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Chapter 1

Introduction

In 1959, Richard Feynman gave a lecture entitled ‘There’s plenty of room at the bottom’ to
promote nanotechnology. He imagined a future where a patient would ingest a pill filled
with tiny machines, which would fix the body from within. Such unparalleled control is
approaching, but before we can build such tiny machines, we must understand the science at
these length-scales; one small step at a time.

Our goal here is to understand small channels filled with liquid, that are found in our bodies
and across the physical world. In nature, such channels come in many shapes and sizes. For
example, Figure 1.1a shows a porous rock, where the interlinked cavities form a network of
channels. Similarly, biological organisms use a network of channels to transport biomolecules
around the body. Our cardiovascular system has channels with diameters ranging from 10 mm
for arteries, down to 5 µm for the smallest capillaries that are shown in Figure 1.1b. Zooming
in even closer, into the cells themselves, we discover perhaps the smallest channels found in
nature - the protein pores. Figure 1.1c shows a Maltoporin pore that facilitates the transport of
sugars into Gram-negative bacteria. The typical inner diameters of protein pores range from
50 nm down to only 0.5 nm [1].

In technology, channels are found in porous materials, like the novel electrodes shown
in Figure 1.1d. These pores dramatically increase the surface area, thus allowing the rapid
charging of batteries [4]. Another example is gel electrophoresis, where charged particles
migrate through a porous gel. Biochemists use this method to separate molecules on the basis
of their size and charge. Meanwhile, industrial particle separation uses filtration membranes.
Figure 1.1e shows a membrane composed of tiny channels that remove dust and bacterial
contaminants from water [6]. Individual channels may also be used as biosensors, capable
of identifying the bases of a DNA molecule. Figure 1.1f shows an illustration of the DNA
sequencing mechanism found in an Oxford Nanopore Technologies Ltd, MinION sequencer.
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Figure 1.1: Examples of channels found in nature and technology. (a) SEM micrograph of
a highly porous magnesian limestone, where the holes form a network of channels. (b) The
mammalian circulatory system transports blood in channels called vessels. The smallest
of them are called capillaries. (c) Protein pores transport ions and molecules through cell
membranes. The illustration shows a Maltoporin pore, which can transport maltodextrins
into Escherichia coli bacteria. (d) Porous electrodes increase the surface area for chemical
reactions, thus enabling quickly chargeable batteries. (e) SEM image of a porous membrane
made out of fibril fibres. It is used as a filtration membrane, where the channel-like structures
stop unwanted particles. (f) Biosensors aim to identify biomolecules for medical diagnostics.
Here, a DNA molecule is threaded through an alpha-hemolysin protein channel. The DNA
sequence is determined by measuring an electric current flowing through the pore. Figure
adapted from [2–6].
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Figure 1.2: Measurements of particle transport through nano-channels. (a) Single molecule
translocation through a nuclear pore complex. Imaged using single molecule fluorescence
(SMF) microscopy [7]. The fluorescently tagged molecule moves passively from the cytoplasm
to the nucleus. The technique had spacial resolution of 30 nm and temporal resolution of
3 ms. The scale bar indicates 2 µm and the numbers indicates time in milliseconds. (b) DNA
translocation through a nano-capillary, which was also imaged using SMF [8]. An external
electric field drives the DNA through the capillary. Capillary tip radius was about 50 nm. The
scale bars indicate 5 µm. In both cases, only a few frames are captured with the molecules
inside the channels, thus limiting the amount of information that can be inferred about the
behaviour inside the channels. Figure adapted from [7–10].
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In all these examples, channels facilitate the transport of particles whether they are ions,
molecules, or larger assemblies. Biological channels are made for a sole purpose of moving
particles around. For example, consider the functions of protein channels. At the small end of
the size spectrum, we find voltage-gated ion channels that are normally closed, but an increase of
membrane potential can open them, thereby allowing ions to pass. This transistor-like behaviour
is vital for neurons because it propagates signals along the axons [1]. Aquaporin channels
specialise in the transport of water across membranes. Their shape allows high permeability,
while maintaining a very high selectivity for water [11]. The nuclear pore complex also has
a high selectivity due to a polymer brush inside the channel, which permits the passage of
specialised transporters [12]. These facilitate the transport of signalling molecules into the
nucleus and then bring RNA molecules back to the cytoplasm, thus acting as a gateway for
accessing the genetic material. These three examples demonstrate the diversity of transport
modes that are all vital for life. Disorders of ion channels are associated with with a large
number of diseases, such as epilepsy or osteopetrosis [13]. Consequently, understanding the
particle behaviour inside such channels is of critical importance. For example, Figure 1.2a
shows an experimental observation of a single molecule moving across a nuclear pore, where its
trajectory reveals that passive diffusion drives this transport [7, 12]. However, two constraints
limit our understanding of this process. First, the microscope resolution is insufficient to
determine the exact dynamics within the channel. The nuclear pore is the biggest protein
pore, but the experiment that is shown in Figure 1.2a only obtained a few position points
per molecule [7]. The same problem occurs in synthetic nano-channels, where, for example,
Figure 1.2b shows a voltage-driven translocation of a DNA molecule through a nano-capillary.
Note that the DNA passed through the capillary tip in just half a millisecond, thereby leaving us
unable to determine the velocity in the tip. The second major obstacle is complexity: biological
channels have irregular shapes and can change their confirmation or sometimes have molecular
binding sites inside. Such complexity obscures the contributions from different phenomena.
These two reasons make it difficult to understand the physics involved in particle transport.

Our goal is to understand the fundamental principles of particle behaviour in channels,
and therefore, we must address both limitations discussed above. Therefore, we study particle
motion in highly controlled microfluidic channels that serve as a model system, as shown
in Figure 1.3. The characteristic sizes of our channels and particles are approximately 1 µm
across, which is small enough to have significant Brownian motion, but still large enough
to resolve using a bright-field microscope. This dimensional scale-up increases our spacial
and temporal resolution, thereby solving the first problem. To solve the second problem of
complexity, we simplify the geometry: particles are modelled by spherical colloids, while
our channels are fabricated straight and uniform, enabling a direct comparison with theory.
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Figure 1.3: Biological channels have complex shapes and features that make it difficult
to understand particle transport through them. In contrast, microfluidic channels have a
well defined shape. The molecules are approximated as spherical colloidal particles. The
characteristic diameter of our synthetic channels is about 1 µm, allowing us to image them
using bright-field microscopy. Figure adapted from [9].

Similar systems have been applied previously to study electrostatic interactions [14–16], steric
interactions [17–19], and hydrodynamic interactions [20–25]. In this thesis, we focus on the
hydrodynamic interactions between particles, the particles and the channel walls, and the role
in driven transport.

The work is organised as follows. In the second chapter of this thesis, we will introduce
the relevant theory for Brownian motion, hydrodynamics, and electrokinetics. Chapter 3
will present our experimental methods and also the measurement of diffusion coefficients,
which are related to the hydrodynamic friction experienced by a moving particle. We will
demonstrate that theory underestimates the diffusion coefficients, which leads us to suggest a
new method for modelling hydrodynamics inside finite channels. Chapter 4 focuses on particle-
particle interactions between particles undergoing Brownian motion. Here, we will show that
hydrodynamics in channels produces a unique mode of interaction that is distance-independent.
Chapter 5 will demonstrate that these hydrodynamic interactions persist for electrophoretically
driven particles as well. All these phenomena share a fundamental principle: channels of finite
length have a flow across the inlets, which can be modelled with periodic boundary conditions.

These discoveries present a valuable contribution towards understanding the physics inside
channels. We expect that this knowledge will help estimate the permeability of porous materi-
als [26, 27] and drug diffusion through protein channels [28]. Perhaps most importantly, we
predict a new type of particle-particle interaction that was previously unknown.





Chapter 2

Theory

This chapter introduces theoretical concepts necessary for understating particle behaviour in
channels. Specifically, we will introduce Brownian motion that acts on all small particles. When
these particle move, they experience hydrodynamic drag that couples them to the surrounding
liquid. Therefore, we will introduce hydrodynamics and how it depends on the confinement.
Finally, we will also study different methods for actively driving particle through channels, for
which we must explain electrokinetic effects.

2R

L

2a

Figure 2.1: Our model problem: two reservoirs are connected by a liquid filled channel of
length L and diameter 2R. The spherical particle inside the channel has diameter of 2a.

We start by introducing our model system for understanding particle behaviour and interac-
tions inside channels. Figure 2.1 shows a simple geometry, where the particles are spherical
with diameter 2a, and the channel has a uniform cross-section with diameter 2R. The channel
has a finite length, L, which connects two reservoirs. The entire system is filled with liquid. Us-
ing this model system, we aim to understand particle motion in channels and the corresponding
transport properties.
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2.1 Brownian motion

In water, a particle is surrounded by solvent molecules that are constantly moving due to thermal
energy. Collisions between them can transfer some momentum to the particle, thus resulting in
its motion. This motion is damped by the surrounding liquid that quickly stops the particle.
The direction and magnitude of such ‘step’ is random. The particle constantly performs these
random steps, essentially performing a random walk throughout the environment, which is
called Brownian motion. This process can be described with the Langevin equation [29, p. 62]:

m
d2x
dt2 = −ζ

dx
dt
+ϑ (t)+Fext, (2.1)

where m is the mass of our particle, x is its position, ϑ is the random force caused by the
thermal collisions, Fext is an external force acting on the particle, and ζ is the hydrodynamic
friction coefficient for a moving particle in a liquid. The random force is typically approximated
by white noise, which has a Gaussian distribution with zero mean and correlation function:

∐︀ϑ(t1)ϑ(t2)̃︀ = 2ζ kBT δ (t1− t2) . (2.2)

The resulting motion has two characteristic time-scales [30, 31]. Initially, inertia dominates
the particle motion with characteristic time-scale of τp = m⇑ζ ∼ 0.1µs. Here, the particle
receives a thermal impulse and moves in a straight line at velocity v. The surrounding liquid
resits this motion by exerting a drag force, Fd = ζ v. This process is called ballistic Brownian
motion and its duration can be measured using the velocity auto-correlation function (VACF):

VACF(τ) ≡ ∐︀v(t)v(t +τ)̃︀ . (2.3)

From Equation (2.1) it can be shown that the velocity auto-correlation function decays
exponentially with time, VACF ∼ e−t⇑τp . However, this is an oversimplification since the moving
liquid carries additional momentum. As a result the velocity auto-correlation function decays
slower than expected by Langevin equation, at a rate VACF ∼ t−3⇑2. This effect is called
hydrodynamic memory [30, 32]. The characteristic time for this process is τ f = a2ρ f ⇑η ∼ 10µs.
In channels, theory predicts a much smaller hydrodynamic memory effect that leads back to
the exponential decay of the velocity auto-correlation [33]. However, particles also have a
secondary coupling carried by sound, which decays as VACF ∼ −t−3⇑2 [34]. This effect has
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negative magnitude and is much weaker than conventional decay due to the hydrodynamic
friction.

In our experiments, we measure particle motion at much longer time-scales, where VACF =
0. The resulting particle motion is known as Brownian motion and it was first theoretically
described by Sutherland [35], Einstein [36] and Smoluchowski [37] around 1905. Here,
the particle performs a random walk with no net progress, ∐︀∆x(t)̃︀ = 0. It does, however,
explore a growing region in time that is described by the mean squared displacement (MSD),
∐︀(∆x(t))2̃︀ = 2Dx t, where Dx is the diffusion coefficient along one coordinate. This coefficient
depends on the temperature of the system and the hydrodynamic friction coefficient via the
Einstein-Smoluchowski relation

Dx = kBT ζ
−1. (2.4)

2.1.1 Smoluchowski equation

The long time-scale evolution of particles can be described by the Smoluchowski equation1 [29,
p. 100]

∂n
∂ t
=D

∂ 2n
∂x2 −

1
ζ

∂(nFext)

∂x
, (2.5)

where n is the probability density for finding the particle in a given position in 1D. For multiple
interacting particles, it reads [29, p. 226]

∂ fN

∂ t
=

N
∑

i, j=1

∂

∂xi
Di, j (

∂

∂x j
−

Fj,ext

kBT
) fN , (2.6)

where fN is an equivalent distribution function in a configuration space. In this notation, the
electrostatic interactions are introduced through the external force term Fj,ext. Meanwhile,
the hydrodynamic interactions are embedded in the diffusion coefficient matrix D = (︀Di, j⌋︀,
that is inversely proportional to the hydrodynamic friction coefficient matrix via Einstein-
Smoluchowski relation, D = kBT Z−1. The friction matrix is symmetric, ζi, j = ζ j,i, and has the
following structure [29, p. 226]

1A general version of this equation is called Fokker-Planck equation.
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Z =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎪

ζ1,1 ⋯ ζ1,N

⋯ ⋱ ⋯

ζN,1 ⋯ ζN,N

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎮

, (2.7)

where the diagonal terms, ζi,i, describe the hydrodynamic friction with the surrounding en-
vironment for particle i. The off-diagonal terms, ζi, j, describe the hydrodynamic interaction
between particles i and j. We will use this notation extensively throughout the thesis.

2.2 Hydrodynamics

Liquids are incompressible due to strong intermolecular interactions that produce a large
inwards pressure [38]. The Navier-Stokes equation for incompressible liquids reads

∂u
∂ t
+(u ⋅∇)u−

η

ρ f
∇2u = −

1
ρ f
∇p+ f, (2.8)

where u it the flow velocity, η is the dynamic viscosity, p is the pressure, ρ f is the density, and
f is an external force distribution. In a typical nano- or microfluidic system, the viscous forces
dominate over the inertial forces, leading to low Reynolds number flows with the definition

Re =
inertial forces
viscous forces

=
ρ f 2Ru

η
∼ 10−3, (2.9)

where 2R is the characteristic width of the channel and u is the typical flow velocity. This value
suggests that the viscous forces dominate the flow. Therefore, the Navier-Stokes equation can
be simplified by discarding the inertial terms, leading to the Stokes’ equation for laminar flows

η∇2u =∇p− f (2.10)

∇⋅u = 0. (2.11)

It is a linear equation, allowing us to superimpose independent solutions for different
boundary problems. Stokes’ equation also has no time component, implying that information
propagates instantaneously, which is an approximation, because in real water, information
propagates at the speed of sound, c ≈ 1482m⇑s. This approximation is accurate for our system,
because information propagates over the length-scale of our system. For example, in 10 ns
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a change in pressure travels 15 µm, while in 1 µs it travels 1.5 mm. For comparison, our
experimental particles are about 500 nm wide and channels are about 1 µm wide and 10 µm
long.

Coming back to the isolated spherical particle, we are interested in a drag force due to its
motion through the liquid. In bulk, this drag is given by the Stokes’ law

Fd = −6π η av , (2.12)

where v is particle’s velocity. This equation can be related to the hydrodynamic friction
coefficient that was used in the description of Brownian motion

ζ0 = −
Fd

v
= 6π η a . (2.13)

Here, 0 indicates that the coefficient is for bulk. The value has to be adjusted in confinement,
because surfaces alter the flow fields by imposing no-flux and no-slip boundary conditions.
Confinement effects on spherical particle motion can be quantified using Faxen’s laws, but
its solutions are scarcely available. One useful solution gives the force on a particle moving
parallel to an infinite plane [39, p. 327]:

Fd = −
ζ0 v

1−(9⇑16)(a⇑r)
+O((a⇑r)2) , (2.14)

where r is the distance from the sphere to the plane. This equation highlights an important
trend: the drag on the particle increases when it gets closer to a wall.

In channels, the walls also restrict flows, leading to an increased drag force. For very long
channels (L→∞), analytical solutions exist [39, p. 320] and have been studied extensively [40].
These solutions are based on expansions and therefore are complex. However, the trend holds:
the friction coefficient increases with the confinement, where the confinement is quantified with
a ratio between the diameters of the particle and the channel, a⇑R. We will use the confinement
ratio to classify our experiments. When a⇑R ≳ 0.3, the particles are tightly confined by the
channel and we say that the channel is narrow. For smaller a⇑R values, the channel becomes
increasingly like bulk and the friction coefficient approaches Equation (2.13).

When discussing the hydrodynamics equations we assume no-slip boundary conditions
on all surfaces, u = 0. This standard boundary condition works well for micrometer sized
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systems [39, p. 51], and we will continue using the no-slip boundary condition unless stated
otherwise.

2.2.1 Hydrodynamic interactions

A moving particle induces a flow field that extends far into the liquid. Other particles in this flow
field react to and interact with it, thus resulting in a hydrodynamic particle-particle interaction.
The force on the second particle depends on the position and also on the velocity of the first
particle. This is fundamentally different from electrostatics, where the position is sufficient to
determine the force vector. The magnitude of the hydrodynamic force is linearly proportional to
the speed of the first particle, thereby we can quantify the interaction using the hydrodynamic
friction matrix or the diffusivity matrix, as it was discussed in Section 2.1.1.

In 3D, or for two particles in bulk, the interactions are well understood theoretically [39, p.
235], with an approximate solution given by [29, 41, p. 226]

D1,1 =D2,2 =
kBT
ζ0

1; D1,2 =D2,1 = kBT T, (2.15)

where 1 is an identity matrix, and T is the Oseen tensor [39, p. 320]:

T =
1

8πη
(

1
⋃︀r⋃︀
+

rr
⋃︀r⋃︀3
) . (2.16)

This equation suggests that the interaction strength decays with distance as 1⇑r, where r is
the distance between two spherical particles. The literature often refers to this as a long-range
interaction, because it extends much further than electrostatic interactions between particles.
This result has been confirmed experimentally [42].

In 2D, or for particles tightly confined between two infinite planes, the strength of hydrody-
namic interactions decays faster, as 1⇑r2. Here, the confinement changes the flow field, thus
modifying the decay function. This was also confirmed experimentally [24, 41, 43].

In 1D, or for particles inside narrow channels, the hydrodynamic interactions are predicted
to decay exponentially, as ∼ exp(−r⇑2R) [22, 44]. Some experiments have attempted to confirm
this relation [22, 24, 25], but we will argue in Chapter 4 that these experiments did not capture
1D hydrodynamics, because the liquid could escape the channel through open sides. Thus
leaving open questions about the hydrodynamic particle-particle interactions in 1D.
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2.3 Driven transport

Our particles are not only subject to Brownian motion but can also be actively transported
by applying external forces. We consider three driving sources for actively driving particles
through channels: pressure induced flow, gravity fall, and electrostatic pull. We start by
describing the former two forces. However, the main topic of this section is the electrostatic
pull, which in liquids is called electrophoresis. To explain how it works we will first consider
two other electrokinetic phenomena: the double layer that forms at the interface between a
liquid and a solid, and electroosmosis that propels a liquid in an external electric field.

2.3.1 Pressure and Poiseuille flow

A pressure difference across a cylindrical channel induces a Poiseuille flow. It has a character-
istic parabolic profile given by: u(r) = ∆p(R2−r2)⇑4η L, where r is a radial coordinate and ∆p
is the pressure difference [38]. The flow rate is described by the Hagen-Poiseuille equation

dV
dt
= ∐︀ũ︀πR2 = −

πR4

8η

∆p
L
, (2.17)

where V is the volume of the liquid transferred. This flow can transport particles across
channels, since particle simply follow the resulting flow field.

2.3.2 Gravity

Gravity acts directly on a particle, where the force is a combination of gravitational pull and
buoyancy. Using the Archimedes’ principle the force reads

Fg = 3⇑4 πa3(ρp−ρ f )g, (2.18)

where ρp is the density of the particle, ρ f is the density of the fluid, and g is gravitational
acceleration. Note that gravity is not affected by confinement and particles in channels fall
slower due to the increased hydrodynamic friction.

2.3.3 Double layer

Hydrophilic particles often carry (negative) surface charges and thus can be manipulated by
electric fields. In order to understand the forces we need to briefly consider the solid/liquid
interface. Water is capable of dissociating bonds of exposed groups on many surfaces. For
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example, a glass surface undergoes oxide dissociation process ( – OHÐÐ→ – O – + H+) leaving
it with a negative surface charge. Such surface charges create an electric field that attracts
counter-ions. Taken together, the charged surface and the counter-ions are known as the double
layer.

Gouy and Chapman formulated the first model of the double layer using empirical ob-
servations [45]. Their description includes a diffuse layer in which counter-ions are free to
move around. Later, Stern reviewed their results and formulated a better picture called Gouy-
Chapman-Stern model [46]. It includes a Stern layer of immobilised ions at the surface. Despite
its simplifications, the model captures two important phenomena: the freely diffusing ion cloud
and immobilised ions on the surface.

Electric potential

Salt concentration

0 2 4 6 8

0 2 4 6 8
Distance in Debye lengths - x / λD

Inner Helmholtz plane

Outer Helmholtz planeCharged 
surface Di�use layer

Solvated ions

c+

c-

Distance in Debye lengths - x / λD

c0

ψ0

(a) (b)

Figure 2.2: (a) Illustration of the double layer for low surface charges: the charged surface
attracts counter-ions, some of which get immobilised on the surface, while others remain free
in the diffuse layer. The boundary between fixed and mobilised ions is called outer Helmholtz
plane (or Stern layer). (b) In the diffuse layer, the charged surface creates an electric potential
that attracts counter-ions and pushes away anions. This uneven ion concentration results in
a net charge in the diffuse layer, screening the negatively charged surface. Figure adapted
from [47].

Figure 2.2a shows a schematic illustration of the double layer. The Stern layer has two
parts: The inner Helmholtz layer consists of immobilised ions that are absorbed at the surface.
The outer Helmholtz layer represents immobilised counter-ions that are temporarily stuck to
the surface. Ions beyond this point are in the diffuse layer where they move around freely.
Figure 2.2a also shows solvent molecules, whose dipoles are indicated by an arrow. They form
hydration shells around free ions which increase their effective diameters. Note that, polar
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solvent molecules also have a preferred direction near the surface [45]. This restricts the motion
of water molecules and thus reduces the dielectric constant to about εr ≈ 4 at the surface [48].

In the following, we consider the diffuse layer, in which ions are mobile and arrange
themselves in such a way that they minimise the free energy. The local electric field drives
counter-ions closer and co-ions further away from the charged surface. The resulting electric
potential, ψ , is described by Poisson’s equation,

ε∇2
ψ = −ρC = −e(c+−c−), (2.19)

where ρC is charge density and c∓ are the concentrations of ions and counter-ions. Ions are
subject to Brownian motion adding thermodynamic character to the system. At equilibrium
their distribution in the electric potential, eψ , is given by the Boltzmann distribution [45]:

c± = c0 exp]︀∓
eψ

kBT
{︀ , (2.20)

where c0 is ion concentration in the bulk. The combination of the two equations is known as
the Poisson-Boltzmann equation [45, 49]:

∇2
ψ =

2ec0

ε
sinh(

eψ

kB T
) . (2.21)

It describes the electric potential in a salt solution with charged surfaces. If the surface
potentials are small it can be simplified using sinh(x) ≈ x. This approximation is known as the
Debye-Huckel equation [45]:

∇2
ψ ≈

ψ

λ 2
D

; λD ≡

}︂
ε kBT
2e2 c0

, (2.22)

where λD is the Debye screening length. It is the characteristic length-scale over which the free
ions screen the electric potential created by a charged surface. For example, a 5 mM KCl salt
solution has a screening length of λD ≈ 4.3nm.

Figure 2.2b shows a solution of Equation (2.22) next to an infinite plane. The electric
potential decays exponentially within a few Debye lengths. This rapid screening of surface
potential is caused by an increased concentration of counter-ions and a depletion of co-ions.
The concentrations were obtained using Equation (2.20) and are shown in the lower panel
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of Figure 2.2b. This screening reduces the electrostatic particle-particle interactions down to
∼ 10nm.

The boundary conditions for solving the Poisson-Boltzmann equation can be determined
using Gauss’ law. For a surface with a charge density σq and a normal vector n⃗ it is n⃗ ⋅∇ψ =

−σq⇑ε . However, this approach often overestimates the surface potential [50] because it fails to
account for the ions immobilised in the Stern layer. For this reason, it is practical to introduce
an effective potential at the outer Helmholtz layer that we call the surface potential2, ψ0. It
is used as an effective parameter to absorb all the complexities at the surface. For nearly flat
surfaces with low charge density, Grahame’s equation is an accurate approximation for the
surface potential [45]:

ψ0 ≈ σqλD⇑ε. (2.23)

2.3.4 Electroosmosis

The immobilised charges on the surface lead to an charge imbalance next to the wall. If an
external electric field is applied along the surface, it causes ion migration that exerts a force
on the liquid. In the diffuse layer there is an unbalanced number of ions and counter-ions, as
shown in Figure 2.2b, that exerts a net force on the liquid f = −ρCE. Therefore, the liquid is
propelled in the diffuse layer [51].

R0
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Figure 2.3: Illustration of electroosmotic plug flow inside a narrow channel. The propulsion of
the liquid develops in the diffuse layer close to the charged surface of the channel. There are no
forces acting on a liquid in the center of the channel, resulting in a flat flow profile.

2In literature, surface potential is called zeta potential, but we do not use this convention since the zeta symbol
(ζ ) is used for the hydrodynamic friction coefficients.
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For an example solution, consider a cylindrical channel with charged walls. An external
electric potential, U , is applied at the inlets that creates an electric field inside the channel,
E =U⇑L. Figure 2.3a shows the solution to Equations (2.22) and (2.10) in the limit of thin
diffuse layer, i.e. λD≪ R. The liquid speeds-up within three Debye lengths from the surface
and then stays constant throughout the channel. This results in a flat flow profile that is called
plug flow. Figure 2.3b shows an illustration of the plug flow.

This phenomenon can be simplified by approximating the diffuse layer with a sliding wall
boundary condition, which has a saturated electroosmotic velocity given by the Helmholtz-
Smoluchowski slip velocity [52]:

uw = −ε ψwE⇑η , (2.24)

where ψw is the surface potential on channel walls, E is the external electric potential, and η is
the dynamic viscosity.

2.3.5 Electrophoresis
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Figure 2.4: Illustration of electrophoresis: a charged particle moves in an external electric field,
E. Charges on the surface of the particle exert an electrostatic force, Fpull . The same charges
attract a cloud of counter-ions in the diffuse layer. This layer has opposite charges that migrate
towards the opposite electrode. This migration induces a flow veo that exerts a viscous drag
on the particle, Feo. The force difference moves the particle to the left and force balance is
achieved by viscous drag, Fdrag = ζ v.

Electrophoretic migration of charged particles comprises of electrostatic force and electroos-
motic drag as illustrated in Figure 2.4 [51]. The electrostatic force drives the particle towards
the electrode on the left with a force Fpull = qE . The same charge induces a double layer around
the particle, shown in red. The charges in the double layer are positive, and thus, they migrate
towards the right electrode. As a result, there is an electroosmotic flow on the particle surface
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that exerts a viscous drag on the particle, Feo. To distinguish between this electroosmotic flow
and the flow on the channel walls, we call the former electrophoretic backflow. The difference
between the two forces drives the particle to the left at a terminal velocity vep = (Fpull−Feo)⇑ζ .
The exact expression for this velocity depends on the flow profiles. For large particles in the
bulk (λD≪ a), it is vep = ε ψpE⇑η , where ψp is the surface potential on the particle [51].

When considering electrophoresis inside channels, one must also take into account the
electroosmotic plug flow, because the electric field induces both phenomena. In experiments,
the particle and the channel have a charge of the same sign to prevent sticking. In such cases,
the two effects act in opposite directions, with a net velocity given by

vnet = vep+veo ≈
εE
η
(ψp−ψw) ≈

}︂
εkBT
2e2c0

E
η
(σp−σw)∝

E
⌋︂

c0
(σp−σw) , (2.25)

where σp and σw are surface charge densities on the particle and the channel, respectively.
The second equality is only approximate since the confinements introduces a correction pre-
factor that was calculated by Keh and Anderson [53, p. 437]. In the third equality we used
Equation (2.23) and (2.22). The final expression suggests that electophoretic velocity in
channels is proportional to the electric filed strength and the surface charge difference. It also
suggests that velocity decreases with salt concentration.

2.4 Relevance of our model system

Throughout this thesis, we study the idealised model system that has characteristic dimension of
∼ 1µm. However, channels and particles found in nature have a wide range of sizes and shapes,
as it was shown in Figure 1.1. Therefore, we discuss how shape impacts particle behaviour,
and how the relevant physics changes at different length-scales.

Particle shape does not fundamentally change the hydrodynamics, because the flow pattern
in far field is almost the same as for spherical particles [39, p. 141]. In bulk, the modified
Stokes’ law is Fd = −6π η aK v, where K is the correction constant that depends on the exact
geometry of the particle. For example, an oblate ellipsoid with a minor/major principal axes
ratio of 0.5 has K(a⇑c = 0.5) = 0.9, while a prolate ellipsoid has K(a⇑c = 2) = 1.2 [39, p. 149].
This illustrates that the deviations away from the spherical solution are small, thereby justifying
the usage of spherical particles as model systems. For flexible particles, like DNA polymer,
physics becomes more involved since the flow can deform them and they also have internal
degrees of freedom, resulting in entropic effects. Nevertheless these differences, the same
formalism is often applied to get an idea for polymer behaviour in channels [40].
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Now consider scaling laws [54]. First, Brownian motion does not scale with the particle
size, i.e. it is much more significant for small particles. Formally, the diffusion coefficient
scales as D∝ 1⇑a, while Brownian trajectory scales as MSD = ∐︀∆x2̃︀∝ t.

For electrostatics, the velocities scale linearly with the applied electric field and are inde-
pendent of the dimensions. These results are valid in the limit λD≪ a. For smaller systems,
corrections must be introduced to account for significant geometric curvature. Furthermore,
overlapping diffuse layers might introduce new effects that we are not probing with our analysis.

Hydrodynamics is scale invariant at low Reynolds numbers [39], meaning that results can
be scaled up or down without changing the underlying physics. However, in biological protein
pores, the diameters are sometimes below 1 nm, while water molecules are around 0.3 nm,
raising questions about the continuum approach to hydrodynamics. This problem has been
studied by comparing the continuum solutions with molecular dynamics simulations [55]. Both
models show similar trends and good quantitative agreement for smooth liquid-solid interfaces.
Meanwhile, for rough interfaces the solutions deviate, but they still share qualitative features [56,
p. 186]. Further support comes from studying biological nano-channels called aquaporins,
where the continuum equations successfully predict the permeability of the channels [11]. Such
agreements are somewhat expected since the Navier-Stokes equation is built on conservation
laws, which must be satisfied even at the molecular level [57]. All this suggests that the
continuum equations can describe systems down to a few nanometers. Therefore, our model
system probes physics relevant even for nano-channels.





Chapter 3

Brownian Motion in Channels

This chapter introduces our experimental method for studying the hydrodynamic interactions
inside channels, and then present a simple experimental investigation of Brownian motion of
isolated particles in these microfluidic channels. Specifically, diffusion coefficients are deter-
mined from experimental trajectories of colloidal particles. To understand these measurements,
we introduce a numerical method for calculating diffusion coefficients. Finally, we show that
finite channels have a higher diffusivity than previously thought by comparing our experimental
results with the simulations.

3.1 Method for microfluidics experiments

Our model system is implemented experimentally using microfluidic lab-on-a-chip devices that
have two reservoirs connected by narrow channels. These chips are filled with a dilute solution
of spherical polystyrene colloidal particles (details to follow). Figure 3.1 shows a schematic
illustration of such a chip and a microscope used to record the particle motion.

The chip is mounted on a custom built, inverted bright-field microscope with 100×, NA 1.4
objective (UPLSAPO, Olympus). The position of the sample can be adjusted using microm-
eters drive or a piezo nano-positioning stage (model PI P-561.3CD). Particle motion in the
microfluidic chip is recorded using either a CCD Mikrotron MC1362 camera or CMOS Imaging
Source DMK-31BF03 camera. We switched to the Mikrotron camera in later experiments since
it can record at high frame rates, which is necessary for driven transport experiments. Finally,
particle positions are extracted using a semi-automatic image analysis method. In the rest of
this section, we will describe a fabrication process for the microfluidic chips and also the image
analysis.
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Figure 3.1: Setup diagram: the microfluidic chip is mounted on a custom built inverted
bright-field microscope. The sample can be moved along the three axes via nano-positioning
stage.

3.1.1 Fabrication

The microfluidic chips are produced using a PDMS replica moulding technique [58]. First,
we create an impression of channels on a silicon substrate, as shown in Figure 3.2a. This is
achieved via focused ion beam (FIB) deposition of platinum [58] or via e-beam lithography
followed by a reactive ion etching1. FIB based deposition typically produces channels with
a semi-elliptical cross-sections, as revealed by SEM image in Figure 3.3d. Meanwhile, the e-
beam lithography method produces rectangular channels of arbitrary length, see Figures 3.3a-c.
In early experiments, we used FIB method, but later we switched to e-beam lithography method.
Table 3.1 lists the dimensions of channels alongside their unique identification name.

In the second step, we deposit a pattern of the reservoirs and access connections, as shown
in Figure 3.2b. This is achieved using conventional photolithography on a 10 µm thick layer of
AZ 9260 polymer, which was spun coated directly onto the substrate [58]. Then a pattern is
exposed through a Cr/quartz mask (Photodata Ltd, Hitchin, UK) and developed2. Figure 3.4
shows three different pattern designs. In all of them, the channels are aligned across the barrier
that separates the two reservoirs, where the width of the barrier determines the length of the
channels. The reservoirs are connected to two inlets each: one inlet is used for injecting

1The FIB method was developed and performed by Stefano Pagliara, while the e-beam method was developed
and performed by Vahe Tshitoyan. Details are provided in Appendix B.1.

2The photolithographic layer was deposited in a clean room by Stefano Pagliara.
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Figure 3.2: Preparing lab-on-a-chip devices using PDMS replica moulding technique. (a) Nar-
row channels are fabricated on a silicon substrate via FIB or e-beam lithography [58]. (b) Reser-
voirs and large access channels are deposited using photolithography patterning of an AZ 9260
polymer. (c) The finished master mould is replica moulded by PDMS casting. (d) After curing,
the PDMS chip is separated from the mould and the inlet holes are punched. (e) Finally, the
PDMS chip is bonded to a glass cover slip by activating the surface with a plasma oven.

the solution, while the air escapes through the other one. In the designs (a) and (b), we
place additional connections between the reservoirs that facilitate pressure equilibration. The
complete two-layer structure forms a master mould, containing a negative impression of our
experimental structure.

The third step is PDMS casting, as shown in Figure 3.2c. Polymer polydimethylsiloxane
(PDMS) is mixed with a curing agent in a ratio 9:1, and degassed in a vacuum desiccator for
around 20 minutes. Then the mould is placed facing upwards in a container and covered with
the PDMS mixture. Curing is accelerated by baking it at 70 ○C for 60 minutes.

In the fourth step, we carefully remove the cured PDMS from the mould. Empirically, we
noticed that leaving the PDMS replicas in air improves the reproducibility of our experimental
results. Therefore, the PDMS is left in air for at least two days before proceeding. Afterwards,
we punch inlet holes using biopsy punch tool (1.5 mm, BPP-15F by Kai medical).

Finally, the PDMS is plasma bonded to a glass coverslip, as shown in Figure 3.2e. The
glass coverslip (thickness 0.13 mm-0.16 mm, Glaswarenfabrik Karl Hecht GmbH & Co) is
cleaned by sonicating for 20 minutes in Hellmanex 3 soap solution, then flushing it five times
with deionised water, and sonicating it again for 20 minutes in isopropanol. The PDMS chip is
cleaned by blowing with a compressed nitrogen and then carefully sticking and removing a
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Figure 3.3: Scanning electron microscope (SEM) images of channels on a substrate. (a), (b)
and (c) show channels etched in silicon that were made using the e-beam lithography method.
These channels are 75 µm long, 0.8 µm wide and tall, and are spaced 20.8 µm apart. They have
a rectangular cross-section, as seen from (c). (d) shows platinum channel deposited using the
FIB method. It has a semi-elliptical cross-section (image kindly provided by Stefano Pagliara).
Image (a) is taken at 0 deg angle, while (b), (c) and (d) are taken at 45 deg angle.
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Name Length (µm) Type Width (nm) Height (nm) Connections

B4–5um 5 Square 800±40 800±40 Small
B4–13um 13 Square 800±40 800±60 Small
B4–25um 25 Square 800±40 850±30 Small
S1–7um 7 Square 800±40 800±60 Large
B2–30um 30 Square 800±30 850±30 No
B2–10um 10 Square 890±30 630±60 No
S1–5um 5 Elliptical 850±100 900±100 Large
S2–5um–1 5 Elliptical 1020±130 1100±150 Large
S2–5um–2 5 Elliptical 1150±130 1100±150 Large
S2–5um–3 5 Elliptical 1150±130 1100±150 Large
S3–10um 10 Elliptical 800±100 950±100 Large

Table 3.1: Table of moulds used for PDMS replica moulding. Dimensions were measured
using SEM or AFM. We use a naming convention to identify channels from the same mould.
The name comprises of three components separated by a dash. The first two symbols indicate
the design of photolithographic layer that are shown in Figure 3.4: S1, S2, and S3 correspond
to design (a); B4 corresponds to design (b); and B2 corresponds to design (c). The second
number indicates the width of the barrier, which is equal to the length of the channels. The
third number identifies the channel on the chip. Normally, each chip has multiple channels for
redundancy.

(a) (b) (c)Barrier with
large connections

Barrier with
small connections

Barrier with
no connections

1 mm
leads to inletschannels aligned here

reservoirs

barrier

small
connection

large connection

Figure 3.4: Designs for photolithography layers that contain two reservoirs separated by a
barrier of width L. The red line indicates where the layer with channels is aligned. (a) Has
been designed by Stefano Pagliara and it contains large connections between the reservoirs that
facilitate pressure equilibration. In design (b) the connections have been moved further away
from the channels and made smaller (50 µm wide). This allows applying predictable pressure
or electric potential across the barrier. Design (c) contains no secondary connections.
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piece of Scotch tape. Immediately afterwards, the coverslip and PDMS are placed in a plasma
oven (Diener Femto, 40 kHz). Here, their surfaces are treated with an oxygen plasma for
10 seconds at power 100 W and gas flow rate of 25 sccm. After plasma treatment, the PDMS is
placed onto the glass coverslip, where the activated surfaces form a permanent bond between
the PDMS and the glass [59].

23 mm

Inlets

Figure 3.5: Photograph of the completed microfluidic chip. It was filled with blue ink to
highlight where the liquid is.

A completed microfluidic chip is filled by injecting a solution with a syringe in each inlet.
The solution contains deionised water, 5 mM KCl salt and colloidal particles that are roughly
spherical and made of polystyrene. We used two batches supplied by Polysciences Inc., with
diameters of 505±8 nm and 510±10 nm (catalogue id 07307). Figure 3.5 shows a completed
chip. Finally, pieces of Scotch tape are placed onto the inlets to reduce evaporation.

The chip is then mounted on an inverted bright-field microscope (100×,1.4 numerical
aperture; UPLSAPO, Olympus), and the subsequent particle motion is recorded using a CMOS
camera (DMK-31BF03, Imaging Source) or a CCD camera (Mikrotron MC1362).

3.1.2 Particle tracking

Particle trajectories are extracted from the acquired videos using an image analysis proce-
dure [60]. Here, we describe this semi-automated process and then follow it up with detailed
discussions on two vital components: sub-pixel localisation algorithm and position linking
algorithm.

Figure 3.6a shows a typical bright-field image. The large structure in the middle is the
barrier that contains three horizontally positioned channels. The bright blobs are particles,
where our goal is to estimate their positions in x̂ŷ plane. For this, we must extract a foreground
image that contains information only about the particles by subtracting a background image
from the raw image.
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Figure 3.6: Illustration highlighting the particle detection procedure. First, the background
image (b) is estimated from multiple raw images. It is subtracted from the raw image to give
the difference (c) that contains information about moving particles. This image is binarized (d),
which allows identification of particles of round shape and expected size – indicated by the
green boxes. If a detected blob does not fit the particle criteria, it is discarded, as shown by
the red boxes. Finally, the precise positions of selected blobs are determined using a sub-pixel
localisation algorithm. The result is shown in (e).
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The background image contains information about the stationary objects that do not change
throughout the measurement, i.e. the barrier and average illumination. Separating the back-
ground from foreground image is a classic problem in the field of image analysis, where we are
dealing with the case of stationary background with a low number of foreground objects [61].
The background can be estimated from a stack of images by taking the median pixel values. It
works well since most of the time there is no particle in a given position. The resulting image
has no ghosting artefacts at a moderate computation cost. To improve the performance, we use
a subset of images picked randomly from an experiment video. Empirically, we found that 500
images produces a satisfactory background image at small computational cost (takes about 10 s
to compute). The resulting background image is shown in Figure 3.6b.

Figure 3.6 shows the resulting foreground image, where the blobs correspond to particles.
However, the image also contains undesirable features, such as clusters of particles, noise or
an occasional artefact. To separate them from the particles, we binarize the image and then
analyse the resulting blobs, as shown in Figure 3.6d. Specifically, we check that particle size
is in an expected range, and the shape is roughly circular, because elongated shapes typically
correspond to clusters or contaminations. If one of these tests fails within the channel, we omit
that image from the final analysis to avoid influencing our measurement.

The typical values for this analysis are: binarization threshold at 0.15; particle size range
from 10 px to 30 px; maximum elongation set to 0.4, where it is defined as 1−width⇑height.
However, these values are manually tuned for each experiment to include only single particles
in our detection algorithm.

Next, the position of the particle is estimated using a sub-pixel localisation algorithm.
For this, the foreground image is cut to a rectangular boxes that enclose the binarized blobs,
as shown by the green boxes in Figure 3.6d. For each box, we find the intensity peak that
corresponds to particle position, using a method called sub-pixel localisation algorithm. Fig-
ure 3.6e shows the estimated positions superimposed on the raw image. A detailed description
of sub-pixel localisation is presented on page 28.

Finally, the positions are linked into trajectories using a hybrid linking algorithm. Analysing
the trajectories instead of the raw positions enables identification of particle tracking mistakes.
We provide details of our linking algorithm on page 32.

Sub-pixel localisation

In bright-field micrograph, particles appear as bright blobs, as shown in Figure 3.7. Here, we
aim to determine their position with the maximum accuracy. A naive approach is to take the
brightest pixel in the blob for the position, which has tracking error of one pixel width. However,
we can do better by utilising the information in the intensity profile to obtain higher spacial
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resolution. As the name suggests, sub-pixel localisation allows to determine the particle’s
position to within a pixel in camera’s sensor. This approach is similar to blob fitting used
in super-resolution microscopy [62, 63]. Here, we explain the technical details behind our
approach.
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Figure 3.7: Bright-field microscopy images of 500 nm wide polystyrene particles. The first
row shows unprocessed images from camera sensors, while the second row shows the same
image with subtracted background, leaving only the information about the particle. This image
is used for sub-pixel localisation. The third row shows light intensity, along a horizontal line in
the images on the first row. The blue lines indicate the background image. (a) and (b) images
are almost identical after subtraction of the background. (c) has higher resolution due to higher
pixel density on the Imaging Source CMOS camera. (d) particle is out of focus. It can be
tracked by subtracting the background and then inverting the brightness, which gives a familiar
bright blob. (e) is a simulated particles with a Gaussian shape and a peak to baseline intensity
of 50%.

Figure 3.7 (b) and (c) show the typical blobs we observe in channels: approximately round
with smoothly decaying intensity profiles. Literature suggests that the best accuracy can be
achieved by fitting a Gaussian function to the intensity profile [62]. We tested this hypothesis
by comparing the performance of different algorithms against simulated particles, which have
a Gaussian profile with realistic width and noise. Figure 3.7e shows an example of simulated
particles. Errors of the fitting algorithm are assessed by computing the mean squared difference
between the fitted position and the simulated position.

We consider these algorithms: a weighted centroid algorithm, a radial center algorithm [64],
fitting to a fixed 2D Gaussian, and fitting to a general 2D Gaussian function. Out of these, the
Gaussian fitting methods outperforms the other two by an order of magnitude for the simulated
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Algorithm Computation time Localisation error

Weighted centroid 4.2 s 0.1820 px
Radial center [64] 68.1 s 0.0800 px
Fixed 2D Gaussian (Levenberg-Marquardt) 31.9 s 0.0103 px
General 2D Gaussian (Conjugate Gradient) 721.8 s 0.1010 px
General 2D Gaussian (Gradient) 135.1 s 0.0142 px
General 2D Gaussian (Quasi-Newton) 459.3 s 0.0140 px
General 2D Gaussian (Newton) 481.2 s 0.0078 px
General 2D Gaussian (Levenberg-Marquardt) 70.5 s 0.0072 px

Table 3.2: Comparison of sub-pixel fitting algorithms. Each algorithm was tested using a set
of 10000 simulated Gaussian particles with noise σN = 0.004 and peak to baseline intensity of
50%.

data. See Table 3.2. The performance was comparable between the two Gaussian functions.
Both functions measured the width of the intensity distribution, but the general Gaussian fitting
allowed to estimate the elongation and the direction. This information is useful for identifying
tracking mistakes or artefacts in experiments, and therefore, we used the general 2D Gaussian
function to find particle positions.

Fitting the general 2D Gaussian function to the experimental data involves finding six free
parameters. This is a multidimensional optimization problem that does not have a universal
solution. To aid the search, we provided an initial approximate position from the centroid
method. We tested a few different multidimensional search algorithms that are listed in
Table 3.2. The best results are produced by the Levenberg-Marquardt method. We, therefore,
use the Levenberg-Marquardt method and fall back to fixed 2D Gaussian, if the fitting does not
converge. The code for our implementation is available at [65].

We assess the accuracy of our chosen sub-pixel localisation algorithm by running the
simulation for realistic noise levels. Figure 3.8a shows the localisation errors as a function of
a Gaussian noise that is added on top of simulated particles. Not surprisingly, the accuracy
worsens with higher noise. We measured the noise levels in our experimental setup by recording
the PDMS/glass interface that has no motion. Then we subtracted the background image and
measured the leftover intensity variation. It was σN = 0.004 for the Mikrotron camera and
σN = 0.007 for the Imaging Source camera (noise is unitless since camera measures a relative
luminosity in a range (︀0,1⌋︀). These noise levels are marked on in Figure 3.8a as red lines. From
the plot, the corresponding errors are σstatic = 0.0072 px and σstatic = 0.0108 px, respectively.
Please note that errors have normal distributions and the reported values are standard deviations.
Figure 3.8b shows an error distribution that follows a Gaussian distribution with no directional
bias. Table 3.3 summarises these results. The tracking errors in our experiments are expected to



3.1 Method for microfluidics experiments 31

Gaussian noise - σ

Lo
ca

lis
at

io
n 

er
ro

r (
px

)

-
-

(a) (b)

Δx (px)

Δ
y 

(p
x)

Fit error distribution

0 300

Figure 3.8: Simulation of noise impact on the subpixel localisation algorithm. (a) Average
localisation error as a function of noise levels in a simulated image. For each data point a set of
10000 simulated normal particles was fitted using the “SPFGaussianOptimised” function [65].
The errors increase almost linearly with noise, as indicated by a linear fit (dashed blue line).
The red lines indicate noise levels measured in the experiments. (b) Distribution of errors in
2D for Gaussian noise levels of σN = 0.004. The image confirms that the majority of errors are
within 2σstatic ≈ 0.01px and have no directional bias.

Camera Pixel density Typical noise Expected error Measured error

Mikrotron MC1362 128 px⇑µm 0.0040 0.96 nm –
Imaging Source DMK 60 nm⇑px 0.0067 0.68 nm 1.7 nm

Table 3.3: Static tracking errors for two different cameras. The expected errors are simulation
results for the given noise.

be higher, since the particles are not exactly Gaussian and there is motion blur, which produces
dynamic tracking errors [66].

To asses the tracking accuracy in crowded situations, we run the same simulation with two
particles near each another. In this case, the second particle is placed randomly around the
original particle at a distance from 4 to 7 px. Resulting tracking error increases to σstatic =

0.234 px, because the second particle biases the Gaussian fit [67]. For real data, the errors
might be a bit smaller as there is a dark ring around the particles that increases the contrast.
Nonetheless, we consider this value to be the limiting accuracy when other particles are
close [68].

Finally, we test the accuracy with real particles using a piezo positioning stage. In this
experiment, a colloidal particle is attached to the glass surface and the sample is loaded on
the piezo stage (model PI P-561.3CD) that allows moving the sample in increments of 5 nm,
10 nm, or 20 nm. The resulting image is tracked with our sub-pixel localisation algorithm and
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Figure 3.9: Assessment of the sub-pixel fitting algorithm by tracking a fixed particle that was
moved with a piezo stage. The stage was moved in 3 second intervals with step sizes of 20 nm,
10 nm and 5 nm, respectively. The red lines show the expected positions for the piezo stage.
From the plot, we can easily identify all the steps, but the position tracking has variation around
the mean positions: σx = 1.7 nm. Experiments performed together with Yizhou Tan.

the results are shown in Figure 3.9. All steps can be identified. Within each step, the position
variation around the mean value is σx = 1.7 nm (for ImagingSource camera with a pixel size of
60.3 nm). This corresponds to errors of 0.028 px, which is a factor of three worse than predicted
by our simulations. This value is our best estimate for the static tracking errors. However, it
does not account for the dynamic tracking errors [66].

Trajectory linking

Positions are linked together into trajectories, using a hybrid method: the nearest neighbour
linking combined with the global optimization [63, 69]. Briefly, the algorithm connects
positions that are unambiguous, i.e. the consecutive frame contains a single particle in the
immediate proximity (5 px). If there are more than one particle or the particle number changes,
multiple combinations of links can be made, but only one corresponds to physical trajectory.
To find it, we minimise a cost function: kx⋃︀x1−x0⋃︀+kt(t1− t2), where x is the position, t is the
frame number and kx,kt are weighting coefficients [63, 69]. For our application, we found
values kx = 1 and kt = 2 to produce satisfactory results. The global minimum of the cost function
is found using the Hungarian assignment algorithm [70]. This linking algorithm is tested by
visual inspection of the trajectories.

We keep track of errors that occur throughout the image analysis. For example, if the
sub-pixel localisation algorithm fails to converge, it raises a flag that allows us to come back
to that image for inspection. Other monitored errors come from particle shape filter that we
described earlier, and the trajectory linking algorithm that raises a flag when there is a time gap
in the trajectory. In a typical experiment, almost all the errors come from particles exiting the
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field of view since their shape gets cut in half; or from two particles being too close to resolve.
The next most frequent error (∼ 5% of the cases) is due to particle clusters, while other errors
a rare (less than 1%). As a result, we understand where and when the problems occur in our
trajectories.

3.2 Brownian motion experiments
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Figure 3.10: Bright-field microscopy image of a channel with a single colloid inside. The
graph below shows a typical trajectory in x̂, where the particle performs Brownian motion in
1D.

We use the experimental methods described above to study passive Brownian motion in
channels. Figure 3.10 shows a typical image taken with our microscope and the subsequent
trajectory of that particle. This particle performs an unbiased random walk, with no net
progress ∐︀x̃︀ ≈ 0. The mean squared displacement (MSD) grows linearly in time as expected
for Brownian motion, as shown in Figure 3.11. The red line indicates a linear fit, where the
slope gives a diffusion coefficient of Dx = 0.152µm2⇑s. This value is much smaller than the
diffusion coefficient in bulk, D0 = 0.876µm2⇑s, due to increased hydrodynamic friction inside
the channel.

Table 3.4 gives diffusion coefficients for the different channels that we used throughout this
thesis. Please note that values fluctuated as much as 15% between experiments, which can be
attributed to the small differences in channel shape and temperature fluctuations. The channel
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Figure 3.11: Mean squared displacement (MSD) as a function of time. Experiment performed
with a single particle of diameter 2a = 510nm inside a channel of length L = 13µm. Red line
shows a linear fit where the slope gives the diffusion coefficient: Dx = 0.152±0.06µm2⇑s; the
offset is −154.9 nm2, which can be attributed to particle tracking errors [60, 66, 71]. The inset
shows histogram of displacements after 30 ms, where the red lines indicates a fit to a normal
distribution.

Date L (µm) 2a (nm) a⇑R Dx (µm2⇑s) Dx⇑D0

2015–12–09 5 510 0.56 0.181 0.202±0.020
2015–12–09 5 510 0.56 0.173 0.192±0.020
2015–02–16 10 505 0.60 0.110 0.126±0.006
2016–03–30 10 510 0.61 0.101 0.116±0.010
2015–11–24 13 510 0.56 0.153 0.176±0.010
2015–12–07 13 510 0.56 0.150 0.172±0.010
2015–11–28 13 510 0.56 0.152 0.174±0.010
2015–11–28 13 510 0.56∗ 0.169 0.193±0.010
2015–12–11 25 510 0.55 0.152 0.173±0.010
2015–12–11 25 510 0.55 0.152 0.173±0.010

Table 3.4: Diffusion coefficients for isolated particles inside channels. Measurements per-
formed on the same day are values for different channels. The star highlights the channel
B4-13um-2, which is wider than the nominal value. See Section 3.2.2.
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shape varies due to a subtle differences in PDMS replicas or the PDMS/glass bonding strength.
We tried to minimise this variation by following the procedure described in Section 3.1.1. In
turn, the diffusion coefficients are affected by the variation of the confinement ratio [40].

Diffusion coefficients depend on the temperature as given by the Einstein-Smoluchowski
relation in Equation (2.4). In addition to the linear temperature term, the hydrodynamic friction
is a function of the dynamic viscosity, which varies strongly with temperature [72]. This
affects the diffusion coefficient, making it difficult to compare between experiments. Therefore,
we normalise the reported coefficient values with the theoretical bulk value D0 = kB T ⇑6π η a,
which eliminates both contributions to the temperature dependence. In the experiments, the
temperature was measured using a thermocouple placed close to the microscope (typically it
was 21.5 ○C, but occasionally varied as much as 2 ○C).

3.2.1 Spacially resolved diffusion coefficients

The diffusion coefficients reported in Table 3.4 are averaged within the channel. Here, we
present a measurement of spacially resolved diffusion coefficients inside and around the
channels. This method was predominately developed by Stefano Pagliara and Simon Dettmer,
where Simon Dettmer performed the experiments. Our results were reported in [73].

To achieve high spacial resolution, the frame rate of the Mikrotron camera was increased to
500 fps or ∆t = 2ms, thus minimising the area that particles explores. The diffusion coefficient
can be estimated from three consecutive frames, as reported in [60, 66, 71]. These three points
translate to two MSD points, which is sufficient to determine the slope and minimises the area
explored by the particle. For example, the three point measurement takes 6 ms that translates
to
⌋︂

2Dxt ≈ 60nm. With this spacial resolution, we group the measurements into boxes based
on the average position. These boxes were picked to match the pixel size: 129 nm × 129 nm.
Figures 3.12 (a) and (b) show the resulting diffusion coefficient maps for x̂ and ŷ directions,
respectively. This is the only time that we consider the diffusion coefficient in ŷ direction.

From the figure, we can see that the diffusion coefficients decrease when they enter the
channels. Inside, Dx is uniform along the x̂ axis – see the projection shown in Figure 3.12c. We
will exploit this symmetry in our analysis further on. The variation of Dx along the ŷ axis is
small, which will be explained using simulations in Section 3.4.

3.2.2 Channel dimensions

The particle-channel interaction and the corresponding diffusion coefficients critically depend
on the confinement of the particle. Theoretical models typically consider ideal cylindrical
channels that have a well-defined width, 2R [39]. Meanwhile, our experimental channels have
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Figure 3.12: Localised diffusion coefficients for channels of length L = 5µm (S2-5um). (a) and
(b) show the diffusion coefficient map for x̂ and ŷ directions, respectively. The yellow boxes
highlight the barrier. The diffusion coefficients decrease just before entering the channels. (c)
and (d) show diffusion coefficients along the channel as highlighted with the green boxes above.
The data for this figure was collected by Simon L. Dettmer and reported together in [73].

rectangular or semi-elliptical cross-sections, as shown in Figure 3.3. In both cases, we kept the
ratio between width and height close to one, so that the experimental channels would be closer
to the theoretical ones. Furthermore, we define an effective radius, R, to quantify the size of
our experimental channels. It is defined as a cylindrical channel with the cross-section area
matching the experimental channel. For semi-elliptical cross-sections, it is R =

⌈︂
W H⇑4, where

W is the channel width and H is the channel height. For rectangular channel cross-sections, it is
R =
⌈︂

W H⇑π . The impact of this approximation will be studied in Section 3.4.1 and additional
information is available in the literature [74, 75].

Table 3.5 reports the effective channel dimensions, which were estimated from the SEM
images. However, some channels are consistently wider than expected (measurement method
described later). This might be due to in inaccurate SEM measurement or a residue accumu-
lation on the mould. Specifically: the channel B4-13um-2 has a small localised defect that
widens the channel by 100±60 nm; channels in chip B4-25um are 30±30 nm wider in the
middle than at the outlets.

An independent measurement for a channel width is obtained from the particle trajectories.
Figure 3.13 shows a 2D density histogram for particle detections superimposed on top of a
micrograph of the same channel. The height of the histogram is around 305 nm. To get the
width of the channel, we must add the excluded volume and few Debye lengths for electrostatic
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Name L (µm) Effective R (nm) a/R

B4–5um–4 5 451±20 0.564±0.026
B4–13um–2 13 451±20 0.564±0.027
B4–13um–5 13 451±20 0.564±0.027
B4–25um–3 25 465±15 0.548±0.020
B4–25um–4 25 465±15 0.548±0.020
S1–5um–1 5 437±35 0.577±0.048
S2–5um–1 5 530±50 0.476±0.045
S2–5um–2 5 562±50 0.449±0.040
S2–5um–3 5 562±50 0.449±0.040
S1–7um–2 7 451±20 0.564±0.027
S3–10um–1 10 424±35 0.595±0.051
B2–10um–1 10 422±21 0.604±0.033
B2–30um–1 30 465±15 0.548±0.020

Table 3.5: Channel properties: lengths and effective widths. The confinement ratio was
estimated using 2a = 505nm or 2a = 510nm, depending on which colloids were in that channel.
The naming convention is explained in Table 3.1.
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Figure 3.13: Density histogram of particle positions overlaid on top of the channel picture.
The histogram was computed from 496‘000 points in a channel of length L = 5µm (B4-5um-4).
The width of the histogram is 305±40 nm. The closest proximity between particle centers and
the channel walls is a+λD. Then the width of the channel can be estimated by adding these
back to the histogram width. The estimated channel width is 825±60 nm, which is close to the
SEM measurement of 800 nm.



38 Brownian Motion in Channels

repulsion: 2a+2λD. Therefore, the width estimate is 825±60 nm, which compares well with
the nominal width of 800 nm.

3.3 Method for hydrodynamic simulations

To interpret the experimental data, we compare it with hydrodynamic models. However,
these models can be analytically solved in only a few cases, and thus, we rely on numerical
simulations to make quantitative predictions about the hydrodynamics inside channels. Here,
we explain our method behind these simulations.

We solve Stokes’ equation, given by Equation (2.10), using a numerical solver called
COMSOL Multiphysics V4.4. Briefly, it uses the finite element method, which discretises the
geometry into a mesh of small elements. For each element, the physical equations are solved
and updated iteratively until they converge to a solution [76, 77]. COMSOL is a commercial
package with optimised numerical solvers, allowing us to focus on the physics, while leaving
the technical details to the software.
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extra layers in di�use layer
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Symmetry
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Figure 3.14: Illustration of mesh for a typical simulation geometry. It is a 2D axis symmetric
simulation with two particles inside a channel. The complex geometry is divided into triangular
elements that are collectively called a mesh. Inside them, the physical equations are linearised
and solved iteratively. Higher element density results in more accurate simulation results, while
decreasing the element density reduces computation time. The illustration shows an adaptive
mesh where the density is high next to the particles because the electric field and flow field
vary in that region.

The automated mesh generator often produces unsatisfactory results, forcing us to increase
the mesh density on the particle walls. The higher mesh density improves the accuracy, but takes
longer to compute. Therefore, we only increase the mesh density in regions where we expect
the solution to vary. For example, to model the diffuse layers we had to add tiny boundary
layers next to the walls. Figure 3.14 shows a typical mesh with these two characteristics.
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The quality of numerical solutions is tested using three methods. First, the residuals
of a solver are checked to be much smaller than the required accuracy [78]. This is done
automatically by the COMSOL software. Secondly, the mesh quality is verified by running two
simulations: one with guessed mesh density, and another with twice the density of elements. If
both produce the same results, the guessed density is sufficient. Finally, the numerical solutions
are compared to known analytical solutions.

Inlet Outlet

Channel 
axis

O�-axis position

Particle
1 μm

b’
2R 2a
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Figure 3.15: Simulation geometry: a single spherical particle is placed in the middle of a
cylindrical channel. The tangential position of the sphere is characterised with the parameter b.

To model the hydrodynamic particle-channel interactions, we need to estimate the hy-
drodynamic friction coefficients. They are directly related to the diffusion coefficients via
the Einstein-Smoluchowski relation, see Equation (2.4). Consider the geometry shown in
Figure 3.15, where 2R is the diameter of the channel, L is the length, 2a is the diameter of
the spherical particle, and b′ is an off-axis position of the particle. If b = 0, the problem is
rotationally symmetric and a 2D simulation can be used, but otherwise a 3D simulation is
needed. The boundary conditions on the particle are set to a moving wall (uuu = x̂v0), which
corresponds to a particle moving at velocity v0. Note that the geometry is stationary, while the
boundary conditions represent the motion. The boundary conditions on the inlet and the outlet
depend on the channel length. For an infinitely long channel, there is no flux across the inlets
(vvv = 0). This limits the extent of the flow field, allowing us to simulate an infinite channel with
L ∼ 8R. On the other hand, for short channels we use periodic boundary conditions, because
they capture the flows across the inlets. This approach will explained in detail later.

The hydrodynamic friction coefficient is estimated via ζx = Fdrag,x⇑v0, where Fdrag,x is the
drag force on the particle in the x̂ direction. It is computed by taking a surface integral of the
total stress tensor in x̂, where the total stress tensor is a combination of the viscous stress tensor
and the hydrostatic pressure [38]. The final result is often reported as the diffusion coefficient
for an easy comparison with our experimental results.

3.3.1 Diffusion coefficients in infinite channels

Consider infinitely long channels that have a translational symmetry. There is no flux across
their boundaries, since a moving particle cannot displace an infinite column of water. This



40 Brownian Motion in Channels

problem has been studied extensively in literature [39, 40, 79], allowing us to validate our
simulations with analytical solutions. Our second intention is to understand the variation of
diffusion coefficient with the confinement ratio, a⇑R.
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Figure 3.16: Simulation of diffusion coefficient in an infinite channel. (a) Diffusion coefficient
as a function of a⇑R. The orange line shows the coefficient value for a particle placed on the
centerline of the channel, while the blue line shows an averaged coefficient over all radial
positions, b′. The black dashed line is an analytic solution by Haberman [39] and it agrees
well with the simulation for a particle on the axis. The inset shows a closer look at the relevant
particle size range. (b) Hindrance coefficient as a function of a⇑R. Lines show literature
values [40], which are in good agreement with the simulation data.

Figure 3.16a shows simulated diffusion coefficients versus the a⇑R. Notice that values were
normalised with the diffusion coefficient in bulk, D0 = kBT ⇑6πηa. The figure suggests that
the diffusion coefficient decreases with confinement ratio. The orange line corresponds to a
particle kept on the centerline of the channel. It agrees well with the corresponding analytical
solution, shown as the black dashed line. Meanwhile, the blue line shows a simulation where
Dx is averaged over all the possible positions in the radial direction. This gives a more realistic
value for the diffusion coefficients, because particles explore the entire cross-section of the
channel in the experiments. It is interesting to observe that curves cross at a⇑R = 0.28: for
small particles the average diffusivity is lower than at the centerline. Meanwhile, for large
particles the average diffusivity is higher than at the centerline. We will explain the reason for
this behaviour in Section 3.4.

The averaged diffusion coefficient can be alternatively expressed as hindrance coeffi-
cient [40]:

H = 2∫
1−a⇑R

0
K−1

1 e−E(β)⇑kBT
βdβ (3.1)
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where K1 = ζ ⇑ζ0 is normalised friction coefficient, β = b⇑R, and E(β) is the potential energy.
The integral averages over all the positions, b, with weights taken from Boltzmann distribution
e−E(β)⇑kBT . In our channels, the double layers are small compared to the channel width,
λD⇑2R ≈ 0.5%. Therefore, the particle experiences almost no electric potential, leading to
the approximation E(β) ≈ 0. Figure 3.16b shows our simulation results for the hindrance
coefficients alongside the analytical solutions. Again, the simulation agrees well with the
literature values. Throughout this thesis, we will use the diffusion coefficients instead of the
hindrance coefficients, because this allows a straightforward comparison with the experiments.

3.4 Simulation of spacially varying Dx

The position of particles in a channel has two components: an axial position and a radial
position. In our notation, the axial position corresponds to the x̂ axis and the radial position
corresponds to the ŷẑ plane. The diffusion coefficient does not depend on the axial position [39,
40], which we confirmed by measuring the localised diffusion coefficients, see Figure 3.12.
Meanwhile, we normally approximate the radial position with a particle at the centerline of the
channel. Here, we drop this approximation and investigate how the radial position affects the
diffusion coefficients.

In these simulations, the particle is placed at a distance b′ from the cylindrical channel’s
centerline, as shown in Figure 3.15. The particle touches the channel wall when b′ = R−a. For
simplicity, we use a scaled position parameter that we define as b⇑R ≡ b′⇑(R−a), which varies
in the range b⇑R ∈ (︀0,1⌋︀. The inlet boundary conditions were set to no-flux corresponding to
the infinite channel model, allowing us to compare our results with the literature.

Figure 3.17 shows the hydrodynamic friction coefficients for two particle sizes3. For small
particles (or large channels), the friction increases as the particle approaches the channel walls,
because the viscous shear increases closer to the wall. This is similar to a particle approaching
a flat surface [80]. We validate our simulations using approximate analytical solutions shown as
dashed lines [39, p. 318]. For large particles (a ∼ R), the friction coefficient decreases when the
particle moves away from the centerline. In this specific case, it is 23% smaller at the position
b⇑R = 0.85. Beyond this point, the friction rapidly grows when approaching the wall. This
result is counter-intuitive, because Faxen’s law suggests that the friction should increase when
the particle is approaching the wall.

This phenomenon has been observed before in asymptotic expansions, shown in Fig-
ure 3.17a, and also in hydrodynamic simulations [79]. We further investigate this behaviour and

3We use the hydrodynamic friction coefficient representation, since it is more intuitive when talking about
drag.
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Figure 3.17: Simulation of friction coefficient as a function of particles position. (a) Large
channel with a small particle (a⇑R = 0.1). The red circles indicate our simulation results,
while the lines were interpolated. The green and blue lines show an approximate asymptotic
expansion solutions for limits b⇑R ≈ 0.0 and b⇑R ≈ 1.0. For clarity, their magnitude was adjusted
to coincide with the analytical solution for b⇑R = 0.0, see [39, p. 318]. (b) Case where the
diameter of the particle is comparable to the channel (a⇑R = 0.6). The red circles indicate our
simulation results, while the lines were interpolated. The insets illustrate the positions of the
particle for different values of b⇑R.

its cause. Figure 3.18 shows the friction coefficient as a function of position and confinement.
In the upper region, corresponding to large particles, the friction is smaller close to the wall.
Meanwhile, in the lower region, corresponding to small particles, the friction is smaller in the
middle of the channel. The transition between these behaviours happens around a⇑R ≈ 0.3.
It explains a crossover that was observed in Figure 3.16a, when comparing the centerline
approximation with the averaged diffusion coefficients.

We now try to give an intuitive explanation for this effect of decreased friction near the
wall. Consider a wide particle at the centerline of a channel, where the hydrodynamic drag
is radially symmetric. We move it closer to the wall and inspect the drag distribution in the
COMSOL simulation. The surface area facing the wall has an increased drag, as expected by
the Faxen’s Law. However, on the other side of the particle, the drag decreases since there is
more liquid between the particle and the channel walls. The decrease happens over much larger
area than the increase in drag, thereby resulting in a net reduction of the drag. This explains
why for large particles, the friction coefficient decreases when they are close to the walls. In
contrast, small particles do not experience this decreased drag on the other side.

3.4.1 Complex cross-section shapes

In our experiments, the channels are not cylindrical, but rather an approximations to a cylinder.
Here, we investigate the impact of complex cross-section shapes found in experimental channels.
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Figure 3.18: Contour plot of friction coefficients as a function of the position (b⇑R) and
the confinement ratio (a⇑R). The friction coefficients were normalised with the value at the
centerline (b⇑R = 0) to remove the variation due to confinement – see Figure 3.16. The grey
area was not included in our simulations. The simulation suggests there is a transition with an
increasing confinement ratio. For small confinements, the particle moves fastest in the middle
of the channel, while above a⇑R ≈ 0.3 the particle moves faster if it is close to the walls.

Specifically we compare simulation results for a cylindrical channel, a semi-elliptical channel,
and a square channel. The channel dimensions were chosen to closely match the experimental
channels: S2–5um–2 and B4–13um–5.

Figure 3.19a shows diffusion coefficient as a function of ŷ and ẑ coordinates, i.e. Dx(y,z),
for the cylindrical channel. This figure is an alternative representation of Figure 3.17b. Notice
that the particle is more diffusive when it is closer to the channel walls. Figure 3.19c shows
Dx(y,z) for the semi-elliptical cross-section, where we see a similar diffusivity pattern. The
particle is less diffusive in the middle of the channel and more diffusive when it is closer to
the walls. In addition, there are diffusion maximums that are close to the two corners and the
narrow end. Figure 3.19e shows Dx(y,z) for the square cross-section. All the same features
hold, while most diffusive points are in the four corners. Importantly, in all the cases, the
diffusion coefficient varies by less than 23% and the particle is always less diffusive in the
middle of the channel.

In the experiments, we only track particles in the x̂ŷ plane. To model this, we assume that
particles explore the entire cross-section with equal probability, suggesting that the projection
onto x̂ŷ is an average along ẑ. The right column in Figure 3.19 shows the averaged values
along ẑ for the (b) circular channel, (d) semi-elliptical channel, and (b) square channel. In
all the cases, variation of diffusion coefficients is less pronounced than in full cross-section
simulations. For circular and square channels the variation decreased from 23% to 7%.
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Figure 3.19: Simulation of diffusion coefficients, Dx(y,z), for channels with (a,b) round, (c,d)
semi-elliptic, and (e,f) square cross-sections. The left column shows contour plots, while
the right one shows projections onto the ŷ axis. The three channels have dimensions: (a)
2R = 910nm, (b) W = 1200nm, and H = 1200nm, (c) W = 800nm, and H = 800nm, while the
particle has a width of 2a = 500nm. For the semi-elliptic channel, black circles in (d) show
experimental measurements [73].
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We compare these simulation results with the experimental results that were presented
in Figure 3.2.1a. The experimental data was averaged along the x̂ axis within the channel.
Figure 3.19d shows the experimental data overlaid with the simulation results, where the values
are normalised to account for discrepancy in absolute values [73]. Both are almost constant
with ŷ position, which explains why the experimental data showed almost no variation in Dx(y).
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Figure 3.20: Simulation of a rotating particle that is moving along the channel with velocity
v0. The angular velocity was found such that the torque on the particle is zero. (a) Angular
velocity of the particle as a function of position. The rotation is linearly proportional to v0, as
illustrated by the overlapping curves: blue line for vx = 10µm⇑s and green for vx = 1000µm⇑s.
(b) Hydrodynamic friction coefficient as a function of position for rotating and fixed particles.
The rotation reduced the friction closer to the walls, resulting in increased diffusivity.

We have mentioned earlier that particles have an unevenly distributed drag on their sur-
face. The resulting torque should induce a rotation, which was not included in the previous
simulations. Therefore, we probe a limit when the particle is rotating with a maximum angular
velocity ωmax, at which the torque is zero. We find this limit by running a gradient climbing
script on MATLAB. It runs a COMSOL simulation with a guessed angular velocity applied on
the particles boundary, then measured the torque and adjusted its guess for the next simulation.
The script stops when it finds zero torque, and thus, the maximum angular velocity.

Figure 3.20a shows the angular velocities computed using this method. Angular velocity
is linearly proportional to the particle’s velocity v0, as expected. Figure 3.20b suggests that
rotation reduces the hydrodynamic friction coefficient. The average difference between fixed
particle model and rotating particle model is on average 5%. This simulation gives an upper
limit for our accuracy, because it is not clear how much rotation there is in real systems.
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With finite channel model

It will be shown in Section 3.5 that channels of finite length should be modelled with periodic
boundary conditions set on the inlets. Here, we investigate how radial position influences that
model. Figure 3.21a shows the diffusion coefficients as a function of radial position. The
different levels are due to decreased pressure resistance as described earlier. Importantly, the
variation is smaller in the finite channel, where the particle still diffuses faster closer to the
boundary. The difference between maximum and minimum diffusivity is smaller at 6.0%,
while after projection onto x̂ŷ the difference is only 1.9%. This suggests that the diffusion
coefficients are almost always uniform in ŷ direction for narrow channels.
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Figure 3.21: Simulation of varying position of A 2a = 500nm particle inside a cylindrical
channel of length L = 10µm. Finite channel was simulated with periodic boundary conditions on
the inlets of the channel and results are shown in orange. For comparison the teal curves show
results for the infinitely long channel. (a) Diffusion coefficient as a function of position of the
particle. (b) Diffusion coefficient as a function of confinement ratio. The circles correspond to
averaged values across all possible positions, while lines correspond to values on the centerline
of the channel. The difference between averaged and centerlines values is much smaller in the
short channel.

3.4.2 Approximations in all simulations

Throughout this thesis we use two approximations: (1) the centerline approximation, where
the hydrodynamic properties are estimated while keeping the particle at the centerline of the
channel. (2) Effective radius approximation, where the channel is treated as cylindrical with
a matching cross-section area. These approximations reduce the complexity and allow for
quick computations. For example, the position dependant simulations require from 10 to 40
simulations in 3D, while the approximations reduce it to a single simulation in 2D. Here, we
will discuss the impact of these approximations on the diffusion coefficient estimates.
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For the centerline approximation, Figure 3.21b shows a comparison between centerline
and the averaged diffusion coefficient. The figure suggests that the centerline approximation
underestimates the diffusion coefficients by about −11% in the range a⇑R ∈ (︀0.4,0.6⌋︀ for infinite
channels. For short channels the difference is smaller, at −2.6% in the range a⇑R ∈ (︀0.45,0.6⌋︀.
Therefore, simulations with these approximations slightly underestimate the diffusion coeffi-
cients.

For the effective radius approximation, Figure 3.19 shows three different cross-sections
and their respective diffusivity. The semi-elliptical channel has an effective confinement of
a⇑R = 0.417 and an average diffusion coefficient of Dx⇑D0 = 0.266. From Figure 3.16a, the
cylindrical channel with same a⇑R has average coefficient of Dx⇑D0 = 0.281, which is 5.6%
higher. The same estimate for the channel with square cross-section gives 10.8% higher results.
Thus we are overestimating the diffusion coefficient with the effective radius approximation.

The two approximations roughly cancel each other. The combined error should be within
10%, where the exact number depends on the geometry. For the experimentally relevant
confinement ratios, the biggest correction is at a⇑R = 0.65, where the diffusion coefficient is
6% higher; while at a⇑R = 0.4, the correction is only 1%. Furthermore, for finite channels the
corrections are even smaller since the position dependence is weaker. We expect our other
simulations to have a similar accuracy.

3.5 Increased diffusivity in finite channels

Here, we examine the diffusion coefficients inside finite channels. The label ‘finite’ is used
to differentiate from infinite channels. We argue that the finite channels are fundamentally
different, because they permit flows across the inlets. In such case, a moving particle acts like a
piston, thus inducing a Poiseuille flow inside the channel. Assuming that most resistance to
such flow comes from the narrow channel itself, we can model this with periodic boundary
conditions set on the inlets of the channel.

To the best of our knowledge, this is an unprecedented approach to modelling finite channels,
where we will provide strong experimental evidence for this boundary condition in Chapter 4. In
this section, we explore the consequences of the periodic boundary conditions for the diffusion
coefficients.

Figure 3.22 shows simulated diffusion coefficients for channels with periodic boundary
conditions. The diffusivity is higher than in the infinite channel case and depends on the length
of the channel. The two models converge in the limit L→∞, as expected.

The difference between the two model predictions becomes obvious when comparing the
flow profiles induced by the moving particle. Figure 3.23a shows the flow profile inside the
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Figure 3.22: Simulation of finite channels with periodic boundary conditions on the inlets.
(a) Diffusion coefficients as a function of confinement ratio. The particle size was kept fixed
at 2a = 500 nm. (b) Difference between the finite channel predictions and the infinitely long
channel predictions. The diffusion coefficients are higher in shorter channels. The purple
regions highlight artefacts due to the periodic boundary conditions.

infinite channel. The induced flow circulates around the particle, extending about 2R distance
into the channel. This agrees with the literature [39, 40, 44, 81].
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Figure 3.23: Flow profile around the particle for (a) an infinite channel and (b) a finite channel.
In both simulations the particles had diameter of 2a = 500nm and the channels had diameter
of 2R = 1000nm. For clarity, the plots show only short segments of the channels. In both
cases, the particles are moving to the right with velocity v0, which creates a pressure difference
across the particle. (a) In the infinite channel, the endless liquid column resists motion, thus
forcing all the liquid to circulate around the particle. The flow does not extend far into the
channel. (b) In the finite channel, the pressure induces a circulating flow around the particle,
and also a Poiseuille flow along the channel, which escapes through the inlets. This reduces the
hydrodynamic friction and thus increases the particle’s diffusion coefficient.

In the finite channel, the flow is fundamentally different, as shown in Figure 3.23b. Here,
we see two modes of flow. The first is the circulation around the particle that is weaker
than in the infinite channel. The second mode is the Poiseuille flow, which is induced by
the piston like motion of the particle. The periodic boundary conditions facilitate this mode.
Physically this corresponds to flow into and from the reservoirs, where its origin is discussed in



3.5 Increased diffusivity in finite channels 49

Chapter 4. Importantly, the second mode reduces the hydrodynamic drag force on the particle,
and therefore, increases the diffusivity.

3.5.1 Access resistance

Our model has a flaw at low confinement ratios: it does not recover the bulk diffusion coefficient
in the limit a⇑R→ 0, as indicated by the purple areas in Figure 3.22. We overestimate the
diffusion coefficients, because the flows outside the channel have been assumed to be negligible.
This condition is satisfied in long and narrow channels, where almost all the pressure drops
inside the channel. However, for wider channels, the pressure drop outside the channel is
significant. Here, we will develop a correction to account for the pressure drop outside the
channel.
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Figure 3.24: Impact of access resistance. (a) Modified simulation geometry that includes
two reservoirs at either end. The periodic boundary condition was moved to the end of the
reservoir. It had width and length of 40 µm and 20 µm, respectively. (b) Diffusion coefficients
as a function of confinement. The dashed lines show previously estimated values with periodic
boundary conditions on the channel inlets. Meanwhile, the solid lines correspond to the
modified geometry shown in (a), which takes into account the access pressure resistance. The
access resistance changes the diffusion coefficient for the short channel, but has less impact on
the longer channel.

In our first attempt, we add two reservoirs at either end of the channel, as shown in
Figure 3.24a. The size of the reservoirs did not affect the solution as long as it was ∼ 5 times
wider than the channel. This suggests that pressure drop occurs in the access area next to the
inlets. Figure 3.24b shows the resulting diffusion coefficients, where they converge to the bulk
value in the limit a⇑R→ 0. The coefficients are also slightly smaller than predicted before,
where the correction is significant for short channels and less important for longer channels.

Including reservoirs in the simulation increases the computation time and complexity of
the model, both of which are undesirable. Therefore, we incorporate the effects of reservoirs
into the boundary conditions on the inlets. Here, we explain how to achieve this in COMSOL.
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Within our model, everything is linearly proportional to the velocity of the particle, v0. For this
reason, we use pressure resistance defined as G = ∆p⇑Q, where Q = ∐︀ux̃︀πR2∝ v0 is the flow
rate. Sampson has solved pressure resistance through a circular aperture in 1891 [39, p. 153]:

∆p =
3η

R3 Q (3.2)

It accounts for the pressure drop in the area outside the inlets that we call access re-
sistance. In our model, it is added to the periodic boundary conditions as a pressure drop.
In COMSOL’s periodic boundary module, we add a pressure difference of -3*mu*Q/R^3.
Then we define a variable under ‘definitions’: Q = inlet_integral(2*pi*r*w), where the
‘inlet_integral’ is defined as a surface integral over one of the inlets. This procedure allows
us to incorporate the pressure resistance into the COMSOL simulation.
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Figure 3.25: Assessment of periodic B.C. with added access resistance via Equation (3.2). In
the simulation, a single particle of diameter 2a = 500nm was moving at a velocity of v0 = 1µm⇑s,
while the channel geometry had three variations: periodic B.C.; periodic B.C. with access
resistance via Equation (3.2); and simulation with reservoirs as shown in Figure 3.24a. (a) Flow
rate as a function of confinement ratio. (b) Diffusion coefficient as a function of confinement
ratio. The simulation reservoirs and periodic B.C. with access resistance agree very well,
suggesting that Equation (3.2) can be used to account for access resistance.

Figures 3.25 compares the two different methods for including access resistance. It suggests
that adding Equation (3.2) is equivalent to including the reservoirs as shown in Figure 3.24a.
Including the access resistance through Equation (3.2) is computationally fast, and does not
risk destabilising the meshing process of the simulation. Therefore, we will use this modified
boundary condition in most our simulations.
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3.5.2 Comparison with experimental data

Figure 3.26 compares our model predictions for the diffusion coefficients with the experimental
data. The black dashed line corresponds to the infinite channel model, which is below all the
measured values, suggesting that the infinite channel model can not accurately describe finite
channels. This discrepancy has been observed before [73, 74, 82].

Instead, the red points are distributed around the red line that corresponds to finite channel
simulation with L = 5µm. Other points are also color coded according to their length. In each
case, our simulations for finite channels agree very well with the experimental data.
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Figure 3.26: Diffusion coefficient comparison between simulation and experiments. Lines
correspond to simulations with different channel lengths. From top to bottom: − L = 5µm; −
L = 10µm; − L = 13µm; − L = 25µm; − L =∞. Points correspond to experimental measurements
where the color indicates the channel length as before, and the shape indicates the cross-section
shape: square for square and round for semi-ellipse. “PRE” arrows show data taken from [73],
while “EPJ” are taken from [74]. Other values were reported in the Table 3.4. The measured
diffusion coefficients are higher than predicted by the infinite channel model. Meanwhile, our
model agrees with measurements within the error bars.

Overall, our finite channel model with the periodic boundary conditions predicts the
diffusion coefficients better than the infinite channel model. This suggests that our model
captures the physics happening inside channels. Furthermore, Chapter 4 will provide stronger
evidence for the validity of our model.

3.6 Conclusion and impact

We have demonstrated that microfluidic lab-on-a-chip devices can be used to study Brownian
motion inside narrow channels. In addition, we presented a method for estimating diffusion
coefficients inside channel by solving Stokes equations using COMSOL. Importantly, our
synthetic channels have a uniform cross-section and well-defined dimensions, allowing us to
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compare the experimental data directly with the simulation results. This high degree of control
leads to new insights about the physics inside channels. We will use the same methods to study
particle-particle interactions in the following chapters.

In this chapter, we have shown that the measured diffusion coefficients are significantly
higher than previously thought [40]. We resolved this discrepancy by introducing a new
model for hydrodynamic particle-channel interactions, which has periodic boundary conditions
set on the inlets of the channels. This model successfully reproduces the experimental data
without any fitting parameters, as shown in Figure 3.26. Importantly, our model suggests
that diffusion coefficients depend on the length and the diameter of the channel. In contrast,
previous models only considered the diameter. These results have far-reaching implications for
transport phenomena, since the diffusion coefficients come as a parameter in most transport
models [40, 83].



Chapter 4

Hydrodynamic Particle Interactions

In this chapter, we study particle-particle interactions, which are important for understanding
collective behaviour. We are mainly interested in narrow channels where a⇑R ≳ 0.3, since large
channels resemble bulk, where interactions are well understood [42, 84, 85]. Some of our
findings are reported in [86].

In narrow channels, the hydrodynamic interactions were previously measured to decay
rapidly with particle separation [22, 24, 25]. Indeed, the steady flow induced by particle motion
decays exponentially with r⇑2R, where 2R is the channel width [39, 40, 44, 81]. Consequently,
the particle-particle interaction strength is also expected to decay exponentially with their
separation [22, 44]. However, the previous experiments used microfluidic chips with a groove
geometry to mimic channels, where sedimentation kept the particles in the groove, but the
liquid could escape. Therefore, these experiments did not capture far field hydrodynamics of
channels [17, 22, 24, 25]. The lack of controlled experiments in a 1D confinement leaves many
unanswered questions about the magnitude and spacial extent of hydrodynamic interactions
inside narrow channels [17, 87].

In this chapter, we present the first measurement of the interactions between two Brownian
particles inside a finite narrow channel, in which both the particles and the liquid are confined.
Figure 4.1 illustrates our experiments. The ‘closed’ channel, shown on the left, has only one
end connected to a bulk reservoir, while the ‘open’ channel, shown on the right, has both ends
connected. Here we demonstrate a fundamental difference between diffusion in open and in
closed channels [22, 39, 44].

4.1 Method for placing particles in channels

Our microfluidic channels are produced using the method described in Section 3.1. Crucially,
the PDMS chips are oxygen plasma bonded onto a glass slide which provides a bottom wall
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Figure 4.1: Trajectories of two particles undergoing Brownian motion in closed and open
channels. The trajectories are visibly un-correlated in the closed channel, suggesting the
particles move independently. In the open channel the trajectories resemble each other, which
leads to strong motion correlation.

confinement for the channels. This constrains the liquid to the channel, and thus, offers the first
experimental insights into the full hydrodynamic interactions between Brownian particles in
narrow channels.

We use low particle concentrations to prevent undesired interactions with particles from
outside the channel, and also to minimise particle sticking. At these concentrations, finding
two or more particle inside the channel is unlikely. Therefore, we developed two methods for
placing particles inside the channel. For the first method, we use a custom-built holographic
optical tweezers [15, 88, 89] to position two particles inside the channel, and then turn off the
laser trapping, which releases the particles and allows them to diffuse freely. Subsequent motion
is recorded using the CMOS camera (DMK-31BF03, Imaging Source) at a rate of 30 frames
per second until one particle escapes the channel. See a video demonstration online [90].

The second method uses an external electric field to drive particles into the channel. Once
a desired number of particles is inside the channel, the electric field is switched off and the
subsequent Brownian motion is recorded using the CCD camera (Mikrotron MC1362). A
detailed description of this method is available in Section 5.1. Throughout this chapter, we
employ the first method unless indicated otherwise.

In this chapter, we will be performing control measurements using closed channels that have
one of the inlets sealed. They were produced by shifting the alignment of the photolithography
layer, where the underlying channel no longer spans the entire barrier. Figure 4.2a shows a
closed channel, while Figure 4.2b shows a channel with both inlets open.
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4.2 Nondecaying interactions
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Figure 4.2: Comparison between a closed channel (left column) and an open channel (right
column) experiments. The top row (a,b) shows bright-field images of microfluidic channels
containing two colloidal particles. Scale bars indicate 2 µm. The middle row (c,d) shows
displacements of the second particle (ŷ axis) as a function of the displacement of the first
particle (x̂ axis). Each distribution contains 1000 displacement pairs with an initial particle
separation of approximately 2.5 µm. The overlaid lines indicate contours for σ and 2σ from
a 2D normal-distribution fit. Insets illustrate the direction of motion for each quadrant. The
bottom row (e,f) shows the correlation coefficients versus the separation between the two
particles. The solid lines indicate the fits to the phenomenological model y = A exp(−x⇑B)+C
where the fitted parameters are: (e) A= 18 ± 8, B= 0.15±.02 µm, C = 0.005±.004; (f) A= 20 ± 9,
B = 0.14± .02 µm, C = 0.419± .005. The two-particle motion is strongly correlated in the open
channel, suggesting a presence of long-range non-decaying interaction.
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We start with the case of two particles. For data analysis, particle trajectories are divided
into displacement steps between consecutive frames: ∆x1 and ∆x2 denote the displacements of
the first particle (one on the left) and the second particle (one on the right), respectively. The
two-particle interaction strength is expected to be a function of their separation, and therefore,
we group the pairs of displacements according to the distance between the centres of the
particles.

For the closed channel, Figure 4.2c shows the displacements of the second particle (∆x2) as
a function of displacement of the first particle (∆x1). The distribution is circular with points
distributed equally in each quadrant, suggesting the two particles move independently from
each other. This is expected for a large particle separation of 10a [22, 44]. In contrast, the
distribution for the open channel, shown in Figure 4.2d, is elliptical with the major axis along
y = x and ellipticity of 0.75. This implies that the two particles moved in the same direction
more frequently than in opposite directions, suggesting the presence of long-range interaction
between the particles.

We quantified the interaction strength using the Pearson product-moment correlation coef-
ficient defined as [91]: ρ = cov(∆x1, ∆x2)⇑σ(∆x1)σ(∆x2), where cov is the covariance, and
σ is the standard deviation. The value ρ = 0 indicates independent particle motion and ρ = 1
corresponds to fully correlated motion.

Figures 4.2e and 4.2f show the correlation coefficients as a function of particle separation.
Evidently, the correlation is stronger and has a longer range in the open channel. A detailed
examination of the closed channel results shows a high correlation when particles are close to
one another that exponentially decays to zero in a separation of ∼4a. We fitted a phenomeno-
logical model, y = A exp(−x⇑B)+C, that captures the decay rate and has an additional offset
parameter. The fit yielded B = 0.15± .02 µm, C = 0.005± .004, where we introduced the offset
to characterise the novel behaviour observed in the open channel. As evident from the data,
the correlation coefficient exhibits the same initial exponential decay, but in stark contrast,
it asymptotes to a constant offset. This finite correlation coefficient is captured by the fit to
the phenomenological model, yielding B = 0.14± .02 µm, C = 0.419± .005. This constant,
nondecaying component was not expected. Furthermore, the correlation persists even at the
largest measured distances, suggesting that the two particles always interact, as long as they are
both are inside the open channel. To the best of our knowledge, this is the first observation of
such distance-independent interactions between Brownian particles.

We further investigated the effect of the channel length on the particle-particle interaction
strength. Figure 4.3 shows the correlation coefficients for open channels of lengths L = 5, 10
and 17µm. The data clearly indicates that the interaction strength decreases with L. In the
longest channel, shown as circles, we observed particles interacting at separations of more than



4.2 Nondecaying interactions 57

Particle separation (μm)

Co
rr

el
at

io
n 

- ρ
L = 10 μm

L = 17 μm

L = 5 μm

0.0

0.2

0.4

0.6

0.8

2a
0 2 4 6 8 10

L

2a

Figure 4.3: Correlation coefficients for two interacting particles for different channel lengths.
The three curves correspond to open channels with different lengths, from top to bottom: 5 µm,
10 µm, 17 µm. The solid lines show the fit to a model y = A exp(−x⇑B)+C, where the offset
coefficients were (from top to bottom): C = 0.420± .006; 0.250± .005; 0.101± .004. Evidently,
the long-range two-particle correlation coefficient decreases with the channel length. Inset
illustrates the proposed model for long-range hydrodynamic interaction.

40a. This is the largest relative distance measured between interacting Brownian particles, even
exceeding the ∼20a separation measured in bulk [42, 84]. This is a surprising result because
the geometric confinement typically reduces the maximum interaction distance [22, 39, 84].

4.2.1 Hydrodynamic interaction model

Based on our observations we propose a hypothesis for the distance-independent interaction
mechanism, that is schematically illustrated in the inset of Figure 4.3. Suppose the first particle,
shown on the left, moves to the right due to a thermal impulse that gives it momentum. At
steady state, its motion induces a flow that is constrained by the channel geometry to flow
either around the particle or along the channel. Importantly, the latter flow has been previously
neglected [22, 39, 40, 44] because the studies considered infinitely long channels, in which
the finite pressure exerted by the moving particle cannot displace an infinite liquid column. In
contrast, we argue that for finite open channels flows extend throughout the whole channel.
Consequently, the induced flow along the channel has a constant mean flow velocity that is
proportional to the driving force, i.e. the first particle’s velocity [29, 39]. This flow encounters
the second particle, shown on the right, and exerts a viscous drag force on it. The magnitude
of this force is a function of flow velocity [92] and thus also a function of the first particle’s
velocity, but is independent of the particle positions. The opposite case of the second particle
moving can be inferred by symmetry, and the final interaction is a combination of the two
cases. This gives rise to the particle-particle interaction that we observed with our correlation
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coefficient measurements and also explains why the value is distance-independent in open
channels. In a limit, where the particle size matches the channel, this problem resembles
two pistons in a pipe and the trajectories would be perfectly correlated [41]. On the contrary,
in the closed channels, the dead end blocks the flow along the channel, thus eliminating the
non-decaying hydrodynamic interaction. Therefore, our hypothesis qualitatively explains the
long-ranged interactions observed in the open channels.

To quantitatively capture the experimental results, we employ the numerical simulations
described in Section 3.3. Here, the geometry has two spherical particles inside a cylindrical
channel with periodic boundary conditions on the inlets. We apply an instantaneous velocity
on one particle and calculate the resulting drag forces on both particles. This gives the
hydrodynamic friction coefficients, which for the two particle system in 1D is a 2×2 symmetric
matrix. Its diagonal terms (ζ1,1; ζ2,2) describe hydrodynamic drag experienced by the moving
particles (first; second), and the off-diagonal elements (ζ1,2 = ζ2,1) correspond to a force exerted
by the moving particle on the other particle. The friction matrix values are computed directly
from the numerical simulation. In addition, the friction matrix can be obtained from the
experiments using a diffusivity matrix, DDD = kBT ζζζ

−1 [29], with components Di,i = ∐︀∆x2
i ̃︀⇑2∆t

and D1,2 =D2,1 = ∐︀∆x1 ∆x2̃︀⇑2∆t [93]. This allows us to compare the hydrodynamic interactions
predicted by our simulation with the measured data.

Figures 4.4a and 4.4b illustrate the typical flow patterns computed with our simulation.
Notice that the flow in the closed channel curls around the particle and does not extend far
into the channel. This contrasts with the open channel, where the flow around the particle
is weaker and there is a Poiseuille flow along the whole channel length. This moving fluid
column exerts a force on the second particle that gives rise to the non-decaying interaction.
Figures 4.4c and 4.4d show a quantitative comparison between the numerical simulation and
experimental data. The friction with the channel walls is the same for both particles, leading to
the overlapping curves ζ1,1 and ζ2,2. Meanwhile, the interaction force, ζ1,2, asymptotes to a
non-zero value for the open channel only, which is similar to the correlation coefficient that
was reported earlier. At small separations, the discrepancy between simulation and experiment
is likely caused by electrostatics and finite tracking resolution. Meanwhile, at large separations,
the values compare very well, with the largest discrepancy below 20%. This is a good agreement
given the approximations made in our simulations.

4.2.2 Analytical model

Here, we present an analytical model for the particle-particle interaction developed by Eric
Lauga and John R. Lister [86]. The model focuses on physical scalings and omits detailed
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Figure 4.4: Comparison between the experimental data and the simulation results. Top row
illustrates flows inside the (a) closed and (b) open channel based on simulation results. The
left particle has an instantaneous velocity to the right while the right particle is kept fixed. The
proportions were chosen for illustrative purposes. The bottom row compares the friction matrix
values as a function of particle separation for the (c) closed and (d) open channel. The points
indicate the experimentally measured values, while the solid lines show the corresponding
simulation results obtained without any fitting parameters. All values are normalised with
the friction coefficient in the bulk: ζ0 = 6πηa. Error bars are shown for every fifth data point.
Arrows highlight the non-zero interaction term, which agrees well with our simulation results,
suggesting that the non-decaying interaction is caused by the induced flow inside the channel.
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numerical pre-factors. For the full derivation see Appendix C. Our goal is to estimate the
typical mean flow velocity in the channel resulting from the motion of one particle.

Consider a spherical particle of diameter 2a located in the centre of an open cylindrical
channel of radius R and length L. We assume that the particle moves instantaneously to the
right with velocity U . The fluid displaced by the particle must either be pushed along the
channel to the right channel end, with more fluid drawn in at the left, or leak from right to left
through the thin gap between the particle and the channel wall. The pressure increase across
the sphere, ∆p, is proportional to the flow rate in the channel, Q, according to Poiseuille law

∆p ∼
ηQL
R4 , (4.1)

where η is the dynamic viscosity. We neglect any hydrodynamic resistance due to the recircula-
tion from the exit of the channel to the entrance, equivalent to imposing a periodic boundary
condition. Mass conservation around the moving sphere (in the frame moving with the sphere)
leads to

Q−UR2 ∼ Rq, (4.2)

where q is the leakage flux through the thin gap between the sphere and the channel. It is
approximately given by lubrication theory [38]

q ∼ −Uh−
∆ph3

η l0
, (4.3)

where h ≡ R−a is the minimum gap width, and l0 ∼ (ah)1⇑2 is the characteristic lubrication
length-scale. Combining these equations and taking the limit h ≪ R, we obtain the flow rate

Q ∼UR2(
R3a1⇑2

R3a1⇑2+Lh5⇑2
) . (4.4)

Combining with the mean flow in the channel, ∐︀ũ︀ ∼Q⇑R2, we get the final expression

∐︀ũ︀
U
∼

R3a
R3a+L h5⇑2a1⇑2

⋅ (4.5)

Our result shows that the mean flow in the channel is non-zero, but a function of the channel
dimensions R and L. Importantly, our model reproduces the observed decrease with the channel
length - scaling with 1⇑L. The long channel limit (L→∞) gives no external flows (Q = 0)
equivalent to the closed channel case.

Quantitatively, our model agrees with the simulations in the limit of a⇑R ≈ 1. Below this
value, the analytical model deviates away due to the lubrication approximation that was used in
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the derivation. Nonetheless, the model proves that the scalings obtained with the numerical
simulations are correct.

4.3 Many particle interactions

We have shown that two particles interact by inducing the Poiseuille flow, which affects all the
particles inside the channel. Therefore, the interactions are not limited to two particles, but
will act on an arbitrary number of particles. Here, we investigate how the number of particles
affects the nondecaying hydrodynamic interactions.

Henceforth only the open channels are discussed and we drop the label. Also, the subsequent
analysis excludes frames where particles are closer than dmin. This eliminates the close
range interactions that comprise electrostatic repulsion, close range hydrodynamics, and the
nondecaying interactions. Meanwhile, at large separations only the nondecaying interactions
persist. Figure 4.3 suggests that the close range interactions decay to zero at 1 µm. Thus we set
the cut-off distance at dmin = 1.2µm.
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Figure 4.5: Average correlation coefficient as a function of particle number. The experiment
was performed in a L = 13µm long channel (B4-13um-2), where the particles were placed using
the electrophoretic method. The insets show a color representation of the correlation matrices,
where the red diagonal elements are equal to 1, while white represents 0. Each element of the
matrix corresponds to the correlation between two particles. These matrices have no structure,
suggesting that all particles are equally correlated with each other. Error bars show an average
error for the correlation coefficients in the matrix.

Figure 4.5 presents correlation coefficient for different particle numbers, N. The coefficient
is calculated for each pair of the particles and then averaged. Within our measurement accuracy,
the correlation coefficient is independent of N, suggesting that the nondecaying hydrodynamic
interactions persist even when particle densities are high.
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The many-particle correlations can be represented as a correlation matrix, where the matrix
elements are correlation coefficients between the pairs of particles. It is a symmetric matrix
with a unit diagonal. The insets in Figure 4.5 show the correlation matrices with color coded
values. Importantly, notice that there is no obvious structure to the matrices, meaning that any
two pairs interact in the same way. This statement is also supported by the observation that the
correlation fluctuations are within the statistical variance. This result suggests that all particles
interact in the same way, no matter what their relative position is. This further highlights
the uniqueness of the nondecaying hydrodynamic interactions, because earlier studies only
considered the nearest neighbour interactions, while assuming that others are negligible [22,
94].
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Figure 4.6: Diffusion coefficient as a function of particle number in a channel. Data was
estimated form the same trajectories as in Figure 4.5. The Dx was estimated using seven MSD
points, where the distance between the particles was greater than dmin = 1.2µm. The dashed
orange indicates the mean value, suggesting that the diffusion coefficient is independent of N.

Additionally, Figure 4.6 shows that the diffusion coefficient is also constant for different N
(same experiment). Therefore, the particle number does not affect the diffusivity of individual
particles. The error bars increase with N, because we collect less data due to the distance
exclusion requirement and a limited imaging time until one particle escapes.

4.3.1 Generalised interaction model

The simulation method presented in Section 4.2.1 and in reference [86] works only for two
particles. In that model one particle is moving, while the other particle is fixed. The drag force
is estimated on the fixed particle without accounting for an induced motion. However, this
approach introduces an unphysical artefact if more than two particles are studied: pressure
drops across each fixed particle because they act as obstacles to the flow. In contrast, the
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pressure drop is almost negligible for moving particles. In this section, we address this problem
and generalise our simulation method.
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Figure 4.7: (a) Multi particle simulation geometry for the generalised method. Inlets have a
periodic boundary condition with access resistance via Equation (3.2). Orange highlights the
driving particle, while white particles move in the Poiseuille flow. (b) Simulated correlation
coefficients as a function of particle number. The simulation predicts that interaction strength
decreases with the particle number by 0.24% per particle.

Consider a geometry with six particles as shown in Figure 4.7a. The particles are positioned
3R apart, which omits the close distance hydrodynamics. The orange particle receives a thermal
impulse and moves to the right with velocity v0. Its motion induces the Poiseuille flow that
exerts a force on the other particles. In contrast to the previous approach, we allow the other
particles to move at a response velocity, vr, which corresponds to a zero net force on them. In
this scheme correlation is simply the ratio ρ = vr⇑v0.

In COMSOL, we build on top of the simulation method described in Section 3.3 with the
geometry shown in Figure 4.7a. To find the response velocity we run two simulations: one
to estimate the drag and another one to compensate for particle motion. First, we solve for a
moving orange particle, while keeping others fixed. This gives a drag force Fwhite(vr = 0). Then
we move all the particles at the same velocity and estimate the resulting force, Fwhite(vr = v0).
Since our system is linear, we can simply interpolate where Fwhite(vr) = 0, and thus obtain vr.
Finally, we verify that vr is correct by solving for the orange particle moving at v0, while the
white particles are moving at vr. This always gives zero drag force on the white particles, as
expected.

This allows to compute particle interactions for more than two particles, but it should be
noted that it produces equivalent results as the previous method for N = 2. We further extend
our generalised model by including the access resistance, as explained on page 49.

Figure 4.7b shows simulation results for particle interactions for up to six particles. The
predicted correlation coefficient is almost constant with the particle number in the channel,
where the interaction strength decreases by a mere 0.24% per particle. This agrees well with
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our experimental observations presented in Figure 4.5. For this reason, we treat the correlation
coefficient as a constant, which we evaluate at N = 2.
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Figure 4.8: Simulation of hydrodynamic interactions for different channel widths and lengths.
(a) Simulated correlation coefficient as a function of the confinement ratio. The interaction
weakens with increasing channel width, but in the computed range it never reaches zero.
(b) Simulated correlation coefficient as a function of channel length. The interaction slowly
weakens with the channel length. In our simulations the interaction persisted even in 100 µm
long channels (not shown).

Figures 4.8 (a) and (b) show predicted correlation coefficients for different channel widths
and lengths. The particle interaction weakens with channel width, where in the limit a⇑R→ 0
we recover the normal particle interaction in the bulk. The interaction also weakens with the
channel length, where in the limit L→∞ there is no interaction at large separations.
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Figure 4.9: Correlation coefficient as a function of the channel length. Data points correspond
to experimental values, where the shape indicates the cross-section shape: square for square
channels, and circle for semi-elliptical channels. The point with the star had defects in the
structure. Our simulations expect the correlation coefficients to be within the blue region, where
the confinement ratios correspond to the experimental range, a⇑R ∈ (︀0.5,0.6⌋︀. The experimental
values are about 0.05 smaller than our simulation expects.
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Figure 4.9 compares the simulation predictions with the experimental data. The overall
agreement between the two is very good: our model captures the decay with channel length and
also has correct magnitude, while we used no fitting parameters. However, the experimental
values are smaller by ∼ 0.05, which suggests that there is a systematic over-estimate. One of the
causes could be the centerline approximation, where the particles are placed in the middle of
the Poiseuille flow in the simulation. Letting them move in the radial direction would decrease
the interaction strength. Another possibility is that our model is too simple and does not capture
all the energy dissipation modes. For example, it is known that sound carries away small
amounts of energy and results in very different interaction modes [30, 34]. Nonetheless, our
simple model agrees qualitatively with the experimental data, suggesting that channels must be
modelled with periodic boundary conditions set on the inlets.
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4.4 Discussion and special cases

In this section, we discuss the pressure exchange mechanisms, which are necessary for the
nondecaying hydrodynamic interactions. Then we describe the relation between the correla-
tion coefficient and other interaction metrics, justifying the extensive use of the correlation
coefficient. Finally, we present three experiments that further verify our model for the particle
interactions.

4.4.1 Pressure exchange mechanism

In our model, the moving particle induces a Poiseuille flow, which requires the two reservoirs
to be in equilibrium. Otherwise, the pressure would build up and stop the Poiseuille flow.
Mathematically, this equilibrium is achieved by imposing periodic boundary conditions on the
inlets of the channel. Physically, this can be achieved with multiple channels, with a flexible
membrane, or with open boundaries. Here, we discuss these alternatives in the context of our
experiments.

First, the pressure can relax through other channels. In our experiments, chips S1, S2
and B4 have large channels connecting the two reservoirs as shown in Figure 3.4 (a) and
(b). At the same time, there are at least five narrow channels across the barrier. All of them
may facilitate pressure exchange between the reservoirs because the liquid can flow across
the barrier. We test this idea experimentally by creating a chip with a single channel and no
other connections between the two reservoirs (chip B2-10um-1). This experiment is performed
together with Soichiro Tottori, who also made the chip. The particles are positioned using
the electrophoretic method. The measured correlation coefficient is ρ = 0.28, which agrees
well with the previous measurements as seen in Figure 4.9 (the upper data point at L = 10µm).
Therefore, this observation rules out the necessity of having multiple channels and also suggests
that this phenomenon happens in a wide range of systems.

The second possible pressure exchange mechanism is via a flexible membrane separating
the two reservoirs. In this case, an increased pressure deforms the membrane, without the need
to exchange any liquid. There will be no net effect on the membrane in practice, since the
pressure fluctuations are minuscule, short-lived, and have no directional bias. In practice, the
PDMS is rather stiff [95], making it an unlikely explanation.

Lastly, the pressure fluctuations may be absorbed in the open boundaries or at the reservoirs
themselves. For example, both reservoirs are exposed to air at the inlets. When one of the
particles moves, it creates a short pressure increase that deforms the liquid-air boundary, but it
is restored soon after. Or, alternatively, the reservoirs themselves might absorb the pressure
fluctuations because the liquid is not truly incompressible. In both cases, we assume that
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short-lived pressure fluctuations can be absorbed, while no build up of pressure would happen.
However, these explanations are complex and further experiments are required to determine the
nature of pressure exchange.

4.4.2 Relation between correlation and ζi, j

Throughout this chapter, we used the correlation coefficient as a proxy for particle interactions,
because its normalisation makes it easy to interpret and it is widely used in science. Here,
we present the relation between the correlation coefficient and the hydrodynamic friction
coefficients for the two particle system. From the definition of Pearson product-moment
correlation coefficient we have [91]:

ρ =
cov(∆x1,∆x2)

σ1 σ2
≈
∐︀∆x1 ∆x2̃︀
⌉︂

∐︀∆x2
1̃︀ ∐︀∆x2

2̃︀
=

D1,2
⌈︂

D1,1 D2,2
, (4.6)

where we used ∐︀∆x1̃︀ ≈ 0 and ∐︀∆x2̃︀ ≈ 0, which is satisfied exactly at large separations. In the
third equality, we used the definition of diffusion matrix for two particles [93]: Di,i = ∐︀∆x2

i ̃︀⇑2∆t
and D1,2 =D2,1 = ∐︀∆x1 ∆x2̃︀⇑2∆t [93]. Using Einstein-Smoluchowski relation Equation (2.4),
we get the relation to the hydrodynamic friction matrix coefficients:

ρ ≈ −
ζ1,2

⌈︂
ζ1,1 ζ2,2

. (4.7)

This equation suggests that the correlation coefficient is directly proportional to the hydrody-
namic friction coefficient corresponding to the particle-particle interaction, ζ1,2. Furthermore, ρ

is normalised with particle-channel interaction, which makes it less sensitive to variations of the
confinement ratio. For two particles of the same diameter, we need only two parameters to quan-
tify the particle behaviour: one for particle-channel interaction, and one for particle-particle
interactions. Therefore, we often present either {Dx⇑D0,ρ} or {ζ1,1⇑ζ0,ζ1,2⇑ζ0}.

We validate this relation by analysing virtual trajectories with known hydrodynamic prop-
erties. These trajectories are generated using a random walk method called the Brownian
dynamics simulation [96]. Two particles are placed in a 1D channel. The electrostatic re-
pulsion is modelled as an exponential potential with the decay rate set to the Debye length.
The hydrodynamic interactions are taken from the COMSOL simulations for friction matrix
coefficients. Interpolation is used to get all particle separation values. The generated trajectories
are sub-sampled at 30 fps. The code for this simulation is available at [97].

The trajectory analysis yields the friction coefficients that match the input from the COM-
SOL simulations. This confirms that trajectories can be used to estimate the hydrodynamic
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Figure 4.10: Brownian dynamics simulation for the two particle correlation coefficients. In this
simulation [96] the effects of dynamic evolution were assessed by computing 1D trajectories
for particles with repulsive potential and hydrodynamic interactions. Hydrodynamics were
taken from the COMSOL simulation for friction matrices. No fitting parameters were used.
The curves show similar behaviour to the experimental data seen in Figure 4.3. Noticeably, the
simulated values are higher, because predicted friction matrices underestimate the diagonal
elements – see Figure 4.4. This simulation demonstrates that our experimental analysis does
not introduce artefacts into interaction measurements.

coefficients. Furthermore, we confirmed that Equation (4.7) holds at large particle separations,
where Figure 4.10 shows the simulation results for different channel lengths.

4.4.3 Varying particle size

To further test the universality of our interaction model, we perform experiments with smaller
particles. Figures 4.11a, 4.11b and 4.11c show friction coefficients for pairs of particles with
different diameters. Notice that small particles have smaller hydrodynamic friction with the
channel, ζ1,1 or ζ2,2. Also, the interaction between the particles decreases with the particle size,
which is expected from our interaction model. For quantitative comparison, the solid lines show
simulation results that have no fitting parameters. At large separations, our model correctly
reproduces the friction coefficients. Meanwhile, at close proximity, the measurement errors
and electrostatic interactions contribute to the large discrepancies. Importantly, these results
further validate our model with the periodic boundary conditions.

4.4.4 Interaction at the entrances

As a further control we measured how the nondecaying interaction changes at the entrances of
channels. In this experiment, we position one particle in the middle of a channel, and the other
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Figure 4.11: Friction matrix coefficients for different particle sizes. All experiments were
performed in a L = 10µm long open channel with a mixture of particle sizes: (a) 500nm and
500nm; (b) 500nm and 350nm; (c) 350nm and 350nm. The points are the experimentally
measured values: ▲ for ζ1,1; ▼ for ζ2,2; and ○ for ζ1,2 = ζ2,1 is the interaction term. The
solid lines show the simulation results: − for ζ1,2 = ζ2,1; − for ζ1,1; and − for ζ2,2. All values
are normalised with the friction coefficient in the bulk: ζ0 = 6πηa. Error bars are shown for
every fifth data point. Simulations were performed using a cylindrical channel that has a
width of 800 nm and a length of 10 µm. No fitting parameters were used in the simulations.
Disagreement at small separations is caused by electrostatics, finite frame rate, and position
tracking errors. At large separations the simulation results agree well with the experimental
data in all cases, suggesting that the proposed interaction model is correct.
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Figure 4.12: Correlation coefficient versus the position of the right particle on the right half,
and the left particle on the left half, while the other particle is inside the channel. The colored
area shows the boundaries of the channel. Experimental parameters are: 2a = 505nm; L = 5µm.
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one at ≈ 0.5µm away from either inlet. The latter particle typically escapes the channel before
the former one. From their trajectories, we measure the correlation coefficient in the usual way.

Figure 4.12 shows the correlation coefficient as a function of the position of the escaping
particle. The interaction strength decays to zero when the particle leaves the channel. This
decay starts while the particle is still in the channel. For this reason, our interaction analysis
always excludes a region of 0.5 µm around the inlets.
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Figure 4.13: Correlation coefficient between two particles placed in separate channels. Hori-
zontal axis indicates the particle separation in x̂ direction. Particles were positioned in separate
channels (inset) to test if there is any correlations due to external flows. No correlation was
observed. Channels were L = 5µm long. The scale bar indicates 1 µm.

An alternative cause for the particle correlation could be externally driven pressure fluctua-
tions, like sound waves. We eliminated this possibility by measuring the correlation between
particles in separate channels, as shown in the inset of Figure 4.13. If an external driver
causes the correlations, the motion in separate channels would also be correlated. Figure 4.13
demonstrates that there is no correlation between two particles in separate channels, suggesting
that an externally oscillating flow does not cause the nondecaying interactions.

4.5 Conclusion and impact

We utilised a highly controlled microfluidic system coupled with holographic optical tweezers to
investigate the interaction of particles in confinement. Our measurements prove that interactions
extend over the full channel length and have a constant strength that does not decay with particle
separation. We explain the coupling mechanism using hydrodynamics with both a qualitative
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analytical model and quantitative comparisons with the numerical simulations. The excellent
agreement between the theory and the experiments suggests that we understand the properties
of hydrodynamic particle interactions in microfluidic channels. The nondecaying interaction
extending across the whole channel has significant implications for transport through channels.
Here, we present few examples.

First, the diffusion coefficients are higher. Our interaction model suggests that pressure in
front of the moving particle has an additional relaxation mode. This reduces the hydrodynamic
drag, resulting in higher diffusion coefficient. We have analysed this in Chapter 3, where our
model agrees with the experimental data, as shown in Figure 3.26. Therefore, our model is
important for predicting the diffusivity of particles.

Secondly, the collective dynamics is fundamentally different, since all particles interact
with each other over arbitrary distances. This will affect single-file diffusion, where the local
particle interactions cause a transition to a sub-diffusive regime. We expect that the newly
discovered non-local interactions prolong the transition from Fickian diffusion to the sub-
diffusive domain [94]. In biology, such interactions might be used to control transport rate
through protein pores. Imagine a molecule trapped in a potential, where it can only escape if a
second molecule enters the same channel and contributes an additional push. It also affects
polymers in confinement, because the monomers are coupled through hydrodynamics. This
might influence the confirmation of the entire polymer.

Finally, our model suggests that particles moving due to an externally applied force should
also induce the Poiseuille flow. Therefore, driven particles should experience similar hydro-
dynamic interactions, which is particularly important for technological applications, such as
electrophoresis or pressure flow. We explore this idea in Chapter 5.





Chapter 5

Driven Transport

In this chapter, we study the hydrodynamic particle-particle interactions for driven particles.
Three driving sources are considered: pressure flow, electric fields, and gravity. We will
demonstrate that they each produce a different particle-particle interactions.

Pressure driven particles have been extensively studied theoretically [39, 98–100] and
experimentally [101, 102]. In large channels, particles move with the flow without perturbing
it [39]. Therefore, such particles do not experience hydrodynamic interactions. In narrow
channels, on the contrary, each particle contributes to a small pressure drop, thus slowing down
the flow [98]. As a result, the particle velocity should decrease with the number of particles
inside the channel. However, note that such interaction originates from hindering the flow and
does not involve the piston-like effect that causes the nondecaying interactions.

In contrast, when a charged particle migrates in an electric field, it induces a flow around
it. Other particles in the vicinity move with the induced flow, thus resulting in hydrodynamic
interactions. This interaction has been studied extensively in bulk [103–107], but is much
less well studied in narrow channels. The absence of experimental studies might be due to
an increased complexity in confinement, because there are three additional components to
consider [53]: (1) electric charge on the channel walls causes electro-osmotic flow; (2) the
channel alters the interaction between the particle and the applied electric field; (3) the channel
increases the hydrodynamic friction. These effects have been studied extensively for isolated
particles [53, 108–110] and confirmed experimentally in long channels [26, 111–114]. Mean-
while, the particle-particle interactions in channels have received limited attention with only a
few theoretical studies [115, 116], which used the infinite channel approximation. Naturally,
they predict no interactions when particles are separated by more than 2R. This problem has
also been studied by the gel electrophoresis community, but to the best of our knowledge, they
omit any long ranged hydrodynamic effects [26]. Here, we will experimentally investigate
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the hydrodynamic interactions between particles migrating in an electric field. Then we will
compare our results with our interaction model that utilises the periodic boundary conditions.

Finally, we drive particles with gravitational force that acts only on the mass of the particle.
This simplifies the theoretical description, thus allowing us to test our interaction model. The
experiments themselves are similar to the falling-ball viscometers [117], where a ball falls
under gravity in a cylindrical channel. This technique is often used to determine the viscosity
of the liquid, but instead, we focus on particle-particle interactions during the fall.

We start by introducing the experimental techniques for controlling pressure, electric fields,
and gravity. Then we will discuss single particle electrophoresis through microfluidic channels,
which is necessary for understanding the complex interplay between the different phenomena
happening during electrophoresis in channels. Afterwards, we will present our principal findings
on particle-particle hydrodynamic interactions for different driving sources. Importantly, we
find a constructive interaction between particles that are driven by electrophoresis or gravity,
but no interaction between the pressure driven particles. We will then explain these results with
simulations that incorporate the periodic boundary conditions.

5.1 Methods for driving particles

We devise methods for applying each force: pressure, electric fields, and gravity. The pressure
control system is used in each experiment, since it allows quick pressure equilibration between
the two reservoirs.

5.1.1 Pressure

To apply pressure across the channel, we attach a PVA tubing to the inlets of the microfluidic
chip, as shown in Figure 5.1a. The other ends are attached to 1 mL syringes that perform the
function of large reservoirs. One of these reservoirs is fixed, while the other one can move up
or down on a translation stage controlled by a micrometer drive. Adjusting it creates a height
difference between the reservoirs, which corresponds to the pressure exerted on the liquid:

∆p = −ρ f g∆h (5.1)

where g is the acceleration of gravity, ρ f is liquid density, and ∆h is the height difference. The
micrometer drive has engravings every 10 µm, which corresponds to a pressure difference of
∆pmin ≈ 0.1Pa. Applying such pressure across the barrier induces a flow of ∐︀ũ︀ ∼ 7nm⇑s, which
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Figure 5.1: Method for applying pressure using a micrometer drive. (a) Setup diagram: the
microfluidic chip is connected to tubing, which is connected to two large reservoirs. The right
reservoir is mounted on a translation stage that can move up or down as highlighted by the
red arrow. This creates a height difference between the liquid in the reservoirs, thus creating a
pressure difference. (b) Picture of experimental implementation of pressure regulation system.
In addition, the crocodile clips are connected to platinum wires that are dipped in the reservoirs.
These electrodes apply an electric potential.
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allows to precisely control particle motion and flows within the channel. Figure 5.1b shows the
complete setup.
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Figure 5.2: Simulation of pressure drop across B4 class chips. (a) 10 Pa are applied across the
chip, which decreases gradually across the entire chip. The pressure across the small channels,
located in the middle of the chip, is 1 Pa or 10% of the initial pressure. (b) Shows a close
up, where the black lines indicate pressure contours. The pressure is constant across all the
channels.

Not all of the pressure drops across the barrier. Figure 5.2 shows a simulation of pressure
drop in the microfluidic chip. Notice that the pressure across the channels is only 10% of the
applied pressure. This reduction is caused by the secondary large connections and it allows us
to control the pressure difference to a greater precision.

The addition of the PVA tubing makes filling the chip more complicated. We pre-fill the
chip as described in Section 3.1 and then insert the empty tubing. Using a syringe with a thin
needle, we pierce the PDMS and inject the solution directly into the chip. This drives the air
out of the tubing, leaving it filled with no air bubbles. Once the needle is removed, the hole
plastically seals itself.

To find the pressure equilibrium between the reservoirs, we observe the direction of particle
migration in the channel, and then adjusted the pressure to counter this motion, until no
noticeable migration is left.

5.1.2 Electric fields

Our polystyrene colloidal particles have a small negative charge, which causes electrophoretic
migration in an external electric field. To create the electric field, we immerse two electrodes
into the reservoirs, as shown Figure 5.1b. The other ends of the electrodes are connected to a
computer controlled DAC (NI USB-6211) that applies an electric potential. This completes the
electrical circuit, allowing us to create electric fields inside the channel.
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The electric field lines follow the conducting liquid, thus focusing the field into the chan-
nels. We model this using a COMSOL simulation with an Ohmic conductivity assumption.
Figure 5.3a shows a simulation for electric potential in the chip. As with the pressure, much of
the electric potential drops in the access connections, while only about 14% of the potential
drops across the barrier. Note that simulation did not include the PVA tubing, which is expected
to increase electrical resistance.
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Figure 5.3: Simulation of electric fields in B4 class chip. (a) Shows electric potential that is
applied at the circular inlets. The potential drops gradually with the steepest drop of ∼ 14%
happening across the barrier. (b) Shows electric field strength in the middle of the chip, where
the barrier is located. The strength is uniform along the barrier. (c) Shows a simulation of
electric fields in a single channel with a square cross-section. The electric field is uniform
inside the channel, but varies around the entrances (the variation extends ∼ 400nm into the
channel).

Figure 5.3b shows a simulation for a single channel with a square cross-section. The electric
field gets focused into the channel, where its strength reaches approximately 5 kVm−1. Inside
the channel, the electric field is uniform, suggesting that electrophoretic velocity should be
constant throughout the channel. However, if the channel tapers, the electric field varies with
position, which would result in speed-up or slow-down of the particles1. In either case, the
field variation is small inside the channel, suggesting that dielectrophoresis is negligible.

1We avoid using term acceleration, since it implies velocity change in time. Here the velocity is changing with
respect to position.
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Throughout this chapter, we focus on measurements of relative velocity, because deter-
mining electrical mobility requires precise knowledge of many parameters that have high
experimental uncertainty in our system, such as particle charge and the electric filed strength,
where the latter depends on the geometry. Thus, we circumvent these uncertainties by perform-
ing relative measurements.

Electrodes and salt solution

We explored two sets of electrode/solution pairs. First, we used silver/silver-chloride electrodes
with 5 mM KCl solution. This approach produces all the effects that will be described in
following sections. However, these electrodes showed a significant drift that decreases the
electrophoretic velocity over time. We think this is caused by electrode degradation, because
after about five hours we were unable to drive the particles. Furthermore, this electrode/solution
pair produces a membrane polarisation that is discussed in Section 5.1.5. For these reasons, we
switched to platinum electrodes (0.2 mm, purity 99.99%, Advent PT5415) and added 1 mM
Potassium Ferricyanide and 1 mM Potassium Ferrocyanide (FF) salts to decrease the reduction
potential [118]. The resulting redox pair is more stable [119–121], allowing us to run the
experiment for 5 hours or longer. Therefore, the platinum electrodes with KCl and FF salt is
our preferred method for driving particles.

Buffering to increase stability

In experiments, the particle velocity decreases over time, which we attribute to a pH drift.
Therefore, we add either MES or HEPES buffers that have pKa = 6.15 and pKa = 7.55, respec-
tively. The molar concentration of the buffering agent is kept low to avoid offsetting the salt
concentration; typically it is 1.6 mM.

Figure 5.4 shows a comparison of buffered and unbuffered solutions over time. Typically,
the buffered solutions are stable for at least 4 hours, with an average velocity decrease of
2.232 µms−1 V−1 per hour. Meanwhile, the unbuffered solutions show orders of magnitude
larger drifts that varies between experiments. For this reason, we kept experiments with
unbuffered solutions brief; typically around 30 minutes long.

For safety, we measured the velocity drift in each experiment. Normally, the drift was below
5% for the duration of the experiment. If it exceeded 10%, the experiment was automatically
discarded from further analysis.
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Figure 5.4: Stability of electrophoretic velocity for buffered and unbuffered solutions. The
lines show linear fits where the slopes are: 23.0 µms−1 V−1 per hour for unbuffered solution,
and 1.93 µms−1 V−1 per hour for buffered solution. Buffering increases the stability of the
sample by an order of magnitude.
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Figure 5.5: Images of a particle moving through a channel in an external electric field. The
bottom image shows the corresponding trajectory, where the tracking begins once the particle
enters the focus plane and ends with the particle exiting the focal plane on the right. The
particle took 0.45 seconds to pass the channel at U = 200mV.
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5.1.3 Electrophoresis of isolated particles

This section investigates electrophoresis of isolated particles inside channels. Figure 5.5
shows sample images for one such event and the corresponding trajectory. We aim to explain
the procedure for data analysis and to lay the foundations for understanding driven particle
transport.

For the analysis, we select segments of the trajectories that satisfy the following criteria:
here we are interested in single particle motion, and thus, we discard frames with more than one
particle, leaving only trajectory segments with N = 1. Then we discard frames with particles
stuck to the channel walls or stuck to other particles, both of which were rare. Lastly, we
discard frames where the particle is closer than 500 nm from the either inlet, since the electric
field varies around the inlets, as shown in Figure 5.3c.
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Figure 5.6: Electrophoresis of a single particle in a L = 13µm long channel. (a) Velocity as a
function of position inside the channel. The upper part corresponds to the particles moving
under a positive electric potential, while the lower part corresponds to a negative potential. The
dashed lines indicate channel bounds. The blue points were used for subsequent analysis, while
the yellow points were discarded. The red lines correspond to linear fits, which are almost
completely horizontal. (b) Histogram of average velocities of trajectories. For each trajectory,
an average velocity was computed from ∼ 50 frames with an estimated error of 1.5 µms−1. The
middle red line indicates the mean of the distribution at µ = 46.0µms−1, where the variation
around it is σ = 3.0µms−1. This variation is a consequence of the measurement error and a
variation of particle size.

Figure 5.6a shows the measured velocities at different positions in the channel. The yellow
data points are discarded since they do not pass the criteria, while the blue points are analysed
further. The velocity is uniform everywhere except around the inlets, as expected. Notice
that we measure at positive and negative electric potentials, which allows us to verify that our
system is symmetric.

In Figure 5.6a, the measured velocities scatter around the averages, shown as the red lines.
This variability is caused by the measurement errors, the Brownian motion, and an intrinsic
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variability of particle mobility. The latter depends on the size and charge of the particles. To
measure this intrinsic variability, we calculate the average velocity for each trajectory, thus
eliminating the former two effects. Figure 5.6b shows the resulting distribution, which has
a mean of 46.0 µm⇑s and a standard deviation of σ = 3.0µm⇑s. The width of this distribution
depends on the measurement errors (≈1.5 µm⇑s) and the variability of the particle mobility. We
subtract the former and get that average velocities varied by 2.6 µm⇑s or ≈ 5.6%. This value
agrees with other measurements that are presented in Appendices B.3 and B.4.1. The nominal
size variation for our colloids is CV= 2%, which is smaller than the measured variation, but
remember that the friction coefficient has the non-linear response to the confinement ratio, as
discussed in Section 3.3.1. In addition, the variation of surface charge density also contributes.
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Figure 5.7: Electrophoretic velocity as a function of the electric potential (B4-13um-2). The
orange line is a linear fit to the data, suggesting a linear relationship between applied potential
on the electrodes and the velocity. The small deviation away from the linear regime is caused
by the pH drift.

We also checked that the particle velocity is proportional to the applied electric potential,
as shown in Figure 5.7. This linear relation is expected by the theory that was discussed in
Section 2.3.5.

5.1.4 Electrophoretic velocity versus c0 and pH

The same theory from Section 2.3.5 suggests that the electrophoretic velocity decreases with
salt concentration and varies with the surface charges. Therefore, we expect our system to
depend on the salt concentration and the pH, which is inversely proportional to the surface
charge density [45, 122].

We investigate these dependences by performing two experiments: one for varied c0, and
another for varied pH. For the first experiment, we prepared multiple solutions with pH 7,
1 mM FF salt, and a varied KCl concentration. To minimise other effects, we used a single
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PDMS chip for all the c0 values by flushing the chip with new solutions. For this experiment,
we additionally coated the coverslip with a thin layer of PDMS (thickness below 0.15 mm,
method [123]), because we empirically observed that the colloids stick less to the PDMS than
to the glass. This is particularly important at high salt concentrations, where the electrostatic
repulsion is weak. For the second experiment with varied pH, we prepared a new chip without
the PDMS coated coverslip, and performed the same flushing procedure. This time, the salt
concentration is fixed at 5 mM, while the pH is varied. The pH is increased by adding KOH, or
decreased by adding HCl. We used micro-molar amounts to change the pH; thus, the baseline
salt concentration was unaffected.
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Figure 5.8: Electrophoretic velocity of a single particle as a function of (a) salt concentration
and (b) pH. The markers indicate different channels: ▼ for channel 2; ● for channel 4; ▲ for
channel 5. In both experiments, B4-13um chips were repeatedly flushed with new solution
containing different salt concentration or different pH. In all cases, the solutions contain 1 mM
Potassium Ferri/Ferrocyanide. The pH was controlled by adding KOH or HCl in minuscule
amounts. (a) The blue area highlights c0 = 3mM and c0 = 1mM experiments, where particles
could not enter the channel due to a strong electroosmotic plug flow in the channel. The errors
in the c0 are expected to be about 15%. In this experiment, the coverslip was coated with a
thin layer of PDMS to reduce sticking [123]. (b) The red line indicates a linear fit that reads
v1(pH) = 358.5−25.6pH. The errors in pH values are about 0.2.

Figure 5.8a shows that the electrophoretic velocity increases with the salt concentration,
which is opposite to the expected behaviour: Equation (2.25) suggests that vnet ∝ c−0.5

0 . This
discrepancy is likely caused by an increasing charge density of the polystyrene particles with the
salt concentration [124]. On the other hand, the literature suggests that PDMS surface charge
density is approximately constant for all c0 [125]. Therefore, the velocity scales as vnet ∼σp ∼ c0.
However, it also suggests that polystyrene particles are a poor model system for studying the
dependence on salt concentration, because multiple parameters get affected. In this thesis, we
keep using the same particles to allow a comparison between different experiments, but note
that further experimentation is required to understand the dependence on the salt concentration.
Finally, we also note that particle velocity typically decreases with c0 in bulk [124]. However,
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we observed an increasing velocity with c0 in channels, which might have practical applications
for classifying particles.

Figure 5.8b shows the electrophoretic velocity as a function of the pH. The velocity
decreases with the pH, because it affects the surface charge densities [45, 122]. Specifically,
the PDMS surfaces become more negative at higher pH, because the H+ dissociates from the
surface leaving negatively charged groups on the surface [122]. Furthermore, the pH also affects
the surface charge on the polystyrene colloids, but the variation is weaker [45, 124]. Therefore,
from Equation (2.25), we get vnet ∝ σp−σw ∼ −pH, which agrees with our experimental data.

In both cases, further experiments are required to understand how the electrophoretic
migration in channels is affected by the solution. However, our goal is to study the hydro-
dynamic interactions, and therefore, we limit ourselves to this basic study. To minimise
variability between experiments due to changing solutions, we keep a constant particle density
of 36 particles⇑pL (or 0.25% solids (w/v)) and sometimes buffer the solution to reduce the pH
drift.

5.1.5 Charge polarisation with Ag/AgCl electrodes

In early electrophoresis experiments we used 5 mM KCl solution with Ag/AgCl electrodes,
since silver chloride electrodes are widely used in our lab to drive molecules through nanopores.
However, in our experiments, the currents are much higher, because we have multiple channels
with large cross-sections. This results in complete electrode degradation within 3–4 hours of the
experiment. To avoid these problems we switched to platinum electrodes with ferri/ferrocyanide
salt, which is very stable. Both systems exhibit the same phenomena with one exception – the
particle velocity profile looked different when using the Ag/AgCl electrodes with 5 mM KCl.

To quantify this, we measure the isolated particle velocity at different positions within the
channel. The details of our analysis are discussed in Section 5.1.3. Figure 5.9a shows the
velocity as a function of position for platinum electrodes with FF salt. The velocity is constant,
as expected for the constant electric field shown in Figure 5.3c. All the experiments were run
in both directions to check for any asymmetries. Normally, the lines were both horizontal as
shown, but some channels had a tapering, resulting in lines converging towards each other on
one side.

The behaviour is different for silver chloride electrodes with no FF salt. Figure 5.9b shows
the velocity distribution, where the particles clearly speed-up inside the channel. It looks
like acceleration, but the particles reach terminal velocities in microseconds due to the strong
hydrodynamic friction. Furthermore, the speed-up is not caused by channel shape, because
we could not observe any tapering optically, and the reversal of potential keeps the speed-up



84 Driven Transport

--
-

(a)
Ve

lo
ci

ty
  -

  v
1 

(μ
m

/s
)

Position - x (μm)

U = 500 mV

U = -500 mV --
-

(b)

Position - x (μm)

Ve
lo

ci
ty

  -
  v

1 
(μ

m
/s

)

Ag/AgCl electrodes + 5mM KClPt electrodes + 5 mM KCl + 1 mM FF

 αbw

αfw

U = 1000 mV

U = -1000 mV

Figure 5.9: Particle velocity as a function of particle position in the channel for (a) Pt electrodes
with 5 mM KCl + 1 mM FF solution, and for (b) Ag/AgCl electrodes with 5 mM KCl solution.
The experiments were performed in channel S3-10um-1, where the entrances of the channel
are indicated by the vertical dashed lines. The red lines are linear fits to the data. For the
platinum electrode system, the particle velocity is constant throughout the channel. The angles
to the horizontal axis are α f w = −0.10±0.10(µm⇑s)⇑µm and αbw = −0.18±0.10(µm⇑s)⇑µm.
On the contrary, for the silver electrode system, the fits intersect the horizontal axis at an angle,
suggesting that particles were speeding up along the channel. The angles to the horizontal axis
are α f w = 1.82±0.10(µm⇑s)⇑µm and αbw = 1.20±0.10(µm⇑s)⇑µm.

direction, and switching to platinum system removed it. Therefore, we believe that this velocity
speed-up indicates the electric field variation.

The cause of this electric field variation is unknown. One possible explanation is that a
concentration polarisation produces electric field gradients. In such case, the ion concentrations
across the barrier are slightly different because the channel is weakly permselective to positive
ions [126, 127]. This uneven ion distribution produces an electric field variation that may
explain the observed particle speed-up [128, p. 131].

To test this idea, Nadanai Laohakunakorn ran a simulation [129] with the typical dimensions
of our channels. However, the resulting concentration polarisation was small, resulting in a
negligible electric field variation. Such outcome was expected because our channels are much
wider that the Debye length, resulting in a weak ion selectivity. We hypothesise that the
presence of charged particles may induce the desired ion selectivity, because the effective
cross-section becomes smaller. However, this does not explain why introducing 1 mM FF salt
removes the effect. This is still an unresolved problem.

5.1.6 Gravity as driving force

Gravity pulls the mass of the particles earthwards. Normally, this effect is unnoticeable in our
experiments, since the force is weak and the buoyancy counteracts it. The combined force
is given by Equation (2.18). For our polystyrene colloids the force is only Fg(polystyrene) ≈
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0.03fN, that is equivalent to a terminal velocity of ≈ 7.5nm⇑s. This minuscule force is not
enough to counteract the Brownian motion, thus we neglect the gravitational pull in our
experiments with the polystyrene particles.

However, heavier particles can be driven by gravity. For example, gold has a density of
ρp ≈ 19300kg⇑m3, which corresponds to Fg(gold) ≈ 12.7fN for particles of width 2a = 400nm.
Their terminal velocity is ≈ 2.7µm⇑s, which can be measured with our microscopy technique.
Therefore, we used 400 nm gold nanoparticles (stabilised in citrate buffer; from Sigma-Aldrich;
catalogue no 742090).

θ

CMOS camera

Sample

Illumination 10 μm

Rotatable base

Figure 5.10: Tilt-able microscope for experiments with gravity driven particles. All optical
components and the microfluidic chip are mounted on a rotatable base, while pressure control
mechanism is mounted on a fixed platform. The angle of the base is θ , where at θ = 0 the
channels are in a horizontal position. A 100×, 1.4 NA, UPLSAPO objective was used. The
inset shows an image of gold nano-particles falling under the influence of gravity at θ = π⇑2.

For this purpose, we built a microscope on a rotatable base, as shown in Figure 5.10. It
allows us to rotate the microfluidic chip at an angle θ to the horizontal plane. The force on the
particles can be adjusted by changing θ , but we mostly ran the experiments at either 90° or
−90° to avoid a force component towards a wall. Tubing and external reservoirs were added to
eliminate the pressure fluctuations that occur during rotation (see Section 5.1.1). Critically, the
external reservoirs were mounted on a stationary base.

The gold nanoparticles have a small signal to noise ratio when in focus, and therefore,
we used an out of focus plane, where the nanoparticles appear black. Inset in Figure 5.10
shows a typical image, where the gravity is pulling particles downwards. Notice that particles
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are pressing against the barrier, because the force vector always points downwards and the
particles have to find the channel mouth accidentally. In contrast, pressure flow and electric
fields converge towards the channel mouth. This difference reduces the number of translocation
during gravity driven transport, leading to a much smaller data acquisition rate and thus larger
statistical uncertainties. Furthermore, sometimes particles coalesced while bouncing against the
wall, which in turn, blocked the channel and reduced the duration of the experiment. As a result,
we have a low number of trajectories for the gravity fall experiments (below 100 trajectories
per channel per experiment).
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5.2 Driven particle interactions

The nondecaying hydrodynamic interactions should exist not only for particles undergoing
Brownian motion, but also for particles driven through channels. In this section, we experimen-
tally investigate this hypothesis with three different driving sources: pressure, electric fields2,
and gravity.

t = 0 ms t = 500 ms
-E 4 μm

Figure 5.11: Electrophoresis of multiple particles. First column shows images with the leftmost
particles aligned. Then the right column shows images taken after 500 ms. The negatively
charged particles migrate left driven by the electric field. The migration velocity increases with
the number of particles in the channel, suggesting the presence of the constructive interaction.

We hypothesise that particle interactions can contribute to the migration velocity. For a
visual demonstration, Figure 5.11 shows electrophoretic migration through a channel filled
with N = 1, N = 2, and N = 3 particles. On the left side, the leftmost particles are aligned next to
the left channel entrance. Meanwhile, the right side shows their progress after half a second.
Three particles travelled further than two particles, and two particles travelled further than one,
suggesting that there is a positive interaction between the particles. The speed-up amount is
proportional to the number of particles in the channel.

We quantify these results by analysing the trajectories as it was described in Section 5.1.3.
This time, we select the time frames with a desired number of particles. However, we omit
the frames where any two particles were closer than 1.2 µm, because we want to understand
large separation hydrodynamic interactions. This distance is motivated by Figure 4.3, which
suggests that close range interactions disappear within 1 µm.

Figure 5.12 shows the average velocity as a function of the particle number. The velocities
are normalised by the N = 1 case, which permits an easy comparison between the datasets.
Experimental data for all three driving sources are shown. In all these cases, the velocity, vN

2Some of the early experiments were performed together with Antony J. Scott, who joined the lab for a Part 3
project.
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Figure 5.12: Velocity as function of number of particles inside the channel. Three modes of
transport are shown: ◻ – electric field driven; ○ – pressure driven; ◇ – gravity driven. All
the experiments were performed in L = 13µm long channels (B4-13um-2; pH 6, 5 mM KCl;
1 mM FF). The gradient of electrophoretically driven particles depends on the pH and the salt
concentration, where the blue region highlights the range of values that we measured. The
driving force determines the type of interaction: pressure driven particles slow each other down,
while gravity and electrophoretically driven particles interact constructively.

is linearly proportional to the number of particles, and therefore, we define an enhancement
coefficient:

En ≡
vN −v1

v1 (N −1)
≈

v2

v1
−1, (5.2)

where vN is the average velocity when there are N particles in a given channel. We now discuss
the experimental results for each driving force.

Pressure driven particles have an almost constant velocity, where the enhancement coeffi-
cient is En = −0.87%±0.20%. This value fluctuated between experiments, but always stayed
negative and small. It suggests that pressure driven particles do not experience any significant
interactions. We will explain this absence of interactions with a simulation in Section 5.3.1.

Electrophoretically driven particles speed-up with the particle number, suggesting the
presence of long-ranged interactions. The enhancement coefficient for data that is shown in
Figure 5.12 is En = 8.27%±0.25%. However, we discovered that the coefficient depends on
the composition of the liquid solution. The measured values were in the range from 1.0%
to 10.7%, which is highlighted as the blue region. We will examine this dependence on the
salt concentration and the pH in Section 5.2.1 and also, propose a model for interaction in
Section 5.3.3.

Gravity driven particles have the largest speed-up, despite their smaller size. The enhance-
ment coefficient is En = 16.1%±3.8%. Please note that we had to combine multiple datasets to
produce this plot, because the experiments had low trajectory numbers with high uncertainties.
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All these data sets were taken on the same day and with the same chip. We will present an
interaction model that explains this high enhancement in Section 5.3.2.

All in all, our measurements show a strong constructive interaction between particles
transported in channels by electric fields or gravity. In contrast, particles driven by pressure
flow show no interactions. These interactions are long ranged and are closely related to the
nondecaying interactions described in Chapter 4.

5.2.1 Electrophoresis: enhancement coef. versus c0 and pH

The enhancement coefficient for the electrophoretic migration varies with salt concentration and
pH. This is not too surprising, since the electrophoretic velocity depends on both. Specifically,
an increasing pH makes surfaces more electronegative [130, 131], thus increasing electroos-
motic flow, as shown in Figure 5.8b. Here, we experimentally investigate how the enhancement
coefficient depends on salt concentration and pH. Our aim is to measure qualitative trends that
can be compared with the interaction model in Section 5.3.3, while avoiding the complexities
of parametric studies.
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Figure 5.13: Enhancement coefficient dependence on the composition of the solution. The
markers indicate different channels on the same chip: ▼ for channel 2; ● for channel 4; ▲ for
channel 5. In both experiments, B4-13um chips were repeatedly flushed with new solution
containing different salt concentration or different pH. In all cases, the solutions contain 1 mM
Potassium Ferri/Ferrocyanide. The pH was controlled by adding KOH or HCl in micro-molar
amounts. See Section 5.1.2 for more details. The lack of buffering agent accounts for strong
drift, that is partially responsible for variation between experiments. (a) Enhancement as a
function of salt concentration. In this experiment, the coverslip was coated with a thin layer of
PDMS to reduce sticking [123]. (b) Enhancement as a function of pH. The dashed red line is a
weighted linear fit, which highlights that the enhancement coefficient increases with the pH.
The fit gives En(pH) = 0.096+0.360 pH.

Figure 5.13a suggests that the enhancement coefficient decreases with the salt concentration,
where the shape reassembles hyperbola or exponential decay. These results should be interpreted



90 Driven Transport

carefully, because the salt concentration increases the polystyrene particle charge density, as it
was discussed in Section 5.1.2.

Figure 5.13b shows that the enhancement coefficient increases with the pH. The large
variation around the line is due to three factors: (1) drift in time, because no buffer was used; (2)
relatively low trajectory count, because we limited the duration of each experiment to measure
all the data points in the same run; (3) the different channels had slightly different confinement
ratios.
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5.3 Model for driven particle interactions

Inlet:
Periodic BC

Outlet:
Periodic BC
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Figure 5.14: Simulation geometry for many particle electrophoresis. Two coupled equations
were solved: the Stokes equation for flows and the Debye-Huckel equation for ion distribution.

Here, we present an interaction model that explains the experimental data for driven parti-
cles. All these models are based on a generalised interaction model for Brownian particles that
was presented in Section 4.3.1. The geometry is shown in Figure 5.14, where we modify the
boundary conditions to reflect the physics for different driving sources. Crucially, the inlets
always have periodic boundary conditions with an added access resistance. This boundary con-
dition permits flows into the reservoirs, which are necessary for the piston-like hydrodynamic
interactions; just like the nondecaying hydrodynamic interactions in Chapter 4.

5.3.1 No interactions under pressure

Pressure difference induces Poiseuille flow in a channel, as given by Equation (2.17). This
flow carries the particles, thereby inducing transport through the channel. We expect no
nondecaying interactions, because the particles do not propel the medium, but merely respond
to the medium’s motion.

In COMSOL, we ran two simulations to find vN and then another one to verify our solution.
In the first simulation, we added an external pressure difference, ∆p, to the periodic boundary
condition on the inlets. This induces a Poiseuille flow inside the channel. Then, we computed
the drag force exerted on the fixed particles by the moving liquid (F∆p). With the second
simulation, we accounted for particle motion by imposing an instantaneous velocity on all
the particles. Here, ∆p = 0. From the solution, we obtain the particle hydrodynamic friction
coefficients. Then the response velocity is vN = F∆p⇑ζ . Finally, we checked the solution by
imposing the ∆p and vN and verifying that the net force on each particle is zero.

Figure 5.15a shows simulation results alongside the experimental data. The simulation
reproduces the small velocity decrease with the particle number that we observed in the
experiments. Both the simulation and experiment show that the decrease is linear with the
particle number. But the simulation underestimates the coefficient at En = −0.37%, while the
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Figure 5.15: Simulation of particle interactions under pressure driven flow. (a) Normalised
particle velocity as a function of particle number. Note that the vertical scale changed. The
orange line shows simulation prediction with parameters matching the experimental geometry:
a⇑R = 0.55 and L = 13µm. The data points show experimentally measured values, where the
green line corresponds to a weighted fit. (b) Simulated enhancement ratio as a function of
confinement ratio. Simulations suggest that particles do not interact, but rather weakly obstruct
motion.

average experimental value is En =−1.18% with standard deviation of σ(En) =−0.52%. These
values are small and the discrepancy between them can be attributed to the approximations
made in our model – see Section 3.4.2. Importantly, the model suggests that the pressure driven
particles have no constructive interactions, because they respond to fluid motion and do not
drive it.

Using the simulation, we investigate how the geometry affects the enhancement coefficient.
Figure 5.15b shows that the coefficient is always negative for the pressure driven migration. The
slowing down is greatest for short and narrow channels, while it is negligible for wide channels.
To understand the slowdown, consider that Poiseuille flow has a distinct parabolic flow profile.
Large particles distort this optimum flow, and thereby, they produce a small pressure drop.

5.3.2 Hydrodynamic interactions under gravity fall

Unlike pressure, gravity exerts a force on the particle which then pushes the surrounding
liquid. This is fundamentally different, since the particle acts like a piston and thus induces
the particle-particle interactions. These interactions are closely related to the nondecaying
interactions described in Chapter 4.

In COMSOL, to model the gravitational fall experiment, all particles were set to move at
a constant velocity. The solution gives a collective hydrodynamic friction coefficient, from
which we estimated the particle velocity as v = Fg⇑ζ . This is essentially the same simulation as
for two interacting Brownian particles, which was discussed in Section 4.3.1.
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Figure 5.16: Simulation of particle interactions under gravity. (a) Normalised particle velocity
as a function of particle number. The blue line shows the simulation prediction with param-
eters matching the experiment: 2a = 400nm, a⇑R = 0.44 and L = 13µm. The black “×” show
experimental values measured in 7 experiments, each with a low trajectory count. They were
averaged to produce the red data points that have smaller errors. The red line shows a weighted
fit with a slope of 16.1% per particle. Meanwhile, the simulation slope is 12.4% per particle.
(b) Simulated enhancement ratio as a function of confinement ratio. The simulation values are
the same as correlation coefficient predictions in Figure 4.8a.

Figure 5.16a shows simulation results together with the experimental data. Please note
that the particle diameter was set to 2a = 400nm, which corresponds to gold nanoparticles
used in the experiments. The simulation predicts a linear velocity increase with the particle
number, with an enhancement coefficient of En = 12.4%, while the fit to the experimental data
gives En = 16.1%±3.8%. Our model agrees with the experimental data within the error bars,
suggesting that out model captures the physics of interacting particles: the falling particles
induce a Poiseuille flow that mediates the particle-particle interactions.

Figure 5.16b shows predictions for enhancement coefficients for different confinement ratios
and channel lengths. These simulations match the predictions for the correlation coefficients,
shown in Figure 4.8a. To test this similarity, we measured the correlation coefficient between
two gold nanoparticles to be ρ = 0.085±0.034, which is a below the simulation prediction of
ρ = 0.124. Remember that our simulations have a tendency to overestimate the correlation
coefficients slightly, as shown in Figure 4.9. These results suggest that interactions for gravity
driven particles are slightly stronger than interactions between Brownian particles, but further
experiments are necessary to reduce the statistical uncertainty in our observations.

All in all, our model captures the interaction strength well without any fitting parameters.
It also reproduces the linear speed-up with the number of particles. All this suggests that the
observed particle interaction is due to the nondecaying hydrodynamic interactions that we
observed in Chapter 4.
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5.3.3 Electrophoresis: competition between piston and backflow

In this section, we present an interaction model for particles driven by electric fields. This
is the most complex case, since it comprises two independent components: electrophoresis
of the particles and electroosmotic plug flow in the channel. We start our discussion with
electrophoresis, assuming that electroosmosis in the channel is zero, uw = 0. We will return to
analyse effects of electroosmotic plug flow later.

As we have discussed in Section 2.3, electrophoresis has three force components: (1) elec-
trostatic force forwards; (2) hydrodynamic drag due to induced electroosmosis around it, which
we call backflow3; (3) and Stokes drag. We solve for each component independently and then
superimpose the solutions to get the final result.

(a)  Electroosmotic �ow (b)   Forward motion (c)    Combined �ow

Flow velocity (μm/s)500 nm
0 0.3v

Figure 5.17: Flow profile around a moving particle under electrophoresis. (a) Electroosmotic
flow induced around a stationary particle. The particle has surface charge density of σp =

0.1mC⇑m2, while the solution has salt concentration of c0 = 6mM, and the external electric field
is E0 = 1000Vm−1. The flow develops in a thin layer around the particle where the diffuse layer
propels the liquid. The channel constraints this flow and reshapes it into a Poiseuille backflow.
(b) Particle moving to the right with a velocity v = 0.214µm⇑s. Just like in the Brownian motion
simulations, some of the flow curls around the particle, while other creates the Poiseuille flow
forwards. (c) Combined flow profiles give the final solution. The Poiseuille backflow cancels
most of the Poiseuille flow forwards, thus reducing the hydrodynamic interaction strength.
This cancellation is not exact, leaving a weaker Poiseuille flow that carries the long-range
interaction.

In COMSOL, we used the geometry shown in Figure 5.14. The electrostatic force is a
surface integral of the surface charge, σp, times the electric field, EEE = ẑzzE0 = const, leading to
Fpull = −E0 4π a2σp. To calculate the electroosmotic backflow, we first estimate the charge
distribution in the liquid using the Debye-Huckel equation – Equation (2.22). It is implemented

3We use the name backflow to distinguish from the electroosmosis induced in the channel. The name was
chosen to reflect the direction: it is opposite to the particle’s migration direction.
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using Poisson’s equation module with Neumann (flux) boundary conditions on the particle
set to −σp⇑ε . We also checked that the Poisson-Boltzmann equation produces equivalent
results for relevant values of σp. In the external electric field, these charges migrate and induce
electroosmotic backflow. Therefore, we added a laminar flow module with volume force set to
−ρC(ψ)E0 ẑzz. Figure 5.17a shows the resulting flow profile of electroosmotic backflow. Notice
that the liquid accelerates in the thin diffuse layer around the particle. The resulting viscous
drag is in the opposite direction to the electrostatic pull.

Next, the drag is estimated in a separate laminar flow module. All particles are set to move
at a constant velocity and the resulting drag is estimated. This gives the hydrodynamic friction
coefficient, allowing to estimate the terminal velocity using vN = (Fpull −Feo)⇑ζ . Figure 5.17b
shows the flow profile caused by the particle motion. The flow is the same as in the Brownian
motion simulations, where the moving particle induces a Poiseuille flow in the channel that
would normally carry the interaction. However, in this case, the two solutions have to be
superimposed to get the final result. Figure 5.17c shows the combined flow profile, where
the electroosmotic backflow cancels most of the Poiseuille flow forwards. This reduces the
interaction strength, thus explaining why the measured enhancement coefficients are smaller
than the correlation coefficients for the same channel.
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Figure 5.18: Simulation of particle interactions when driven by electrophoresis. (a) Normalised
particle velocity as a function of particle number. The orange line shows simulation prediction
with parameters matching the experiments: 2a = 500nm, a⇑R = 0.55 and L = 13µm. The black
squares show experimental values for two different experiments: the lower one illustrates that
simulation can overestimate the interaction, but in most experiments the measured interaction
was higher than the simulation prediction. The blue lines are weighted fits with slopes En=1.9%
and En = 7.8%. Meanwhile, the simulations slope is En = 2.6%. (b) Simulated enhancement
ratio as a function of confinement ratio. The simulation values are smaller than the correlation
coefficients, because the electroosmotic backflow reduces the interaction strength.

Figure 5.18a shows that the predicted velocity grows linearly with the particle number.
This is consistent with the experimental observations and also follows the trend seen in
previous models. The black points indicate experimental values, which were mostly higher
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than the predicted enhancement coefficient, because the current simulation does not account for
electroosmotic flow in the channel. Figure 5.18b shows the predicted enhancement coefficients
for different channel geometries. The interaction strength decreases with channel width and
length. Overall, the curves are similar in shape to gravitational fall (Figure 5.18b) and Brownian
motion (Figure 4.8a), but have a smaller magnitude.
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Figure 5.19: Simulation of the enhancement coefficients for different liquid solutions. In
this model there is no electroosmotic flow on the channel walls. The geometry matches the
experiments: 2a = 500nm, a⇑R = 0.55 and L = 13µm. (a) Enhancement coefficients as a function
of salt concentration. It is almost constant above c0 = 6mM, which is marked as a dashed line.
Below this concentration the enhancement coefficient increases. (b) Enhancement coefficients
as a function of surface charge on the particle. It is constant within the numerical accuracy. The
surface charge depends on the pH of the solution, suggesting that the enhancement coefficient
should not vary with the pH.

Figure 5.19a shows the predicted enhancement coefficient dependence in salt concentration.
Notice that the enhancement coefficient is constant at higher salt concentrations, and increases
for c0 < 6mM. However, this increase has different shape to the experimentally observed
curve in Figure 5.13a, suggesting that other effects could be contributing to the experimentally
observed variation with c0. In this simulation, the increase at low salt concentrations originates
from the increasing Debye length, because it determines the magnitude of the electroosmotic
backflow. The weaker backflow cancels less of the constructive piston interaction, thus resulting
in the increased enhancement coefficient.

Meanwhile, Figure 5.19b shows that the enhancement coefficient is constant for different
surface charge densities of the particles (within simulation accuracy). This is not surprising,
since the enhancement coefficient is a ratio between velocities, thereby eliminating direct
dependence. However, the experimental values for the enhancement coefficient increase with
the pH, which is proportional to the surface charge density [130, 131]. Furthermore, the
predicted enhancement coefficients are considerably smaller than values measured in the
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experiments. These discrepancies suggest that our model is incomplete, and therefore, we
include the electroosmotic plug flow that develops due to charge on the channel walls.

With electroosmotic plug flow in the channel

The channel walls have a surface charge that creates an electroosmotic flow with a plug flow
profile that was discussed in Section 2.3.4. This is different from the electroosmotic flow around
the particles, which we call the electroosmotic backflow. In our experiments, the charge was
always negative, resulting in electroosmotic flow in an opposite direction to the electrophoretic
migration. This slows down the particle, as it was shown in Figure 5.8b. To understand the
effect on the particle-particle interactions, consider a plug flow that has velocity, uw, given by
the Helmholtz-Smoluchowski slip velocity, see Equation (2.24). The velocity of the particle
is then v′N = vN −uw, where vN is the electrophoretic migration velocity in a channel with no
electroosmotic plug flow. The prime in v′N indicates that we are including electroosmosis. The
enhancement coefficient now reads

En =
v′2
v′1
−1 =

v2−uw

v1−uw
−1 (5.3)

=
∆v+v1−uw

v1−uw
−1 =

∆v
v1−uw

,

where ∆v = v2−v1 is the velocity gain due to particle interaction. This equation suggests that the
enhancement coefficient increases with an increasing electroosmotic plug flow velocity. In other
words, the plug flow reduces the migration velocity, but not the interaction strength. Thereby
the interaction appears relatively stronger. This explains why the experimentally measured
enhancement coefficients were larger than expected by our simulations – see Figure 5.18a.

Furthermore, to explain the salt concentration dependence, we consider the linear relation-
ship ∆v∝ v1 that was observed in the simulations. We thus introduce quantity ρep ≡ ∆v⇑v1.
Combining it with Equation (5.3) gives

En = ρep ]︀1+
uw

v1−uw
{︀ . (5.4)

This is a hyperbolic function with respect to the velocity, v1. From Section 5.1.4, we know
that v1 ∼ c0. Therefore, Equation (5.4) is a decaying function with the salt concentration. This
model qualitatively explains the measured salt concentration dependence that was shown in
Figure 5.13a.
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A similar argument can be applied to the pH variation. However, that case can be analysed
with simulations because only one parameter varied significantly with pH – surface charge
density on the channel walls, σw.

In COMSOL, the electroosmotic flow is calculated directly by solving Equations (2.22)
and (2.10). This is the same method used to calculate the electroosmosis around the particle,
enabling us to compare the effects of salt concentration and charge density in the same way as
in Figure 5.19. However, please note that equations are simplified models for describing the
double layer. Previous experiments have demonstrated that surface potentials have non-trivial
relations that depend on surface roughness, hydrophobicity, and ion types [45, 122, 132–134].
Our aim is to understand qualitatively the trends governing the particle interactions and thus,
we study the simplified models.
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Figure 5.20: Simulation of the enhancement coefficients for different liquid solutions with the
electroosmotic flow on the channel walls. The geometry matches the experiments: 2a = 500nm,
a⇑R = 0.55 and L = 13µm. (a) Enhancement coefficients as a function of Debye length, which
is inversely proportional to c0, as given by Equation (2.22). Lines correspond to three different
wall charges, where the blue corresponds to no charge, as shown in Figure 5.19a. The black
arrow indicates an approximate range and direction for experimental salt concentrations.
(b) Enhancement coefficients as a function of surface charge on the channel walls. The charge
on the particle was σp = −20µC⇑m2. The black arrow indicates an approximate range and
direction for experimental pH values. The enhancement coefficient increases with surface
charge on the channel walls.

Figure 5.20a shows the enhancement coefficient dependence on the Debye length, which
is inversely proportional to the salt concentration. Note that in this simulation particles have
fixed surface charge density. The predicted variation is small, just like in the case with no
electroosmotic plug flow. A much stronger variation is observed when we vary the surface
charge density on the channel walls, as shown in Figure 5.20b. Here, the enhancement
coefficient increases with the surface charge, because the uw is proportional to the surface
charge on channel walls. This confirms the relation presented by Equation (5.3). The black
arrow indicates approximate values for the surface charge from the literature [122]. In that
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range, the Enhancement coefficient increases by 3%, which is close to the experimentally
observed increase of 2%. However, most importantly our model reproduces the experimental
trends seen in Figure 5.13b.

To summarise, our interaction model suggests that hydrodynamic interactions are much
weaker than in the Brownian motion case, because the electroosmotic backflow cancels much
of the piston effect. On the other hand, the electroosmotic plug flow slows down the particles,
but does not affect the interaction magnitude, thus increasing the enhancement coefficient. This
allows controlling the enhancement coefficient by adjusting the pH of the solution. Further
experiments are necessary to understand quantitatively how the enhancement coefficients
depend on the salt concentration. In addition, our model suggests that the enhancement
coefficients are sensitive to changes of the double layer around the particle. This might be a
useful tool for identifying particles or measuring their surface properties, such as roughness.

5.4 Conclusion and impact

We investigated how the nondecaying hydrodynamic interactions affect driven transport. For
this, we used three different forces to drive particles through channels: hydrodynamic pressure,
electric fields, and gravity. Each showed a distinct behaviour that agrees with our hydrodynamic
interaction model. For pressure driven particles, there was no interaction, but rather a small
pressure blockade that decreases the migration velocity with the number of particles in a
channel. This result demonstrates that particles must push the liquid to cause the nondecaying
hydrodynamic interaction. For comparison, particles driven by gravitational pull showed a
strong constructive interaction that results in linearly increasing migration velocity with the
number of particles in a channel. Our model predicts that the interaction strength is numerically
equal to the correlation coefficients, but the measurements suggest that it is slightly stronger. On
the other hand, the electrophoretically migrating particles experience much weaker interactions,
because the electroosmosis on the particle’s surface induces a backflow that cancels much of
the interaction. Furthermore, we showed that magnitude of this effect could be controlled by
adjusting the surface charge densities. In all cases, the behaviour follows the predictions from
our hydrodynamic interaction model which has periodic boundary conditions set on the inlets
of the channel. This suggests that interactions observed in this chapter are hydrodynamic in
nature and are closely related to the nondecaying interactions between Brownian particles.

Our findings have far-reaching implications that we discuss in the remainder of this section.
Firstly, we saw that particles migrate faster at higher densities. This might affect biological
protein channels where membrane potential can drive particle transport [1]. The effect is not
limited to narrow channels and should persist for wide channels as well. In such case, the
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contribution of each particle decreases, but the channel may fit in many more particles, where
each contributes a small velocity enhancement. For example, consider a channel of L = 40µm
and 2R = 5µm filled with particles of diameter 2a = 500nm. We expect the enhancement to be
small at En = 0.1%, but we can potentially fit a thousand particles that would give a velocity
increase of 100%. This prediction is yet to be measured experimentally.

Another interesting consequence is for interconnected channels, where short channels are
forming a network. An example of such network could be gels used for gel electrophoresis. In
this case, our findings might affect the distribution of particles in the gel, since we predict that
particle clusters travel faster than isolated particles. This allows the clusters to catch up with
the isolated particles that are ahead. Therefore, the particle distribution should have a sharp
front and a tail at the back. This could be particularly useful for gel electrophoresis, because it
creates clear bands. However, further studies are necessary to see if this process happens in a
polymer meshes that form gels.

5.4.1 Electrophoresis vs pressure

Our discovery also may enable novel designs for filtration devices or dosage control. For
example, suppose that there is a pressure flow in an opposite direction to the electrophoresis
and it is slightly stronger than the electrophoresis. Such flow stops single particles from
translocating through the channel, but multiple particles can pass, because the velocity of two
particles is higher due to the enhancement.

Experimentally, we setup an electric field and then increased the pressure until isolated
particles stop moving through the channel. This state is shown in Figure 5.21a. Over time
particles accumulated around the mouth of the channel, as shown in Figure 5.21b, until two or
more particles accidentally entered the channel. Their net velocity is greater which leads to
electrophoretic migration, as shown in Figure 5.21c. This allows transport, but only when there
are enough particles in the channel. One possible application for such phenomena is a density
selective filter4.

4This observation also explains behaviour seen by Timothee Menais, who performed early electrophoresis
experiments and saw clustering at the channel mouth.
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Figure 5.21: Competition between electrophoresis and pressure. The electric field drives
particles to the right, while pressure drives them to the left. (a) The system was balanced so
that a single particle cannot move to the right; (b) this leads to particle accumulation on the left
side of the barrier. (c) At some point multiple particles enter the channel, where their combined
velocity is greater than the pressure driven flow; (d) this leads to a rapid transport of particles
through the channel. Importantly, the accumulation of particles must happen before particles
can enter the channel.





Summary and Outlook

Throughout this thesis, we studied hydrodynamic interactions inside narrow channels. Our
experiments imaged colloidal particles that move inside a microfluidic chip containing micron-
sized channels. From the particle trajectories, we were able to infer particle-channel and
particle-particle interactions, which are mediated by the liquid. To our surprise, we discovered
that moving particles act like pistons, inducing a Poiseuille flow along the whole channel. This
has never been observed before, thus raising new questions about particle behaviour inside
narrow channels with a finite length.

First, we found that particles have higher diffusion coefficients than previously predicted,
which also depend on the channel length (Figure 3.26). Secondly, we have discovered that the
interaction between Brownian particles is distance-independent (Figure 4.3). This nondecaying
interaction acts on all particles inside the same channel, which challenges the previous models
that only considered local interactions. Finally, we have shown that this interaction holds
for electrophoretically and gravitationally driven transport, leading to an enhanced migration
velocity. In contrast, particles driven by the pressure gradient have no interactions (Figure 5.12).

We also have developed a numerical model for predicting the hydrodynamics inside chan-
nels. Crucially, it has periodic boundary conditions set on the inlets of a channel, which capture
the flows across the boundaries quantitatively. This model reproduced all the experimental data
with high accuracy and without any fitting parameters, suggesting that our interpretations are
correct. Our discoveries have a broad range of implications for transport phenomena across
many different length-scales.

Our study also raises new questions about the hydrodynamic effects in micro- and nano-
systems. For example, are these interactions exploited by biological protein channels? Do they
even exist at those length-scales? The latter question can be answered by investigating the
nature of the periodic boundary condition found in our model. It captures the high pressure
resistance of narrow channels that dominates the flows, thereby producing accurate predictions.
However, there must be an underlying mechanism that permits the flows into reservoirs. Future
research should investigate this mechanism, because it will reveal the necessary conditions for
these phenomena, and it will advance our fundamental understanding of liquids in confinement.
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In addition, we foresee practical applications for particle interactions during electrophoretic
transport. Our model suggests that interaction strength is sensitive to surface properties of
the particles. This might allow probing the surface roughness and the charge distribution of
biomolecule, which also can be employed as a non-chemical way for identifying them. Other
applications might utilise the observed interactions to filter particles or to cluster them together.
These are just a few examples and we are certain that the best ideas are yet to come.

All in all, we have discovered a new particle interaction in channels, which illuminates the
role of hydrodynamics in the transport phenomena, but it also raises many more questions. We
leave you with the words of Winston Churchill:
“Every day you may make progress. Every step may be fruitful. Yet there will stretch out
before you an ever-lengthening, ever-ascending, ever-improving path. You know you will never
get to the end of the journey. But this, so far from discouraging, only adds to the joy and glory
of the climb.”



Appendix A

Entrance jamming in electric field

Electrophoretically driven particles occasionally jammed at the entrances of channels (method
described in Section 5.1.2). For example, a typical electrophoresis experiment is shown in
Figure A.1a. Here, the electric field direction is kept fixed, which slowly increases the particle
density on the left reservoir. As a result, more particles translocate through the channels and
occasionally they jam, thus blocking the channel. In Figure A.1b, channels 1, 3, 4, and 5 have
recently jammed. The formation of clusters on the left side indicates that the electric current
flows through the structure. In fact, these structures keep growing and create large structures,
as shown in Figure A.1c. The image is focused on the glass cover slip, but the structure extends
into ẑ direction as well. The inset shows a Fourier transform of the image, which suggests
a hexagonal packing. The distance between particles is 521±15nm, which agreed well with
theoretical expectation of 2a+2λD ≈ 520nm.

Empirically, we observe that the time to jamming is inversely proportional to initial particle
density and also the applied potential. However, the exact relationship was not determined.

Two types of jamming events were observed. First, particles jammed by forming an arch
around the channel’s mouth, as shown in Figure A.2a. The arch forms a structure that seems to
lock the particles outside the channel. In second type of events, two particles interlock inside
the channel, as shown in Figure A.2b. This type was observed more frequently than the fist type
events. Notice that the fourth row shows a jamming that occurred further inside the channel.
Such events were relatively rare and might be caused by a small tapering of that channel. In
both cases, the mechanism of the particle jamming might be similar to the bulk jamming for
soft particles [135], but further research is required.

Similar jamming transitions have been observed for pressure driven systems, but at much
higher particle densities [136]. They report jamming at volume fractions of φ ≈ 0.5, which
corresponds to about 800 particles⇑pL. This is an order of magnitude higher than our bulk
concentrations. However, it is possible that around the channel inlet the particle density reaches
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(a) (b) (c)t = 0 s t = ~150 s t = ~1500 s

-E

5 μm

Figure A.1: Entrance jamming induced by electric fields. (a) Shows a snapshot of normal
electrophoretic transport driven by a 500 mV potential. (b) Shows a transition to entrance
jamming at four channels. The time when jamming starts varied between experiments. However,
increasing particle density reduces the time necessary for the first jamming. (c) Once the
channels are blocked, the crystal-like structure grows. The inset shows a discrete Fourier
transform of the image, which reveals that the structure follows a dense hexagonal packing.
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(a) Arch jamming (b) Jamming  with 
particles in the channel

Figure A.2: Sample images for entrance jamming. The images on the left are median averages
that eliminate moving particles. Meanwhile, in the corresponding images on the right, the
background image has been subtracted to enhance contrast. (a) Row shows cases where
colloids form an arch. There are no colloids in the channel. (b) row shows cases where
jamming occurred with colloids inside the channel.
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this density before the jamming occurs. As mentioned earlier, electric fields focus particle into
the inlet and it increases the particle density over time.

Once the large crystal-like structure had formed, we observed a reversal of the migration
direction inside the channel. For example, free particles on the right side of the barrier in the
Figure A.1c moved to the left through the channels and joined the structure. This effect is
surprising and likely caused by electric field reversal due to accumulation of charged colloids.
However, this effect is a consequence of the large structure and not the cause, because the
reversal does not happen when the structure is small.

We hypothesize that electrophoretic jamming may be used for self-healing materials.
Suppose that we have a pipe with a small crack, where we induce particle jamming thus
blocking further leaks. For example, consider lubrication liquid in an offshore drilling pipe.
Pressure can induce jamming, but it requires the high density of particles [136] that might
also block the desired flow inside the pipe. On the other hand, the electrophoretically induced
jamming increases the local particle density, which then allows for jamming to occur. Therefore,
much lower densities of colloids may be used to produce jamming, which then might block
small cracks in the pipe.
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More on experimental methods

B.1 E-beam lithography and Si etching protocol

This protocol was used to produce sub-micron wide channels for a mould. It was developed
and performed by Vahe Tshitoyan.

Preparation: Clean the chip with acetone and IPA. Sonication seems to break the edges
of the sample into small pieces which then damage the surface. Therefore, we avoided the
ultrasound. If it still does not look clean enough, ash with Oxygen plasma at around 150 W for
about a minute.

Add resist: ∼ 1µm PMMA A6 (spin coating at 1500-2000 rpm). It is good to check the
thickness at least once, because it has to be at least 1 µm for the lift-off to work later. Then
Bake on a hotplate for 7 min at 180 ○C.

E-beam: expose resist to electron beam. Performed by a technician at Cavendish Laboratory.

Development: 45 sec MIBK/IPA (25%/75%) + 2% Di water, after which rinse in IPA for
at least 30 sec. After the development, do Oxygen plasma ashing for 10 sec to get rid of the
residual resist. Don not keep it for more than 10 sec, because this makes the edges round and
the lift-off will not work. Then bake for about 5 min at 110 ○C to get rid of the water, if there is
any left.

Evaporation: Thermal evaporation of Cr/Au (25 nm/375 nm). Anything else should work
too, as long as it is around 400 nm thick and sticks well. E.g. Ti instead of Cr should be fine.

Lift-off: Standard acetone lift off works well. Check afterwards if the structures are there.
If they are not, then there must have been a problem with the e-beam or with the development,
which made the edges too rounded and the evaporated layer was continuous.

Ashing and baking: 1 min of ashing and 10 min of baking to get rid of the residuals before
loading it into the etcher.
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Reactive ion etching: After the metallic wires are there, the Si needs to be selectively etched
down. The rate of etching is system specific, so one has to try. We used CF4 + SiCl4 combined
with Argon at 300 W, for 7 min, which seemed to give around 850 nm height and sharp edges.
We believe the Cr/Au was being etched down around 2 times slower than Si, so after 7 min the
whole metal was gone, and there were 850 nm high Si wires left.

B.2 PDMS/glass bonding quality

(a) (b)Lipid coating PLL-peg coating

Transmission Florescence bonding problem
x

z
y

5 μm5 μm

Figure B.1: Confocal microscopy images of fluorescent surface coatings. (a) Fluorescent lipid
coating onto of microfluidic channels. Bright-filed images are very standard, but inspecting the
florescence image reveals that lipids could get in between the PDMS and glass. Elsewhere in
the chip there was no florescence in the bonded regions. This suggests that bonding failed in
that part of the chip (S3-10um). (b) A 3D image of PLL-peg coating. The three bright lines in
the middle are channels (chip B4-13um). The florescence intensity in between the channels is
low, suggesting that the PDMS bonded well.

In some electrophoresis experiments, particles are driven towards the barrier. We suspected
that this might be due to poor bonding between PDMS and glass, thereby leaving a thin gap
between them. In such case, the gap would conduct the electricity and thus the charged particles
would be attracted towards the gap. To test this idea, we coated interior of the chip with
florescent lipids (protocol below), allowing us to identify all surfaces that water could reach.
The coated chip was measured using a confocal microscope (Leica TCS SP5 II).

Figure B.1a shows a bright-field image alongside a florescence image. Red color indicates
lipid location that are stuck to the surface. Notice that reservoirs have monotonous red color,
which correspond to lipids on the glass surface. Meanwhile, the barrier has black regions and
also bright red regions. The black regions have no florescence, suggesting that lipids could not



B.3 Measuring Dx for migrating particles 111

reach those locations and the PDMS has bonded to the glass. The bright red regions have twice
the intensity of the reservoirs, suggesting that there are two surfaces there. This agrees with our
idea of a thin gap between the PDMS and the glass. Such gap is only observed in S3-10um
chip and is attributed to defects in the mould.

The protocol for coating the channels was developed together with Lorenzo Di Michele,
who also supplied the florescent lipids. First, we bond the PDMS to the glass coverslip, as
described in Section 3.1, and leave it in air for 30 minutes. Then the chip is placed back into
plasma oven for 4 min to activate the surfaces. The chip is flushed with a solution containing
lipid vesicles (diameter of ∼200 nm), and afterwards it is flushed with a buffer (solution: 5 mM
KCl, Tris buffer) to remove excess lipids. The same procedure works for PLL-peg coating, but
it has a lower contrast, as shown in Figure B.1b.

B.3 Measuring Dx for migrating particles

Measuring the diffusion coefficient often relies on observing passive Brownian motion, but
sometimes this is impractical or unachievable. For example, the resistive pulse sensing tech-
nique can size polymers moving through a channel [137–139], but cannot record passive motion.
Here, we attempt to measure the diffusion coefficients from the trajectories of moving particles
and compare them with our measurements for passive Brownian motion.

We modify the mean squared displacement function by subtracting the average velocity,
which would otherwise dominate the function:

MSD∗ ≡ ∐︀(∆x(∆t))2̃︀− ∐︀ṽ︀2∆t2 =Var(︀∆x(∆t)⌋︀ (B.1)

where Var is the variance function. The last equality suggests that measuring the variance is
equivalent to the mean squared displacement. We expect this function to have a linear term
caused by the Brownian motion, ∝ 2Dx∆t, and a quadratic term due to the intrinsic variability
of the particles , ∝W 2∐︀ṽ︀2 ∆t2. Additional terms are also possible, but we restrict ourselves to
these two and an offset term, thus giving us a polynomial equation:

Var(︀∆x⌋︀ ≈ A+2Dx∆t +W 2 ∐︀ṽ︀2 ∆t2 (B.2)

Figure B.2a shows the variance function for driving potentials of 200 mV, 400 mV, and
0 mV. The latter experiment corresponds to passive diffusion, thereby providing the true
diffusion coefficient in this channel, Dx = 0.153µm2⇑s. It allows to asses the quality of our
estimates. The solid lines in the figure are fits to our phenomenological model given by
Equation (B.2). The estimates for Dx are within 15% from the expected value. Figure B.2b
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Figure B.2: Diffusion coefficient estimates from moving particle trajectories. (a) Mean squared
displacement with subtracted average velocity as a function of time. Three driving potentials
are shown, where 0 mV correspond to passive diffusion. The solid lines show fits to the function
f = A+2Dx ∆t +C′∆t2, where the parameters were: (0 mV) A = −175nm2, Dx = 0.153µm2⇑s,
C = 0; (200 mV) A = −353µm2, Dx = 0.170µm2⇑s, C = 0.792µm2⇑s2; (400 mV) A = −372nm2,
Dx = 0.169µm2⇑s, C = 4.8711µm2⇑s2. (b) Estimate for diffusion coefficient as a function of
particle velocity. The Dx was estimated from the polynomial fit as shown in (a). The red line
indicates a linear fit for data below 70 µm⇑s, which allows to extrapolate the Dx at ∐︀ṽ︀ = 0. This
gives accurate value for the diffusion coefficient.

shows Dx estimates from 33 other experiments, which suggest that the estimated Dx values
increase with the particle velocity. This might be due to fitting errors or a second order
effect that we did not account for (e.g. particle rotation). We obtain a better estimate of the
diffusion coefficient by fitting a linear function and extrapolating the value at ∐︀ṽ︀ = 0. It gives
Dx = 0.152µm2⇑s, which agrees with the passive Brownian motion measurement.

For the quadratic term, we performed a similar fit to our experimental data and obtained a
value W = 0.046±0.010. As expected, this value is close to the previously measured variability
of average velocities, shown in Figure 5.6. This agrees with our hypothesis that the quadratic
term comes from variability in particle velocities.

All in all, our analysis suggests that fitting the simple quadratic polynomial equation to the
Var(︀∆x(∆t)⌋︀ gives a reliable upper estimate for the diffusion coefficient. An accurate value can
be obtained by measuring at multiple driving potentials and then extrapolating the value to zero
potential.

B.3.1 Comparison to DNA polymer transport

We compare our particle transport through channels with polymer transport through conical
nanopores. These experiments were developed and performed by Nicholas Bell [138, 139,
141]. Briefly, two reservoirs are connected with a conical nano-capillary with a tip diameter of
15 nm. The solution contains DNA molecules that were modified to have six evenly spaced
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Figure B.3: DNA polymer transport through a nanopore. Experiments were performed by
Nicholas Bell using a resistive pulse sensing method. The DNA molecule had evenly spaced
markers along its length, allowing us to measure times when different segments pass the
nanopore (DNA length is ≈ 2460nm and spacing between markers is ≈ 350nm). (a) Mean
squared displacement with subtracted average velocity as a function of time. We translated
the data from time domain to space domain using the mean velocity. The solid lines are fits to
Equation (B.2). (b) Dx coefficients from the polynomial fit in (a). Red line indicates a linear
fit through the data: −0.290+0.0053∐︀ṽ︀. The Dx coefficients grow linearly with the polymer
velocity, suggesting that Dx does not correspond to the diffusion coefficient of the polymer. For
comparison, the dashed line shows literature value for the diffusion coefficient of a stretched
DNA molecule [140].

markers. When an electric potential is applied the DNA moves through the nano-capillary
and thus reduces current. This technique is known as the resistive pulse sensing. Crucially,
the markers on the DNA block slightly larger current, thus allowing us to time their passage
through the nano-capillary. These times are not sufficient to obtain the trajectory, but they do
provide information about the velocity of the DNA at different segments.

From these times, we computed the MSD with subtracted mean velocities, as described
in the previous section. Figure B.3a shows the result, where the solid lines are fits to our
polynomial model given by Equation (B.2). These fits capture the data well, but a closer
examination of the Dx coefficients reveals a linear dependence on the average velocity –
see Figure B.3b. We saw such dependence with particle electrophoresis, where we found
a correct diffusion coefficient by extrapolating the value at ∐︀ṽ︀ = 0. However, for polymers
the extrapolation yields zero, suggesting that the process is dominated by a different process
altogether. Therefore, our analysis suggests that the MSD of moving polymers cannot be used
to estimate the diffusion coefficients.
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B.4 Velocity auto-correlation function and motion blur

Cameras collect light over a finite interval called exposure time, δ te. During this time, particles
move around, and thus, the recorded image contains an averaged particle position. This effect
is called motion blur and its impact is visible in the velocity auto-correlation function, defined
by Equation (2.3). This function measures similarity between consecutive displacements of
the particle, or in other words, how the velocity changes over time. We estimate velocity form
trajectories using v ≡ ∆x⇑∆t = (x(t +∆t)−x(t))⇑∆t, where x(t) is the position of the particle at
time frame t.
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Figure B.4: Velocity auto-correlation function as a function of time interval between velocities.
(a) Measurement in channels for a single particles. The two sets correspond to two different
camera exposure times, while the interval between frames was kept at ∆t = 5ms. The auto-
correlation of the second data point decreases with the exposure time. (b) Simulation of 1D
random walk with motion blurring. There different simulated exposure times are shown: 100%
- maximum exposure time; 50% - half exposure time; 0% - instantaneous snapshot. Simulation
suggests that introducing motion blur increases anomalous auto-correlation, which does not
exist in the underlying data.

For passive Brownian motion, VACF should be zero when ∆t ≫ τ f ∼ 10µs [30, 142].
However, Figure B.4a shows that in our measurements the first two points of VACF are non-
zero. The first data point corresponds to τ = 0: ∐︀v(0)2̃︀ = ∐︀∆x2̃︀⇑∆t2 ≈D⇑∆t, suggesting that the
first point is intrinsic to Brownian motion. The second data points is above zero because of
the motion blur artefact, which can be seen when varying the exposure time. Two exposure
times are shown in the Figure B.4a: δ te = 5.0ms and δ te = 2.2ms, while the time between
frames was the same, ∆t = 5.0ms. From the figure one can see that the second point decreases
with δ te, suggesting that for δ te→ 0 it will also disappear. This limit would correspond to an
instantaneous snapshots in time.

This effect is not intuitive, and therefore we ran a simulation to test our hypothesis of the
motion blur. In the simulation, one particle performs a random walk in 1D. This is a well
behaved and simple Brownian system [29]. We generated trajectories with one million steps
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to get sufficient statistics. Then we performed motion blurring by taking an average of 10
steps and creating a new trajectory with 100’000 steps. The resulting velocity auto-correlation
function is shown in the Figure B.4b as red triangles. The simulation reproduces the same
pattern as seen in the experiments. Further, we reduced the exposure time by averaging over 5
steps and discarding the other 5, which is shown in the blue diamonds. This partial blurring
reduces the observed auto-correlation, as with the experiment. Finally, we took only every 10th
step without averaging and saw no auto-correlation, as expected. This simple model proves
that motion blur induces apparent velocity auto-correlation for the second time step. The code
used in the simulation is available at [143].

B.4.1 VACF for moving particles

Figure B.5 shows velocity auto-correlation function computed using Equation (2.3). Clearly,
the the coefficient is dominated by the average velocity that is shown as the red line. The
first two data points are visibly higher. This increase corresponds to the VACF measured for
passively diffusing particles, as shown in the Figure B.4a. Therefore, the first data point is self
correlation due to Brownian motion, and the second one is artefact due to the motion blur.
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Figure B.5: Velocity auto-correlation function for particles migrating in an electric field. The
particles were driven with 100 mV potential through a channel of length L = 13µm. The red
line indicates the average velocity squared. The first and second data points are above the red
line by 49.5 µm2⇑s2 and 4.9 µm2⇑s2, respectively. The other points have a small positive bias
that is nearly indiscernible in this plot.

The other data points at ∆t ⩾ 10ms are also a bit higher than the line at ∐︀ṽ︀2. To see this
difference we subtract the average velocity from each measurement:

∐︀(︀v(0)− ∐︀ṽ︀⌋︀(︀v(∆t)− ∐︀ṽ︀⌋︀̃︀ ≈ ∐︀v(0)v(∆t)̃︀− ∐︀ṽ︀2, (B.3)



116 More on experimental methods

where the approximation is exact if the velocities are constant throughout the channel.
Figure B.6a shows the resulting auto-correlation. Again, the first two data points are higher than
the tail average that is indicated by the blue dashed line. We investigate the offset in the tail. It
is almost constant for all time separations, which can be explained with individual particles
moving at slightly different average velocities. In such case, the offset (β 2) should scale
linearly with the average velocity squared (∐︀ṽ︀2), because it propagates through Equation (B.3).
Figure B.6b shows the relation between the two quantities, where each data point represents an
experiment in B4-10um-5 chip. The slope of the linear fit is 0.047, which is very close to W in
the position variance measurement, and also close to the velocity variation measurement as
reported in the Figure 5.6b. Therefore, the variation of particle average velocities explains the
constant offset and agrees with other measurements. See Sections 5.1.3 and B.3 for the other
measurements.

Δt (ms) Velocity - ⟨v⟩ (μm/s)

(V
AC

F 
- ⟨

v⟩
2 )

  (
μm

2 /
s2

)

VA
CF

 o
�s

et
 - 

β 
(μ

m
/s

)

β2

(a) (b)

Figure B.6: Difference between VACF and average velocity for driven transport. (a) Velocity
auto-correlation function with the average velocity squared subtracted. The particle was drive
with 200 mV. The blue dashed line indicates an average for ∆t ⩾ 10ms, where we call is VACF
offset, β 2. (b) Square root of VACF offset parameter versus the average particle velocity. Each
data point represents a different experiment in “B4-10um-5” chip. The red lines shows a linear
fit with a slope 0.047. The blue arrow indicates the experiment shown in (a), while the orange
arrow indicates the experiment shown in the Figure B.5.
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Full analytical model for particle
interaction

The following derivation was done by Eric Lauga and John R. Lister, while the comparison
with simulation models was done by Karolis Misiunas.
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Figure C.1: Notation for the two-sphere resistance calculation.

We consider the setup shown in Figure C.1. We have two spheres of identical radius, a,
along the centerline of a pipe of radius R, separated by a distance d (which we assume is a few
sphere diameters, so that the only hydrodynamic coupling is through the net flow induced in
the pipe). We denoted by x the coordinate along the pipe and L = `+d the total pipe length.
Sphere i is assumed to move in the +x direction with velocity Ui and we use ∆pi to denote the
pressure increase in the x direction across the sphere. The total pressure increase across the
two-sphere system is denoted ∆p.

Flow rate vs. pressure difference across each sphere

The main goal of this problem is to compute the flow rate setup in the pipe as a result of the
motion of the spheres. In order to determine the flow rate we have to consider overall mass
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conservation. The flow rate Q can be computed in the pipe in between the two spheres, which
has a length d and for which we denote the pressure increase ∆pd . Assuming Poiseuille flow
we have

∆pd

η
= −

8dQ
πR4 , (C.1)

(the minus sign is there because ∆pd is an increase in pressure, not a pressure drop). The total
pressure increase across the two-sphere system is thus given by

∆p = ∆pd +∆p1+∆p2, (C.2)

and must satisfy the Poiseuille relationship on the other side of the pipe (through the outer
chamber)

∆p
η
=

8`Q
πR4 ⋅ (C.3)

We therefore have
−

8dQ
πR4 +

∆p1

η
+

∆p2

η
=

8`Q
πR4 , (C.4)

and thus
∆p1

η
+

∆p2

η
=

8LQ
πR4 , (C.5)

Flow around sphere 1

We now consider the flow around sphere 1, and the other one can be deduced by symmetry.
Since the sphere is moving in the lab frame, it is easier to jump into the frame moving at speed
U1, where the geometry of the problem is steady. Mass conservation in the moving frame
around the sphere is written as

Q−πR2U1 = 2πRq1, (C.6)

where q1 is the one-dimensional x-lubrication flow rate in the thin gap between the sphere and
the pipe, which is constant in this frame. That flow is a simple (lubrication) combination of
shear and Poiseuille flow. Writing the pressure gradient in the thin gap p. 1

⇑x. we have

q1 = −
1
2

U1h(x)−
1

12η

p. 1
x.

h3(x), (C.7)

which means that the pressure gradient satisfies

1
η

p. 1
x.
= −

6U1

h2(x)
−

12q1

h3(x)
⋅ (C.8)
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In this equation, h(x) ≈ h0+x2⇑2a, where h0 is the smallest clearance between the sphere and
the pipe. Integrating Eq. (C.8) across the particle gives access to the pressure drop as

∆p1

η
= −6U1I2−12q1I3, (C.9)

where we have denoted

In = ∫

+∞

−∞

x.
hn(x)

=

⌋︂
2ah0

hn
0
∫

+∞

−∞

x.
(1+u2)n

, (C.10)

and therefore

I1 = π

⌋︂
2ah0

h0
; I2 =

π

2

⌋︂
2ah0

h2
0

; I3 =
3π

8

⌋︂
2ah0

h3
0
⋅ (C.11)

Flow rate vs. velocity relationship

Putting together Eq. (C.12) and Eq. (C.9), and using the similar version to Eq. (C.12) for sphere
#2, we get

∆p1

η
+

∆p2

η
=

8LQ
πR4 , (C.12)

−6(U1+U2)I2−12(q1+q2)I3 =
8LQ
πR4 ⋅ (C.13)

Using Eq. (C.6) to replace explicitly the qi’s with

qi =
Q

2πR
−

RUi

2
, (C.14)

we obtain the final (symmetric) relationship between the flow rate in the pipe, Q, and the
velocity of each sphere as

(RI3− I2)(U1+U2) = (
4L

3πR4 +
2I3

πR
)Q. (C.15)

Force on sphere 1

We now compute the force on sphere 1 in order to obtain the coupled resistance matrix (and
invert it to obtain the mobility matrix needed for diffusion). The force on sphere 1 arises from
two sources: the pressure increase across the sphere and the thin lubrication flow between the
sphere and the pipe. The simplest way to compute F1 is to do a force balance on a control
volume of fluid which includes the particle. The total force on the fluid must sum up to zero.
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Since the force from the particle on the fluid is −F1 we have by force balance on the fluid in the
x direction

−F1−πR2
∆p1+2πR∫ τ1(x)x. = 0, (C.16)

where τ1(x) is the distribution of wall shear stresses in the thin gap, which is easily computed
in the lubrication limit

τ1(x) = −
ηU1

h(x)
+

1
2

p. 1
x.

h(x). (C.17)

Using Eq. (C.8) we thus have

τ1(x) = −
4ηU1

h(x)
−

6ηq1

h2(x)
, (C.18)

and therefore the net force is given by

F1 = −πR2
∆p1−2πηR(4U1I1+6q1I2). (C.19)

We now plug in the value for ∆p1, Eq. (C.9), and get

F1 = 2πηR(3RI2−4I1)U1+12πηR(RI3− I2)q1 (C.20)

We then use
q1 =

Q
2πR
−

RU1

2
, (C.21)

to obtain
F1 = 6η(RI3− I2)Q+2πηR(6RI2−4I1−3R2I3)U1. (C.22)

The flow rate, Q, is given in Eq. (C.15) by

Q =
3πR4(RI3− I2)

4L+6R3I3
(U1+U2), (C.23)

which, when plugged into Eq. (C.22), leads to the final equation for the force

F1 = ζ1,1U1+ζ12U2, (C.24)

with

ζ12 =
18ηπR4(RI3− I2)

2

4L+6R3I3
, (C.25)

and
ζ11 = ζ12+2πηR(6RI2−4I1−3R2I3). (C.26)

The formula for F2 is identical with a 1↔ 2 permutation in the velocities.
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Comparison with simulations
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Figure C.2: Analytical model comparison with simulation for the predicted correlation coef-
ficients. The correlation coefficient was computer using ρ ≈ −ζ1,2⇑

⌈︂
ζ 1,1ζ 2,2. The particle

were 2a = 500 nm wide. The analytical model agrees very well for a⇑R ≈ 1, but deviates away
for smaller a⇑R ratios.

Figure C.2 shows a comparison of these equations to the numerical simulations for the
same problem. The analytical model agrees very well for tightly confined particles (a⇑R ≈ 1),
but deviates away for more realistic scenario of a⇑R ≈ 0.5. This deviation is due to lubrication
approximation that was necessary for deriving the model.
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