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Abstract
Brain tissue oxygen (PbtO2) monitoring in traumatic brain injury (TBI) has demonstrated strong associations with global 
outcome. Additionally, PbtO2 signals have been used to derive indices thought to be associated with cerebrovascular reactivity 
in TBI. However, their true relationship to slow-wave vasogenic fluctuations associated with cerebral autoregulation remains 
unclear. The goal of this study was to investigate the relationship between slow-wave fluctuations of intracranial pressure 
(ICP), mean arterial pressure (MAP) and PbtO2 over time. Using the Collaborative European NeuroTrauma Effectiveness 
Research in Traumatic Brain Injury (CENTER-TBI) high resolution ICU sub-study cohort, we evaluated those patients with 
recorded high-frequency digital intra-parenchymal ICP and PbtO2 monitoring data of a minimum of 6 h in duration. Digital 
physiologic signals were processed for ICP, MAP, and PbtO2 slow-waves using a moving average filter to decimate the high-
frequency signal. The first 5 days of recording were analyzed. The relationship between ICP, MAP and PbtO2 slow-waves 
over time were assessed using autoregressive integrative moving average (ARIMA) and vector autoregressive integrative 
moving average (VARIMA) modelling, as well as Granger causality testing. A total of 47 patients were included. The ARIMA 
structure of ICP and MAP were similar in time, where PbtO2 displayed different optimal structure. VARIMA modelling 
and IRF plots confirmed the strong directional relationship between MAP and ICP, demonstrating an ICP response to MAP 
impulse. PbtO2 slow-waves, however, failed to demonstrate a definite response to ICP and MAP slow-wave impulses. These 
results raise questions as to the utility of PbtO2 in the derivation of cerebrovascular reactivity measures in TBI. There is 
a reproducible relationship between slow-wave fluctuations of ICP and MAP, as demonstrated across various time-series 
analytic techniques. PbtO2 does not appear to reliably respond in time to slow-wave fluctuations in MAP, as demonstrated 
on various VARIMA models across all patients. These findings suggest that PbtO2 should not be utilized in the derivation 
of cerebrovascular reactivity metrics in TBI, as it does not appear to be responsive to changes in MAP in the slow-waves. 
These findings corroborate previous results regarding PbtO2 based cerebrovascular reactivity indices.
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1  Introduction

Brain tissue oxygen (PbtO2) monitoring in adult trau-
matic brain injury (TBI) is emerging as an important 
adjunct physiologic parameter for intensive care unit (ICU) 
directed therapies [1–3]. Invasively placed into the brain 
parenchyma, typically frontal lobe, such devices measure 
local extracellular partial pressure of oxygen [4, 5]. This 
signal provides insight into extracellular oxygen diffusion, 
and has an emerging literature body in adult TBI support-
ing its various applications. To date, numerous papers have 
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supported the association between low PbtO2 measures and 
worse global outcome in adult TBI [1–3, 6]. Thresholds for 
PbtO2 have been suggested, with the current threshold of 
20 mmHg being investigated in ongoing randomized control 
trials [2]. Furthermore, Phase II multi-center studies support 
feasibility of targeting both intracranial pressure (ICP) and 
PbtO2 thresholds of 20 mmHg, using a protocoled approach, 
with results from this trial supporting improved outcomes 
for those patients receiving both ICP and PbtO2 directed 
therapy, versus ICP directed therapy alone [2].

Another suggested application of PbtO2 monitoring is for 
cerebrovascular reactivity assessments in TBI [7–9]. Some 
small, mainly single center retrospective work, have derived 
the oxygen reactivity index (ORx) through the correlation 
between slow-waves of PbtO2 and either mean arterial pres-
sure (MAP) or cerebral perfusion pressure (CPP) [7, 8]. This 
has been conducted in a similar fashion to the ICP-derived 
pressure reactivity index (PRx). This ORx metric can be 
derived based on varying window lengths of data (20, 30 
or 60 min), longer than PRx (routinely 5 min long), and has 
literature to support its association with 6-month outcome 
[7, 8, 10].

However, ORx has been demonstrated in various stud-
ies of co-variance, to have no relation to more standard 
metrics of cerebrovascular reactivity [11, 12]. It correlates 
poorly with PRx [11–13], and has no association with any 
other multi-modal based metric of cerebrovascular reactiv-
ity during multi-variate assessments of co-variance [11]. In 
particular, ORx has no association with ICP and near infra-
red spectroscopy (NIRS) based cerebrovascular reactivity 
metrics [11], which, crucially, are the only such metrics to 
have some experimental evidence to support their ability to 
measure aspects of the autoregulatory curve [14–17]. Thus, 
the role of ORx in cerebrovascular reactivity assessment is 
questionable, given these previous results and the fact that 
PbtO2 represents a complex balance between oxygen supply, 
demand and extracellular diffusion [5, 18], not a surrogate 
measure of variations in cerebral blood volume (CBV) or 
cerebral blood flow (CBF) which are required for the deri-
vation of continuous cerebrovascular reactivity metrics [19, 
20]. Indeed in-silico simulations show that similar PbtO2 
may be found for various different combinations of CBF, 
metabolic rate and diffusion.

Despite this controversy surrounding ORx, this index 
is still reported as a metric of cerebrovascular reactivity 
[7–10]. In order to facilitate understanding regarding the role 
of PbtO2 monitoring in cerebrovascular reactivity assess-
ments, insight into the time-series relationships between 
ICP, MAP, CPP and PbtO2 slow-waves is crucial. Observa-
tions have been already presented in scientific press, indi-
cating that transients of PbtO2 usually follow changes in 
CPP [21]. The goal of this study is to provide an explora-
tory analysis into the multi-variate time-series relationships 

between ICP, MAP and PbtO2 using time-series methodolo-
gies in the Collaborative European NeuroTrauma Effective-
ness Research in Traumatic Brain Injury (CENTER-TBI) 
High-Resolution ICU (HR-ICU) sub-study cohort [22].

2 � Methods

2.1 � Patient population

All patients from the multi-center CENTER-TBI high reso-
lution ICU monitoring cohort with parenchymal ICP and 
PbtO2 monitoring, were included in this analysis. Patients 
with EVD based ICP data were excluded given the inter-
rupted nature of their recordings. These patients were pro-
spectively recruited between January 2015 and December 
2017 from 21 centers in the European Union (EU). All 
patients were admitted to ICU for their TBI during the 
course of the study, with high frequency digital signals 
recorded from their ICU monitors during the course of their 
ICU stay. All patients suffered predominantly from moderate 
to severe TBI (moderate = Glasgow Coma Score (GCS) 9 to 
12, and severe = GCS of 8 or less). A minority of patients 
(n = 9) were categorised at the time of admission as suffer-
ing from less severe TBI, but experienced subsequent early 
deterioration leading to ICU admission for care and monitor-
ing. All patients in this cohort had invasive ICP monitoring 
conducted in accordance with the BTF guidelines [6].

2.2 � Ethics

Data used in these analyses were collected as part of the 
CENTER-TBI study which had individual national or local 
regulatory approval; the UK Ethics approval is provided as 
an exemplar: (IRAS No: 150943; REC 14/SC/1370). The 
CENTER-TBI study (EC grant 602150) has been conducted 
in accordance with all relevant laws of the EU if directly 
applicable or of direct effect and all relevant laws of the 
country where the Recruiting sites were located, including 
but not limited to, the relevant privacy and data protection 
laws and regulations (the “Privacy Law”), the relevant laws 
and regulations on the use of human materials, and all rel-
evant guidance relating to clinical studies from time to time 
in force including, but not limited to, the ICH Harmonised 
Tripartite Guideline for Good Clinical Practice (CPMP/
ICH/135/95) (“ICH GCP”) and the World Medical Asso-
ciation Declaration of Helsinki entitled “Ethical Principles 
for Medical Research Involving Human Subjects”. Informed 
Consent by the patients and/or the legal representative/next 
of kin was obtained, accordingly to the local legislations, for 
all patients recruited in the Core Dataset of CENTER-TBI 
and documented in the e-CRF.
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2.3 � Data collection

As part of recruitment to the multi-center high resolution 
ICU cohort of CENTER-TBI, all patients had demographics 
and injury data prospectively recorded. Similarly, all patients 
had high frequency digital signals from ICU monitoring 
recorded throughout their ICU stay, with the goal of initiat-
ing recording within 24 h of ICU admission. All digital ICU 
signals were further processed (see Signal Acquisition/Sig-
nal Processing). For the purpose of providing a description 
of the population for this study, basic admission demograph-
ics and centrally reported computed tomography (CT) vari-
ables for the first available CT of each patient were extracted 
[23]. They included: age, admission best GCS motor score 
and pupillary reactivity (bilaterally reactive, unilateral reac-
tive, bilateral unreactive), Marshall CT Classification [24], 
Rotterdam CT score [25], presence or absence of traumatic 
subarachnoid haemorrhage (tSAH), extradural hematoma 
(EDH), pre-hospital hypotension and pre-hospital hypoxia. 
CENTER-TBI data version 2.1 was accessed for the purpose 
of this study, via Opal database software [26].

2.4 � Signal acquisition

Arterial blood pressure (ABP) was obtained through arterial 
lines connected to pressure transducers. ICP was acquired 
from an intra-parenchymal strain gauge probe (Codman ICP 
MicroSensor; Codman & Shurtleff Inc., Raynham, MA), 
parenchymal fibre optic pressure sensor (Camino ICP Mon-
itor, Integra Life Sciences, Plainsboro, NJ, United States; 
https​://www.integ​ralif​e.com/). PbtO2 monitoring occurred 
via invasive parenchymal monitoring (Licox probe; Inte-
gra, Licox Brain Oxygen Monitoring System, Plainboro, 
NJ), typically placed in the frontal lobe. All signals were 
recorded using digital data transfer or digitized via an A/D 
converter (DT9803; Data Translation, Marlboro, MA), 
where appropriate; sampled at frequency of 100 Hz (Hz) 
or higher, using the ICM + software (Cambridge Enterprise 
Ltd, Cambridge, UK, https​://icmpl​us.neuro​surg.cam.ac.uk) 
or Moberg CNS Monitor (Moberg Research Inc, Ambler, 
PA, USA, https​://www.mober​g.com) or a combination of 
both. Signal artefacts were removed using both manual and 
automated methods prior to further processing or analysis.

Of note, the level of arterial line zeroing was not avail-
able for all patients in the CENTER-TBI HR ICU sub-study 
cohort. In general, most participating centre’s zeroed the 
arterial line at the level of the tragus. Regardless, for the pur-
pose of this study and the described statistical analyses per-
formed, the level of arterial line zeroing would not influence 
any of the results, only the magnitude of raw ABP values. 
The described analysis focuses on time-series relationships 
between ICP, ABP and PbtO2, for which a scaling error as 
a result of difference in zeroing applied to ABP, would not 

influence the statistical relationships over time for analysis 
conducted on a patient-by-patient basis.

2.5 � Signal processing

Post-acquisition processing of the above signals was con-
ducted using ICM + (Cambridge Enterprise Ltd, Cambridge, 
UK, https​://icmpl​us.neuro​surg.cam.ac.uk). Ten second mov-
ing averages (updated every 10 s to avoid data overlap) were 
calculated for all recorded signals: ICP, ABP (which pro-
duced MAP), and PbtO2. This moving average filter was 
applied to decimate the raw signals to a frequency range 
association with the slow-wave vasogenic response of cer-
ebrovascular reactivity.

The down-sampled and averaged data were output in 10 s 
update frequency (i.e. 10 s time resolution) for the entire 
recording period. We then limited the data for analysis to the 
first 5 days of recording, in order to focus on the acute phase 
commonly associated with cerebral physiologic derange-
ments. All data curation and processing occurred in R (R 
Core Team (2019). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https​://www.R-proje​ct.org/).

2.6 � Time series analysis and statistics

All statistical analysis was conducted using R and XLSTAT 
(Addinsoft, New York, NY; https​://www.xlsta​t.com/en/) 
add-on package to Microsoft Excel (Microsoft Office 15, 
Version 16.0.7369.1323). For time series modelling first 
order differenced data was performed, given the non-sta-
tionary nature of the native 10-s resolution data.

2.7 � ICP, MAP and PbtO2 slow‑wave time‑series 
structure

Using 10-s resolution data, the following analysis was con-
ducted for each patient using the first 5 days of recording. 
The optimal autoregressive integrative moving average 
(ARIMA) time-series structure was determined for ICP, 
MAP and PbtO2 for each individual patient using the fol-
lowing methodology, similar to other publications from our 
group [27–30]. First, autocorrelation function (ACF) and 
partial autocorrelation function (PACF) plots were produced, 
and both Augmented Dickey-Fuller (ADF) and Kwiat-
kowski–Phillips–Schmidt–Shin (KPSS) testing were con-
ducted, confirming non-stationarity of ICP, MAP and PbtO2. 
First order differencing was then undertaken to remove all 
trend components, confirming stationarity by repeating the 
above-mentioned plots and testing. Next, ARIMA models 
were built for ICP, MAP and PbtO2, keeping the differenc-
ing order of 1 (i.e. d = 1) and varying both the autoregres-
sive and moving average orders (i.e. p and q, respectively) 

https://www.integralife.com/
https://icmplus.neurosurg.cam.ac.uk
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https://www.xlstat.com/en/
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from 0 to 4, through all respective permutations. The AIC 
and LL were then tabulated for each of these models, for 
every patient. Using the AIC and LL, the optimal ARIMA 
structures for ICP, MAP and PbtO2 were compared in each 
patient, with the lowest AIC and highest LL values indi-
cating superior models. More details surrounding ARIMA 
modelling of time-series data can be found in the reference 
literature [31–33]. The general Box-Jenkin’s autoregressive 
moving average (ARMA) structure for ICP can be expressed 
as follows:

where c = constant, t = time “t”, i = integer, j = integer, 
p = autoregressive order, ICP = intra-cranial pressure, 
q = moving average order, φ = autoregressive coefficient at 
time “t − i”, θ = moving average coefficient at time “t − j”, 
ε = error term.

2.8 � Analysis of slow‑wave relationships

First order differenced ICP, MAP and PbtO2 slow-waves 
were analyzed in the 10-s resolution data sheets, per patient. 
The co-variance of slow-waves of ICP versus MAP, PbtO2 
versus MAP, and PbtO2 versus ICP, were evaluated using 
multi-variate vector ARIMA (VARIMA) models. Such 
models explore the behavior of two time series recorded 
simultaneously over time and are derived via extending the 
standard Box-Jenkin’s ARIMA models to multi-variate sys-
tems. Further description on this technique can be found in 
the references [31, 32]. The vector autoregressive moving 
average model (VARMA) of first order difference ICP and 
MAP can be represented by the following formula:

where C = constant vector, t = time “t”, i = integer, j = inte-
ger, p = VARMA autoregressive order, Yt = ICP or MAP at 
time t, q = VARMA moving average order, A = autoregres-
sive coefficient matrix at “t − i”, B = moving average coef-
ficient matrix at time “t − j”, E = error term vector.

We employed basic VARMA models with autoregres-
sive order of 4 and moving average order of 4, based on 
the findings from individual patient ARIMA models of first 
order differenced ICP, MAP and PbtO2 data, for each patient, 
confirming that such VARMA orders would encompass the 
variation seen in optimal ARIMA structure for ICP, MAP 
and PbtO2 across the population. The coefficients derived 
from these VARMA models were then employed to derive 
impulse response function (IRF) plots between: ICP and 
MAP, PbtO2 and MAP, and PbtO2 and ICP. The IRF plots 
provide a descriptive graphical representation of the impact 
of one physiologic parameter on another, by using the 

ICPt = c + εt +

∑p

i=1
�t−iICPt−i +

∑q

j=1
�t−jεt−j

Yt = C + Et +

∑p

i=1
At−iYt−i +

∑q

j=1
Bt−jEt−j

generated VARIMA model and modelling a one standard 
deviation orthogonal impulse of one variable on the other, 
and vice versa. The plots depict how much from baseline 
the standard error of one variable fluctuates in response to 
the orthogonal impulse of the other variable, and how many 
lags in time it takes to recover back to baseline. Similarly, 
tri-variate VARIMA models were created to evaluate the 
concurrent relationship between ICP, MAP and PbtO2, with 
IRF plots generated for each patient.

Finally, the influence of slow-waves of ICP, MAP and 
PbtO2 on one another over time were assessed using Granger 
causality testing of stationary first order differenced data 
[29, 30, 34]. This was tested in every patient. For Granger 
causality, both F-test statistic value and p-values were 
recorded, with alpha set at 0.05. We did not correct for mul-
tiple comparisons.

3 � Results

3.1 � Patient characteristics

A total of 47 patients were included in this study with high-
frequency ICP, MAP and PbtO2 physiology. The median age 
was 45 years (IQR 31 to 62 years), admission total GCS was 
6 (IQR 3 to 10), and the admission GCS motor score was 
3 (IQR 1 to 5). The median length of overall physiologic 
recording was 136.1 h (IQR 88.3 to 174.5 h). For those with 
recorded data, seven patients had bilaterally unreactive 
pupils, three unilateral unreactive pupil and 32 had normal 
pupils. Eight patients suffered pre-hospital hypoxic epi-
sodes, while 4 suffering a hypotensive episode. The median 
admission Marshall CT grade was 3 (IQR 2 to 6), while 
the median admission Rotterdam CT score was 3 (IQR 3 to 
5). Finally, 35 patients had traumatic subarachnoid hemor-
rhage on admission CT, while 15 had an epidural hematoma 
present.

3.2 � ARIMA structure of ICP, MAP and PbtO2

Appendix A of the Supplementary Materials provides the 
ARIMA models tables for each patient, for ICP, MAP and 
PbtO2. The ARIMA structure was assessed on first order 
differenced data, from the first 5 days of physiologic record-
ing. Each patient displayed varying optimal ARIMA orders 
for ICP, MAP and PbtO2 in keeping with individual patient 
heterogeneity in physiologic behavior. However, the trend 
seen across all 47 patients was that ICP and MAP slow-wave 
appeared to have similar optimal ARIMA modal structure 
for a given patient, while PbtO2 displayed a different opti-
mal model structure with much higher autoregressive and 
moving average orders. This suggests that the time-series 



715Journal of Clinical Monitoring and Computing (2021) 35:711–722	

1 3

behavior of PbtO2 slow-waves is much different than that 
of ICP and MAP.

3.3 � ICP, MAP and PbtO2 slow‑wave time series 
analysis

To facilitate exploration of the relationship between slow-
wave fluctuations in ICP, MAP and PbtO2, we assessed 
Granger causality between the slow-waves each physiologi-
cal parameter, employed VARIMA modelling of the bivari-
ate relationships, and then the tri-variate relationship.

3.4 � Granger causality testing of slow‑waves

To assess is there was a causal direction in the relationship 
between slow-waves of ICP and MAP, PbtO2 and MAP, and 
ICP and PbtO2, Granger causality testing was performed on 
the slow-wave physiologic data. In general, for the major-
ity of patients testing slow-waves of ICP and MAP, MAP 
displayed a causal relation on ICP, as demonstrated by the 
larger F-statistic value favoring the MAP on ICP directional-
ity. Similarly, for the majority of patients, MAP displayed a 
causal directional relationship on PbtO2 slow waves. Finally, 
for the majority of patients, ICP displayed causal impact on 
PbtO2 slow-waves. Of note, for most patients, the magnitude 
of the F-statistic values was much higher for MAP on ICP 
versus MAP on PbtO2 causal relationship. Appendix B pro-
vides the Granger causality testing for each patient, with the 
F-statistic and p-value reported.

3.5 � ICP versus MAP, PbtO2 versus MAP, and PbtO2 
versus ICP VARIMA models

VARIMA models with autoregressive orders of 4, integra-
tive/differencing order of 1, and moving average order of 4, 
were generated for each patient, for: ICP and MAP, PbtO2 
and MAP, and PbtO2 and ICP. With these models, IRF plots 
were generated for each patient, for each physiologic rela-
tionship. Figure 1 displays a patient example of the IRF plots 
for: ICP and MAP, PbtO2 and MAP, and PbtO2 and ICP. The 
IRF plots allow for visual assessment of the relationship 
between two physiologic variables, evaluating the impact of 
one standard deviation impulse of one physiologic variable 
on the other, and vice versa. For all patients, the IRF plots 
for MAP and ICP demonstrated a definite response of ICP 
to MAP. However, most patients demonstrated an attenuated 
response of PbtO2 to MAP or ICP impulses on IRF plots. 
Particularly the response of PbtO2 to MAP, where there is 
minimal positive change in the IRF plot, and perhaps a very 
extended and slow return of PbtO2 to baseline. This suggests 
that the PbtO2 response to MAP or ICP slow-wave fluctua-
tions is limited, with the PbtO2 response to MAP occurring 
well past 5 min in duration based off of the IRF plots.

3.6 � ICP, MAP and PbtO2 VARIMA models

Running tri-variate VARIMA models using slow-waves 
of ICP, MAP and PbtO2, we generated IRF plots for each 
patient. Figure 2 provides a patient example of an IRF plot. 
For the majority of patients evaluated, these tri-variate mod-
els and IRF plots confirmed the relationships seen in the bi-
variate VARIMA modelling. MAP demonstrated a definite 
response on ICP. However, ICP and MAP failed to elicit any 
significant fluctuations in PbtO2, again suggesting that PbtO2 
fluctuations are not occurring or responding to slow-wave 
perturbations in MAP or ICP, commonly associated with 
cerebral autoregulation. Furthermore, the slight positive 
response of PbtO2 to MAP seen on IRF, extends far beyond 
the 5-min lag mark, reinforcing that any slight response that 
is seen in PbtO2 to MAP may be well outside of the response 
seen with cerebral autoregulation.

4 � Discussion

Using the multi-center prospectively collected CENTER-
TBI HR ICU cohort, we have been able to investigate the 
time-series relationships between slow-waves of ICP, MAP 
and PbtO2. Overall, we have shown that PbtO2 does not 
appear to respond as ICP and MAP do to slow-wave fluc-
tuations. This raises the question of the utility of PbtO2 in 
the derivation of cerebrovascular reactivity indices. Some 
important features regarding the relationship between slow-
waves of these physiologic parameters deserve highlighting.

First, upon evaluating the optimal ARIMA time-series 
structure of ICP, MAP and PbtO2 slow-waves, it was clear 
from all patients, that the behavior of PbtO2 is much differ-
ent than that of ICP and MAP. Though these results are pre-
liminary, they suggest that PbtO2 does not appear to behave 
as ICP and MAP do to slow-wave perturbations, on a time 
scale associated with cerebrovascular reactivity/cerebral 
autoregulation. This is important, as it raises the question 
of whether PbtO2 signals should be used in the derivation 
of cerebrovascular reactivity indices such as ORx. This is 
probably related to a slow response time of Licox electrode 
readings- this way B waves of oxygenation are eliminated. 
In contrast, they can be seen in NIRS-derived brain mixed 
blood oxygenation [35].

Second, Granger causality analysis confirmed the strong 
directional relationship of MAP on ICP, as seen in previous 
work on the topic [29, 30, 34]. A similar directional rela-
tionship was seen on Granger testing for MAP on PbtO2, 
though the magnitude of the F-statistic was much smaller 
than that see for the MAP on ICP relationship. This implies 
that though MAP does appear to influence PbtO2 during 
periods of targeted MAP treatment, as seen in clinical 
intervention studies [2, 3], as the MAP on ICP relationship 
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appears to be stronger. This is important, as it implies the 
MAP/ICP derived indices may provide more reliable infor-
mation regarding the cerebrovascular vasogenic response, 
versus MAP/PbtO2. This of course carries implications for 
the calculation of PbtO2 derived indices, like ORx. These 
results corroborate the previous findings in the literature that 
have failed to document strong associations between ORx 
and ICP-derived cerebrovascular reactivity indices [11, 12]. 
It must be acknowledge, however, that in the setting of active 
and well controlled MAP/CPP in TBI care, the variations 
in MAP may not be sufficient enough to see a reliable and 
direct influence on PbtO2. Other small cohort studies have 
documented the impact of CPP (and thus MAP) changes on 
recorded PbtO2 [36]. If much larger fluctuations in MAP 
were seen, perhaps there would have been a more robust 
impact on the PbtO2 values seen in our cohort.

Third, applying bi-variate and tri-variate VARIMA mod-
els, we were able to derive IRF plots to aid in the evalua-
tion of the response of ICP and PbtO2 to changes in MAP. 
As highlighted in Figs. 1 and 2, the population displayed a 
characteristic response of ICP slow-waves to one standard 
deviation impulse in MAP slow-waves, as seen in our previ-
ous work on ICP and MAP time-series [29, 30]. However, 
the response of PbtO2 slow-waves to both MAP and ICP 
slow-wave impulses, was virtually non-existent. This lack 
of response in PbtO2 slow-waves to impulses in ICP and 
MAP slow-waves, further raises the question of the utility of 
PbtO2 in the derivation of cerebrovascular reactivity indices.

In general, based on this preliminary exploratory analysis, 
there should be caution when using PbtO2 in the deriva-
tion of cerebrovascular reactivity indices. From previous 
literature it is becoming clearer that ORx displays little-to-
no association with other multi-modal monitoring derived 
cerebrovascular reactivity indices [11, 12]. This includes 
ICP and NIRS based metrics which have some experimental 
literature to support their ability to measure aspects of the 
Lassen curve [14–17]. This current work corroborates those 
findings, using time-series analysis of slow-waves in ICP, 
MAP and PbtO2. These findings should not be of great sur-
prise, given that PbtO2 is a measure of extracellular oxygen 
diffusion [5, 18], and may not respond in the same frequency 
range compared to ICP and MAP.

However, it must be acknowledged, that these findings 
in no way detract from the literature supporting the asso-
ciation between PbtO2 and ORx, with long-term outcomes 
in TBI [2, 3, 7, 8]. PbtO2 derived indices, however taking 
into account much slower fluctuations in raw physiology and 
waves than those raw signals utilized for PRx calculation, 
may still provide important prognostic information in TBI, 
and thus should not be discounted. We merely suggest that 
using them for the interpretation of cerebrovascular reactiv-
ity, or derivation of individualized CPP targets, should be 
done so with caution at this time. The results from the phase 

II randomized control trial comparing therapy directed at 
PbtO2 and ICP, versus ICP alone, confirm the role of PbtO2 
in TBI care [2]. These results have subsequently sparked 
the ongoing phase III study, the Brain Oxygen Optimiza-
tion in Traumatic Brain Injury III (BOOST-3) trial, and 
have received support from the recent international Seattle 
consensus meeting regarding TBI care guidelines [37, 38].

4.1 � Limitations

Despite the important preliminary findings in this study, 
there exist some limitations which deserve highlighting. 
First, this is an entirely exploratory analysis into the statis-
tical time-series properties of ICP, MAP and PbtO2 slow-
waves in a small cohort of 47 patients. Thus, the results from 
this analysis should remain exploratory in nature, until fur-
ther validation occurs. With that said, the findings here are 
supported from previous analysis of ORx and its association 
with other cerebrovascular reactivity indices in TBI [11, 12].

Second, this cohort is one that underwent active treat-
ment for ICP and CPP during the course of their ICU care. 
Thus, any administered therapies could have potentially 
impacted the relationships between the recorded signals 
and their slow-waves. Furthermore, we did not have high 
temporal sampling of PaO2 in this cohort. Thus, the rela-
tionship between arterial oxygen content and PbtO2 could 
not be commented on in this study. It is well known that 
PbtO2 levels are influenced by a variety of factors involved 
in oxygen uptake, transport and end-organ delivery, from the 
alveolar-capillary interface in the lungs, all the way to the 
blood–brain-barrier. Thus, anything which interferes with 
oxygen delivery to the alveolar-capillary interface, diffusion 
in the lungs, hemoglobin concentration/binding, delivery to 
the blood–brain-barrier (ie. cardiac output/cerebral blood 
flow), diffusion into the cerebral extracellular space, and end-
organ use within the respiratory chain of oxidative metabo-
lism, may have a direct impact on the recorded PbtO2 levels. 
In particular, the relationship between PaO2 and PbtO2 is 
well documented, were PaO2 levels below ~ 100 mmHg have 
been shown to directly impact recorded PbtO2 [36]. This 
and other systemic aspects which impact PbtO2 were not 
accounted for within this small exploratory study. However, 
again, despite this, the findings of our work are corroborated 
by previous literature on the topic.

Finally, we used 10-s resolution data for ICP, MAP and 
PbtO2. As mentioned, PbtO2 is a measure of extracellular 
oxygen diffusion, and subject to much slower frequency of 
physiologic response times compared to raw ICP and MAP. 
As such, some studies in TBI have used long windows of data 
in the derivation of ORx [20]. We did not evaluate the impact 
of window length in this study, as such large data windows 
evaluate ultra-low frequency below the optimal frequency 
ranges associated with cerebrovascular reactivity [39, 40]. At 
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this point in time, it is uncertain if such metrics derived from 
long window lengths, or lower temporal resolution data, carry 
any information regarding cerebrovascular reactivity [29]. 
Consequently, we focused on 10-s-by-10-s slow-wave data.

As the goal of this study was to report the statistical rela-
tionship over time of raw recorded cerebral physiology, we 
did not focus on the derivation of cerebrovascular reactiv-
ity indices, and comparing between different groups based 
on the values of these indices. The cohort too small for 

Fig. 1   VARIMA IRF Plots for ICP/MAP, PbtO2/MAP, and PbtO2/
ICP—Patient Example. ICP intracranial pressure, IRF impulse 
response function, lags refers to number of time points where 1 lag 
is 10-s, MAP mean arterial pressure, PbtO2 brain tissue oxygen, VAR-
IMA vector autoregressive integrative moving average. All VARIMA 
models were constructed using an autoregressive order of 4, integra-

tive order of 1, and moving average order of 4. The IRF plots display 
the response of one physiologic variable to one standard deviation 
impulse of the other. Of note, there is minimal response of PbtO2 to 
an impulse in MAP or ICP, with a quite extended duration low level 
elevation in PbtO2 to MAP impulse that fails to return to baseline 
even after 5 min worth of lags
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subgroup analysis of this nature. In addition, the definition 
of who has “impaired” versus “intact” cerebrovascular reac-
tivity in TBI is still unclear at this time. There are literature 
defined thresholds for certain indices (like PRx), but these 
are based on association with 6-month dichotomized clini-
cal outcomes [41, 42]. These thresholds do not necessarily 
indicate who does or does not have impaired cerebrovascular 
reactivity. With that said, we have recently evaluated the 
insult burden of ICP, PRx and PbtO2 in our resent publica-
tion [43]. Again, here we don’t have a good definition of 
what defines impaired reactivity, and only are able to provide 
% time and dose above/below thresholds associated with 
global patient outcome. As such, the results of this current 

study are to be validated in a much larger cohort of TBI 
patients with PbtO2 monitoring, from the emerging CAHR-
TBI dataset in Canada [44], with a plan to evaluate various 
subgroups.

The results within this study are experimental/explora-
tory in nature. There is a need for future validation of these 
results in larger cohorts with PbtO2 data. Similarly, if one 
wanted to focus entirely on the vasogenic frequency range 
associated with cerebrovascular reactivity, application of 
various band pass filtering techniques prior to signal deci-
mation would allow for this. Further, altering the window 
length of physiology evaluation also needs to occur, as these 
relationships may be different depending on the time or day 

Fig. 2   Tri-Variate VARIMA Model IRF Plot—ICP, MAP and 
PbtO2—Patient Example. ICP intracranial pressure, IRF impulse 
response function, lags refers to number of time points where 1 lag 
is 10-s, MAP mean arterial pressure, PbtO2 brain tissue oxygen, VAR-
IMA vector autoregressive integrative moving average. The tri-vari-

ate VARIMA model was constructed using an autoregressive order 
of 4, integrative order of 1, and moving average order of 4. The IRF 
plots display the response of one physiologic variable to one standard 
deviation impulse of the other. Of note, there is minimal response of 
PbtO2 to an impulse in MAP or ICP
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post-injury. This work is part of the planned analysis for 
our group and other collaborative efforts in the area of high 
frequency physiologic signal analysis in TBI patients. The 
results here provide a platform to move forward with this 
type of complex time-series analysis.

5 � Conclusions

There is a reproducible relationship between slow-wave fluc-
tuations of ICP and MAP, as demonstrated across various 
time-series analytic techniques. PbtO2 does not appear to 
reliably respond in time to slow-wave fluctuations in MAP, 
as demonstrated on various VARIMA models across all 
patients. These findings suggest that PbtO2 should not be 
utilized in the derivation of cerebrovascular reactivity met-
rics in TBI, as it does not appear to be responsive to changes 
in MAP slow-waves, over a time scale commonly associated 
with cerebrovascular reactivity.
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