades before ccRCC develops [71]. pRCC type 1 is 

characterised by gains in chromosome 7 and 17, whilst a poor prognosis subset of pRCC type 2 is 

associated with high levels of genome-wide aneuploidy and chromosome 9p loss (deleting CDKN2A) 

[72]. chRCC is associated with loss of whole chromosomes including chromosome 1, 2, 6, 10, 13 and 

17, with imbalanced chromosome duplication (ICD) associating with metastatic chRCC [24, 73, 74]. In 

addition to SCNAs associated with RCC subtypes, loss of 9p and 14q have been identified as hallmark 

driver events in tumour metastasis and together with genome wide aneuploidy and ICD have been 

linked with worse survival [75]. Genomic structural variation in SRMs may therefore provide some 

diagnostic and prognostic information. 

 
In addition, RCC is characterised by a relatively low number of somatic mutations (~1 single 

nucleotide variant/Mbp). Recurrently mutated driver genes have been identified in RCC pathological 

subtypes, and a subset of these have prognostic value [24]. Over 90% of patients with ccRCC harbour 

an alteration in the VHL gene. This may occur through loss of the short arm of chromosome 3, 

mutations or promoter hypermethylation [76]. Indeed, inactivation of VHL is a driver event which 

occurs in the trunk of the phylogenetic tree of ccRCC evolution [77]. Other significantly mutated 

genes in ccRCC include genes involved in the SWI/SNF chromatin remodelling complex (e.g. PBRM1, 

also located within the LOH region on 3p) and PI(3)K/AKT/MTOR signalling pathway (Table 2.3). 

Mutations in the MET proto-oncogene are enriched in pRCC and TP53 mutations are more frequent 

events in chRCC, but rare ccRCC cases also harbour MET mutations and TP53 mutations are found in 

all RCC subtypes [70]. Similarly, many of the driver mutations that are enriched in ccRCC are also 

found in other RCC subtypes (e.g. VHL and PBRM1 are mutated in a subset of pRCC and chRCC) [70]. 

Overall, the enrichment of specific driver gene mutations in subtypes of RCC highlight the potential 

diagnostic information associated with these genomic alterations, but as outlined above, these 

features alone are not sufficient to classify RCC subtypes. Several genomic features have been 

associated with aggressive disease and metastatic phenotypes, including TP53 mutations and 

PI(3)K/AKT/MTOR signalling pathway (e.g. PTEN) [70, 73], suggesting that genomic mutations may 

provide additional prognostic information.  
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Table 2.2: Genetic syndromes which predispose to hereditary RCC  

A number of hereditary kidney cancer syndromes have been identified, which aid our overall 
understanding of sporadic disease [26, 78-81]. 
 

Syndrome 

Estimated 
incidence in 
the general 
population 

Genetics 
Lifetime 
risk of 
RCC 

Renal 
manifestations 

Extrarenal 
manifestations 

Von Hippel 
Lindau (VHL) 

Disease 

1:30,000 to 
1:35,000 

Autosomal dominant 
 

VHL gene on 
chromosome 3p25-26 

50-70% 

ccRCC 
Early age at onset 

Bilateral, 
multifocal 

 
Renal cysts 

 

Retinal angioma 
Haemangioblastoma 

of brainstem, 
cerebellum or spinal 

cord, 
Phaeochromocytoma 
Renal, pancreatic and 

epidydimal cysts 
Inner ear tumours 

Hereditary 
papillary RCC 

syndrome 
(HPRCC) 

Unknown 
 

Autosomal dominant 
 

c-MET gene on 
chromosome 7q31 

90% 
Type 1 pRCC 

Bilateral, 
multifocal 

No tumours in other 
organs 

Hereditary 
leiomyomatosis 

and RCC 
(HLRCC) 

1:200,000 
 

Autosomal dominant 
 

FH gene on 
chromosome 1q42-43 

 
 

15-20% 

Most commonly 
type 2 pRCC, 

although 
collecting duct 
RCC has also 

been reported 
 

Often very 
aggressive 

Cutaneous and uterine 
leiomyomas 

Succinate 
dehydrogenase 

RCC (SD RCC) 
Unknown 

Autosomal dominant 
 

SD genes: SDHB (most 
commonly), SDHA, 

SDHC, SDHD 

10-15% Specific type of 
RCC 

Paragangliomas 
Gastrointestinal 
stromal tumours 

Birt-Hogg-Dubé 
Syndrome 

 

1:200,000 
 

Autosomal dominant 
 

FCLN gene on 
chromosome 17.p.11.2 

10-30% 

Chromophobe 
RCC, oncoytomas 

and hybrid 
oncocytic-

chromophobe 
tumours 

 
ccRCC and other 
subtypes have 

also been 
observed 

Cutaneous 
fibrofolliculomas 

 
Lung cysts and 
spontaneous 

pneumothorax 

Tuberous 
sclerosis 

1:6,000 to 
1:10,000 

Autosomal dominant 
 

TSC1 gene on 
chromosome 9p34 or 

TSC2 gene on 
chromosome 16p13.3 

1-5% 
 

Renal cysts 
AML 

ccRCC 

Epilepsy, learning 
difficulties and 

adenoma sebaceum 



 
12 

Table 2.3: Mutations and somatic copy number aberrations in ccRCC  

For somatic copy number aberrations (SCNA), data regarding affected genes is also supplied. 
Numbers in brackets refer to the frequency of the events. Turajlic et al [75] suggested that the 
frequencies of events may be underestimated in studies which only sample a single tumour region 
(compared to multi-region studies) as some of these events may be subclonal. Data obtained from 
[70, 75, 76, 82].  
 
 

Mutations Somatic copy number aberrations 
• Frameshift/point mutations in VHL or VHL 

complex genes (e.g. TCEB1) are noted in 
70%-80% of patients and are clonal  

• Mutations of chromatin modifying genes:  
o 30-50% PBRM1 (2nd most 

commonly mutated gene in 
ccRCC), is a subunit of the 
SWI/SNF chromatic remodelling 
complex. This is often an early 
event, preceding mutations in 
SETD2 and PI3K pathway genes. 

o 10-30% SETD2 = histone 
methyltransferase 

o 5-15% BAP1, a histone 
deubiquitinase, is associated with 
a high number of SCNA, 
confirming its role in chromosome 
stability. It has prognostic 
potential and is associated with 
poor survival 

o 5-15% KDM5C, ARID1A, SMARCA4 
• TERT mutations (6-14%) 
• CSMD3 mutations 
• Alterations in the SWI/SNF complex 

(including PBRM1 as mentioned above) 
• PTEN gene and PI3K/AKT/mTOR signalling 

pathway 
o This includes MTOR gene 
o Other genes involved in the 

pathway: TSC1/TSC2/PIK3CA 
• TP53 gene (2-10%) and TP53 pathway 
• CDKN2A mutations, which are prognostic 

• Heterozygous loss of the short arm of 
chromosome 3 is the most common event 
(90%)à VHL, PBRM1, BAP1 and SETD2 (the 4 
most commonly mutated genes) are all located 
here 

• Second most common aberration: 5q gain 
(60%). Co-occurrent loss of 3p and gain of 5q is 
noted in 36% of ccRCC patients 

o FGFR4 gains seen in ~50% of ccRCC, 
due to gains in 5q 

• 14q loss (40%), the third most common 
aberration, leads to the loss of HIF1-α 

• Arm level or focal losses on chromosomes 1p, 
3p, 4q, 6q, 8p, 9p and 14q 

o 1p loss à NEGR1 tumour suppressor 
o 6p loss à QKI 
o 9p loss à CDKN2A, PTPRD 
o 14q à NRXN3 

• Gains on chromosomes 1q, 2q, 5q, 7q, 8q, 12p, 
and 20q 

o 1q gain à MDM4 (TP53 regulator) 
o 8q gain à MYC 
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2.3 Genetic heterogeneity and tumour evolution in ccRCC 
 
In the 1970s, Nowell first coined the Darwinian concept of tumour evolution [83]. This theory was 

lent further support over subsequent decades through the observation that tumours display high 

genomic instability, a feature that is noted as one of the hallmarks of cancer [84]. This genetic 

variation facilitates tumour adaptation to selective pressures, leading to the emergence of distinct 

tumour subclones and, in contexts where space and nutrients are not limiting, results in tumour 

heterogeneity [85]. In tumour phylogenetic analysis, genetic changes which are observed in all 

tumour cells are considered clonal, driver/truncal events in the phylogenetic tree, whereas less 

prevalent genetic changes are defined as subclonal, branched events. 

 

Sottoriva et al suggest a model of tumour evolution in which stochastic accumulation of mutations in 

the absence of selection results in early events making the largest contribution to intra-tumoural 

heterogeneity (ITH) [86]. This ‘Big Bang’ theory of tumour evolution suggests that early mutations 

lead to a variegated tumour cell population, and subsequently these persist in the form of 

heterogeneity. A corollary of this theory is that certain tumours are ‘born to be bad’, rather than 

acquiring aggressive potential through late acquisition of mutations and selection. This theory has 

implications for efforts to predict tumour behaviour and suggests that markers of poor prognosis 

may be detectable at early stages of tumour development.  

 

ccRCC is characterised by a high degree of genetic ITH, with >60% of somatic mutations not 

detectable across all multi-regions sampled [44]. On average seven multi-region samples are needed 

to detect ³75% of genetic variants [87]. Multi-region ccRCC analysis identified clonal aberrations in 

the VHL gene that were present in 90% of tumour samples, consistent with VHL mutations being 

early driver events [87, 88]. A subset of ccRCCs also demonstrated convergent evolution, meaning 

that different subclones evolved independently but converged with aberrations in the VHL gene. In 

addition, ccRCCs demonstrated convergent evolution in a number of other driver genes (i.e. SETD2, 

BAP1 and PTEN), resulting in parallel outgrowth of subclones and further ITH [87].   

 

Turajlic et al demonstrated that the pattern of ITH is associated with metastatic potential and 

survival, although the relationship is complex [75]. Low ITH (i.e. early fixation of driver events) was 

associated with rapid progression, whereas high ITH (i.e. >10 of subclonal drivers and highly 

branched evolution) was associated with attenuated progression [75]. This may reflect the 

outgrowth of a dominant clone that has outcompeted other clones, so may have a more aggressive 

malignant phenotype (and may therefore correlate with worse prognosis). Conversely, high ITH 
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index (compared to low ITH index) was significantly associated with higher tumour size, grade, stage 

and reduced progression free survival (PFS) [75]. Tumours with VHL monodriver events had the best 

PFS, whereas multiple clonal drivers had reduced PFS. This suggests that having a diverse clonal 

mixture would provide some evolutionary advantages (e.g. to facilitate bypass of selection 

bottlenecks). In addition, patients with both low ITH and low genome instability had attenuated 

metastatic progression, whereas patients with low ITH and high genome instability had the most 

rapid progression. This suggests that ITH may have further prognostic value in addition to specific 

genomic alterations, though ITH needs to be considered in the context of genomic instability rather 

than in isolation. Furthermore, genetic analysis of tumour thrombi showed that these are >90% 

similar to primary tumours, which may be a reflection of early selective sweeps or rapid progression. 

Analysis of metastases demonstrates these are more homogeneous than primary RCCs, consistent 

with early dominant clones that were ‘born to be bad’ or ‘evolutionary bottlenecking’ [75, 86]. A 

better understanding of tumour evolution is key to understanding how ccRCCs develop and 

progress, and to inform biomarker selection and interpretation. 

 

It has been hypothesized that genetic ITH in ccRCC may hamper the identification and validation of 

prognostic risk scores. Hundreds of studies have been published evaluating RNA and proteins as 

prognostic markers in ccRCC [66]. Some of the best-known models include those by Rini et al [89], 

the cell cycle proliferation ‘CCP’ score [90], S3 score [91] and ClearCode34 [92, 93]. Gulati et al 

performed a systematic comparison of 28 different prognostic biomarkers/signatures from the 

literature [68]. Although the authors were able to validate 61% (17/28) of markers in univariate 

analysis, tumour stage and ClearCode34 ccB signatures were the only independent prognostic 

predictors in multivariate analysis. ClearCode34 represents a refined list of 34 genes, from an 

original study by Brannon et al [94]. In 2010, Brannon et al evaluated genome-wide gene 

transcription using the Agilent 44K messenger RNA microarray. They identified 110 genes (120 

Agilent probes), through Logical Analysis of Data (LAD model), that discriminate between ccA and 

ccB subtypes [94]. This model was subsequently externally validated in six publicly available gene-

expression datasets (N=480 tumours) [95]. ccA tumours demonstrated increased expression of 

genes associated with angiogenesis and hypoxia signalling, and had better prognosis. ccB tumours 

were characterised by overexpression of genes associated with growth and differentiation, including 

mitosis, growth factor and epithelial-to-mesenchymal transition (TGF-b and Wnt signalling). The 

larger list of genes identified by Brannon et al was refined into ClearCode34, which consists of a 34 

gene classifier (24 genes ccA; 10 genes for ccB) [92, 93] using a centroid-based classification 

algorithm. ClearCode34 has gained popularity as it is relatively inexpensive and has been externally 
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validated in numerous studies. The validity of this model is not limited to localised disease. In fact, 

ClearCode34 can differentiate between good and poor prognosis in patients with metastatic RCC 

and slightly improve the prognostic power of the International Metastatic Renal Cell Carcinoma 

Database Consortium (IMDC) model in multivariable analysis [96]. However, genetic ITH confounds 

the use of genomic predictive models [44]. Indeed, ITH has been noted in 80% of patients evaluated 

using ClearCode34, meaning multi-region samples from the same patient were classified as high and 

low risk [68]. Similarly, ITH was noted in 60% of patients evaluated using the S3 score [91]. This 

demonstrates that ITH may hamper risk-score validation studies and use in clinical practice. 

Evaluating ITH may elucidate biological insights into tumour evolution. An ideal prognostic marker 

would be clonal, displaying low ITH, to maximise chances of detection and consistent tumour 

classification.  

 
 

2.4 DNA methylation 
 
Genomic markers may have a role in RCC diagnosis and prognosis, but are unlikely to be sufficient 

alone due to low recurrence rates and heterogeneity (e.g. few mutations, not present in all patients 

nor all multi-region samples). DNA methylation may overcome these challenges as a potential 

tumour marker. 

 Relevance of DNA methylation  

DNA methylation in eukaryotic cells predominantly involves the addition of a methyl group to the 

fifth carbon in the cytosine ring, resulting in 5-methylcytosine. This epigenetic modification has a 

broad range of impacts on DNA pitch, secondary effects on chromatin structure, effects on binding 

of transcription factors, silencing of retrotransposons and effects on gene expression, without 

changing the underlying genomic sequence. DNA methylation also mediates gene imprinting and X 

chromosome inactivation. In mammals, DNA methylation most often occurs in the context of 

adjacent cytosine and guanine dinucleotides (CpGs), a self-complementary DNA sequence. Clusters 

of CpGs in the genome are referred to as CpG islands, and there are approximately 29,000 CpG 

islands in the human genome [97]. CpG islands are flanked by CpG shores and shelves. The following 

section discusses mechanisms which mediate DNA methylation modifications, temporal and spatial 

changes which occur in human normal and malignant cells. 

 

DNA methylation is dynamically regulated through the addition and removal of a methyl group by 

DNA methyltransferases (DNMT) and the ten-eleven translocation (TET) demethylase enzymes 
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respectively [98]. Patterns are heritable and maintained through cell division cycles thanks to 

DNMT1, which copies DNA methylation from the parental strand to the daughter strand during DNA 

replication [99]. De-novo methylation is mediated by DNMT3 enzymes (DNMT3A and DNMT3B) in 

cells which are not actively proliferating [98]. De-novo methylation occurs during embryological 

development and cell differentiation and occurs preferentially at certain sites more than others. 

DNA methylation tends to be a stable process, however passive (i.e. replication dependent) or active 

(i.e. replication independent) de-methylation may occur. The former refers to failure to preserve 

methylation during cell division (i.e. methylation is not maintained). TET enzymes mediate active de-

methylation through stepwise oxidation of methylcytosine (5mC) to 5-hydroxymethylcytosine 

(5hmC), to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Subsequently, 5fC and 5caC are 

excised by thymine DNA glycosylase (TDG) and unmethylated cytosines are inserted via base 

excision repair (BER) [100]. TET activity may be modified by chromatin accessibility, TET mutations 

and changes in availability of substrates and co-factors (such as Fe(II), oxygen and alpha 

ketoglutarate). For example, mutations in genes involved in the Krebs cycle (such as IDH1, IDH2, SDH 

or FH) may lead to altered alpha ketoglutarate levels and subsequent hypermethylation. In addition, 

methylated CpGs may be spontaneously de-aminated to thymine, which explains why there are less 

CpGs in the genome than expected by chance. 

 

Epigenetic changes occur in a regulated fashion throughout the life history of a cell. De-methylation 

occurs during embryological development, followed by somatic de novo methylation. Methylation 

will determine early cell identity and fate, and changes are largely conserved. Thus, the vast majority 

of CpGs are stable and specific to a cell type, whilst some sites may change with ageing, 

environmental exposure, or the development of disease (including cancer). Conserved, stable 

patterns of methylation are cell lineage specific and can thus be used to identify the cell of origin 

[101]. DNA methylation changes with age and this is referred to as the ‘epigenetic clock’, similarly to 

clock-like mutational signatures. The mechanism of this is incompletely understood but may be 

secondary to exposure to environmental stressors and hazards, as well as errors in copying DNA 

methylation during replication [99]. A number of studies utilise methylation at CpG sites to estimate 

epigenetic age, which is highly correlated with chronological age, and is associated with increased 

cancer risk [98, 102]. In normal cells, CpG islands frequently occur at highly repetitive DNA 

sequences (these tend to be methylated) and near gene promoters (these tend to be unmethylated) 

[103, 104]. Overall, 70-80% of CpGs are methylated in normal cells [105]. Conversely, in cancer 

global DNA hypomethylation as well as local hypermethylation of gene promoter regions have been 

noted. Genome-wide hypomethylation has been linked to de-repression of retrotransposons which 
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may drive genomic structural variation [106]. Hypermethylation of promoters is associated with 

transcriptional silencing of tumour suppressor genes. Conversely, DNA hypermethylation is observed 

in the body of genes which are actively transcribed [105]. DNA methylation alterations in cancer are 

considered to be common, early and stable events, making these attractive diagnostic targets for 

tissue and liquid biopsies. In addition, further methylation changes may occur with cancer 

progression/aggressive disease, meaning there is scope for a prognostic application. 

 

Spatial and temporal genomic analysis of DNA methylation patterns has revealed critical insights into 

tumorigenesis. In normal cells, adjacent CpGs demonstrate similar methylation levels (i.e. they are 

co-methylated) and co-methylation is determined by genomic distance along a chromosome [107]. 

This is believed to be secondary to the progressivity of DNMT and TET and coordinated function of 

these enzymes in a region-specific manner [108]. Methylation haplotype blocks are large areas of 

the genome which show highly concordant, cell-type specific methylation patterns in cells, which 

have been used to determine the cell of origin in ctDNA analysis [107]. These large blocks of 

concordant methylation have also been noted in cancer cells (and tend to be hypomethylated). 

However, certain regions may exhibit highly disordered methylation, meaning adjacent CpGs have 

different methylation status.  

 

There is a growing interest in evaluating disordered methylation as it may increase our 

understanding of tumourigenesis and may serve as a cancer biomarker. Methylation heterogeneity 

has been observed in both normal and cancerous tissue, suggesting that a stochastic process may 

cause changes in individual CpGs, which may confer a selective advantage and drive cell 

development and tumorigenesis [109]. Disordered methylation has been shown to be associated 

with gene expression independently of average methylation within a locus [108, 110, 111]. 

Furthermore, methylation disorder is associated with worse prognostic outcomes in diffuse B-cell 

lymphoma and therefore has potential clinical relevance [112]. In this thesis, I will be evaluating 

methylation heterogeneity within a sample (in tumour versus normal) using the concept of 

epipolymorphism of epialleles. A single sequencing read enables us to evaluate the DNA methylation 

pattern which comes from one individual cell (i.e. an epiallele). An epiallele refers to the DNA 

methylation pattern seen in adjacent CpGs at an epigenetic locus (e-locus), and these changes are 

believed to be inherited together. It is therefore possible to evaluate the methylation pattern within 

a read, and between different reads derived from the same sample. If we evaluate epigenetic loci (e-

loci) which consist of N adjacent CpGs, each CpG may be either methylated or unmethylated, 

therefore there are 2N possible combinations of epialleles. Epipolymorphism is defined as ‘the 
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probability that two epialleles randomly sampled from the locus differ from each other’ [113]. 

Increased epipolymorphism recapitulates disordered methylation in a read (implying dynamic 

changes in DNA methylation) and disordered methylation between reads (implying epigenetic 

diversity from different tumour subclones and cells which compose the bulk tissue sample). 

Therefore, this has been proposed as a useful method to assess overall epigenetic heterogeneity 

within a sample. Although epipolymorphism has been evaluated in several blood born cancers and 

has demonstrated clinically relevant results, this has yet to be investigated in RCC. 

 

 

 DNA methylation in renal cancer 

Due to the relatively low number of genetic mutations observed in RCC, there is a growing interest in 

DNA methylation as a tumour biomarker, as these are early events in tumorigenesis and highly 

recurrent sets of changes [114]. Herein, the existing evidence is reviewed regarding DNA 

methylation changes as diagnostic and prognostic markers in renal tumours, and current evidence 

regarding DNA methylation heterogeneity. 

 

DNA methylation changes have been proposed as potential diagnostic markers to distinguish 

pathological subtypes of renal tumours [115, 116]. Many of the differences observed between 

tumour subtypes have been attributed to their cell of origin (pRCC and ccRCC derive from the 

proximal convoluted tube vs chRCC and oncocytoma from the distal nephron) [74, 117]. Compared 

to adjacent normal tissue, ccRCC is associated with global hypomethylation as well as a large 

number of hypermethylated sites. Both chRCC and oncocytoma are characterised by a high degree 

of hypomethylation, whilst conversely pRCC is characterised by hypermethylation [117, 118]. A 

relatively small number of studies have been published evaluating methylation markers to 

distinguish tumour types, and results are hindered by poor methodological study quality. A recently 

published systematic review searched >2500 articles and identified 12 studies assessing diagnostic 

DNA methylation biomarkers in renal tumour subtypes [115]. The studies identified in the review 

utilised well known tumour suppressor genes which display methylation changes in renal tumours, 

including VHL, RASSF1A, CDKN2A, APC, TIMP3, IGFBP3, DAPK1, CDH1, SFRP genes, MGMT, DKK3 and 

WIF1. Many of the studies had small sample sizes (<200), used a small number of markers and 

lacked external validation. For example, Pires Luis et al evaluated a three gene promoter 

methylation panel in a cohort of 129 tumour and normal kidney samples. Using OXR1 and MST1R in 

combination differentiated ccRCC from the other renal tumours with an AUC of 0.939, and HOXA9 
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discriminated between the latter with an AUC of 0.756 [119]. External validation was not performed, 

and promoter methylation was not found to be associated with cancer specific survival. Perhaps the 

most rigorous methodology was observed in a study by Chopra et al [120] and a study by Brennan et 

al [121]. Chopra et al developed a DNA methylation classifier based on 59 CpGs (2 for 

angiomyolipoma, 9 for oncocytoma, 11 normal kidney, 13 ccRCC, 14 pRCC and 10 chRCC) using data 

from a training cohort of 429 samples. The classifier was externally validated on 272 ex-vivo biopsies 

from 100 renal nephrectomy specimens (71% malignant) and was able to predict the correct 

pathological subtype in 85% of cases. Subsequently, Brennan et al developed a classifier based on 79 

CpGs to distinguish oncocytoma and chRCC, which achieved an AUC of 0.87 in external validation 

(N=102 samples) [121]. Though promising, it is likely that a higher model accuracy would be 

necessary prior to adoption in clinical practice. In summary, the existing evidence suggests that DNA 

methylation changes could be useful biomarkers to differentiate tumour subtypes in a diagnostic 

setting and that further research into this topic, using rigorous methodology and larger sample sizes, 

is warranted. 

 

As with many cancer types, ccRCC is characterised by global hypomethylation and promoter 

hypermethylation in hundreds of genes [114, 122]. Silencing of the VHL gene via promoter 

hypermethylation has been observed in approximately 15% of individuals with ccRCC [123], while 

promoter methylation of the CDKN2A tumour suppressor gene occurs in ~4% of all RCC subtypes 

and is linked to poor prognosis [70]. Promoter hypermethylation is also noted at a number of other 

renowned tumour suppressor genes such as TP53, MHL1, CDH1, APC, UQCRH and RASSF1A, with 

accompanying reductions in gene expression [70, 122]. Furthermore, several key tumorigenic 

pathways are dysregulated by promoter hypermethylation in RCC, including: the Wnt/β-catenin 

pathway (including SFRP, DKK, IGFBP, HGF, WIF1 and MET genes), TGFβ signalling (GATA-3, GREM-1, 

and SMAD-6), pathways regulating cell adhesion and epithelial-to-mesenchymal transition (EMT), 

cell cycle (RASSF1, KILLIN), apoptosis (APAF1), genomic stability (MGMT) and angiogenesis (TIMP3) 

[124]. Hypermethylation is also noted at genes involved in cell metabolism and homeostasis, such as 

VHL, SDHB, FLCN, SLC16A3, CDO1 and AMPK signalling pathway [122]. These are the same genes and 

pathways which are also disrupted by mutations in RCC.  

 

DNA methylation changes may also serve as potential prognostic markers in ccRCC [24, 103]. A 

higher proportion of promoter hypermethylation has been associated with higher tumour grade and 

stage [70]. A number of literature reviews, systematic reviews and meta-analyses have been 

published evaluating the prognostic potential of methylation markers in ccRCC [67, 103, 125]. A 
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review by Joosten et al identified methylation of the promoter region of 9 genes (BNC1, SCUBE3, 

GATA5, SFRP1, GREM1, RASSF1A, PCDH8, LAD1 and NEFH) as having prognostic potential in more 

than one study [67]. Unfortunately, prognostic studies suffer from similar pitfalls as those 

mentioned for diagnostic methylation studies, namely heterogeneous methods, small sample sizes, 

lack of external validation and reproducibility. Wei et al developed a five-CpG-based classifier which 

could be applied to nephrectomy specimens to predict overall survival in ccRCC patients following 

surgery [126]. The score was calculated using a LASSO Cox regression model based on methylation at 

5 CpGs in the promoter region of PITX1, FOXE3, TWF2, EHBP1L1 and RIN1. The median score in the 

cohort was used as a cut-off and patients with a risk score above the median value tended to have 

worse survival. The authors validated their score in three independent datasets (one of which was 

TCGA) and demonstrated reproducible results. However, Evelönn et al failed to validate the Wei 

model in their cohort of non-metastatic patients [127]. It is postulated that evaluating global 

methylation changes and large panels of markers may prove to be superior to individual CpGs to 

predict prognosis reliably and reproducibly. The CpG island methylator phenotype (CIMP) is one 

such example, where CIMP-positive tumours are characterised by genome-wide hypermethylation in 

CpG islands and poor prognosis. CIMP has been most extensively studied in colorectal cancer [128], 

but has been demonstrated to have prognostic value in a pan-cancer setting [129-131]. Arai et al 

performed the first study evaluating CIMP in ccRCC tissue (N=109) [132]. The authors identified a 

small subset of ccRCC samples (13%, N=14/109) which were CIMP-positive and these were 

associated with aggressive clinical parameters: higher tumour size, grade, stage, presence of 

necrosis, tumour thrombus, invasion of vessels and renal pelvis. The prognostic value of CIMP has 

been validated in independent cohorts of ccRCC samples [24, 133]. In addition, TCGA demonstrated 

that CIMP-positive tumours, characterised by hypermethylation in 1532 CpGs and poor prognosis, 

are present across different pathological subtypes of renal tumours (ccRCC, chRCC and pRCC) [24].  

 

Although genetic heterogeneity has been extensively studied, there are very few data regarding 

methylation heterogeneity in ccRCC. This is an important biological question that will contribute to 

our understanding of tumour evolution and will also inform the selection and interpretation of RCC 

methylation markers. A genome wide study performed in 30 human cell lines and tissue types using 

whole genome bisulphite sequencing (WGBS) suggested that DNA methylation variability between 

tissues exceeds variability within tissues by one order of magnitude [134]. To our knowledge, there 

are only three studies which assessed methylation ITH in ccRCC [127, 135, 136]. For example, 

Evelönn et al aimed to explore prognostic methylation markers in ccRCC [127]. Their study also 

included data on 5 patients with multi-region samples: 2 or 3 tumour samples were available for 
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each patient, however matched normal data were not presented. Although methylation ITH was not 

the primary aim of their analysis, they showed that methylation patterns were similar in multi-region 

samples derived from the same patient (R2 correlations 0.97 to 0.99). Similarly, Winter et al [136] 

evaluated multi-region samples from 3 patients (2 primary tissue samples each) and confirmed 

similar correlations between multi-region tumour samples from the same patient (R2 >0.96). Stewart 

et al [135] demonstrated that in patients with mRCC, renal biopsy samples and multi-region 

nephrectomy samples (following sunitinib therapy) cluster together. None of the three studies 

evaluated sequence level methylation data, none evaluated >3 samples per patient and none 

attempted to reconstruct methylation phylogenies. Therefore, my thesis aims to address these 

points and systematically characterise methylation heterogeneity between patients, within a patient 

and within each sample, using sequence level data. 

 
 

 Methods used to evaluate DNA methylation 

A number of experimental methods are available to sequence DNA methylation data. The main 

challenge is that traditional Sanger based sequencing cannot distinguish between methylated and 

unmethylated cytosines. Therefore, several techniques have been developed to convert methylated 

and unmethylated cytosines prior to sequencing to enable differentiation, including bisulphite 

sequencing (BS) and enzymatic conversion, both of which are used in this thesis. Bisulphite 

conversion is widely considered as the gold standard methodology. The bisulphite conversion 

reaction de-aminates unmethylated cytosine residues to uracil, whilst methylated cytosines remain 

unaffected. Following Polymerase Chain Reaction (PCR) amplification, uracils are copied as thymines, 

meaning the resulting libraries consist of two families of dsDNA molecules (originating from Watson 

and Crick strands), with a high thymine to cytosine ratio (Figure 2.2). The main drawback of BS is it 

consists of a biochemically harsh method (low pH and high temperature) resulting in ~90% DNA 

degradation, loss of starting material and low complexity libraries. BS is therefore routinely used to 

evaluate surgical tissue samples which result in high DNA yields (for example nephrectomy 

specimens), however it remains challenging where there is low DNA input such as biopsy samples or 

circulating tumour DNA. In addition, BS is unable to differentiate between 5mC and 5hmC, though 

this can be achieved by performing additional oxidative bisulphite conversion (OXBS) and subtracting 

results from the two methods [137]. 5hmC represents a marker of de-methylation, as well as being 

regarded as a potential cancer biomarker itself, due to its role in tumorigenesis and regulation of 

gene expression [138, 139]. 5hmc is now recognised as a stable epigenetic mark, with tissue-specific 

changes noted, and reduced 5hmc is considered an early cancer marker, including in RCC [139, 140].   
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An alternative method to BS (which I used in Chapter 5 and Chapter 6), which results in less sample 

loss is enzymatic conversion using TET2 and APOBEC (used in Chapter 7). TET2 oxidises methylated 

cytosines, subsequently APOBEC deaminates unmethylated cytosines into uracil whilst sparing 

methylated cytosines due to the previous TET2 action (Figure 2.2). Several other methods are 

currently being investigated in the literature to sequence DNA methylation data, including 

alternative conversion methods (TET-assisted or chemical-assisted pyridine borane sequencing; TAPS 

or CAPS) and Oxford Nanopore sequencing (which does not require conversion), although these are 

outside the scope of this thesis [141, 142]. 

 

 

 

 

 
Figure 2.2: Bisulphite and enzymatic conversion 

The bisulphite conversion reaction de-aminates unmethylated cytosine residues to uracil, whilst 
methylated cytosines remain unaffected. In the enzymatic conversion method, TET2 oxidises 
methylated cytosines, subsequently APOBEC deaminates unmethylated cytosines into uracil 
whilst sparing methylated cytosines due to the previous TET2 action. For both methods, during 
PCR amplification, uracil is converted to thymine resulting in a library with a high thymine to 
cytosine ratio. 
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Following conversion, experimental methods may consist of sequencing the entire genome (e.g. 

WGBS) or capturing regions of interest (e.g. arrays or Epic-seq). WGBS is prohibitively expensive and 

inefficient as 65% of sequencing reads do not contain any CpGs and are thus non-informative [134]. 

Array based technologies (such as the Illumina 27k, 450k and 850k arrays) are widely used in the 

literature, for example in The Cancer Genome Atlas. They are cost-effective but provide limited data 

(i.e. relatively small number of CpGs covered outside of CpG islands, no information regarding 

sequence context and are more error prone). Epic-seq, the method I used in Chapter 5 and Chapter 

6, is a capture-based method which produces sequence level data on approximately 3 million CpGs. 

The main advantage is the ability to evaluate the entire sequence within a read, therefore assessing 

epipolymorphism and differentially methylated regions, rather than simply evaluating individual 

CpGs. A potential limitation is that Epic-seq and the 450k array cover different CpGs (Epic-seq covers 

>90% of the 450k targets, but the overlap between Epic-seq and 450k array is only ~13%), which 

may limit validation of findings across different platforms. The Nimbus method, which I used for cell 

free DNA methylation detection in liquid samples is another capture-based method (Chapter 7). I 

designed the capture panel by selecting informative regions to maximise effectiveness and reduce 

costs. 

 

Several quality control metrics are used to demonstrate the effectiveness of DNA methylation 

sequencing methods. Following both bisulphite and enzymatic conversion, unmethylated cytosines 

are converted to thymines whilst methylated cytosines are read as cytosines. Therefore, the 

percentage methylation at a particular site is calculated by dividing the number of cytosines over the 

total number of cytosines and thymines at that site (i.e. number of cytosines / cytosines + thymines). 

The percentage methylation in non-CpG contexts (i.e. CHG and CHH methylation) is expected to be 

<1% in the human genome, therefore this is a useful metric of under-conversion in both bisulphite 

and enzymatic based sequencing methods [143, 144]. For example, in BS, under-conversion refers to 

incomplete de-amination of unmethylated cytosines, meaning they are read as cytosines (as if they 

were methylated), leading to false positive methylation calling. Under-conversion may occur due to 

incomplete dsDNA strand denaturation [143]. Over-conversion is more difficult to quantify in the 

absence of a known spike-in sequence. Other useful metrics for quality control include: mapping and 

duplication rates, coverage, on-target and off-target rates. Mapping is affected by the high thymine 

content post library preparation in BS, duplication rates and coverage are affected by DNA damage 

resulting in low yields, necessitating high PCR cycles. The on- and off- target rates enable 

quantification of the efficiency of the capture method. A caveat of DNA methylation analysis in bulk 

tissue is that the percentage methylation may be affected by copy number aberrations and tumour 
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purity (i.e. contamination by different cell types). Methylation levels may be evaluated at individual 

CpGs or regions consisting of adjacent CpGs in order to identify differentially methylated cytosines 

(DMCs) or differentially methylated regions (DMRs) respectively. In summary, this section introduces 

the experimental techniques and the analysis methods used in this thesis. 

 
 

2.5 Cell free DNA as a novel tumour marker 
 
As discussed in the previous sections, there is a real clinical need for the identification of biomarkers 

that differentiate benign from malignant SRMs and aggressive from indolent disease. A number of 

potential biomarker candidates have been investigated; however, none have been adopted in 

clinical practice [19, 67-69, 89, 92, 93, 126, 145]. Good practice guidelines and biomarker roadmaps 

have been published as a response, to encourage rigorous study design and methodology [146-148]. 

The ideal RCC biomarker would be sensitive and specific, tested non-invasively, using readily 

available and inexpensive methods. Epigenetic markers offer the benefits of high specificity and 

digital quantification, building on recent technological developments in quantitative genomics.  

 

Circulating cell free DNA (cfDNA) has recently attracted interest from the translational research 

community due to its potential role as a non-invasive biomarker in multiple applications, including 

tumour detection. cfDNA consists of small fragments of DNA that originate from cells and can be 

found in bodily fluids such as plasma or urine, reflecting the cell-of-origin’s genome and epigenome. 

cfDNA is believed to be released through cell apoptosis and necrosis, in addition to active secretion 

[149], although the dominant mechanism has not been characterised for different cell types in 

health and disease. cfDNA has a short half-life (0.25-2.5 hours) and clearance is believed to occur via: 

nuclease degradation, renal excretion into urine and degradation by macrophages in the liver and 

spleen [149]. The fragment size distribution of cfDNA molecules has a mode at 166bp, with 

additional peaks at multiples of 166bp, representing mono-, di- and tri-nucleosomes (DNA wrapped 

around a nucleosome plus linker DNA is 166bp). Fragment size is also believed to reflect the 

underlying biology of cfDNA release and nuclease degradation, with short fragments representing 

apoptosis or increased degradation and longer fragments secondary to necrosis or exosome release.  

 

Tumour derived cfDNA (ctDNA) analysis may be used as a ‘liquid biopsy’ to sample the tumour 

genome and epigenome non-invasively and as such is a promising approach for cancer detection. 

Liquid biopsies have a myriad of applications, including: diagnosis, early detection, molecular 

profiling to tailor drug therapy, detection of minimal residual disease, monitoring treatment 



 
25 

response and disease progression. Furthermore, recent methodological advances and increased 

availability of next generation sequencing technologies mean that sequencing ctDNA in large cohorts 

for early detection is now more feasible [150]. These approaches offer high analytical sensitivity and 

specificity, at affordable prices, with the potential for widespread clinical application [149]. 

Evaluation of DNA methylation markers in ctDNA has a number of advantages over genomic 

markers. DNA methylation changes occur more frequently than gene mutations in RCC and 

therefore represent an attractive target for liquid biopsy assays. DNA methylation patterns are also 

cell-type specific and can determine the tumour cell-of-origin [151]. In addition, liquid biopsies using 

ctDNA represent particularly attractive avenues in RCC as this may overcome sampling bias due to 

mutational ITH seen in conventional tissue biopsies.  

 
However, significant challenges exist for the detection of ctDNA, particularly in the context of cancer 

early detection (Figure 2.3). In patients with early-stage cancer the vast majority of cfDNA in the 

plasma (approximately 80%) and urine (median 52%; up to 93%) is derived from haematopoietic cell 

lysis, with only a low fraction derived from the tumour (often <1%) [152]. Levels of ctDNA may also 

be affected by exercise, the circadian rhythm and hydration status. Sensitivity is also limited by low 

absolute counts of ctDNA molecules. It has been estimated that there are approximately 2000 

genome equivalents of cfDNA per millilitre of plasma from patients with early-stage cancer, 

therefore the theoretical limit of detection of a single mutation is less than 1 in a few thousand 

[153]. Bioinformatic simulations have demonstrated that the probability of detecting ctDNA 

increases by increasing the number of targets analysed at high sequencing coverage [154]. However, 

there are a limited number of recurrent somatic mutations in RCC that could be used as prospective 

targets for ctDNA analysis [24]. We therefore postulated that DNA methylation may be an ideal 

target for ctDNA detection, as methylation changes are abundant (several thousand markers) and 

often early events [154]. This prompted our laboratory to investigate targeted methylation analysis 

of ctDNA for cancer detection. In the last few years, a number of studies have been published 

evaluating this topic. In a head-to-head comparison of ctDNA mutational versus methylation 

analysis, DNA methylation provided superior detection rates and cell-of-origin localisation in a pan-

cancer cohort [151]. GRAIL, a large biotech company, are currently evaluating their pan-cancer DNA 

methylation screening test, termed the Galleri test, in a large-scale trial within the NHS and are 

aiming to recruit 165,000 participants [150]. However, ctDNA detection rates using the Galleri test in 

patients with non-metastatic RCC were very low (sensitivity 0% in stage I, 25% in stage II and 50% in 

stage III) [151]. Levels of ctDNA vary between cancer types and reports consistently suggest that 

patients with RCC may have lower ctDNA levels than other malignancies [153, 155-157]. It is 

hypothesized that low ctDNA detection may be secondary to reduced secretion (reduced tumour 
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proliferation/shedding or low tumour vascularity), increased degradation or assays with low 

sensitivity. Low ctDNA detection in ccRCC is therefore surprising as these tumours are generally well 

vascularised and often characterised by necrosis [158]. Low detection rates in ccRCC remain 

unexplained, though a number of studies (described in more detail in Chapter 7) have shown more 

promising results [154, 159].  

 
 
 
 
 
 
 

 

Figure 2.3: ctDNA detection in RCC: challenges and potential solutions 

Potential challenges regarding biomarker development in RCC and in particular ctDNA detection 
(shown in red), along with strategies to overcome these (shown in green). 
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A number of strategies can be adopted to increase ctDNA detection rates. Leveraging sequence level 

data (for error suppression) and multiple markers (e.g. thousands of methylation DMRs, potentially 

combined with transcriptomic or proteomic approaches) may further increase detection rates in low 

burden disease. Tumour derived ctDNA may also be enriched via size selection (either in vitro or in 

silico), leveraging the observation that tumour derived ctDNA is shorter than cfDNA [160]. 

Fragmentomic analysis may also enable ctDNA enrichment, for example by analysing ctDNA end 

fragments and nucleosomal footprinting [161, 162], as these methods can determine the cell of 

origin. Sampling error may also be reduced by evaluating more than one fluid (e.g. both plasma and 

urine), a larger volume of fluid (e.g. 10ml instead of 2ml plasma; 100-200ml instead of 2ml urine) or 

sampling at multiple time points. Although these approaches are generally feasible, it is important to 

minimise the burden on the patient and overall costs. Furthermore, the abundance of ctDNA could 

be increased by seeking ‘alternative’ sampling methods, such as proximal sampling (Figure 2.3). 

 

Proximal sampling, defined as ‘non-tissue sampling of the cancer-bearing organ as close to the organ 

at risk as possible’, has been proposed as a method to increase detection in many cancer types 

[163]. Sampling closer to the organ of interest is hypothesized to be associated with higher levels of 

ctDNA (as well as other cancer markers) which may be low in more distal samples such as peripheral 

venous blood, voided urine or stool. Proximal samples may have varying degrees of proximity to the 

tissue of origin and levels of invasiveness. Samples which have been evaluated for gynaecological 

malignancies include ovarian cyst fluid, uterine cavity lavage, cervical smears and vaginal tampons 

[163]. In other cancer types, these include cerebrospinal fluid for neurological cancers, and for lung 

cancer: breath, saliva, sputum, bronchial lavage and pleural fluid [163]. Circulating tumour cells 

(CTCs), though not the focus of this thesis, demonstrate the value of proximal sampling. CTCs in the 

peripheral blood stream are rare, however CTC detection is increased in proximal blood (i.e. such as 

the pulmonary vein for lung cancer or hepatic vein for hepatocellular carcinoma) and may be 

clinically useful [164]. CTCs were detected from pulmonary vein samples in 48% (48/100) of lung 

cancer patients in the TRACERx study, and detection was an independent predictor of recurrence 

after adjusting for tumour stage [165]. Although CTCs have been investigated in RCC, studies have 

provided inconsistent results (and proximal sampling has yet to be evaluated) [166]. Perhaps one of 

the most promising proximal tests for ctDNA is PapSEEK, which aims to detect endometrial and 

ovarian cancers by evaluating aneuploidy and mutations in 18 genes in cervical fluid [167]. The assay 

produced improved cancer detection rates with more proximal samples (i.e. use of a Tao brush for 

intrauterine sampling vs Pap brush for endocervical sampling). In addition, cancer detection rates 

were higher when evaluating both peripheral blood and cervical fluid, than evaluating one sample 
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type alone (i.e. in some patients, ctDNA was detected in one sample type and not the other). This 

suggests multi-sample approaches may be a promising strategy. This data is consistent with results 

from Smith et al, who evaluated ctDNA detection rates in patients with ccRCC using mutational 

analysis [158]. Smith et al demonstrated that evaluating both plasma and urine ctDNA improves 

detection rates over assessing one sample type alone (i.e. once again, in some patients, ctDNA was 

detected in one sample type and not the other). At present it is unclear if this observation is simply 

due to the limit of detection or whether this is secondary to tumour biology (for example increased 

ctDNA degradation/clearance in certain sample types compared to others). Evaluating multiple 

marker types (such as ctDNA and protein in combination) has been shown to increase detection 

rates further [168]. To our knowledge, very limited research has been published assessing the value 

of proximal sampling in renal cancer. A handful of studies evaluated CA9 levels in renal cyst fluid to 

differentiate benign from malignant cysts [169], however no studies have been performed 

evaluating ctDNA in proximal body fluids. Therefore, one of the approaches investigated in this 

thesis is the use of proximal sampling to increase ctDNA detection rates in patients with RCC 

(Chapter 7). Taken together, these data suggest the value of exploring DNA methylation markers in 

cfDNA derived from patients with RCC. 

 



 
29 

Chapter 3 Rationale and thesis aims 
 
In summary, I have highlighted two complementary clinical research priorities: (a) to improve the 

characterisation/diagnosis of SRMs and (b) differentiate indolent versus aggressive RCC. Though a 

number of genomic biomarker studies have been developed to evaluate diagnosis and prognosis in 

renal tumours, these are hampered by genetic intra-tumoural heterogeneity (ITH). DNA methylation 

markers are abundant, often early events in tumorigenesis, which are specific to the cell of origin. 

Very little is known regarding methylation ITH, though it is postulated this may be less pronounced 

than for genomic aberrations. An improved characterisation of tissue heterogeneity would enable us 

to identify methylation changes which are shared in the majority of multi-region samples, are more 

likely to represent early/stem events in RCC development and therefore more likely to be clinically 

useful markers in both renal and liquid biopsies. ctDNA detection represents a promising non-

invasive liquid biopsy in both these diagnostic and prognostic clinical settings. In the former, liquid 

biopsy may be preferable to invasive renal biopsy, whilst in the latter, ctDNA may allow monitoring 

of minimal residual disease post-operatively, risk stratification and early detection of recurrence. 

RCC is characterised by a low mutational burden, which hampers mutational analysis of ctDNA and 

leads to low detection rates, particularly in earlier stage disease, which may be overcome by 

evaluating thousands of DNA methylation markers. Therefore, in this thesis I aimed to characterise 

DNA methylation patterns in patients with renal tumours to offer insights into disease biology and 

translate these findings into clinically relevant biomarkers (in renal and liquid biopsies) which may 

address the two clinical questions, namely improved diagnosis and prognosis.  

 

In Chapter 5, I characterised DNA methylation in tissue obtained from patients with common 

pathological subtypes of malignant and benign renal tumours and adjacent normal kidney. I 

integrated DNA methylation data with information regarding gene expression to elucidate biological 

similarities and differences amongst pathological subtypes. Lastly, a machine learning model was 

developed to diagnose subtypes of renal tumours in a clinical setting, and I explored the potential 

impact of methylation ITH on model output. In Chapter 6, I assessed methylation ITH in tissue 

obtained from patients with ccRCC, evaluating implications regarding tumour evolution and 

highlighting learning points for biomarker selection. Chapter 7 evaluated DNA methylation in ctDNA 

derived from patients with ccRCC and controls who are cancer-free. I postulated that ctDNA may be 

enriched in proximal samples, a strategy which may be useful in patients with SRMs, as they are 

expected to have low plasma ctDNA levels. I therefore quantified ctDNA detection rates using 

methylation versus mutational analysis and compared distal versus proximal samples. 
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The hypotheses explored in this thesis are: 

 

1. DNA methylation in renal tissue may help differentiate benign and malignant renal tumours  

2. DNA methylation heterogeneity in renal tissue may be associated with clinical and 

prognostic factors in patients with ccRCC 

3. Targeted methylation analysis may enable detection of ctDNA in liquid samples from 

patients with ccRCC 

 

 

As such, the overarching thesis aims are: 

 

1. Map DNA methylation profiles in tissue from patients with benign and malignant renal 

tumours to identify markers that may improve differentiation of small renal masses in a 

diagnostic setting 

2. Characterise DNA methylation heterogeneity in tissue from patients with ccRCC 

3. Explore ctDNA detection using a targeted methylation approach in patients with ccRCC 

versus controls 
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Chapter 4 Materials and methods 
 
This chapter describes materials and methods. All work was conducted by me, unless specified, and 

all collaborator contributions are acknowledged in this chapter. 

 
 

4.1 Samples 

 Patient nephrectomy tissue samples 

A cohort of patients with benign and malignant renal tumours was identified from two biobanking 

studies at Addenbrooke’s Hospital: ‘Discovery and analysis of novel biomarkers in urological 

diseases’ (DIAMOND; REC ID 03/018) and ‘A Translational research Approach to development of 

optimal Renal cancer Treatments In Surgical and systemic Therapy patients’ (ARTIST; REC ID 

20/EE/0200). Ethical approval and patient consent were obtained. All participants were assigned 

anonymous IDs. For tissue analysis, samples (tumour and adjacent normal) were obtained from 

patients undergoing curative or cytoreductive nephrectomy between 2010 and 2018. Tissue samples 

were collected by the pathology team at Addenbrooke’s Hospital (as described below), embedded in 

OCT (optimal cutting temperature) compound, sectioned and stored at -80°C. Subsequently, I 

received fresh frozen tissue specimens directly from the Tissue Bank. 

 
In a subset of patients, multi-region tumour samples were collected by the pathologist along with 

adjacent normal kidney tissue (Figure 4.1). For samples taken post 2016, ‘true’ multi-region samples 

were collected from nephrectomy specimens using a 6mm core biopsy puncher and tumour maps 

delineating the location of multi-region sampling were available. For samples prior to 2016, multiple 

slices of renal tissue were obtained using a scalpel, however unfortunately maps were not available. 

In addition, several patients had large tissue slices that were subdivided into samples ‘a’ and ‘b’ 

representing distinct tissue samples from the same area of the kidney, but only a few millimetres 

apart. This is useful as it enables us to assess the similarity of samples which are spatially very close 

and are therefore expected to be similar.  
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Figure 4.1: Multi-region kidney tissue sampling 

The figure on the left is a cartoon schematic demonstrating multi-region sampling in a nephrectomy 
specimen, whilst the figure on the right demonstrates how this was done in practice. Thus, multiple tumour 
and normal kidney samples were collected for each patient by the pathology team at Addenbrooke’s 
Hospital and I received fresh frozen tissue specimens. 
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 Patient liquid samples 

Plasma samples were obtained from patients with and without ccRCC, who were enrolled in the 

DIAMOND (REC ID 03/018) and ARTIST (REC ID 20/EE/0200) Biobanks at Addenbrooke’s Hospital. 

Patients without ccRCC will be referred to as ‘controls’ hereafter. The choice of controls was purely 

based on sample availability. Controls consisted of men with raised prostate specific antigen 

undergoing clinical investigation for prostate cancer. Patients underwent prostate fusion biopsies 

(MRI planned, ultrasound guided) and no evidence of prostate cancer was found. The absence of 

renal and prostate cancer was confirmed on clinical follow up. 

 

 
4.1.2.1 Feasibility study on proximal versus distal sampling 
 
I organised and led a small study evaluating the feasibility of collecting and analysing proximal and 

distal samples. Matched samples were collected from 11 patients undergoing diagnostic renal 

biopsy, including tissue core biopsy, post-biopsy fluid (proximal sample; defined below) and plasma 

(distal sample). All patients were enrolled in the DIAMOND (REC ID 03/018) or ARTIST (REC ID 

20/EE/0200) Biobanks at Addenbrooke’s Hospital. Core biopsies were undertaken by a radiologist 

using ultrasound guidance. European Association of Urology (EAU) guidelines recommend that renal 

biopsies are taken using an 18-gauge needle via a co-axial sheath, which allows multiple biopsies to 

be taken from the same puncture site [27]. Following biopsy sampling, the co-axial sheath was 

aspirated using a 10ml syringe to obtain blood-stained fluid. This will be referred to as post-biopsy 

fluid for the remainder of the thesis. In cases where <1ml of post-biopsy fluid was obtained, sterile 

saline (variable volumes) was used to ‘flush’ the syringe to reduce the amount of post-biopsy fluid 

which would have otherwise remained in the syringe and have been discarded. 

 

 
4.1.2.2 Liquid sample processing 
 
Whole blood was collected and processed to obtain plasma, using different methods depending on 

the date of collection (due to changes in the DIAMOND Biobank standard operating procedure). For 

samples obtained prior to April 2016, 8ml of blood was collected into an EDTA tube and centrifuged 

at 2700g for 20 minutes, within 1 hour of collection. The plasma was aliquoted into cryotubes 

(‘single-spun plasma’), while the buffy coat was stored in sterile 2ml microfuge tubes. After April 

2016, 2 x 6ml of whole blood was collected into EDTA tubes, and centrifuged at 1600g for 10 

minutes, within 1 hour of collection. Subsequently, 1ml plasma was aliquoted into 2ml RNase-free 

microfuge tubes, and these were spun at 14,000g for 10 minutes. The supernatant was then 
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transferred into 2ml sterile microfuge tubes and stored at -80˚C (‘double-spun plasma’). The first, 

slower spin aims to separate plasma, whereas the second, faster centrifugation step aims to remove 

material from lysed cells [170].  

 

For 11 patients recruited to the proximal sampling study, whole blood (2 x 6ml) and post-biopsy fluid 

(variable amount) were stored in Streck tubes. Streck tubes, a type of cell-stabilizing blood collection 

tubes, contain a proprietary preservative which stabilizes cell free DNA (cfDNA) for up to 2 weeks at 

room temperature [171]. This aims to limit cell lysis, therefore reducing contamination of cell free 

DNA from genomic DNA, and inhibit nuclease mediated degradation of cfDNA. Samples stored in 

Streck tubes were processed within 72 hours using the same ‘double-spin’ protocol as plasma 

samples obtained after April 2016. I performed liquid sample processing for patients recruited to the 

proximal sampling study, and all other specimens were processed by the DIAMOND Biobanking team 

at Addenbrooke’s Hospital. A systematic comparison of blood collection tubes and processing 

protocols has previously been performed by the Rosenfeld group, Cancer Research UK Cambridge 

Institute (CRUK CI), using samples obtained from cancer patients [170]. Equivalent circulating 

tumour DNA yields (measured as mutant copies per ml of plasma) were achieved using cell-

stabilizing blood collection tubes and EDTA tubes, provided the latter were processed within one 

hour of collection (as was the case in my study). Unpublished work conducted by Dr Chris Smith 

(Rosenfeld Group, CRUK CI) demonstrated that detection rates of circulating tumour DNA in patients 

with RCC were not significantly different using ‘single-spun’ versus ‘double-spun’ processing 

protocols.  

 

 
4.1.2.3 Clinical data 
 
Clinical annotation, including patient details and tumour pathological characteristics, was performed 

by retrospective review of prospectively maintained hospital records. Unfortunately, clinical data 

were only available for a subset of patients included in the analysis at the time of writing (although 

further data have been requested). The following parameters were obtained from the nephrectomy 

pathology report: tumour size (maximal diameter in cm), Fuhrman grade, pathological stage and 

presence of necrosis. Cell proliferation was estimated by Dr Anne Warren, histopathologist at 

Addenbrooke’s Hospital, by evaluating ki67 immunohistochemical staining in formalin fixed paraffin 

embedded tissue slides, as previously described [158]. An anti-Ki67 monoclonal antibody (MIB-1 

clone at 1:100 dilution; DAKO Agilent Technologies LDA) was used and staining was assessed in 20 

individual high-power fields (>6000 tumour cells in total) per patient, at 400x magnification. For each 
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of the 20 regions, ki67 staining was graded manually as 0%, 1%, 10%, 30%, 75%, and 100% of 

positive cells, and these were converted into a score of 0, 1, 2, 3, 4, and 5 respectively. The ‘ki67 

sum’ score was derived by adding the individual values for all 20 regions, thus obtaining a score from 

0 to 100 [158]. Patient details included age, sex and body mass index (BMI) at the time of sampling. 

Leibovich score and recurrence data were available for a subset of patients (≥4 years follow up for 

every patient). Recurrence was defined as local relapse at the nephrectomy site or new metastases 

on CT imaging on clinical follow up.  

 

 Cell lines 

Cell line genomic DNA (gDNA) and cell line supernatant were collected to represent a model system 

of gDNA in kidney tissue and cfDNA respectively. DNA was obtained from the following cell lines: 

HK2 (representing normal kidney), 786-O and 786-M1A (representing ccRCC tumours). Cell line 

choice was determined by sample availability. HK2 is an immortalized epithelial cell line derived 

from the proximal tubule of the cortex of a normal adult human kidney [172]. 786-O is one of the 

top three most cited and most well characterised RCC cell lines. The cell line was originally derived 

from a 58 year old Caucasian man with primary ccRCC and widespread metastases, and is 

characterised by a homozygous mutation in the VHL gene [173]. The 786-M1A cell line is a first-

generation metastatic derivative of 786-O, representing an aggressive phenotype compared to the 

parental cell line [174, 175]. 786-O cells were injected into the tail vein of mice and cells isolated 

from rapidly growing lung metastases yielded the 786-M1A cell line. These cells have a 100x 

predilection for lung colonization and demonstrate both epithelioid and sarcomatoid differentiation 

[174, 175]. 

 

gDNA from two HK2 cell clones (clones A and B) was kindly provided by Dr Christina Schmidt (Frezza 

Group, Hutchison MRC Institute) (ATCC cat. No. CRL-219), whereas gDNA from 786-O and 786-M1A 

cells was provided by Dr Paulo Rodrigues (Vanharanta Group, Hutchison MRC Institute). HK2 cells 

were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Life Technology cat. no. 41966) 

supplemented with 10% v/v fetal bovine serum (FBS) in an incubator at 37°C with 5% CO2. 786-O 

cells and 786-M1A were cultured in DMEM/F12 supplemented with B27 (Invitrogen), streptomycin 

(μg/ml), and EGF/FGF (Peprotech 10 ng/mL). Cell line supernatant from HK2 and 786-M1A cell lines 

was provided by Dr Marco Sciacovelli (Frezza Group, Hutchison MRC Institute). The cells were grown 

in a T75 flask in RPMI and 10% FBS in an incubator at 37°C with 5% CO2. The medium was collected 

when cells were subconfluent and centrifuged at 500g for 10 min to remove dead cells. Following 
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this, the cell line supernatant was double spun using the same protocol as for plasma samples 

obtained after April 2016 (i.e. 1600g for 10 minutes followed by 14,000g for 10 minutes).  

 
All cell lines were authenticated using short-tandem repeat genetic profiling. The CRUK CI Cell 

Services Core Facility performed genotyping and data analysis using the Applied Biosystems Gene 

Mapper 5 software. The percentage match to the reference profile was 93% for the HK2 cell line, 

100% for 786-O cells and 100% for 786-M1A. 

 
 

4.2 Experimental methods  

 Nucleic acid extraction from tissue and liquid samples 

Nucleic acid extraction from tissue was performed by different researchers, using different methods, 

depending on sample availability, as outlined below. This means that although DNA was available for 

all samples, RNA was only available for a minority of these. DNA from some patients was kindly 

provided by Dr Chris Smith (Rosenfeld Group, Cancer Research UK Cambridge Institute) and Mr Tom 

Mitchell (Mitchell Group, Wellcome Trust Sanger Institute). For these cases, DNA was extracted from 

a small section of frozen tissue (approximately 20mg), using the commercially available DNeasy 

Blood & Tissue kit (QIAGEN) according to the manufacturers protocol. For the remainder of patients, 

DNA and RNA were extracted using the AllPrep DNA/RNA Mini Kit (QIAGEN) according to the 

manufacturers protocol, by either myself, Anne Babbage (research associate, Massie Group) or the 

Cambridge Cancer Molecular Diagnostics Laboratory (CMDL). I quantified DNA using the QubitTM 4 

fluorometer (ThermoFisher Scientific). Where gDNA concentration was below the required threshold 

for subsequent analysis (<9ng/µl), I used the SpeedVac Vacuum Concentrator (ThermoFisher 

Scientific) to increase DNA concentration.  

 

Cell free DNA (cfDNA) was extracted from plasma, post-biopsy fluid and cell line supernatant (2ml, 

3ml, 4ml, 8ml or 10ml depending on volumes available) using the Qiasymphony DSP Circulating DNA 

mini kit at the CMDL. Where there was insufficient sample volume available for extraction, samples 

were topped up to the extraction volume using PBS. The SpeedVac Vacuum Concentrator was not 

used on cfDNA. I quantified cfDNA using the QubitTM 4 fluorometer (ThermoFisher Scientific) and 

Tapestation (Agilent). 
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 Epic-seq library preparation and sequencing 

I used the TruSeq Methyl Capture EPIC Library Preparation Kit (Illumina), hereby referred to as Epic-

seq, to evaluate methylation in gDNA obtained from tissue. I sheared gDNA samples (10ng/µl, 500ng 

total) using the S220 Focused-ultrasonicator (Covaris) to generate dsDNA fragments. Samples were 

sheared for 280 seconds using the following shearing settings: 175W peak incident power, 10% duty 

factor, 200 cycles per burst. The D1000 ScreenTape System (Agilent) was used to ensure >60% of 

DNA fragments were between 100 and 300bp long, with a mean fragment size of 180-200bp. The 

Epic-seq library preparation was performed using the manufacturers protocol. This consists of a 

capture-based method targeting ~3 million CpGs. Four samples were multiplexed in each capture 

reaction using sample indexing adaptors. The protocol involves hybridization of biotin-tagged probes 

to gDNA followed by capture using streptavidin beads (two hybridization-capture steps) followed by 

bisulphite conversion at 54°C for two hours. Twelve samples were pooled for sequencing on the 

HiSeq4000 Illumina Sequencing platform (single end 150bp read; 20% PhiX) using two lanes per 

library pool. I performed two technical replicates for cell line data (gDNA derived from HK2 cells) and 

evaluated CpG methylation. I focused my analysis on CpGs which achieved ≥10x minimum coverage 

and demonstrated that the Pearson correlation coefficient between technical replicates was 0.97, 

suggesting assay reproducibility. 

 

 
 

 

Figure 4.2: Epic-seq experimental methods 

Epic-seq experimental methods are shown. Data processing is described in detail in section 4.4.1.  
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 Nimbus library preparation and sequencing 

I analysed cfDNA obtained from liquid samples (plasma, post-biopsy fluid and cell line supernatant) 

using the ‘Non-destructive Integration of Methylation to Boost Underlying Signals’ (Nimbus; Figure 

4.3). The Nimbus experimental method and pipeline are currently under review for a patent; 

therefore the exact details cannot be disclosed (confidential protocol). In brief, enzymatic 

conversion was performed using the NEB Next Enzymatic Methyl-seq Kit (New England BioLabs). 

Following this, single stranded library preparation was performed and subsequently between 8 and 

10 samples were pooled into a single hybridization capture reaction (using dual combinatorial 

indexing) to capture thousands of methylation markers. For the majority of samples, I performed all 

steps of the protocol (conversion, library preparation and capture). Due to limited sample 

availability, for control samples, converted libraries were obtained from Dr Gahee Park (postdoctoral 

research associate, Massie Group). I subsequently performed targeted capture and sequencing. The 

informative differentially methylated regions from my tissue-based analysis were used to create a 

panel covering 5801 regions of interest (i.e. panel size ~3.6 million base pairs). Section 4.8.1 

describes how these capture targets were selected.  

 

 

 

 

Figure 4.3: Nimbus experimental methods 

Nimbus experimental methods are shown. Data processing is described in detail in section 4.4.1.  
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Although the Nimbus protocol has been developed for cfDNA analysis, it may also be applied to 

gDNA from nephrectomy specimens or core renal biopsies. Prior to running the protocol, I sheared 

gDNA samples using the S220 Focused-ultrasonicator (Covaris) to generate dsDNA fragments with an 

average insert size of 240–290 bp. Samples were sheared for 100-130 seconds using the following 

shearing settings: 140W peak incident power, 10% duty factor, 200 cycles per burst. The DNA input 

for Nimbus varied depending on sample type (50ng for cell line experiments, 50ng for human gDNA 

and 10ng for human cfDNA), due to the low concentration of cfDNA. For both gDNA and cfDNA, 

sequencing was performed using the NovaSeq Illumina Sequencing platform (paired end, 150bp) 

with 20% PhiX spike-in. 

 
 

 Whole exome library preparation and sequencing 

In a subset of patients with ccRCC used for methylation analysis, whole exome sequencing (WES) of 

multi-region tumour tissue, normal kidney tissue samples and/or germline buffy coat DNA had 

previously been performed by Dr Christopher Smith at the Rosenfeld Group, CRUK CI, as previously 

described [158]. In brief, 50ng of gDNA were fragmented using the S220 Focused-ultrasonicator 

(Covaris). Library preparation was performed using the Thruplex DNA-Seq protocol (Rubicon 

Genomics; 5 PCR cycles). Next, exomes were captured using the TruSeq Exome Capture protocol 

(Illumina) according to the manufacturers protocol. Libraries were amplified (8 PCR cycles) and 

subsequently sequenced on the Hiseq4000 platform (Illumina). To increase the total number of 

samples available for my analysis, WES was performed for an additional set of samples. WES was 

undertaken by the genomics core at the CRUK CI, using Nextera™ Flex for Enrichment protocol 

(Illumina) according to the manufacturers protocol. Sequencing was performed using NovaSeq 

(paired end, 150bp, 55 samples on two lanes of S4).  

 
 

 RNA-seq library preparation and sequencing 

RNA was available for a subset of multi-region samples (N=47) from patients with ccRCC used for 

methylation and WES analysis. I evaluated RNA integrity (RIN), measured on a scale from 0 to 10, 

using the Tapestation (Agilent). Unfortunately, the RNA was low quality (RIN values: median 5.8, 

minimum 1.4, maximum 8.8). Delays in sample freezing, processing and freeze/thaw cycles may 

have contributed to RNA degradation. RNA-seq was performed using the Illumina TruSeq stranded 

Total RNA kit on 225ng of RNA, according to the manufacturers protocol, by the genomics core at 

the CRUK CI. For library preparation, the location of the tumour and normal samples was 
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randomised on the plate to remove variability/batch effect related to the plate. In brief, ribosomal 

RNA (rRNA) was depleted using biotinylated, target-specific oligos combined with Ribo-Zero rRNA 

removal beads, to ensure only messenger RNA (mRNA) was left. Following this, the samples were 

fragmented for 2 minutes (due to the relatively low quality RNA). RNA was then copied to DNA using 

reverse transcriptase, the library was prepared and amplified (15 PCR cycles). Libraries were 

sequenced using NovaSeq (paired end, 50bp, 47 samples on 3 lanes of Novaseq SP) aiming to 

achieve approximately 10 million reads per sample.  

 
 

4.3 Publicly available datasets 
 
I searched the Gene Expression Omnibus (GEO) database to identify publicly available datasets 

containing both methylation and gene expression data for the four pathological subtypes of renal 

tumours. Unfortunately, no such data were available (TCGA contains ccRCC, pRCC and chRCC 

samples but no oncocytomas). Therefore, separate methylation and gene expression datasets were 

searched. A few studies were available in GEO reporting Affymetrix gene expression data for the 

four pathological subtypes, and the dataset with the largest sample size was selected for inclusion in 

this thesis [176].  

 

Furthermore, I obtained additional publicly available DNA methylation and gene expression datasets 

from a number of sources, as shown in Table 4.1. TCGA data for kidney cancer tissue samples 

(ccRCC, pRCC, chRCC and adjacent normal) were obtained via the ‘TCGAbiolinks’ package v2.20.1 in 

R [177]. In TCGA, methylation data were assessed using the Illumina Infinium Human DNA 

Methylation 450k platform (450k array). Pre-processed beta values were downloaded for samples, 

along with clinical and sample characteristics. TCGA data were also evaluated using the following 

online interactive tools: ‘TCGA Wanderer’ [178] and ‘cBioPortal’ [179]. The Jones, Wei and Evelönn 

datasets were downloaded directly from GEO using the accession codes shown in Table 4.1. The 

Chopra data were downloaded from the Open Science Framework (repository OSF.IO/Y8BH2) and 

the Brennan data were obtained directly from the study authors. For deconvolution analysis (section 

4.6.1), I obtained reference methylomes for various cell types (Table 4.2) from GEO and the ENCODE 

project [180]. In order to obtain reference methylomes for kidney cell lines, I performed Epic-seq on 

HK2 and 786-O cells (as described in section 4.2.2). Some of the publicly available datasets used 

previous genome builds (as shown in Table 4.1 and Table 4.2), therefore I converted these to hg38 

using the ‘liftover’ function in the ‘rtracklayer’ package v1.52.1 in R [181]. Section 4.4.4 describes the 

methods I used to overlap methylation datasets from different platforms. 
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Table 4.1: List of publicly available datasets used in the analysis 

The table summarises the data source (including GEO accession number and/or full reference), data 
type and use in the thesis.  
 

Data Sample type Data type/Platform Source Use 
TCGA 
[24] 

Tissue from ccRCC, 
pRCC, chRCC and 

normal kidney 

DNA Methylation 
(450k platform) and 

gene expression  
(RNA-seq) 

TCGAbiolinks [177],  
TCGA Wanderer 

[178] and  
cBioPortal [179] 

Chapter 5 & 
Chapter 6 

Chopra et al 
[120] 

Tissue ccRCC, pRCC, 
chRCC and normal 

kidney 

DNA methylation 
(450k platform) 

Open Science 
Framework 
(repository 

OSF.IO/Y8BH2) 

Chapter 5 

Brennan et al 
[121] 

Tissue from ccRCC, 
chRCC and normal 

kidney 

DNA methylation 
(450k platform) 

Data obtained 
directly from study 

authors 

Chapter 5 

Wei et al 
[126] 

Tissue from ccRCC and 
normal kidney 

DNA methylation 
(450k platform) 

GEO accession: 
GSE61441 

Chapter 5 

Evelönn et al 
[127] 

Tissue from ccRCC and 
normal kidney 

DNA methylation 
(450k platform) 

GEO accession: 
GSE113501 

Chapter 5 

Jones et al 
[176] 

Tissue from ccRCC, 
pRCC, chRCC and 

normal kidney 

Gene expression 
(Affymetrix  
HGU-133A) 

GEO accession: 
GSE15641 

Chapter 5 

 
 
 
 

Table 4.2: Reference methylomes used for methylation deconvolution analysis 

Data Sample type Data type/ Platform Source 
Salas et al 

[182] 
Immune cells 

 
850k array GEO accession number: GSE110555 

Sample identifiers: 
GSM2998022 = NK cell 
GSM2998024 = B cell 
GSM2998030 = neutrophil 
GSM2998032 = CD8+ T cell 
GSM2998039 = monocyte 
GSM2998048 = CD4+ T cell 

ENCODE [180] Immune cells WGBS (hg38) 
Minimum coverage 5x 

ENCODE project, sample identifiers: 
ENCFF649RBS = myeloid progenitor 
ENCFF689TNG = monocyte 
ENCFF703XLD = B cell 
ENCFF953DKC = T cell 

ENCODE [180] Adipose cell WGBS (hg38) 
Minimum coverage 5x 

ENCODE project, sample identifiers: 
ENCFF528JMA = adipose cell 

ENCODE [180] Skin fibroblast 
(Primary cell) 

 

WGBS (hg38) 
Minimum coverage 5x 

ENCODE project, sample identifiers: 
GM23248 
ENCFF752NXS = fibroblast replicate 1 
ENCFF116DGM= fibroblast replicate2 

Generated by 
me 

HK2 & 786-O 
cell lines 

Epic-seq (hg38) 
Minimum coverage 10x 

Data generated by me 

 
Abbreviations: WGBS = whole genome bisulphite sequencing 
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4.4 Data analysis: general methods 

 Data processing 

For methylation (tissue and liquid samples), sequencing data were processed by Sara Pita (research 

assistant, Massie Group) using an in-house pipeline. Sequenced data were trimmed (TrimGalore 

v0.4.4) and aligned to the bisulphite converted human reference genome (GRCh38/hg38) using 

Bismark (v0.22.1) and Bowtie2 (v2.4). For gDNA derived from tissue and prepared with Epic-seq, 

duplicate reads were maintained, whereas for cfDNA prepared using the Nimbus protocol, duplicate 

reads were removed. De-duplication was performed in the latter to enable an estimate of the 

number of unique reads, as the Nimbus analysis pipeline calculates the number of tumour-derived 

(unique) reads in cfDNA. Methylation calling was performed using the Bismark suite of tools 

(v0.22.1). Trimming and alignment reports were compiled using MultiQC (v1.7), and further analysis 

was performed by myself. I evaluated quality control metrics using Picard Tools (default settings) 

[183] and the output from MultiQC. 

 

For RNA-seq and WES, data processing was performed by Kamal Kishore at the bioinformatics core 

at the CRUK CI. For WES, sequenced data were aligned to the human reference genome 

(GRCh38/hg38) using bwa v0.7.17 (bwa-mem algorithm, using default settings). For RNA-seq, the 

results were aligned to the reference transcriptome using ‘Salmon’ v1.4.0 [184]. After alignment, all 

subsequent analysis was performed by me. 

 
 

 Data visualisation and statistical analysis 

I performed data visualisation and analysis using the R statistical software (version 3.6.1 

subsequently upgraded to 4.1.1) and created figure schematics using Biorender (Biorender.com). 

Unsupervised clustering was performed using principal component analysis (PCA) and/or 

dendrograms. Where multiple comparisons were performed (e.g. methylation and gene expression 

analysis of four pathological subtypes of renal tumours versus normal kidney), a Venn diagram was 

utilised to compare results. Heatmaps were used to depict DNA methylation and gene expression for 

multiple samples, using the ‘ComplexHeatmap’ package v2.8.0 [185]. In addition, locus plots were 

created to visualise DNA methylation levels for each sample, at each CpG within a given locus 

(reference genome hg38). For TCGA datasets, locus plots were evaluated using ‘TCGA Wanderer’ 

(reference genome hg19) [178]. 
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Group differences were compared using Fisher’s exact test (for categorical variables), Mann-Whitney 

or Wilcoxon Signed Rank Sum test (for non-parametric data) and Student’s t test (for parametric 

data). For continuous variables, association was evaluated using Pearson’s correlation coefficient 

and/or linear regression models to obtain an adjusted R2, along with p values. P values were 

corrected for multiple testing using a Benjamini–Hochberg correction. 

 
 

 Differential methylation analysis in tissue 

I generated DNA methylation data using Epic-seq, as described in section 4.2.2, and sequencing 

reads were processed as described in section 4.4.1. All subsequent analyses were performed by me, 

unless specified. The percentage methylation at a given locus was obtained by counting the number 

of methylated cytosines divided by the total number of reads (i.e. number of Cs/number of Ts+Cs). 

Methylation levels therefore range between 0 and 1, and this is often referred to as the beta value. 

CpGs located on the sex chromosomes were omitted to remove gender bias. In addition, CpGs 

located at the site of C/T and G/A SNPs were removed as these cannot be distinguished from 

differential DNA methylation in single read data [186]. Data were included in downstream analyses if 

a depth of ³10x coverage was achieved, to reduce the risk of false positive calling. This level of 

minimum coverage allows a 10% methylation difference to be called (i.e. 1 out of 10 reads). For 

comparisons of pathological subtypes of renal tumours (pRCC, chRCC and oncocytoma) versus 

normal kidney tissue (section 4.5.1), CpGs were considered if ³10x coverage was achieved in all 

samples. However, for ccRCC, CpGs were considered if ³10x coverage was achieved in at least 90% 

of samples. Less stringent criteria were used for the latter to avoid a few low-quality samples 

impacting the overall number of CpGs assessed. 

 

I performed differentially methylated cytosine (DMC) analysis at individual CpGs using the 

‘methylKit’ package v1.12.0 in R [187]. This package uses logistic regression to compare CpGs 

between two groups (e.g. tumour vs normal), with p-value adjustment for multiple testing. Patient 

ID was used as a covariate in logistic regression to adjust for multi-region sampling. Significant DMCs 

were defined as ³25% absolute methylation difference between groups (a commonly used cut-point 

in the literature) and q value <0.01 [187]. I performed differentially methylated region (DMR) 

analysis to identify regions that were differentially methylated using the ‘dmrseq’ package v1.6.0 

[188] in R. Significant DMRs were defined as having a q value of <0.01 [188].  
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 Overlapping Epic-seq and 450k array datasets 

The Epic-seq method that I used to evaluate methylation for my samples generates sequence level 

data on approximately 3 million CpGs; in contrast with the approximately 450,000 CpGs included in 

the Illumina 450k array. A number of analyses in this thesis required an external validation set from 

publicly available sources (e.g. TCGA). In order to combine data from the two methods, Epic-seq 

methylation values within ±50bp of the 450k probes were averaged, as adjacent CpGs tend to be co-

methylated [107]. This has previously been demonstrated to be a valid approach; 8 technical 

replicates (fresh frozen tissue) assessed on both Illumina Epic-seq and the 450k array obtained a 

correlation ³0.96 using this method (data from Sara Pita, research assistant, Massie Group; 

manuscript under preparation). After combining datasets, I removed CpG probes found in two 

blacklists [189, 190] on the 450k array. These consist of CpG probes that either map to multiple 

regions, are located at repeat regions, on sex chromosomes or at the site of C/T and G/A SNPs. 

 

 Annotation and enrichment analysis 

I annotated CpGs of interest to the human reference genome (hg38) to determine their location 

relative to CpG islands and shores, as well as annotating to the nearest proximal gene using the 

‘methylKit’ v1.12.0 and ‘ChIPseeker’ v1.22.1 packages respectively [187, 191]. The hg38 annotation 

source was obtained from the ‘EnsDb.Hsapiens.v86’ package v2.99.0 in R [192]. CpGs which were 

within 1.5kb of the promoter region were then selected for enrichment analysis. Gene set 

enrichment analysis and ontology (including disease ontology, biological processes, molecular 

functions) were performed using ‘clusterProfiler’ v3.14.3 in R [193], where the background set was 

defined as the total number of features evaluated. 

 
 

 Gene expression using Affymetrix HG-U133A 

I downloaded and analysed publicly available Affymetrix gene expression data (Accession number: 

GSE15641) [176]. The study authors performed transcriptional profiling of kidney tumours using 

Affymetrix HGU-133A chips according to the manufacturers protocol, for 84 fresh-frozen samples, 

including 32 ccRCC, 11 pRCC, 6 chRCC, 12 oncocytoma and 23 normal kidney. MAS5 normalised data 

were provided by the authors for 22283 probes, and the remainder of the analysis was performed by 

myself in R. I log transformed data (base 2) and removed probes with low expression, as previously 

described [194]. In order to define probes with a low expression, I created a histogram to evaluate 

median intensities and identified a suitable threshold (set as log2 value expression <5). Following 
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this, I excluded 265 probes below this threshold. In the Affymetrix platform, transcripts are 

represented by multiple probes, therefore signal at multimapping probes was averaged using the 

‘avereps’ function in the ‘Limma’ package v3.42.2 [195]. After processing and filtering, gene 

expression data were available for 12606 genes. I used the ‘Limma’ package to identify significant 

differentially expressed genes (DEGs) for each pathological subtype compared to normal tissue, 

adjusting p values for multiple testing. ‘Limma’ fits a linear model with contrasts for disease 

subtypes compared to normal kidney tissue and uses a parametric empirical Bayes approach [195]. 

ANOVA is used to determine differences between all the groups and pairwise comparisons are 

performed for groups of interest, with p value adjustment for multiple testing (Benjamini Hochberg 

correction). Significant DEGs were defined as having an absolute log2 fold change >1 and an adjusted 

p value <0.01. Significant DEGs were ranked based on the greatest expression difference (i.e. highest 

absolute log2 fold change in all subtypes combined), to elucidate shared differences between renal 

tumours and normal tissue. In addition, significant DEGs were ranked based on the greatest absolute 

differences amongst renal tumours, to identify the most pronounced dissimilarities between tumour 

types.  

 
 

  Gene expression using RNA-seq 

RNA-seq data were generated for 47 fresh-frozen ccRCC and normal kidney tissue samples as 

described in section 4.2.5. The sequencing alignment step was performed by Kemal Kishore at the 

CRUK CI bioinformatics core, and all subsequent analyses were performed by me. After alignment to 

the human transcriptome with ‘Salmon’ v1.4.0 [184], I converted transcriptome level count data to 

gene level data using ‘tximport’ v1.14.2 in R [196]. Genes with low expression (counts <5) were 

subsequently removed. ‘DESeq2’ v1.32.0 was utilised to evaluate differentially expressed genes in 

ccRCC versus normal kidney, using non-normalised count level data [197]. Importantly, Patient ID 

was used as a covariate to account for multi-region sampling, and p values were adjusted for 

multiple testing. RNA-seq data were also used to determine the ClearCode34 prognostic risk score 

for each sample, as described by the study authors [92, 93]. In brief, data were available for 31 out 

of the 34 ClearCode34 genes. First data were median centred, then log transformed (log2 + 0.1) and 

visualised in a heatmap with unsupervised hierarchical clustering. 
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4.5 Differentiating pathological subtypes of renal tumours and 
normal kidney  

 

 Characterising DNA methylation & gene expression in pathological 

subtypes of renal tumours 

I generated DNA methylation data for 326 tissue samples using Epic-seq (139 ccRCC, 27 pRCC, 27 

chRCC, 24 oncocytomas and 109 adjacent normal kidney; section 4.2.2). Subsequently, I performed 

differential methylation analysis amongst normal samples, and between each pathological subtype 

versus normal kidney. DMC analysis was performed using ‘methylKit’ v1.12.0 [187], as described in 

section 4.4.3. Furthermore, I obtained Affymetrix HGU-133A gene expression data from Jones et al 

for 84 tissue samples (32 ccRCC, 11 pRCC, 6 chRCC, 12 oncocytoma and 23 normal kidney) [176]. I 

determined DEGs for each pathological subtype versus normal kidney, as described in section 4.4.6.  

 

In order to identify epigenetically regulated genes, I overlapped the significant DMCs from my 

methylation analysis with significant DEGs. This approach (i.e. overlapping two separate datasets) 

was taken due to the absence of a comprehensive dataset containing matched methylation and 

gene expression data for all pathological subtypes of renal tumours. First, I annotated DMCs from 

my analysis to the nearest gene, and those located within 1.5kb of the transcription start site (TSS) 

were selected and overlapped with gene expression data. Gene set enrichment and ontology were 

performed for genes which demonstrated a negative correlation between promoter methylation 

and expression (as these are most likely to be functionally relevant), as described in section 4.4.5. 

Genes were ranked by the number of significant DMCs within the promoter, as well as based on 

greatest differential methylation and gene expression. The latter was performed (rather than 

ranking by p-value) to quantify the magnitude of the effect on methylation and gene expression. The 

top-ranking genes were reported in tables and selected genes were discussed in detail in the text. 

Thus, I identified genes which may be epigenetically regulated, for each subtype. In order to validate 

whether these genes were epigenetically regulated in an external dataset, I assessed TCGA data for 

ccRCC, pRCC and chRCC (no data available for oncocytoma). I obtained matched methylation and 

gene expression data and scatterplots of methylation versus gene expression from ‘TCGA Wanderer’ 

[178] and ‘cBioPortal’ [179]. The association between methylation at CpG probes and gene 

expression was assessed using Pearson’s correlation coefficient.  
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For ccRCC vs normal kidney, I also externally validated the epigenetically regulated genes in a 

separate cohort. I generated matched data (Epic-seq and RNA-seq) for a subset of ccRCC and normal 

kidney samples (N=47) (see sections 4.2.2 and 4.4.7). I evaluated promoter methylation and gene 

expression for these samples, to externally validate the top-ranking genes identified in my earlier 

analysis. A variance stabilising transformation (VST) was applied to gene expression data to ensure 

that the variance is approximately the same across different mean values (i.e. the data are 

homoscedastic). For these samples I was able to directly quantify the association between promoter 

methylation and gene expression using Pearson’s correlation coefficient. 

 
 

 Machine learning model to predict pathological subtypes of renal 

tumours  

The following work was performed in collaboration with Izzy Newsham, to develop MethylBoostER 

(Methylation and XGBoost for Evaluation of Renal tumours). First, I will describe the methods used 

to create the model, subsequently I will delineate author contributions. 

 

MethylBoostER is an extreme gradient boosting (XGboost) machine learning model which uses DNA 

methylation data to classify tissue samples into one of five pathological subtypes. Figure 5.14 in 

Chapter 5 represents a graphical summary. The model was developed using a testing/training set, 

and externally validated on four independent datasets. For the training/testing set, samples were 

combined from three sources, my Epic-seq data (N=319), TCGA (N=872) [24] and Chopra Training set 

(N=37) [120]. The probes were processed and filtered as described in section 4.4.4. Furthermore, 

CpGs were removed if >5% of data were missing (or if data were missing for all samples from one 

dataset), obtaining a total of 158,670 CpG probes. Four publicly available datasets were used for the 

external validation: Chopra validation (N=245), Brennan (N=37), Wei (N=92) and Evelönn (N=144) 

[120, 121, 126, 127]. The same 158,670 CpG probes used in the training/testing set were selected 

for all four datasets in the external validation. Percentage methylation (i.e. beta values) at these 

158,670 CpG probes were converted to M values. M values represent a homoscedastic 

transformation of beta values (β), using the formula shown below. For β values of 0 and 1, this 

would result in M values of positive and negative infinity. In these cases, it is customary to set the 

maximum and minimum M values as the maximum and minimum finite values within the dataset. 

𝑀 = 𝑙𝑜𝑔! &
β

1 − β*
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MethylBoostER was developed using four-fold nested cross validation on the training/testing set, 

with integrated hyperparameter optimisation (see Appendix 1). The multi-class model predicts one 

of five classes (ccRCC, pRCC, chRCC, oncocytoma and normal kidney). The dataset was randomly split 

into training and testing sets (75:25 split) four times, whilst maintaining all multi-region samples 

from the same patient in the same set, to avoid data leakage. This ensures that the model was not 

tested and trained on samples from the same patient, which would result in overfitting. Nested cross 

validation consists of further splitting this training set (75:25) to enable hyperparameter tuning. The 

following hyperparameters were explored: number of trees, maximum tree depth, learning rate, L1 

and L2 regularization terms. This nested cross validation method enables the identification of 

hyperparameters that maximise the Matthews correlation coefficient (MCC) score, prior to testing 

on an unseen set of data (i.e. the 25% of data not used to select the hyperparameters) to avoid over-

fitting. The MCC is defined as the correlation coefficient between actual and predicted values, and is 

a more reliable metric than accuracy when classes are imbalanced [198]. Using this method, it is 

therefore possible to report the results of the entire training/testing set (since all samples will have 

been evaluated in one of the four testing sets during cross validation). Samples were assigned 

weights to account for imbalances in class sizes (referred to as ‘class weights’); for example, ccRCC 

and normal kidney are the most common classes. Weights were also assigned to account for the use 

of multi-region samples (referred to as ‘patient weights’), to ensure that individuals with relatively 

more multi-region samples do not influence the model disproportionately compared to those with 

less samples. Overall sample weights were obtained by multiplying ‘class weights’ with ‘patient 

weights.’ The following model metrics were evaluated: accuracy, precision, recall, MCC, Receiver 

Operating Characteristic (ROC) curve and Precision-Recall curve (Table 4.3). For both curves, data 

were plotted for each class separately (i.e. for each class compared to the remainder) and the area 

under the curve (AUC) was derived. 

 

Table 4.3: Metrics evaluated in MethylBoostER 

Metric Description 
Accuracy The proportion of correctly classified samples (i.e. correctly classified 

samples divided by the total number of samples). 
Matthews correlation coefficient The correlation coefficient between actual and predicted values. 

Precision  
(i.e., positive predictive value) 

The number of true positives given a positive test. Calculated by 
dividing true positives by the sum of true positives and false positives. 

Recall (i.e., sensitivity) The number of true positives given a positive diagnosis. Calculated by 
dividing true positives by the sum of true positives and false negatives. 

Precision-Recall curve Plot of precision versus recall (i.e. the positive predictive value over the 
true positive rate). Therefore, if model precision is 1, there are no false 

positives; and if recall is 1, there are no false negatives. 
Receiver Operating  
Characteristic curve 

Plot of true positive versus false positive rate. 
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The prediction probability was evaluated for each sample in the training set, as this represents a 

measure of the confidence of the prediction accuracy. High- and moderate-confidence predictions 

were therefore defined as prediction probabilities above and below the threshold t respectively. The 

optimal value of t was derived by plotting three metrics (the accuracy of high- and moderate-

confidence predictions and the fraction of high-confidence predictions) over the testing set, at 

different values of t. Simple linear models were fitted for these (to smooth results), and t was 

selected to maximise the average of the three metrics. The value of t was independently validated in 

the four external validation sets. For high-confidence predictions, the MethylBoostER model outputs 

the most likely class, whereas in moderate-confidence predictions, the model will output the two 

most likely classes (referred to as first and second prediction hereafter).  

 

I derived tumour purity using DNA methylation data via the ‘InfiniumPurify’ package v1.3.1 in R [199] 

(see section 4.6.1). Purity was compared in samples which were correctly predicted on the first 

prediction, second prediction and incorrectly predicted samples using the Wilcoxon Signed Rank 

Sum test with BH correction for multiple testing. The association between tumour purity and 

prediction probability was evaluated using Pearson’s correlation coefficient. The accuracy achieved 

at different purity thresholds was also evaluated. Furthermore, model results were reported for 

multi-region samples derived from the same patient to evaluate the impact of intra-tumoral 

heterogeneity (ITH) on predictions. 

 

Herein I summarise authorship contributions for analysis and manuscript preparation (Appendix 1). 

The analysis was performed in collaboration with Izzy Newsham and supervision was provided by Dr 

Shamith Samarajiwa (bioinformatics), Dr Charles Massie (DNA methylation and tumour biology) and 

Prof Grant Stewart (clinical application). The initial study idea was my own, as the diagnosis of SRMs 

is a key research question addressed in my thesis. Furthermore, I ensured that the analysis 

evaluated the impact of tumour purity and methylation ITH on model predictions, as these are 

clinical priorities. I generated the experimental data and provided expertise in DNA methylation and 

clinical applications, and Izzy Newsham provided advanced bioinformatics skills. Specifically, I 

performed the following tasks: generated experimental Epic-seq data, pre-processed Epic-seq data 

to obtain beta values, searched the literature to identify publicly available datasets for use in the 

model. Data merging/filtering and the machine learning model were undertaken in collaboration 

with Izzy Newsham. Specifically, Izzy Newsham wrote the code in Python, however decisions 

regarding model methods, structure and analysis were undertaken in collaboration with myself, 

through an iterative process. For example, the following decisions were developed in collaboration 
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with Izzy Newsham (and our supervisors): method to avoid data leakage for multi-region samples, 

weighting to mitigate patient and class bias and use of high- and moderate-confidence predictions to 

maximise clinical utility. All analyses evaluating the association between purity and model output 

were done solely by me. The evaluation of methylation ITH was undertaken collaboratively, whereas 

work regarding the model’s clinical application was undertaken by me. 

 
A number of collaborators were also involved in the manuscript (Appendix 1), as outlined below. Dr 

Kevin Brennan and Dr Olivier Gevaert (Gevaert Group, Stanford University, USA) provided sample 

data and bioinformatics support. Dr Thomas Mitchell (Wellcome Trust Sanger Institute) and Dr John 

Leppert (Stanford University) provided advice regarding clinical applications and reviewed the 

manuscript. Wing Kit Leung (Tavare Group, CRUK CI) and Dr Gahee Park (Massie Group, Hutchison 

MRC) offered laboratory supervision, while Dr Anne Warren (Pathology, Addenbrooke’s Hospital) 

reviewed pathology slides. All collaborators read and approved the manuscript. 

 
 

4.6 Tumour purity assessment and cell type deconvolution 
 

 Purity and deconvolution using DNA methylation data 

I estimated tumour purity from methylation data using the ‘InfiniumPurify’ package v1.3.1 in R, as 

previously described [199]. Importantly, the package estimates tumour purity relative to 

contamination with normal (non-cancerous) tissue. The function compares methylation in normal 

and tumour tissue (taking into account the variance of methylation in tumour) and identifies 

informative differentially methylated CpG sites (iDMCs). iDMCs are then used to estimate purity 

using Gaussian kernel density [199]. 

 

Percentage methylation at CpGs for each sample (i.e. beta values) represent a mixture of 

methylation values from reads derived from different cell types. I performed cell type deconvolution 

from methylation data using the ‘MeDeCom’ package v1.0.0 in R [200, 201]. Good quality reference 

epigenome maps for ccRCC purified cell components are lacking (lack of available data and poor 

overlap between CpGs covered by Epic-seq). Therefore, I selected a ‘reference-free’ deconvolution 

method to perform an unconstrained analysis. First, feature selection was performed: DMCs were 

ranked based on the highest methylation variance in tumour tissue and the top 10% (N=10794 

DMCs) were identified in order to select the most informative features. ‘MeDeCom’ is unable to 

handle missing data, therefore imputation was performed for missing CpGs using the k nearest 



 
51 

neighbour (‘impute’ package v1.60.0 in R) [202]. ‘MeDeCom’ uses regularized non-negative matrix 

factorization to decompose the DNA methylation matrix into two matrices: cell-type-specific latent 

methylation components (LMCs) and the proportion of LMCs in each sample [201]. LMCs represent 

the reference methylomes of unknown cell populations. The method was run over multiple 

iterations and the parameters K (i.e., the number of LMCs) and λ (i.e., regularization parameter) 

which minimize the cross-validation error were selected. In order to identify the potential cell type 

corresponding to each LMC, these were correlated with reference methylomes for known cell types. 

I performed Epic-seq to establish reference methylomes for the HK2 and 786-O cell lines, 

representing normal kidney proximal epithelium and ccRCC tumour respectively. The remainder of 

the cell type reference methylomes were obtained from the literature, as described in section 4.3 

and Table 4.2. The LMCs were also correlated with purity estimates derived by ‘InfiniumPurify’ (DNA 

methylation), ‘ESTIMATE’ (RNA-seq) and ‘ASCAT’ (WES) (described in section 4.6.2). The Wilcoxon 

signed rank sum test was used to assess whether there was a significant difference in the LMC 

content by tumour stage (stage I-II vs III-IV), grade, Leibovich score (low versus intermediate/high) 

and recurrence status (no recurrence vs recurrence), whilst adjusting for multiple testing. 

 

 Purity and deconvolution using RNA-seq and WES data 

I used RNA-seq data to estimate tumour purity using the ‘Estimation of STromal and Immune cells in 

MAlignant Tumours using Expression data’ (ESTIMATE) package v1.0.13 in R, as previously described 

[203]. ‘ESTIMATE’ determines tumour purity as a function of admixtures of immune and stromal cell 

components based on gene expression data. I compared immune and stromal cell components 

derived from ‘ESTIMATE’ for my dataset (N=47) and TCGA data, confirming my results were within 

the expected range. Tumour purity was estimated from WES data using ‘ASCAT’, by my collaborator 

Victoria Dombrowe (Schwarz Group, Max Delbrück Center, Berlin) [204]. Subsequently, I used 

Pearson’s correlation coefficient to compare the association between purity calculated using WES, 

RNA-seq and Epic-seq. 

 

In addition, I performed cell type deconvolution using RNA-seq data and ‘CIBERSORTx’ [205], via the 

‘Immunedeconv’ package v2.0.4 in R [206]. Gene expression data were normalised (normalization 

method: transcripts per million, not log transformed) prior to decomposition. ‘CIBERSORTx’ enables 

the deconvolution of bulk RNA-seq data into 22 immune cell types, based on a reference 

transcriptome provided by the study authors (termed the ‘LM22 signature matrix’) [205]. 



 
52 

4.7 Analysis of methylation heterogeneity in ccRCC tissue 
 
I performed an analysis of methylation heterogeneity on three levels: between patients, within a 

patient and within a sample, as previously described [207]. Figure 6.1 in Chapter 6 represents a 

graphical summary. I performed all the methylation analyses using Epic-seq data generated from 

ccRCC and normal kidney tissue as described in section 4.2.2.  

 

  Heterogeneity between patients 

Heterogeneity between patients was defined as an evaluation of methylation patterns in tumour 

samples from different patients with the same diagnosis (i.e. ccRCC). In order to evaluate 

methylation heterogeneity between patients, methylation beta values were obtained. All CpGs at 

SNP sites were removed (i.e. not just C/T and G/A SNPs) to ensure that the heterogeneity noted 

between patients was driven by methylation rather than SNPs. Principal component analysis was 

performed using data from all available CpGs (~1.1million CpGs) and sample clustering was 

evaluated. Subsequently the top-most variable CpG (i.e. CpGs with the highest variance in tumour 

samples) were selected for visualisation in a heatmap. This analysis was compared for the top 

10,000 CpGs and the top 50,000 CpGs. 

 

 Heterogeneity within a patient 

Heterogeneity within a patient was defined as an evaluation of methylation patterns amongst multi-

region tumour samples obtained from one patient (i.e. multiple tumour and normal samples are 

taken from each individual ccRCC tumour). ITH was evaluated by assessing epigenetic age, the 

average pairwise ITH index (APITH) and phylogenetic trees derived from methylation and somatic 

copy number data (SCNA). For each of these parameters, I evaluated the association with clinical and 

prognostic factors. I assessed whether there was a significant difference by tumour stage (stage I-II 

vs III-IV), grade, tumour size, Leibovich score (low vs intermediate/high) and recurrence status (no 

recurrence vs recurrence), whilst adjusting for multiple testing.  
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4.7.2.1 DNA methylation age 
 
The predicted DNA methylation age of each sample was calculated using Horvath’s epigenetic clock, 

using publicly available code published by the study authors [102]. In order to demonstrate 

reliability of methods, first I evaluated methylation age for TCGA ccRCC tumour (N=325) and normal 

kidney (N=160) tissue samples. Subsequently, I repeated the analysis for my Epic-seq samples. Since 

Horvath’s clock was developed using the 21k Illumina methylation array, the Epic-seq methylation 

data for my samples was overlapped with the 21k array by averaging methylation levels within 

±100bp of Illumina CpG probes, as described in section 4.4.4. The 100bp threshold (rather than 

50bp) was selected to increase the number of CpG probes for which data might be available. Epic-

seq and TCGA data were combined into one data frame and for missing values, imputation was 

performed using k-nearest neighbours with the ‘impute’ package v1.60.0 in R (k=10, rowmax=0.25) 

[202]. The association between chronological age and predicted DNA methylation was evaluated for 

normal and tumour samples separately, using Pearson’s correlation coefficient. The predicted to 

chronological age ratio (PCAR) was calculated by dividing DNA methylation age by real age, as 

previously described [208]. Accelerated ageing was defined as a PCAR ³ 1.  

 
 
4.7.2.2 Average Pairwise ITH Index (APITH) 
 
Heterogeneity within a patient was evaluated by calculating the Average Pairwise ITH (APITH), using 

DNA methylation and copy number data respectively, as previously described [209]. For DNA 

methylation, I calculated the APITH for all CpGs as well as the top 5000 most variable CpGs, using the 

equation below [209]. Methylation beta values were obtained for tumour samples at the CpGs of 

interest, subsequently, the pairwise Euclidean distance was calculated and then the average was 

obtained. In the equation, k represents the total number of samples, and dij is defined as the 

pairwise Euclidean distance between two samples (i and j): 

 

𝐴𝑃𝐼𝑇𝐻 = 	
2

𝑘(𝑘 − 1)	 . 𝑑!"
#$!%"$&

 

 
 

Subsequently, I explored whether the methylation APITH index may be confounded by tumour 

purity. Tumour purity was obtained using WES or RNA-seq as described in section 4.6.2. I assessed 

the correlation between the APITH and the variance of the purity of tumour samples derived from 

the same patient (the latter represents a measure of the spread of purity values). In addition, 

methylation beta values were adjusted for purity using the ‘Infiniumpurify’ package in R [199], and 
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the methylation APITH score were calculated once again. I compared the APITH index derived from 

methylation data which were unadjusted versus adjusted for tumour purity, to assess whether this 

produced similar results. 

 

The copy number APITH index was calculated by Dr Roland Schwarz (Max Delbrück Center in Berlin) 

by evaluating the percentage of the genome which is affected by private SCNA (using the ‘ASCAT’ 

package [204]) in each sample and the average pairwise distance between samples, as previously 

described [209]. I evaluated the correlation between the methylation APITH and the copy number 

APITH in my dataset using Pearson’s correlation coefficient. 

 

 
4.7.2.3 Phylogenies using DNA methylation and copy number data 
 
Phylogenies were created using methylation data and SCNA data respectively. Patients were 

included in the analysis if matched methylation and SCNA data were available on ≥4 tumour samples 

(N=8 patients), to allow comparisons between phylogenetic and phylo-epigenetic tree topologies. I 

created phylo-epigenetic trees using the ‘Ape’ package v5.5, where DNA methylation beta values 

were treated as a continuous variable between 0 and 1 [210]. I selected the top 10% of CpGs with 

the highest variance in tumour samples and calculated the Euclidean distance matrix. Trees were 

subsequently inferred using the ordinary least squares minimum evolution algorithm [211], as 

previously described [212, 213]. Phylogenetic trees were created using SCNA data from WES using 

‘Minimum-Event Distance for Intra-tumour Copy-number Comparisons’ (MEDICC2) by my 

collaborator Victoria Dombrowe (Schwarz Group, Max Delbrück Center, Berlin) [214, 215]. In brief, 

allele-specific copy number analysis was performed using ‘ASCAT’ [204], and subsequently these 

underwent reference phasing using ‘Refphase’ [216]. ‘MEDICC2’ calculates the pairwise minimum-

event distance between samples, and these data are used to create phylogenetic trees using the 

neighbour joining algorithm [217]. I was provided with phylogenetic trees (in Newick format) and 

performed all subsequent analyses, including tree visualisation and comparisons. I used the 

Robinson-Fould measure to compare similarities between phylogenetic and phylo-epigenetic trees 

for each patient, using the ‘TreeDist’ package v2.2.0 [218]. In brief, the Robinson-Fould measure is 

derived by counting the number of unique splits which occur in each tree (i.e. splits which occur in 

one tree and not the other), and the overall metric is normalised (0 to 1 scale) to enable 

comparisons across trees. In this case a split is defined as a bipartition in a tree which separates two 

taxa. Phylogenetic and phylo-epigenetic trees were visualised using the ‘plot’ function in the ‘Ape’ 

package v5.5. 
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 Heterogeneity within a sample 

Methylation heterogeneity within a sample was assessed by calculating epipolymorphism. 

Epipolymorphism is defined as ‘the probability that two epialleles randomly sampled from the locus 

differ from each other’, where an epigenetic locus (e-locus) consists of four adjacent CpGs in a single 

sequencing read (i.e. a 150bp window) [113, 144]. Given 4 adjacent CpGs, there are 16 (i.e. 24) 

possible combinations of methylated and unmethylated cytosines, so there are 16 possible 

epialleles. Epipolymorphism values were calculated using the ‘methclone’ package [144], using the 

formula below [219]. In brief, the proportion of each methylation pattern (p) is squared, then all 

values are summed and subtracted from one. There are a total of 16 possible methylation patterns 

(i.e. epialleles) therefore in this case S=16. 

 

𝐸𝑝𝑖𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 = 	1 −	.𝑝!'
(

!)#

 

 
 
 
Epipolymorphism values range between 0 (i.e., fully concordant methylation pattern) and 

approaching 1 (i.e. highest degree of heterogeneity) [113]. The following section justifies the 

thresholds/variables used in my analysis. Li et al previously explored the number of adjacent CpGs 

(up to 10 CpGs) used to define an e-locus and 4 CpGs was selected as this optimised the number of 

reads and epialleles [144]. Therefore, in my analysis I defined an e-locus as four adjacent CpGs in a 

single sequencing read. Next, I evaluated the number of e-loci obtained at differing thresholds of 

minimum coverage. For example, ≥10x coverage obtained 138,412 e-loci, whereas ≥20x coverage 

obtained 59,480 e-loci, meaning <50% of data compared to ≥10x. Therefore, e-loci were included in 

my analysis if methylation data were present in ≥75% of samples, at ≥10x coverage in order to 

increase the number of e-loci that were considered. E-loci located on sex chromosomes were 

excluded from the analysis. The ‘epihet’ package v1.2.0 was used to compare average 

epipolymorphism at each e-locus in two groups (for example ccRCC versus normal kidney) and to 

determine e-loci with significant differential epipolymorphism (defined as absolute 

epipolymorphism difference >0.1 and adjusted p value <0.01) [219]. The epipolymorphism 

difference cut-off of 0.1 represents a >10% difference in epipolymorphism values, and is the cut-off 

routinely used in the literature [219]. The following illustrative example puts this into context. Given 

10 reads, if all reads had the same methylation pattern the epipolymorphism would be 0, whereas if 

one read had a different pattern, then epipolymorphism would be 0.18. Using the selected cut-off of 

>0.1, this difference would be called as significant (provided the adjusted p value was <0.01). 
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I evaluated epipolymorphism in a cohort of ccRCC versus normal kidney samples (N=135 samples) to 

identify e-loci with significant differential epipolymorphism. Significant e-loci were annotated to the 

nearest gene and GSEA was performed, as described in section 4.4.5. I externally validated my 

results by assessing differential epipolymorphism in an independent cohort of ccRCC and normal 

kidney samples (N=71 samples, Epic-seq generated by me). Subsequently, epipolymorphism was 

evaluated in HK2 (6 technical replicates) and 786-O cell lines (4 technical replicates), which represent 

a model system of ccRCC and normal renal proximal tubule epithelium respectively. Cell lines are 

100% pure, thus enabling an evaluation of epipolymorphism which is not confounded by the 

presence of heterogeneous groups of cells (i.e. gDNA derived from cell lines represents a single cell 

type, whereas kidney tissue contains multiple cell types).  

 

Average methylation was calculated at each e-locus using the ‘epihet’ package v1.2.0, by calculating 

the average methylation across 4 adjacent CpGs, across all reads at that locus. Significance was 

defined as absolute methylation difference >15%, and an adjusted p value < 0.01. Whilst for 

individual CpGs the commonly used threshold for differential methylation is >25%, a lower threshold 

was used for average methylation across a read as this includes four adjacent CpGs. The relationship 

between average methylation and epipolymorphism at each e-locus was evaluated graphically using 

a scatterplot. Furthermore, I evaluated whether average methylation and epipolymorphism may 

predict gene expression, as previously described [110]. Matched Epic-seq and RNA-seq data were 

obtained for a subset of ccRCC and normal kidney samples (N=47) (as described in section 4.2.2 and 

section 4.2.5 respectively). First, I evaluated a linear model predicting gene expression based on 

epipolymorphism, with a Benjamini-Hochberg (BH) correction for multiple testing. To ascertain the 

effect of epipolymorphism beyond methylation, I evaluated a linear model predicting gene 

expression based on methylation alone or methylation and epipolymorphism and compared the 

adjusted R2 from the two models using a likelihood ratio test. The analysis was performed for 

individual e-loci, and where multiple e-loci were significant for one gene, the e-locus with the lowest 

BH adjusted p values was shown, along with the number of e-loci per gene. An adjusted p value of 

<0.05 was considered significant. 
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 Homogeneously vs heterogeneously methylated CpGs 

CpGs were defined as homogeneously and heterogeneously methylated as described by Hao et al 

[220] (Table 4.4). I performed the analysis for each individual ccRCC patient separately. CpGs were 

included in the analysis if a coverage ³10x was achieved for all multi-region samples from one 

patient. First, CpGs were identified that distinguish tumour from normal (i.e. average methylation 

difference in tumour vs normal samples is ³25%). The 25% threshold was selected as this a 

commonly used cut-point in the literature [187], and also the threshold used to call differences 

between tumour and normal in my analysis (see section 4.4.3). Subsequently, these CpGs were 

defined as homogeneously methylated if there was ≤15% methylation difference amongst any 

tumour samples within a patient; and heterogeneously methylated if there was ³40% methylation 

difference amongst any tumour samples within a patient. CpGs that were recurrent in over one third 

of the patient cohort (i.e. heterogeneously or homogeneously methylated in over 6 out of 18 

patients) were considered to be more likely to be clinically significant. Table 4.4 explains the 

rationale behind the thresholds used. Hao et al found that differing the choice of thresholds 

produced broadly similar results [220] (just more or less stringent numbers of CpGs called), and this 

was also observed when varying the thresholds in my dataset. It is recognised that differing tumour 

purity content of the samples analysed may confound this analysis. Therefore, the analysis was 

repeated after removal of low purity samples.  

 

Table 4.4: Homogeneously and heterogeneously methylated CpGs, definition and rationale 

Threshold definition Justification 
Homogeneously methylated 

CpGs 
 

CpGs distinguish tumour from 
normal (³25%) and have similar 

methylation patterns in all 
tumour samples (≤15% 

methylation difference amongst 
any tumour samples within a 

patient). 

• CpGs were identified that distinguish tumour from normal kidney 
(i.e. average methylation in normal samples is ³25% different to 
average methylation in tumour samples, within a patient). 

• Two technical replicates were assessed on the Epic-seq platform 
(i.e. gDNA from the same human tissue sample was assessed 
twice). For each CpG, the absolute methylation difference 
between the two technical replicates was calculated. The third 
quartile was 10%, meaning that CpG methylation can vary by 10% 
in technical replicates. This is expected if coverage 10x is used, as 
one error can cause 10% variation in methylation values. 
Therefore, CpGs were considered homogeneously methylated 
provided the difference between two tumour samples was ≤15%. 

Heterogeneously methylated 
CpGs 

 
CpGs distinguish tumour from 

normal (³25%) and have different 
methylation patterns in tumour 

samples (³40% methylation 
difference amongst any tumour 

samples within a patient). 

• CpGs were identified that distinguish tumour from normal kidney 
(i.e. average methylation in normal samples is ³25% different to 
average methylation in tumour samples, within a patient). 

• Given the 15% thresholds used for homogeneously methylated 
CpGs, 40% (i.e. 25% plus 15%) was used for heterogeneously 
methylated CpGs. In other words, we seek to identify CpGs that 
have a greater methylation difference between tumour samples, 
than between tumour and normal kidney. 
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4.8 Analysis of DNA methylation in liquid samples 
 
Targeted methylation analysis in cfDNA was performed using Nimbus. Nimbus couples library 

preparation with an automated bio-informatics pipeline (Nimbus refers to both wet lab and dry lab 

experimental methods). The wet lab experimental methods are described in section 4.2.3. Below, I 

describe how the targeted methylation panel was selected (section 4.8.1) and how Nimbus scores 

were generated and analysed (section 4.8.2). 

 Selection of informative methylation marker panel in tissue to be used 

in Nimbus 

I first sought to create a custom methylation marker panel specific to ccRCC which could be used for 

cfDNA detection using Nimbus. I performed genome-wide DNA methylation analysis in tissue to 

identify a panel of differentially methylated regions (DMRs) that can distinguish ccRCC from normal 

kidney and are therefore useful methylation markers for cfDNA analysis. I generated Epic-seq 

methylation data on 75 fresh frozen kidney tissue samples (53 ccRCC and 22 normal kidney), as 

described in section 4.2.2. For this analysis, this was subsequently referred to as the ‘discovery 

cohort.’ I used ‘dmrseq’ to determine DMRs that distinguish ccRCC from normal kidney (as described 

in section 4.4.3). Subsequently, these tissue-derived DMRs were refined to select those which are 

most likely to be informative in plasma cfDNA. Data were obtained from 32 healthy (cancer-free) 

controls from a previously published study [221]. DMRs were selected if there was a >60% 

methylation difference between ccRCC tissue and healthy control cfDNA samples (analysis 

performed by Dr Radoslaw Lach, Massie Group). These DMRs were used in the Nimbus capture 

panel.  

 

Furthermore, I explored these DMRs in tissue to confirm that these may be appropriate markers to 

take forward into subsequent analysis. I compared the number of CpGs contained within each DMR, 

for hyper and hypomethylated regions respectively. A representative DMR was visualised in tissue 

using the ‘dmrseq’ package v1.6.0 in R [188]. Subsequently, I assessed DNA methylation at these 

DMRs in the discovery cohort, and an additional independent cohort of samples. The latter, termed 

the ‘validation cohort’, consisted of 159 ccRCC and normal kidney tissue samples. I generated Epic-

seq data for these samples (as described in section 4.2.2) and obtained methylation values for the 

DMRs. First, I performed principal component analysis (PCA) for the discovery cohort. Next, I 

projected the validation cohort into the PCA space of the first dataset. Both datasets were visualised 

using a PCA plot. 



 
59 

 Targeted methylation analysis in liquid samples  

Targeted DNA methylation analysis was performed using Nimbus, for cell line and human samples. I 

derived quality control metrics from ‘MultiQC’ and ‘Picard tools’ (see section 4.4.1). A Bland Altman 

plot was used to compare a gDNA human sample run using Nimbus and Epic-seq respectively (for 

CpGs which achieved ≥10x coverage using both methods). The analysis was performed using the 

‘BlandAltmanLeh’ package v0.3,1 in R [222]. Correlation between technical replicates was assessed 

using Pearson’s correlation coefficient (for on-target CpGs which achieved ≥10x coverage). 

 

First, Nimbus was run on cfDNA derived from plasma from patients with and without ccRCC (N=67). 

Nimbus scores were generated by Dr Radoslaw Lach (postdoctoral research associate, Massie 

Group) for each sample using the Nimbus analysis pipeline, for DMRs which are hypermethylated 

and hypomethylated in ccRCC respectively. All subsequent analyses were performed by me. I 

evaluated the ability of the Nimbus score to differentiate ccRCC from control samples. I calculated 

the ROC curve and selected the Nimbus score which maximized sensitivity and specificity, using the 

‘pROC’ package [223]. Furthermore, I sought to compare cfDNA detection rates using methylation 

(Nimbus) versus mutational analysis (INVAR-TAPAS). For a subset of cfDNA plasma samples from 

ccRCC patients evaluated by Nimbus (N=14), mutational analysis of cfDNA was performed by Dr 

Chris Smith (Rosenfeld Group, CRUK CI) using the ‘INtegration of Variant Reads-Tailored Panel 

Sequencing’ (INVAR-TAPAS) pipeline. In brief, nephrectomy samples were sequenced using WES (as 

described in section 4.2.4) to identify patient-specific mutations. Custom panels were created to 

detect cfDNA in plasma collected prior to nephrectomy. Dr Smith provided me with cfDNA detection 

rates and mutant allele fraction (MAF) estimates for each patient, from his recent publication [158]. I 

compared detection rates using Nimbus versus INVAR-TAPAS using a chi squared test for 

proportions. I also evaluated the association between Nimbus scores, MAF estimated by INVAR-

TAPAS and clinical parameters. For continuous variables, Pearson’s correlation coefficient was used, 

whereas for non-parametric categorical variables, the Wilcoxon Rank Sum Test was used. All p 

values were corrected for multiple testing (using the BH method).  

 

Lastly, I performed a feasibility study evaluating Nimbus scores in cfDNA derived from post-biopsy 

fluid (N=11), plasma (N=11) and gDNA derived from renal biopsy tissue (N=8). Sample and collection 

details are found in section 4.1.2.1. Nimbus scores were generated for cfDNA derived from matched 

samples by Dr Lach, using the automated analysis pipeline and hypomethylated DMRs. I compared 

Nimbus scores in matched samples using a Wilcoxon Rank Sum Test for paired data (adjusting for 

multiple testing) and evaluated the association between Nimbus scores and clinical parameters. 
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Chapter 5 DNA methylation in tissue from common 
pathological subtypes of malignant and benign renal 
tumours 

 

5.1 Brief introduction 
 
Small renal masses (SRMs) represent a diverse cohort of potential diagnoses, including malignant 

renal cell carcinoma and benign tumours (such as oncocytoma or angiomyolipoma). Despite the 

recent drive to increase rates of renal biopsy, biopsies remain underutilised in certain centres, 

typically due to inadequate service provision/local expertise, fear of complications or perceived 

limited impact on treatment choice [27]. When biopsies are performed, pathologists may struggle to 

differentiate subtypes, meaning biopsy may be inconclusive or non-diagnostic (especially if limited 

tissue is sampled or there is evidence of necrosis) [35, 45]. In particular, it may be difficult to 

distinguish benign oncocytomas from the eosinophilic variant of chRCC and ccRCC, or to distinguish 

ccRCC from chRCC. There are also challenges within RCC subtypes, for example ccRCC is 

characterised by intra-tumoral heterogeneity, and often tumour grade is variable depending on the 

region which is biopsied [45, 46]. Pathological subtype and grade are major determinants of 

prognosis and therefore treatment choice in patients with SRMs, thus the limitations of biopsy 

histology may in certain cases result in either under- or over-treatment (the latter being more 

common). In summary, current methods are unable to confidently determine tumour pathology and 

grade in all patients. Thus approximately 20%-30% of patients with SRMs are found to have benign 

disease post-operatively, meaning they underwent unnecessary surgery, with associated morbidity 

and potential long-term effects on renal function [38, 39]. There is a drive to reduce overdiagnosis 

and overtreatment across the healthcare spectrum, including the BMJ’s ‘Too much medicine’ 

campaign, especially in the early detection of cancer [224, 225]. Precision medicine, using molecular 

classification in combination with histopathology assessment, may be an approach to reduce 

overtreatment and I hypothesize that DNA methylation markers could be used to achieve this. 

 

A better understanding of the molecular characteristics of renal tumour pathological subtypes may 

facilitate improved diagnostic and management strategies. DNA methylation changes are abundant, 

genome-wide, early events in renal tumorigenesis, and are specific to the cell of origin [74, 101, 103, 

115, 226]. I therefore hypothesized that a comprehensive characterisation of DNA methylation in 

different pathological subtypes of renal tumours would improve our understanding of the disease 

and consequently our ability to diagnose patients with SRMs. The analysis in this chapter sets out to 
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explore these possibilities. Although several potential diagnoses exist, my research focuses on the 

three most common malignant subtypes (ccRCC, pRCC and chRCC) and the most common benign 

disease (oncocytoma). Previous studies evaluating DNA methylation and gene expression noted 

similarities between ccRCC and pRCC, and chRCC and oncocytoma, and these have been attributed 

to their common cell of origin [74, 117, 227, 228]. Renal cell carcinomas arise from epithelial cells 

within the kidney tubule, with ccRCC and pRCC deriving from the proximal convoluted tubule (PCT), 

whilst chRCC and oncocytoma derive from the intercalated cells of the distal nephron (Figure 2.1). 

Considerable research has been performed elucidating the cell of origin of ccRCC and pRCC, with PT1 

cells (an epithelial cell subtype derived from the PCT) having been identified as the most likely 

progenitor [25]. Conversely, chRCC and oncocytoma remain less well characterised with some 

debate regarding whether they are derived from the collecting duct or distal convoluted tubule 

(DCT); the former being more likely based on recent single cell analyses [25, 228]. Although a 

number of studies are present in the literature which focus on gene expression (including studies 

evaluating bulk RNA-seq and single cell RNA-seq), only a handful of studies focus on characterising 

DNA methylation in the different pathological subtypes of renal tumours and these studies do not 

integrate DNA methylation with gene expression. Therefore, in the first part of this chapter, I aim to 

evaluate DNA methylation and gene expression to characterise similarities and differences between 

pathological subtypes.  

 

As already highlighted, the main clinical question, which was recently recognised as a research 

priority, is to distinguish pathological subtypes of renal masses to improve the diagnostic pathway 

[1]. Several predictive models have been developed to tackle this question (described in more detail 

in the Discussion section of this chapter), however none have been adopted in clinical practice, 

reflecting the lack of adequate validation of these models. In the second part of the chapter, I 

therefore aim to create and validate MethylBoostER (Methylation and XGBoost for Evaluation of 

Renal tumours), a machine learning model based on DNA methylation that can be applied to tissue 

samples to differentiate pathological subtypes. It is envisioned that MethylBoostER could be used on 

renal biopsy samples, to predict the most likely pathological subtype, providing a more confident 

pre-surgical diagnosis to guide treatment decision making. I also explore the role of intra-tumoral 

heterogeneity and tumour purity on the output of MethylBoostER, as these real-world challenges 

may be barriers towards adoption in clinical practice.  
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5.2 Chapter aims 
 

1) Characterise DNA methylation in the most common pathological subtypes of renal tumours 

(ccRCC, pRCC, chRCC and oncocytoma) comparing these to normal kidney 

2) Evaluate gene expression in different pathological subtypes of renal tumours (ccRCC, pRCC, 

chRCC and oncocytoma) comparing these to normal kidney to highlight similarities and 

differences amongst subtypes 

3) Integrate methylation data with gene expression data in different pathological subtypes of 

renal tumours to evaluate the functional relevance of methylation changes 

4) Evaluate known methylation markers of pathological subtypes from the literature in my 

cohort of samples 

5) Develop a model to classify pathological subtypes of renal tumours using methylation data, 

with the aim of differentiating pathological subtypes in a diagnostic setting 

 

5.3 Results 
 
This chapter can broadly be categorised into two sections. The first part (section 5.3.1) focuses on 

characterising methylation and gene expression to improve our understanding of similarities and 

differences between tumour subtypes. The second section (section 5.3.2) develops a machine 

learning model to predict pathological subtypes of renal tumours in a diagnostic setting. Details 

regarding samples, experimental methods and data analyses are found in the Methods (Chapter 4). 

 

 Methylation and gene expression in pathological subtypes of renal 

tumours vs normal kidney 

The aim of this section was to explore similarities and differences between pathological subtypes of 

renal tumours using DNA methylation and gene expression. Here, I provide an outline of my analysis, 

samples used and justify the rationale (Figure 5.1). In summary, I characterised patterns of DNA 

methylation (section 5.3.1.1) in pathological subtypes of renal tumours, subsequently I evaluated 

gene expression (section 5.3.1.2), and lastly methylation and gene expression were integrated to 

determine methylation changes which may have a functional relevance (section 5.3.1.3) (Figure 5.1). 

 

In this analysis, I obtained fresh-frozen kidney tissue samples from a cohort of patients with different 

pathological subtypes of renal tumours undergoing nephrectomy (N= 326 samples) and generated 
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methylation values using Epic-seq (see Methods section 4.2.2 for details). I analysed these data, 

comparing each pathological subtype (ccRCC, pRCC, chRCC and oncocytoma) to normal kidney to 

characterise DNA methylation changes (section 5.3.1.1). For a small subset of ccRCC and normal 

tissue specimens, I generated matched RNA-seq (N=47 samples); though unfortunately this was not 

possible for the other pathological subtypes. Therefore, I obtained publicly available [176] 

Affymetrix gene expression data for tissue samples (N=84) and compared each pathological subtype 

(ccRCC, pRCC, chRCC and oncocytoma) to normal kidney, to explore differential gene expression 

(section 5.3.1.2; Figure 5.1). I then integrated my Epic-seq data with Affymetrix gene expression to 

assess which methylation markers might be associated with transcriptional changes in each 

pathological subtype (ccRCC, pRCC, chRCC and oncocytoma) (section 5.3.1.3). In order to validate my 

findings, I evaluated matched Epic-seq and RNA-seq in the cohort of 47 ccRCC and normal kidney 

samples that I generated, and explored the quantitative relationship between methylation and gene 

expression. In addition, for ccRCC, pRCC and chRCC, I validated the association between methylation 

and gene expression by analysing samples from The Cancer Genome Atlas (TCGA) [24]. No TCGA 

data exist for oncocytoma, therefore it was not possible to validate my results in this subtype. Whilst 

some analysis is performed comparing ccRCC versus normal kidney in this chapter, further analysis is 

found in Chapter 6, which focuses on ccRCC markers, evolution and heterogeneity. 

 
 

 
Figure 5.1: Analysis overview.  

In this chapter, first I evaluate DMCs (differentially methylated cytosines) in each subtype vs normal kidney 
(section 5.3.1.1), then I evaluate DEGs (differentially expressed genes) in each subtypes vs normal kidney 
(section 5.3.1.2). Lastly, I integrate methylation and gene expression data to highlight which methylation 
changes may have a functional relevance (section 5.3.1.3). 
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5.3.1.1 Differential methylation in pathological subtypes of renal tumours compared to 
normal kidney 

 
In order to characterise global methylation patterns in pathological subtypes of renal tumours, I 

obtained kidney tissue samples from patients with malignant and benign renal tumours (ccRCC, 

pRCC, chRCC and oncocytomas) undergoing partial or radical nephrectomy. Tissue was sampled 

from the tumour and adjacent normal kidney, and Epic-seq was performed (see Methods sections 

4.1.1 and 4.2.2 for details). I generated methylation data for 326 samples, including 109 adjacent 

normal kidney, 139 ccRCC, 27 pRCC, 27 chRCC and 24 oncocytomas. Unsupervised hierarchical 

clustering based on all the methylation data (~2.3 million CpGs), demonstrated that, as expected, 

chRCC and oncocytomas cluster together, whereas pRCC and ccRCC cluster together (Figure 5.2A). 

This is in keeping with the shared cell of origin for these pathological subtypes [117]. Interestingly, 

oncocytoma and chRCC cluster more closely with normal samples. Furthermore, these are the two 

subtypes that seem most difficult to separate based on genome-wide methylation patterns (Figure 

5.2A-B), which also reflects the predominant clinical challenge. In the principal component analysis 

(PCA), normal samples clustered very closely together and there was less variability between normal 

samples than between samples from any other subtypes; with the most heterogeneity noted in 

ccRCC (Figure 5.2B). Methylation intra-tumoral heterogeneity (ITH) in ccRCC is explored more in 

detail in the next chapter (Chapter 6). It is evident that a subset of type 2 pRCC samples cluster 

together, and are separate from other subtypes (as shown in the upper right corner of the PCA plot; 

Figure 5.2B). I hypothesized these samples may have a CpG island methylator phenotype (CIMP) 

based on previous reports [24], and this was confirmed upon further investigation in the following 

section (Figure 5.3B-C). 

 
In a more detailed analysis of these data, I first sought to evaluate normal samples (N=109), to 

assess any evidence of field-effects or other pathology-specific alterations in normal adjacent kidney 

tissue. In brief, these normal samples were derived from patients with different diagnoses (i.e. 

ccRCC, pRCC, chRCC and oncocytoma) and they represent normal kidney macroscopically distant 

from the tumour site. Figure 5.2C demonstrates a dendrogram of normal samples, with each colour 

indicating the diagnosis of the patient’s adjacent tumour. Evidently, samples do not cluster by 

adjacent tumour type. Next, I evaluated methylation differences in normal tissue samples derived 

from patients with ccRCC (N=70) and patients with chRCC (N=14), as these were the two most 

abundant classes representing two different cells of origin. Comparing normal tissue samples from 

patients with ccRCC versus chRCC identified only one CpG which was called as significantly different 

(chr20:58,088,274). This CpG is not in the promoter region of any gene and may reflect a type-II 

error, given the large number of CpGs assessed (>2 million). This suggests there is no methylation 
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difference between the two groups. Since the methylomes of normal samples were very similar 

regardless of concurrent tumour type, for all subsequent analyses normal samples were combined 

together as one class. This approach has also been taken by other studies in the literature [121].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: DNA methylation in pathological subtypes of renal tumours and normal kidney  

*See Figure on the following page* 
 
Panel A and B- Dendrogram and principal component analysis (PCA) of all tissue samples, demonstrating 
that in unsupervised analysis based on all CpGs, normal kidney samples cluster together whereas tumour 
subtypes cluster by cell of origin (ccRCC cluster with pRCC and chRCC cluster with oncocytoma). Panel C- 
PCA of normal tissue samples, where each colour represents the diagnosis of the patient’s adjacent tumour. 
Indeed, normal samples were derived from patients with different diagnoses (i.e. ccRCC, pRCC, chRCC and 
oncocytoma) and they represent normal kidney samples located macroscopically away from the tumour 
site. Normal samples do not cluster by adjacent tumour type. Panel D- Venn diagram showing DMCs 
(differentially methylated cytosines) which differentiate each pathological subtype from normal kidney. The 
greatest similarity between subtypes was noted between chRCC and oncocytoma; and between ccRCC and 
pRCC, in keeping with the known shared cell of origin. Panel E- Hyper and hypomethylated DMCs for each 
pathological subtypes vs normal tissue are annotated. Hypermethylated DMCs are distributed more often 
at the promoter site, compared to hypomethylated DMCs, which are distributed more often in the gene 
body or distal intergenic region. 
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Figure 5.2: DNA methylation in pathological subtypes of renal tumours and normal kidney. 
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Subsequently, I performed differential DNA methylation analysis to determine global methylation 

patterns which characterise individual subtypes of renal tumours, highlighting similarities and 

differences. Methylation was compared for each subtype versus normal kidney tissue, as previously 

described (section 4.4.3) [121]. Table 5.1 highlights the number of significant differentially 

methylated cytosines (DMCs) for each comparison, after removal of CpGs located on sex 

chromosomes and at SNP sites (q value <0.01, methylation difference >25%). In ccRCC, there were 

more hypomethylated than hypermethylated CpGs compared to normal kidney (approximately 

57,000 vs 33,000 DMCs; Table 5.1). Both oncocytoma and chRCC were characterised by pronounced 

hypomethylation relative to normal tissue. In chRCC there were nearly ten-fold more hypo than 

hypermethylated sites (31,802 hypomethylated vs 3231 hypermethylated), whereas pRCC was 

characterised by pronounced hypermethylation compared to normal tissue (Table 5.1). The 

significant DMCs from each subtype were overlapped to enable a comparison (Venn diagram in 

Figure 5.2D). The greatest similarity between subtypes was noted between chRCC and oncocytoma, 

with over 11,000 shared DMCs; and between ccRCC and pRCC, with over 14,000 shared DMCs 

(Figure 5.2D). The similarity between subtypes has been noted in the literature and is believed to 

reflect their common cell of origin [117]. Fewer DMCs were identified for chRCC (~35,000) and 

oncocytoma (~33,000), than ccRCC (~90,000) and pRCC (~75,000), suggesting the former might be 

more similar to normal kidney (Table 5.1). Alternatively, this could suggest that methylation may 

play a lesser role in mediating tumorigenesis in chRCC and oncocytoma, relative to ccRCC and pRCC. 

To explore this concept further, in subsequent analyses (below and in section 5.3.1.3), I performed 

annotation and gene set enrichment of the DMCs to define pathways which may be epigenetically 

regulated, for each subtype. 

 

 

Table 5.1: DMCs identified in pairwise comparisons between each pathological subtype and 
normal tissue 

Differentially methylated cytosines (DMCs) are subdivided into hyper and hypomethylated CpGs based on 
methylation at the tumour site relative to normal kidney tissue. Significant DMCs are defined as DMCs with 
an absolute methylation difference >25% and a q value <0.01. The total number of CpGs evaluated varies 
for each comparison, as described in section 4.4.3. 
 
 

 ccRCC vs 
normal 

pRCC vs 
normal 

chRCC vs 
normal 

Oncocytoma 
vs normal 

Total CpGs evaluated 2,850,419 1,543,085 1,527,799 1,500,195 
Hypermethylated DMCs 33,399 57,832 3231 5610 
Hypomethylated DMCs 57,334 17,187 31,802 27,304 
Sum of significant DMCs 90,733 75,019 35,033 32,914 
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I performed DMC annotation, as location in the genome can offer insights into function (for example 

promoter hypermethylation is associated with transcriptional repression) [103, 104]. In all of the 

tumour versus normal comparisons, hypermethylated DMCs were distributed more often at gene 

promoter sites, compared to hypomethylated DMCs, which were distributed more often in gene 

bodies or distal intergenic regions (Figure 5.2E). This is in line with the literature, which suggests that 

cancer is characterised by local hypermethylation at gene promoters (often associated with 

transcriptional silencing) and genome-wide hypomethylation [229]. For example, in pRCC versus 

normal kidney, 48% of hypermethylated DMCs were in gene promoter regions compared to only 

23% of hypomethylated DMCs. In addition, hypermethylated DMCs in pRCC vs normal kidney were 

more often in the promoter region relative to the other subtypes (48% in pRCC compared to 34%, 

34% and 38% in ccRCC, chRCC and oncocytoma, respectively). Promoter hypermethylation is 

associated with an oncogenic phenotype [133, 230], so it may be that hypermethylation plays a 

greater role in pRCC tumorigenesis than other subtypes. This observation prompted me to evaluate 

CIMP in my dataset. 

 

A landmark study found that a subset (5-12%) of pRCC type-2 tumours are characterised by CIMP 

and this is associated with poor overall survival [72]. Interestingly, a subset of samples characterised 

by CIMP and poor prognosis have been found in all tumour pathological subtypes (including chRCC, 

which is usually characterised by hypomethylation) [24]. Arai et al identified 16 CpGs which are 

hypermethylated and characteristic of the aggressive CIMP phenotype [132]. Methylation values 

were available for 13 of these CpGs in my dataset and were used to cluster tumour samples in order 

to explore the CIMP phenotype across RCC subtypes (Figure 5.3A). It is evident that there are two 

major branches in the dendrogram: the first branch (on the left) contains a subset of pRCC type-2 

and ccRCC samples which are characterised by hypermethylation, whereas the second branch is 

characterised by relative hypomethylation, with all normal samples tending to cluster together on 

the far right. Re-evaluating the PCA from Figure 5.2B, it is evident that the pRCC type-2 and ccRCC 

samples which are characterised by hypermethylation in the CIMP CpGs are also the outliers in the 

PCA (Figure 5.3B-C). This suggests that the 13 CpGs identified by Arai et al are representative of a 

global hypermethylation phenotype, which sets these tumours apart. In my dataset, all the pRCC 

type-2 samples identified as CIMP positive had promoter hypermethylation of the CDKN2A gene 

(Figure 5.3D). In TCGA, CDKN2A alterations (focal loss of 9p21, mutation or promoter 

hypermethylation) were observed in 100% of CIMP pRCC, as well as 5-25% of other pathological 

subtypes [24], and CDKN2A silencing was associated with worse overall survival [24, 72]. Previous 

studies have suggested that approximately half of patients with CIMP have germline or somatic FH 
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mutations, which leads to impaired TET activity (an enzyme responsible for de-methylation) which 

may explain the observed dominant pattern of promoter hypermethylation [231]. Unfortunately, no 

mutational data nor recurrence data were available in my cohort (the only recurrence data available 

was for ccRCC but not the other subtypes), so it was not possible for me to assess CIMP and 

prognosis across subtypes. For the remainder of this chapter, pRCC type-1 and type-2 were 

combined into one class to increase sample sizes, however it is recognised that the two subtypes 

may have distinct molecular characteristics and prognostic outcomes. Future work could evaluate 

subtypes of pRCC and also characterise associations between DNA methylation and prognosis in 

different pathological subtypes of malignant renal tumours, given larger numbers of samples and 

detailed follow-up data. In summary, this section highlights global methylation patterns that 

characterise each pathological subtype. Integrating these methylation changes with gene expression 

data is key to determine which of these DMCs are biologically meaningful. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: CpG island methylator phenotype (CIMP) in tissue samples 

*See Figure on the following page* 
 
Panel A- Heatmap showing methylation levels in CpGs which are known to be hypermethylated in CIMP 
positive tissues. In the heatmap, samples are shown as columns and CpG probes are shown as rows. A subset 
of pRCC type-2 and ccRCC samples (left branch of the dendrogram) are clearly characterised by 
hypermethylation at these sites, and are therefore referred to as ‘CIMP positive’. Panel B- Principal component 
analysis (PCA) of all tissue samples, based on all CpGs. This figure is the same as Figure 5.2B. Panel C- PCA of all 
tissue samples, based on all CpGs, highlighting CIMP positive (CIMP +) and CIMP negative (CIMP -) tumours. 
The CIMP positive samples (i.e. subset of pRCC type-2 and ccRCC) which were characterised by promoter 
hypermethylation in Panel A, are clear outliers on the PCA, suggesting these are different to the rest of the 
samples. Panel D- Methylation levels at the promoter region of the CDKN2A gene for normal kidney samples 
and pRCC type-2 samples identified as CIMP positive. All the pRCC type-2 CIMP positive samples demonstrate 
promoter hypermethylation. 
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Figure 5.3: CpG island methylator phenotype (CIMP) in tissue samples 
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5.3.1.2 Differential gene expression in pathological subtypes of renal tumours compared 
to normal kidney 

 
In order to explore patterns of gene expression that characterise pathological subtypes of renal 

tumours and to identify genes regulated by recurrent epigenetic alterations, I analysed publicly 

available Affymetrix gene expression data (GEO accession number: GSE15641) [176]. In the absence 

of paired DNA methylation and RNA expression data, I sought to overlay recurrent epigenetic 

changes with recurrent differential expression in order to map functional epigenetic alterations in 

renal tumour subtypes. In this section, I explore differentially expressed genes (DEGs) between 

tumour subtypes, subsequently I integrate gene expression and methylation in section 5.3.1.3. 

 

In this publicly available dataset, transcriptional profiling of kidney tumours was performed using 

Affymetrix HGU-133A chips, for 84 fresh-frozen samples, including 32 ccRCC, 11 pRCC, 6 chRCC, 12 

oncocytoma and 23 normal kidney. Normalised data were provided by the authors for 22,283 

probes (see Methods section 4.4.6 for details). After processing and filtering, I obtained gene 

expression data for 12,606 genes. The PCA plot based on gene expression values for all genes 

demonstrated that chRCC and oncocytomas clustered closely together and these were closer to 

normal, whereas ccRCC and pRCC clustered together (Figure 5.4A). This resembles very closely the 

PCA produced using Epic-seq DNA methylation data (Figure 5.2B). 

I identified significant DEGs for each pathological subtype compared to normal tissue, using a linear 

model with contrasts for disease subtypes compared to normal kidney tissue (see Methods section 

4.4.6 for details) [195]. Table 5.2 summarises the number of significant genes for each pairwise 

comparison (adjusted p value <0.01; absolute log2 fold change > 1) and the Venn diagram depicts 

the overlap between the subtypes (Figure 5.4B). Notably, chRCC is the subtype with the least 

differences compared to normal tissue (Table 5.2), and this pattern was also observed in the 

methylation analysis (Table 5.1). Indeed, the molecular similarity of chRCC to normal kidney tissue 

has also been noted in the literature [121].  

 

Table 5.2: Results of differential gene expression analysis 

The number of significant differentially expressed genes (DEGs) is shown (q value <0.01 and absolute 
log2 fold change >1).  
 

 Significant DEGs 
ccRCC vs normal 1558 DEGs (675 increased expression and 883 decreased expression) 
pRCC vs normal 1326 (388 increased expression and 856 decreased expression) 
chRCC vs normal 1007 (252 increased expression and 755 decreased expression) 

Oncocytoma vs normal 1174 (398 increased expression and 776 decreased expression) 
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Similarities and differences in gene expression in the four subtypes were assessed, to identify shared 

and subtype-specific expression profiles. As expected, the Venn diagram demonstrates that 

subtypes derived from the same cell of origin share more DEGs (Figure 5.4B). However, there are 

also similarities amongst the four subtypes, with 187 genes differentially expressed in all subtypes 

compared to normal tissue (Figure 5.4B). These DEGs were ranked based on the greatest expression 

difference (i.e. highest absolute log2 fold change in all subtypes), to elucidate common differences 

between renal tumours and normal tissue. Amongst the top ranked genes, increased expression of 

genes involved in metabolic reprogramming was noted: SLC16A3 and SLC38A1 (a monocarboxylate 

and glutamine transporter, respectively), APOC1 (apolipoprotein involved in HDL and LDL 

metabolism), ALDOA (glycolytic enzyme which regulates adaptation to hypoxia) and PKM (pyruvate 

kinase glycolytic enzyme). These alterations in expression of key metabolic regulators are consistent 

with the metabolic reprogramming observed in all four renal tumour types, although the underlying 

metabolic alterations are distinct in each renal tumour subtype. The Warburg effect, defined by 

increased anaerobic glycolysis, is a key feature of ccRCC and pRCC [232] and is indeed a hallmark of 

cancer [233]. In the literature, pRCC is characterised by disturbances in TCA cycle genes (such as FH 

mutations) and CIMP pRCCs are characterised by increased glycolysis [72, 234], whereas 

oncocytomas and chRCC (particularly the eosinophilic subtype) are characterised by mitochondrial 

defects [235]. These divergent routes to metabolic dysfunction may be reflected in distinct clinical 

phenotypes, but the shared expression changes in metabolite transporters and rate-limiting 

enzymes may reflect shared phenotypes arising from the cell of origin or adaptations common to all 

renal tumour subtypes. Further work will be required to dissect the origins and functional 

importance of these shared metabolic expression changes that could have diagnostic and/or 

therapeutic implications.  

 

Compared to normal kidney, all four renal tumour subtypes demonstrated down-regulation of genes 

implicated in renal development, possibly reflecting a loss of terminal differentiation in renal 

tumours (Figure 5.4B).  These down-regulated genes included markers of distal convoluted tubule 

cells (DCT: UMOD, SLC12A1 and CALB1) and proximal convoluted tubule markers (PCT: ASS1, PAH, 

ALDOB, BBOX1, SLC22A8 and KNG1). The gene UMOD has been independently found to be amongst 

the top DEGs for renal tumours [236]. In particular, SLC12A1 downregulation was more pronounced 

in ccRCC and pRCC (DCT marker); whereas ASS1 and BBOX1 were more downregulated in 

oncocytoma and chRCC (PCT markers) in keeping with the known cell of origin of these tumour types 

(Figure 5.4B). Having explored DEGs which are similar amongst subtypes, I then focused on DEGs 

which might be subtype-specific. 
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Figure 5.4: Gene expression in pathological subtypes of renal tumours and normal kidney.  

Panel A- Principal component analysis of all tissue samples, using data from all available genes. In 
unsupervised analysis, tumour subtypes cluster by cell of origin (ccRCC cluster with pRCC and chRCC cluster 
with oncocytoma). Panel B- Venn diagram showing DEGs (differentially expressed genes) which differentiate 
each pathological subtype from normal kidney. The greatest similarity between subtypes was noted 
between chRCC and oncocytoma; and between ccRCC and pRCC. Panel C- Heatmap demonstrating the top 
genes with the highest differential expression between pathological subtypes of renal tumours and normal 
kidney. The log2 fold change (abbreviated to log FC in the diagram) is shown (for each subtype compared to 
normal) and genes are ranked based on highest absolute log2 fold change (top 30 genes are shown). Panel 
D- Heatmap demonstrating differential expression between pathological subtypes of renal tumours and 
normal kidney, for genes which are known to be cell-type specific markers based on the literature [25].  
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Differentially expressed genes with the greatest differences between subtypes were selected for 

clustering analysis (Figure 5.4C), to highlight markers that best discriminate tumour subtypes. One of 

the most notable findings, is that the DEGs included cell-type-specific markers, thus reflecting the 

tumours’ cell of origin. Oncocytoma and chRCC were characterised by increased expression of KLK1 

and FOXI1, whereas ccRCC and pRCC displayed reduced expression (Figure 5.4C). KLK1 is a member 

of the kallikrein family of serine proteases, a gene family that includes the prostate cancer marker 

KLK3 (also known as prostate specific antigen). In the kidney, KLK1 regulates vasodilation and ion 

reabsorption, and has anti-tumour effects (including regulating angiogenesis, cell growth, 

proliferation and remodelling of the extracellular matrix) [237, 238]. Similarly to my findings, TCGA 

data has previously shown reduced KLK1 expression in ccRCC and pRCC (as well as in breast, thyroid 

and uterine cancers), with increased expression in chRCC [239]. KLK1 is localised to the DCT [237], 

which may explain these differences, and as such has been proposed as a marker to differentiate 

RCC subtypes [239].  

 

In my data, SLC4A1 was upregulated in oncocytoma (downregulated in ccRCC and pRCC, no change 

in chRCC), whereas chRCC had upregulation of CLCNKB (downregulation in ccRCC and pRCC, no 

change in oncocytoma; Figure 5.4C). These two genes are markers of intercalated cells of the 

collecting duct, as is FOXI1. There were also notable differences in genes that are part of the FOXI1 

regulated transcriptional network (CLCNKA, RHBG, and RHCG, ATP6V0A4 and ATP6V1B1), with 

upregulation in distal nephron cancers and downregulation in proximal nephron cancers (Figure 

5.4C). The FOXI1 transcription factor is involved in the differentiation of intercalated cells in the 

distal nephron and regulation of renal ATP proton pumps [240]. These findings have been 

independently reported in several studies in the literature [227, 228, 240], providing further 

confirmation of the validity of the DEG analysis presented here.  

 

In oncocytoma and chRCC, I observed an increase in the expression of FGF9 and TMEM255A, 

changes which were absent in other subtypes (Figure 5.4C). TMEM255A expression has previously 

been used in a 44-gene model to predict subtypes of renal tumours [241]. TMEMs are a group of 

transmembrane proteins, a number of which have shown kidney cell-type-specific staining [242]. 

Fibroblast growth factor signalling (including FGF9) has been shown to be over-expressed in 

oncocytoma vs normal tissue in several studies [235]. Oncocytoma was characterised by increased 

expression of AQP6 (reduced expression in ccRCC and pRCC) and indeed this has been proposed as a 

potential marker for this subtype [243]. Taken together, these findings suggest that differential 

expression in pathological subtypes of renal tumours at least in part reflects their cell of origin. 
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In addition to these cell-type markers, notable differences were seen in genes which are known to 

play a role in tumorigenesis. ccRCC and pRCC had increased expression of NNMT, CDH2 and TNFAIP6 

compared to normal tissue, whereas these were downregulated in both chRCC and oncocytoma 

(Figure 5.4C). NNMT activates the PI3K/Akt/SP1/MMP-2 pathway and promotes cell invasion in 

ccRCC, with knockdown of NNMT expression inhibiting ccRCC growth and metastasis in murine 

models [244]. CDH2 is a marker of epithelial to mesenchymal transition (EMT), whereas TNFAIP6 

(TNF alpha induced protein 6) is a HIF target gene implicated in ccRCC progression [245]. SCEL and 

CLDN3 were overexpressed in pRCC alone, with either under-expression or no change in the other 

subtypes (Figure 5.4C). Sciellin (encoded by SCEL) mediates EMT and has been identified as a marker 

for pRCC [246]. TCGA data demonstrated significantly higher expression of SCEL in pRCC versus 

normal tissue, with no evidence of increased expression in ccRCC and chRCC. The differential 

expression of CLDN3 in pRCC tumours observed in my analysis is supported by other studies [247]. 

Claudins are a group of transmembrane tight junction proteins which are differentially expressed in 

various anatomical parts of the renal tubule, therefore regulating segment-specific kidney epithelial 

permeability to solutes, which is key to renal physiology [248]. As tight junctions, they also play a key 

role in cell adhesion, cell signalling pathways involving growth and differentiation, and have been 

implicated in a variety of cancers [249]. These subtype-specific differences have biological relevance 

and could also be harnessed as useful diagnostic markers. 

 

Since exploratory analysis of DEGs identified distinct expression patterns at several established 

markers of cell ontogeny (Figure 5.4C), this was systematically assessed using renal cell lineage 

markers. The significant DEGs derived from my analysis of pathological subtypes were overlapped 

with a curated set of kidney lineage-specific biomarkers [25]. Once again, oncocytomas clustered 

with chRCC and ccRCC clustered with pRCC (Figure 5.4D). As expected, ccRCC had high expression of 

CA9 and NDUFA4L2 compared to normal tissue and other subtypes of tumours; these are known 

markers associated with ccRCC. ccRCC and pRCC had lower expression of genes associated with DCT 

cells (e.g. KCNJ1, CLDN8) and collecting duct (e.g. CLCNKB, SLC4A1), and increased expression of 

VCAM1. In contrast, oncocytoma and chRCC had reduced expression of markers associated with PCT 

cells (e.g. SLC17A3) and vascular cells (e.g. VCAM1). Overall, this targeted analysis is consistent with 

a strong influence of cell-of-origin on DEGs in renal tumour subtypes. The concordance with previous 

studies provides validation of these gene expression data and supports the integrated analysis with 

DNA methylation changes in the next section. 
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5.3.1.3 Integration of methylation and gene expression data to identify functional 
epigenetic alterations 

 
A key biological question is whether the recurrent DNA methylation changes observed in renal 

tumour subtypes are functionally relevant or are merely epigenetic markers that arise through 

disease evolution. Although I had matched Epic-seq and RNA-seq for a subset of ccRCC versus 

normal kidney samples (N=47), I did not have matched data for the other three subtypes (due to 

sample availability). To my knowledge, there are no available datasets that include both methylation 

and gene expression for the same samples for all pathological subtypes of renal tumours (for 

example TCGA lacks data on oncocytomas). Therefore, I overlapped the significant DMCs from my 

methylation analysis from section 5.3.1.1 with genes which are differentially expressed in each 

subtype compared to normal in the Affymetrix data from section 5.3.1.2. I validated my findings 

regarding ccRCC versus normal kidney using the matched Epic-seq and RNA-seq data that I 

generated, as well as TCGA. For pRCC and chRCC, I validated my findings using TCGA data. Figure 5.5 

provides a schematic overview of this analysis. 

 

 

Figure 5.5: Overview of analysis integrating methylation and gene expression data 

I overlapped the significant DMCs from my methylation analysis from section 5.3.1.1 with genes which are 
differentially expressed in each subtype compared to normal in the Affymetrix data from section 5.3.1.2. I 
validated my findings regarding ccRCC versus normal kidney using the matched Epic-seq and RNA-seq data 
that I generated, as well as TCGA. For pRCC and chRCC, I validated my findings using TCGA data (no TCGA 
data were available for oncocytoma). 

 



 
78 

 

Figure 5.6: Overlap of methylation and gene expression data 

Panel A -Each pathological subtype (ccRCC, pRCC, chRCC and oncocytoma) was compared to normal kidney. 
The x-axis represents differential methylation for DMCs located within the promoter region and the y-axis 
represents differential gene expression (log2 fold change).  Panel B- Schematic showing a scatterplot of 
differential methylation versus gene expression (log2 fold change), as in Panel A, with annotations. Genes 
which demonstrate a negative correlation between promoter methylation and expression (red label) are 
more likely to be epigenetically regulated. 

 

 
My aim was to explore which DMCs may modulate gene expression, to highlight pathways which 

may be epigenetically regulated for each tumour type. DMCs were annotated to the nearest gene, 

and those located within 1.5kb of the transcription start site (TSS) were selected and were 

overlapped with gene expression data from section 5.3.1.2. My analysis focused on a core set of 

DMCs at the TSS of genes which are hypermethylated and down-regulated or are hypomethylated 

and up-regulated (i.e. negative correlation between promoter methylation and expression). These 

selection criteria were used to identify genes that may be directly regulated by promoter 

methylation, aiming to enrich for epigenetic changes that are functionally relevant to disease 

biology. For each pathological subtype, the proportion of overall DMCs located in the promoter in 

which there was hypomethylation/increased gene expression or hypermethylation/reduced gene 

expression was calculated. This was: 73% for ccRCC vs normal, 80% for pRCC vs normal, 64% for 

chRCC vs normal and 75% for oncocytoma vs normal (Table 5.3, Figure 5.6). The highest proportion 
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was noted in pRCC and lowest was noted in chRCC. This is consistent with results in section 5.3.1.1 

which identified a high number of hypermethylated DMCs located in gene promoters in pRCC 

compared to normal kidney. Subsequently, I performed gene ontology (GO) and gene set 

enrichment analysis (GSEA) for the core set of epigenetically regulated genes (i.e. those with 

promoter hypomethylation/increased gene expression and promoter hypermethylation/reduced 

gene expression). 

 

 

Table 5.3: Significant DMCs were overlapped with significant DEGs 

The proportion of DMCs located in the promoter region which have a negative correlation between 
methylation and gene expression are shown (i.e. hypomethylation with increased gene expression 
and hypermethylation with reduced gene expression). There are more DMCs than DEGs, since there 
may be methylation changes in several consecutive DMCs in the promoter region of a gene.  
 

 ccRCC vs  
normal kidney 

pRCC vs  
normal kidney 

chRCC vs  
normal kidney 

Oncocytoma vs 
normal kidney 

Total overlap between 
DMCs and DEGs 

2765 DMCs 
overlap with 578 

unique DEGs 

2904 DMCs 
overlap with 415 

unique DEGs 

527 DMCs 
overlap with 220 

unique DEGs 

974 DMCs 
overlap with 283 

unique DEGs 
Promoter 

hypomethylation and 
increased expression 

1155 DMCs at 
242 unique DEGs 

 

185 DMCs at 54 
unique DEGs 

242 DMCs at 75 
unique DEGs 

 

420 DMCs at 109 
unique DEGs 

Promoter 
hypermethylation and 

reduced expression 

876 DMCs at 196 
unique DEGs 

2125 DMCs at 
277 unique DEGs 

94 DMCs at 43 
unique DEGs 

309 DMCs at 98 
unique DEGs 

Percentage of all DMCs 
in the promoter having a 

negative correlation 
between methylation 
and gene expression 

73% 
(N=2031/2765) 

80% 
(N=2310/2904) 

64% 
(N=336/527) 

75% 
(N=729/974) 

 
 

In summary, GO and GSEA suggested that in all four pathological subtypes, methylation may 

regulate genes involved in kidney development, cell differentiation, cell adhesion and membrane 

transport (Figure 5.7 and Figure 5.8). The most notable finding was that genes involved in 

embryological kidney formation were identified in all four subtypes, which suggests that methylation 

of key developmental genes may regulate cell differentiation and tumorigenesis and therefore 

explain characteristic patterns associated with the tumours’ cell of origin. Additionally, all four 

pathological subtypes were associated with genes involved in excretion and transport of molecules 

across the membrane. These are key kidney functions and transporters are expressed on the 

epithelial membrane in a cell-type specific manner, therefore once again these may be related to 

cell differentiation. All four subtypes were also involved in pathways associated with cell adhesion, 
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migration and proliferation, as well as cell-signalling associated with tumorigenesis (such as Notch 

and tyrosine kinase pathways). As expected, ccRCC was characterised by a high number of immune 

pathways, and was the only subtype which identified T-cell activation among the epigenetically 

regulated differentially expressed genes. Indeed, ccRCC is considered ‘immune-hot,’ reflected in the 

sensitivity of ccRCC to immune-therapy [228]. Thus, my data suggests that immune activation and 

immune cell signalling in ccRCC could in part be mediated by changes in DNA methylation. 

Epigenetic target genes in both ccRCC and pRCC were enriched for pathways associated with 

response to hypoxia and angiogenesis, which have previously been highlighted in the literature as 

playing a key role in tumorigenesis in renal cancer [133, 236, 250, 251]. Future work is required to 

elucidate the functional relevance of the shared and unique epigenome-associated pathways, 

through deep molecular profiling and perturbation studies. Taken together, these results suggest 

that there is epigenetic reprogramming of cell differentiation and cell signalling cascades involved in 

tumorigenesis in all four renal tumour subtypes, which is likely to reflect convergent epigenetic 

patterning relating to renal epithelial cell origins.  

 

Subsequently, differential gene expression and differential methylation (along with the number of 

significant DMCs within the promoter) were compared for each pathological subtype in turn, to map 

subtype-specific alterations (Figure 5.5). Genes which contain a larger number of significant DMCs 

within their promoter region may be more likely to be regulated by methylation. Therefore, genes 

were ranked by the number of significant DMCs, as well as based on greatest differential 

methylation and gene expression (Table 5.4, Table 5.6, Table 5.8, Table 5.9). In the following 

sections, genes of interest were selected to be discussed more in detail, as illustrative examples, 

where interesting differences were noted between pathological subtypes. For the malignant 

subtypes (i.e. excluding benign oncocytoma), results for candidate epigenetically regulated genes 

were validated in TCGA datasets.  
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Figure 5.7: Gene ontology analysis for ccRCC and pRCC 

Gene ontology for ccRCC (Panel A) and pRCC (Panel B) for genes which were noted to have a negative 
association between promoter methylation and gene expression. 
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Figure 5.8: Gene ontology analysis for chRCC and oncocytoma 

Gene ontology analysis for chRCC (Panel A) and oncocytoma (Panel B) for genes which were noted to have a 
negative association between promoter methylation and gene expression. 
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5.3.1.3.1 ccRCC vs normal kidney 
 
In order to identify epigenetically regulated genes in ccRCC, I evaluated the top genes with the 

greatest differential methylation and differential expression in ccRCC compared to normal kidney 

(Table 5.4). I sought to validate these genes (from Table 5.4) in my cohort of 47 samples (ccRCC vs 

normal kidney), in which I generated matched DNA methylation and RNA-seq data (Table 5.5). 

Lastly, I validated my findings further by evaluating methylation and gene expression in ccRCC 

samples from TCGA (Table 5.5), and by comparing these against other subtypes (pRCC and chRCC).  

 
Table 5.4: Top-ranking genes which may be epigenetically regulated in ccRCC 

For ccRCC versus normal kidney, significant DMCs in the promoter region and significant DEGs were 
overlapped. The table demonstrates the top ten genes which had the largest number of significant 
DMCs within their promoter. In addition, the table summarises the top ten genes with the greatest 
differential methylation and differential gene expression (log2 fold change; FC).  
 

Genes with the largest number of significant DMCs in their promoter region 
Promoter hypermethylation & 

 reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
GATA3 34 30% -4.8  SLC16A3 68 -39% 2.5 
BCAM 31 45% -1.3  ELMO1 21 -29% 1.4 

SLC5A2 30 30% -2.7  ADCY7 20 -29% 1.2 
NAV2 26 36% -1.6  NDRG1 20 -31% 1.2 
PBX1 20 30% -2.4  SHMT2 20 -42% 1.8 

SCNN1A 20 38% -5.4  ARHGAP45 19 -27% 2.6 
WT1 20 28% -2.8  BIN2 19 -31% 1.8 

ARL4D 17 34% -1.5  NDUFA4L2 18 -38% 5.1 
CRYBG2 15 29% -1.1  LILRB1 17 -30% 1.7 
MPPED2 13 29% -2.5  RIN3 17 -29 % 1.1 

         
Genes with largest methylation difference and largest differential gene expression 

Promoter hypermethylation & 
reduced gene expression 

 Promoter hypomethylation & 
 increased gene expression 

Gene Number 
of  

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
SCNN1A 20 38% -5.4  FABP6 5 -44% 4.6 
CALB1 3 35% -6.5  TGFBI 6 -39% 3.4 

CLCNKB 1 34% -5.9  NDUFA4L2 18 -38% 5.1 
RAB25 11 37% -3.8  NNMT 15 -36% 4.1 
KCNJ1 4 32% -7.1  TACC3 1 -37% 3.0 
CLDN8 2 33% -5.3  SLC16A3 68 -39% 2.5 
EPCAM 2 37% -3.0  DOCK2 2 -37% 2.6 

ATP6V0A4 6 33% -4.2  BIRC3 2 -44% 2.1 
SLC12A1 1 31% -8.9  CA9 5 -36% 3.1 
ALDOB 1 31% -8.1  AQP9 6 -36% 2.6 

 



 
84 

Table 5.5: Validation of putative epigenetically regulated genes in ccRCC 

The association between promoter methylation and gene expression in ccRCC and normal kidney 
is shown in my data and in TCGA. My data consists of a cohort of 47 ccRCC and normal kidney 
samples with matched Epic-seq and RNA-seq. 
 

 My data TCGA 

Gene Correlation P value CpG probe ID Correlation P value 

CA9 -0.90 5.43e-18 cg20610181 -0.77 1.30e-65 

NDUFA4L2 -0.91 1.02e-18 cg08163918 -0.80 7.91e-75 

SCNN1A -0.89 5.53e-17 cg16048383 -0.77 4.90e-65 

CALB1 -0.81 4.77e-12 cg18335796 -0.45 6.68e-18 

CLCNKB -0.85 1.27e-13 cg21660130 -0.63 3.47e-37 

KCNJ1 -0.42 0.004 cg13267718 -0.63 2.34e-37 

CLDN8 -0.81 1.14e-11  No data No data 

ATP6V0A4 -0.83 4.76e-13 cg02811197 -0.73 2.28e-54 

SLC12A1 -0.76 6.09e-10 cg23705224 -0.42 1.48e-15 

EPCAM -0.66 4.46e-07 cg16076328 -0.41 1.65e-14 

RAB25 -0.96 7.17e-27 cg19580810 -0.76 1.73e-62 

AQP9 -0.48 0.0006 cg11098259 -0.35 6.54e-11 

SLC16A3 -0.94 3.00e-22 cg19284277 -0.71 2.54e-50 

NNMT -0.91 4.56e-19 cg14520913 -0.62 1.61e-35 

TGFBI -0.68 1.84e-07 cg21583694 -0.81 4.40e-77 
 
 

Interestingly, the top-most hypermethylated and repressed genes in ccRCC vs normal kidney were 

markers of the distal nephron (SCNN1A, CALB1, CLCNKB, KCNJ1, CLDN8, ATP6V0A4, SLC12A1) (Table 

5.4). This was confirmed in both my validation dataset and TCGA (Table 5.5). Genes which represent 

nephron markers had a very strong, significant inverse correlation between promoter methylation 

and gene expression, with correlation values < -0.75 (except KCNJ1 and AQP9 which had a moderate 

inverse correlation) (Table 5.5). Two markers of the distal nephron (CLCNKB and SCNN1A) were 

visualised as illustrative examples. There was evidence of promoter hypermethylation and reduced 

expression in ccRCC vs normal kidney in my dataset, which was confirmed in TCGA (Figure 5.9A-B). 

Comparing different subtypes of renal cancers in TCGA, it was evident that these genes 

demonstrated relative hypomethylation and increased expression in chRCC, with hypermethylation 

and reduced expression in ccRCC and pRCC (Figure 5.9C-D). Once again, this suggests methylation 

may play a role in regulating lineage specific markers in ccRCC, in keeping with the results of section 

5.3.1.3. 
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In addition, my analysis suggests that genes involved in cell adhesion, proliferation, invasion and 

tumorigenesis (such as EPCAM, RAB25, NNMT and TGFBI) may be epigenetically regulated in ccRCC 

and that there may be subtype-specific patterns. For example, in TCGA, ccRCC was characterised by 

hypermethylation and reduced expression of EPCAM, whereas chRCC was characterised by 

hypomethylation and overexpression (Figure 5.9E). Conversely, TGFBI was a clear example in which 

ccRCC revealed hypomethylation and increased expression, whereas chRCC showed 

hypermethylation and reduced expression (Figure 5.9F). As expected, in the majority of cases, pRCC 

resembled ccRCC. In summary, these consistent findings across different datasets confirm 

epigenetically regulated genes in ccRCC. Furthermore, these genes demonstrated distinct 

methylation and expression patterns in the different malignant subtypes of RCC, meaning they could 

potentially be used as subtype-specific markers. 

 
Subsequently, CA9 and NDUFA4L2 were explored in detail as putative ccRCC-specific biomarkers 

which may be epigenetically regulated. For both genes, I found evidence of significant promoter 

hypomethylation in ccRCC compared to normal tissue (Figure 5.10A,C). There was a strong negative 

correlation between methylation and gene expression, both in my dataset and in TCGA, for both 

genes (Figure 5.10B,D; Table 5.5). Subsequently, I evaluated methylation and expression of these 

two genes in the other pathological subtypes of renal tumours. In my data (Epic-seq and Affymetrix), 

there was no significant difference in CA9 nor NDUF4AL2 promoter methylation nor gene expression 

for chRCC and oncocytoma relative to normal tissue. pRCC was characterised by significant CA9 and 

NDUFA4L2 promoter and gene body hypermethylation relative to normal kidney, however there was 

no change in gene expression. Taken together, my results suggested that CA9 and NDUF4AL2 may be 

epigenetically regulated in ccRCC but not in the other pathological subtypes of renal tumours. The 

existing literature suggests that over-expression of CA9 in ccRCC is likely to be largely driven by VHL 

inactivation (by increasing the HIF1-α transcription factor), however, several studies demonstrate 

that methylation may play a role in facilitating this hypoxia signalling axis [252-254]. For example, 

cell line treatment with demethylating agent 5-Aza-2’-deoxycytidine (5-Aza-dc) induces CA9 mRNA 

and protein expression [255-257]. My study provides further evidence to support the notion that 

methylation may regulate transcription of these genes in ccRCC. In summary, the methylation 

differences noted in the four pathological subtypes at the CA9 and NDUF4AL2 gene loci suggests 

that these could be valid markers to differentiate ccRCC, in addition to being candidate genes 

functionally regulated by DNA methylation in ccRCC. 
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Figure 5.9: Methylation versus gene expression for selected genes, in ccRCC tissue samples and 
other subtypes.  

Panel A and B- Promoter methylation versus gene expression for CLCNKB (Panel A) and SCNN1A (Panel B), in 
ccRCC and normal kidney tissue samples in my data (left) and TCGA (right). There is a strong negative 
correlation in both datasets. Panel C-F- Methylation versus gene expression is visualised for ccRCC, pRCC 
and chRCC samples derived from TCGA for CLCNKB (Panel C), SCNN1A (Panel D), EPCAM (Panel E) and TGFBI 
(Panel F). There is a strong negative correlation between methylation and genes expression observed in 
these genes, with clear subtype specific differences. The scatterplots in Panel C-F were adapted from 
cBioPortal [179]. 
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Figure 5.10: Methylation and gene expression of CA9 and NDUFA4L2, two ccRCC specific markers 

Panel A- Methylation levels for ccRCC and normal kidney samples at the CA9 gene promoter region in my 
data. There is clear promoter hypomethylation in ccRCC compared to normal kidney. Panel B- Methylation 
versus gene expression is visualised for the CA9 gene for my data (47 ccRCC and normal kidney samples). 
There is a strong negative correlation between methylation and gene expression, with high 
expression/hypomethylation noted in ccRCC. Panel C- Methylation levels for ccRCC and normal kidney 
samples at the NDUFA4L2 gene promoter region in my data. There is clear promoter hypomethylation in 
ccRCC compared to normal kidney. Panel D- Methylation versus gene expression is visualised for the 
NDUFA4L2 gene for my data (47 ccRCC and normal kidney samples). Similarly to CA9, there is a strong 
negative correlation between methylation and gene expression, with high expression/hypomethylation 
noted in ccRCC. 
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5.3.1.3.2 pRCC vs normal kidney 
 
Aiming to identify epigenetically regulated genes, I ranked genes with the greatest differential 

methylation and differential expression in pRCC compared to normal kidney (Table 5.6) and 

subsequently validated these candidate markers using TCGA (Table 5.7). Similar to the results of the 

analysis for ccRCC, genes related to kidney differentiation and membrane function were noted, 

including: membrane transporters (SLC5A2, SLC44A4), claudins (CLDN1, CLDN10), cell lineage 

markers (PCK1, a proximal tubule marker; ATP6V0A4, a distal nephron marker) and genes involved in 

renal embryogenesis (WT1, HOXD10, LHX1 and FZD7). CLDN1 has been previously proposed as a 

marker to differentiate pRCC from ccRCC, and expression is associated with improved survival in 

pRCC [249]. Additionally, genes involved in immune activation were also identified (including IFI27, 

CCL18, IL32, C7). Selected functional candidate genes are discussed in depth in the section below, to 

highlight potential targets of epigenetic regulation in pRCC and differences between pRCC and the 

other subtypes.  

 

The HOXD10 gene is part of the homeobox D family of transcription factor genes, which plays a role 

in EMT, proliferation and renal metanephric development, with strong expression noted in the 

normal adult urogenital tract [258, 259]. In my data, there was evidence of reduced expression in 

pRCC relative to normal kidney, with a strong negative correlation between methylation and gene 

expression (Table 5.6). In pRCC, promoter hypermethylation was noted spanning a relatively large 

region (57 significant DMCs), although a handful of outlier samples were noted (Figure 5.11A). These 

findings were confirmed in TCGA (Figure 5.11B and C, Table 5.7). TCGA data allowed a comparison 

between the three malignant pathological subtypes, highlighting increased expression of HOXD10 

(and relative promoter hypomethylation) in ccRCC and chRCC relative to pRCC (Figure 5.11D). 

Interestingly, ccRCC demonstrated different expression patterns compared to pRCC, despite the 

shared cell of origin. This is consistent with previous reports that show differential HOXD10 gene 

expression in a tissue specific manner, with either oncogenic or tumour suppressor functions 

depending on the context [260, 261]. Although epigenetic regulation of HOXD10 has been 

demonstrated in gastric cancer [262], to my knowledge, this is the first account to highlight 

differences between renal tumour subtypes and to link these with changes in promoter methylation.  

 

A further notable example of putative epigenetic dysregulation of developmental genes in pRCC was 

WT1. WT1 plays a key role in initiating kidney development by mediating EMT and outgrowth of the 

ureteric bud from the mesonephros [263] and is a known tumour suppressor gene (implicated in 

Wilms’ tumour for example) [264]. My data showed promoter hypermethylation and associated 
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reduced expression in both pRCC and ccRCC relative to normal tissue, but no significant difference in 

the promoter of chRCC (Table 5.4 and Table 5.6), changes which could be harnessed as potential 

diagnostic markers. 

 

 

Table 5.6: Top-ranking genes which may be epigenetically regulated in pRCC 

For pRCC versus normal kidney, significant DMCs in the promoter region and significant DEGs were 
overlapped. The table demonstrates the top ten genes which had the largest number of significant 
DMCs within their promoter. In addition, the table summarises the top ten genes with the greatest 
differential methylation and differential gene expression (log2 fold change; FC).  
 
 

Genes with the largest number of significant DMCs in their promoter region 
Promoter hypermethylation &  

reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
LHX1 93 29% -2.5  HRH1 18 -37% 1.6 

HOXD10 57 31% -2.8  SPON2 16 -36% 1.0 
CHRD 51 32% -1.3  ALDH3B1 8 -32% 1.4 
WT1 51 29% -4.7  CAPG 8 -35% 2.0 
FZD7 47 35% -1.1  SLC44A4 7 -30% 1.9 

ESRRG 46 31% -2.8  IL32 6 -32% 2.3 
SLC5A2 39 33% -2.4  RHBDF2 6 -32% 1.3 

DGKI 34 32% -1.2  SQOR 6 -40% 1.1 
SNED1 34 32% -1.5  AHNAK2 5 -41% 3.6 

CLDN10 33 30% -1.9  ANG 5 -34% 1.0 
         

Genes with largest methylation difference and largest differential gene expression 
Promoter hypermethylation &  

reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
HSD11B2 2 43% -5.4  AHNAK2 5 -41% 3.6 

ATP6V0A4 4 41% -3.4  CLU 5 -48% 2.8 
HPD 1 35% -5.8  IFI27 5 -37% 3.0 

ADGRF5 2 40% -3.1  CREB5 2 -38% 2.2 
C7 2 36% -3.8  CCL18 1 -33% 5.6 

TBX2 15 37% -3.1  CLDN1 2 -38% 1.9 
TEK 1 35% -3.4  CAPG 8 -35% 2.0 

MPPED2 14 36% -3.1  IL32 6 -32% 2.3 
PCK1 1 32% -4.0  EXOC7 1 -35% 1.8 
NES 11 40% -2.3  SEL1L3 1 -33% 1.9 
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Table 5.7: Validation of putative epigenetically regulated genes in pRCC 

The table shows the association between methylation and gene expression in pRCC and normal 
kidney in TCGA. 
 

 TCGA  
Gene CpG probe ID Correlation P value 
WT1 cg20989480 -0.32 3.97e-06 

HOXD10 cg03850256 -0.69 2.47e-30 
LHX1 cg20950167 -0.53 1.95e-16 
FZD7 cg04913005 0.26 1.25e-04 

CLDN1 cg03601836 -0.56 1.36e-18 
CLDN10 cg18470456 -0.34 5.77e-07 

PCK1 cg03840472 -0.33 1.83e-06 
AHNAK2 cg06799735 -0.79 3.10e-45 
ESRRG cg13242895 0.45 9.35e-12 
TBX2 cg27005487 -0.75 4.12e-38 

ESRRG cg01432520 -0.43 1.30e-10 
 
 
 
Evaluating up-regulated genes in which promoter hypomethylation was noted in pRCC, the AHNAK2 

gene was the top-most target in my dataset (Table 5.6). This finding was externally validated in TCGA 

pRCC data (Table 5.7, Figure 5.11E). This gene has been independently identified as having the 

highest correlation between gene expression and methylation in pRCC in the literature [265], 

confirming the validity of my analysis. In addition, I found promoter hypomethylation and reduced 

gene expression in ccRCC versus normal tissue in my matched RNA-seq and Epic-seq dataset, 

suggesting a similar epigenetic regulation is present in ccRCC (Figure 5.11F). TCGA data confirmed 

that whilst ccRCC and pRCC had similar hypomethylation and increased expression, in chRCC there 

appears to be a subset of cases with hypermethylation and reduced expression (Figure 5.11G) 

similar to the pattern observed in normal kidney tissue (Figure 5.11E). The AHNAK2 gene codes for 

desmoyokin, which regulates TGFβ/SMAD signalling, and therefore plays a role in cell cycle 

progression, cell growth and migration [266]. Increased expression of AHNAK2 (as is the case for 

ccRCC and pRCC) is associated with increased proliferation, EMT and tumorigenesis. In ccRCC, 

hypoxia upregulates AHNAK2 expression via HIF1-α [267]. To my knowledge, this is the first study to 

compare AHNAK2 in different pathological subtypes of renal tumours. It remains unclear why such a 

different pattern is seen in chRCC, compared to ccRCC and pRCC, warranting further investigation in 

future work with deeper profiling and spatially resolved molecular analysis. 
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Figure 5.11: Methylation and gene expression for selected genes, in pRCC tissue samples and other 
subtypes 

Panel A and B- Methylation in pRCC and normal kidney at the HOXD10 promoter region, in my dataset 
(Panel A; hg38) and TCGA (Panel B; hg19). Panel C and D- Methylation vs gene expression for HOXD10 for 
pRCC and normal kidney (Panel C) and for pRCC, ccRCC and chRCC (Panel D) derived from TCGA. Panel E and 
G: Methylation vs gene expression for AHNAK2 for pRCC and normal kidney (Panel E) and the three 
pathological subtypes (Panel G) in TCGA. Panel F- Methylation vs gene expression for AHNAK2 for my 
samples (I generated matched RNA-seq and Epic-seq for 47 ccRCC and normal kidney tissue samples). Panel 
B was obtained from TCGA Wanderer [178], and Panels D and G were adapted from cBioPortal [179]. 
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5.3.1.3.3 chRCC vs normal kidney 
 
Differential methylation and differential gene expression were explored in chRCC compared to 

normal kidney to identify epigenetically regulated genes in my dataset. Subsequently, I selected 

three of these genes to be explored in TCGA as potential candidate diagnostic markers. Table 5.8 

summarises the top-ranking genes which had a negative correlation between gene expression and 

promoter methylation. In keeping with my previous findings (section 5.3.1.3), putative epigenetically 

regulated genes were enriched for kidney developmental markers and membrane transporters. For 

example, chRCC was characterised by hypomethylation and increased expression of genes 

associated with the collecting duct (RHCG and ATP6V0A4) and DCT (PVALB), both of which have 

been postulated as a potential cell of origin for chRCC [268]. My analysis identified three genes in 

which there were clear expression differences between chRCC, normal kidney and other 

pathological subtypes of renal tumours, and these are described in further detail below. 

 

Comparing chRCC against normal tissue, my data showed clear promoter hypomethylation and 

associated increased expression for LGALS3, NEDD4L and CTSD genes. The same pattern was also 

noted in oncocytoma, for all three genes (Table 5.9). In addition, TCGA data confirmed there was 

increased expression with associated promoter hypomethylation in chRCC compared to ccRCC and 

pRCC for all three genes (Figure 5.12A-C). Therefore, there could be potential utility in using these 

markers to distinguish renal tumours derived from the PCT and DCT. 

 

Both CTSD and NEDD4L regulate cell growth, as well as having specific functions within the renal 

tubule epithelium. The CTSD gene codes for cathepsin-D, a lysosomal protease, involved in 

regulating apoptosis and extracellular matrix degradation, as well as cell differentiation and growth 

via PI3K-mTOR signalling [269, 270]. The literature suggests that in the normal adult kidney, 

cathepsin-D expression is localised to the DCT and collecting ducts, which may explain the subtype 

specific differences in renal tumours [269]. NEDD4L is a E3 ubiquitin ligase enzyme which acts on 

target proteins and facilitates proteasome degradation. In the collecting duct, NEDD4L regulates 

water and sodium homeostasis by ubiquitination of AQP2 and the epithelial sodium channel (ENaC) 

[271]. In addition, it regulates several signalling pathways (including TGF-β, Wnt, PI3K-AKT-MTOR 

and EGFR signalling) and has been linked with tumorigenesis in several cancers [272]. My results 

suggests that these genes may be epigenetically regulated in renal cancer. 
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Table 5.8: Top-ranking genes which may be epigenetically regulated in chRCC. 

For chRCC versus normal kidney, significant DMCs in the promoter region and significant DEGs were 
overlapped. The table demonstrates the top ten genes which had the largest number of significant 
DMCs within their promoter. In addition, the table summarises the top ten genes with the greatest 
differential methylation and differential gene expression (log2 fold change; FC).  
 

Genes with the largest number of significant DMCs in their promoter region 
Promoter hypermethylation &  

reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
SLC22A2 7 27% -3.8  LIMCH1 16 -40% 1.3 
CXCL14 6 30% -4.7  PLCG2 16 -35% 1.8 
ROBO1 6 29% -1.8  NEDD4L 13 -31% 1.5 

SLC66A2 5 29% -1.2  VAC14 13 -44% 1.6 
UPB1 5 28% -5.0  CA12 10 -34% 1.1 
GATM 4 27% -3.1  AMPD3 8 -33% 1.6 
RCAN1 4 27% -1.4  LGALS3 8 -30% 2.4 

SLC22A11 4 27% -4.4  SLC49A3 8 -32% 2.5 
CARHSP1 3 33% -1.1  ACSS3 7 -47% 1.1 

GPER1 3 26% -2.2  ATP6V0A4 7 -29% 2.3 
         

Genes with largest methylation difference and largest differential gene expression 
Promoter hypermethylation &  

reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
CXCL14 6 30% -4.7  RHCG 1 -47% 3.2 
CALB1 2 28% -5.8  PVALB 1 -40% 3 
UPB1 5 28% -5  GDE1 2 -48% 2.3 

NAT8B 1 33% -3.3  BSG 2 -39% 2.7 
ADARB1 1 36% -2.4  BACE2 1 -35% 2.8 

SERPINA1 2 29% -3.4  CTSD 7 -36% 2.5 
DPYS 1 27% -5.2  ABHD3 3 -40% 2.1 
CDH2 2 27% -4  GPSM2 2 -37% 2.3 
GBA3 1 28% -3.2  PARVB 3 -33% 2.9 
NAT8 2 26% -6.6  CLPB 2 -35% 2.2 
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LGALS3 codes for galectin-3, which regulates cell growth, adhesion, signalling and differentiation, 

and thus plays a role in ureteric bud formation during renal embryological development. In the 

normal adult kidney, galectin-3 is expressed in the distal tubules and intercalated cells of the 

collecting duct, from which chRCC is believed to be derived [273]. This could explain why increased 

levels of galectin-3 are seen in chRCC relative to renal tumours which are derived from the PCT (i.e. 

this is an epigenetically regulated lineage marker for DCT epithelial cells). An immunohistochemical 

study of renal tumours has confirmed strong galectin-3 expression in over 90% of oncocytomas and 

chRCC, but only 34% of ccRCCs and 13% of pRCCs; meaning this could have potential as a diagnostic 

marker [274]. Additionally, studies have shown that lower galectin-3 may have prognostic potential 

in renal cancer, by mediating decreased cell adhesion and increased invasion. Lower levels were 

associated with higher tumour grade, stage and worse overall survival [274, 275]. Genes which have 

both a diagnostic and prognostic utility may be useful markers in clinical practice as they would 

enable not only an accurate differentiation of SRMs, but also provide data regarding prognosis which 

could guide management options (e.g. active surveillance versus treatment). 

 

 
Figure 5.12: Methylation versus gene expression for selected genes, in chRCC, pRCC and ccRCC 

The following genes are shown: LGALS2 (Panel A), NEDD4L (Panel B) and CTSD (Panel C). All three figures are 
adapted from cBioPortal [179]. 
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5.3.1.3.4 Oncocytoma vs normal kidney 
 
Methylation and gene expression were evaluated in oncocytoma versus normal tissue, and some 

obvious similarities were noted with genes highlighted in the analysis of chRCC (Table 5.8 and Table 

5.9). In both oncocytoma and chRCC, a number of genes demonstrated promoter hypomethylation 

and upregulated expression, including genes associated with the collecting duct (ATP6V0A4 and 

ATP6V1B1), DCT (KCNQ1), solute carriers (SLC38A1), and transmembrane proteins (TMEM101), as 

well as genes involved in lipid metabolism (ABHD2, ABHD3), mitosis (KNTC1) and apoptosis (CLPB). In 

addition, both oncocytoma and chRCC demonstrated hypermethylation and reduced expression in 

PCT markers (GATM, ASS1), DCT markers (CALB1), and solute carriers (SLC22A2, SLC66A2, SLC22A11) 

relative to normal kidney. Unfortunately, it was not possible to validate these findings. Future work 

should focus on highlighting differences between chRCC and oncocytoma, which could be used to 

aid diagnosis. 

 

Whilst I performed a detailed analysis of each subtype versus normal kidney, I was unable to 

evaluate all subtypes simultaneously using routinely available methods for methylation analysis. 

Indeed, the ‘methylKit’ package only enables two comparisons at a time and the ‘dmrseq’ package 

was unable to run as my large sample size made it too computationally intensive. This prompted me 

to collaborate with Izzy Newsham (section 5.3.2), leveraging her bio-informatics expertise to enable 

a simultaneous comparison of all subtypes.  

 
In summary, in section 5.3.1.3, I identified methylation changes which are likely to regulate gene 

transcription in each of the pathological subtypes. I confirmed these findings by evaluating TCGA 

data, demonstrating the validity of my results. I highlighted pathways which may be regulated by 

DNA methylation as this could offer insights into how methylation mediates tumorigenesis and I 

explored candidate epigenetically regulated genes in greater detail. Given none of the markers 

demonstrate high specificity for a single subtype, it is likely that using a larger number of 

methylation changes in combination (rather than individual markers) may be more useful as a 

diagnostic test. This is therefore explored in the next section (5.3.2), where DNA methylation data 

were used to create a machine learning model to predict pathological subtypes of SRMs.  

 
 
 
 
 
 
 
 



 
96 

Table 5.9: Top-ranking genes which may be epigenetically regulated in oncocytoma 

For oncocytoma versus normal kidney, significant DMCs in the promoter region and significant DEGs 
were overlapped. The table demonstrates the top ten genes which had the largest number of 
significant DMCs within their promoter. In addition, the table summarises the top ten genes with the 
greatest differential methylation and differential gene expression (log2 fold change; FC).  
 
 

Genes with the largest number of significant DMCs in their promoter region 
Promoter hypermethylation &  

reduced gene expression 
 Promoter hypomethylation & 

 increased gene expression 
Gene Number 

of  
DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
EPS8L1 31 32% -2.2  PLCG2 22 -37% 3.1 

SLC22A2 27 33% -3.7  NEDD4L 18 -33% 1.9 
PDLIM4 25 29% -2.1  FOXI1 16 -55% 3.4 

UPB1 21 30% -4.5  SLC20A1 14 -42% 1.1 
ANPEP 10 29% -3.8  TMEM101 14 -36% 3.4 
EPS8L2 9 27% -1.5  MYO10 13 -37% 1.3 
NR2F1 9 31% -1.5  SLC16A3 12 -31% 1.7 
BHMT2 7 33% -3.3  HOXB7 11 -27% 1.1 
GATM 6 30% -4.3  CD9 10 -30% 1.2 
IL32 6 30% -2.5  IGFBP1 10 -38% 3.5 

         
Genes with largest methylation difference and largest differential gene expression 

Promoter hypermethylation &  
reduced gene expression 

 Promoter hypomethylation & 
 increased gene expression 

Gene Number 
of  

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 

 Gene Number 
of 

DMCs 

Average 
methylation 
difference 

Log2 FC 
gene 

expression 
HPD 5 37% -5.1  FOXI1 16 -55% 3.4 

CXCL14 2 36% -4.8  ARRB2 2 -52% 2.9 
SLC22A2 27 33% -3.7  GPSM2 2 -43% 3.9 
GALNT14 1 32% -3.6  ATP6V1B1 1 -51% 2.5 
BHMT2 7 33% -3.3  SNTB1 1 -56% 2.2 
UPB1 21 30% -4.5  CELF2 3 -51% 2.2 
GATM 6 30% -4.3  LIMS1 2 -43% 2.9 

SLC47A1 1 30% -5.6  AQP6 5 -40% 4.8 
PTH1R 1 32% -2.9  CLGN 2 -43% 2.9 
NAT8 2 29% -5.4  SFTPB 1 -39% 4.0 
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 MethylBoostER: Machine learning model to predict pathological 

subtypes of renal tumours and normal kidney tissue 

 
5.3.2.1 Exploring methylation markers of different pathological subtypes from the 

literature 
 
Differentiating pathological subtypes of renal tumours is a clinical priority [1]. First, I visualised 

methylation markers from the literature in my dataset, subsequently I collaborated with Izzy 

Newsham, PhD candidate from the Samarajiwa Research Group, to develop a machine learning 

model to predict pathological subtypes of renal tumours.  

 

A small number of studies are available in the literature which use DNA methylation to predict 

pathological subtypes of renal tumours. Dr Brennan et al recently published a model which uses 

Prediction Analysis of Microarrays (PAM) and data from 79 CpG probes to distinguish normal kidney, 

oncocytoma and chRCC [121]. The model was developed using 450k array methylation data. Of 

these 79 CpGs, 45 CpGs were available in my dataset and these are visualised in a heatmap (Figure 

5.13A). Based on clustering alone, the majority of samples from the same pathological subtype 

cluster together, however many samples cluster away from their subtype. Oncocytoma and chRCC 

samples cluster together closely. It is evident that some CpGs appear to be more informative than 

others- for example cg11983867 and cg00394316 appear to be hypomethylated in virtually all 

samples despite being presumed chRCC markers. I contacted Dr Brennan (Gevaert Group, Stanford 

University, USA) and enquired whether they would be able to externally validate their model on my 

dataset. The study authors reported that unfortunately this is not possible as the PAM model cannot 

tolerate missing data and requires imputation of missing CpGs; and this would not be appropriate in 

my dataset which is missing 43% (45/79) of required probes.  

 

Chopra et al created a model to distinguish renal tumour subtypes based on 57 CpG probes using 

450k array methylation data [120]. In the testing set, the model predicted the correct pathological 

subtype in only 58% of oncocytomas and 64% of pRCC. Results were more favourable when 

predicted output was classified as malignant versus non-malignant, rather than into the different 

subtypes (100% of oncocytomas were predicted as non-malignant and 86% of pRCC were predicted 

as malignant). Of the 59 CpGs, data were available for 41 CpGs in my dataset (Figure 5.13B). Based 

on hierarchical clustering alone, samples broadly cluster by subtype: normal cluster very closely 

together, ccRCC cluster more closely with pRCC and oncocytoma and chRCC are the most similar. 

Given both Brennan and Chopra models are based on <100 CpGs, it is difficult to apply the models 
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on external datasets which may contain missing data or be processed using a different methylation 

platform (e.g. Epic-seq vs 450k array) since this results in a large proportion of missing probes. This 

limitation could be overcome by including a larger number of CpGs (i.e. 1000 rather than 100) and 

creating a model which tolerates missing data without the requirement for imputation. Subsequent 

analysis will aim to create such a model to distinguish subtypes of renal tumours using my 

methylation data. 

 

 

 

Figure 5.13: CpGs identified in the literature which aim to differentiate pathological subtypes 

Heatmap demonstrating methylation levels for my Epic-seq samples (ccRCC, pRCC, chRCC, oncocytoma and 
normal kidney) at CpGs that differentiate pathological subtypes of renal tumours in previous studies. Tissue 
samples are shown as columns and CpGs are shown as rows. The coloured horizontal bar demonstrates the 
pathological diagnosis of each sample. The coloured vertical bar on the left demonstrates subtype-specific 
CpG markers from the literature. Based on hierarchical clustering alone (Panel A and B), samples broadly 
cluster by subtype: normal cluster very closely together, ccRCC cluster more closely with pRCC and 
oncocytoma and chRCC are the most similar. Panel A- CpGs identified by Brennan et al [121] which are 
meant to distinguish oncocytoma from chRCC. Panel B- CpGs identified by Chopra et al [120] which are 
meant to distinguish different pathological subtypes. 
 



 
99 

5.3.2.2 MethylBoostER: a machine learning model using DNA methylation to differentiate 
pathological subtypes of renal tumours 

 
The following work is the result of a collaboration with Izzy Newsham (Samarajiwa Group; see 

section 4.5.2). In brief, we developed MethylBoostER (Methylation and XGBoost for Evaluation of 

Renal tumours), a machine learning model which uses DNA methylation to classify tissue samples 

into normal kidney or common pathological subtypes of malignant and benign renal tumours (ccRCC, 

pRCC, chRCC and oncocytoma). Figure 5.14 summarises the workflow and samples used. I combined 

my Epic-seq tissue data along with two publicly available datasets (TCGA and Chopra et al) and this 

was used as the training and testing set [24, 120]. Subsequently, MethylBoostER was externally 

validated on four independent datasets [120, 121, 126, 127]. A strength of the model is that we 

evaluate performance on multi-region samples, demonstrating methylation heterogeneity does not 

limit model applicability. In addition, I assessed tumour purity and explored the impact on model 

predictions, as low purity biopsy samples represent a real-world clinical challenge. 

 

 

Figure 5.14: MethylBoostER analysis and sample overview 

Methylation data were combined from three sources and these were used to train and test a machine 
learning model, called MethylBoostER (Methylation and XGBoost for Evaluation of Renal tumours). 
Subsequently, MethylBoostER was externally validated on four independent datasets.  
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5.3.2.2.1 Model development and results of the training and testing set 
 
For the training and testing set, samples were combined from three sources, my Epic-seq data 

(N=319), TCGA (N=872)[24] and Chopra Training set (N=37)[120] (Figure 5.15A). For the remainder of 

the chapter, my Epic-seq data will be referred to as Cambridge data, in keeping with the 

nomenclature used in the manuscript submitted for publication (Appendix 1). As described in 

Methods section 4.5.2, data were available for 158,670 CpG probes for 1228 samples. The UMAP 

demonstrates that when using methylation values from all 158,670 CpG probes, samples cluster first 

by dataset, then by subtype (Figure 5.15B). This is not entirely unexpected due to the different data 

sources and platforms used. This combined dataset was split into training and testing sets (75:25 

split) using four-fold nested cross-validation. An extreme gradient boosting (XGboost) machine 

learning model was developed to classify samples into one of five subtypes or ‘classes’: normal 

kidney, ccRCC, pRCC, chRCC and oncocytoma. The resulting model was named MethylBoostER. The 

1331 features selected by MethylBoostER are visualised in Figure 5.15D, demonstrating that these 

separate samples by pathological subtype rather than by data source (as in Figure 5.15B). This 

suggests that the features selected by the model are not dataset specific but are features that 

distinguish each class in all three datasets. 

 

First, I evaluated the model’s performance in the testing set. The following model metrics were 

assessed: accuracy, precision and recall curves, Receiver Operating Characteristics (ROC) curves and 

confusion matrices (Figure 5.15C). Each of these metrics are defined in Methods section 4.5.2. In 

brief, the confusion matrix summarises the samples’ true label and the label predicted by the model, 

for each pathological subtype. Four models were created since four-fold cross validation was 

performed, and the results of each of these models in the testing set is shown (Figure 5.16A-H). In all 

models, the ROC AUC was 1 for normal samples, and in 3 out of 4 models the ROC AUC was 1 for 

oncocytoma, demonstrating these were the best performing classes. In model 4, the ROC AUCs 

were: 1 for normal kidney, 1 for oncocytoma, 0.992 for ccRCC, 0.992 for pRCC and 0.988 for chRCC 

(Figure 5.16G-H). As this was the best performing model, it was selected to be taken forward into 

external validation in all subsequent analyses (results for other models are available in Appendix 1).  
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Figure 5.15: Data characteristics and MethylBoostER performance in the testing set 

Panel A- Bar plot summarising the number of samples in the training/testing set, split by pathological 
subtype, for each dataset. Panel B- UMAP of the training/testing dataset, using all input features (158,670 
CpG probes). Here samples broadly cluster by dataset. Panel C- Confusion matrix demonstrating 
performance in the testing set, with precision and recall bars. Panel D- UMAP of the training/testing set, 
using only features learnt by MethylBoostER (Model number 4; 1331 probes). Here samples broadly cluster 
by subtype rather than by dataset. Figures 5.15-5.25 were created in collaboration with Izzy Newsham as 
described in section 4.5.2. 
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Figure 5.16: ROC and precision-recall curves over the testing set, split by pathological subtype 

Four models were created since four-fold cross validation was performed, and the results of each of these is 
shown (Panels A-H). The area under the curve (AUC) is shown for each subtype. 

 
 
 
 



 
103 

I assessed the model’s performance for each subtype in turn, to determine whether any subtype 

was misclassified more commonly than the others. chRCC was the worst performing class, and both 

the confusion matrix (Figure 5.15C) and the precision-recall curves confirmed this, as evidently the 

ROC curve for chRCC drops off steeply compared to other subtypes (Figure 5.16). Out of 1228 

samples evaluated, 96% (1179/1228) were on the diagonal of the confusion matrix (Figure 5.15C), 

indicating they were correctly predicted (Accuracy: 96%). The most common misclassifications 

included ccRCC being predicted as pRCC (N=13) or chRCC (N=7), pRCC being predicted as ccRCC 

(N=9) or chRCC (N=8) or chRCC being predicted as ccRCC (N=6) (Figure 5.15C). Arguably, all three 

malignant subtypes would be managed with active treatment (rather than surveillance) therefore 

mitigating the consequence of these misclassifications. Difficulties in discriminating between ccRCC 

and pRCC may be attributed to their shared cell of origin, and this is consistent with my results 

shown in section 5.3.1.  

 

Problems accurately differentiating between ccRCC and chRCC on histopathology are a well-known 

challenge. In TCGA, 15 cases were initially classified as ccRCC on histopathological slide review, 

however, these were later re-reviewed by specialist uro-histopathologists and reclassified as chRCC 

[24, 74]. Eight of these samples from TCGA were included in our testing/training dataset, and 

MethylBoostER classified five of these as chRCC and three as ccRCC. The former suggests that our 

model can correctly classify five chRCC samples better than a general pathologist, and more akin to a 

specialist uro-histopathologist. We explored the methylation and gene expression profiles of TCGA 

samples (Figure 5.17A-B) and demonstrated that the three samples which our model classifies as 

ccRCC, cluster more closely with ccRCC than chRCC based on both methylation and gene expression 

data (TCGA participant IDs: 4821, 4688 and 4696). We hypothesized that these samples may indeed 

be ccRCC (i.e. the first classification was correct rather than the re-classification). These findings 

highlight existing challenges in diagnosing subtypes using standard of care histopathology methods 

and emphasize the need to produce accurate predictive models. Another challenge is that predictive 

simulations are trained on datasets in which the true diagnosis is based on histopathology, and if 

this is incorrect, it may bias the model. Importantly, although some oncocytoma samples were 

classified as malignant disease, no malignant samples were classed as benign oncocytoma or normal 

tissue (Figure 5.15C). Given current clinical practice (which errs on the side of caution and removes 

SRMs which are later found to be benign), it would be acceptable to remove an oncocytoma in case 

this might be malignant, but it would not be acceptable to confuse a malignant mass as benign, as 

this would risk the cancer spreading.  
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Figure 5.17: UMAP of all TCGA samples in the training/testing dataset 

Panel A and B- UMAP of TCGA samples using methylation data (Panel A) and gene expression data (Panel B). 
There were 8 samples that were originally classified as ccRCC and then re-classified as chRCC following 
review by a uro-histopathologist, and these samples are labelled with their TCGA participant ID. Three of 
these samples (TCGA participant IDs 4821, 4688 and 4696) are classified as ccRCC by MethylBoostER, and 
appear to cluster more closely with ccRCC than chRCC for both methylation (Panel A) and gene expression 
(Panel B). This suggests these 3 samples may indeed by ccRCC (i.e. the first classification may be correct and 
the re-classification may be incorrect). 

 
 
5.3.2.2.2 High- and moderate-confidence predictions make model outputs clinically 

more informative 
 
It is recognised that a clinician would not use the MethylBoostER class prediction in isolation, but 

would integrate the model output with clinical, histopathological and radiological parameters to 

guide patient-centred care. In addition, a clinician requires an estimate of MethylBoostER’s 

‘confidence’ in the predicted output, which would allow adequate weight to be placed on the model 

result as well as other available clinical information. As such, we developed the concept of high- and 

moderate-confidence predictions. Given a particular sample, MethylBoostER will output predicted 

probabilities for that sample belonging to each of the five classes (normal kidney and renal tumour 

subtypes). For example, given sample X, MethylBoostER may predict that the sample is ccRCC 

(probability=0.90), chRCC (probability=0), pRCC (probability=0.10), oncocytoma (probability=0) and 

normal kidney (probability=0), which would lead the clinician to conclude that there is a high chance 

the diagnosis is ccRCC. However, in this case, producing all outputs is unnecessary as the probability 

of the diagnosis being ccRCC is very high; whereas if the probability was lower, the clinician would 

benefit from further information. In the testing set, the vast majority of cases (87%) had a predicted 

output probability >0.95, however in a number of cases this was lower, with probabilities as low as 
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0.26 (Figure 5.18A). High- and moderate-confidence predictions aim to address this. If 

MethylBoostER’s predicted probability is greater than a certain threshold t, this is deemed a high- 

confidence prediction and the most likely output is provided. If MethylBoostER’s predicted 

probability is below the threshold t, this is deemed a moderate-confidence prediction and the top 

two most likely outputs are provided (referred to as first and second predictions for the remainder 

of the analysis). The probability threshold selected was t = 0.85 (Figure 5.18B), as this maximises the 

accuracy of both high- and moderate-confidence predictions and the fraction of high-confidence 

predictions over the testing set. In the testing set, the average accuracy of high-confidence 

predictions was 0.982, whilst for moderate-confidence predictions this was 0.871 (where the 

prediction was treated as correct if the first or second prediction was correct). The use of high- and 

moderate-confidence predictions is a strength of the model as it allows the clinician to make an 

assessment of the probability that MethylBoostER is correct (i.e. the strength of the confidence of 

the prediction) and use this alongside clinical data, thus increasing the chances of the model 

becoming integrated in clinical practice (Figure 5.18). 

 

 

Figure 5.18: High and moderate confidence predictions in the testing set 

Panel A- Histogram of the probability of the predicted class, for the testing set (N=1228). Panel B- Line plot 
demonstrating the accuracy of high and moderate confidence predictions and the fraction of certain 
predictions, for each threshold t (0-1). The threshold t = 0.85 was selected as this achieved the maximum 
accuracy and fraction of certain predictions (vertical dotted line). Panel C- Schematic overview of how high 
and moderate confidence predictions are incorporated into MethylBoostER. High confidence predictions 
(probability of the predicted class > 0.85) will output one class, whereas moderate confidence predictions 
will output the two most likely classes. 
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5.3.2.2.3 External validation in four independent datasets 
 
MethylBoostER was externally validated using four independent datasets: Chopra validation 

(N=245), Brennan (N=37), Wei (N=92) and Evelönn (N=144) (Figure 5.19A) [120, 121, 126, 127]. First 

MethylBoostER was applied to these datasets without taking into account high- and moderate-

confidence predictions, meaning only the first prediction was used. The accuracy was 0.824 for 

Chopra validation, 0.703 for Brennan, 0.875 for Wei and 0.894 for Evelönn (Figure 5.19B). 

Importantly, although some oncocytomas were misclassified as malignant, no malignant tumours 

were misclassified as oncocytoma (in keeping with results in the training set, section 5.3.2.2.1). 

Figure 5.20A-D illustrates ROC curves for each dataset. For all subtypes and all datasets, ROC AUCs 

were >0.90, meaning that the model can be generalised to different datasets. Normal kidney and 

ccRCC had the highest ROC AUC (>0.96 in all four external validation datasets), with the lowest 

values noted in chRCC and oncocytoma. Subsequently, I evaluated the utility of high- and moderate-

confidence predictions in the external validation datasets. 

 

Predicted probabilities were used to split outputs into high- and moderate-confidence predictions, 

which led to increased overall performance. The accuracy for each of these datasets is shown in 

Figure 5.19C, and as expected, accuracy in high-confidence predictions was high (>0.90 for all 

datasets). For moderate-confidence predictions, accuracy in the first prediction alone was <0.65 in 

all datasets, and this increased to >0.70 by taking into account second predictions, suggesting this 

may be a useful strategy. Figure 5.20A-D illustrates confusion matrices (splitting high- and moderate-

confidence predictions) for each dataset. Subsequently, I evaluated commonly misclassified samples. 

In the Brennan dataset, the worse performing class was chRCC. Conversely, chRCC was the best 

performing class in the Chopra validation set (the worse performing class was oncocytoma). The 

lower model performance in chRCC and oncocytoma may be due to the comparatively low number 

of chRCC and oncocytoma in the training, testing and validation sets, relative to ccRCC and normal 

kidney samples (which reflects disease prevalence). Furthermore, as I have shown in section 5.3.1.1, 

chRCC and oncocytoma are the two most difficult subtypes to differentiate due to their shared cell 

of origin, and this is confirmed by the existing literature [117, 121]. Indeed, differentiating chRCC 

and oncocytoma is the main challenge in clinical practice. I noted that in the Chopra validation 

dataset, oncocytoma samples had low tumour purity, and I hypothesized that this may be driving the 

low prediction accuracy in this subtype. Indeed, in the Chopra validation dataset, 12 oncocytomas 

were predicted as normal kidney, and all but two of these sample had a tumour purity < 0.50. 

Oncocytomas may be predicted as normal due to their low tumour purity, or do to their benign 

phenotype. This prompted me to evaluate the impact of tumour purity on MethylBoostER. 
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Figure 5.19: MethylBoostER external validation on four independent datasets 

Panel A- Bar plot summarising the number of samples in each validation dataset, split by pathological 
subtype. Panel B- Confusion matrices demonstrating performance in each dataset (high- and moderate-
confidence predictions are not considered). Panel C- Accuracy for high- and moderate-confidence 
predictions, for each dataset. For moderate-confidence predictions, accuracies are shown for the following 
three scenarios: the first prediction is correct, the second prediction is correct, the first or second prediction 
are correct.  
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Figure 5.20: Confusion matrices and ROC curves, for the four external validation datasets 

Results are shown for each dataset: Chopra validation (Panel A), Brennan (Panel B), Wei (Panel C) and 
Evelönn (Panel D). The confusion matrices show predicted and true labels for samples which have a high- 
and moderate-confidence prediction separately. For moderate-confidence predictions, there is a 
breakdown showing the number of samples correctly predicted in the first prediction, second prediction or 
incorrectly predicted (i.e. incorrect on first and second prediction). The ROC curves and area under the 
curve (AUC) do not take into account high- and moderate-confidence predictions. 
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Figure 5.21: Purity in samples which are correctly predicted in the first prediction, second 
prediction or incorrectly predicted samples 

Results are shown for each dataset: Cambridge (Panel A), TCGA (Panel B), Chopra Training and Validation 
(Panel C), Brennan (Panel D), Wei (Panel E) and Evelönn (Panel F). Incorrectly predicted samples were 
defined as samples that were incorrectly predicted on both first and second prediction. Adjusted p values 
are shown (* <0.05, **<0.009, *** <0.0009). 
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5.3.2.2.4 Exploring the impact of sample purity on MethylBoostER 
 
Tumour purity was evaluated using methylation data using ‘Infiniumpurify’, which measures 

contamination with normal tissue. Normal kidney samples therefore do not have a purity estimate 

and are not included in this analysis. For each dataset, median purity was: 0.88 for Cambridge, 0.84 

for TCGA, 0.80 for Chopra training, 0.58 for Chopra validation, 0.73 for Brennan, 0.81 for Wei and 

0.48 for Evelönn (Figure 5.21A-F). Whilst Cambridge, TCGA, Chopra training and Wei consist of small 

tissue samples obtained during nephrectomy, the Chopra validation cohort consists entirely of ex-

vivo core biopsy samples. The Brennan dataset contains small tissue samples obtained during 

nephrectomy and 4 fine needle aspirate (FNA) samples. Ex-vivo core biopsy and FNA attempt to 

reproduce clinical practice, where biopsy samples with limited tumour content may be obtained, 

and this explains the lower tumour purity in these two datasets. The low purity in the Evelönn 

dataset is unexpected and there is no obvious explanation other than potential poor-quality 

samples. Figure 5.22A depicts purity for samples that were predicted correctly in the first prediction, 

second prediction and incorrectly predicted samples, for all datasets combined. Median purity in 

samples that were correctly predicted on the first prediction was significantly higher than samples 

correct on second prediction, and those that were incorrectly predicted (0.82 vs 0.44 vs 0.29, 

adjusted p value <0.01 for all comparisons; Figure 5.22A). Figure 5.22B-C summarises purity and the 

prediction probability (for the first prediction), highlighting incorrectly predicted samples. Results 

are shown for all datasets combined, as well as individual datasets. There was a correlation between 

purity and probability of first prediction in Wei and Evelönn (Pearson correlation coefficient = 0.58 

and 0.51 respectively, adjusted p value <0.01), but not in the other datasets (correlation <0.30 

and/or adjusted p value >0.01). Figure 5.22B demonstrates that a subset of samples were incorrectly 

classified despite having a high-confidence prediction, and these samples tend to have lower purity.  

 

Subsequently, I evaluated MethylBoostER accuracy at different purity levels, to identify a purity 

threshold which could be used to preclude sample inclusion in the model. Taking into account all 

datasets combined, Table 5.10 summarises the accuracy of first and second predictions, as well as 

the median probability of the first prediction, by tumour purity. In samples where purity was <0.2, 

there was a sharp drop off in accuracy, compared to samples in which purity was >0.2, suggesting 

that potentially a biopsy sample may have to be repeated if purity is below this level as 

MethylBoostER is highly likely to be inaccurate. Taking into account the entire cohort, 5% (61/1246) 

of samples had purity below this threshold, suggesting repeat biopsy would only be needed in a 

minority of cases. A limitation of the present analysis is that it was performed post-hoc, on both 

training/testing and validation datasets, therefore this remains to be externally validated. In 
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summary, selecting high-confidence predictions (i.e. probability of the first prediction >0.85) and 

removing low purity samples (purity <0.2) may maximise accuracy and ensure clinical utility.  

 

 

 

Figure 5.22: Sample purity and MethylBoostER output 

Panel A- Purity in samples which are correctly predicted in the first prediction, second prediction or 
incorrectly predicted samples (i.e. incorrect on first and second prediction) combining all datasets. Adjusted 
p values are shown (* <0.05, **<0.009, *** <0.0009). Panel B and C- Purity and the prediction probability 
(for the first prediction), highlighting incorrectly predicted samples. Results are shown for all datasets 
combined (Panel B) and each individual dataset (Panel C). The threshold t = 0.85 indicating a high 
confidence prediction is shown. Samples which are incorrectly predicted (on both first and second 
prediction) are shown with a cross. 
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Table 5.10: MethylBoostER accuracy achieved for different purity thresholds 

Normal kidney samples do not have a purity estimate and therefore are not included in this analysis, 
hence the total number of samples is 1246. 
 

Purity 
Median probability 

of 1st prediction 
Accuracy of 1st 

prediction 
Accuracy of 2nd 

prediction 
Both predictions 

incorrect 
Number of 

samples 
0-0.1 0.78 0.42 0.08 0.5 12 

0.1-0.2 0.85 0.37 0.39 0.24 49 
0.2-0.3 0.99 0.71 0.08 0.21 24 
0.3-0.4 0.98 0.6 0.1 0.3 30 
0.4-0.5 0.99 0.82 0.14 0.04 95 
0.5-0.6 1 0.91 0.04 0.05 159 
0.6-0.7 1 0.97 0.03 0 159 
0.7-0.8 0.99 0.92 0.05 0.04 111 
0.8-0.9 0.99 0.94 0.04 0.02 294 
0.9-1 1 0.99 0.01 0 313 

All samples 1 0.9 0.06 0.04 1246 
 
 
 
5.3.2.2.5 Exploring the impact of methylation heterogeneity on MethylBoostER 
 
Methylation heterogeneity is relatively under-investigated; however it has important implications 

for diagnostic biomarker development and clinical applications. Multi-region samples from the same 

patient were evaluated to determine whether MethylBoostER predicts consistent results. Data were 

available for the Cambridge and Evelönn datasets, consisting of multiple samples obtained from 

different tumour regions and normal adjacent kidney from patients’ nephrectomy specimens (Figure 

5.23A). In the Cambridge dataset, multi-region samples were available (N=168) for 25 patients (18 

ccRCC, 4 chRCC, 2 oncocytoma and 1 pRCC). In 92% (23/25) of patients, all multi-region samples 

were consistently predicted as being from the same pathological subtype; with 88% (22/25) 

achieving correct classifications for all samples (Figure 5.23B). Multi-region samples (N=17) were 

also available for 6 patients with ccRCC from Evelönn et al [127]. As shown in Figure 5.23C, 83% (5/6) 

of patients had a concordant prediction for all multi-region samples derived from the same patient. 

In three patients with ccRCC, some samples were classified as chRCC and in all cases, samples had a 

very low purity (i.e. below the 5th percentile), which may explain why these were misclassified. In 

TCGA, several ccRCC samples were re-classified as chRCC. For two patients from the Evelönn dataset 

(Figure 5.23C), all multi-region samples were predicted as chRCC rather than ccRCC, and it would be 

interesting to review the histopathology slides for these samples to determine whether they may 

indeed be re-classified on further review. Overall, these data suggest that multi-region samples 

achieve consistent predictions in 90% (28/31) of patients, meaning biopsies are likely to achieve 
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consistent diagnoses in clinical practice. Further exploration of methylation heterogeneity in ccRCC 

is performed in the next chapter (Chapter 6). 

 
 
 
 
 

 

Figure 5.23: Classification results for multi-region samples 

Panel A- Schematic showing analysis plan. Multi-region samples (i.e. multiple tumour and normal kidney 
samples) were obtained from each patient. Panel B and C- Diagram showing classification results for the 
Cambridge (Panel B) and Evelönn (Panel C) datasets. Each row is a patient, and the prediction for each 
multi-region sample is shown, along with whether the prediction was correct or incorrect (and the 
predicted class if incorrect). Samples with a low purity (below 5th centile) are highlighted with a star. 
Abbreviations: cc = ccRCC, ch=chRCC, on= oncocytoma, p=pRCC. 
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5.3.2.2.6 Potential clinical utility of MethylBoostER 
 
Although MethylBoostER requires further validation, Figure 5.24 explores how it may be integrated 

in clinical practice in future (following further validation). Patients diagnosed with SRMs would 

undergo full clinical evaluation, including imaging and image-guided biopsy, which would then be 

analysed for DNA methylation, tumour purity assessment and MethylBoostER class prediction. Based 

on the results, if samples have low tumour purity, it may be advisable to repeat the biopsy as the 

model has low accuracy and may not be reliable in this setting. Additionally, if MethylBoostER 

predicts normal tissue, this is likely to suggest that despite image-guided biopsy, the renal mass may 

have been missed, and the biopsy should therefore be repeated. For a given sample, the 

MethylBoostER output would be integrated with clinical and imaging data to determine the most 

appropriate management option. High-confidence predictions indicating oncocytoma may suggest 

conservative management, whilst high-confidence predictions indicating malignant subtypes (ccRCC, 

pRCC and chRCC) would suggest active treatment. For moderate-confidence predictions, the two 

most likely predictions would be interpreted along with prediction probabilities, sample purity and 

clinical data, and management options discussed with the patients. The aim of this would be to 

improve the patient diagnostic pathway and enable patient-centred decision making regarding the 

most appropriate management options. 

 

 

 

Figure 5.24: Proposed future integration of MethylBoostER into the existing clinical pathway for 
patients with SRMs 
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5.4 Discussion and future direction 
 

 Methylation & gene expression in pathological subtypes of renal 

tumours vs normal kidney 

 
The first part of this chapter (section 5.3.1) focuses on characterising DNA methylation and gene 

expression in tissue derived from patients with common pathological subtypes of benign and 

malignant renal tumours. First, I compared normal kidney samples derived from patients with 

different pathological subtypes of renal tumours to evaluate the presence of a ‘field-effect.’ Field 

cancerization refers to the concept that normal tissue may acquire early changes that predispose to 

tumorigenesis [276, 277]. In normal kidney samples in my dataset, there was no evidence of 

clustering by adjacent tumour subtype in the unsupervised analysis. I then demonstrated there was 

no significant difference in methylation in normal kidney derived from patients with ccRCC and 

chRCC (two malignant tumours that have different cells of origin). Taken together, these results do 

not show evidence of a field effect (i.e. nothing to suggest that the normal kidney may display 

methylation changes which are precursors to a specific tumour subtype). Such a methylation field 

effect has been demonstrated in other organs, such as prostate tissue from patients with and 

without cancer [276, 277]. In the kidney, contradictory evidence exists in the literature. Arai et al 

showed that there are methylation differences in normal samples derived from patients with ccRCC 

versus chRCC [278, 279]. The authors hypothesize this is evidence that DNA methylation changes 

may occur in normal kidney which may predispose to cancer, and that these changes differ based on 

the tumour types’ differing cells of origin. Malouf et al showed similar results to my own: DNA 

methylation was the same amongst normal kidney samples regardless of adjacent tumour subtype 

[117]. The literature suggests that on histopathological slide review, normal kidney samples derived 

from patients with different tumours show no obvious difference and there is also no difference 

compared to normal kidney from patients without tumours [278, 279]. Therefore, there is no 

evidence to suggest a field effect in normal kidney macro and microscopically, though this could still 

be the case on a molecular level. Whereas pre-malignant lesions have been identified in other 

tumour types (such as adenomatous polyps in colorectal cancer and CIN in cervical cancer), no such 

lesions have been identified for RCC. The identification of precursor lesions is a research priority as it 

could enable earlier cancer detection. Mitchell et al identified complex structural rearrangements 

(LOH at 3p and gains at 5q) which may occur in adolescence decades before ccRCC develops [71]. 

Since early events in the normal kidney affect structural rearrangements, it might be plausible that 

methylation changes may occur, though no evidence was noted in my dataset. My analysis 
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represents preliminary work based on a relatively small cohort of normal tissues, and future 

research (given more time and resources) could evaluate the concept of field effect more 

thoroughly. For instance, one could evaluate methylation disorder in a read (for example by 

calculating epipolymorphism) rather than methylation at individual CpGs. This idea is discussed more 

in detail in the discussion section of Chapter 6. It could also be useful to compare normal kidney 

tissue derived from patients with renal tumours and patients without tumours (for example from 

autopsies) to highlight changes that might be associated with tumorigenesis rather than pathological 

subtype specific changes [279].  

 

Single cell RNA-seq studies have demonstrated that in benign renal cortex tissue, 50% of cells are 

noted to be proximal tubule (PT) cells, compared to only 10% in benign renal medullary tissue [228]. 

It is these PT cells that are the cell of origin for ccRCC and pRCC. In addition, the renal cortex has a 

high proportion of glomerular (vascular) cells and a low proportion of collecting duct cells relative to 

the medulla [227]. Lindgren et al evaluated RNA-seq data from ‘normal kidney’ samples from TCGA 

(including normal kidney from patients with ccRCC, pRCC and chRCC) and demonstrated that there 

were five subclusters which correspond to varying degrees of similarities with the normal cortex and 

medulla [227]. The authors go on to demonstrate that variation in gene expression amongst ‘normal 

kidney’ samples from TCGA may be explained by samples being collected from different anatomical 

locations of the normal kidney cortex and medulla. In my study, as in the vast majority of studies in 

the literature (including TCGA), there is no distinction between normal kidney derived from the 

cortex or medulla. It is therefore important for future research to document which part of the 

kidney normal samples have been taken from as this may affect results obtained from comparing 

tumour vs normal. Lindgren et al [227] analyse variation in gene expression in normal kidney; future 

research could evaluate whether DNA methylation changes recapitulate similar patterns. 

 

I evaluated DNA methylation and gene expression data in four pathological subtypes of renal 

tumours (ccRCC, pRCC, chRCC and oncocytoma) and compared each of these to normal kidney, 

highlighting similarities and differences amongst subtypes. Compared to normal kidney, oncocytoma 

and chRCC were characterised by pronounced hypomethylation, whereas pRCC was characterised by 

hypermethylation and ccRCC demonstrated relatively more hypo than hypermethylated DMCs. 

Unsurprisingly, hypermethylated sites tended to be located in gene promoters whereas 

hypomethylated sites occurred at the gene body. In my analysis, subtypes derived from the same 

cell of origin demonstrated similar DMCs and DEGs compared to normal kidney (i.e. ccRCC and pRCC 

are derived from the PCT, whereas chRCC and oncocytoma are derived from the distal nephron), and 
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this was confirmed by the literature [74, 117]. Subsequently, I integrated data from methylation and 

gene expression to postulate which genes might be epigenetically regulated. One of the major 

findings was that in all four pathological subtypes, genes associated with kidney embryological 

development and cell differentiation (such as WT1, ASS1, TGFBI, EPCAM, LGALS3, LHX1, HOXD10 and 

HOXD7) demonstrated a negative association between promoter methylation and gene expression, 

suggesting these are key pathways that may be involved in tumorigenesis and might be 

epigenetically regulated. DNA methylation plays a key role in kidney embryological development 

[280]. Studies evaluating renal embryological morphogenesis have identified a number of genes and 

key pathways including: LHX1, WT1, GATA3, PAX and HOX genes, genes involved in Notch and Wnt 

signalling, PI3 and MAP kinase signalling, fibroblast growth factor receptors (FGFR) and genes 

involved in EMT and cell differentiation [281]. Indeed, these are the same genes and pathways 

which are disturbed in renal tumours in my analysis. Interestingly, many of the genes are also 

responsible for neuron development, such as GREM1 and NEURL (which explains why often gene 

enrichment analysis in renal cancer reveals pathways associated with neuronal development).  

My data also suggests a negative association between methylation and gene expression in genes 

which are involved in mediating EMT, cell adhesion and signalling pathways involving growth and 

differentiation (for example cadherins, claudins and integrins). This suggests that pathways which 

are required for normal cell differentiation during embryological development are deranged in renal 

tumorigenesis, and these changes may be epigenetically regulated. In addition, I show that 

methylation/expression patterns were noted to reflect the tumours’ cell of origin. For example, 

markers of the distal nephron were under-expressed and demonstrated hypermethylation in 

tumours derived from the PCT, whilst they were over-expressed and hypomethylated in tumours 

originating from the distal nephron, and vice versa for PCT markers. Many of these genes encode for 

solute membrane transporters (such as aquaporins and members of the solute carrier family), which 

in the normal kidney have specific gene expression patterns along the tubule to reflect kidney 

physiological demands for molecule and water transport and are therefore cell-type-specific 

markers. Furthermore, my analysis suggests that in ccRCC vs normal tissue epigenetic changes which 

may have a functional relevance are noted in pathways involving immune cell signalling (especially T 

cell activation) and angiogenesis, in keeping with findings from the literature, which suggests these 

changes are characteristic of ccRCC [74]. These subtypes specific differences could be harnessed as 

potential diagnostic markers. 

 

Further to my observation that genes involved in renal development, cell differentiation and 

proliferation may be epigenetically regulated, I discuss TGFBI more in detail, as it exemplifies 
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methylation and expression differences between pathological subtypes of renal tumours. I 

hypothesized that different gene functions may be cell-type-specific and context specific, which 

could explain the differences noted between pathological subtypes of renal tumours. For example, 

TGFBI (transforming growth factor beta induced protein) is involved in late branching and 

maturation of the ureteric bud, which eventually leads to the formation of the collecting duct [282]. 

In addition, TGFBI has been implicated in cell growth, proliferation and tumorigenesis; with 

upregulation noted in cancers of the aerodigestive tract, thyroid, brain, liver and gallbladder [283]. 

My results demonstrated hypomethylation and increased expression of TGFBI in ccRCC and pRCC, 

with hypermethylation and reduced expression in chRCC, and this was supported by the existing 

literature [283]. Increased expression in ccRCC and pRCC may represent TGFBI’s role in promoting 

proliferation and tumorigenesis, whereas reduced expression in chRCC may reflect de-differentiation 

of the collecting duct (representing TGFBI’s role in the development of the collecting duct cells, from 

which this subtype is derived). The strong negative correlation between methylation and gene 

expression noted in all subtypes, suggests this is in part mediated by methylation. A better 

understanding of the biology underlying the differences in tumour subtypes could lead to an 

enhanced understanding of the processes underlying tumorigenesis, as well as advances in 

identifying biologically meaningful diagnostic markers. 

 

My analysis integrated data from methylation and gene expression to postulate which genes may be 

epigenetically regulated, however there are a number of limitations. Importantly, I was limited by 

the absence of matched DNA methylation and gene expression for all four subtypes. Future efforts 

should focus on generating such information, which would be invaluable given the absence of similar 

datasets in the public domain. It is acknowledged that an association between methylation and 

expression does not imply causation. In order to demonstrate causation, one could perform cell line 

experiments using de-methylating agents to observe the impact on gene expression. My analysis 

focused on methylation changes in the promoter region of genes, as these changes are more likely 

to be functionally relevant, however a more comprehensive analysis could evaluate changes in the 

gene body. Furthermore, I used methods which measure mRNA levels (such as RNA-seq), which may 

not necessarily reflect protein levels (as there may be post-translational modification, protein 

degradation etc) [133]. 
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 MethylBoostER machine learning model to predict pathological 

subtypes of benign and malignant renal tumours and normal tissue 

 
Achieving an accurate diagnosis for patients with SRMs has been identified as a research priority [1], 

as this would reduce the number of individuals who are found to have benign disease post-

operatively. Reducing over-treatment would benefit both patients with SRMs (avoiding unnecessary 

morbidity and risk of mortality) and the health service (freeing up resources to treat other diseases). 

In summary, data were combined on >1200 kidney tissue samples to develop MethylBoostER, a 

machine learning model which classifies samples into one of five classes (ccRCC, pRCC, chRCC, 

oncocytoma and normal kidney). The model was externally validated on >500 samples from four 

independent datasets, achieving a high accuracy (AUCs >0.90 for all sub-types). Although 

MethylBoostER is promising, a number of challenges must be discussed. Whilst the main aim of the 

analysis is to distinguish pathological subtypes of SRMs, due to insufficient sample sizes, data were 

pooled from both SRMs and larger tumours for the training/testing set and some of the validation 

cohorts. However, the model was validated on the Chopra dataset which consists exclusively of 

SRMs (245 samples) and demonstrated excellent accuracy and generalisability of results in smaller 

tumours and in low purity samples (e.g. Evelönn and fine needle aspirates in Brennan). The two 

classes which achieve the lowest AUCs in the external validation are chRCC and oncocytoma, which 

are classically the most difficult to distinguish due to their similar cell of origin and similar 

methylation features, as well as relatively low prevalence. Future work should include more samples 

from these two subtypes (whilst prioritising samples from patients with SRMs) and attempt to 

increase accuracy for chRCC and oncocytoma.  

 

Ultimately, any diagnostic model is limited by the quality and number of samples which were used 

for training and testing. The TCGA re-classified 8 ccRCC samples as chRCC, although our analysis of 

gene expression and DNA methylation suggests that only 5 of these samples are chRCC, whilst the 

remaining 3 may be ccRCC. This highlights known difficulties in assigning sample class based on 

histology review and suggests that in theory samples from datasets other than TCGA might also be 

re-classified if they were to be reviewed by an expert uro-histopathologist. This has the potential to 

either increase or decrease the accuracy in MethylBoostER. Ideally, all samples would undergo 

review by an expert uro-histopathologist (and/or undergo molecular analysis) prior to being made 

publicly available (including my dataset), however due to limited resources this is often not possible. 

In future, MethylBoostER will also be run using the updated classification of TCGA samples to 
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evaluate whether this makes an impact on the model accuracy (this may be particularly interesting 

as it may improve prediction of chRCC, one of the worst performing classes).  

 

In this thesis, I explore approaches to improve model accuracy, including the use of high- and 

moderate-confidence predictions, and an evaluation of tumour purity. A strength of the analysis is 

the inclusion of low purity samples (including ex-vivo core biopsies and FNA) to represent a real-

world scenario. Although MethylBoostER can produce correct classifications even in samples with 

low tumour content (Table 5.10), MethylBoostER is likely to be inaccurate when purity is <0.20, 

suggesting that potentially a biopsy sample may have to be repeated if purity is below this threshold. 

Low tumour content in biopsy samples limits histopathological review in existing clinical practice, 

and has also been found to reduce accuracy of methylation models in the literature [121]. It is 

customary to take more than one biopsy sample and this may mitigate this challenge. Importantly, 

my work is the first classification model of renal subtypes to extensively explore methylation 

heterogeneity. MethylBoostER achieves consistent results when evaluating multi-region samples in 

90% of patients, suggesting that methylation heterogeneity does not limit model applicability.  

 

MethylBoostER can be interpreted in the context of existing models. In the literature, a number of 

different approaches have been taken to differentiate SRMs including analysing molecular markers 

based on gene expression profiles [240, 241, 284, 285], miRNA [286-288] or DNA methylation [119-

121, 289]. Additionally, machine learning models have been developed to classify subtypes based on 

imaging features on CT [290, 291] or histopathological slides [292]. None of the models have been 

adopted in clinical practice, and they each have strengths and limitations. A large proportion of 

these studies have small sample sizes (<200 samples overall) [119, 284-286, 288-290, 293]. Numbers 

of chRCC and oncocytoma are often even more limited as these are the least prevalent, but most 

difficult to distinguish subtypes. Furthermore, studies often lack external validation, which is often a 

concern in biomarker research. A sufficiently large number of samples in the training set and 

external validation sets are crucial to reduce overfitting. MethylBoostER is trained on the largest 

DNA methylation cohort of renal tumour samples to date and is extensively validated (including 

>1700 samples overall), which is a strength of this work. Previously published molecular classifiers 

are often limited by focusing solely on distinguishing oncocytoma from chRCC, excluding the other, 

more common malignant subtypes [119, 121, 240, 284]. Although this approach simplifies classifiers 

(by reducing the number of predicted classes and ensuring even numbers of samples in each class), 

this reduces applicability in the real world as it becomes difficult to interpret the output when 

common diagnoses are missing. Our model was therefore designed to include the most common 
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pathological subtypes, although future models would ideally also include angiomyolipoma (the 

second most common benign tumour) and may consider inclusion of less common tumour types.  

 

Existing models often rely on a limited number of markers (e.g. <100 markers) [119-121, 284], and 

this approach has both advantages and disadvantages. Small marker panels may be cheaper to 

develop, meaning they may be more readily accepted into clinical practice. However, a small panel 

such as the one created by Pires-Luis et al [119], which relies on promoter methylation of just 3 

genes may be more prone to bias if there is measurement error in a single marker or missing data. 

MethylBoostER selects approximately 1300 methylation markers, making it more robust when 

applied to heterogeneous clinical samples. The large number of CpGs selected is an advantage if this 

were to be applied to liquid samples (rather than biopsy samples) in future. The use of liquid 

samples (such as plasma and/or urine) would be an ideal, non-invasive method to differentiate 

pathological subtypes of SRMs, replacing renal biopsy and therefore avoiding the risk of 

complications associated with the latter. Furthermore, liquid samples (blood or urine) could be 

taken in primary care or the outpatient clinic, avoiding the significant resource use associated with 

renal biopsy (biopsies are usually performed in the radiology day unit, and require 6 hours of bed 

rest following the procedure). In Chapter 7, I describe the Nimbus method, which was developed in 

our lab to evaluate DNA methylation markers in liquid samples. Since the levels of ctDNA are very 

low in patients with renal tumours (and are even lower in early stage disease), one of the potential 

strategies to improve circulating tumour DNA detection is to increase the number of targets 

analysed at high sequencing coverage [154], for example by targeting many thousands of 

methylation markers. 

 

Future work should focus on improving the accuracy of MethylBoostER, as well as prospectively 

validating the model on in-vivo clinical biopsy samples. Advances in next generation sequencing and 

reducing costs means such tests could be used clinically in future. In practice, models which are 

based on data which are readily available (such as CT or histopathological slides) or relatively 

inexpensive, have a higher chance of being adopted. Importantly, MethylBoostER would not be used 

in isolation but combined with other clinical and imaging data. Ideally, a model would integrate 

multi-modal data including DNA methylation, imaging and clinical characteristics, and be built on 

information from multiple sites across the UK (or internationally) to increase sample sizes. Initiatives 

such as the Mark Foundation Institute for Integrated Cancer Medicine may facilitate this in future. 

Ultimately, an ideal model would predict patient outcome rather than simply predicting the 

pathological subtype of the renal tumour, and would take into account comorbidities and competing 
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risks of death. For example, although many chRCC are indolent, there are also aggressive chRCCs 

which would benefit from active treatment rather than surveillance. Future DNA methylation 

models might be able to provide information regarding tumour aggressiveness, for example by 

identifying samples with a CpG island methylator phenotype or other prognostic methylation 

markers. In conclusion, in this chapter, I have performed a comprehensive evaluation of DNA 

methylation in different pathological subtypes of renal tumours and have reflected on potential 

clinical utility in a diagnostic setting.
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Chapter 6 DNA methylation heterogeneity in ccRCC 
tissue samples 

 

6.1 Brief introduction 
 
The study of intra tumoral heterogeneity (ITH) in ccRCC has diagnostic, predictive, and prognostic 

utility and has been identified as a research priority in kidney cancer [1]. ccRCC is characterised by 

significant genetic heterogeneity, for both mutations and somatic copy number aberrations (SCNAs). 

Aberrations that are present in all multi-region tumour samples from a patient are considered 

clonal, early events whereas those which demonstrate ITH are subclonal, late events in tumour 

evolution [294]. In a series of landmark studies led by the Swanton group, somatic mutational 

heterogeneity (i.e. presence of subclonal mutations) was noted in 100% of patients analysed and 

73% of driver mutations were not identifiable in all multi-region samples from the same patient [82]. 

On average, 7 biopsies were needed to recapitulate ≥75% of driver mutations [87]. In addition, 75% 

of driver SCNA demonstrated heterogeneity across multi-region samples. For example, loss of 

chromosomes 4q, 8p, 14q and gains on chromosome 5q were clonal in some individuals with ccRCC 

but subclonal in other patients. Mutational and SCNA events were both highly concordant and 

correlated, suggesting both processes can often co-occur [82]. In particular, BAP1 was the mutation 

which was associated with the highest prevalence of SCNAs within a clone, in keeping with this 

gene’s known role in DNA repair and maintenance of DNA integrity [87, 295]. The degree of ITH and 

evolutionary pattern has been suggested to have prognostic potential in ccRCC [87, 296]. Patients 

with a high ITH index had reduced progression free survival compared to patients with a low ITH 

index (ITH index was defined as the number of subclonal drivers divided by the number of clonal 

driver events). Additionally, seven evolutionary subtypes were identified, each characterised by 

specific patterns of events, and these predicted the speed of metastatic progression [75]. Patient 

risk stratification is a clinical priority, therefore further characterisation of ITH, and the association 

with prognostic outcomes is warranted. 

 

One in three patients with ccRCC undergoing treatment with curative intent will develop a 

recurrence, however accurate post-operative risk stratification scores to predict recurrence are 

lacking [5]. Prognostic risk scores are key to tailor surveillance protocols and may enable adjuvant 

therapy. Gene expression (transcriptomic) ITH has been widely observed, and this has hampered 

attempts to identify prognostic risk scores. Examining the S3 score, ITH was noted in 60% of patients 

[91]. Similarly, for the ccA/ccB score, ITH was noted in 80% of individuals [68]. Morphologic ITH, 
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encompassing tumour cytology, architecture and micro-environment, has also been noted [297]. For 

several decades it has been known that tumour grade, the presence of necrosis and rhomboid 

morphology vary across a tumour [298]. Higher architectural ITH (i.e. greater number of different 

patterns) was associated with higher grade, larger tumour size and stage [297]. More recently, there 

has been a growing interest in evaluating tumour immune cell and stromal infiltration and various 

classification systems have been developed. Clark et al identified heterogeneity between patients, 

with four major proteomic subtypes: CD8+ inflamed (i.e. high CD8+ infiltration), CD8- inflamed (i.e. 

high macrophages and fibroblasts), VEGF immune desert (i.e. high stromal and endothelial cells, 

angiogenesis and platelet degranulation) and metabolic immune desert (i.e. increased metabolic 

activation but reduced immune and stromal components). Alternatively, Şenbabaoğlu et al identified 

three distinct subgroups: T cell enriched, heterogeneously infiltrated, and non-infiltrated [299]. 

Single cell analysis has confirmed heterogeneity of immune cell infiltrates not only between patients, 

but also within some multi-region samples from the same patient [300]. T cells and tumour 

associated macrophages represent potential prognostic markers, as well being potential druggable 

targets [301]. Taken together, these studies suggest that there are varying degrees of ITH in different 

patients, ITH exists across different molecular levels, and different methods exist to classify ITH, with 

the potential for some of these to have prognostic value. 

 

The high degree of genetic and morphological heterogeneity has several implications in both a 

research and clinical setting. Clinically, assessing only a small number of multi-region samples may 

miss the presence of negative prognostic markers and lead to under-estimating the aggressiveness 

of the tumour [87]. Studies evaluating prognostic biomarkers in ccRCC have failed to identify any 

clinically relevant markers that are externally validated. Heterogeneity between patients may 

contribute to this, as can heterogeneity within a patient (i.e. intra-tumoral heterogeneity) [68]. 

Indeed, sampling only one tumour region may hamper detection and validation of biomarkers as the 

marker of interest may be expressed in some but not all regions. For example, both BAP1 mutations 

and chromosome 9p loss are predictors of poor prognosis in ccRCC, and have been shown to be 

subclonal [82]. Furthermore, analysing a limited number of multi-region samples may underestimate 

the prevalence of driver mutations and could limit our understanding of tumorigenesis. Conversely, 

this can also lead to an ‘illusion of clonality’, where a mutation may appear to be clonal if the 

analysis is limited to a small number of samples, whereas sampling a larger number of regions would 

reveal it to be subclonal [87]. A better understanding of tumour evolution may offer insights into 

renal carcinogenesis. Furthermore, clonal events may represent better diagnostic biomarkers (as 

they are more likely to be present in all regions sampled) and more appropriate drug targets (as 
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these are early events in cancer development). An analysis of subclonal aberrations may elucidate 

which changes may offer a selective advantage and lead to disease progression or drug resistance.  

 

Due to the relatively low number of genetic mutations observed in ccRCC, there is a growing interest 

in DNA methylation as this represents an early event in tumorigenesis, with highly recurrent sets of 

changes [103]. However, only a very small number of studies have been performed assessing 

methylation ITH to date, and were limited by relatively small sample sizes and absence of sequence 

level methylation data [127, 135, 136]. These limited studies (described more in detail in the 

Background, Chapter 2) suggest a degree of relative methylation homogeneity, meaning that 

methylation markers could represent ideal diagnostic and prognostic targets. Therefore, in this 

chapter I aim to comprehensively characterise DNA methylation heterogeneity in tissue from ccRCC 

patients. A systematic approach, evaluating heterogeneity between patients, within a patient and 

within a sample, was adopted, as previously described (Figure 6.1) [207].  

 
 

6.2 Chapter aims 
 

1. Characterise DNA methylation heterogeneity by analysing multi-region tissue samples from 

patients with ccRCC, including evaluating: 

a. Heterogeneity between different patients  

b. Heterogeneity within a patient (i.e. multi-region samples from the same patient) 

c. Heterogeneity within a sample (i.e. epipolymorphism) 

2. Compare phylo-epigenetic trees built using methylation data against phylogenetic trees built 

using SCNA data, for patients with ccRCC 

3. Evaluate the association between methylation, epipolymorphism and gene expression  

4. Use multi-region ccRCC samples to glean information regarding biomarker selection, 

including an evaluation of: 

a. Heterogeneity in significant differentially methylated cytosines (DMCs) 

b. Cell type decomposition 

c. Comparison of homogeneous versus heterogeneously methylated CpGs 
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Figure 6.1: Schematic of analysis performed 

Heterogeneity was evaluated between patients, within a patient and within a sample. Abbreviations: APITH 
(average pairwise intra-tumoral heterogeneity index), DMC (differentially methylated cytosines), PCA 
(principle component analysis). 

 
 
 
 

 
Figure 6.2: Summary of samples analysed 

The discovery cohort consists of multi-region samples from patients with ccRCC, with matched Epic-seq, 
RNA-seq and WES (whole exome sequencing). In addition, methylation data were generated for a cohort of 
tumour and normal samples from patients with ccRCC (i.e. not multi-region samples) and cell lines. TCGA 
data were also obtained. 
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6.3 Results 
 
The chapter can broadly be subdivided into two major sections. The first section focuses on 

evaluating methylation heterogeneity between different patients, within a patient (i.e. between 

tumour samples from the same patient) and within a sample (i.e. methylation pattern of individual 

reads) (Figure 6.1; sections 6.3.2 - 6.3.4). In the second part of the analysis, data from multi-region 

ccRCC samples was used to glean information regarding biomarker selection (section 6.3.5). This 

includes an analysis of heterogeneity in significant DMCs, cell type decomposition based on DNA 

methylation and a comparison of homogeneous versus heterogeneously methylated CpGs. 

 
 
6.3.1.1 Sample overview 
 
In brief, the exploratory methylation analysis was performed on a group of multi-region samples 

(fresh frozen tissue from nephrectomy specimens) obtained from patients with ccRCC. 

Subsequently, the results were validated on three methylation datasets: cell line samples, an 

independent cohort of ccRCC patients and the TCGA ccRCC (i.e. KIRC) samples. All data, except the 

publicly available TCGA dataset, were generated in house. A summary is provided in Figure 6.2 and 

the datasets are described more in detail below.  

 

For the discovery cohort, I obtained matched methylation, gene expression and copy number data 

on multi-region samples derived from ccRCC patients (Figure 6.2). Multi-region samples were 

included in the analysis if at least 4 tissue specimens were available from the same patient (i.e. at 

least one normal and 3 tumour samples). Epic-seq methylation data were available for 136 multi-

region samples from 18 patients (40 normal kidney and 96 ccRCC samples) (Table 6.1). For the 

analysis of methylation within-sample heterogeneity, one sample (5998.T4) was removed due to low 

coverage, therefore 135 samples were available in total. For a subset of these samples, matched 

whole exome sequencing (WES; 68 samples from 18 patients) and RNA-seq (47 samples from 7 

patients) were generated (Table 6.1). 

 

The results were validated using three independent methylation datasets (Figure 6.2). I generated 

Epic-seq methylation data for an independent cohort of 71 non-multiregion samples from ccRCC 

patients (30 normal kidney and 41 ccRCC samples). In this cohort, there were more tumour than 

normal samples as some patients did not have matched adjacent normal kidney tissue available. In 

addition, I generated Epic-seq for two cell lines: HK2 and 786-O cell lines, in vitro models for normal 

kidney proximal tubule epithelium and ccRCC respectively. Publicly available 450k array data were 
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obtained for the TCGA KIRC dataset (160 normal kidney and 325 ccRCC samples). Details regarding 

experimental methods and data analysis are found in the Methods (Chapter 4, section 4.7). 

 

 
 
Table 6.1: Demographic and sample data for each ccRCC patient  

Data are shown for 18 ccRCC patients. The number of normal (N) and tumour (T) multi-region 
samples are shown for each patient for methylation (Epic-seq), RNA-seq and WES. Missing samples 
are left blank (for example, patient 5532 had methylation data but no RNA-seq data). Clinical data 
are shown, including recurrence status (i.e. recurrence, no recurrence and metastases at diagnosis). 
One patient was lost to follow up (patient 7067). All patients had ³4 years of follow-up. 
 

 Characteristics at diagnosis Follow up Number of available samples 

Patient 
ID 

Age 
(years) 

T 
Stage 

M 
stage 

Size 
(cm) 

Grade Leibovich 
score 

Recurrence Epic-seq 
 

RNA-seq  WES 

        N T N T N T 

5532 61 pT3a M1 6 2 4 Mets at Dx 1 3   1 3 

5644 61 pT2a M0 7.5 3 5 No 1 7   1 4 

5790 51 pT3a M0 6.7 3 6 No 2 3   1 2 

5799 53 pT1b M0 6.5 2 2 No 3 7 2 1 1 4 

5801 73 pT3a M0 10.8 4 9 Recurrence 2 4     

5802 74 pT3a M0 2.8 3 6 No 1 3   1 2 

5813 42 pT3a M0 8.7 2 4 Recurrence 3 7   1 7 

5818 63 pT3a M1 7.4 3 6 Mets at Dx 1 3   1 1 

5826 76 pT1b M0 6.1 3 4 No 1 3   1 2 

5842 67 pT3a M0 13.5 4 9 Recurrence 2 9   1 8 

5848 65 pT1b M0 5.4 3 3 Recurrence 3 3   1 3 

5998 77 pT1b M0 5.2 2 2 No 3 6 2 3 1 3 

6262 65 pT3a M0 10.2 4 8 Recurrence 4 6 4 3 1 5 

6285 67 pT3a M0 7.5 4 8 Recurrence 2 5   1 5 

6300 62 pT3b M0 13 4 9 Recurrence 4 11 3 9 1 8 

7067 56 pT3a M0 8 3 5 Unknown 3 5 3 6 1 2 

7068 62 pT3a M0 12 4 9 Recurrence 2 5 2 4 1 3 

7281 65 pT3b M0 8 4 8 Recurrence 2 6 2 3 1 3 

 
Abbreviations: M = metastases, Mets at Dx= metastases at diagnosis, N= normal, RNA-seq= RNA 
sequencing, T= tumour, WES = whole exome sequencing 
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6.3.1.2 Sample purity 
 
Prior to commencing the main analysis of ITH, I sought to explore sample purity as this may impact 

an evaluation of heterogeneity. Purity was evaluated in my samples using three orthogonal 

methods: DNA methylation analysis using ‘InfiniumPurify’, RNA-seq using ‘ESTIMATE’ and WES using 

‘ASCAT’ (Figure 6.3A). The purity estimates derived from RNA-seq (including estimates of stromal 

and immune components) in my dataset were very similar to purity estimates in TCGA, suggesting 

my sample quality was within the norm of expected results (Figure 6.3B). Importantly, 

‘InfiniumPurify’ determines tumour purity in the context of contamination with normal kidney (non-

tumour) sample. This is in contrast with ‘ESTIMATE’, the RNA-seq based method, which determines 

tumour purity as a function of admixtures of immune and stromal cell components based on gene 

expression data. This difference explains why the correlation between RNA-seq and WES purity 

estimates was high (Pearson correlation coefficient = 0.81, p value = 1.6e-05), but the correlation 

with methylation based estimates was not significant (p value >0.05), since the methods measure 

contamination with different components (Figure 6.3C). For all subsequent analyses in this chapter, 

when referring to sample purity, estimates derived from WES (or RNA-seq if not available) are used. 

Given the high correlation between WES and RNA-seq based estimates, and the fact that WES and 

RNA-seq purity estimates were only available for a subset of samples, this method was deemed 

appropriate to increase the number of samples which had purity estimates. 

 
 

 Heterogeneity between patients 

In order to evaluate heterogeneity between patients, I performed principal component analysis 

(PCA) using data from all available CpGs (N= ~1.1million CpGs) for the multi-region samples from 18 

ccRCC patients. As expected and as shown in Chapter 5, samples cluster by pathological subtype, 

with normal kidney samples clustering very closely together (i.e. less variability in normal than 

tumour specimens) (Figure 6.4A). ccRCC samples are more heterogeneous, with some patient 

samples clustering more closely together (e.g. patient 5842) and some quite far away (e.g. 7068) 

(Figure 6.4B). The topmost variable CpGs were selected (after removal of all SNPs) for visualisation in 

a heatmap (i.e. CpGs with the highest variance in tumour samples). Selecting the top 10,000 CpGs 

with the highest variance in tumour demonstrates that samples cluster by patient rather than by 

subtype (i.e. normal and tumour do not cluster separately; Figure 6.4C). Selecting the top 50,000 

CpGs with the highest variance in tumour demonstrate that broadly normal kidney samples cluster 

together, whilst tumours cluster by patient (Figure 6.4D). However, for patient 7068, all tumour 

samples do not cluster together, in keeping with the observation that this patient appears to have 
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the highest ITH on the PCA (Figure 6.4B). There is also evidence of heterogeneity between patients, 

with two major branches of the dendrogram. Overall, this suggests that in the majority of cases 

there is more variability between patients than within patients, and this is consistent despite using 

different cut-offs (top 10,000 and top 50,000 CpGs). This finding is in keeping with the limited 

available evidence on DNA methylation in multi-region ccRCC samples, which also points towards 

relative homogeneity within a patient [127, 135, 136].  

 

 

 
Figure 6.3: Purity assessment in multi-region samples 

Panel A- Schematic summarising three orthogonal methods used to derive purity estimates: DNA 
methylation analysis using ‘InfiniumPurify’, RNA-seq using ‘ESTIMATE’ and whole exome sequencing (WES) 
using ‘ASCAT’. Panel B- ESTIMATE scores, immune scores and stromal scores generated using RNA-seq data 
and the ‘ESTIMATE’ package for TCGA and my data. Panel C- Scatterplot of matched purity values for my 
samples obtained using RNA-seq and WES. Pearson correlation coefficient = 0.81. 
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Figure 6.4: Methylation heterogeneity between patients 

Panel A- Principal component analysis (PCA) demonstrating normal kidney and ccRCC samples. Panel B- PCA 
demonstrating normal kidney and ccRCC samples, highlighting multi-region tumour samples from the same 
patient.  Panel C and D- Heatmaps visualising methylation values in the top 10,000 CpGs (Panel C) and top 
50,000 CpGs (Panel D) with the highest variance in tumour samples. The top annotation demonstrates 
which multi-region tumour samples are derived from the same patient, along with tumour purity (estimated 
using WES or RNA-seq). 
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 Heterogeneity within a patient 

The following section explores heterogeneity within a patient (i.e. between samples derived from 

the same patient), by evaluating epigenetic age, the average pairwise ITH index, phylogenetic trees 

derived from methylation and SCNA, and prognostic risk scores. 

 
 
6.3.3.1 DNA methylation accelerated ageing 
 
I evaluated the DNA methylation age in multi-region samples derived from the same patient, to 

explore epigenetic ageing and heterogeneity. I calculated the predicted methylation age of each 

sample using Horvath’s epigenetic clock [102]. In brief, the clock uses 353 CpGs and was developed 

using the 21k Illumina methylation array. In order to demonstrate reliability of methods, first I 

evaluated methylation age for TCGA ccRCC tumour (N=325) and normal kidney (N=160) tissue 

samples. As expected, a very good correlation was observed between chronological age and 

predicted DNA methylation age in normal kidney (correlation coefficient = 0.86; Figure 6.5A).  

Significantly higher methylation age was noted in tumour versus normal kidney TCGA samples 

(median methylation age 55 vs 48 years, p value <0.01) and this is in keeping with the existing 

literature (Figure 6.5B). For my Epic-seq data, in normal kidney samples the correlation between 

chronological age and predicted DNA methylation age was 0.42 (Figure 6.5A). The correlation 

increased to 0.57 if one outlier sample was removed (5998.N1a; chronological age 77 years, 

predicted age 44 years). This moderate correlation is likely due to the use of the Epic-seq platform 

(rather than 21k array) which leads to missing data for CpGs. In fact, 59 out of 353 CpGs were 

missing for all (100%) ccRCC samples, and 66 CpGs were missing in >50% of samples, and were 

derived by imputation (as described in section 4.7.2.1). Despite this, estimates of epigenetic age are 

still likely to be valuable in this cohort, and there is evidence of increased epigenetic age relative to 

chronological age in ccRCC samples compared to normal kidney samples. Indeed, epigenetic age was 

significantly higher in ccRCC compared to normal tissue (median methylation age 63 vs 59 years, p 

value <0.01; Figure 6.5B). 

 
The predicted to chronological age ratio (PCAR) was calculated by dividing DNA methylation age by 

real age, where 1 represents a perfect match. In the majority of patients, the PCAR was relatively 

similar amongst tumour samples derived from the same patient (Figure 6.7A), except for patients 

5532, 6300, 7067 and 7068 who had more variable estimates (maximum difference in PCAR amongst 

tumour samples was >30%). There were no obvious clinical parameters which might explain this 

observation. There was no association between PCAR and any clinical/prognostic parameters 
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including stage at diagnosis, tumour size and recurrence status (Wilcoxon test p value >0.05). 

Accelerated epigenetic ageing has been found to be associated with increased cancer risk, as well as 

prognosis in ccRCC patients [127], chRCC [302] and other cancers. There was no significant 

difference in PCAR in tumour samples from ccRCC patients from TCGA who were alive versus dead at 

follow up (Wilcoxon test p value >0.05). In summary, epigenetic age was consistently higher in 

tumour compared to normal kidney samples. I noted variation in DNA methylation age amongst 

multi-region tumour samples, which was more pronounced in some patients than others, however 

there were no obvious clinical correlates. 

 

 

 
Figure 6.5: DNA methylation age versus chronological age in ccRCC and normal kidney samples 

Panel A- DNA methylation age versus chronological age (in years) in TCGA data and my data. There is an 
obvious correlation between DNA methylation age and chronological age, which is more pronounced in 
normal tissue than ccRCC. Panel B- DNA methylation age is significantly higher in ccRCC compared to normal 
kidney samples in TCGA and my dataset (p value <0.01).  
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6.3.3.2 Methylation Average Pairwise ITH (APITH) index 
 
Aiming to formally evaluate ITH in my samples, I identified the Average Pairwise ITH (APITH) index as 

a validated metric to quantify intra-tumoral heterogeneity independently of the number of tumour 

samples evaluated [209]. The APITH index may be derived using either methylation or copy number 

data [209]. I calculated the methylation APITH index as described by Hua et al (see section 4.7.2.2), 

for all CpGs as well as the top 5000 most variable CpGs [209]. In brief, first I calculated the pairwise 

Euclidean distance between tumour samples (for all CpGs and the top 5000 most variable CpGs), 

then obtained the average. In keeping with the results of the PCA (Figure 6.4B), patient 5842 had the 

lowest methylation APITH score (and therefore lowest ITH) and patient 7068 had the highest score 

(i.g. highest ITH). For both analyses (all CpGs and the top 5000 most variable CpGs), the methylation 

APITH index was not associated with clinical or prognostic factors. There was no significant 

difference in methylation APITH score by tumour stage (stage I-II vs III-IV), grade, Leibovich score 

(low vs intermediate/high) and recurrence status (no recurrence vs recurrence) (Wilcoxon test p 

value >0.05 for all comparisons; Figure 6.6A). There was also no correlation with tumour size 

(correlation coefficient=-0.07, p value >0.05). This suggests that in the present cohort, methylation 

ITH as measured by the APITH score, is not associated with clinical or prognostic factors. 

Interestingly, in the literature, methylation APITH scores were associated with overall survival and 

risk of distant metastases in lung cancer [209], but no association with prognostic factors was noted 

in papillary RCC [303].  

 
Next, I sought to assess if the methylation APITH index may be confounded by differing tumour 

purity in multi-region samples from the same patient (i.e. high variance in tumour purity may lead to 

artificially high ITH and therefore misleading high methylation APITH index). Tumour purity was 

evaluated using WES or RNA-seq as described in section 6.3.1.2, and data were available for 72 

samples from 16 patients. There was no obvious correlation between the methylation APITH index 

and the variance of the purity of tumour samples from the same patient (correlation= 0.03, p value 

>0.05, Figure 6.6B). Subsequently, I compared the APITH index derived from methylation data which 

were unadjusted versus adjusted for tumour purity, to assess whether this produced similar results. 

The analysis focused on patients where purity data were available for at least 3 tumour samples (N= 

66 tumour samples from 13 patients). The percentage methylation at each CpG was adjusted for the 

purity of each sample, as previously described [199], and the APITH index was re-assessed. The 

results demonstrated that APITH index was relatively similar even after adjustment for tumour 

purity (Figure 6.6C); patient 7068 still had the highest degree of ITH and patient 5842 still had low 

levels of ITH. The APITH index is based on a large number of CpGs and therefore it appears to be 
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relatively robust to differences in sample purity. There was no significant difference between 

methylation APITH scores adjusted for tumour purity and any clinico-pathological factors (p value 

>0.05 for all comparisons; Figure 6.6C). In summary, this section suggests that the APITH index is a 

robust measure of ITH which is not affected by differing sample purity in multi-region samples from 

the same patient.  

 

 
Figure 6.6: Methylation Average Pairwise ITH (APITH) index 

Panel A- Methylation APITH index for each patient, by tumour stage. There was no significant difference in 
methylation APITH in patients with stage I-II versus III-IV disease (p value >0.05). Panel B- Scatterplot of 
Methylation APITH index and the variance of the sample purity for multi-region tumour samples derived 
from the same patient. Panel C- Methylation APITH index for each patient, derived from methylation data 
which are adjusted for tumour purity. Once again, there was no significant difference in methylation APITH 
in patients with stage I-II versus III-IV disease (p value >0.05). Panel D- Scatterplot of APITH derived using 
methylation versus copy number data. 
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Figure 6.7: DNA methylation age and Average Pairwise ITH (APITH) index, by patient 

Panel A- The predicted to chronological age ratio (PCAR) is shown for each sample, by patient. Tumour 
samples tend to have a higher PCAR than normal kidney. The dotted horizonal line represents a PCAR of 1, 
i.e. the DNA methylation and chronological age are the same. Panel B and C- APITH index derived from DNA 
methylation data (Panel B) and somatic copy number data (Panel C), by patient. The dotted horizonal line 
represents the median APITH. 
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6.3.3.3 Comparing APITH based on methylation and copy number data 
 
In order to directly compare the degree of methylation heterogeneity against the degree of somatic 

copy number aberration (SCNA) heterogeneity, I compared the APITH index derived using 

methylation and copy number data respectively (Figure 6.7B and C). My collaborator, Dr Schwarz, 

generated the copy number APITH index by evaluating the percentage of the genome which is 

affected by private SCNA (using the ‘ASCAT’ package) in each sample and the average pairwise 

distance between samples, as previously described [209]. The SCNA APITH ranged between 0.0004 

and 0.52, with a mean and median of 0.12 and 0.075 respectively (standard deviation 0.16). 

Interestingly, these values are relatively similar to SCNA APITH indices noted for lung 

adenocarcinoma multi-region samples in the literature: range 0-0.68, mean and median 0.18 and 

0.16 respectively [209]. In my dataset, patient 7068 had the highest APITH derived by both SCNA and 

methylation, and was an obvious outlier. WES demonstrated subclonal whole genome doubling, 

therefore the entire genome has SCNA and the APITH was very high. There was a weak correlation 

between the methylation APITH and the copy number APITH in my dataset, although this did not 

achieve statistical significance (Pearson correlation coefficient = 0.33, p value = 0.216, Figure 6.6D). 

However, generally patients whose methylation APITH was above the median, also tended to have 

SCNA APITH above the median (Figure 6.7B and C). Further analysis of methylation versus SCNA 

heterogeneity is performed in section 6.3.3.4 (phylogenetic analysis). There was no significant 

difference in SCNA APITH score by tumour stage (stage I-II vs III-IV), grade, Leibovich score (low vs 

intermediate/high) and recurrence status (no recurrence vs recurrence) (Wilcoxon test p value >0.05 

for all comparisons). There was also no association between APITH scores and predicted to 

chronological age ratio (Figure 6.7A). 

 

Given no obvious associations were found between methylation and SCNA ITH and clinical nor 

prognostic parameters, I sought to evaluate whether the patients’ recurrence status could be 

recapitulated using existing prognostic scores. Two prognostic scores were therefore evaluated: the 

Leibovich score, which is routinely used in clinical practice, and ClearCode34, the molecular score 

which has been most extensively validated (though not used clinically). The Leibovich score for each 

patient, along with tumour stage and recurrence status is summarised in Table 6.1 and Figure 6.8A. 

Tumour stage and Leibovich score were able to predict recurrence in some patients but not others, 

highlighting the need for better prognostic risk scores. For example, one patient with stage I disease 

developed a recurrence, whereas one stage II and two stage III patients remained recurrence free. 

Patients with a low Leibovich score (0-2) are generally considered low risk, whereas patients with 

intermediate (3-5) and high (≥6) scores are considered at higher risk of recurrence. In my cohort, 
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100% of patients (N=2/2) with a low score remained recurrence free, whilst 80% (N=8/10) of 

patients with a high score either had metastases at diagnosis or developed a recurrence post-

operatively. 100% of patients with a Leibovich score ≥8 had a recurrence. In individuals with an 

intermediate score, 40% (2/5) did not develop a recurrence, highlighting that it is most difficult to 

accurately predict outcomes in intermediate risk patients.  

 

ClearCode34 is a prognostic score which consists of a 34 gene classifier and has been externally 

validated in several studies [92, 93]. I therefore evaluated ClearCode34 in my multi-region ccRCC 

tissue samples using RNA-seq data (Figure 6.8B). Although samples from the same individual tend to 

cluster together in most cases, there are several multi-region samples which do not cluster by 

patient (for example samples from 5998, 7067 and 7068). This is in keeping with the known available 

literature which suggests that there is a degree of genetic ITH and that multi-region samples from 

the same patient can have different expression patterns for ClearCode34 genes [68]. The heatmap 

demonstrates that there are two main branches in the dendrogram, where samples from patients 

who did not have a recurrence tend to cluster on the right (i.e. patient 5799 and 5998). Samples 

from patient 7281 also cluster on the right. Review of clinical notes revealed that this individual 

received neo-adjuvant axitinib for 8 weeks pre-operatively as part of the NAXIVA trial. Studies 

suggest that treatment with neo-adjuvant tyrosine kinase inhibitors may lead to changes in gene 

expression, as well as significant increases in VHL promoter hypermethylation on post-operative 

nephrectomy tissue specimens [135, 304]. It may therefore be plausible that patient 7281 may 

cluster with patients who have not had a recurrence due to changes in gene expression following 

treatment. In summary, although the Leibovich score is able to predict recurrence in low and high-

risk patients in my dataset, this was not possible for intermediate risk patients. Expression of 

ClearCode34 genes was not able to accurately distinguish between patients with and without a 

recurrence, though the analysis was limited by the small sample size. It is therefore not surprising 

that there was no obvious association between clinical parameters and methylation and SCNA ITH in 

my dataset. 
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Figure 6.8: Prognostic scores in ccRCC 

Panel A- Leibovich score for patients that did not have a recurrence versus patients who either had 
metastases at diagnosis or developed recurrence on follow up. Each dot represents a patient, where the 
colour of the dot shows tumour stage (stage I-IV). Individual Leibovich scores can be aggregated into three 
groups: low (0-2), intermediate (3-5) and high (≥6). Panel B- Gene expression is visualised for genes which 
contribute to the Clearcode34 prognostic risk score. Expression was derived from RNA-seq and is median 
centred and presented on a log2 scale. Multi-region samples from the same patient are shown, along with 
recurrence status (i.e. no recurrence, recurrence or unknown). 
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6.3.3.4  Comparing phylogenies based on methylation and copy number data  
 
For each patient, phylogenies were inferred using methylation data and SCNA data respectively, and 

the phylo-epigenetic and phylogenetic trees were compared to assess similarities in evolutionary 

trajectories. Methylation phylogenies were inferred by me, whereas SCNA phylogenies were 

reconstructed by my collaborator Victoria Dumbrowe (Schwarz Group, Max Delbrück Center), as 

follows (details in section 4.7.2.3). In brief, for each patient, I selected the top 10% of CpGs with the 

highest variance in tumour samples and calculated the Euclidean distance matrix. Trees were 

subsequently inferred using the ordinary least squares minimum evolution algorithm [211], a 

method which has been extensively used in the literature for DNA methylation phylogenies [212, 

213]. Phylogenetic trees were created by Miss Dombrowe using SCNA data from WES using 

‘MEDICC2’ [215]. Following reference phasing of SCNA, ‘MEDICC2’ calculates the pairwise minimum-

event distance between samples, and these data are used to construct phylogenetic trees using the 

neighbour joining algorithm [217]. 

 

I calculated the Robinson-Fould measure to compare similarities between trees (where 0 indicates 

identical trees and 1 indicates all tree splits are unique; Table 6.2). Of note, 6 patients were excluded 

from this analysis as data were available on only three tumour samples, and it was therefore not 

possible to adequately assesses similarities between methylation and SCNA trees. Patient 7068 is of 

particular interest as this individual was found to have both the highest SCNA and methylation 

derived APITH in section 6.3.3.3. However, unfortunately this was one of the patients which had to 

be excluded due to insufficient samples analysed by WES. Phylo-epigenetic and phylogenetic trees 

were compared for each patient in turn (N=8 patients) (Figure 6.9 and Figure 6.10). In two patients 

(i.e. 5532 and 7067) extremely similar methylation and SCNA trees were noted. Indeed, 5532 had 

identical tree topology (though different branch lengths), whereas for patient 7067 the trees were 

very similar, with the only difference being the order in which samples T5 and T6 emerge. Patients 

5842, 6300 and 6262 had some consistent similarities between epigenetic and genetic trees, 

although some differences were also noted, and these are annotated on Figure 6.9 and Figure 6.10. 

For example, in patient 5842, sample T7 was the earliest point of divergence from normal in both 

methylation and SCNA trees. In patient 6262, samples T1 and T1z were evolutionarily more similar to 

each other than to sample T3, and this is consistent with the fact that T1 and T1z are anatomically 

very close to each other (only a few millimetres distance between the two samples). However, 

patients 5644, 5813 and 6285 had very different topologies. It was not possible to assess whether 

tree similarity was related to clinical factors due to the small sample size (all but one patient had 

stage III-IV disease, all patients had a recurrence except one individual who was lost to follow up). In 
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summary, a number of patients were identified in which methylation and SCNA trees were similar, 

suggesting potential co-evolution. Conversely, other patients (for example patient 5813) 

demonstrated distinctly different phylogenetic and phylo-epigenetic trees, indicating that potentially 

methylation and SCNA changes may have evolved separately.  

 

 

Table 6.2: Robinson-Fould distance  

Robinson-Fould distance comparing phylogenies derived using DNA methylation and copy number 
data.  

Patient ID Robinson-Fould distance 
5644 0.77 
5813 0.86 
5842 0.69 
6262 0.75 
6285 0.87 
6300 0.59 
7067 0.49 
5532 0 (identical trees) 
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Figure 6.9: Phylogenies for patients 5644, 5813, 5842 and 5532 

Phylogenies using DNA methylation and copy number data are compared for each patient, for patients 
5644, 5813, 5842 and 5532. Monophyletic clades which are present in both phylo-epigenetic and 
phylogenetic trees are shown in red, with other similarities shown in green. 
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Figure 6.10: Phylogenies for patients 6285, 6300, 7067 and 6262 

Phylogenies using DNA methylation and copy number data are compared for each patient, for patients 
6285, 6300, 7067 and 6262. Monophyletic clades which are present in both phylo-epigenetic and 
phylogenetic trees are shown in red, with other similarities shown in green. 
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 Heterogeneity within a sample 

In order to assess methylation heterogeneity within a sample, I evaluated epipolymorphism, a 

concept which is described in greater depth in the Background Chapter; section 2.4.1. A single 

sequencing read enables us to evaluate the DNA methylation pattern derived from an individual cell 

(i.e. an epiallele). In brief, sequence level data were obtained for each sample and the methylation 

pattern was assessed at epigenetic loci (e-loci), which consist of 4 adjacent CpGs within a 150bp 

sequenced read window. Epipolymorphism and average methylation across each e-locus were 

calculated as described in section 4.7.3 (Figure 6.11). Epipolymorphism measures the diversity of 

epialleles within a sample. Values range between 0 (i.e., fully concordant methylation pattern in a 

read and all reads have the same pattern) and approaching 1 (i.e. highest degree of heterogeneity) 

[113] (Figure 6.11). Epipolymorphism in ccRCC tumour versus normal tissue was compared, as 

described by Landan et al [113] and Chen et al [219].  

 

Disordered methylation within a read is thought to be a stochastic process, which may or may not 

have a functional relevance; with changes in the promoter region being more likely to be functional  

[110]. Both increased epipolymorphism and reduced epipolymorphism may be noted in normal 

relative to tumour tissue, and both these methylation changes may be associated with alterations in 

gene expression and tumorigenesis. It is hypothesized that disordered methylation within a read 

may be a precursor/intermediate state that can lead to regions of concordant differential 

methylation (i.e. DMRs) [110, 113]. For example, in kidney epithelial cells, an e-locus that has 

disordered methylation may be more likely to undergo a change in methylation across the read (to 

fully hyper or fully hypomethylated), compared to an e-locus with homogeneous/ordered 

methylation. This would be an example of higher epipolymorphism in normal relative to tumour 

tissue. Conversely, a kidney epithelial cell may have ordered methylation within a read, and 

stochastic gains in disordered methylation may be acquired leading to tumorigenesis (thus 

epipolymorphism would be higher in the tumour relative to normal).  
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Figure 6.11: Schematic explanation of epipolymorphism & average methylation 

Lollipops represent individual CpGs (black: methylated, white: unmethylated) and an e-locus is defined as 
four adjacent CpGs (red rectangle). The diagram demonstrates average methylation levels at each CpG, 
average methylation levels across an e-locus and epipolymorphism. Epipolymorphism measures how 
variable the methylation pattern is within and between reads. This explains how two samples may have the 
same average methylation across an e-locus, but different epipolymorphism values. This figure was adapted 
from [113]. 
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6.3.4.1 Discovery in ccRCC versus normal tissue  
 
Data were available for 138,412 e-loci, for 135 multi-region samples. For each e-locus (consisting of 

4 adjacent CpGs), epipolymorphism and average methylation were derived for ccRCC tumour and 

normal samples. Methylation follows a bimodal distribution, with the majority of loci being fully 

methylated or unmethylated. In my data the relationship between epipolymorphism and the 

average methylation in an e-locus was U-shaped, in keeping with the existing literature [113] (Figure 

6.12). Average methylation of 0 or 1 is associated with epipolymorphism of 0 (i.e. fully concordant 

methylation), whereas intermediate methylation across the e-locus is associated with varying levels 

of epipolymorphism (i.e. heterogeneous methylation). The density plot suggests that the majority of 

e-loci have fully concordant methylation (Figure 6.12).  

 

 

 
Figure 6.12: Epipolymorphism versus average methylation 

Scatterplot of epipolymorphism versus average methylation at e-loci for the entire dataset (N= 138,412 e-
loci). The red lines represent density plot contours, demonstrating that the majority of points display low 
epipolymorphism and methylation levels of 0 or 1. The grey line highlights the U-shaped distribution. 

 
 

 

Next, I evaluated differential average methylation and differential epipolymorphism (i.e. the 

difference in each of these parameters in ccRCC vs normal tissue) and the relationship between 

these two parameters. E-loci were subdivided into those that have no significant methylation 

difference in ccRCC versus normal kidney and those with a significant difference. Examining e-loci 
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that demonstrate no significant average methylation difference in ccRCC tumour versus normal, it is 

evident that in the vast majority of cases (i.e. 95% of e-loci) this is accompanied by no significant 

difference in epipolymorphism (Figure 6.13A; Table 6.3). Therefore, these loci have 

concordant/ordered methylation within a read and have similar methylation patterns in tumour and 

normal. Conversely, 55% of e-loci with a significant methylation difference in ccRCC vs normal have 

significant differential epipolymorphism, compared to only 5% of e-loci with no methylation 

difference (p value < 2.2e-16) (Figure 6.13A, Table 6.3). This suggests that e-loci with a significant 

methylation difference in tumour versus normal, are more likely to be associated with disordered 

methylation than e-loci with no methylation difference. Subsequent analysis focused on exploring 

these sites of significant differential epipolymorphism between tumour and normal tissue. 

 
I identified 28,300 e-loci that demonstrated significant differential epipolymorphism in ccRCC versus 

normal tissue, with 14,418 e-loci being significantly higher in ccRCC, and 13,882 e-loci having 

significantly higher epipolymorphism in normal tissue (adjusted p value <0.01, epipolymorphism 

difference > 0.1). To explore the relevance of the observed changes, these 28,300 significant e-loci 

were annotated to the nearest gene. E-loci with significantly higher epipolymorphism in ccRCC were 

located more commonly at gene promoters and in CpG islands, than e-loci with significantly higher 

epipolymorphism in normal kidney (34% vs 27% at gene promoters, and 56% vs 37% in CpG islands 

respectively) (Figure 6.13B and C). E-loci with significantly higher epipolymorphism in ccRCC vs 

normal tissue are not uniformly distributed across the genome, but rather occur more commonly at 

promoters and CpG islands, which are more likely to affect gene expression and suggests this 

increase in epipolymorphism might drive dysregulation of gene expression in cancer. 

 

Subsequently, e-loci with significant differential epipolymorphism which are located in the promoter 

region were selected for enrichment analysis. There was a significant enrichment for genes involved 

in the following pathways: Wnt signalling (e.g. MYC, WIF1, UBC), cell junction organisation (including 

claudins, keratins, CDH genes, SDK1), solute carrier membrane (SLC) and voltage gated potassium 

channel (KCN) genes (all adjusted p values < 0.05). Disease ontology analysis revealed that there was 

a significant enrichment for genes which are known to be associated with renal cell carcinoma (47 

out of 557 genes vs 380 out of 8007 genes in the background set, chi squared adjusted p value = 

0.025) (Table 6.4). This suggests that although disordered methylation may be a stochastic process 

which occurs throughout the genome, ccRCC is associated with gains and losses of locally disordered 

methylation at the promoter region of known ccRCC genes. The following section externally 

validates this finding both in kidney cancer cell line data and in an independent cohort of ccRCC 

tissue samples. 
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Table 6.3: E-loci with a significant differential methylation and differential epipolymorphism in ccRCC 
vs normal tissue 

E-loci (i.e. a locus containing four adjacent CpGs) were subdivided into those that have no significant 
methylation difference in ccRCC versus normal and those with a significant difference. Subsequently 
the proportion of e-loci with a significant epipolymorphism are shown. A significant methylation 
difference is defined as average methylation across a read (i.e. average methylation across the four 
CpGs), with a difference >15% in ccRCC versus normal and a q value of <0.01. A significant 
epipolymorphism difference is defined as epipolymorphism across a read (i.e. four adjacent CpGs) 
with a difference >0.1 in ccRCC versus normal and a q value of <0.01. It is evident that e-loci with a 
significant methylation difference in tumour versus normal, are more likely to be associated with a 
significant epipolymorphism difference than e-loci with no methylation difference. 
 

 Overall 
number of 

e-loci 

Proportion of e-loci with 
significantly higher 

epipolymorphism in Tumour 
versus Normal 

Proportion of e-loci with 
significantly higher 

epipolymorphism in Normal 
versus Tumour 

no significant methylation 
difference 

91,520 0.3% 
(285/91,520) 

4.4% 
(4040/91,520) 

e-loci with significant 
hypermethylation in tumour 

(>15%, q value <0.01) 

6761 26.1% 
(1763/6761) 

31.7% 
(2146/6761) 

e-loci with significant 
hypomethylation in tumour 

(>15%, q value <0.01) 

3341 23.3% 
(777/3341) 

27.4% 
(914/3341) 
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Figure 6.13: Differential epipolymorphism in ccRCC versus normal kidney tissue 

Panel A- Scatterplot of differential epipolymorphism versus differential average methylation. E-loci are 
subdivided into those that have no significant average methylation difference in ccRCC versus normal 
kidney, those with significantly higher average methylation in ccRCC and those with significantly higher 
average methylation in normal kidney (panels left to right). Panel B-C- Annotation for e-loci with significant 
differential epipolymorphism in ccRCC versus normal kidney tissue in the discovery cohort (135 samples). 
Panel D-E- Annotation for e-loci with significant differential epipolymorphism in ccRCC versus normal kidney 
in the validation cohort (71 samples). 
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6.3.4.2 Validation in kidney cancer cell line data 
 
Epipolymorphism at a given e-locus measures both disordered methylation within a read and 

between reads (i.e. the proportion of different epialleles). It is acknowledged that the proportion of 

different epialleles may increase due to gains/losses in methylation disorder across a read in 

different tumour subclones during tumorigenesis or mixtures of heterogeneous cell types. An 

evaluation of cell line data, which represent a single cell type, has been suggested as an approach to 

identify regions which display epipolymorphism beyond that which can be attributed to 

heterogeneous cell types [113]. Therefore, I compared epipolymorphism in the multi-region patient 

samples (ccRCC and adjacent normal tissue) and in the 786-O renal cancer cell line, as the latter 

represents a model system of ccRCC with 100% tumour purity (Figure 6.14). Overall, data were 

available for 109,198 e-loci for ccRCC, normal kidney and the 786-O cell line (Figure 6.14A). 

Evaluating e-loci with differential epipolymorphism in ccRCC vs normal kidney revealed that as 

expected the distribution of epipolymorphism values in the cancer cell line was more similar to 

ccRCC than normal tissue (Figure 6.14B and C). For example, I identified 10,713 e-loci where 

epipolymorphism was significantly higher in ccRCC vs normal kidney, and in 7132 of these e-loci, 

epipolymorphism in the 786-O cell line was even higher than tumour tissue (Figure 6.14C). This 

suggests that disordered methylation within a pure cell line may be associated with tumorigenesis, 

rather than being an artefact of cell contamination. Next, epipolymorphism was visualised at e-loci 

within the promoter region of eight selected genes known to be associated with RCC identified from 

section 6.3.4.1 (MAD2L2, TRPC4, NDRG2, NOS2, TTYH2, RAB37, FRZB, TERT) (Figure 6.14D). 

Epipolymorphism values in ccRCC tissue and the cancer cell line were higher than that for normal 

kidney (Figure 6.14D). 

 

Subsequently, I compared epipolymorphism in the 786-O and the HK2 cell lines, to evaluate whether 

differential epipolymorphism may be noted in model systems of cancers vs controls, having removed 

the confounding effect of purity. The 786-O and HK2 cell lines represent ccRCC and normal renal 

proximal tubule epithelium respectively. I generated Epic-seq methylation data for 786-O (4 

technical replicates) and HK2 cell lines (6 technical replicates). Data were available for 124,426 e-

loci, of which 14,964 were found to have significantly higher epipolymorphism in 786-O, and 2198 

significantly higher epipolymorphism in HK2 cell lines. My analysis then focused on the 47 genes 

which demonstrated differential epipolymorphism within their promoter in ccRCC versus normal 

tissue and are known to be associated with kidney cancer in disease ontology analysis (from section 

6.3.4.1 above). Cell line data were missing for 3 of these genes. Out of the remaining 44 genes 

identified in ccRCC tissue, 28 genes also had differential epipolymorphism within their promoter 
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region in 786-O vs HK2 cell lines (epipolymorphism difference > 0.1, adjusted p value <0.05) (Table 

6.4). Once again, the presence of differential epipolymorphism in the promoter region of these 

genes in the cell line, which is 100% pure, suggests methylation heterogeneity within a read may be 

associated with kidney cancer, rather than being an artefact of mixtures of heterogeneous groups of 

cells in kidney tissue. The literature suggests that methylation patterns in cell lines change secondary 

to immortalization and growth in culture [305]. HK2 cells therefore may not represent the 

methylation pattern in normal kidney and this could contribute to why some of the genes known to 

be associated with kidney cancer did not have differential epipolymorphism in HK2 vs 786-O cell 

lines. 

 
 
 
 

 
Figure 6.14: Epipolymorphism in normal kidney, ccRCC tissue and the 786-O ccRCC cell line 

Epipolymorphism is shown in ccRCC tumour tissue, normal kidney tissue and the 786-O renal cancer cell line 
for: all e-loci (Panel A), e-loci with significantly higher epipolymorphism in normal kidney (Panel B) and e-loci 
with significantly higher epipolymorphism in ccRCC (Panel C). Panel D demonstrates epipolymorphism 
values for selected e-loci in the promoter region of 8 genes which are known to be associated with kidney 
cancer and were found to have significantly higher epipolymorphism in ccRCC vs normal kidney. These 
genes were selected to be visualised as an illustrative example. 
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6.3.4.3 External validation in an independent cohort of ccRCC tissue samples 
 
I externally validated the results from the multi-region analysis in a separate cohort of 71 ccRCC and 

normal kidney samples (these were not multi-region samples). For these 71 samples, I generated 

Epic-seq methylation values and data were available for 148,096 e-loci. Of these, 21,094 were found 

to have significant differential epipolymorphism in ccRCC versus normal tissue, with 11,841 e-loci 

having significantly higher disordered methylation in ccRCC, and 9253 e-loci having significantly 

higher epipolymorphism in normal kidney. Once again, e-loci that had significantly higher 

epipolymorphism in ccRCC were located more commonly at gene promoters and in CpG islands, 

than e-loci with significantly higher epipolymorphism in normal kidney (39% vs 26% at gene 

promoters, and 65% vs 38% in CpG islands respectively) (Figure 6.13D and E). Out of the 47 RCC-

associated genes which were found to have differential epipolymorphism in the first cohort (in 

section 6.3.4.1), 31 genes also demonstrated differential epipolymorphism in the external validation 

cohort (at the same e-loci) (Table 6.4). This provides further evidence that ccRCC is associated with 

gains and losses of locally disordered methylation at the promoter region of genes known to be 

associated with RCC. 

 
 
 
 
Table 6.4: Genes known to be associated with ccRCC which demonstrate differential 
epipolymorphism 

Genes known to be associated with ccRCC that were found to have significant differential 
epipolymorphism within their promoter region in ccRCC versus normal kidney tissue. 

 Identified in the original 
cohort of ccRCC vs normal 

tissue (135 multiregion 
samples) 

Genes with differential 
epipolymorphism in HK2 vs 

786-O cell line 
 

Genes with differential 
epipolymorphism in 

external validation cohort 
of ccRCC vs normal tissue 

(71 samples) 
Genes with 
significant 
differential 

epipolymorphism 
in their promoter 

region 
 

47 genes: MAD2L2, AGT, 
CD44, KRT18, TRPC4, 

NDRG2, CD276, NOS2, 
TTYH2, RAB37, FRZB, TERT, 

TBXT, MUC3A, PRKCZ, 
TP53BP2, TGFBR3, HIF1AN, 
FGFR2, ALOX5, ADM, IL18, 
ST3GAL4, WT1, PXN, KRT7, 
WIF1, MOK, PRKCH, IGF1R, 

ABCC1, CXCL16, HPN, 
CGB3, BSG, BCL2L11, JAG1, 
EGF, DUSP1, SOD2, HLA-G, 

HLA-A, TAP2, PODXL, 
MAD1L1, IGF2BP3, CCN3, 

MYC 

28 genes: MAD2L2, PRKCZ, 
AGT, ALOX5, IL18, WT1, 

PXN, KRT7, KRT18, WIF1, 
TRPC4, NDRG2, CXCL16, 

TTYH2, RAB37, HPN, CGB3, 
BCL2L11, FRZB, JAG1, EGF 
TERT, DUSP1, SOD2, HLA-

A, MUC3A, MAD1L1, CCN3 

31 genes: MAD2L2, WT1, 
CD44, TRPC4, NDRG2, 
CD276, NOS2, TTYH2, 

RAB37, TERT, PRKCZ, AGT, 
FGFR2, ADM, IL18, WT1, 

KRT7, WIF1, PRKCH, IGF1R, 
ABCC1, BSG, BCL2L11, 

JAG1, EGF, SOD2, HLA-G, 
HLA-A, TAP2, MAD1L1, 

MYC 
 

 



 
153 

6.3.4.4  Association between disordered methylation and gene expression 
 
A key question is whether differential epipolymorphism has a functional relevance on gene 

expression. In order to explore the association between gene expression, methylation and 

epipolymorphism, Epic-seq and matched RNA-seq data were obtained for a subset of multi-region 

samples (N=47). The analysis was limited to e-loci which have significant differential 

epipolymorphism in ccRCC vs normal kidney and are located within the promoter region of genes, as 

these changes are more likely to be functional (N= 7536 e-loci). I was interested in exploring the 

overall effect of epipolymorphism on gene expression. Therefore, I developed a linear model to 

predict gene expression based on epipolymorphism. Out of the 7536 e-loci assessed, I identified 

1870 e-loci (in the promoter region of 475 unique genes) where epipolymorphism was a significant 

predictor of gene expression in univariate analysis (BH adjusted p value <0.05). This included genes 

known to be associated with kidney cancer identified in section 6.3.4.1 (ALOX5, WT1, CD44, KRT7, 

KRT18, CD276, CXCL16, RAB37, BCL2L11, JAG1, EGF, HLA-A, IGF2BP3, SLC16A3, DPP6). In the 

majority of cases, the correlation between epipolymorphism and gene expression was negative. 

Indeed, a negative correlation was seen in 87% (N= 976/1119) of e-loci with higher epipolymorphism 

in ccRCC, and 60% (N=449/751) of e-loci with higher epipolymorphism in normal kidney. This 

provides evidence of an association between promoter epipolymorphism and gene expression. In 

particular, increased disordered methylation within the promoter in ccRCC tends to be associated 

with transcriptional repression compared to normal kidney. 

 
One possible hypothesis is that the association between epipolymorphism and gene expression is 

driven by average methylation. To ascertain the effect of epipolymorphism beyond methylation, I 

subsequently evaluated a linear model predicting gene expression based on methylation alone or 

methylation and epipolymorphism, as previously performed by Landau et al [110]. This enabled me 

to assess whether the inclusion of epipolymorphism can increase the model’s predictive ability, 

which would imply that epipolymorphism is an independent predictor of gene expression. My 

analysis identified 216 e-loci (at the promoter region of 103 unique genes) where the addition of 

epipolymorphism resulted in significant improvements in the model compared to a model based on 

methylation alone (i.e. significant increases in adjusted R2, likelihood ratio test BH adjusted p value 

<0.05; Figure 6.15A and B). These 216 e-loci were examined more closely. They consist of 43 e-loci 

(in the promoter of 21 genes) with significantly higher epipolymorphism in ccRCC, and 173 e-loci (in 

the promoter of 82 genes) with significantly higher epipolymorphism in normal tissue (Table 6.5 and 

Table 6.6). Many of the genes identified in Table 6.5 and Table 6.6 have previously been implicated 

in cancer disease biology and ccRCC in particular. E-loci with significantly higher epipolymorphism in 
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tumour include genes coding for cytokeratins (KRT18), membrane transporters (SLC22A31), zinc 

finger transcription factors (ZNF728) and genes involved in cell proliferation (e.g. RASL11B; [306]). E-

loci with significantly higher epipolymorphism in normal kidney include genes coding for membrane 

transporters (SLC16A3), glomerular markers (NFASC), claudins which play a role in cell adhesion 

(CLDN4, CLDN23), genes involved in cellular response to hypoxia (PSMF1, UBC, UBE2D2), Notch 

signalling (ARRB2, JAG1, UBC), apoptosis (SERPINB9), angiogenesis and migration (IGFBP7 [307, 

308]), kidney epithelial morphogenesis (SMTNL2 [309, 310]), kidney cancer tumorigenesis (LPCAT1 

[311]) and zinc finger transcription factors (ZNF888). Similarly, Landau et al showed a significant 

association between epipolymorphism and gene expression in genes coding for Zinc finger proteins 

[110]. Furthermore, my analysis identified genes coding for histone proteins (H2BC13, H2AC11, 

H2AC17, H2AC16, H2BC11, H2BC7, H4C12) in which epipolymorphism was significantly higher in 

normal tissue compared to ccRCC, and epipolymorphism may contribute to gene expression (Table 

6.6). This finding warrants further future investigation. Interestingly, a number of the identified 

genes are involved in immunoregulatory interactions between lymphoid and non-lymphoid cells. 

ccRCC tissue contains more immune cells than normal kidney tissue (see later section 6.3.5.1.1). If 

the effect on epipolymorphism was simply an artefact secondary to low tumour purity 

(contamination with immune cells), one would expect epipolymorphism to be higher in ccRCC for 

these genes. However, my data demonstrates significantly increased promoter epipolymorphism in 

normal tissue compared to ccRCC for these genes (as well as an association with gene expression), 

suggesting these changes may be related to tumorigenesis rather than purity. 
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Table 6.5: Linear models to predict gene expression, for e-loci with significantly higher 
epipolymorphism in ccRCC 

Linear models to predict gene expression based on methylation and epipolymorphism versus 
methylation alone, for e-loci with significantly higher epipolymorphism in ccRCC compared to 
normal tissue. The likelihood ratio test was used to compare adjusted R2 values for the two models. 
Where multiple e-loci were found to be significant, the number of significant e-loci are reported and 
the e-locus with the lowest adjusted p value is shown in the table. Genes are ranked based on 
descending adjusted R2 for the linear model using methylation and epipolymorphism. 
 

Gene 

Correlation 
coefficient: 

Epipolymorphism 
vs gene 

expression 

Linear model 
adjusted R2, 

Gene expression 
predicted by 
methylation 

Linear model 
adjusted R2, Gene 

expression predicted 
by methylation and 
epipolymorphism 

Likelihood 
ratio test 
adjusted 
p value 

Number of 
significant e-

loci in the 
promoter 

region of the 
gene 

RASL11B -0.78 0.42 0.62 0.005 2 

ZNF728 -0.78 0.45 0.59 0.029 2 

DPP6 -0.66 0.14 0.58 0.0003 4 

KRBA1 0.76 0.31 0.56 0.004 4 

HS3ST3B1 -0.73 0.3 0.53 0.006 5 

KRT18 0.73 0.37 0.51 0.044 1 

ICA1 -0.68 0.21 0.47 0.007 1 

LINC02693 -0.66 0.29 0.46 0.03 1 

DLGAP1 -0.66 0.17 0.44 0.007 3 

LRAT 0.60 0.16 0.44 0.007 4 

ESPNP -0.59 0.16 0.42 0.009 2 

MAN1C1 -0.67 0.26 0.42 0.049 1 

CD4 0.66 -0.02 0.41 0.004 1 

MIR663AHG -0.46 -0.02 0.40 0.007 1 

PLAC9 -0.40 -0.01 0.33 0.015 1 

LINC01287 0.14 0.07 0.30 0.044 1 

PRR5L -0.39 -0.01 0.28 0.009 3 

ANKRD18CP -0.31 -0.02 0.27 0.012 1 

SLC22A31 -0.37 -0.02 0.27 0.01 2 

CD8B2 -0.24 -0.01 0.24 0.03 1 

PRDM6 -0.40 -0.02 0.23 0.031 2 
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Table 6.6: Linear models to predict gene expression, for e-loci with significantly higher 
epipolymorphism in normal kidney 

Linear models to predict gene expression based on methylation and epipolymorphism versus 
methylation alone, for e-loci with significantly higher epipolymorphism in normal kidney compared 
to ccRCC. The likelihood ratio test was used to compare adjusted R2 values for the two models. 
Where multiple e-loci were found to be significant, the number of significant e-loci are reported and 
the e-locus with the lowest adjusted p value is shown in the table. Genes are ranked based on 
descending adjusted R2 for the linear model using methylation and epipolymorphism. A total of 82 
genes were identified (adjusted p value <0.05), however only the top-most genes are shown here.  
 

Gene 

Correlation 
coefficient: 

Epipolymorphism 
vs gene 

expression 

Linear model 
adjusted R2, Gene 

expression 
predicted by 
methylation 

Linear model 
adjusted R2, 

Gene expression 
predicted by 

methylation and 
epipolymorphism 

Likelihood 
ratio test 

adjusted p 
value 

Number of 
significant 

e-loci in the 
promoter 
region of 
the gene 

SLC16A3 -0.92 0.77 0.84 0.001 3 

H2BC13 -0.69 0.21 0.63 7.67E-06 4 

MFHAS1 0.70 0.24 0.63 8.20E-06 8 

H2AC11 -0.72 0.11 0.54 1.14E-05 5 

PDZD2 0.54 0.19 0.51 0.001 1 

B3GNTL1 -0.69 0.25 0.47 0.005 1 

CLDN4 0.39 0.25 0.46 0.005 3 

H2AC16 -0.20 -0.01 0.45 2.69E-05 8 

H2BC11 -0.67 0.26 0.44 0.009 2 

LPCAT1 -0.60 0.01 0.44 6.08E-05 2 

UBE2D2 -0.67 0.08 0.44 1.86E-04 10 

NINJ2 -0.68 0.06 0.43 0.001 5 

IGF2BP3 -0.63 0.13 0.42 0.002 1 

NFASC 0.56 0.02 0.41 0.0003 1 

RRM2 -0.54 0.09 0.38 0.002 3 

METRNL 0.20 0.05 0.35 0.003 3 

TUBBP5 0.51 -0.01 0.35 0.001 2 

SMTNL2 0.59 -0.02 0.33 0.002 12 

SNX29P2 0.54 0 0.33 0.004 1 

ATAD5 -0.51 0.1 0.32 0.009 2 

MSC -0.55 0.02 0.32 0.009 2 

OLFML2A 0.24 0.06 0.32 0.005 2 

UBC -0.54 0.04 0.32 0.004 4 

TBC1D14 0.56 -0.01 0.31 0.002 2 

ZNF888 -0.56 0.02 0.3 0.004 1 

LMF1-AS1 0.53 0.01 0.26 0.009 1 
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Figure 6.15: Epipolymorphism, methylation and gene expression 

Panel A and B – Adjusted R2 for a linear model to predict gene expression based on methylation alone 
versus methylation and epipolymorphism. Results are shown for genes which had a statistically significant 
improvement in the R2 from Table 6.5 and Table 6.6. Results are shown separately for e-loci with 
significantly higher epipolymorphism in ccRCC (Panel A) and e-loci with significantly higher 
epipolymorphism in normal kidney (Panel B). SLC16A3 is the gene with the highest adjusted R2 and is an 
outlier, therefore it was explored more in detail in Figure 6.16. Panel C and D- Epipolymorphism (Panel C) 
and average methylation (Panel D) in ccRCC and normal kidney tissue at the UBE2D2 gene promoter. 
Results are shown for all 135 tissue samples for which DNA methylation data were available. Panel E and F- 
UBE2D2 gene expression versus epipolymorphism (Panel E) and average methylation (Panel F) in ccRCC and 
normal kidney tissue. Results are shown for 47 tissue samples for which matched DNA methylation and 
RNA-seq data were available. VST refers to the variance stabilising transformation applied to gene 
expression 
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The following section will discuss three of these genes (UBE2D2, SLC16A3 and DPP6) in more detail 

as illustrative examples. I identified 10 e-loci within the promoter region of the UBE2D2 gene in 

which epipolymorphism predicted gene expression independently of methylation (significant 

improvement in the adjusted R2 following inclusion of epipolymorphism in the linear model 

compared with methylation alone, Figure 6.15). There was significantly lower UBE2D2 expression in 

normal tissue compared to ccRCC, and this was accompanied by significantly higher promoter 

epipolymorphism, with no evidence of a difference in average methylation across the read (Figure 

6.15C-F). There was a strong negative correlation between epipolymorphism and gene expression 

(Pearson correlation coefficient = -0.67, adjusted p value = 1.80e-05), with no evidence of an 

association between methylation and gene expression (adjusted p value >0.05; Figure 6.15). For the 

best performing e-locus, a linear model predicting gene expression based on epipolymorphism and 

methylation produced a significant improvement compared to a model using methylation alone 

(improvement in adjusted R2 from 0.08 to 0.44), which is not surprising given the absence of a 

methylation difference. UBE2D2 codes for Ubiquitin Conjugating Enzyme E2 D2, which is a member 

of the E2 ubiquitin-conjugating enzyme family, which facilitates proteasome degradation of various 

proteins, including tp53. UBE2D2 facilitates the cell’s response to hypoxia and is regulated by the HIF 

transcription factor [312]. My data demonstrates increased UBE2D2 expression in ccRCC. The 

literature suggests increased UBE2D2 causes reduced tp53, which in turn is pro-tumorigenic (tp53 

mutations are the most common alteration in cancer [313]). In summary, my data is the first to 

suggest evidence of significantly disordered methylation in normal kidney compared to ccRCC. The 

disordered methylation stretches for relatively large regions within the UBE2D2 gene promoter (i.e. 

10 e-loci) and may contributed to altered gene expression. 

 
For e-loci with higher epipolymorphism in normal kidney, SLC16A3 was the top-ranking gene with 

the highest R2 value for the linear model containing methylation and epipolymorphism to predict 

gene expression (adjusted R2= 0.84; Figure 6.15B and Table 6.6). This suggests that a high proportion 

of the variability observed in gene expression is explained by the model based on methylation and 

epipolymorphism. This gene encodes for the monocarboxylate transporter MCT4, which transports 

lactate (along with H+) generated during glycolysis across the plasma membrane and plays a key role 

in mediating the Warburg effect in ccRCC [314]. MCT4 overexpression is associated with increased 

cell proliferation, reduced apoptosis and tumorigenesis [314]. In >85% of ccRCC patients, there is 

MCT4 gene over-expression and associated hypomethylation at specific sites in the gene promoter 

of tumour tissue compared to adjacent normal kidney [315]. Fisel et al [315] demonstrated that 

gene expression is regulated by methylation by performing RCC cell line experiments comparing 

promoter/reporter fusion plasmids containing either methylated or mock-methylated SLC16A3 
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promoter fragments. Significantly reduced promoter activity was noted in the mock-methylated 

compared to methylated cells. This is clinically relevant because high SLC16A3 expression has been 

found to be a negative predictor of survival in several independent ccRCC cohorts [314-316], and 

there is potential for therapeutic targeting with MCT4 inhibitor drugs. In addition, lactate transport, 

which is mediated by MCT4, can be non-invasively imaged using Hyperpolarized 13C-pyruvate 

magnetic resonance imaging [317] and its role in a diagnostic and prognostic setting is under 

investigation. In agreement with the available literature, my data confirmed that in ccRCC there is 

SCL16A3 promoter hypomethylation and this is associated with increased gene expression compared 

to normal kidney (Figure 6.16). In addition, epipolymorphism is significantly different in 20 e-loci in 

the promoter region of the gene in ccRCC versus normal, with disordered methylation in normal 

tissue and ordered methylation (i.e. concordant hypomethylation) in ccRCC and this is associated 

with changes in gene expression (Figure 6.16). This could suggest that disordered methylation in the 

normal tissue is an early event which predisposes to hypomethylation in ccRCC tissue and this has a 

functional relevance on gene expression. 

 

For e-loci with higher epipolymorphism in ccRCC, DPP6 was selected as an illustrative example (Table 

6.5). DPP6 (Dipeptidyl Peptidase Like 6) is a peptidase membrane glycoprotein which mediates 

KCND2 voltage-gated potassium channels and regulates cell differentiation, proliferation, apoptosis 

and tumorigenesis [318]. Sheikh et al demonstrated that DPP6 gene expression is regulated by DNA 

methylation and that this drives neuronal cell differentiation and regulates a cell-type specific 

phenotype [318]. Similarly, hypermethylation and reduced gene expression have been noted in 

other malignancies (including pancreatic cancer, melanoma and acute myeloid leukaemia) [319-

322]. In my analysis of renal tissue methylation, there was an increase in disordered methylation 

at the DPP6 promoter, as well as average hypermethylation in ccRCC vs normal kidney. A model 

predicting gene expression based on epipolymorphism and average methylation significantly 

increased the adjusted R2
 compared to a model based on methylation alone (increase in adjusted R2 

from 0.14 to 0.58, adjusted p value = 0.0003). A negative association was noted between promoter 

epipolymorphism and gene expression (correlation = -0.66), which may be consistent with 

epigenetic silencing of DPP6 in ccRCC. Previous studies have reported reduced DPP6 gene expression 

as an independent prognostic marker in ccRCC tissue [321] and separate studies reported promoter 

hypermethylation in ccRCC, associated with increasing tumour grade, stage and a predictor of 

metastatic recurrence [323]. My work is the first to directly link DPP6 methylation and gene 

expression in ccRCC, and the first in any biological system to characterise epipolymorphism at this 

gene locus. In summary, this analysis suggests that epipolymorphism within a gene promoter may be 

an independent regulator of gene expression in addition to overall methylation. 
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Figure 6.16: Epipolymorphism, methylation and gene expression for e-loci within the promoter 
region of the SLC16A3 gene 

Panel A and B- Heatmap demonstrating epipolymorphism (Panel A) and average methylation (Panel B) in 
each e-locus in the promoter region of SLC16A3, in ccRCC and normal kidney tissue. Panel C- Scatterplot of 
gene expression versus epipolymorphism and average methylation in a 3D scale. Epipolymorphism and 
average methylation are higher for normal kidney than ccRCC, and there is associated reduced expression in 
normal kidney. Panel D and E- Methylation levels along the promoter region of the SLC16A3 gene. In ccRCC, 
there is global hypomethylation (Panel E), whereas in normal kidney there is evidence of disordered 
methylation (hypermethylation and hypomethylation of adjacent CpGs; Panel D). 



 
161 

 Multi-region samples to inform biomarker selection 

The following section focuses on integrating data from multi-region ccRCC samples to glean 

information regarding biomarker selection and potential clinical implications. Two complementary 

analyses are performed, shown below. 

1) Analysis of significant DMCs that differentiate ccRCC vs normal kidney, exploring how cell 

type composition or contamination may affect selection of DMCs as potential biomarkers 

(Section 6.3.5.1). 

2) Evaluation of CpGs which are homogeneously versus heterogeneously methylated within a 

patient, and recurrent across the cohort. This analysis will enable an assessment of 

methylation changes that may be early or late events and therefore have different 

biomarker applications (Section 6.3.5.2). 

 

 
6.3.5.1 Exploring how cell type composition may affect selection of DMCs 
 
I postulated that differing cell type composition may impact the DMCs that are called as being 

significantly different in ccRCC vs normal kidney, and that exploring this will help select more 

informative tumour markers. First, I used ‘methylKit’ to call significant DMCs between ccRCC and 

normal in the 136 multi-region samples (with patient as a covariate, see Methods 4.4.3). In this case, 

all SNP types were removed to ensure that when multi-region samples from the same patient cluster 

together, this is due to similar patterns of DNA methylation rather than SNPs. After removal of SNPs, 

107,947 DMCs were identified and the top 10% of DMCs with the lowest variance in tumour samples 

were compared to the top 10% of DMCs with the highest variance in tumour samples (Figure 6.17A 

and B).  

 

DMCs with low variance in multi-region tumour samples have both low between and within sample 

heterogeneity, and methylation patterns do not seem to be related to tumour purity (Figure 6.17A). 

These DMCs clearly separate tumour versus normal and multi-region samples from the same patient 

cluster together. These could therefore represent ideal biomarker targets for diagnostic clinical 

applications. Gene set enrichment analysis of DMCs in the gene promoter region identified pathways 

associated with cell-cell communication and cell adhesion (e.g. SDK1), claudins (CLDN8, CLDN10, 

CLDN14) and signal regulatory protein family interactions (e.g. protein kinases such as PTK2 and 

SRC), which are key tumorigenic pathways. This implies these DMCs are likely to represent ccRCC 

specific changes.  
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Evaluating DMCs with the highest tumour variance demonstrates two major branches of the 

dendrogram (Figure 6.17B). One branch includes normal samples and ccRCC samples with high 

tumour purity and the other branch consists of ccRCC samples with low purity. Interestingly, low 

purity samples cluster away from normal kidney. Indeed, purity is significantly higher in samples that 

cluster more closely with normal tissue than those that cluster away from normal (mean purity 

59.4% vs 39.9%, p value = 3.9e-8, Figure 6.17C). These DMCs with high variance in ccRCC were 

annotated to proximal genes, and gene set enrichment was performed for those in the promoter 

region. GSEA highlighted pathways associated with neutrophil degranulation (51/464 vs 480/10,654; 

adjusted p value= 2.28e-06). Taken together, these two results suggest that a proportion of DMCs 

that are called as significantly different between ccRCC and normal tissue, may not actually 

represent markers that are associated with ccRCC tumours, but rather may be markers associated 

with immune cell infiltration secondary to low tumour purity. Any attempt to use these as diagnostic 

biomarkers in clinical practice would therefore be hampered by heterogeneity associated with 

sample purity. The following section focuses on characterising cell type composition in my tissue 

samples and exploring the clinical utility of this analysis. 
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Figure 6.17: DMCs with low and high variance in tumours 

Panel A-B: Heatmap of methylation levels for ccRCC and normal kidney at selected differentially methylated 
cytosines (DMCs). DMCs were identified and the top 10% with the lowest variance in tumour samples (Panel 
A) were compared to the top 10% of DMCs with the highest variance in tumour samples (Panel B). The top 
annotation bar shows tumour purity for each sample (estimated using WES or RNA-seq). Panel C- Tumour 
purity for ccRCC samples which clustered either with normal samples, or away from normal samples in the 
dendrogram accompanying the heatmap in Panel B. Tumour purity for each sample was calculated using 
WES or RNA-seq. Purity was significantly higher in samples that cluster more closely with normal tissue than 
those that cluster away from normal (mean purity 59.4% vs 39.9%, p value = 3.9e-8). 
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6.3.5.1.1 Characterising cell type composition in multi-region samples 
 
It is recognised that bulk tissue data consists of signal from multiple cell types, and several methods 

have been developed to perform deconvolution of cell type components. This is particularly 

interesting because ccRCC is characterised by a high immune cell and stromal infiltrate compared to 

other malignancies [203]. Studies suggest the presence of immune cell heterogeneity both between 

and within patients, and this appears to have prognostic implications [299]. I therefore sought to 

explore purity and cell type composition in my multi-region samples using three orthogonal 

methods: DNA methylation analysis, RNA-seq and WES (Figure 6.18). 

 

 
Figure 6.18: Schematic demonstrating purity and cell type decomposition analysis 

Schematic demonstrating methods used to explore purity and cell type decomposition in my multi-region 
samples using three orthogonal methods: DNA methylation analysis, RNA-seq and WES. In brief, I used the 
‘MeDeCom’ package to deconvolute DNA methylation data into latent methylation components (LMCs). I 
also used ‘CIBERSORTx’ to deconvolute RNA-seq data into immune cell types. Subsequently, I evaluated 
whether the proportion of LMCs in each tissue sample was correlated with purity estimates calculated from 
WES, RNA-seq and methylation data. 

 



 
165 

In order to determine cell type composition in my samples, I performed reference-free cell type 

deconvolution based on methylation data. A ‘reference-free’ method does not rely on reference 

methylomes from the literature, and this was deemed the best option due to the absence of 

reliable, good-quality kidney tissue specific reference methylomes. I selected the top 10% of DMCs 

with the highest variance in tumour samples identified in section 6.3.5.1 and performed reference-

free deconvolution using the ‘MeDeCom’ package [200, 201].  

 

‘MeDeCom’ uses regularized non-negative matrix factorization to decompose the DNA methylation 

matrix into two matrices: cell-type-specific latent methylation components (LMCs) and the 

proportion of LMCs in each sample [201] (Figure 6.19A). LMCs represent the reference methylomes 

of unknown cell populations. The following model parameters were selected, as these minimized the 

cross-validation error: K=7 (i.e., the number of LMCs) and λ = 0.01 (i.e., regularization parameter). 

Thus, the samples were deconvoluted into 7 LMCs, which represent different cell types. The 

subsequent analysis focuses on characterizing these LMCs and determining whether these have 

clinical utility.  

 
First, the proportion of each LMC present in each of the multi-region samples was visualized in a 

heatmap (Figure 6.19B). Normal tissue samples cluster together, and are characterised by a high 

proportion of LMC5, suggesting this LMC represents normal kidney cells. Tumour samples consist of 

two major branches. Generally, multi-region tumour samples from the same patient tend to cluster 

together. Subsequently, I performed an orthogonal analysis to determine the nature of the LMCs: 

 

1) The proportion of LMCs in each sample was correlated with purity estimates calculated from 

WES, RNA-seq and methylation data 

2) The methylomes of the LMCs were compared to publicly available reference methylomes for 

known cell types 

 
Table 6.7 summarizes the results of this analysis. In summary, LMC5 appears to represent normal 

kidney epithelium, LMC4 is likely to be a marker of ccRCC, whereas LMC1 and LMC3 are likely to 

represent immune cells (LMC2 and LMC6 remain unclear). The proportion of LMC5 and LMC4 in 

each tissue sample was compared with purity estimates derived from WES, RNA-seq and 

methylation data (Figure 6.19C). LMC5 was positively correlated with RNA-seq purity estimates in 

normal tissue, but not ccRCC tumours, suggesting LMC5 represents normal kidney. In tumours, 

LMC5 was negatively correlated with purity estimates from ‘InfiniumPurify’, a method which 

determines tumour purity as a function of contamination with normal tissue. In other words, tumour 
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samples which had a low purity (i.e. high contamination with normal kidney), had a higher content 

of LMC5. This is consistent with my previous observation from Figure 6.19B, that LMC5 represents 

normal kidney epithelial cells. LMC4 may represent kidney epithelium in ccRCC tumours. Indeed, the 

content of LMC4 in each sample was correlated with RNA-seq purity estimate for tumours, but not 

for normal kidney. In addition, LMC4 was also positively correlated with purity estimates derived by 

WES (Figure 6.19C). 

 

 

 

 

 

Figure 6.19: Decomposition of bulk DNA methylation data into latent methylation components  

*See figure on following page* 
 
Panel A- Schematic explaining how bulk DNA methylation data are decomposed into cell-type-specific latent 
methylation components (LMCs) and the proportion of LMCs in each sample. Panel B- Heatmap demonstrating 
the 7 LMCs, and the proportion of each of these LMCs in the tissue samples. For each sample, the top 
annotation bar shows the pathology (ccRCC vs normal kidney), sample purity and patient ID (from which the 
sample was derived). Panel C - Heatmap demonstrating correlation values (cor) for the proportion of each LMC 
and purity values, for tissue samples. Purity values are derived using three independent methods: WES, RNA-
seq (‘ESIMATE’) and DNA methylation (‘InfiniumPurify’). ‘ESTIMATE’ is the only method which provides purity 
estimates for normal samples, therefore these are shown separately in the heatmap. Panel D- Heatmap 
demonstrating correlation values (cor) between each LMC and reference methylomes for various cell types. 
For each cell type, the accompanying code denotes the reference from which it was derived (from publicly 
available reference methylomes). In Panel C and D, a significant positive and negative correlation are shown in 
red and blue respectively. White denotes no significant correlation (p value > 0.05). Panel D- Cluster 
dendrogram obtained using methylomes for the seven LMCs and reference methylomes. LMC1 and LMC3 
cluster with immune cells, on the left branch of the dendrogram. 
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Figure 6.19: Decomposition of bulk DNA methylation data into latent methylation components 
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Table 6.7: Summary of results of latent methylation components analysis 

Latent methylation components (LMCs) are shown. All correlations (cor) shown in the table had an 
adjusted p value < 0.001. 
 

 Hypothesis Correlation with purity estimates 
(RNA-seq, Epic-seq and WES) 

Correlation with reference 
methylomes 

LMC1 Represents immune 
cell, likely T cells 

LMC1 was correlated with the 
immune score from RNA-seq 

(cor=0.60) 

LMC1 was correlated with T 
cells (cor=0.83) and other 
immune cells to a lesser 

degree 
 

LMC2 Cell type unclear   
LMC3 Represents immune 

cell, likely tumour 
associated 

macrophages 

LMC3 was correlated with the 
immune score from RNA-seq 

(cor=0.50) 

LMC3 was correlated with 
monocytes (cor = 0.96) and 

neutrophils (cor=0.95) 

LMC4 Represents kidney 
epithelium in ccRCC 

tumours 

LMC4 was correlated with RNA-seq 
purity estimates for tumour samples 

(cor = 0.62) and there was no 
correlation with purity estimates for 
normal kidney samples. LMC4 was 

also correlated with purity 
estimates from WES (cor=0.49). 

 

LMC5 Represents normal 
(non-cancerous) 

kidney epithelium 

LMC5 was correlated with RNA-seq 
purity estimate in normal tissue 

(cor=0.72) and there was no 
correlation with purity estimates for 
ccRCC tumour samples. LMC5 was 

also negatively correlated with 
Infiniumpurify (cor=-0.71) which 

measures contamination with 
normal kidney. 

 

LMC6 Cell type unclear   
LMC7 Cell type unclear   
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As already mentioned, to my knowledge there are no existing good-quality kidney tissue specific 

reference methylomes. Therefore, I obtained reference methylomes from multiple publicly available 

sources (see Methods section 4.6). LMC1 was highly positively correlated with the reference 

methylome for T cells derived from two separate sources (correlation = 0.83), suggesting it may 

indeed represent this cell type (Figure 6.19D and E). This hypothesis was corroborated by the fact 

that the proportion of LMC1 in each tissue sample correlated with the immune score calculated 

using RNA-seq (Table 6.7). LMC3 was also positively correlated with the immune score and had a 

strong correlation with the reference methylome for monocytes and neutrophils, meaning it may 

indeed represent tumour associated macrophages. Although both LMC1 and LMC3 are likely to 

represent immune cells, it is difficult to determine which type of cell based on this analysis alone. It 

is unclear exactly which cell type LMC7 may be, however it was noted to be weakly correlated with 

the 786-O methylomes (a ccRCC cell line) (Figure 6.19D). Interestingly, none of the LMCs had similar 

methylation levels to HK2 cells, a cell line representing normal kidney epithelium. This could be due 

to epigenetic changes that occur in immortalized cell lines [136]. I also sought to assess evidence of 

heterogeneity within a patient. As already noted in Figure 6.19B, tumour samples from the same 

patient tend to cluster together, suggesting higher heterogeneity between than within patients.  

 

Subsequently, I focused my analysis on LMC1 and LMC3 as these two components are likely to 

represent immune cell infiltration and the literature suggests that immune composition may have 

prognostic potential in ccRCC. The proportion of LMC1 in each sample was evaluated to assess the 

relationship with clinical parameters. The proportion of LMC1 was significantly higher in ccRCC 

compared to normal kidney samples (median 9% versus 3%, adjusted p value= 0.004, Figure 6.20B). 

Interestingly, LMC1 was significantly higher in tumour samples with favourable clinical prognostic 

parameters (Figure 6.20A). Indeed, LMC1 was significantly higher in low grade disease (25% in grade 

2 versus 5% in grades 3-4, adjusted p value=5.5e-09), lower stage (16% stage I-II versus 7% versus III-

IV, adjusted p value= 0.028), lower Leibovich score (43% low risk versus 6% intermediate-high risk, 

adjusted p value=1.1e-06) and better prognosis (18% no recurrence vs 6% recurrence or metastases 

at diagnosis, adjusted p value= 0.0004). The fact that LMC1 was consistently higher for all four 

clinical parameters suggests this may be relevant and less likely to have been noted by chance. LMC3 

was not related to any clinical parameter. In summary, evaluating DNA methylation data 

demonstrated that LMC1 content (which is hypothesized to represent immune cell infiltration) was 

higher in tumour samples relative to normal, and within tumour samples, higher levels were 

associated with a better prognosis. 
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An orthogonal analysis was performed using RNA-seq data to calculate an immune score for each 

sample, and this was noted to follow a similar pattern as was noted for LMC1 (Figure 6.20C and D). 

Indeed, whilst the immune score was significantly higher in ccRCC compared to normal kidney 

(median score 1725 vs -636, adjusted p value = 4.0e-10), a higher immune score was also associated 

with more favourable prognostic factors (lower stage and grade, adjusted p value <0.05 for all 

comparisons). It was not possible to assess the impact of Leibovich score and recurrence status 

separately as the same 4 samples which were stage I-II disease were also the ones who had a low 

risk Leibovich score and did not have a recurrence. The immune score was also negatively correlated 

with tumour size (correlation= -0.61, p value = 0.0005). However, these results are limited by the 

small number of samples in the favourable prognostic group and ideally larger sample sizes would be 

available. The immune score was relatively similar in most multi-region tumour samples from the 

same patient, except for patient 6300 which had higher variability (Figure 6.20D). Next, I used 

‘CIBERSORTx’ [205] to deconvolute bulk RNA-seq data from my samples to try to understand the 

underlying immune cell types which may contribute to LMC1 and the immune score pattern noted 

(Figure 6.20F and G). ‘CIBERSORTx’ estimates the proportion of different immune cells that are 

present in a sample (hence the total sum is 100% of immune cells, see Figure 6.20F). There was a 

significantly higher proportion of M2 macrophages and CD8+ T cells in ccRCC compared to normal 

tissue (median 8% vs 2%, adjusted p value= 0.004 and median 44% vs 32%, adjusted p value = 0.001 

respectively; Figure 6.20G). Unfortunately, the small sample size and large number of immune cell 

types precluded an evaluation of cell types by clinical parameters. 

 

In summary, this section has two main findings. First, I demonstrated that a number of DMCs which 

are called as significantly different in ccRCC vs normal kidney may actually be markers of immune 

cells rather than tumour. This needs to be taken into consideration when applying the DMCs as 

biomarkers for different applications (e.g. diagnostic vs prognostic setting, plasma ctDNA vs tissue 

markers). Secondly, I showed that bulk DNA methylation profiles from my tissue samples can be 

deconvoluted into 7 cell types, where LMC4 and LMC5 are likely to represent normal kidney and 

tumour respectively, whereas LCM1 and LMC3 are likely to represent immune cells. The proportion 

of LMC1 in tumour samples is consistently associated with favourable prognostic clinical parameters 

(lower grade, stage, tumour size and recurrence), which warrants further investigation and 

validation in larger datasets. 
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Figure 6.20: Immune cell components in tumour and normal samples, by clinical parameters 

Panel A and B- Boxplots depicting the LMC1 (latent methylation component 1) content obtained from 
methylation deconvolution analysis. LMC1 component in tumour samples is shown by grade, stage, 
Leibovich score and recurrence status (Panel A). LMC1 content is also shown in ccRCC vs normal kidney 
(Panel B). Panel C, D and E- Boxplots depicting the immune score obtained from RNA-seq analysis (using 
‘ESTIMATE’) for tumour samples, by grade and stage (Panel C). Results for tumour vs normal samples are 
shown overall (Panel D) and by patient (Panel E). Panel F and G- Results of immune cell decomposition from 
RNA-seq analysis (using ‘CIBERTSORTx’), for each patient (F), and in tumour versus normal samples (G). 
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6.3.5.2 Exploring Homogeneously vs Heterogeneously methylated markers 
 
6.3.5.2.1 Rationale 
 
I aimed to explore methylation heterogeneity to gain an insight into the timing of methylation 

changes and thus improve our ability to select clinically useful diagnostic and prognostic markers. I 

therefore evaluated homogeneously and heterogeneously methylated CpGs, as these may be useful 

diagnostic and prognostic markers respectively (Figure 6.21A). CpGs that are differentially 

methylated in ccRCC versus normal tissue and demonstrate homogeneous methylation patterns 

amongst tumour samples (i.e. low ITH) are postulated to be clonal, early events in tumorigenesis 

[324]. This idea is similar to the concept that gene mutations that are present in all multi-region 

tumour samples from a patient are clonal, early events (such as VHL, PBRM1, SETD2 etc) whereas 

mutations which demonstrate high ITH are subclonal, late events in tumour evolution [294]. 

Selecting homogeneously methylated DMCs would be key in a diagnostic setting. For example, when 

selecting methylation markers which can be applied to renal tumour biopsies or liquid biopsies to 

differentiate pathological subtypes of tumours (as described in Chapter 5). In a tumour biopsy 

setting, the ideal markers would have homogeneous methylation patterns within a patient and 

between patients in order to provide consistent diagnoses without being limited by ITH. In the case 

of liquid biopsies (i.e. plasma or urine cell free DNA analysis), it is postulated that early/truncal 

events are more likely to be represented in the plasma/urine than subclonal changes. Conversely, 

investigating CpGs that demonstrate heterogeneous methylation amongst tumour samples (i.e. high 

ITH) could elucidate methylation changes associated with aggressive disease which confer a selective 

advantage. These markers are therefore more likely to be useful for prognostic applications (Figure 

6.21A).  

 
 
6.3.5.2.2 Definition 
 
CpGs were defined as homogeneous and heterogeneous as described by Hao et al in a seminal 

analysis of ITH in oesophageal cancer [220] (Figure 6.21B; Methods section 4.7.4). In summary, first 

CpGs were identified that were differentially methylated in tumour versus normal kidney for each 

patient (i.e. ³25% methylation difference on average between tumour and normal samples within a 

patient). Subsequently, these CpGs were subdivided into homogeneous markers (i.e. methylation 

levels similar in tumour samples from the same patient) and heterogeneous markers (methylation 

levels different in tumour samples from the same patient; Figure 6.21B). The choice of thresholds is 

discussed in the Methods section 4.7.4. Hao et al found that differing the choice of thresholds 
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produced broadly similar results [220] (just more or less stringent numbers of CpGs called), and this 

was also observed in my data. Subsequently, methylation markers that were present in at least 6 out 

of 18 patients (i.e. ³33% of the whole cohort) were selected as being recurrent, and therefore more 

likely to be clinically significant. 

 

 
Figure 6.21: Rationale and definition of homogeneously and heterogeneously methylated CpGs 

Rationale (Panel A) and definition (Panel B) of heterogeneously and homogeneously methylated CpGs [220]. 

CpGs with heterogeneous 
methylation amongst    

multi-region tumour samples 
= High ITH

Subclonal/branch

CpGs with homogeneous 
methylation amongst             

multi-region tumour samples
= Low ITH

Clonal/Truncal

Heterogeneous 
subclones may have 

aggressive potential and 
prognostic potential

An ideal diagnostic 
biomarker would have 

low ITH therefore 
increasing likelihood of 
detection in a tumour

biopsy or liquid sample

A

B Filtering samples and CpGs
• ³ 1 Normal & ³ 3 ccRCC samples per patient
• Coverage ³ 10x in all multi-region samples
• ChrX, chrY and C>T SNPs removed

Define homogeneously methylated CpGs
within a patient

• ³ 25% methylation difference ccRCC vs normal
• ≤15% methylation difference amongst any 

tumour samples within a patient

Define heterogeneously methylated CpGs
within a patient

• ³ 25% methylation difference ccRCC vs normal
• ³40% methylation difference amongst any 

tumour samples within a patient

Define recurrent homogeneously 
methylated CpGs

• CpG is homogeneously methylated in 
6/18 patients (³33% of the cohort)

Define recurrent heterogeneously 
methylated CpGs

• CpG is heterogeneously methylated in 
6/18 patients (³33% of the cohort)

Identify 13,742 CpGs Identify 5,088 CpGs
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6.3.5.2.3 Homogeneous vs Heterogenous methylation markers 
 
Using the definition illustrated above, homogeneous (N=13,742) and heterogeneous methylation 

markers (N=5088) were identified. Figure 6.22A summarises the number of homogeneous and 

heterogeneous methylation markers by patient. A strong correlation was noted between the 

number of heterogeneous CpGs and the methylation APITH index for each patient (correlation 

coefficient = 0.65, p value= 0.003), confirming these are reliable measures of methylation 

heterogeneity (Figure 6.22B). The number of homogeneous and heterogeneous methylation 

markers was not related to any clinical characteristics such as tumour size, grade, stage or 

recurrence status (p value >0.05 for all comparisons).  

 

 

 
Figure 6.22: Homogeneously and heterogeneously methylated CpGs, by patient 

Panel A- Barplot summarising the number of homogeneously and heterogeneously methylated CpGs, for 
each patient. Panel C- Scatterplot showing the number of heterogeneously methylated CpGs and 
methylation Average Pairwise intra-tumoral heterogeneity (APITH) index by patient. There was a strong 
positive correlation between the two (Pearson correlation coefficient = 0.65). 

 
 
 

First the analysis focused on homogeneously methylated CpGs, which were visualised in a heatmap, 

confirming low inter and intra tumour heterogeneity at these sites (Figure 6.23A). Normal kidney 

and tumour samples are clearly clustered in two separate branches of the dendrogram. There is 

evident homogeneous methylation amongst tumour samples derived from the same patient, and 

between patients. The heatmap confirmed that the methods used identified homogeneous 

methylation markers as expected. Next, these homogeneous markers were validated in two 

independent cohorts, 71 ccRCC vs normal kidney samples analysed by Epic-seq and TCGA ccRCC vs 
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normal samples (Figure 6.23B and C respectively). In both cohorts it is evident that the CpGs clearly 

distinguish ccRCC from normal tissue and there is relative methylation homogeneity amongst ccRCC 

samples from different patients. To explore these CpGs further, I performed gene set enrichment 

and gene ontology analysis. Homogeneously methylated CpGs were enriched at the promoter region 

of genes that are known to be associated with ccRCC; including signalling by receptor tyrosine kinase 

and VEGF, cancer cell motility, cell cycle progression (integrin pathway) and interferon signalling 

(Figure 6.23D). An over-representation test for biological processes highlighted genes involved in 

‘regulation of cell migration and adhesion’ and ‘nephron tubule epithelial cell differentiation’, 

including GATA3, STAT1, LIF, WWTR1, MEF2C, MTSS1 (highlighted in Chapter 5). These methylation 

changes are likely to be truncal/early events in RCC tumorigenesis. Interestingly, my analysis 

identified homogeneous methylation at genes involved in interferon signalling pathways (Figure 

6.23D). Interferon signalling has previously been found to be a feature of ccRCC and to be associated 

with VHL, BAP1 and SETD2 mutations, which are early events in tumorigenesis [133]. Studies have 

shown that SETD2 mediates the methylation of the STAT1 gene, which in turn mediates interferon 

gamma signalling [325]. STAT1 can also be regulated by hypoxia and VHL inactivation in ccRCC, and is 

regarded as a tumour suppressor [326]. Interferon gamma signalling is involved in antigen 

presentation and the cancer immune response, including regulating PDL1 expression in malignant 

cells [133]. In vitro experiments show that treatment of ccRCC cell lines with a demethylating agent 

(5-aza-2’-deoxycitidine) leads to increased interferon gamma gene expression and interferon 

induced apoptosis [103]. This is particularly noteworthy because it raises the possibility of ccRCC 

patient treatment with demethylating agents to augment the response to immunotherapies [103]. 

Next, I identified genes that had >10 homogeneously methylated CpGs in their promoter region, as a 

set of high confidence genes that are likely to be truncal (i.e. likely to have occurred early in cancer 

evolution). These genes were: SLC16A3 (22 CpGs in the promoter region), EHBP1L1 (20 CpGs), 

SEPTIN9 (17 CpGs), SLC16A1 (12 CpGs), RIN1 (11 CpGs), NDUFA4L2 (11 CpGs) and APOBEC3D (11 

CpGs). Importantly, SLC16A3 was also found to have homogeneous methylation within a read in 

ccRCC samples (i.e. low epipolymorphism values), as well as promoter hypomethylation and 

increased gene expression (see section 6.3.4.4).  

 

GSEA demonstrated that heterogeneously methylated CpGs (i.e. high ITH) were enriched for the Rho 

GTPase cycle and regulatory signals, as well as neutrophil degranulation (Figure 6.22D). Studies have 

shown that increased neutrophil infiltration is associated with worse survival in ccRCC [327]. 

Neutrophil associated genes could either be a marker of aggressive disease (i.e. leading to increased 

inflammation) or an artefact of low tumour purity (i.e. if there is a high immune cell content in the 
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tumour sample analysed). The latter is a recognised limitation of methylation analysis of bulk tissue, 

which I attempted to overcome in my deconvolution analysis in section 6.3.5.1 and by analysing only 

high purity samples (see section 6.3.5.2.4 below).  

 

 
6.3.5.2.4 Homogeneous vs Heterogenous methylation markers in samples with 

higher purity 
 
To avoid low purity from confounding the analysis of informative CpGs, I repeated the analysis in 

section 6.3.5.2.3, excluding low purity samples. Samples were therefore selected if purity (as 

measured by WES or RNA-seq) was above the median (0.44). Patients were included if 3 or more 

tumour samples were available (to enable an analysis of heterogeneous and homogeneously 

methylated markers). Overall multi-region samples with higher purity were available for 5 patients 

(patients 6300, 6262, 5848, 5644, 6285). An analysis of homogeneous and heterogeneously 

methylated CpGs was subsequently performed. 

 

Limiting the analysis to 5 patients with high purity samples identified 9955 CpGs that are 

homogeneously methylated in at least 3 out of 5 patients. GSEA was performed and this once again 

highlighted pathways associated with Interferon gamma signalling and focal adhesion (34/531 vs 

201/8093, adjusted p= 7.47e-05). This included growth factors (VEGFA and epidermal growth factor 

EGF), several proto-oncogenes (SRC) and tyrosine kinase genes (RAP1A, PTK2, FYN, FLT4), genes 

encoding for adhesion molecules such as integrins and laminins, and regulators of apoptosis (BCL2). 

These are the same genes which were identified as homogenously methylated CpGs in section 

6.3.5.2.3. These would therefore represent good diagnostic biomarker choices. 

 

CpGs that are heterogeneously methylated in at least 3 out of 5 patients were identified (N= 7021), 

annotated to the nearest gene and those in the promoter region were selected for GSEA. This 

highlighted the Wnt signaling pathway (23/501 vs 166/8093, adjusted p value 2.07e-02), including 

SERPINF1, DKK2, SFRP1, CCN4, SMAD3, CCND1, WNT7B. Additionally, number of genes known to be 

implicated in ccRCC were also identified including ZSCAN18 and SHMT2. A number of these genes 

(DKK2, SFRP1, CCND1, SERPINF1, SMAD3, SHMT2) have been shown to be associated with prognosis 

and implicated in tumour progression in ccRCC, suggesting that these subclonal changes may be 

markers of aggressive disease [328-332]. Interestingly, a systematic review of prognostic 

methylation markers identified conflicting results for SFRP1 [67]. Whilst two studies found promoter 

methylation was associated with poor survival [123], one study demonstrated this was associated 
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with more favourable survival [333]. My work has suggested heterogeneous methylation patterns at 

SFRP1, and this could provide some explanation for the conflicting results and difficulties validating 

prognostic markers in ccRCC. 

 
 
 

 
Figure 6.23: Homogeneously and heterogeneously methylated CpGs 

Panel A- Heatmap illustrating homogeneously methylated CpGs in the discovery cohort (N=135 multi-region 
samples from 18 patients). This confirms low inter and intra tumour heterogeneity at these CpGs. Panel B 
and C- Heatmap illustrating homogeneously methylated CpGs in the two validation cohorts, which consists 
of an independent cohort of 71 ccRCC and normal samples (Panel B) and TCGA samples (Panel C). Panel D- 
Gene set enrichment analysis of homogeneously and heterogeneously methylated CpGs. 
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6.4 Discussion and future direction 
 
In summary, the main findings of this chapter are enumerated below. The following discussion 

reflects on what my analysis adds to our current understanding of ccRCC disease biology and 

potential clinical implications of these findings.  

 

1) Epigenetic inter tumoral heterogeneity dominated over intra tumoral heterogeneity in most 

cases (i.e. there was more heterogeneity between than within patients) (section 6.3.2).  

2) Methylation and SCNA ITH were compared by evaluating the APITH index and by comparing 

phylo-epigenetic with phylogenetic trees. There were no associations between ITH and 

clinical nor prognostic parameters, though this may be due to the limited sample size 

(section 6.3.3). 

3) Although disordered methylation is believed to be a stochastic process, there was evidence 

of significant differential epipolymorphism between ccRCC and normal kidney at the 

promoter region of genes known to be implicated in kidney cancer. This finding was 

confirmed in an independent cohort of ccRCC patients (section 6.3.4).  

4) I identified a select number of genes in which gene expression was associated with promoter 

epipolymorphism, after adjusting for average methylation levels. This suggests that 

epipolymorphism may contribute to modulating gene expression independently of average 

methylation levels at the promoter (section 6.3.4.4). 

5) Evaluating DMCs which were called as significantly different in ccRCC vs normal kidney 

suggested that some DMCs represent contamination with immune cells rather than tumour 

intrinsic changes. This is a useful finding that needs to be considered when performing 

future biomarker studies (section 6.3.5.1). 

6) Bulk DNA methylation profiles from my tissue samples were deconvoluted into 7 cell types, 

where LMC4 and LMC5 are likely to represent normal kidney and tumour respectively, 

whereas LCM1 and LMC3 are likely to represent immune cells. The proportion of LMC1 in 

tumour samples was consistently associated with favourable prognostic clinical parameters 

(lower grade, stage, tumour size and prognosis) (section 6.3.5.1.1). This novel finding 

warrants further investigation. 

7) I identified methylation markers that are homogeneously and heterogeneously methylated 

within a patient and recurrent across the cohort of patients; and I reflect on their utility as 

diagnostic and prognostic markers (section 6.3.5.2). In particular, homogeneously 

methylated markers would be useful in a diagnostic setting. 
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 Heterogeneity between patients, within patients and within a sample 

The first section of the chapter explored heterogeneity between patients, within a patient and 

within a sample. In keeping with the findings from Chapter 5, I observed greater heterogeneity 

between tumour samples than between normal samples. Overall, there appeared to be more 

heterogeneity between different patients than within samples from the same patient. This was 

consistent with three available studies in the literature, which suggested relative methylation 

homogeneity [127, 135, 136]. Studies evaluating colorectal and lung cancer also found that 

heterogeneity between patients was dominant over heterogeneity within a patient [209, 334]. This 

observation suggests that many methylation changes are early events in tumorigenesis, which may 

provide added benefit as diagnostic markers, over highly heterogeneous alterations, such as 

mutations. It was noted that some patients displayed more ITH than others (e.g. patient 7068 had 

the highest ITH), however no association was found with clinical factors. This may be due to the 

relatively small sample size (N=18) or due to limited or incomplete clinical follow-up. Renal cancer 

registries suggest that approximately 80% of patients who develop a recurrence will do so within 5 

years [335]. My cohort was relatively mature (all patients had ³4 years of follow-up), although some 

patients may develop a late recurrence beyond this period. Furthermore, only the presence of 

recurrence, rather than the timing of recurrence was known. Future studies could evaluate time to 

recurrence and focus on larger sample sizes. Alternatively, it may be that the relationship between 

methylation ITH and prognosis is not linear, as is the case for mutation ITH. Indeed, Turajlic et al 

noted that whilst ccRCC patients with low mutational ITH have attenuated progression, patients with 

both low mutational ITH and high chromosomal instability index have rapid progression [87].  

 

My analysis compared phylogenetic trees derived from copy number data and phylo-epigenetic 

trees derived from methylation data to glean information regarding tumour evolution. This is the 

first such analysis to be performed in ccRCC. I demonstrated that whilst phylo-epigenetic and 

phylogenetic trees were very similar in some patients (e.g. patients 5532 and 7067), they were very 

different in other individuals (e.g. patients 5644, 5813, 6285). Unfortunately, data were only 

available for 8 patients and once again no clinical or prognostic correlates were identified. Studies in 

prostate cancer and glioma suggest that similarities between methylation and SCNA phylogenies are 

to be expected [324]. Future work in ccRCC samples could involve assessing mutation calls from WES 

and creating phylogenetic trees based on these data. This would allow a comparison against SCNA 

and methylation, to compare evolutionary patterns and evaluate co-occurrence of genetic and 

epigenetic changes (e.g. convergence on similar driver gene pathways). Another challenge in 

comparing genetic and epigenetic phylogenies is the relative lack of phylo-epigenetic inference 
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methods, which I aim to address in the future. I am currently planning further methodological 

research into bioinformatic approaches to model phylo-epigenetic evolution. For this thesis, I 

created phylo-epigenetic trees using the Euclidean distance and ordinary least squares minimum 

evolution algorithm with the ‘Ape’ package, an approach widely used in the literature [212, 213]. A 

potential limitation of the method is that it treats individual cytosines as independent events which 

may be methylated or unmethylated, disregarding co-methylation in favour of a simplified model 

[107]. To address this, I am collaborating with Victoria Dombrowe and bioinformaticians at Dr 

Schwarz’s group, to develop a novel method to create phylo-epigenetic trees. The method, which 

will be named ‘MYTHICC’, involves summarising methylation data into three discrete states 

(unmethylated, partially methylation and methylated) and segmenting the genome based on these 

methylation blocks. Subsequently, blocks are compared between samples to evaluate transitions 

between the three methylation states and a minimum event distance is used to infer evolutionary 

trees. Future work will involve continuing the method development and comparing trees created 

using the three techniques (i.e. Methylation Euclidean distance, MYTHICC and MEDICC2 using SCNA) 

to evaluate whether segmentation provides more accurate tree topology compared to existing 

methods. Importantly, my analysis demonstrated that both tumour and normal tissue are 

characterised by disordered methylation (i.e. evidence of differential epipolymorphism) and this 

information must be taken into account whilst defining methylation blocks. A potential limitation in 

my analysis is that multi-region samples were spatially but not temporally separated. Such spatially 

and/or temporally separated samples could include: tumour thrombi obtained during IVC 

thrombectomy, biopsies from local recurrences, biopsy or metastasectomy specimens from distant 

metastases (e.g. adrenalectomy or lung metastasectomy samples from Papworth hospital). In future, 

assessing methylation in these samples could improve our understanding of tumour evolution 

through time, help identify aggressive subclones and potential actionable targets. In summary, I 

performed a comprehensive analysis of heterogeneity between patients and within a patient, 

though unfortunately no clinical correlates were identified. 

 

My analysis represents the first evaluation of epipolymorphism, a measure of methylation 

heterogeneity within a sample, in ccRCC. A strength of my work is the use of sequence level data 

using Epic-seq, which allows biological discovery not amenable to array-based methods (such as 

450k array). My main finding was that differential epipolymorphism was noted between ccRCC and 

normal tissue, in the promoter region of genes which are known to be associated with kidney 

cancer. This observation was identified in a primary cohort of samples (i.e. 135 multi-region 

samples) and externally validated in a separate cohort of 71 non multi-region samples. Although 
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gains in epipolymorphism are believed to be a stochastic process, these results suggest that 

disordered methylation may accumulate in functionally relevant loci which are known to contribute 

to tumorigenesis in ccRCC. A strength of this work is the external validation in an independent 

cohort of patients and the exploration in cell line data (to remove the confounding effect of tumour 

purity). However, DNA methylation changes may occur in cell lines secondary to immortalization and 

growth in-vitro [136, 305], meaning they may not represent the ideal model system. Furthermore, I 

evaluated methylation and RNA-seq data in matched tissue samples and demonstrated that 

differential epipolymorphism in the gene promoter was a predictor of gene expression. Some genes 

were characterised by increased disordered methylation in ccRCC (e.g. DPP6), whereas others were 

characterised by more ordered methylation in ccRCC (e.g. SLC16A3 and UBE2D2) compared to 

normal tissue, and these changes were associated with gene expression. The association between 

promoter epipolymorphism and gene expression was negative in most cases, in keeping with 

transcriptional silencing. A limitation is that methylation and epipolymorphism are by definition 

correlated and thus their effects on gene expression are difficult to disentangle. Further, my analysis 

did not determine the causal relationship between gene expression and epipolymorphism. Despite 

these caveats, these novel results suggest that epipolymorphism within a gene promoter may be an 

independent regulator of gene expression in addition to overall methylation in ccRCC. 

 

Future work should focus on understanding the mechanism underlying differential epipolymorphism 

in ccRCC versus normal kidney and whether these changes predispose to cancer progression. Hu et 

al studied methylome evolution by evaluating temporally distinct samples along the lung 

carcinogenesis pathway including lung precancers, preinvasive, and early invasive lung 

adenocarcinomas [336]. The study authors demonstrated that there were higher levels of 

epipolymorphism as cancer progressed from earlier to later stage disease and suggested that DNA 

methylation had undergone evolutionary drift. It may be that there is an evolutionary drift from 

normal tissue to ccRCC tumour tissue. Further methylation analysis of temporal samples in ccRCC 

would help elucidate this. In addition, a comparison of epipolymorphism in normal kidney from 

patients with ccRCC against normal kidney from patients without tumours would enable us to 

determine if the disordered methylation seen in normal kidney is secondary to premalignant 

processes or a feature of normal renal epithelium. For example, our collaborators (Dr Thomas 

Mitchell and colleagues) have access to kidneys donated for transplantation and subsequently 

deemed unsuitable and therefore used for research.  
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 Clinical utility of heterogeneity analysis 

The second section of this chapter focused on extracting useful learning points regarding biomarker 

selection, which may be gleaned by evaluating methylation heterogeneity. I identified CpGs which 

have homogeneous and heterogeneous methylation in multi-region samples from each individual 

patient and are highly recurrent across patients in the cohort. Homogeneous CpGs were noted in 

key pathways which are known to be involved in RCC (such as VEGF and tyrosine kinase signalling, 

cell motility and cell cycle progression), suggesting these are clonal, early steps in tumorigenesis. 

These could represent ideal diagnostic biomarkers for tissue biopsies or liquid samples. In Chapter 5, 

we develop a machine learning model that uses methylation data to predict pathological subtypes of 

renal tumours. In the vast majority of cases (90%), sampling multiple regions from the same tumour 

yielded consistent classification results. This is in keeping with the notion that there are early 

recurrent sets of methylation changes.  

 

In addition, I identified CpGs which have heterogeneous methylation. Heterogeneous methylation 

patterns may be secondary to subclonal tumour changes or due to admixtures of cell types due to 

varying sample purity. Though it may not be possible to disentangle these two processes completely, 

they highlight informative considerations which must be taken into account in future biomarker 

studies and clinical applications. I attempted to address this challenge by assessing methylation data 

after adjustment for purity using ‘Infiniumpurify’, however this method introduced noise into the 

methylation matrix and did not provide added benefit. I also repeated the analysis excluding low 

purity samples and this enabled the identification of heterogeneously methylated CpGs which are 

likely to be subclonal events as they coincide with putative prognostic markers in ccRCC (such as 

SFRP1, DKK2 and CCND1) [67]. These methylation changes may be late events in tumorigenesis and 

could represent markers of tumour aggressiveness. Furthermore, heterogeneous methylation within 

these gene promoters could explain difficulties validating these prognostic markers noted in the 

literature [67].  

 

I also evaluated DMCs that distinguish ccRCC and normal tissue and demonstrated that a proportion 

of these markers (i.e. those with a high variance in tumour) may represent immune cell markers 

rather than tumour intrinsic changes. Any attempt to use these as diagnostic biomarkers in clinical 

practice would therefore be hampered by heterogeneity associated with sample purity. 

Furthermore, these would not be useful markers for plasma cell free DNA analysis due to the high 

contamination from gDNA from lysed immune cells. This demonstrates the added benefit of the 

present analysis along-side existing methods of DMC calling. Simply removing samples with a low 
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tumour purity below a certain threshold could in theory overcome this challenge, however my 

results suggest that low purity samples may still provide clinically useful data. Another approach 

could be to select DMCs with a low variance amongst tumours, or to filter DMCs against the 

methylation levels in immune cells. The latter approach was undertaken in Chapter 7 whilst selecting 

biomarkers for cell free DNA analysis. Ultimately, future studies evaluating DMCs in ccRCC versus 

normal kidney should adjust for variance in tumour purity. 

 

Furthermore, I performed reference-free deconvolution of bulk methylome data into seven latent 

methylation components (LMCs). One of these, LMC1, which is likely to represent immune cells, was 

noted to be associated with clinical parameters. LMC1 levels were higher in tumours which were 

lower grade, stage and did not develop a recurrence. However, the present analysis was unable to 

determine the exact cell type that LMC1 represents, though I hypothesized LMC1 represents a T cell 

population. Further work in larger independent cohorts is necessary to explore this interesting 

finding. ccRCC has been found to have a high immune cell infiltrate relative to other cancers, and in 

particular a high T cell infiltrate [299, 337]. Generally, presence of a high immune T cell infiltrate is a 

good prognostic marker in other solid cancers (i.e. increased CD8+ T cells are associated with better 

survival) and is considered a sign of anti-tumour adaptive immune response [338]. In ccRCC, studies 

initially showed the contrary: a high number of CD8+ T cells was associated with poor overall survival 

[339]. Recently, studies have focused on characterising T cell subtypes, demonstrating that CD8+ T 

cells may indeed be activated, inhibited or exhausted and this determines the prognostic impact 

[339]. Different T cell subpopulations are associated with different prognoses, due to their different 

roles (for example Tregs are immunosuppressive) [340]. Senbabaoglu et al [299] found that Th17 

cells and CD8+ T/Treg ratio were associated with improved survival, whereas Th2 and Tregs were 

associated with worse survival. Similarly, macrophage populations noted in renal cancers may be 

subdivided into pro-inflammatory M1 cells and anti-inflammatory M2 cells [228], highlighting the 

importance of characterising immune cell subpopulations. Although the immune composition in 

ccRCC is not a focus of my PhD project, this is a very interesting area for further research. 

 

My findings on methylation heterogeneity have important implications for future biomarker studies. 

Heterogeneity between patients may hamper biomarker identification. For example, a systematic 

review of prognostic methylation markers in ccRCC demonstrated that GREM1 was associated with 

patient survival in some studies, but not others [67, 341]. Van Vlodrop et al showed that the 

prevalence of hypermethylation in ccRCC patients ranged between 20 and 50% depending on the 

CpG island evaluated [342], and this could explain the conflicting results noted. The presence of 
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disordered methylation within an e-locus may contribute to difficulties in externally validating 

biomarkers. For example, one CpG may demonstrate hypermethylation relative to normal, whereas 

the adjacent CpG may demonstrate hypomethylation. Distinct methods (e.g. 450k array, RRBS and 

Epic-seq) may cover different CpGs within the promoter region of the same gene, therefore studies 

utilising different platforms may fail to show consistent results. These findings highlight the 

importance of evaluating (and reporting) CpG level data, rather than simply gene level data. Studies 

have shown that transcriptional silencing may be regulated by hypermethylation at a single CpG or a 

handful of sites (rather than requiring hypermethylation of an entire region) [343]. This could explain 

why epipolymorphism predicts gene expression, independently from average methylation, in my 

data. Disordered methylation per se could be a valuable biomarker of ccRCC in selected genes. The 

high level of methylation heterogeneity (epipolymorphism) within a locus will have profound 

implications for the design and interpretation of diagnostic assays (depending on the target CpGs 

analysed).  

 

In summary, to the best of my knowledge, this analysis represents the most systematic 

characterization of ccRCC methylation heterogeneity. Although a handful of studies have evaluated 

methylation heterogeneity in ccRCC [127, 135, 136], my work is novel in that it compares 

methylation and SCNA heterogeneity, adopts a comprehensive approach and has the largest sample 

sizes to date. My analysis is the first to evaluate epipolymorphism using sequence level methylation 

data (Epic-seq) in kidney cancer, a method which is considered the most informative approach in the 

absence of single cell methylome sequencing [344], and provides added value over array-based 

methods such as 450k array. In conclusion, this chapter comprehensively characterises methylation 

heterogeneity in ccRCC tissue between patients, within a patient and within a sample. Importantly, I 

focus on how this analysis can help us select better biomarkers and how future research studies can 

avoid common pitfalls. 

 



 
185 

Chapter 7 DNA methylation in liquid samples 

7.1 Brief introduction 
 
Cell free DNA (cfDNA) has recently attracted substantial interest from the translational research 

community due to its potential role as a cancer biomarker [149]. My thesis has identified two main 

research questions of interest, namely improved diagnosis of small renal masses (SRMs) and 

improved risk-stratification in patients with non-metastatic RCC, both of which could be greatly 

enhanced by tumour derived cfDNA (ctDNA) detection. For example, ctDNA could be used as a non-

invasive liquid biopsy (replacing renal biopsy) to aid diagnosis in patients with SRMs, therefore 

reducing overdiagnosis and overtreatment. There are, however, several challenges associated with 

ctDNA detection and for RCC in particular. 

 

Levels of ctDNA vary between cancer types and early reports suggested that patients with ccRCC 

may have lower ctDNA levels compared to other malignancies [153, 155-157, 345]. For example, 

Zhang et al performed deep sequencing of cfDNA (targeting single nucleotide variants, 

insertions/deletions, copy number aberrations and chromosomal rearrangements) and detected 

ctDNA in ~56% of patients with renal cancer (63% in stage IV RCC). Evaluating >10,000 cfDNA 

samples, demonstrated that detection rates in RCC were lower than 22 other cancer types [157]. It 

was postulated that low detection rates may be partly explained by the use of a pan-cancer assay, 

however, RCC-specific mutational panels have also yielded disappointing results. Pal et al evaluated 

the Guardant360 assay (Guardant Health) in plasma cfDNA derived from 220 patients with 

metastatic RCC (mRCC) and reported detection rates of 79% [346]. The Guardant360 test detects 

single nucleotide variants (SNV), insertions/deletions (indels) and copy number amplifications in 73 

genes known to be affected in RCC. The study by Pal et al identified a median of 1 genomic 

alteration per patient (IQR: 0-3), demonstrating how the low frequency of genomic changes may 

hamper detection even in advanced disease. Increasing the number of mutations targeted or 

targeting patient-specific mutations has been postulated as an alternative strategy to enhance 

sensitivity. Smith et al sequenced nephrectomy samples to identify patient-specific mutations and 

generated custom panels for ctDNA detection using the ‘Integration of Variant Reads-Tailored Panel 

Sequencing’ (INVAR-TAPAS) pipeline [158]. Despite adopting a sensitive, personalised approach to 

mutational analysis, detection rates were disappointing once again. Including patients of all ccRCC 

stages, ctDNA was only detected in ~50% of pre-operative samples. In a separate study by the same 

group, using the same INVAR-TAPAS pipeline yielded much lower ctDNA detection rates in patients 

with RCC (42%) compared to patients with melanoma (96%), glioma (75%), breast (100%) and non-
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small cell lung cancer (63%) [347]. The largest mutational analysis of ctDNA in renal cancer to date 

(N=920 samples), demonstrated detection rates of 72% in mRCC, despite this being the group of 

patients with the most advanced disease burden and therefore highest likelihood of detection [348]. 

It is unclear whether ctDNA levels are truly lower in RCC compared to other malignancies (due to 

some yet undiscovered biological process) or whether detection is limited by extensive intra-

tumoural genomic heterogeneity and the low frequency of recurrent mutations [349]. This has 

driven the search for alternative strategies. 

 

One of the potential approaches to improve sensitivity is to increase the number of targets analysed 

at high sequencing coverage [154], for example by targeting methylation markers which are orders 

of magnitude more abundant than mutations and are frequently early (clonal/truncal) events. In 

other cancer types, this has proved a successful strategy. Chen et al developed PanSeer, evaluating 

methylation at 10,613 CpG sites across 477 genomic regions in plasma derived cfDNA to detect five 

cancer types [350]. The test achieved excellent accuracy in patients with known cancer. In addition, 

PanSeer identified ctDNA in 95% (95% CI: 89–98%) of asymptomatic individuals who were later 

diagnosed with cancer up to four years prior to the development of symptoms, demonstrating the 

potential for use as an early diagnostic test [350]. Similarly, a high profile biotech company (GRAIL) 

evaluated >100,000 informative methylation regions (including >1 million CpGs) to detect 12 cancer 

types in cancer patients and healthy controls [351]. Sensitivity for the 12 cancers (stages I-IV) was 

77.9% (95% CI: 75.0% to 80.7%), increasing with more advanced disease stage [151]. However, once 

again, it was noted that sensitivity in RCC, using this pan-cancer assay, was much lower than other 

cancer subtypes [151,351]. I hypothesized that targeting RCC-specific methylation markers may 

provide superior results compared to pan-cancer markers. Thus far, perhaps the most promising 

results were reported by Nuzzo et al [159]. The authors evaluated ctDNA methylation in patients 

with RCC using ‘cell-free methylated DNA immunoprecipitation and high-throughput sequencing’ 

(cfMeDIP–seq). This method enabled detection of ctDNA in patients with RCC across the spectrum of 

disease severity, achieving an overall Receiver Operating Characteristic area under the curve (ROC 

AUC) of 0.99. In a head-to-head comparison, cfMeDIP-seq was significantly more sensitive than 

ctDNA mutational variant analysis in 34 patients with mRCC [352]. Whereas mutational analysis 

detected variants in 21% of mRCC patients, cfMeDIP-seq achieved 100% sensitivity with 88% 

specificity. This suggests methylation analysis of ctDNA in renal cancer may be a promising strategy 

warranting further investigation. 
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In summary, these initial reports suggest that methylation markers may enable superior detection of 

ctDNA in RCC compared to mutational analysis, however, low levels of ctDNA may pose a significant 

challenge. Proximal sampling, i.e. collecting cfDNA from fluids closer to the tumour, has been 

proposed as a method to increase detection of ctDNA in many cancer types, however this has not 

yet been trialled in RCC. I postulated that in patients undergoing renal biopsy, blood and fluid may 

be collected non-invasively from the biopsy site using a needle and syringe, and that this (referred to 

as ‘post-biopsy fluid’) represents a proximal sample. I hypothesized that this fluid may be enriched 

for ctDNA secondary to tumour puncture during biopsy (akin to fine needle aspiration) and that 

bleeding directly from the tumour may also contain higher levels of ctDNA than peripheral venous 

blood (a distal sample). I sought to explore this topic further, as this strategy could represent a 

useful adjunct to aid diagnosis in patients with SRMs undergoing renal biopsy where plasma ctDNA 

levels might be prohibitively low. 

 

Therefore, in this chapter, I aimed to develop a methylation panel to detect ctDNA in ccRCC patients. 

In addition, I compared ctDNA detection rates using methylation versus mutational analysis, and 

evaluated proximal versus distal sampling strategies. This chapter represents an initial study to 

investigate the feasibility of this approach in a relatively small number of patients with a spectrum of 

disease severity. If successful, it is envisioned that this work may inform the design of a larger study 

in future. 

 

7.2 Chapter aims 
 

Overall, this chapter aimed to adapt Nimbus (Non-destructive Integration of Methylation to Boost 

Underlying Signals), a novel method for targeted methylation analysis established in our research 

group, to detect cfDNA derived from patients with and without ccRCC. The following aims were 

addressed: 

1. Design a panel for targeted ctDNA methylation analysis by identifying DNA methylation 

markers that differentiate ccRCC from normal kidney in nephrectomy tissue samples  

2. Assess ccRCC Nimbus panel performance using experimental quality control metrics 

3. Determine ctDNA detection rates for ccRCC patients compared to cancer-free controls using 

Nimbus targeted methylation analysis of plasma cfDNA 

4. Compare ctDNA detection rates in ccRCC patients using methylation (Nimbus) compared to 

mutational analysis (INVAR-TAPAS) and explore associations with clinical parameters 

5. Explore proximal sampling as a method to increase ctDNA detection in RCC 
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7.3 Results 
 

This chapter is divided into two main sections. The first part describes the Nimbus panel design and 

an initial evaluation of quality control metrics (sections 7.3.1-7.3.3). The second section covers 

Nimbus analysis in plasma cfDNA and proximal samples from patients with and without renal 

tumours (sections 7.3.4-7.3.6; Figure 7.1). 

 

 
Figure 7.1: Overview of workflow for ctDNA methylation analysis methods 

Panel A- Nimbus couples enzymatic conversion, single stranded (ssDNA) library preparation and targeted 
capture sequencing along with a bespoke bioinformatics pipeline to derive tumour-specific signals. Tissue 
analysis is performed to determine differentially methylated regions (DMRs) that can distinguish ccRCC from 
normal kidney and these markers are included in the Nimbus panel (i.e. regions of interest to be captured, 
see Panel B). Panel B- Methods used to identify informative methylation markers and evaluate performance 
of the panel. Genome-wide DNA methylation analysis was performed in tissue in order to identify a panel of 
DMRs that can distinguish ccRCC from normal kidney. These markers were applied to DNA isolated from 
tissue and cell line supernatant (to assess quality control metrics) prior to proceeding to human cfDNA 
analysis. 
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 Nimbus: targeted DNA methylation analysis in cfDNA 

 

Non-destructive Integration of Methylation to Boost Underlying Signals (Nimbus) is a novel, highly 

sensitive method for cfDNA analysis. Nimbus couples optimized cfDNA methylation library 

preparation with a sophisticated bioinformatics pipeline to increase ctDNA detection rates. Nimbus 

refers to both wet lab and dry lab experimental methods (Figure 7.1A). This workflow was developed 

by Drs Park and Lach (postdoctoral research associates in the Massie laboratory) and I played an 

active role in method development and optimization. In summary, enzymatic conversion is 

performed using the NEB Next Enzymatic Methyl-seq Kit (New England BioLabs). TET2 oxidises 

methylated cytosines, subsequently APOBEC deaminates unmethylated cytosines into uracils whilst 

sparing methylated cytosines due to the previous TET2 action. Enzymatic conversion is non-

destructive, therefore reducing fragmentation and loss of cfDNA compared to biochemically harsh 

bisulphite conversion (Park et al, unpublished). Conversion is followed by optimized single stranded 

library preparation and targeted hybridization capture of thousands of methylation markers (Figure 

7.1A). The method has previously been successfully applied to plasma ctDNA from prostate cancer 

patients, and I sought to adapt Nimbus to enable detection of ctDNA in ccRCC patient samples. 

 

In order to adapt Nimbus to my desired application, I first sought to create a custom methylation 

marker panel specific to ccRCC (Figure 7.1A-B). I performed genome-wide DNA methylation analysis 

in tissue to identify a panel of differentially methylated regions (DMRs) that can distinguish ccRCC 

from normal kidney, and are therefore useful methylation markers for ctDNA analysis. Subsequently, 

I refined these tissue-derived DMRs to select those which were most informative in plasma cfDNA 

(as described in the Methods section 4.8.1). Capture probes were designed to target these DMRs. I 

applied this marker panel to DNA isolated from tissue and cell line supernatant (to assess quality 

control metrics) prior to proceeding to an analysis of human cfDNA. 
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Figure 7.2: Tissue analysis in ccRCC vs normal kidney to determine methylation panel for Nimbus 
cfDNA analysis 

Panel A- Annotation of differentially methylated regions (DMRs) derived from tissue analysis comparing 
ccRCC vs normal kidney. Hypermethylated DMRs are more commonly located in gene promoters, whereas 
hypomethylated DMRs are located in distal intergenic regions and introns. Panel B- Boxplots demonstrating 
the number of CpGs within a DMR, for hypermethylated and hypomethylated regions. Panel C- Locus plot of 
a representative hypomethylated DMR. Methylation levels (y axis) are shown for each CpG (x axis) within 
the region. There is clear hypomethylation in ccRCC (pink) relative to normal kidney (blue). Panel D and E- 
Principal component analysis (PCA) plot using data from the 5801 DMRs identified in tissue, in the discovery 
cohort (N=71 ccRCC and normal kidney samples), as well as an independent validation cohort (N=159 ccRCC 
and normal kidney samples). The discovery cohort refers to the original set of samples that the 5801 DMRs 
were identified in. 
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 Selection of informative methylation marker panel in tissue to be used 

in Nimbus 

 

I aimed to identify DNA methylation markers in tissue that differentiate ccRCC from normal kidney, 

which could be applied to detect ccRCC ctDNA in plasma. To allow testing of the Nimbus ctDNA 

methylation assay within the timelines for my PhD project, the Nimbus ccRCC targeted panel was 

designed using an initial dataset from my tissue analysis (N=75 samples from 21 patients). While this 

cohort was sufficient to identify a set of recurrent DNA methylation markers, future iterations could 

be extended to include the larger set of markers identified in Chapter 5 and Chapter 6.  

 

Figure 7.1B summarises the workflow used to identify and evaluate the informative methylation 

marker panel for ccRCC. I generated sequence-level DNA methylation data using Epic-seq in fresh 

frozen tissue samples from patients undergoing curative or cytoreductive nephrectomy at 

Addenbrooke’s Hospital (see Methods section 4.8.1). Multi-region samples (N=75) were obtained, 

consisting of renal tumour and adjacent normal tissue. This included 53 ccRCC tissue samples from 

15 patients, and 22 normal kidney samples from 21 patients (15 from patients with ccRCC, 2 from 

patients with oncocytomas and 4 from patients with chRCC). Using the ‘dmrseq’ package in R, I 

identified 16,441 genomic regions that were differentially methylated in ccRCC versus normal 

kidney, at a q value of < 0.01 [188].  

 

In order to identify which DMRs selected from tissue analysis would be useful candidate markers in 

blood plasma, data were obtained from 32 healthy (cancer-free) controls from a previously 

published study [221]. DMRs were selected if there was a >60% methylation difference between 

ccRCC tissue and healthy control cfDNA samples, to maximise chances of detecting a methylation 

difference. This analysis identified 5801 informative DMRs (2183 hypermethylated and 3618 

hypomethylated) in ccRCC compared to normal kidney and healthy control cfDNA. The proportion of 

hyper- and hypomethylated DMRs is in keeping with results of Chapter 5, which demonstrated that 

indeed when comparing ccRCC versus normal tissue, there are approximately 1.6 times more 

hypomethylated than hypermethylated regions. As expected, the hypermethylated DMRs were 

more likely to be located in gene promoters, whereas hypomethylated DMRs were more commonly 

located in distal intergenic or intronic regions (Figure 7.2A). In hypermethylated regions there were a 

median of 29 CpGs (IQR: 17-46), whereas for hypomethylated regions there were a median of 7 

CpGs (IQR: 5-10; Figure 7.2B). This is also in keeping with known data, since hypermethylation tends 

to occur at CpG islands, regions with a high CpG density.  
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I explored methylation levels at these 5801 DMRs in tissue samples to confirm that these were 

appropriate markers to take forward into subsequent analysis. Figure 7.2C shows a representative 

DMR included in the panel, demonstrating clear hypomethylation in ccRCC tissue compared to 

normal kidney, as expected. Methylation levels in normal kidney tissue (shown in blue) tend to have 

low variance, whilst there is a much greater spread of methylation levels in ccRCC (shown in pink). 

Next, I evaluated Epic-seq data in an independent cohort of ccRCC and normal kidney tissue samples 

to ensure results were reproducible and generalisable (N=159). I created a PCA plot using data from 

these 5801 DMRs in the discovery cohort (N=71), as well as the validation cohort (N=159). Figure 

7.2D and E suggest that once again there was more variance in tumour than normal kidney, possibly 

reflecting tumour cellularity or differences in clonality of these markers between samples, in keeping 

with results from Chapter 5 and Chapter 6. In both the discovery and validation cohorts, the selected 

panel of CpGs differentiated tumour versus normal tissue (Figure 7.2D-E), suggesting these may be 

appropriate markers to take forward into cfDNA analysis.  

 
 

 Nimbus quality control metrics 

As already alluded to, Nimbus is a novel approach developed in our research group and I played an 

active role in method development. Herein, I compare Nimbus to a commercially available method 

(Epic-seq) and evaluate quality control (QC) metrics in cell lines, to ensure adequate performance 

prior to proceeding to human cfDNA samples. 

 
 
7.3.3.1 Comparison with established commercially available methods 
 
In order to compare Nimbus against commercially available methods, I analysed a gDNA sample 

derived from human ccRCC tissue using both the established Epic-seq (Illumina) and our in-house 

Nimbus protocol. A tissue sample was selected for this comparison because the minimum input for 

Epic-seq is 500ng, precluding analysis of low input cfDNA samples. I focused my analysis on CpGs 

which achieved ≥10x minimum coverage using both methods (N= 129,797 CpGs). Correlation 

between Epic-seq and Nimbus was 0.94, and the Bland Altman plot demonstrates that the vast 

majority of CpGs have the same percentage methylation using the two methods (i.e. for the majority 

of CpGs the difference between values obtained using the two methods is zero; Figure 7.3A). 
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Figure 7.3: Quality control metrics for cell line supernatant and gDNA sequenced using Nimbus 

Panel A- Bland Altman plot for one gDNA ccRCC tissue sample sequenced using Epic-seq and Nimbus. 
Density plots are shown above the x- and y- axes. Panel B- Distribution of sequencing reads for four cell line 
samples analysed using Nimbus, showing the proportion of unaligned, duplicate, and unique reads. 786-
M1A cell line replicates (rep1 and rep2) represent a model system of ccRCC, whereas HK2 cell line replicates 
(rep1 and rep2) represent a model system of renal proximal tubule cells. Panel C- Sequencing coverage for 
CpGs which are on-target (ccRCC DMR panel) and off-target respectively.  
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7.3.3.2 Quality control in cell lines 
 
I applied Nimbus to DNA extracted from cell line supernatant to ensure adequate performance and 

baseline QC in low-input, fragmented cfDNA prior to evaluating human plasma samples. I therefore 

applied the Nimbus ccRCC panel to DNA derived from HK2 cells (2 technical replicates) and 786-M1A 

cells (2 technical replicates), which represent model systems for normal kidney epithelial cells and 

ccRCC respectively. Cell line supernatant (rather than gDNA) was selected as a surrogate for highly 

fragmented cfDNA, both of which exhibit a nucleosomal fragmentation pattern. For these samples, 

median alignment rate was 61.6% (IQR: 61.0-62.6%) and median duplication rate was 36.6% (IQR: 

35.9-37.3%; Figure 7.3B). Samples achieved a median of ~13 million unique reads (median: 

1.33e+07; IQR: 1.19e+07 to 1.48e+07). Figure 7.3B shows the percentage of reads which aligned to 

the human reference genome, and of those, the proportion which represent uniquely mapped 

versus duplicate reads. Consistent results were achieved for all samples analysed, demonstrating 

technical reproducibility of the Nimbus workflow. Median CHH and CHG methylation were 0.3% 

(IQR: 0.3-0.3) and 0.4% (IQR: 0.4%-0.4%), indicating there is no evidence of under-conversion and 

the tight distribution of values demonstrates consistency of assay performance.  

 

Next, the efficiency of the capture panel was evaluated using standard metrics. In this cell line 

experiment, 99% of the regions of interest were captured at a coverage ≥1x (median 99.4%, IQR: 

99.4-99.5%). The on-target rate is defined as the percentage of aligned and unique bases which are 

captured by the panel (i.e. bases which are located within the target panel ±150bp, the latter being 

the length of a sequencing read). The median on-target rate was 26.5% (IQR: 26.1-27.0%) and the 

median coverage on-target was 88x (IQR: 78-99x). The on-target bases are highly enriched compared 

to off-target bases (median fold enrichment 126, IQR: 123-128). Figure 7.3C demonstrates coverage 

in on-target versus off-target CpGs (rather than all bases) and suggests high on-target rates; 

coverage is orders of magnitude higher for captured regions of interest, compared to non-target 

regions. Limiting the analysis to the target regions of interest and coverage ≥10x, methylation results 

were reproducible, with technical replicates achieving a Pearson correlation coefficient of 0.97 and 

0.98 for HK2 and 786-M1A cell lines respectively. Overall, this analysis demonstrated sufficiently 

satisfactory QC metrics to proceed to an analysis of human cfDNA samples. 
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7.3.3.3 Quality control in plasma samples 
 
Next, I performed Nimbus on 67 cfDNA samples derived from human plasma and evaluated QC 

metrics to ensure the method was achieving expected standards using low input cfDNA. These 

samples were derived from 30 ccRCC patients and 37 controls. Further details regarding cohort 

characteristics are described in section 7.3.4. Median alignment to the reference genome was 70.4% 

(IQR: 67.2-72.3%; Figure 7.4A). The median duplication rate was 51.3% (IQR: 46.4-58.8%; Figure 

7.4A), which was considerably higher than that for cell lines (discussed further in section 7.4.1). 

Following alignment and de-duplication, samples achieved a median of ~9 million unique reads 

(median: 9.05e+06; IQR: 7.46e+06 to 1.06e+07) (Figure 7.4B). In the pilot study (N=67), there was 

only one sample which achieved a rate >1% for CHH and CHG methylation (i.e. non CpG 

methylation), which indicates under-conversion (sample 6022). Median CHH and CHG methylation 

were 0.2% (IQR: 0.2-0.2%, max: 1.2%) and 0.2% (IQR: 0.2-0.2%, max: 1.1%) respectively (Figure 7.4C), 

demonstrating high efficiency conversion of unmethylated cytosines across this cohort of cfDNA 

samples. 

 

Subsequently, QC metrics relating to the capture panel were assessed. Generally, 99% of the regions 

of interest were captured at a coverage ≥ 1x (median 99.3%, IQR: 99.2-99.4%), which is similar to 

that achieved in cell line experiments. The median on-target rate was 11.1% (IQR: 9.0-13.5%), 

however 4 samples achieved an on-target rate <5% (samples 7387, 5826, 5848 and 5998; Figure 

7.4D). The median coverage on-target was 25x (IQR: 19-35), however 4 samples achieved <10x 

median coverage on-target (samples 5826, 5846, 5848, 5998; Figure 7.4E). Median fold-enrichment 

on-target compared to off-target was 53-fold (IQR: 42-64; Figure 7.4F). In summary, although 

relatively low on-target rate and low coverage were noted (particularly in some samples), the high 

on-target fold enrichment is reassuring. Taken together, these results suggest generally consistent 

performance of the ccRCC Nimbus panel. Generally, QC metrics were sufficiently satisfactory to 

proceed to analysis of cfDNA detection, however, there is scope for further optimization of library 

preparation and sequencing strategies to improve the ccRCC Nimbus workflow in future studies (as 

discussed in section 7.4.1). 
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Figure 7.4: Quality control for human plasma cfDNA sequenced using Nimbus 

Panel A- Distribution of sequenced reads for plasma cfDNA samples analysed using Nimbus, showing the 
proportion of unaligned, duplicate, and unique reads. Panel B- Boxplot showing the total number of unique 
reads obtained following alignment and de-duplication. Panel C- Boxplot of non-CpG (CHH) methylation 
signal detected. Panel D- Boxplot showing the on-target rate for the ccRCC Nimbus panel. Panel E- Median 
coverage for on-target bases. Panel F- Fold enrichment in on-target compared to off-target bases. 
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 Targeted methylation analysis in plasma cfDNA from patients with 

ccRCC and controls 

 

I performed Nimbus on a discovery cohort consisting of plasma cfDNA derived from 67 patients with 

ccRCC (N=30) and cancer-free controls (N=37). Patients with ccRCC were selected across the disease 

spectrum to enable an evaluation of ctDNA detection rates at different stages (6 patients with stage 

I-II, 6 patients with stage III and 18 with stage IV). Patient demographics were known for a subset of 

the cohort (Table 7.1). Cancer-free controls (N=37) consisted of individuals who did not have 

(known) evidence of renal cancer. These are referred to as ‘controls’ for the duration of the Chapter. 

Controls were selected pragmatically based on sample availability and came from a cohort of 

individuals with benign disease on prostate biopsy and no evidence of cancer on clinical follow up. 

Unfortunately, clinical and demographic data were not known for all patients at the time of writing 

(although this data has been requested).  

 

The following section describes the approach used to calculate Nimbus assay scores and how this 

was applied to my discovery cohort (plasma cfDNA derived from 30 ccRCC patients and 37 controls). 

Nimbus includes an automated bioinformatics pipeline, which produces a Nimbus score for each 

sample. As described above (section 7.3.2), I identified DNA methylation markers included in the 

Nimbus panel by evaluating tissue (i.e. DMRs that differentiate ccRCC vs normal kidney) and filtered 

these against healthy plasma cfDNA methylomes. DMRs (N=5801) in the panel can thus be 

subdivided into those that are hypo- and hypermethylated in ccRCC vs normal kidney, and these will 

be referred to as such for the remainder of the Chapter. It is acknowledged that a number of these 

DMRs may not be adequate markers in plasma cfDNA, which is enriched in blood cells (whereas 

normal kidney was the comparator in tissue). Thus, the first step in the Nimbus pipeline is to 

determine which of the DMRs included in the panel are informative in plasma by assessing 

methylation levels in cfDNA from controls, for each read. Twenty cfDNA samples were randomly 

selected from controls to determine background methylation levels in cancer-free individuals 

(referred to as the ‘background set’ hereafter). DMRs were considered informative if background 

methylation levels in the background set were different to the expected methylation levels from 

ccRCC tissue. Using this method, 1347 hypomethylated and 1529 hypermethylated informative 

DMRs were identified (uninformative DMRs were excluded).  
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Figure 7.5: Nimbus scores for plasma cfDNA samples obtained from ccRCC patients and controls 

Panel A- Nimbus scores, derived using hypermethylated differentially methylated regions (DMRs), for 
plasma cfDNA samples. The boxplots on the left demonstrate scores in ccRCC patient plasma samples 
(N=30) versus control (N=17). The panel on the right subdivides ccRCC samples by stage (stage I-II, stage III 
and stage IV). Panel B- Receiver operating characteristic (ROC) curve for Nimbus scores derived using 
hypermethylated DMRs, to distinguish ccRCC patients from controls. The area under the curve (AUC) is 
shown. Panel C- Nimbus scores, derived using hypomethylated DMRs, for plasma cfDNA samples. The 
boxplots on the left demonstrate scores in ccRCC patient plasma samples (N=30) versus control (N=17). The 
panel on the right subdivides ccRCC samples by stage (stage I-II, stage III and stage IV). The dotted blue line 
indicates the Nimbus score threshold which maximizes sensitivity and specificity in the training cohort 
(score=201), achieving 0.941 specificity and 0.967 sensitivity. Panel D- ROC curve (and AUC) for Nimbus 
scores derived using hypomethylated DMRs, to distinguish ccRCC patients from controls.  
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Subsequently, I evaluated methylation levels using Nimbus scores in cfDNA samples from 30 ccRCC 

and the remaining 17 controls (Nimbus scores generated by Dr Lach, Massie Group). For each cfDNA 

sample, each read is assessed in turn, and the bioinformatic pipeline calculates the score (similar to 

the likelihood) that the read is tumour derived by comparing the distribution of methylation levels in 

the sample compared to the background set (i.e. 20 separate cancer-free controls). Individual scores 

per read were summarised into an overall score per patient, by adding the log of the individual read 

level scores. This produces an overall Nimbus score that can be compared for individual samples. 

Importantly, reads which contain non-CpG methylation (CHH/CHG) >1% are discarded as these 

demonstrate evidence of DNA fragment under-conversion (e.g. resulting from non-denatured 

template molecules in the conversion reaction). This approach enables us to discard individual reads 

rather than an entire sample based on non CpG-methylation, thus maximizing available data. In 

addition, Nimbus scores are normalised based on the number of high-quality reads per million, to 

enable accurate comparisons between samples which are not confounded by variations in total 

sequencing read counts. High-quality reads were defined as reads which contain at least one CpG, 

did not demonstrate non-CpG methylation >1% and have a high probability of being correctly 

aligned to the reference genome (mapping quality score ≥40). 

 

I assessed Nimbus scores for DMRs which are hypermethylated and hypomethylated in ccRCC 

separately, to determine which provides superior discriminatory power to distinguishing ccRCC from 

controls. Evaluating hypermethylated DMRs, there was no significant difference in Nimbus scores in 

cfDNA derived from ccRCC versus controls; Benjamini Hochberg (BH) adjusted p value >0.05 (Figure 

7.5A). There was a trend towards higher Nimbus scores in patients with metastatic compared to 

non-metastatic disease (median 783, IQR: 337-1440 vs median 350, IQR: 278-537, BH adjusted p 

value = 0.078), however this was mostly driven by three patients with stage IV RCC who had very 

high scores and were obvious outliers (Figure 7.5A). Figure 7.5B demonstrates the receiver operating 

characteristic (ROC) curve for hypermethylated DMRs, highlighting sensitivity and specificity at 

different Nimbus score thresholds. As expected based on Figure 7.5A, the area under the curve 

(AUC) was very low. 

 

Next, I evaluated hypomethylated DMRs and demonstrated a clear, significantly higher score in 

ccRCC compared to controls (median 609, IQR: 298-701 vs median 144, IQR: 134-164; BH adjusted p 

value =7.9e-09; Figure 7.5C). Scores were significantly higher in stage IV disease than stage I-III 

(median 676, IQR: 627-808 vs median 307, IQR: 262-382, BH adjusted p value = 0.0009, Figure 7.5C). 

Therefore, hypomethylated DMRs were selected to be taken forward for all subsequent analyses. 
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Figure 7.5D shows the ROC curve for hypomethylated DMRs, resulting in an AUC of 0.96 (95% CI: 

0.90-1.0). The Nimbus score threshold which maximizes sensitivity and specificity was 201, achieving 

0.94 specificity and 0.97 sensitivity (i.e. misclassifies 1/17 control and 1/30 ccRCC samples, as shown 

in Figure 7.5C). One ccRCC sample misclassified as control was derived from a patient with stage I 

disease (patient 5848). This sample also had lower QC metrics than the rest of the cohort (as 

described in section 7.3.3.3). 6.4 million unique reads were obtained, the on-target rate was 3.9% 

and median coverage on-target was 6x, indicating a low number of unique molecules which may 

limit ctDNA detection. The inability to detect ctDNA using Nimbus may be due to early tumour stage 

(presumed lower total ctDNA levels) and reduced assay sensitivity due to low numbers of unique 

ctDNA molecules and associated sampling error. Overall, these results suggest that the Nimbus score 

(based on DMRs which are hypomethylated in ccRCC) can differentiate cfDNA derived from patients 

with ccRCC versus controls, with a high sensitivity and specificity. Validation in an independent, 

larger cohort is warranted. 

 
 

 Comparing methylation and mutational ctDNA analysis 

One of my initial hypotheses was that targeted methylation analysis of ctDNA may achieve superior 

detection rates than mutational analysis, therefore I sought to compare both methods in a subset of 

cfDNA plasma samples (N=14). For 14 of the ccRCC patients included in my Nimbus analysis, I was 

able to obtain data from Dr Chris Smith (Rosenfeld Group) derived from the INVAR-TAPAS method 

for patient-specific mutational analysis in cfDNA [158]. Table 7.1 summarises patient and sample 

characteristics. In brief, Dr Smith first sequenced multi-region nephrectomy samples using whole 

exome sequencing (WES) to identify patient-specific mutations, subsequently a custom panel was 

created targeting bespoke SNVs as well as 109 genes which are commonly mutated in ccRCC. The 

panel was applied to blood plasma cfDNA samples collected prior to nephrectomy. INVAR-TAPAS 

includes a bioinformatic pipeline which evaluates plasma ctDNA mutations whilst modelling 

background noise in control samples to allow custom error suppression at patient-specific 

mutations. cfDNA fragment size is also used to weight variant reads and enrich for tumour derived 

signal [347]. INVAR-TAPAS estimates a global mutant allele fraction (MAF) for each sample, where a 

MAF of 0% indicates ctDNA was not detectable. First, I evaluated INVAR-TAPAS results for the 14 

ccRCC samples, subsequently I compared these against my Nimbus methylation data.  
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Table 7.1: Characteristics of ccRCC cfDNA samples analysed using Nimbus & INVAR-TAPAS 

Clinical and sample data for 14 ccRCC cfDNA samples analysed using both methylation (Nimbus) and 
mutational (INVAR-TAPAS) approaches. The number of patient-specific mutations targeted by 
INVAR-TAPAS is shown for each patient. Some of the information included in the table was derived 
from Smith et al [158]. 
 

Patient 
ID 

Age/ 
Sex BMI Stage 

Tumour 
Size 

Vascular 
invasion Necrosis 

Ki67 
sum Pseudocapsule 

Leibovich 
score 

Mutations 
targeted 
by INVAR 

5401 77F 34 pT3a 11 cm 
Renal 
Vein Yes 7 Focal 5 156 

5532 62M 43 pT3aM1 6 cm No No 25 Focal 4 211 
5626 76M 32 pT3aM1 4.5 cm No No 42 Focal 4 73 
5644 62M 43 pT2a 7.5 cm No No 24 Focal 5 279 
5799 54M 34 pT1b 6.5 cm No No 41 Focal 2 426 

5801 74M 28 pT3a 10.8cm 
Renal 
Vein Yes 56 Yes 8 321 

5802 75F 22 pT3a 2.8 cm 
Renal 
Vein Focal 42 No 6 223 

5813 42M 28 pT3a 8.7 cm IVC No 29 No 4 371 

5818 64F 24 pT3aM1 7.4 cm 
Renal 
Vein Yes 18 Focal 6 388 

5826 77F 33 pT1b 6.1 cm No No 37 Focal 4 327 
5827 60F 32 pT1a 2.5 cm No No 36 No 0 257 

5846 62F 30 pT3a 23 cm 
Renal 
Vein No 20 Focal 6 80 

5848 66F 41 pT1b 5.4 cm No No 31 No 3 148 
5998 65M 24 pT1b 5.2 cm No No 25 Yes 2 321 

 
 

Using INVAR-TAPAS, ctDNA was detected in 50% (7/14) of plasma samples from patients with ccRCC. 

I postulated that ctDNA detection may be related to the number of patient-specific mutations that 

were identified in tissue and subsequently targeted in cfDNA analysis (Table 7.1). However, the 

number of mutations targeted was not significantly different in patients in which ctDNA was 

detected compared to those where ctDNA was not detected (median 279, IQR: 190-346 vs median 

257, IQR: 180-324; p value >0.05). Thus, in this small cohort, there was no evidence to suggest that 

the low ctDNA detection rates were due to insufficient numbers of mutations being targeted 

(although this could still be a contributing factor). I noted a significant correlation between tumour 

size and MAF estimated by INVAR-TAPAS (Pearson correlation coefficient = 0.61, BH adjusted p 

value= 0.019, Figure 7.6A). Furthermore, MAF was significantly higher in patients with vascular 

invasion compared to those without (median MAF 0.00011, IQR: 0.00007-0.00015 vs median MAF 0, 

IQR: 0-0; BH adjusted p value 0.0024; Figure 7.6B). Vascular involvement was defined as renal vein 

or inferior vena cava (IVC) invasion, and indeed the patient with IVC invasion had the second highest 

MAF. These findings are consistent with the original study by Dr Smith [158], despite the smaller 
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sample size in my cohort. Interestingly, ctDNA was not detectable by INVAR-TAPAS in 2 out of 3 

patients with mRCC and it was these two patients (patients 5532 and 5626) which were noted to 

have smaller tumours (4.5cm and 6cm) and absence of renal vein involvement. In summary, ctDNA 

MAF was associated with increased tumour size and vascular invasion, suggesting tumour 

proliferation and shedding of ctDNA into the bloodstream may determine the amount of ctDNA 

present which may be detected by targeted mutational analysis. 

 

Next, I compared plasma ctDNA detection rates using my ccRCC Nimbus methylation assay to the 

INVAR-TAPAS mutational analysis. For Nimbus, I evaluated hypomethylated DMRs as these were 

superior to hypermethylated DMRs and used the previously defined threshold (Nimbus score > 201; 

see section 7.3.4). ctDNA detection rates were significantly higher using Nimbus (13/14 patients) 

compared to INVAR-TAPAS (7/14 patients) (Detection rate 93% vs 50%; p value = 0.036). I aimed to 

evaluate whether there was a quantitative relationship between Nimbus scores and INVAR-TAPAS 

output. There was no significant difference in Nimbus score in patients in which ctDNA was detected 

by INVAR-TAPAS compared to those where ctDNA was not detected (p value > 0.05; Figure 7.6C). 

There was no significant correlation between ctDNA MAF estimated by INVAR-TAPAS and Nimbus 

scores (p value > 0.05). However, some consistencies were noted amongst the two methods. The 

one false-negative using Nimbus (patient 5848) did not have ctDNA detected by INVAR-TAPAS. 

Furthermore, two mRCC plasma samples (patients 5532 and 5626) had relatively lower Nimbus 

scores (score <300) compared to other mRCC samples, and INVAR-TAPAS was unable to detect 

ctDNA in these individuals. Furthermore, I sought to explore the relationship between the Nimbus 

score and clinical parameters. There was no significant association (BH adjusted p value > 0.05) 

between Nimbus scores and the following patient and tumour characteristics: age, sex, BMI, tumour 

size, vascular invasion, tumour proliferation (ki67) and presence of a pseudocapsule (Figure 7.6D-E). 

However, results may be biased by the small total sample size (N=14) and limited numbers in 

subgroup analyses. In summary, ctDNA detection rates using targeted methylation analysis via 

Nimbus were significantly higher than detection rates using INVAR-TAPAS, suggesting that Nimbus 

might have greater clinical utility. Further validation is warranted in larger cohorts of samples with 

linked clinical and outcome data. 
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Figure 7.6: INVAR-TAPAS mutational analysis in plasma cfDNA samples obtained from ccRCC 
patients and controls 

Panel A- Mutant allele fraction obtained using INVAR-TAPAS versus tumour size (Pearson correlation 
coefficient= 0.61, adj p val= 0.019). Panel B- Mutant allele fraction obtained using INVAR-TAPAS, for patients 
with and without vascular involvement (adj p val = 0.0024). Panel C- Nimbus scores for ccRCC patients in 
which ctDNA was detected by INVAR-TAPAS compared to those where ctDNA was not detected (p val > 
0.05). Panel D- Nimbus scores vs tumour size. There was no significant correlation. Panel E- Nimbus scores 
for patients with and without vascular involvement (p val >0.05). 
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 Methylation analysis of cfDNA derived from proximal vs distal samples 

I hypothesized that proximal sampling might yield increased ctDNA detection rates compared to 

distal samples, which may be a useful clinical strategy for patients with SRMs who are expected to 

have low levels of plasma ctDNA. I therefore performed a small study to establish the feasibility of 

collecting proximal and distal samples in patients with renal tumours, with the ultimate aim of 

assessing whether proximal samples can lead to increased detection rates. For each patient, I 

collected matched renal biopsy, post-biopsy fluid (proximal sample) and plasma (distal sample). 

Post-biopsy fluid was defined as serosanguinous fluid collected from the local site following renal 

biopsy (a needle and syringe were used to aspirate liquid). The feasibility of proximal sample 

collection is described below, followed by the results of the Nimbus ccRCC panel analysis in proximal 

and distal samples. 

 

Fifteen patients undergoing renal biopsy as standard of care were approached, and 100% consented 

to participate in the study (DIAMOND biobanking study; REC ID 03/018). Biopsy indication was 

variable and included: diagnosis for indeterminate SRM or SRM considering surveillance, diagnosis of 

mRCC, or biopsy requirement for inclusion into another clinical trial at Addenbrooke’s Hospital (EASE 

and NAXIVA trials). Of the 15, two patients were excluded as the biopsy was cancelled due to clinical 

reasons (e.g. lesion too small to biopsy) and two further patients were excluded following biopsy 

results (one biopsy revealed metastatic melanoma, one biopsy was non-diagnostic). Post-biopsy 

fluid and plasma were therefore available for 11 patients, and tissue biopsy was available from 8 of 

these. The pathology and tumour stage of the cohort was mixed, with 3 patients having oncocytoma 

and 8 patients having ccRCC (including stage I, III and IV disease). The volume of post-biopsy fluid 

collected ranged between <1ml and 10ml (median: 2ml, IQR: 1-3ml; Table 7.2). The higher the 

volume of post-biopsy fluid, the higher the cfDNA content which can be extracted and processed 

using Nimbus. It was therefore unsurprising to find a strong positive correlation between the volume 

of post-biopsy fluid collected and the number of high-quality sequencing reads obtained using 

Nimbus (Pearson correlation= 0.76, p value= 0.006; Figure 7.7A). There were no obvious statistically 

significant determinants of post-biopsy fluid volume; there was no association with pathological 

diagnosis (ccRCC vs oncocytoma), biopsy technique (co-axial needle vs biopsy gun), size or stage. In 

summary, this suggests that patients are willing to participate in proximal sampling studies and that 

collecting post-biopsy fluid is feasible, although very low volumes were obtained in some patients.  

 

 

 



 
205 

Table 7.2: Clinical and sample data for 11 patients undergoing renal biopsy  

Peripheral blood, biopsy tissue and post-biopsy fluid were collected for each patient, however 
biopsies were missing for three individuals. Pathological stage is included, where known. The 
asterisk (*) indicates that the patient did not have surgery, therefore stage is presumed (radiological 
stage is reported rather than pathological stage). 
 

Patient 
ID 

Age/ 
Sex 

Co-axial 
needle 

Volume of post 
biopsy fluid 

Pathology Tumour 
Size 

Stage Biopsy 
available 

5046 78M Yes 2ml Oncocytoma 4.7 cm Benign Yes 
7425 69F Yes 5ml ccRCC 5.5 cm ypT3a Yes 
7445 78M No ~1ml + saline ccRCC 4.1 cm Stage I * Yes 
7447 71M Yes 10ml ccRCC 4.8 cm ypT3a Yes 
7459 65M Yes 2ml ccRCC 6.0 cm Stage IV Yes 
7735 79F No 2ml Oncocytoma 6.2 cm Benign Yes 
7740 67M No 2ml ccRCC 4.4 cm pT1b No 
7752 74M No ~1ml + saline Oncocytoma 2.5 cm Benign Yes 
7755 59F No 4ml ccRCC 3.5 cm pT3a No 
7756 79M Yes ~1ml + saline ccRCC 3.9 cm Stage I * No 
7757 57M No ~1ml + saline ccRCC 4.1 cm pT3a Yes 

 

 

Nimbus scores were generated for cfDNA derived from matched samples (plasma and post-biopsy 

fluid) and I compared these to assess signal in distal vs proximal samples. Evaluating paired data, 

Nimbus scores were significantly higher in post-biopsy fluid compared to plasma (BH adjusted p 

value = 0.015; Figure 7.7B). Indeed, post-biopsy fluid Nimbus scores were higher than plasma 

Nimbus scores in 82% (9/11) of patients. Subsequently, I evaluated gDNA from renal biopsy tissue as 

a proof-of-principle, as these samples would be expected to have tumour derived DNA content 

orders of magnitude higher than cell free DNA from plasma. Nimbus scores in biopsy tissue were 

significantly higher than plasma Nimbus scores (BH adjusted p value = 0.015; Figure 7.7B). In 87.5% 

(7/8) of patients, Nimbus scores derived using biopsy tissue were higher than those derived from 

post-biopsy aspirate, however this did not reach statistical significance (BH adjusted p value = 0.18; 

Figure 7.7B). The higher scores noted in biopsy tissue compared to cfDNA implies Nimbus is 

measuring reads which originate from kidney tissue and are therefore more likely to be tumour 

derived. The utility of proximal sampling is best exemplified for patient 7459, who had widespread 

metastases. Nimbus scores in plasma were relatively low, however this individual had both the 

highest Nimbus score in post-biopsy fluid and renal biopsy, and is indeed an obvious outlier in Figure 

7.7B.  
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Furthermore, I sought to evaluate if any clinical parameters were associated with Nimbus scores, 

namely tumour stage and pathological subtype. In patients with ccRCC (N=8), there was no 

significant difference in Nimbus scores in patients with stage I vs stage III-IV disease, for cfDNA 

derived from plasma or post-biopsy fluid (p value >0.05, Figure 7.7C-D). This may be due to the 

limited sample size, as in the discovery cohort (N=30, section 7.3.4), Nimbus scores were 

significantly higher in patients with metastatic vs non-metastatic ccRCC. The present analysis aimed 

to evaluate cfDNA in patients with ccRCC, but by chance, 3 patients in the study were diagnosed 

with oncocytoma following renal biopsy. There was no significant difference in Nimbus scores in 

patients with ccRCC compared to oncocytoma in cfDNA derived from plasma or post-biopsy fluid (p 

value >0.05, Figure 7.7E-F). The small samples size (only 3 patients with oncocytoma) and absence of 

oncocytoma-specific markers in the methylation panel limit the interpretation of this analysis, 

however I look forward to exploring this in future. Taken together, these data suggest tumour 

derived cfDNA may be enriched in post-biopsy fluid compared to plasma and that further research 

into this topic is warranted. 
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Figure 7.7: Nimbus scores in cfDNA derived from proximal versus distal samples, in patients with 
renal tumours 

Panel A- Scatterplot demonstrating the volume of post-biopsy fluid collected and the number of high-quality 
sequencing reads obtained using Nimbus. A strong positive correlation was noted (Pearson correlation= 
0.76, p value= 0.006). Panel B- Nimbus scores for cfDNA samples derived from plasma, post-biopsy fluid and 
renal biopsy tissue. Nimbus scores were derived using hypomethylated differentially methylated regions 
(DMRs). Panel C and D- Nimbus scores, derived using hypomethylated DMRs, for cfDNA samples derived 
from plasma (Panel C) and post-biopsy fluid (Panel D) of ccRCC patients, presented by tumour stage. Panel E 
and F- Nimbus scores, derived using hypomethylated DMRs, for cfDNA samples derived from plasma (Panel 
E) and post-biopsy fluid (Panel F) of patients with ccRCC versus oncocytoma. 
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7.4 Discussion and future direction 
 
In summary, in this chapter I aimed to evaluate ctDNA detection in patients with renal tumours vs 

cancer-free controls, via targeted DNA methylation analysis using the Nimbus method. Nimbus is a 

novel experimental method (consisting of enzymatic conversion, library preparation and targeted 

capture) and a bespoke bioinformatics pipeline for ctDNA methylation analysis which was recently 

developed in our research group (Massie laboratory). First, I evaluated methylation in gDNA from 

ccRCC and adjacent normal tissue in order to identify methylation markers that distinguish ccRCC 

tumour from normal kidney. I subsequently investigated these markers in liquid samples using 

Nimbus, including cell line supernatant and human plasma cfDNA. Cell line work was performed to 

assess quality control metrics and confirmed acceptability prior to proceeding to patient samples. In 

plasma cfDNA, I demonstrated that Nimbus achieves high accuracy in distinguishing ccRCC from 

controls (AUC=0.96) and that detection rates are superior compared to mutational ctDNA analysis 

using INVAR-TAPAS. Lastly, I demonstrate that Nimbus signal may be enriched in post-biopsy fluid 

compared to plasma, suggesting the potential utility of proximal sampling. 

 

 The Nimbus method and quality control metrics 

I evaluated Nimbus QC metrics, reflecting on current methodological strengths and potential 

challenges, and highlighting areas for future method optimization. I compared QC metrics in DNA 

derived from cell line supernatant and human plasma. Following sequencing, alignment rates to the 

reference genome were ~70%. This is in keeping with published methods evaluating DNA 

methylation analysis in ctDNA which achieved rates of 60-80% [353]. Non-CpG methylation rates, a 

measure of under-conversion in the first enzymatic step, were also very consistent (<1% in all but 

one sample). Comparing cell line and human cfDNA sample results, the main finding was that the 

latter demonstrated lower numbers of unique reads (which was more pronounced in certain 

samples) and was associated with a high duplication rate, low on-target rate and low coverage. The 

high duplication rate is likely to reflect the low starting material in cfDNA (low number of unique 

molecules), which necessitates use of a high number of PCR cycles. Indeed, the starting material for 

cell line experiments was 50ng, whereas only 10ng were used for cfDNA due to sample availability, 

and this represents a real-world challenge. The low starting input is exacerbated by steps within the 

protocol which lead to DNA degradation or loss. Nimbus uses enzymatic conversion rather than 

bisulphite conversion to minimize DNA degradation associated with the latter (estimated to be 

~90%) [354]. The enzymatic method therefore retains the cfDNA’s native fragmentation pattern and 

reduces DNA loss. However, the Nimbus protocol requires multiple bead-based washes during 
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enzymatic conversion and library preparation (prior to PCR amplification) which leads to loss of 

complexity and fewer unique molecules. Future optimization experiments will aim to minimise DNA 

loss during sequential wash steps. In addition, alternative library preparation methods, which 

include fewer wash steps, can be trialled (for example NEB EM-seq) [355].  

 

Important considerations for capture-based methods include minimising off-target rates and 

maximising efficiency of recovering target loci. The low on-target rates in my data (median ~11%) 

may suggest relatively inefficient capture, and the low coverage may impact the sensitivity to detect 

markers of interest. The relatively low on-target rate may be consistent with deep redundant 

sequencing (i.e. saturating coverage of target regions, resulting in higher on-target duplication rates 

and inflation of off-target regions in de-duplicated data). In contrast, the high on-target fold-

enrichment shows that the ccRCC capture panel has successfully been enriched, although the low 

on-target unique coverage reflects the limited complexity (genome equivalents) in the final 

sequencing data. Down sampling analysis and alternative capture-based methods are currently 

being explored to determine whether on-target rates can be improved in my future work, aiming to 

increase enrichment of desired targets. These optimization steps could improve the efficiency of our 

current method, which would be key to allow future integration into clinical practice. Although 

beyond the scope of the present analysis, future work could also explore pre-analytical steps (such 

as type of blood collection tube used, centrifugation and extraction protocols) to maximise ctDNA 

yields and enable simultaneous collection of multiple analytes (such as ctDNA, miRNAs, proteins etc) 

[356]. 

 

 Defining a methylation panel for targeted analysis in Nimbus 

I hypothesize that refining my target methylation panel could lead to further methodological 

improvements. In section 4.8.1, I identified significant DMRs in ccRCC versus normal kidney tissue 

and included these in a methylation panel which was evaluated in cfDNA using Nimbus. A number of 

these DMRs did not prove to be informative in cfDNA analysis. Intuitively, it might be postulated that 

DMRs which are hypermethylated in ccRCC might be better markers than hypomethylated DMRs as 

the former contain more CpGs per read (as shown in Figure 7.2). However, my results demonstrate 

that regions which are hypomethylated in ccRCC distinguish tumour from control cfDNA whilst 

hypermethylated regions did not, an observation which was consistent in other cancer types tested 

in our group. Preliminary work evaluating ctDNA using Nimbus in patients with glioblastoma, 

prostate and oesophageal cancer compared to controls demonstrated the superiority of hypo- over 

hypermethylated regions (work undertaken by Dr Park and Dr Lach, postdoctoral fellows within my 



 
210 

research group). Ziller et al [134] found that hypomethylated DMRs are more cell-type specific than 

hypermethylated DMRs, which may explain these findings. Furthermore, it may be that 

hypomethylated DMRs demonstrate less biological or technical variability than hypermethylated 

DMRs, and this is something which would be interesting to assess in future work. In Chapter 6, I 

evaluated methylation heterogeneity in ccRCC between patients, within a patient and within a 

sample. This analysis could be adapted to select more appropriate methylation markers for inclusion 

in the Nimbus panel. Ideally, methylation markers would display low epipolymorphism (i.e. reduced 

disordered methylation within and between reads) and reduced inter-patient heterogeneity, to 

increase ctDNA detection. Although my original intention was to identify methylation markers in 

Chapter 5 and Chapter 6, and subsequently evaluate them in liquid samples, due to time constraints, 

I had to perform the two analyses in parallel. Moving forward, my aim is to refine the current list of 

DMRs by removing non-informative markers, including homogeneous clonal hypomethylated 

markers and excluding hypermethylated DMRs. Creating a focused, smaller capture panel could 

therefore enable greater depth of sequencing at reduced costs. The cost of the current Nimbus 

method is ~£350 per sample, which could be reduced to ~£125 per sample in future by refining the 

panel size, using more affordable library preparation kits and pooling more samples for sequencing.  

 

 Nimbus for targeted methylation analysis in cfDNA 

ctDNA detection has multiple potential applications, and regarding the two clinical questions 

addressed in this thesis, this would be: (a) liquid biopsies to differentiate SRMs to improve the 

diagnostic pathway and (b) detection of post-operative minimal residual disease to improve risk-

stratification in ccRCC patients treated with curative intent. However, controversy exists regarding 

detection rates of ctDNA in patients with renal cancer, with some studies reporting levels below 50% 

[158, 345, 357] and one study suggesting 97% [159]. I postulated that targeting thousands of RCC-

specific methylation markers would improve detection rates compared to existing approaches 

relying on mutational analysis. I therefore aimed to evaluate detection rates of ctDNA in ccRCC using 

my current panel of methylation markers and our newly developed Nimbus methodology. Following 

a successful proof of principle study, Nimbus could be investigated in future large cohort studies to 

address the clinical scenarios listed above. 

 

My principal finding is that the Nimbus score (based on DMRs which are hypomethylated in ccRCC) 

can differentiate cfDNA derived from patients with ccRCC versus controls. The AUC in the discovery 

cohort was very high (AUC=0.96). Future work should therefore focus on externally validating these 

results in larger, independent datasets. My discovery cohort consisted of plasma from 67 patients 
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with ccRCC and cancer-free controls, in order to determine detection rates and evaluate feasibility of 

the current methodology. The sample size of approximately 50 to 100 was chosen as this is an 

achievable number in view of current sample availability. Previously published work had similar 

sample sizes [158, 159]. Controls were selected pragmatically from patients with benign prostate 

biopsies and no known evidence of RCC. It is acknowledged that this is not an ideal cohort as it 

excludes women. One advantage is these controls represent a relatively similar age (and therefore 

likely similar comorbidity profile) to renal cancer patients and therefore provide a more appropriate 

comparison than commercially available cfDNA from young, healthy individuals. Moss et al found 

that cfDNA content is twice as high in older adults (67-97 year-olds) compared to young individuals 

(19-30 year-olds), suggesting the importance of age-appropriate controls to limit bias [101]. Future 

work on RCC ctDNA methylation analysis should include larger, comorbidity matched and gender 

balanced control cohorts in which the absence of renal cancer has been confirmed (for example by 

recruiting patients with normal abdominal imaging following investigation for haematuria). 

 

I demonstrated that Nimbus achieves superior detection rates than patient-specific mutational 

analysis using INVAR-TAPAS in my dataset. On a practical level, Nimbus has the advantage that it 

does not rely on patient-specific panels (as does INVAR-TAPAS), therefore enabling prospective use 

in patients who have not had tissue sampling or tumour sequencing. Furthermore, not having to 

create custom panels reduces costs and increases speed, therefore increasing ease of use in clinical 

practice. The reason for low ctDNA detection rates using mutational analysis remains incompletely 

understood. INVAR-TAPAS has previously shown ctDNA detection rates of 1 part per million [347], 

although this requires high input cfDNA and/or larger numbers of patient-specific mutations than 

can be routinely achieved for ccRCC using WES. In my cohort, ctDNA was only detected in 50% of 

patients with ccRCC using INVAR-TAPAS. Evaluating a larger number of mutations/genomic 

alterations improves the detection limit, however surprisingly, in my cohort there was no association 

between the number of patient-specific mutations targeted by INVAR-TAPAS and detection rates. 

The MAF estimated using INVAR-TAPAS was associated with increased tumour size and presence of 

vascular invasion. However, 2 patients with mRCC (patients 5532 and 5626) did not have detectable 

ctDNA (and it was these patients who had smaller tumours and no venous involvement). It is likely 

that larger tumours and tumours with direct vascular access are able to shed more ctDNA. It may be 

that in patients with mRCC, circulating tumour derived cfDNA may represent the metastasis rather 

than the primary kidney tissue sampled to derive patient-specific mutations for inclusion in the 

INVAR-TAPAS panel. Turajlic et al [75] evaluated primary tumours and synchronous metastases in 

TRACERx and demonstrated that although driver genes are often shared between the two, some 
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aberrations are present in the metastases and absent in the primary. These two mRCC patient 

(patients 5532 and 5626) had relatively lower Nimbus scores (score <300) compared to other mRCC 

samples, which could suggest that the MAF may have been below the limit of detection of INVAR-

TAPAS. Future studies evaluating the biology underlying ctDNA shedding by renal tumours is key. I 

attempted to explore the association between clinico-pathological parameters and Nimbus scores in 

my dataset (for example tumour proliferation using ki67 and presence/absence of a pseudocapsule) 

to characterise determinants of ctDNA shedding. However, my study had a limited sample size, 

therefore only very strong associations could have been identified. In summary, Nimbus 

demonstrated superior detection rates compared to mutational analysis and this warrants further 

external validation as a potentially clinically useful strategy. 

 

Comparing Nimbus results to existing cfDNA studies in renal cancer from the literature suggests that 

Nimbus is highly competitive. In my discovery cohort, I applied Nimbus to plasma cfDNA from 30 

ccRCC patients and 17 controls and achieved a ROC AUC of 0.96. Selecting a threshold of >201 for 

hypomethylated targets, ctDNA was detected in 97% (29/30) of ccRCC patients, including stages I-IV. 

The patient which was not detected had stage I disease. As already mentioned in the Background 

section 2.5, studies performing mutational ctDNA analysis achieved a lower performance than 

Nimbus. For example, research evaluating mutation panels in genes known to be affected in RCC 

achieved detection rates of 72-79% in patients with metastatic ccRCC (rates were much lower in 

non-metastatic disease) [346, 348]. Patient specific mutational panels (such as INVAR-TAPAS) also 

achieved low detection rates (~42-50%) as did pan-cancer methylation panels (such as GRAIL; 

sensitivity <50%) [358]. In summary, to our knowledge, only one study achieved detection rates 

similar to Nimbus. Nuzzo et al [159] utilised cfMeDIP-seq to analyse methylation in cfDNA from 

patients with ccRCC and controls. In brief, the method uses antibody-based immunoprecipitation to 

pull down (and therefore enrich for) methylated cfDNA fragments, which are then sequenced. The 

authors report a ROC AUC of 0.99, with ctDNA being detected in 97% (67/69) of ccRCC patients, 

which is very similar to Nimbus’ performance. Due to time constraints, it was not possible to 

benchmark Nimbus against cfMeDIP-seq, though this could be performed in future. Interestingly, 

whilst I selected my methylation target panel for Nimbus using kidney tissue, Nuzzo et al identify 

DMRs directly in plasma (by methylation calling in ccRCC vs control plasma). Since tumour derived 

signal in plasma is very low (estimated <0.01% in most cfDNA samples) it is likely that Nuzzo et al’s 

strategy may identify methylation changes within immune cell populations which are different in 

ccRCC patients versus controls, rather than tumour-cell intrinsic changes. Inflammation is a hallmark 

of cancer [233]; ccRCC is considered an inflammatory cancer and several immune-associated 
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prognostic parameters have been identified (including neutrophil-to-lymphocyte ratio, platelet-to-

lymphocyte ratio and C-reactive protein) [359]. This may explain the high AUCs noted by Nuzzo and 

suggests that although cfMeDIP-seq may not necessarily detect tumour-derived signal, this may still 

be a potentially useful strategy to detect ctDNA in ccRCC versus controls. Since I identified my target 

methylation panel by comparing differential methylation in ccRCC tissue versus normal kidney, it is 

more likely that Nimbus detects tumour derived signal. Some of the signal detected by Nimbus 

might be originating from kidney tissue secondary to generic kidney damage (for example due to 

localised pressure secondary to tumour growth) rather than being tumour specific. This could 

potentially explain why Nimbus scores were not correlated with mutant allele fraction estimated by 

INVAR-TAPAS nor clinical parameters (such as tumour size and vascular involvement) and why 

Nimbus scores were high in patients with oncocytoma (discussed further below). Alternatively, the 

lack of correlation between INVAR-TAPAS mutant allele fraction and Nimbus scores could also be 

due to low sample sizes (MAF was only available for 7 patients). Further exploration of my 

methylation capture panel could help to disentangle this, leading to further insights and refinements 

for ctDNA detection in RCC.  

 

My analysis is the first to compare ctDNA detection in proximal vs distal samples in patients with 

renal tumours, and this represents a key strength of my work. My results suggest that proximal 

sampling using post-biopsy fluid may enable an enrichment of Nimbus signal compared to peripheral 

venous samples, which could be useful in patients with SRMs and low plasma cfDNA. At present 

renal biopsy may be non-diagnostic for a number of reasons (insufficient sample, necrosis, target 

lesion missed or difficulty differentiating pathological subtypes on histopathology). It is envisioned 

that targeted methylation analysis of cfDNA derived from post-biopsy fluid could serve as a 

diagnostic adjunct in patients undergoing renal biopsy. One challenge is that low volumes of post-

biopsy fluid (<1ml) were obtained in some patients, and this could limit future clinical applications.  

 

Nimbus was also able to detect a signal in cfDNA from patients with oncocytoma. However, the 

current methylation panel was seemingly unable to distinguish ccRCC from oncocytoma (although 

sample numbers were very low). This is not surprising as the DMRs included in the panel were not 

designed to detect oncocytoma or to discriminate these benign lesions from ccRCC. As mentioned 

above, Nimbus may also include methylation changes that distinguish kidney tissue from plasma 

cfDNA (which is mostly immune cells) in addition to tumour-specific changes in methylation. 

Therefore, in future, the Nimbus methylation panel will be refined to include CpGs which distinguish 

pathological subtypes of renal tumours, for example those identified in Chapter 5, by 
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MethylBoostER. Smith et al [158] were able to detect ctDNA in patients with oncocytoma and chRCC 

using INVAR-TAPAS, suggesting this is feasible. Evidently, increased understanding of ctDNA biology 

(including cfDNA secretion and degradation) will translate into improved detection rates by 

informing optimal sampling strategies.  

 

 
In conclusion, this chapter consists of a proof-of-concept suggesting Nimbus can detect ctDNA in 

ccRCC with excellent accuracy and that the signal in proximal samples is likely to be higher than 

distal samples. This paves the way for further external validation studies and testing in patients with 

SRMs. Longitudinal sampling pre- and post-nephrectomy could be performed to assess whether 

Nimbus scores are reduced following tumour excision, which would suggest Nimbus measures 

tumour derived signal. In addition, it would be interesting to evaluate Nimbus scores in cfDNA 

derived from urine, as an alternative distal sample. Smith et al and Nuzzo et al suggested this might 

be a useful method to detect ctDNA in patients with renal cancers [158, 159], though in both studies 

plasma cfDNA yielded superior detection rates. The advantage of using urine over plasma is that it is 

truly non-invasive, can be collected in larger volumes and is preferred by patients [360]. cfDNA could 

also be coupled with protein markers (such as aquaporin 1 and perilipin 2 in urine or KIM-1 in blood) 

[6, 145, 361] to increase sensitivity and specificity. In conclusion, I present a method which enables 

sensitive ctDNA detection in patients with renal cancers using thousands of methylation markers, 

achieving superior detection rates compared to most currently available platforms. I elucidate 

further optimisation steps and following external validation, it is envisioned that this method could 

have tangible clinical applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
215 

 

Chapter 8 Summary, future direction and conclusion 
 
In this thesis, I aimed to characterise DNA methylation in tissue and liquid samples from patients 

with renal tumours. In Chapter 5, I evaluate DNA methylation in tissue derived from patients with 

common benign and malignant renal tumours, highlight putative epigenetically regulated genes and 

explore the potential for diagnostic applications. In Chapter 6, I comprehensively map the landscape 

of DNA methylation heterogeneity in ccRCC tissue and lastly, I assess targeted methylation analysis 

for ctDNA detection in liquid samples in Chapter 7. Herein, I summarise and integrate the findings of 

my three results chapters and discuss potential clinical implications.  

 

In patients with SRMs, the current diagnostic pathway (consisting of imaging and renal biopsy) is 

unable to confidently distinguish pathological subtypes of renal tumours and differentiate benign 

from malignant disease. As a result, 20% of patients are found to have benign disease post-

operatively, meaning patients are undergoing unnecessary kidney surgery with associated risks of 

morbidity and mortality. To address this unmet clinical need, we developed MethylBoostER 

(Methylation and XGBoost for Evaluation of Renal tumours), a machine learning model which uses 

DNA methylation data to classify tissue samples into common pathological subtypes of malignant 

and benign renal tumours (ccRCC, pRCC, chRCC and oncocytoma) and normal kidney. MethylBoostER 

was externally validated on four independent datasets, achieving a high accuracy (AUCs >0.90 for all 

subtypes). One of the main challenges for model development and external validation is the lack of 

publicly available methylation data, in particular for less common subtypes (e.g. chRCC, oncocytoma 

and rarer subtypes) and for early-stage tumours. Further external validation is warranted in patients 

with SRMs, using prospectively collected biopsy samples (rather than nephrectomy tissue which has 

a much higher tumour content). Combining samples and well-annotated clinical data from multiple 

UK or international sites may enable such large-scale validation studies in future. As discussed in 

section 5.4.2, an ideal model would integrate multi-modal data including DNA methylation, imaging 

and clinical characteristics and would predict patient outcome rather than simply predicting the 

pathological subtype of the renal tumour, whilst taking into account competing risks of death. Once 

a model has been refined and finalized, it must be tested prospectively in a clinical setting and 

benchmarked against the existing standard of care. Prior to the model being adopted in clinical 

practice, it is crucial to demonstrate clinical utility (i.e. improved diagnostic accuracy and better 

patient outcomes), cost-effectiveness and feasibility of the test within an NHS setting.  
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I explored the association between MethylBoostER accuracy and sample purity as it is acknowledged 

that biopsy samples often have low tumour content, and this represents a real-world challenge 

limiting clinical application. There was a sharp drop off in accuracy in samples with purity <0.2, 

suggesting that potentially biopsy may have to be repeated if purity is below this threshold. In a 

clinical scenario, it is envisioned that patients with SRMs would undergo renal biopsy, and 

MethylBoostER could represent a useful diagnostic adjunct in addition to histopathological review of 

biopsy tissue. However, both histopathological slide review and the MethylBoostER model may be 

limited in biopsy samples with low tumour content, and it is envisioned that liquid biopsies could be 

used to increase diagnostic confidence and avoid repeat biopsy in this setting. In Chapter 7, I 

demonstrated the feasibility of detecting cfDNA using targeted methylation analysis (using the 

Nimbus method) in plasma and post-biopsy fluid from patients with renal tumours. In the discovery 

cohort, targeted methylation analysis of plasma cfDNA was able to distinguish ccRCC from controls 

with an AUC of 0.96, suggesting this could potentially be used clinically in the future. However, the 

existing literature suggests that levels of ctDNA tend to be lower in patients with early-stage renal 

tumours [151, 158], limiting the potential use of plasma ctDNA as a liquid biopsy in patients with 

SRMs. These previous reports motivated the study of post-biopsy fluid as a route to improve 

detection rates through proximal sampling. My results suggested that post-biopsy fluid, which is 

collected at the time of renal biopsy, may be enriched for tumour derived DNA compared to 

peripheral venous samples. In future, I plan to create an updated targeted methylation panel for 

Nimbus, including methylation markers that distinguish pathological subtypes of renal tumours (for 

example CpGs from MethylBoostER). The Nimbus experimental method can be applied to DNA 

derived from renal biopsy, post-biopsy fluid, plasma and even potentially urine (though the latter 

was not tested in this thesis). In an ideal scenario, plasma cfDNA would be used as a non-invasive 

liquid biopsy to determine a diagnosis in patients with SRMs (first line option; Figure 8.1). Individuals 

with undetectable plasma cfDNA would undergo renal biopsy and collection of post-biopsy fluid, 

which would be processed using targeted methylation analysis to identify the most likely diagnosis 

(though the small volumes of post-biopsy fluid collected in some patients may limit applicability). 

This could have the potential to reduce the number of patients undergoing unnecessary renal 

surgery for benign tumours. Multi-sample analysis and a targeted panel containing thousands of 

methylation markers could increase likelihood of detection. However, maintaining testing costs 

reasonably low is necessary to ensure feasibility in clinical practice, therefore future studies should 

also evaluate the minimum panel size and lower cost methods to detect these molecular signatures.  
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Figure 8.1: Proposed future integration of Nimbus and MethylBoostER into clinical practice 

Ideally, plasma cfDNA would be used as a non-invasive liquid biopsy to determine a diagnosis in patients 
with SRMs. Targeted methylation analysis would be performed using Nimbus, and the methylation data 
would be used to run the MethylBoostER machine learning model. Individuals with undetectable plasma 
cfDNA would undergo renal biopsy and collection of post-biopsy fluid. The latter sample type would be 
particularly useful in patients where there is low plasma cfDNA and the renal biopsy either contains low 
tumour content or the target lesion was missed. MethylBoostER output would be integrated with clinical 
and pathological data (including patients’ comorbidity profile) to enable patient-centred management. 

 

 

Although genetic heterogeneity has been extensively studied, relatively little is known regarding 

methylation heterogeneity in ccRCC. An improved understanding of the latter could offer insights 

into tumour biology and inform biomarker selection. I therefore sought to characterise DNA 

methylation heterogeneity in ccRCC tissue in Chapter 6. Homogeneously methylated CpGs across 

multi-region samples are postulated to be early events in tumorigenesis and they represent ideal 

targets for diagnostic applications, for example in diagnosing SRMs. Markers with low intra-tumoral 

heterogeneity are key to ensure that diagnosis is consistent and independent of the region biopsied. 

In Chapter 5, I demonstrate that MethylBoostER achieves consistent classification results in multi-

region samples from the same patients in 90% of individuals. Refining target selection by prioritising 

homogeneously methylated CpGs could improve this statistic, enabling clinical utility. Furthermore, 

markers with low inter-patient heterogeneity are more likely to be detected in liquid samples when 

using the same targets for multiple individuals (which is preferable to a costly patient-specific 

approach). Conversely, heterogeneously methylated CpGs could represent late, subclonal events in 

tumour evolution (although they could also represent heterogeneous cell types which constitute 

bulk methylation profiles from tissue). It may not be possible to disentangle these two processes 

completely, however, an awareness of this can lead to more informative biomarker selection. For 

example, in Chapter 6, I demonstrated that a proportion of differentially methylated cytosines that 

distinguish ccRCC and normal tissue (i.e. those with a high variance in tumour) may represent 
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immune cell markers rather than tumour intrinsic changes. These would therefore be uninformative 

markers in plasma cfDNA (as the majority of the non-tumour signal comes from immune cells), and 

this should be taken into account when designing future versions of the Nimbus capture panel. In 

summary, integrating data from Chapter 5 to Chapter 7 is likely to improve the marker selection for 

inclusion in future iterations of the RCC Nimbus target panel. 

 

Another clinical priority explored in my thesis is the need for improved prognostic stratification for 

ccRCC patients. The literature suggests that the degree of genetic intra-tumoral heterogeneity (ITH) 

and pattern of tumour evolution (e.g. VHL monodriver vs branched evolution) has prognostic 

potential in ccRCC [87]. This prompted me to comprehensively evaluate methylation heterogeneity 

in Chapter 6. However, no association with clinical parameters was identified, potentially due to the 

small sample size. I also compared phylo-epigenetic trees against phylogenetic trees derived from 

copy number data. My analysis would be rendered more complete by deriving tumour phylogenies 

based on mutational data and comparing these with phylo-epigenetic trees, and I am planning to 

undertake this work with my collaborators at the Max Delbrück Center in Berlin. Although a number 

of prognostic methylation markers have been proposed, very few of these have been successfully 

externally validated and some demonstrate conflicting results across different studies [67]. In 

Chapter 6, I demonstrated that heterogeneously methylated CpGs coincide with putative prognostic 

methylation markers in ccRCC (such as SFRP1, DKK2 and CCND1), which could explain difficulties in 

external validation noted in the literature, especially when different platforms are used.  

 

A key novel result from Chapter 6, was the identification of locally disordered methylation (i.e. 

differential epipolymorphism) at the promoter region of genes known to be associated with ccRCC. 

Clinically this is relevant because disordered methylation within a read may contribute to difficulties 

validating prognostic markers due to different CpGs being evaluated by disparate platforms (for 

example Epic-seq vs 450k array). Importantly, my analysis revealed that epipolymorphism within a 

gene promoter may be an independent regulator of gene expression in addition to gains or losses in 

average methylation, which is a novel insight into transcriptional regulation in ccRCC. Assessing 

disordered methylation within a read may in itself be a useful cancer biomarker and should be 

explored further in future studies.  

 

Given that identifying individual prognostic methylation markers has proven to be elusive, a 

different approach towards risk stratification in ccRCC needs to be adopted. For example, 

monitoring of minimal residual disease post-operatively by serially evaluating plasma cfDNA in 
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patients who have undergone curative nephrectomy could represent a useful strategy. The half-life 

of cfDNA is between 15 minutes and 2.5 hours [149], suggesting dynamic fluctuations could 

accurately reflect changes in tumour burden. Having demonstrated that cfDNA can be detected in 

plasma from ccRCC patients using Nimbus with a high accuracy (Chapter 7), I hope to evaluate serial 

samples to determine if there is any association with clinical relapse. The ultimate aim would be to 

use targeted methylation analysis in ctDNA to identify high-risk patients who would benefit from 

adjuvant therapy or increased follow-up, and to identity relapse early, enabling improved survival. 

 

In conclusion, I have comprehensively characterised DNA methylation in patients with ccRCC and 

other common pathological subtypes of renal tumours, evaluating both tissue and liquid samples. 

My findings will help researchers select more informative biomarkers for both diagnostic and 

prognostic applications, hopefully reducing the number of markers which fail to be validated. 

Although biotechnology companies, such as GRAIL and GuardantHealth, have invested in large scale 

studies of ctDNA, these often utilise pan-cancer markers to screen healthy individuals. Focusing on 

RCC specific markers and tailoring the search to a specific clinical question (for example 

differentiating SRMs or risk-stratifying ccRCC patients) rather than a large heterogeneous 

population, will ensure that my work has a high chance of translating to clinically relevant results in 

future. 
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One Sentence Summary:

MethylBoostER is a machine learning model which uses DNA methylation data from tissue

samples to accurately predict pathological sub-types of renal tumours, with the aim of improv-

ing diagnostic accuracy and therefore tailoring patient treatment.
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Abstract:

The incidence of renal cell carcinoma (RCC), and small renal masses (SRMs) in par-

ticular, is rising due to widespread incidental detection. Imaging and renal biopsy

are unable to accurately differentiate malignant from benign tumours, consequently

20% of patients with SRMs undergo unnecessary surgery for benign disease. We

therefore develop MethylBoostER (Methylation and XGBoost for Evaluation of Re-

nal tumours), a machine learning model leveraging DNA methylation data from

>1500 tissue samples, to classify pathological sub-types of renal tumours (clear cell

(ccRCC), papillary (pRCC), chromophobe (chRCC), benign oncocytoma) and nor-

mal kidney. DNA methylation data were integrated from our dataset and publicly

available sources (N=1228) and used to train and test XGBoost models using four-

fold cross validation. The prediction accuracy in the testing set was 0.960; with high

class-wise Area Under the Receiver Operating Characteristic Curves (ROC AUC’s):

0.994 (ccRCC), 0.992 (pRCC), 0.988 (chRCC), 1.00 (oncocytoma), 1.00 (normal). Ex-

ternal validation was performed on >500 samples from four independent datasets,

achieving AUC’s >0.89 for all predicted classes. MethylBoostER distinguishes be-

tween high and moderate-confidence predictions (based on predicted probabilities

>0.85), resulting in an output which is interpretable and clinically useful. Fur-

thermore, MethylBoostER provides consistent classification of multi-region samples 

from the same patient in 90% of individuals, demonstrating methylation heterogene-

ity does not limit model applicability. We also explore the impact of tumour purity on 

predictions to represent real-world clinical practice. In summary, MethylBoostER 

accurately differentiates pathological sub-types of renal tumours and may provide a 

more confident pre-surgical diagnosis to guide treatment decision-making.
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Main Text:

INTRODUCTION

Renal cell carcinoma (RCC) is amongst the top 10 most common cancers worldwide. Incidence 

rates have increased by 47% in the last ten years, making it one of the fastest accelerating can-

cers, with rates projected to rise even further in the future (1). This is attributed to the increasing 

prevalence of known risk factors and increased incidental detection, secondary to widespread 

use of imaging for unrelated symptoms (2). Small renal masses (SRMs), defined as <4cm in 

size, are therefore increasingly detected and encompass a mixture of potential diagnoses that 

comprise dozens of histological and molecular tumour sub-types (3, 4). The major sub-types 

include clear cell (ccRCC), papillary (pRCC), chromophobe (chRCC) RCC or benign oncocy-

tomas. Differentiating malignant from benign solid SRM represents a challenge both on imag-

ing and renal biopsy. Renal biopsy may be non-diagnostic due to small tumour size, challenging 

anatomy, low biopsy tumour content or tumour heterogeneity (5–7). As a result of no biopsy 

being undertaken or the inability to conclude a histological diagnosis based on biopsy samples, 

approximately 20% of SRMs removed at surgery are found to be benign post-operatively (8). 

Consequently, a significant number of patients undergo unnecessary surgery for a benign con-

dition, with associated post-operative risks of morbidity and mortality, and long-term impact on 

renal function. The rates of post-operative complications following minimally invasive surgery 

are: blood transfusion (5%), re-operation (2-5%), respiratory complications (1-7%) and death 

(4%) (9). Conversely, a meta-analysis demonstrated one in four renal biopsies reported as onco-

cytoma are found to be malignant RCC following surgical excision (5), risking false negatives, 

late diagnosis and deleterious outcomes. Improved diagnosis and differentiation of SRM has 

been identified as a key research focus in RCC by an international research priority setting 

initiative (10). Each of these pathological sub-types has characteristic genetic and molecular
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features, such that it is argued that RCC is not a single disease (11). ccRCC and pRCC are de-

rived from the proximal convoluted tubule in the renal cortex, whereas chRCC and oncocytoma 

are derived from the distal nephron (12, 13). DNA methylation changes are abundant, genome-

wide early events in renal tumourigenesis, and are specific to the cell of origin, and so represent 

an ideal diagnostic target in this setting (14–17). Analysis of DNA methylation markers there-

fore has the potential to support and improve the current diagnostic pathway for renal cancer, 

providing a much more confident pre-surgical diagnosis to guide treatment decision-making.

In this study, we propose MethylBoostER (Methylation and XGBoost for Evaluation of 

Renal tumours). MethylBoostER is a machine learning model based on XGBoost that differ-

entiates pathological sub-types of renal tumours, using DNA methylation markers identified in 

large tissue datasets. We externally validate MethylBoostER on four independent datasets and 

also evaluate multi-region samples from the same patient to assess the role of intra-tumoural 

heterogeneity on MethylBoostER’s performance. Additionally, we externally validate our re-

sults on ex-vivo core biopsy tissue samples (which simulate in-vivo patient biopsies) and fine 

needle aspirates (FNA), low purity samples representing real world applications and evaluate 

the role of tumour purity on MethylBoostER’s performance to assess clinical utility. Methyl-

BoostER is trained on the largest DNA methylation cohort of renal tumour samples to date and 

is extensively validated, demonstrating accurate predictions across international cohorts and 

demonstrates potential future clinical utility.

RESULTS

DNA methylation sequencing in a cohort of patients with renal tumours

DNA methylation data were obtained for 1228 samples from three data sources, namely Cam-

bridge samples (N=319), The Cancer Genome Atlas (TCGA) (N=872) and the Chopra training 

set (18) (N=37) (Figure 2a and b). The former dataset contained information on 3 million CpGs
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measured using EPIC-seq, whilst the latter two were obtained via the 450K Illumina array. The 

merged datasets were obtained by overlapping CpGs within +/- 50bp of Illumina probes and 

overall contained data on 158,670 probes. This dataset (N=1228) was split into training and 

testing sets (via four-fold cross validation, see Methods), with subsequent validation being per-

formed on four additional independent datasets (Chopra validation (18), Wei (19), Brennan (20) 

and Evelönn (21)), and will be referred to as such hereafter.

MethylBoostER accurately distinguishes pathological sub-types of renal 
tumours

We trained multiclass XGBoost machine learning models to classify four pathological sub-

types of renal tumours (ccRCC, chRCC, oncocytoma, pRCC) and normal tissue. Four-fold 

nested cross validation was used (a method to randomly split the dataset into training (75%) and 

testing (25%) sets over four iterations) so that the testing set performance could be evaluated 

over the whole training/testing set. Consequently, this results in four trained models. We display 

summary results for the four models (individual results displayed in Figures S1, S2, S4, S5 and 

S6).

The performance over the training/testing set was high, with an average accuracy of 0.960. 

Table S1 lists additional performance metrics, including metrics for each renal tumour sub-

type (forthwith called ‘class’), which shows that the models could distinguish the normal class 

perfectly, and the chRCC class was the most difficult to classify correctly. Figure 2c shows 

the confusion matrix, which depicts how many samples, of a given true class, were predicted 

as each class. Most samples (1179/1228) are on the diagonal, indicating they were correctly 

predicted. Out of the 1228 samples evaluated, common misclassifications were in predicting 

ccRCC as pRCC (13 samples) and predicting pRCC as ccRCC or chRCC (9 and 8 samples, 

respectively). Importantly, although 3 oncocytoma samples were predicted as malignant RCC,
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no malignant samples were classed as benign oncocytoma or normal tissue. Figure 2e (and 

Figure S1) shows the Receiver Operating Characteristic (ROC) curves (and Precision-Recall 

curves) for each class, again indicating that the models achieved a high testing set performance.

A large motivating factor for using XGBoost models is their interpretability – we can exam-

ine which input features were learnt by the models when classifying the five classes. We selected 

only these learned features, and used them to visualise the training/testing set, as shown in Fig-

ure 2d (and Figure S2). This shows that although there are dataset-specific clusters within each 

class, the samples now form class-wise clusters. This suggests that the features that the models 

learn are not dataset specific but are features that distinguish each class in all three datasets.

High- and moderate-confidence predictions make model outputs clinically 
more informative

Given a sample and a trained XGBoost model, we can obtain the model’s predicted probabilities 

for that sample belonging to each class (renal tumour sub-type). This reveals the confidence of 

the model’s prediction. Figure 3a shows the predicted probabilities of the predicted class over 

the testing sets, which indicates that while most predictions are certain, some are less certain 

(13.2% of samples were predicted with a probability of < 0.95), with probabilities as low as 

0.256.

We utilised this information to separate the models’ predictions into two categories: high-

confidence and moderate-confidence predictions. High-confidence predictions are where the 

model’s confidence is greater than a threshold, and we output a single answer – the predicted 

class. Moderate-confidence predictions are where the model’s confidence is lower than the 

threshold, and we output two answers – the predicted class (the first most likely prediction) and 

the second most likely prediction. We refer to these two outputs as first prediction and second 

prediction, respectively. The threshold was set to 0.85 (see Figure 3b), which maximises the
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accuracy of both high- and moderate-confidence predictions and the fraction of high-confidence 

predictions over the testing set. In clinical practice in the case of moderate predictions, the 

clinician could take into account the two predicted classes and integrate this information with 

clinical, histopathology and imaging features to conclude the most likely diagnosis (see Figure 

3c). The average accuracy of the high-confidence predictions over the testing sets was 0.982. 

The average accuracy of the moderate-confidence predictions over the testing sets was 0.668 

(considering only the first prediction), but was 0.871 when the prediction was treated as correct 

if the first or second prediction was correct. See Figure S3 for the testing set confusion matrix 

split by high- and moderate-confidence predictions.

External validation on four independent datasets verify the generalisability 
of MethylBoostER to new data

We externally validated MethylBoostER on four independent datasets, namely Chopra valida-

tion (N=245), Brennan (N=37), Wei (N=92) and Evelönn (N=144) (18–21). They each contain 

different numbers of samples and a different class distribution, as shown in Figure 4a. The nor-

mal and ccRCC classes are the most frequent, which reflects clinical prevalence. We evaluated 

our models on these datasets (without the high- and moderate-confidence predictions method, 

so just taking the first prediction for all samples) and the average accuracy for Chopra valida-

tion, Brennan, Wei and Evelönn was 0.824, 0.703, 0.875, and 0.894 respectively (see Table S2 

for additional metrics, and Figure S4a for confusion matrices).

The models had lower performance for chRCC and oncocytoma - oncocytoma samples were 

frequently predicted as chRCC or normal. In Chopra validation, the oncocytomas predicted in-

correctly on both the first and second prediction were predicted as normal (11 samples), chRCC 

(4 samples) and pRCC (2 samples). In Brennan, the incorrect oncocytomas (on both first and 

second predictions) were predicted as normal (1 sample), and chRCC (5 samples). The rel-
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atively lower performance in chRCC and oncocytoma may be due to the low proportion of 

these classes in the training set, reflecting a real-world challenge, as these two are the least 

common pathological sub-types. In addition, previous reports suggest that methylation in these 

two classes are most similar, in keeping with their common cellular origin (13). We found that 

incorporating high- and moderate-confidence predictions lead to improved results. Figure 4b 

and Table S3 show the accuracy and Matthews Correlation Coefficient (MCC) scores for the 

high- and moderate-confidence predictions. As seen in Figure 4b, the moderate-confidence first 

predictions have an accuracy of < 0.65 for all four datasets, and the second predictions have an 

accuracy of < 0.45 for all four datasets. When we combine them, we see that the first or sec-

ond predictions reach an accuracy of > 0.7. As expected, the accuracy of the high-confidence 

predictions is higher, and is > 0.9 for all datasets.

Many moderate-confidence predictions are correct on the second prediction, as shown in 

Figures 4c,d,e,f (and Figure S4b for the other models). For example, 16 samples in the Chopra 

validation dataset had an incorrect first prediction but correct second prediction (see Figure 

4c). These samples would have simply been incorrectly predicted without the use of this high-

and moderate-confidence prediction method. We also show that all four datasets achieved high 

class-wise ROC AUC’s, as shown in Figures 4c,d,e,f (see Figure S5 for the other models’ ROC 

curves and all Precision-Recall curves).

MethylBoostER provides consistent classification of multi-region samples 
from the same patient

ccRCC is characterised by a high degree of genetic intratumoral heterogeneity (ITH), with over 

60% of somatic mutations not detectable across all multi-region samples (22). On average, 

seven multi-region samples are needed to detect over 75% of genetic variants (23). Very little 

is known about methylation variation in ccRCC, although a handful of reports suggests relative
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homogeneity (24–27), therefore highlighting the potential relevance of diagnostic methylation 

markers. In the Cambridge dataset, multi-region samples were available (N=168) for 25 patients 

(18 ccRCC, 4 chRCC, 2 oncocytoma and 1 pRCC). In 92% (23/25) of patients, all multi-region 

samples were predicted consistently as being from the same pathological sub-type; with 88%

(22/25) achieving correct classification for all samples (see Figure 5a). Multi-region samples 

(N=17) were also available for 6 patients with ccRCC from the Evelönn external validation 

dataset (24). As shown in Figure 5b, 83% (5/6) of patients had a concordant prediction for all 

multi-region samples derived from the same patient, although the model struggles to differen-

tiate chRCC from ccRCC. We noted that incorrectly predicted samples had a very low tumour 

purity. When the Evelönn dataset is visualised using dimensionality reduction (see Figure S6), 

almost all the incorrectly predicted samples (including all the incorrectly predicted multi-region 

samples) can be seen to cluster away from the rest of the ccRCC samples, indicating these sam-

ples have a different methylation pattern (potentially related to their lower tumour purity, as 

shown in Figure S6b).

Impact of Tumour purity on MethylBoostER

Tumour purity was calculated using methylation beta values and InfiniumPurify, as previously 

described (20, 28). This method determines tumour purity in the context of contamination with 

normal (non-tumour) kidney sample. As expected, median sample purity was lower for the 

Chopra and Brennan datasets compared to TCGA and Cambridge, as the former include ex-vivo 

core biopsy samples (i.e., simulated biopsies using nephrectomy specimens) and fine needle as-

pirates respectively. Out of all the datasets, the Evelönn data appear to have the lowest tumour 

purity (median purity: 0.88 Cambridge, 0.84 TCGA, 0.80 Chopra training, 0.58 Chopra vali-

dation, 0.73 Brennan, 0.81 Wei and 0.48 Evelönn). Figure 6a summarizes purity for samples 

that were predicted correctly in the first prediction, second prediction and incorrectly predicted
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samples (results for individual datasets are shown in Figure S7). Median purity in samples that 

were incorrectly predicted was significantly lower than samples correctly predicted on the first 

or second prediction (0.27 vs 0.82 vs 0.44, p value <0.01 for all comparisons; Figure 6a). We 

noted that three of the samples that were misclassified by our model were also incorrectly clas-

sified by Brennan et al. (20) and that the study authors postulated this was due to low sample 

purity. Figure 6b and c summarise the purity and prediction probability (for the first predic-

tion), highlighting incorrectly predicted samples. We found a correlation between purity and 

the probability of first prediction in Wei and Evelönn (Pearson’s’s correlation coefficient 0.58 

and 0.51, adjusted p value < 0.01), but not the other datasets (correlation < 0.30 and/or adjusted 

p value > 0.01). There are a number of samples which are incorrectly predicted despite having a 

high-confidence prediction, and these tend to have lower purity. Taking into account all datasets 

combined, Table S4 summarises the model accuracy, as well as the median probability of the 

first prediction, by tumour purity. This further demonstrates that samples with higher tumour 

purity are more accurately predicted, for example samples with purity ≥ 0.9 obtain an accuracy 

of 0.99. There is a sharp drop-off in accuracy in samples with a purity < 0.20 compared to 

samples in which purity was > 0.2, suggesting that potentially a biopsy sample may have to 

be repeated if purity is below this level. This analysis was performed post-hoc on both train-

ing/testing and validation datasets, and there were a limited number of low purity samples (5%

of the cohort; Table S4). Therefore, these results (and a purity threshold that warrants repeat 

biopsy) remain to be externally validated.

Features selected by MethylBoostER are associated with carcinogenic pro-
cesses

The features that the MethylBoostER models utilised during classification were obtained. Each 

of the four XGBoost models selected 1490, 1697, 1476 and 1331 features, respectively. An
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analysis of the genomic location of the features revealed that the selected features do not fol-

low the same genomic location distribution as the background, as shown in Figure 7a. In the 

promoter regions close to the TSS (≤1kb), there is a lower percentage of features compared to 

the background set (68% compared to 78%). However, in the promoter regions further away 

from the TSS (1-2kb and 2-3kb away), there is a higher percentage of features compared to the 

background set (8.7% compared to 6.3%, and 4.3% compared to 2.3%). There is also a higher 

percentage of features in introns (5.1% compared to 3.1% for 1st introns, and 8.7% compared 

to 5.5% for other introns).

The features from MethylBoostER were mapped to proximal genes and analysed at the gene 

ontology and pathway level. The enriched Gene Ontology (GO) terms are visualised as a net-

work in Figure 7b. The GO analysis detected a neuronal and muscle developmental signature, 

carcinogenic signalling (Wnt, MAPK, and Ras signalling pathways) and both positive and nega-

tive regulation of transcription, amongst others. The significant enrichment (see Table S5 for the 

adjusted p-values of all gene list comparisons) of transcription factors (TF Checkpoint (29)) and 

epigenetic regulators (Epifactor db (30)) indicate the perturbation of transcriptional regulators 

and chromatin remodelers in renal cancer. Whilst an RCC related gene set (RCC Harmoni-

zome/Diseases db (31)) and a ccRCC related putative driver gene set (32) were enriched, a 

similar set of pRCC genes was not enriched (pRCC Harmonizome/Diseases db (31)). The fea-

ture set also indicated a strong metastatic signature (Human Cancer Metastasis Database (33)), 

with enriched gene ontology terms related to Motility, Axon guidance, and Cell adhesion. En-

richment of epithelial mesenchymal transition (EMT)-related genes (dbEMT2 (34)) provide 

further evidence for this metastatic signature. In addition, the gene list was enriched for tumour 

suppressors, oncogenes, and fusion genes (COSMIC Cancer Gene Census (35)).

We also checked whether the results of the gene-wise GO analysis were consistent with 

the results from the Genomic Regions Enrichment of Annotations Tool (GREAT) (36), which
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is designed for localised regions that are not necessarily within genes. This also enabled the

features that were not mapped to genes to be included. Figure 7c shows the significant GO

terms resulting from this analysis, which demonstrates that they are similar to the results of the

gene-wise GO analysis. The consistent themes were development, cell adhesion, cell motility,

cell signalling and neurogenesis. A few functions were unique to this GREAT analysis, such as

immune response and extracellular matrix organization, and a few were unique to the gene-wise

analysis, such as regulation of transcription and response to cortisol stimulus.

Pathway analysis revealed enriched pathways covering similar functions as found during the

GO analysis. The most enriched pathways were: Wnt signalling pathway (adj.p-value=2.79x10-15),

Cadherin signalling pathway (adj.p-value=2.92x10-5) and Netrin-1 signalling (adj.p-value=4.62x10-03).

Other enriched pathways included axon guidance, cell junction organization and signalling by

Receptor Tyrosine Kinases.

Next, we focused our analysis on the consistently salient features – features that were se-

lected by all four XGBoost models. There were 38 such features, which mapped to 45 genes. 

Out of these 45 genes common to all 4 models, 9 have not been previously associated with kid-

ney function, renal disease or cancer (ANKMY1, EHMT1, H2AW, JDP2, H2BU1, KIAA1143, 

KIF15, LINC01960, SF3A2). As detailed in Table S6, an analysis of the literature shows that 

the others have been associated with ccRCC (37–39), chRCC and renal cell carcinoma (40–42). 

These genes have also been linked to kidney development (43), gene expression in kidney, ad-

hesion, motility, invasion, and metastasis (44–47), and poor survival in renal cancer and other 

cancer types (48–50). In addition, they contribute to increased survival, act as tumour sup-

pressors, promote cancer stemness (44), contribute to carcinogenesis, proliferation, and tumour 

growth and have been identified in other cancer types. These associations demonstrate that 

the methylation features identified by MethylBoostER are biologically relevant. The methy-

lation distribution of all 38 features and their genes can be seen in Figure S8. We confirmed
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these findings by carrying out an entity-relationship natural language processing (NLP) anal-

ysis of approximately 30 million PubMed abstracts, using the feature mapped gene set and a

dictionary of relationship terms based on enriched biological processes identified above. Mod-

elling this information from 28579 interactions (each supported by multiple publications) as

an entity-relationship network, and subsequent network topological analysis where relationship

strength was visualised as degree (number of genes directly linked to a relationship) and rela-

tionship importance as betweenness centrality highlighted the association of these genes with

carcinogenesis, development, and tumour microenvironment interactions. This corroborates the

functional bioinformatics analyses and confirms that these genes have been previously associ-

ated with carcinogenic processes, tumour micro-environment, metabolism, metastasis, immune

and inflammatory responses and are known to influence patient survival and prognosis in the

biomedical literature (Figure S10 and Supplementary File-1 containing NLP derived gene rela-

tionship pairs and their frequency).

DISCUSSION

The rising incidence of SRMs drives the need to improve the diagnostic pathway, to avoid

over-treatment of patients with benign disease and optimize health resource use. The challenge

consists of differentiating benign oncocytoma from malignant sub-types, the most common be-

ing ccRCC, pRCC and chRCC. Previously published molecular classifiers are often limited by

focusing solely on distinguishing oncocytoma from chRCC, excluding the other, more common

sub-types and therefore reducing applicability in the real world (20,51–54). In addition, a num-

ber of these studies had small sample sizes (<200 samples) (52, 54, 55). Existing models often

rely on a limited number of markers (e.g. <100 markers), making them less robust when applied

to heterogeneous clinical samples and limiting potential future applicability (20, 52–54, 56) .

Machine learning models based on DNA methylation have demonstrated excellent accu-
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racy in other cancer types, including lung, brain, breast malignancies and sarcomas (57–59). 

The ability of machine learning models trained on DNA methylation data to classify cancer of 

unknown primary with excellent accuracy, leading to benefits in overall survival, serves as a 

testament to DNA methylation as a unique marker of cell identity (60). We have therefore de-

veloped an XGBoost machine learning model (MethylBoostER), leveraging methylation data 

from over 1200 patient samples. We demonstrate that the model accurately predicts pathologi-

cal sub-types of renal tumours in the training and testing set, with ROC AUCs over 0.95 for all 

sub-types evaluated. The extensive external validation in four independent methylation datasets, 

totalling over 500 patient samples, is a measure of the robustness of our method. We demon-

strate the high accuracy of the model with AUCs over 0.89 for all sub-types, in all independent 

datasets. Unique features of our model are its interpretability, ease of use in a clinical setting 

and an approach that reduces the clinical importance of ITH. We envision that in future, follow-

ing further validation, MethylBoostER could be integrated in clinical practice to improve the 

patient diagnostic pathway (Figure 8). Individuals with SRMs would undergo imaging-guided 

tumour biopsy, which would be processed for DNA methylation and the MethylBoostER model 

would be used to predict pathological sub-types, serving as an adjunct to treatment decision-

making. For high-confidence predictions the output is limited to the most likely diagnosis, 

whereas for moderate-confidence predictions the model will supply two class predictions and 

the clinician would be encouraged to integrate imaging and histological data. A strength of our 

work is the output of moderate and high-confidence predictions, which overall increases model 

accuracy and empowers clinicians to make patient-centred decisions which take into account 

both clinical and methylation data. A recognized clinical challenge is that biopsy accuracy may 

be hampered by genetic ITH or reduced tumour content, especially in smaller or more difficult 

to access tumours. We therefore address these potential drawbacks. We demonstrate that unlike 

the known extensive genetic ITH (22), analysing methylation patterns in multi-region samples
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from the same patient lead to consistent diagnoses in the vast majority of cases (92% in the 

Cambridge and 83% in the Evelönn datasets). In addition, we assessed low purity samples 

(including ex-vivo biopsies and fine needle aspirates) to represent a real world scenario. We 

show that samples that are incorrectly predicted by our model have significantly lower purity 

than correctly predicted samples. The association between purity and model accuracy was also 

previously noted by Brennan et al. (20). It is customary to take more than one sample at the 

time of biopsy, which may help overcome this challenge, alternatively low purity samples may 

require repeat biopsy.

In the testing set, the most common misclassifications involved ccRCC, pRCC and chRCC, 

whilst in the external validation sets, chRCC and oncocytoma were the classes with the lowest 

AUCs. The tumours’ shared cells of origin (proximal vs distal nephron) may explain some of 

these results. Problems in accurately differentiating between ccRCC and chRCC on histopathol-

ogy are another well-known challenge. In TCGA, 15 cases were initially classified as ccRCC 

on histopathological slide review, however, these were later re-reviewed by specialist uro-

histopathologists and reclassified as chRCC (11, 61). We noted that 8 of these samples were 

included in our testing and training dataset, and MethylBoostER classifies 5 as chRCC and 3 

as ccRCC. The former suggests that our model can correctly classify chRCC samples better 

than a standard pathologist, and more akin to a specialist uro-histopathologist. We explored the 

methylation and gene expression profiles of TCGA samples (Figures S9a and b) and demon-

strate that the 3 samples which our model classifies as ccRCC (TCGA participant IDs 4821, 

4688 and 4696), cluster more closely with ccRCC than chRCC based on both methylation and 

gene expression data. We hypothesize that these samples may indeed be ccRCC (i.e., the first 

classification was correct rather than the re-classification). This highlights existing challenges 

in diagnosing sub-types using existing histopathology methods and emphasizes the need to pro-

duce accurate predictive models. Finally, another challenge is that predictive models are trained

S16



on datasets in which the true diagnosis is based on histopathology, and if this is incorrect, it may 

bias the model. To ensure that the predictions of MethylBoostER were not heavily biased by 

these 8 mislabelled samples, we re-trained the models with the re-classified labels (8 ccRCCs 

were re-classified as chRCC, and a number of non-RCC were samples removed). The results 

over the testing sets were similar, as shown in Figures S9c and d, demonstrating that the small 

number of incorrect labels do not largely affect the results.

Carcinogenesis is invariably accompanied by perturbations in gene and epigenome regula-

tion. Aberrant DNA methylation changes on promoters, enhancers, and gene bodies contribute 

to alteration of gene expression and consequently affect signalling, regulatory and metabolic 

pathways. Renal carcinoma has been associated with MET (62), Hippo (63), Wnt (64), MAPK 

(65), NRF-ARE, PI3K/AKT/mTOR (66), metabolic, angiogeneic and immune checkpoint asso-

ciated pathways (67). Gene ontology and pathway enrichment analysis of the MethylBoostER 

features mapped to genes show a strong association with genes, processes and pathways in-

volved with carcinogenesis. Particularly, oncogenes and tumour suppressors (COSMIC cancer 

gene census), cancer-associated pathways (KEGG), putative ccRCC driver genes, and RCC 

associated genes were enriched. In addition, biological processes associated with metastasis 

(motility, cell adhesion and axonal guidance) and EMT were also strongly enriched. Com-

parison with curated gene sets in metastasis (HCMDB) and EMT (dbEMT2) databases further 

confirmed this. Other signatures such as neuronal and muscle development, Wnt, MAP Kinase 

and Ras signalling pathways, nucleoside metabolism, T-cell activity are also enriched. Unsur-

prisingly, enrichment of both positive and negative regulation of transcription coincides with 

known consequences of DNA methylation. Furthermore, enrichment of TFs and epigenetic 

regulators further supported this strong transcriptional regulation signature. Interestingly, genes 

associated with response to cortisol stimulus are enriched in our feature set. Serum cortisol 

levels have been found to be significantly higher in RCC and are associated with higher tu-
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mour grade (68). The enrichment in our feature set suggest a possible epigenetic regulatory 

mechanism for this process. Finally, we show that the CpG features selected by the models are 

enriched for cancer-related genes, and the features selected by all four models are enriched for 

well-known renal cell carcinoma genes. We use literature analysis to demonstrate that the ma-

jority of classification features are associated with genes involved in kidney pathology, cancer 

or carcinogenic processes, demonstrating the clear discernment in model selected methylation 

patterns. Associations between methylation and gene expression are outside the scope of the 

present analysis, which aimed to demonstrate that the model selects salient features which are 

biologically relevant and easily interpretable.

In summary, we develop MethylBoostER, a machine learning model that predicts patholog-

ical sub-types of benign and malignant renal tumours. The relatively modest number of patients 

diagnosed with certain tumour sub-types (especially chRCC and oncocytoma) and limited ac-

cess to patient samples can hamper the application of machine learning based approaches. We 

test the model on renal tumours of any stage, to increase the sample size, and demonstrate 

high accuracy in the external validation set consisting solely of SRM (e.g., Chopra validation 

dataset) and low purity samples (e.g. Evelönn and fine needle aspirates in Brennan). Future 

studies should aim to obtain larger sample sizes, and focus on multi-modal integration with 

imaging, patient clinical characteristics and epigenetic data.
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MATERIALS AND METHODS

Cambridge samples

Patients with benign and malignant renal tumours undergoing curative or cytoreductive nephrec-

tomy at Addenbrooke’s Hospital were recruited to the DIAMOND study. Ethics approval and 

patient consent were obtained (Research Ethics Committee REC ID 03/018). Fresh frozen tis-

sue was stored at -80°C. Where available, multi-region tumour samples were taken along with 

adjacent normal kidney tissue. DNA was extracted from a small section of frozen tissue, using 

the commercially available AllPrep DNA/RNA Mini Kit (QIAGEN) according to the manufac-

turer’s protocol.

DNA samples (10ng/µl, 500ng total) were sheared using the S220 Focused-ultrasonicator 

(Covaris) to generate dsDNA fragments. The D1000 ScreenTape System (Agilent) was used to 

ensure >60% of DNA fragments were between 100 and 300bp long, with a mean fragment size 

of 180-200bp. Tissue methylation analysis was performed using the TruSeq Methyl Capture 

EPIC Library Preparation Kit (Illumina), using the manufacturer’s protocol (a.k.a. Epic-seq). 

This consists of a capture-based method targeting approximately 3 million CpGs. Four samples 

are multiplexed in each capture reaction using sample indexing adaptors. The protocol involves 

hybridization of biotin-tagged probes to gDNA followed by capture using streptavidin beads 

(two hybridization-capture steps) followed by bisulfite conversion at 54°C for two hours. Fol-

lowing Polymerase Chain Reaction (PCR) amplification, uracils are copied as thymines, with 

resulting libraries consisting of two families of dsDNA molecules (originating from Watson 

and Crick strands), with a high thymine to cytosine ratio. Twelve samples were pooled for se-

quencing on the HiSeq4000 Illumina Sequencing platform (single end 150bp read) using two 

lanes per library pool. Technical replicates were performed for cell line data to assess assay 

reproducibility (correlation = 0.97). Sequenced data were trimmed (TrimGalore v0.4.4) and
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aligned to the bisulfite converted human reference genome (GRCh38/hg38). Methylation call-

ing was performed using the Bismark suite of tools (v0.22.1). Trimming and alignment reports 

were compiled using MultiQC (v1.7). Data were included in downstream analysis if a depth of 

greater than 10x coverage was achieved, to reduce the risk of false positive calling. In addition, 

samples were removed if non CpG methylation was greater than 1%.

Publicly available data

The Cancer Genome Atlas (TCGA) data for ccRCC (KIRC), pRCC (KIRP) and chRCC (KICH), 

were obtained via the TCGAbiolinks package in R (69). Only CpG probes with less than 5%

missing data were kept. The Chopra datasets, one for training and one for testing, were down-

loaded from the Open Science Framework, repository OSF.IO/Y8BH2 (18) and the AML sam-

ples were excluded. The Wei dataset (19) and Evelönn dataset (21) were obtained from the Gene 

Expression Omnibus, with GEO accession numbers GSE61441 and GSE113501, respectively. 

The Brennan dataset was obtained directly from the study authors (20). In all cases, methylation 

data were evaluated using the Illumina Infinium Human DNA Methylation 450 platform (a.k.a. 

450k array).

Pre-processing
Training/testing dataset

The training/testing dataset comprised of the TCGA data, the Chopra training data, and the 

Cambridge samples. The following pre-processing steps were performed on this training/testing 

set. CpG probes found in two blacklists (70, 71) for the 450k array were removed, as well 

as probes at the site of C/T and G/A SNPs, probes that map to multiple regions, and probes 

at repeat regions. In addition, CpG probes located on the sex chromosomes were omitted to 

remove gender bias. The 450k array (Chopra training samples and TCGA samples) and EPIC-
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seq (Cambridge data) cover different CpG sites. In order to combine data from the two methods,

Epic-seq beta values within 50bp of the 450K probes were averaged, as adjacent CpGs tend to

be co-methylated (72). Subsequently, probes that were missing for the whole of one dataset

(TCGA, Chopra training data or Cambridge) were removed, to avoid dataset specific bias. This

resulted in a dataset with 158,670 CpG probes.

Lastly, the beta values were converted to M-values, as M-values have been shown to be

more homoscedastic (73). They are computed using the following equation:

M = log2

(
β

1− β

)

Where M-values were calculated to be infinity (due to β = 1), they were set to the maximum 

finite value of the training/testing data, and where M-values were calculated to be minus infinity 

(due to β = 0), they were set to the minimum finite value of the training/test data.

External datasets

The external datasets used were the Chopra validation data (which is independent of the Chopra 

training data), the Brennan dataset, the Wei dataset and Evelönn dataset. The same 158,670 

probes in the pre-processed training/testing dataset were selected for all four external datasets.

Data visualisation

Dimensionality reduction was carried out using umap-learn Python package (version 0.3.10)

(74). NaN values were converted to the value 0 before the transformation.

MethylBoostER: The XGBoost classification model

A multiclass extreme gradient boosting classifier model was constructed using the xgboost 

Python package (version 0.90) (75). Four-fold nested cross validation was implemented on 

the training/testing set, with integrated hyperparameter optimisation.
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Four-fold nested cross validation

The training/testing set was split up into four stratified outer folds, so that each fold keeps 25%

of the dataset for testing. This was split so that multiple samples from the same patient were 

all in the same fold, to avoid data leakage between folds. These folds were iterated through, 

treating each one as the testing set in each iteration. Within these iterations, the remaining 

dataset was treated as a training/validation set.

Inner rounds of four-fold cross validation were performed on this training/validation set in 

order to find the optimal hyperparameters. For each inner fold iteration, a model was trained on 

the training set (75% of the training/validation set) and validated on the validation set (25% of 

the training/validation set). These inner rounds were repeated for various sets of hyperparam-

eters (the hyperparameters tested were dictated by the Tree of Parzen Estimators algorithm in 

the hyperopt package (76)).

The hyperparameters that resulted in the best average MCC score on the validation sets (av-

eraged across all four inner folds) were selected, and a model was trained with these parameters 

on the whole training/validation set. This resulted in a trained model with optimal hyperpa-

rameters for each outer fold, and the performance of these models on their fold’s testing set 

was reported. This method of cross validation ensured that the models had the optimal hyper-

parameters, they were evaluated on completely unseen test data (specifically data that was not 

used to select the hyperparameters, to avoid inflated scores), and the performance on the whole 

training/testing dataset was reported.

Hyperparameters and training details

Two parameters were manually set, namely subsample = 0.5 and colsample bytree = 0.5 in 

order to help reduce overfitting and run time (75). Many of the remaining parameters were 

found using hyperparameter optimisation implemented in the hyperopt Python package (version
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0.2.5) (76). The maximum number of evaluations was set to 10 and the parallelism was set to

2, to reduce the run time. The search spaces for each parameter were:

• number of trees: 50-500

• learning rate: 0.05-0.5 (sampled from a log uniform distribution)

• max tree depth: 2 or 3 (intentionally set very low to help reduce overfitting)

• L1 regularisation term: 0-1

• L2 regularisation term: 0-1

During model training, Gaussian noise with mean 0 and variance 0.2 was added into the

training data to help reduce overfitting. Early stopping was also applied to reduce overfitting,

with the number of early stopping rounds set to 5 and multiclass logloss as the evaluation

metric used. Samples were weighted to avoid both patient bias and to mitigate the class bias.

Balanced class weights were calculated using the ’compute class weight function’ in the sklearn

package (77), which ensures samples in less common classes are weighted higher. The same

function was used to generate balanced patient weights, so that samples from patients with

many samples were weighted lower. The two weights were multiplied together, in order to get

a weight for each sample to be used during training.

Evaluation metrics

Accuracy, precision, recall, F1 and the Matthews Correlation Coefficient (MCC) were used to

evaluate the models’ performance. F1 is the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision+ recall

The MCC was also reported as it is a performance measure that is not affected by large class 

imbalances, unlike accuracy. Receiver Operating Characteristic (ROC) curves and Precision
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Recall (PR) curves were also plotted, with each class plotted separately (i.e., using the one-vs-

all strategy). ROC curves show the false positive rate and the true positive rate over all possible 

values of the classification threshold. PR curves show the precision and recall over all possible 

values of the classification threshold. The Area Under the Curve (AUC) was also reported for 

both of these curves, with 1 as the best possible AUC score.

High- and moderate-confidence predictions

The model’s output probability was used as a confidence measure, and the predictions were 

split into two categories: high-confidence, where the output probability was larger than a spec-

ified threshold, t, and moderate-confidence, where the output probability was less than t. For 

moderate-confidence predictions, we outputted the model’s top two predictions (i.e., the two 

classes with the two highest output probabilities).

The parameter t was chosen based on the testing set. Three metrics were plotted for values 

of t between 0.5 and 1 (in increments of 0.025). These metrics were: the fraction of high-

confidence predictions, the accuracy of the high-confidence predictions, and the accuracy of the 

moderate-confidence predictions where a prediction was treated as correct if the correct class 

was in the model’s top two predictions. In order to remove noise in these accuracy scores, 

simple linear models were fitted (i.e., approximated accuracy = a*t + b) and the approximated 

accuracy scores were used to estimate t. For each value of t, these three metrics were averaged 

and the value of t where the average was the largest was taken. This was t = 0.85 and was 

validated on the external validation datasets.

Tumour purity analysis

Tumour purity was obtained for each sample using methylation beta values using the Infini-

umPurify package in R (28) as previously described (20). Purity in correctly predicted and
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incorrectly predicted samples was compared using the Wilcoxon signed rank sum test with cor-

rection for multiple testing.

Feature analysis
MethylBoostER feature importance and annotation

Feature importance values were obtained from the trained XGBoost models, which used the 

gain measure as the feature importance. All features with an importance greater than zero were 

selected. For each selected feature, the CpG was mapped to a gene if it was within a gene or 

within 1500bp upstream of a gene.

Genomic location of features

The R package ChIPseeker (78) (version 1.30.2) was used for genomic location annotation 

and visualisation. The R package EnsDb.Hsapiens.v86 (79) (version 2.99.0) was used for the 

annotation source. The background set used was the total set of input features.

Over-Representation analysis (ORA)

Gene Ontology enrichment analysis was carried out using the Biological Networks Gene Ontol-

ogy (BINGO v3.0.3) package (80) and network visualization was carried out using Cytoscape 

(v3.9.0) (81). Pathway enrichment analysis was carried out using the Panther analysis tool (re-

lease 16) (82) with Panther and Reactome pathway collections. Statistical over-representation 

was carried out using Fisher’s Exact test with false discovery rate (FDR) correction. Over-

representation analysis was also performed on eight gene lists: dbEMT2 (34), COSMIC Cancer 

Gene Census (35), a list of putative driver genes for ccRCC (32), pRCC and RCC genes from the 

Diseases database (31), TF Checkpoint (29) for transcription factors, EpiFactors for epigentics 

regulators (30) and Human Cancer Metastatic Database (HCMDB) for metastatic genes (33). 

Enrichment of gene sets was determined using Fisher’s Exact test with FDR correction, using
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the Python package SciPy (83). The background set used in ORA were the total set of input fea-

tures mapped to genes, and Ensembl gene IDs were used where specified (if not, gene symbols 

were used).

For the localised region GO enrichment analysis, the R package rGREAT (84) (version 

1.26.0) was used, and the background set was the total set of input features. The significant (ad-

justed p-value ≤0.05) Biological Process terms that best summarised the results (with redundant 

terms manually excluded) were visualised.

Literature mining entity relationships

The Chilibot text mining web application (85) was manually searched with the 45 genes com-

mon to all four models together with the terms “kidney”, “renal”, “RCC” and “cancer”. 30 

million PubMed abstracts were also searched for entity-relationships using the Pangaea natural 

language processing Python package (86) with a renal carcinoma associated relation term list 

and a collection of HGNC gene symbols (4217 genes) derived from MethylBoostER’s features 

mapped to genes (5012 genes). Entity-Relationship terms with frequencies ≥ 3 were used to 

build a gene relationship network using Cytoscape (v3.9.0).
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Figure 1: Graphical abstract
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a b

c

d

e

Figure 2: Data characteristics and testing set performance. a Number of samples in each class 
for the training/testing set. b UMAP representation of the training/test dataset, using all input 
features. c Confusion matrix displaying the testing set performance, with precision and recall 
bars. d UMAP representation of the training/test dataset, using the input features learnt by the 
XGBoost model. e ROC curves over the testing set, split by class.
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Figure 3: High- and moderate-confidence predictions. a Histogram of the model’s probabilities
of the predicted class for the testing sets. b Line plot showing how the testing set accuracy
scores and fraction of high-confidence predictions vary as the threshold changes. The vertical
dotted line indicates the chosen threshold, 0.85. c Graphical overview of the prediction process
with high- and moderate-confidence predictions.
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Figure 4: External validation on four independent datasets a Number of samples in each class
for each dataset. b Accuracy for high- and moderate-confidence predictions for each exter-
nal dataset. ‘First or second prediction’ indicates that a prediction is treated as correct if its
first or second prediction was correct. c, d, e and f Confusion matrices for both high- and
moderate-confidence predictions and ROC curves, split by class, for each external dataset. For
the moderate-confidence confusion matrices, the x-axis is split into first correct (i.e., the first
prediction was correct), second correct (i.e., the second prediction was correct), and both incor-
rect (i.e., both first and second predictions were incorrect).

a b

Correctly predicted normal sample
Correctly predicted tumour sample
Incorrectly predicted tumour sample, 
x is predicted subtype

x

Sample has low purity 
(below the 5th percentile)

Legend

Figure 5: Classification of multi-region samples. a Diagram visualising the model’s predictions 
of multi-region samples for each patient in the Cambridge dataset. b Diagram visualising the 
model’s predictions of multi-region samples for each patient in the Evelönn dataset.
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Figure 6: Sample purity and MethylBoostER output a Sample purity for samples which are
predicted correctly on the first prediction (1st correct), second prediction (2nd correct) and
incorrectly predicted samples (incorrect) on both predictions. Data is shown for all datasets
combined, with pathological sub-types shown in different colors. Adjusted p values are shown
(* <0.05, *** <0.0009) b and c Sample purity and the probability of the first prediction is
demonstrated for all datasets combined (b) and each dataset individually (c). The threshold t =
0.85 indicating a high-confidence prediction is shown. Samples which are incorrectly predicted
(in both first and second prediction) are indicated with a cross.
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Figure 7: The genomic location and functional annotation of the features selected by Methly-
BoostER. a The distribution of genomic locations (relative to genes) for the selected features, 
compared to the background (the total set of input features). b Enriched Gene Ontology terms 
from the Biological Process category represented as a network, where each branch represents 
a different functional category. Results obtained from the gene-wise GO analysis. c Enriched 
Gene Ontology terms from the Biological Process category represented as a barplot. Results 
obtained from the localised region GO analysis.
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Figure 8: Proposed future integration of MethylBoostER model into the existing diagnostic
pathway for patients with small renal masses (SRM). Patients would have an image-guided renal
biopsy and biopsy samples would undergo DNA methylation analysis. MethylBoostER results
would be interpreted in the context of integration with clinical and imaging data. For high-
confidence predictions, MethylBoostER would predict one class, where benign oncocytoma
and malignant RCC would likely be managed with active surveillance and active treatment
respectively. In moderate-confidence predictions, the two classes with the highest probabilities
would be predicted. Samples with low purity or cases in which MethylBoostER predicts normal
kidney (suggesting the target lesion was missed) would prompt repeat biopsy.
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Figure S1: ROC and Precision-Recall curves for all four models on the testset. The ROC curve for model 4
can be found in the main Figure 2e.
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c d

Incorrectly predicted

Figure S2: UMAP of samples in the training/test set, for all four models (subfigures a, b, c and d represent
model 1, 2, 3 and 4, respectively). Only features selected by each XGBoost model were input into the UMAP
algorithm.
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Figure S3: Testing set confusion matrix split by high- and moderate-confidence predictions. For moderate-
confidence predictions, we show whether the first prediction was correct, the second prediction was correct,
or whether both predictions were incorrect.
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Figure S4: Performance of all four XGBoost models on all four external datasets. a Confusion matrices for
all models on all datasets. b Confusion matrices split by high- and moderate-confidence predictions. For
Model 4, see main Figure 4.
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Figure S5: Performance of all four XGBoost models on all four external datasets, shown through ROC curves
(a) and Precision-Recall curves (b). For Model 4’s ROC curves, see main Figure 4.
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Incorrectly predicted

Figure S6: UMAP representation of the Evelönn external dataset, using the input features learnt by XGBoost
model 4. Incorrectly predicted samples are highlighted and labelled with the model’s prediction. a Colour
represents diagnosis. b Colour represents tumour purity, and only ccRCC samples are shown.
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shown for each individual dataset, with pathological subtypes shown in different colors. Adjusted p values
are shown (* <0.05, ** <0.009, *** <0.0009)
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Figure S8: Methylation distribution of the 38 features that were selected by all four XGBoost models. Each
swarm plot shows the M-value distribution for each diagnosis. Where a feature maps to a gene (or genes),
the gene diagram is positioned directly below, with the feature location marked in red. The Transcriptional
Start Site (TSS) for each gene is also indicated and the x-coordinates are chromosome positions.
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Figure S9: a UMAP of all TCGA samples in the training/testing methylation dataset. The eight samples in
our dataset that were re-classified by Ricketts et al. as chRCC are indicated and labelled with their TCGA
participant ID. b UMAP of the KIRC TCGA RNA-Seq dataset. The samples that were re-classified by
Ricketts et al. as chRCC are indicated, and the eight samples that are also in the methylation dataset are
labelled with their TCGA participant ID. ‘Other re-classified sample’ refers to re-classified samples that are
not included in the methylation dataset. c and d Confusion matrix and ROC curves of the testing set results
after training MethylBoostER with the re-classified labels (eight ccRCC samples re-classified as chRCC, and
a number of non-RCC samples removed).
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Figure S10: a Topology analysis of methylation feature Entity-Relationships. Visualization of 28579 entity-
relationships between MethylBoostER derived methylation feature mapped genes and renal carcinoma re-
lated relationship terms text mined from 30 million PubMed abstracts. Node size represents local connectiv-
ity(degree) and node colour represents global importance (betweenness centrality). Edge colour represents
gene publication frequency, with darker edges representing high values.
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Supplementary Tables

Table S1: Average performance metrics on the testing set
normal ccRCC chRCC onc pRCC

F1 1.0 0.962 0.865 0.974 0.944
Precision 1.0 0.967 0.832 1.000 0.944
Recall 1.0 0.957 0.903 0.949 0.944

Accuracy 0.960
MCC 0.945

Table S2: Performance metrics for all external validation datasets, averaged across all four
models.

normal ccRCC chRCC oncocytoma pRCC

precision 0.797 0.934 0.365 0.750 0.878
Chopra recall 0.973 0.893 0.958 0.048 0.661

F1 0.876 0.913 0.527 0.090 0.748

precision 0.822 0.833 0.455 1.00
Stanford recall 1.000 1.000 0.750 0.25

F1 0.902 0.900 0.566 0.40

precision 0.942 0.993
Wei recall 0.978 0.772

F1 0.960 0.868

precision 1.0 1.000
Evelönn recall 1.0 0.884

F1 1.0 0.938

Table S3: Accuracy and MCC for all external validation datasets, split by high- and moderate-
confidence predictions.

High-confidence Moderate-confidence, first or second prediction
Chopra Brennan Wei Evelönn Chopra Brennan Wei Evelönn

Accuracy 0.905 0.933 0.944 0.948 0.720 0.782 0.797 0.858
MCC 0.842 0.783 0.895 0.794 0.668 0.632 0.439 0.250
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Table S4: Accuracy of both first and second predictions and sample numbers for different levels
of purity, averaged over all datasets (both the training/testing set and all external validation
sets). Normal kidney samples do not have a purity estimated and therefore are not included in
this analysis, hence the total number of samples is 1246.

Purity Median
probability
of 1st
prediction

Accuracy of
1st prediction

Accuracy of
2nd
prediction

Both
predictions
incorrect

Number of
samples

0.0-0.1 0.78 0.42 0.08 0.5 12
0.1-0.2 0.85 0.37 0.39 0.24 49
0.2-0.3 0.99 0.71 0.08 0.21 24
0.3-0.4 0.98 0.6 0.1 0.3 30
0.4-0.5 0.99 0.82 0.14 0.04 95
0.5-0.6 1 0.91 0.04 0.05 159
0.6-0.7 1 0.97 0.03 0 159
0.7-0.8 0.99 0.92 0.05 0.04 111
0.8-0.9 0.99 0.94 0.04 0.02 294
0.9-1.0 1 0.99 0.01 0 313
All samples 1 0.9 0.06 0.04 1246
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Table S5: MethylBoostER’s features were mapped to genes and compared to a number of gene
lists using Fisher’s tests. Here are the gene list details and adjusted p-values showing the sig-
nificance of the overlap.

Gene list description Name Size of
gene list

Size of
overlap

Adjusted
p-value

Human Transcription Fac-
tors

TF Checkpoint (29) 3479 701 5.97x10-15

Epigenetic regulators Epifactor db (30) 720 147 1.27x10-2

RCC related gene set RCC
Harmonizome/Diseases
db (31)

829 193 9.17x10-7

ccRCC putative driver
genes

ccRCC driver gene
panel (32)

230 59 1.07x10-4

pRCC related gene set pRCC
Harmonizome/Diseases
db (31)

81 19 1.16x10-1

Genes associated with tu-
mor metastasis

HCMDB (33) 1939 478 2.07x10-16

Epithelial-mesenchymal
transition genes

dbEMT2 (34) 1184 294 2.58x10-16

Genes that play a causal
role in cancer

COSMIC Cancer Gene
Census genes (35)

723 190 5.85x10-13
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Table S6: The literature evidence and associations for the 45 genes common to all models
Association Genes References
ccRCC ALCAM, PVT1, VMP1, ND-

UFA4L2, CLDN1
(37–39)

chRCC SHMIT2

Renal cell carcinoma TESC, BST2, THRA, CLDN1,
SLC16A3, KHDRBS2, MIR21

(40–42)

Kidney development ALCAM, FOXN1, SRGAP3 (43)

Gene expression in kidney SSC4D, KLF12

Adhesion, motility, invasion and
metastasis

ALCAM, ATP11A, NCOR2, PVT1,
TESC, BST2, VMP1, HDLBP,
CLDN1, SLC16A3, DLGAP1

(44–47)

Poor survival in renal cancer and other
cancer types

PVT1, SHMT2, VMP1, NDUFA4L2,
SC3A2, CLDN1, KLK11

(48–50)

Increased survival THRA

Act as tumour suppressors SCIRT, NR1D1

Promote cancer stemness ALCAM, NCOR2 (44)

Carcinogenesis, proliferation and tu-
mour growth

PVT1, SHMT2, TESC, BST2,
SLC16A3, MIR1204, DLGAP1

Have been identified in other cancer
types

CHRM2, ZP2

Not previously associated with kidney
function, renal disease or cancer

ANKMY1, EHMT1, H2AW,
JDP2, H2BU1, KIAA1143, KIF15,
LINC01960, SF3A2
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