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Abstract (150 words) 

Myeloproliferative neoplasms (MPN) are a set of chronic hematopoietic neoplasms with 

overlapping clinical and molecular features. Recent years have witnessed considerable 

advances in our understanding of their pathogenetic basis. In addition, due to their 

protracted clinical course, the evolution to advanced hematological malignancies, and 

the accessibility of neoplastic tissue, the study of MPNs has provided a window into the 

earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority 

of MPN patients now bear an identifiable marker of clonal disease. However, the 

mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. 

We are beginning to understand better the role of JAK2V617F homozygosity, the function 

of co-mutations in epigenetic regulators and spliceosome components, and how these 

mutations cooperate with JAK2V617F to modulate MPN phenotype. 
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Main Text  

10,200 words allocation (inc figures/tables each using 300-600 word space) 

 

1.1 Introduction  

 

Myeloproliferative neoplasms are chronic hematological disorders with an incidence of 

0.5-2 per 100,000 per year, and are characterised by the overproduction of one or more 

mature myeloid blood cell lineages. Clinical features include splenomegaly, thrombosis 

or  hemorrhage, and around five percent of patients suffer progression to more advanced 

disease, which can include transformation to acute myeloid leukemia (AML). 

Descriptions of patients with these disorders have been found dating back to the 

nineteenth century1, and in 1951, William Dameshek coined the term ‘myeloproliferative 

disorders’ to group together a number of hematological conditions, including chronic 

myelogenous leukemia (CML), essential thrombocythemia (ET), polycythemia vera (PV) 

and myelofibrosis (MF), due to their closely overlapping clinical and laboratory features.2 

The current World Health Organization (WHO) classification of myeloproliferative 

neoplasms separates CML, defined by the presence of the Philadelphia (Ph) chromosome 

(t(9;22)), from the three main Ph-negative myeloproliferative neoplasms (MPN) which 

are the focus of this chapter – polycythemia vera (PV), essential thrombocythemia (ET) 

and myelofibrosis (MF)3. PV is characterised by erythrocytosis and bone marrow 

panmyelosis, and is occasionally accompanied by neutrophilia and/or thrombocytosis. 

Patients with ET display a more isolated thrombocytosis. MF is a more advanced form of 

MPN associated with bone marrow collagen deposition, often in the context of bone 

marrow myeloid proliferation, and patients may have peripheral blood cytopenias with 

leucoerythroblastosis, splenomegaly and constitutional symptoms. In a minority of 

patients with ET, features of PV can develop over time. In addition, both ET and PV 

patients can transform to more advanced disease such as MF. AML, a serious 

complication of these conditions that carries a poor prognosis, occurs rarely and can 

affect all MPN subtypes (Figure 1). 
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Figure 1. The Philadelphia-negative myeloproliferative neoplasms (MPN). ET (essential 

thrombocythemia) and PV (polycythemia vera) are chronic phase MPNs characterised by 

thrombocytosis and increased erythrocytosis respectively. MF (myelofibrosis) is a more advanced 

phase of MPNs which can also evolve from ET or PV. MPNs can occasionally transform to AML 

(acute myeloid leukemia).  

 

In latter parts of the twentieth century, the identification of the Ph chromosome in 

patients with CML revealed that acquired chromosomal aberrations can underlie 

cancer4,5. Subsequent X-chromosome inactivation studies in females with MPNs revealed 

that these disorders were also clonally derived neoplastic proliferations, but their 

genetic basis was unclear6–10. In was not until the early twenty-first century, that we 

began to understand the genetic aberrations in MPNs, and, with the advent of next 

generation sequencing technologies, MPNs are now one of the best characterised of 

hematological malignancies. This review discusses the genetic basis of MPNs, our current 

understanding of the molecular and cellular pathogenic processes involved, and how our 

knowledge of MPN biology has been harnessed to improve the management of patients.  

 

1.2 Mutations in JAK2 in the majority of MPNs  

 

Dameshak’s recognition of the interrelatedness of the different subtypes of 

‘myeloproliferative disorders’ was highly prescient, as in 2005, landmark findings 

showed that a mutation in the gene JAK2 “janus kinase 2” (chromosome (chr) 9p24) was 

found in the majority of MPN patients11–14. The somatically acquired point mutation G>T 

that results in a valine to phenylalanine at the 617 position (V617F) in exon 14 of JAK2 

(JAK2V617F), together with rare insertions and deletions in exon 12 that were discovered 
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subsequently15, are found in the vast majority of patients with PV. In addition, JAK2V617F is 

also found in over half of patients with ET or MF. As a result of this, JAK2 mutation 

testing has now become firmly embedded as a front line investigation in clinical 

diagnostic algorithms for patients with a suspected MPN3,16,17. In addition, in a short 

space of time, the discoveries have led to the development of inhibitors of JAK2. 

Ruxolitinib, the first food and drug administration (FDA)-approved JAK1/JAK2 inhibitor, 

has proven to be a valuable addition to the armamentarium of treatments for MF18,19, and 

additional JAK2 inhibitors are currently undergoing evaluation in clinical trials. 

 

1.2.1  JAK2 in normal hematopoiesis 

 

JAK2 is a member of the Janus Kinase family of cytoplasmic tyrosine kinases (comprising 

JAK1, JAK2, JAK3 and TYK2), that associate with the intracellular surface of cytokine 

receptors to mediate downstream signalling in response to ligand binding. JAK2 

activation is important for responses to a wide variety of cytokines, such as, 

erythropoietin (Epo), thrombopoietin (Tpo), granulocyte colony stimulating factor (G-

CSF), interleukin-3 and -5 (IL-3 and IL-5), as well as interferons (IFN)20. All of these 

receptors lack catalytic activity, and therefore, require JAK proteins, with which they 

interact, to allow signal transduction. Following ligand binding, receptor re-

conformation or dimerization leads to the trans-phosphorylation of receptor bound 

cognate JAK2 molecules, which results in JAK2 kinase activation. This rapidly leads to 

cellular signal transduction through binding, phosphorylation, activation and nuclear 

translocation of downstream STAT transcription factors, as well as activation of MAP 

kinase and PI3K/Akt signalling pathways, to result in cell proliferation and 

differentiation. In myeloid cells, the JAK2-STAT5 signalling pathway is a critical 

downstream effector of Epo signalling21, and mice deficient in the Epo receptor (EpoR)22, 

JAK220 or STAT523 die in utero due to ineffective erythropoiesis. Tpo signalling via its 

receptor MPL also utilises JAK2. However, in addition to STAT5, activation of the MAP 

kinase pathway and STAT3 have been shown to be important for megakaryocytic 

differentiation24,25. Granulocytic differentiation, via G-CSF and its receptor G-CSFR, 

occurs predominantly through JAK1, and to a lesser degree via JAK226. Thus, in 

hematopoiesis, JAK2 is a critical mediator for effective erythropoiesis, megakaryopoiesis, 

and to a lesser extent, granulopoiesis.  

 

1.2.2 Molecular consequences of JAK2 mutations 
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The vast majority of JAK2 mutations, and particularly V617F, are located in or around the 

JH2 domain of the protein, which is also known as the ‘pseudokinase’ domain because it 

lacks conserved motifs typically required for kinase activity (Figure 1). The JH2 domain 

is a critical negative regulator of the  upstream JH1 ‘kinase’ domain of the protein. Loss-

of-function mutations in, or deletions of, JH2 domains of various JAK proteins (including 

deletion of JH2 in JAK2) result in increased kinase activity, activation of downstream 

effectors, and abrogation of a cytokine mediated response27–29. Recently, it has been 

proposed that JH2 and kinase domains interact intermolecularly to maintain JAK2 in an 

inactive state. Receptor ligand binding induces separation of this interaction, with 

subsequent pairing of intermolecular JAK2 kinase domains which results in JAK2 

activation30. Crystal structure studies of the JH2-JH1 domain of TYK2, as well as 

molecular modelling studies of JAK2, have also shown that JH2 interacts with JH1 to 

stabilise it in an inactive state31,32. As a result of these studies, the current model is that 

the JH2 domain normally functions to inhibit basal JH1 kinase activation in the absence 

of cytokines, and is required for JAK2 activation in response to cytokines.  

 

Figure 2. Model depicting the protein domains of JAK2. The FERM (4.1 protein, ezrin, radixin, 

moesin) domain is involved in receptor interaction. The SH2 (Src Homology 2) domain allows 

interaction with other proteins to aid tyrosine kinase signal transduction. JH2 (JAK homology 2) is 

the pseudo-kinase domain that negatively regulates the adjacent JH1 kinase domain. V617F is the 

commonest JAK2 mutation and locates to the JH2 domain. JAK2V617F is found in the vast majority of 

patients with PV, and over half of patients with ET or MF. Exon 12 mutations are found in many 

patients with JAK2V617F negative PV but not in patients with ET. The mutations consist of DNA 

insertions or deletions and affect the SH2-JH2 linker region of the protein. N, N-terminus; C, C-

terminus. 

 

Acquisition of V617F results in constitutive tyrosine phosphorylation and activation of 

JAK211. At the structural level, V617F, as well as other mutations such as those in Exon 
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12, are believed to destabilise the JH2-JH1 auto-inhibitory interaction to result in JAK2 

hyper-activation, possibly via conformation changes to the SH2-JH2 linker32. The JH2 

domain of JAK2 has also been shown to itself bind ATP and phosphorylate sites that 

negatively regulate JAK2 kinase activity33. Disruption of this ATP binding has been 

shown to abrogate V617F mediated JAK2 kinase activation without affecting wild-type 

JAK2 function34, data which may be of future importance for the development of V617F 

targeted therapies in MPNs. Overall, it is possible that multiple mechanisms contribute to 

the constitutive activation of JAK2 as a result of V617F.  

 

Overactivation of many participants of JAK-STAT signalling, such as STAT5, STAT3, MAP 

kinase, ERK1/2 and Akt have been detected in the context of  JAK2V617F.11,12 Of these, 

STAT5 has emerged as the critical downstream effector. Inability to activate STAT5 

through transcriptional inhibition by shRNA, or by Stat5 deletion, abrogates cytokine 

independent proliferation of JAK2V617F expressing Ba/F3 cells (Basel F4 cell line), and 

erythrocytosis in JAK2V617F expressing transgenic mice35,36. STAT5, in turn, has been 

reported to be involved in JAK2V617F mediated deregulation of transcription of a wide 

variety of genes which include MYC, PIM, JUNB, ID1, BCL-xL and cell cycle regulators, 

resulting in increased myeloid lineage differentiation, inhibition of apoptosis, and 

proliferation37–41.  

 

In addition to canonical signalling via STAT or alternative effector pathways, it is worth 

noting that JAK2V617F has also been shown to have non-canonical roles in cell function. 

For example, JAK2V617F has been shown to phosphorylate, and thus reduce the arginine 

methyltransferase activity of, PRMT5 to result in chromatin remodeling, a mechanism 

which has also been shown to contribute to increased erythroid proliferation42. In 

addition, JAK2V617F has been shown to directly phosphorylate histone H3 at the Y41 

position within the nucleus, which results in transcriptional changes via dislocation of 

the transcription factor HP143.  

 

1.2.3 Effect of JAK2V617F on HSCs  

 

The fact that MPNs emerge and are propagated over time requires that JAK2V617F is 

mutated in a cell that harbours long-term self-renewal capacity. Indeed, JAK2V617F is 

detectable in early hematopoietic stem/progenitor cells (HSC) that have been isolated by 

flow cytometry using cell surface markers characteristic of such populations 

(CD34+CD38-CD90+Lin-), as well as in multi-lineage myeloid, and in some studies, 
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lymphoid cells44–46. In addition, using conditionally expressing JAK2V617F knock-in mouse 

models, MPN disease propagating cells have been shown to be HSCs with long term self-

renewal capacity (LT-HSC)47.  

 

However despite these data, there are numerous lines of evidence that suggest that 

JAK2V617F does not impart a strong clonal advantage to HSCs. In patients, JAK2V617F allele 

burdens remain stable over decades, and often at very low levels, rather than gradually 

increasing48,49. When assessing the CD34+CD38- (containing HSC/progenitor) cell 

compartment of JAK2V617F-mutated MPN patients with PV and ET, significant clonal 

expansion has not been demonstrated50. In addition, CD34+ (containing HSC/progenitor) 

cells from PV patients harbouring JAK2V617F display poor engraftment in 

NOD/SCID/IL2R-gamma-null mice, compared with wildtype cells51,52. Recently, JAK2V617F 

has also been demonstrated in the blood of normal individuals that lack any overt MPN 

phenotype53–55. Furthermore, JAK2V617F-mutated LT-HSCs in some conditional JAK2V617F 

knock-in mouse models demonstrate an impairment of self-renewal activity when tested 

in competitive re-transplantation experiments56,57, and utilizing the same model, 

JAK2V617F has been shown to confer a proliferative advantage to progenitor cells with loss 

of self-renewal at the level of HSCs58.  

 

As a results of these data, it has been proposed that additional somatic mutations, 

acquired either at the level of HSCs or progenitors, confer the self-renewal advantage 

required to maintain JAK2V617F-mutated MPNs. Indeed, JAK2V617F-mutated HSC/progenitor 

cells from in patients with MF, who are known to harbour greater numbers of 

concomitant somatic mutations, do show clonal expansion as well as displaying better 

engraftment in NOD/SCID/IL2R-gamma-null mice51,59. This ability of other mutations to 

enhance the clonal advantage of JAK2V617F-- HSCs or progenitors has been demonstrated 

in studies investigating TET2-JAK2 co-mutations, using either stem/progenitor cells from 

patients60,61, or in transgenic mouse models62,63.  

 

It is worth noting, however, that in a significant number of JAK2V617F-mutated patients, 

additional somatic mutations have not been demonstrated64. This suggests that other 

factors may modulate stem cell function in the context of JAK2V617F, to result in the 

development of an MPN. 

 

1.2.4 Factors influencing phenotype in JAK2V617F -mutated MPNs 
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JAK2V617F is associated with a spectrum of hematological phenotypes, ranging from an 

infrequent finding in normal individuals with no blood count abnormalities, to any one of 

ET, PV, or MF. It is also rarely seen in patients with chronic myelomonocytic leukemia 

(CMML) and refractory anemia with ringed sideroblasts and thrombocytosis (RARS-T)65. 

A number of genetic and physiological factors have been shown to modulate the clinical 

phenotype mediated by JAK2V617F. 

 

A. Influence of homozygosity for JAK2V617F  

 

JAK2V617F is commonly found as a homozygous mutation in MPNs, and occurs following 

mitotic recombination and uniparental disomy at the JAK2 locus on chromosome 9p2466. 

Previously, clonal analysis of hematopoietic colonies from MPN patients had established 

that homozygosity for JAK2V617F was found in PV patients but not those with ET67, and 

this data was in keeping with the observation that PV patients harboured a higher 

mutant allele fraction of JAK2V617F in peripheral blood, compared with ET patients14. 

More recently, it has come to light that homozygosity for JAK2V617F occurs in both ET and 

PV patients68. In fact, patients have been found to each harbour multiple acquisitions of 

homozygosity, with each homozygous JAK2V617F subclone distinguishable, using 

microsatellite screening, by its distinct chromosomal breakpoint and length of 9p24 

loss-of-heterozygosity (LOH)68. Interestingly, in PV patients, dominance of one of these 

homozygous clones is seen, whereas in ET patients, these homozygous subclones 

remain minor in comparison to the dominance of the heterozygous JAK2V617F clone68.  

 

The proportion of homozygosity for JAK2V617F also correlates with more extreme 

features of PV, such as a higher hemoglobin and white count, and more marked 

splenomegaly69–71. These observations hold true both in studies where levels of 

homozygous JAK2V617F versus heterozygous JAK2V617F are determined by analysis of 

individual hematopoietic colonies, as well as in studies that have measured the overall 

mutant allele fraction of JAK2V617F by quantitative PCR, to infer the presence and 

proportion of homozygosity. Using the latter methodology, it is worth noting that whilst 

greater than 50% mutant allele fractions imply the presence of cells harbouring 

homozygous JAK2V617F, allele burdens of less than 50% allele burdens may be 

representative of heterozygous cells, homozygous cells or a combination of both. 

Regardless of this ambiguity, these studies have established the notion that 

homozygosity for JAK2V617F drives erythropoiesis, whereas heterozygosity for JAK2V617F 

drives thrombopoiesis.  
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The distinct effects of differential ‘doses’ of JAK2V617F are supported by transgenic mouse 

models which have shown that increased expression of JAK2V617F results in a phenotype 

shift from ET to PV56,72. Furthermore, data from induced pluripotent stem (iPS) cells 

developed from MPN patients harbouring either heterozygous or homozygous JAK2V617F 

cells show differing responses to Epo, with only heterozygous JAK2V617F iPS cells capable 

of producing Tpo independent megakaryocyte colonies73. From murine models, 

homozygous JAK2V617F has been shown to result in stronger activation of downstream 

STATs, ErK1/2 and Akt56,74. However, the exact downstream consequences of 

heterozygous versus homozygous JAK2V617F that result in its distinct effects on 

differentiation remain unknown. 

 

B. Differential signalling downstream of JAK2V617F  

 

Studies of patient bone marrow trephines and CD34+ cells have reported differential 

activation of JAK-STAT signaling components that correlate with MPN subtype. Results 

of these studies are variable but overall show increased STAT5 and STAT3 activation in 

PV and MF, compared with ET50,75. This suggests that there may be qualitative 

differences in JAK2V617F mediated signaling across disease phenotypes. However, due to 

the bulk analysis of samples, that comprise both tumor and normal tissue, one cannot 

exclude the possibility that these differences may, at least in part, reflect the differential 

consequences of the varying proportions of tumor burden, or the different genotypes for 

JAK2V617F, present across the MPN subtypes. To circumvent some of these confounding 

issues, a gene expression study comparing wild-type to heterozygous JAK2V617F 

hematopoietic colonies from PV and ET patients (thereby controlling for interpatient 

differences) has shown that whilst STAT5 activation is common to both patient groups, 

ET patients also demonstrate activation of STAT176. In keeping with this, attenuation of 

STAT1 activity in a transgenic JAK2V617F mouse model of PV has also demonstrated a 

skew towards erythropoiesis77. Given that some PV patients do not harbour JAK2V617F 

homozygosity48,68, it is possible that such qualitative differences in heterozygous 

JAK2V617F mediated signalling may also play a part in determining MPN phenotype.   

 

C. Additional patient factors  

 

The observation that PV is more common in males whereas ET is more frequent in 

females suggests that gender specific factors, such as androgen and estrogen levels, 
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and/or iron status in premenopausal women, may also influence JAK2V617F-mediated 

MPN phenotype3,78. Higher mutant allele burdens for JAK2V617F have been reported in 

males compared with females, in keeping with a more prevalent PV phenotype in men79. 

One interpretation of this data is that males may be more likely to develop 

homozygosity for JAK2V617F. However, recent data has shown that homozygosity occurs 

equally commonly in both genders, and that while homozygosity was associated with 

males in PV, it was also associated with ET in females71. This  raises the possibility that 

gender specific factors may differentially affect the degree of expansion of homozygous 

JAK2V617F subclones to influence MPN phenotype. For example, it is possible that 

following the acquisition of homozygous JAK2V617F, subclonal expansion could be 

promoted by male androgens to result in PV in males, whereas constrained by 

premenopausal iron deficiency in females to result in ET. Similarly, other constraints on 

erythropoiesis, for example, germline thalassemia traits, chronic renal insufficiency, or 

low endogenous Epo levels48, may also contribute to the development of an ET 

phenotype, rather than PV. Of interest, studies of germline polymorphisms in ET and PV 

patients have also identified potential sites within JAK2 and EpoR80, as well as other 

SNPs such as rs9376092 (HBS1L/MYB)81 that are associated with specific MPN 

subtypes.  

 

About 50% of the population attributable risk of developing an MPN can be accounted 

for by the presence of a JAK2 constitutional 46/1 or ‘GGCC’ haplotype82. Carriers of this 

haplotype, either in a heterozygous or homozygous state, show an increased incidence of 

MPNs. However, it is unclear, whether the risk allele leads to a more frequent acquisition 

of JAK2V617F (‘hypermutability hypothesis’) or that following acquisition of JAK2V617F, 

patients with the allele are more likely to develop an MPN (‘fertile ground hypothesis’). 

In addition to the JAK2 46/1 haplotype, another germline sequence variant 

(rs2736100_C) in the gene TERT has also been reported in the Icelandic population to be 

associated with an increased risk of MPN, as well as higher blood count indices in the 

absence of an overt MPN diagnosis83. Neither of these germline changes have been 

shown to be associated with a specific MPN subtype. However, recent studies that have 

demonstrated the presence of JAK2V617F within normal individuals (haplotype status 

unknown) who lack any clinical features of MPN, raise the possibility that the presence 

or absence of such germline factors may influence whether any downstream pathological 

consequences follow acquisition of JAK2V617F. 

 

D. Role of other mutations  
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Targeted and whole-exome sequencing have identified additional mutations in some 

MPN patients and these may modulate JAK2V617F phenotype, as will be discussed later in 

this review. For example, mutations in ASXL1 are prevalent in MF, and TP53 loss as well 

as IDH1/2 mutations are common at the time of leukemic transformation64,84–86. 

Mutations in SRSF2, IDH1/2, EZH2 and U2AF1 have all been shown to be more prevalent 

in MF patients, in whom their presence carries a poor prognosis in terms of overall 

survival and leukemic progression85,87. There is also evidence that coexisting mutations 

may modulate MPN phenotype during chronic phase disease. For example, in patients 

with PV, heterozygous truncating mutations in NF-E2 have been shown to enhance 

wildtype NF-E2 function and promote erythrocytosis88. 

 

In summary, a number of factors have been identified to be important in determining the 

phenotype, if any, that results following acquisition of a JAK2 mutation (Figure 3).  

 

 

Figure 3. A model depicting the factors that are known to influence the development, and the 

resulting phenotype, of JAK2V617F-mutated MPNs. 
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1.3 Other mutations affecting JAK-STAT signalling in a minority of MPNs 

 

Up to 50-60% of ET and MF patients do not harbour mutations in JAK2. Somatically 

acquired mutations in the gene MPL (Myeloproliferative leukemia virus oncogene; 

1p34), have been shown to be present in roughly four percent of ET patients and up to 

ten percent of patients with MF89,90. MPL encodes for the receptor of Tpo, the main 

megakaryopoiesis stimulating cytokine, thus explaining the lack of these mutations in 

PV. MPL mutations commonly affect the W515 position in exon 10, but other mutations 

are also rarely seen, such as S505N, which is also found as a germline change in some 

patients with familial thrombocythemia91,92. In the vast majority of patients, JAK2 and 

MPL mutations are found in a mutually exclusive manner, which suggests that MPL 

mutations coopt similar molecular processes to those resulting from JAK2V617F in causing 

an MPN. The juxtamembrane tryptophan residue W515 in MPL is required to maintain 

an inactive receptor state in the absence of Tpo binding93. W515 mutations result in loss 

of this function with resultant constitutive activation of downstream signaling pathways, 

in a manner reminiscent of the downstream consequences of V617F in JAK2. But whilst 

different murine models of JAK2V617F exhibit disease phenotypes ranging from ET to PV 

and MF47, murine models of MPL mutations develop a disease marked by thrombocytosis 

with features of ET and MF94. These differences in disease phenotype in animal models 

mimic the clinical spectrum of MPNs with which these different mutations are 

associated, and are probably reflective of the differing expression patterns, and cytokine 

selectivity of JAK2 and MPL in hematopoietic progenitors.  

 

There are additional targets within the JAK-STAT pathway that can also be infrequently 

affected by somatic mutations in MPNs. SH2B3 (LNK), an inhibitor of EPO and TPO 

signalling, harbours loss of function mutations in 2-6% of all MPN subtypes and is 

associated with increased JAK-STAT signalling95,96. In addition, CBL mutations, which are 

found in 5-10% of MF patients, as well as secondary AML or other myeloid malignancies, 

abrogate the ubiquitin ligase activity of wildtype CBL, resulting in reduced degradation 

of tyrosine kinases and prolonged activation of intracellular signalling84,97,98. These 

mutations are not specific to JAK2 or MPL-unmutated MPN patients, and there is data to 

support that their presence alters clinical phenotype99.  

 

1.4 Mutations in CALR in MPNs 

 

Following the discoveries of mutations in JAK2 and MPL, around forty percent of patients 
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with ET and MF still lacked a clonal marker. Diagnosing these patients in the clinical 

setting would invariably require bone marrow biopsies and multiple investigations. 

Researchers hypothesized that other candidates within the JAK-STAT signaling pathway 

may be involved but no such abnormalities were identified. With the advent of next 

generation sequencing technologies, it soon became possible to perform whole exome or 

whole genome sequencing of patient samples, as well as of single tumour cells. Single cell 

whole exome sequencing of a JAK2-unmutated MPN revealed that these patients did 

harbour a clonal proliferation as somatic mutations were identified, however, the 

mutations were not found to be recurrent amongst other patients100. In late 2013, two 

whole-exome sequencing studies of MPN patients, identified recurrent somatic 

mutations in the gene CALR, which encodes the gene calreticulin64,101. These mutations 

were found in 60-90% of patients with JAK2 and MPL-unmutated ET or MF, and not in 

patients with PV. This discovery now meant that, with the exception of 10-15% of ET or 

MF patients negative for mutations in JAK2, MPL or CALR, most MPN patients had a 

diagnostic marker for their disease (Figure 4).   

 

 

Figure 4. MPN subtypes and the frequency of mutations in JAK2, CALR or MPL.  

 

 

CALR mutations have also been infrequently found in myelodysplasia (MDS), refractory 

anemia with ringed sideroblasts and thrombocytosis (RARS-T) and, very rarely, in cases 

of atypical chronic myeloid leukemia or chronic myelomonocytic leukemia (CMML). Thus 

far, CALR mutations have not been demonstrated in lymphoid malignancies, solid 

tumours or healthy controls64,101. Very rare cases of polycythemia vera have also been 

found to harbour CALR mutations, however, the possibility that these patients harboured 

an alternative reason for manifesting an erythrocytosis were not excluded102. Overall, 

CALR mutations demonstrate a striking specificity for JAK2-unmutated ET and MF that is 

highly reminiscent of the disease spectrum associated with mutations in MPL.  

 

CALR mutations in MPNs affect the terminal exon of the gene. All mutations are 
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insertions or deletions, and 85% of patients harbour one of two common mutations: a 

52-bp deletion known as Type 1 (c.1092_1143del; L367fs*46; 44-53% of cases) or a 5-bp 

insertion known as Type 2 (c.1154_1155insTTGTC; K385fs*47; 32-42% of cases) (Figure 

4). The remaining 15% of patients harbour alternative insertions, deletions or a 

combination of both103. Intriguingly, regardless of the exact mutation in CALR, the effect 

of the mutation is to shift the reading frame of the mRNA by 1 base pair, which leads to 

the coding of a novel amino-acid peptide sequence distal to the site of the mutation, and 

the generation of a mutant CALR protein with a novel C-terminus. This is in contrast to 

other genes affected by insertions or deletion mutations where there is often premature 

truncation of the protein sequence, with resultant loss-of-function. The fact that all CALR 

mutations lead to the generation of one particular terminal amino-acid sequence 

strongly suggests that these mutations are gain-of-function, much like mutations in JAK2 

or MPL (Figure 5).  

 

 

 

Figure 5. CALR mutations. The intron-exon structure is shown along the top of the picture. The 

terminal exon 9 is affected by two common mutations: a 52 base pair deletion (Type 1 or 

L367fs*46) or a 5 base pair insertion (Type 2 or K387fs*47). Both mutations result in a shift in 

the reading frame of the mRNA to result in a new amino acid sequence (blue amino acids) and a 

common novel peptide sequence (blue shading in bottom panel).  

 

 

Unlike JAK2 or MPL that are proteins involved in cytokine receptor signaling in 

hematopoiesis, calreticulin is an endoplasmic reticulum (ER) chaperone protein. CALR 

ensures the proper folding of newly synthesized glycoproteins within the ER and has a C-
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terminal –KDEL amino acid motif, that ensures its retention within the ER. However, 

CALR has also been implicated in a number of other roles both within and outside of the 

ER, including calcium homeostasis, immunogenic cell death, proliferation and 

apoptosis104,105. How these functions of CALR may relate to the pro-megakaryocytic 

proliferation seen in the context of the mutated protein is unknown. Mutant calreticulin 

no longer has a –KDEL motif, but studies that have looked at any potential 

mislocalization of the mutant protein have not yielded consistent results64,101. In 

addition, mutant calreticulin no longer harbours the low-affinity high-capacity calcium 

binding potential of the wildtype function106, and it is possible that this alteration 

disrupts ER function in a way that perturbs megakaryopoiesis (Figure 6).  

 

 

 

 

 

Figure 6. Model depicting the domains of CALR and the predicted effect of CALR mutations. 

Mutant CALR results in the generation of a novel C-terminus that lacks KDEL as well as calcium 

binding sites. N, N-terminus; N domain, Lectin binding domain; P domain, proline rich domain; C 

domain, calcium binding C-terminal domain; KDEL, endoplasmic reticulum retention signal. 

Possible mechanisms by which the generation of mutated CALR may disrupt megakaryopoiesis 

are listed below the protein.  

 

 

Preliminary evidence using gene-expression arrays107 and transfected cell lines101 
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suggested that mutant calreticulin may also lead to overactivation of JAK2-STAT5, 

however, a study of a CALR-mutated cell line has found no activation of this pathway, or 

sensitivity to JAK-inhibitor treatment108. The downstream consequences of mutant CALR 

are currently under investigation and some possible mechanisms include the alteration 

of the structure, trafficking or activation status of the TPO receptor MPL, or alternatively, 

activation of megakaryopoiesis through altered calcium signalling. Interestingly, mutant 

CALR expression has been shown to be restricted to megakaryocytes in patient bone 

marrow trephines109, data which helps explain why these mutations are predominantly 

associated with MPN subtypes such as ET or MF that are typified by abnormal 

megakaryopoiesis109.   

 

1.5 Clonal complexity 

 

MPNs had always been viewed as neoplasms with a relatively simple genomic landscape.  

This was in part because classical cytogenetic analyses had always shown that 

chromosomal aberrations were infrequent in MPNs compared with other hematological 

malignancies, with only occasional patients harbouring regions of chromosomal 

deletions, such as, del20q, del13q, trisomy 8 and del9p110. The first suggestion of clonal 

complexity in MPNs came with findings that JAK2-mutated MPNs often transformed to 

JAK2-unmutated AML111. This supported the existence of other mutant subclones in MPN, 

that were either independent of JAK2 mutations or had occurred prior to acquisition of 

JAK2V617F. The presence of multiple subclones was also supported by the finding that the 

percentage of granulocytes carrying JAK2V617F in some patients with ET and PV was 

smaller than the percentage of clonal granulocytes as determined by X-chromosome 

inactivation patterns112. Exome sequencing studies have since shown that MPN patients 

actually harbour multiple somatically acquired mutations: PV and ET patients harbour 

on average 6-7 mutations per patient, and MF patients have a greater number of 

mutations in keeping with it being a more advanced phase of disease64. In addition to 

mutations in JAK2, MPL and CALR, that are highly specific for MPNs, a number of genes, 

often mutated in myeloid malignancies in general, are also mutated in MPNs. These other 

mutations affect genes involved in DNA methylation, such as TET2, DNMT3A, 

IDH1/260,113–115, chromatin remodeling, such as EZH2, ASXL1116,117, or mRNA splicing, 

such as, SF3B1, U2AF1, SRSF2. Table 1 lists the frequencies of such mutations across the 

different MPN subtypes, alongside mutations in the genes previously discussed.  

 

Table 1. Frequency of somatic mutations in MPNs 
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Gene PV (%) ET (%) MF (%) 

JAK2 (V617F) 95-97 50-60 50-60 

JAK2 (Exon 12) 1-2 0 0 

CALR 0 25 30 

MPL 0 3-5 5-10 

CBL - 0-2 5-10 

SH2B3 

(LNK) 

2 2-6 3-6 

ASXL1 2 5-10 10-35 

EZH2 1-2 1-2 7-10 

IDH1/IDH2 2 1 5 

DNMT3a 5-10 2-5 8-12 

TET2 10-20 4-5 10-20 

SF3B1 2 2 4 

SRSF2 - - 4-17 

U2AF1 <1 <1 1-8 

ZRSR2 <1 <1 <1 

TP53 1-2 1-2 1-2 

 

1.5.1 Mutations in DNMT3A and TET2 

 

Methylation of cytosines in CpG dinucleotides, is an important epigenetic regulatory 

mechanism controlling the expression of genes. DNMT3A (DNA methyltransferase 3A) 

carries out de novo methylation, and TET2 (Ten-eleven translocation methylcytosine 

dioxygenase 2) demethylates DNA by converting 5-methylcytosine to 5-

hydroxymethylcytosine (5-hmc).  

 

Mutations in DNMT3A were first discovered in AML, and are also known to be mutated in 

around ten percent in MPNs84,118. The commonest mutation occurs at position R882, 

although loss of function mutations (for example, frameshift truncation insertions or 

deletions, or nonsense mutations) also occur. In keeping with the loss of function 

spectrum of mutations in DNMT3A, R882H has recently been demonstrated to confer a 

dominant negative effect on wildtype DNMT3A. Serial transplantation studies using 

transgenic mouse models with knock-out of DNMT3A has demonstrated that loss of 

DNMT3A results in hematopoietic stem cell compartment expansion119. In keeping with 

these data, a study of human AML has shown that DNMT3A mutations are acquired early 

in tumourigenesis, and the pre-leukemic HSCs harbouring mutated DNMT3A display a 

self-renewal advantage over wildtype HSCs120, confirming murine data that acquisition of 

mutations in DNMT3A result in a stem cell advantage.  In MPNs, DNMT3A mutations can 

occur prior to, or following, the acquisition of mutations in JAK2121 but clinically, studies 
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to date have not demonstrated any associations between DNMT3A mutations and 

alterations to MPN phenotype or outcome, and analysis of larger patient cohorts is 

required. It is likely that DNMT3A mutations function to confer a clonal advantage to 

MPN mutant clones, particularly, given data suggesting that JAK2V617F results in a self-

renewal impairment at the level of HSCs. However, mutations in DNMT3A may also 

confer a myeloproliferative phenotype, as suggested by murine models of R882H that 

display myeloid proliferation with thrombocytosis122,123.  

 

Loss of function TET2 mutations are found in 5-17% of MPN patients60,124. In terms of 

function, murine models with attenuated TET2 display HSC compartment expansion in a 

manner similar to that seen with mutations in DNMT3A. However, loss of TET2 results in 

obvious myelo-monocytic proliferation and phenotypic features resembling chronic 

myelomonocytic leukemia125. In fact, patients with myelodysplastic/myeloproliferative 

(MDS/MPN) disorders often harbour biallelic loss of TET2 either through acquisition of 

compound TET2 mutations, or loss of heterozygosity at chr4q2460,126. Patients with 

mutated TET2 have been shown to display reduced levels of 5-hmc84,127. Clinically, one 

study has shown TET2 mutations to be associated with an increased risk of leukemic 

transformation and shorter survival. However, other studies have not found such clinical 

associations121,128. Interestingly, both TET2 and DNMT3A mutations have been found in 

normal elderly females who display clonal hematopoiesis in the absence of any blood 

count parameter abnormalities129. This finding, in conjunction with data from murine 

models, suggests that TET2 mutations may confer a clonal advantage at the level of the 

HSC rather than driving the overproduction of erythroid and/or megakaryocyte cells 

that is characteristic of MPNs. Data from murine mouse models with JAK2V617F as well as 

loss of TET2 shows that TET2 may well function to confer a stem cell clonal advantage to 

JAK2-mutated cells and help propagate and accelerate disease phenotype62,130.  

 

Interestingly, the effects of TET2 and DNMT3A mutations on HSC self renewal may 

function to alter MPN phenotype over and above that of simply providing a stem cell 

advantage to MPN clones. In a study of TET2 and JAK2-mutated MPN patients, the order 

in which these mutations were acquired was found to be associated with patient age at 

presentation, presence of JAK2V617F homozygosity, incidence of thrombotic complications, 

as well as disease phenotype of ET versus PV at presentation. Therefore, it appears that 

the ability of a JAK2V617F homozygous subclone to expand, may also be related to the 

nature of competing clones within the bone marrow, as well as the other mutations 

already present within the cell at the time when JAK2V617F homozygosity is acquired. 
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1.5.2 Mutations affecting histone methylation 

 

In addition to DNA methylation, gene expression is also regulated by histone 

modifications. The polycomb repressive complex 2 (PRC2) is a transcriptional repressor 

and acts through the methylation of lysine 27 at histone H3 (H3K27me2/3) which in 

turn leads to gene silencing and compaction of chromatin. The H3K27 methyltransferase 

EZH2, which is a member of the enzymatic component of the PRC2 complex, is also 

mutated at a frequency of 3-13% in MPNs. These mutations are found most frequently in 

MF, where they represent a poor prognostic marker associated with lower overall 

survival and increased risk of leukemic transformation131. Deletion of the EZH2 

homologue in murine models results in an MDS/MPN phenotype which is exacerbated by 

concurrent deletion of TET2132. Other PRC2 components are SUZ12, EED and JARID2, but 

these genes are only rarely found to be mutated in patients with MPNs, and their clinical 

and pathological significance is currently unknown84,133.  

 

ASXL1 (Addition of Sex Combs Like 1) is a mediator of PRC2 function and also interacts 

with the nuclear deubiquitinating enzyme BAP1134. Loss of function mutations in ASXL1 

are prevalent in MDS, CMML and MF. In MF, ASXL1 mutations are found in up to a 

quarter of patients and they are associated with a more severe anemia and an inferior 

survival64,84,87,135. Disruption of the gene in murine models results in a phenotype with 

features of both MDS and MF: anemia, leucopenia, morphological dysplasia, 

extramedullary hemopoiesis and splenomegaly136. This model also displayed a block to 

erythroid differentiation and HSC expansion, features that are reminiscent of many 

patients with MF136.  

 

Overall, impairment of PRC2 function appears to be a very important pathogenic 

mechanism in malignant myelopoiesis. Interestingly, whilst the PRC2 complex is often 

affected by loss of function in myeloid malignancies, the spectrum of mutations affecting 

this complex is very different to that found in lymphoid malignancies. In the latter, gain 

of function mutations (eg Y641 of EZH2) have been reported, suggesting that differential 

PRC2 activity is important in driving myeloid-lymphoid fate decisions137.  

 

Mutations in the genes IDH1 and IDH2 have also been shown to deregulate histone 

methylation. These proteins are enzymes that catalyze the conversion of isocitrate to 

alpha-ketoglutarate. However, in the presence of mutations, the enzymes catalyze 

conversion to 2-hydroxyglutarate138, a protein that has been shown to inhibit histone 
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demethylation and attenuate hematopoietic differentiation139. In addition, alpha-

ketoglutarate has also been shown to inhibit normal TET2 function140. IDH1/2 mutations 

are present found predominantly in MF, where they confer a poorer prognosis, as well as 

in 20% of blast phase MPN patients131,132.  

 

1.5.3 Mutations affecting mRNA spicing 

 

In MDS, mutations in genes that deregulate mRNA splicing, for example, SF3B1, SRSF2, 

U2AF1 and ZRSR2 are common. SF3B1 mutations are frequent in RARS while SRSF2 

mutations are most highly recurrent in CMML142,143. Recently, it has been confirmed that 

these mutations result in altered mRNA splicing144–146, although, generation of murine 

models for these mutations have thus far proven unsuccessful. In MPNs, mutations in 

this group of genes affect about 5% of patients, with SF3B1 mutations most frequent in 

the MDS/MPN overlap syndrome RARS-T101. Some of these mutations carry a poor 

prognosis for patients with MF. Interestingly, these mutations are highly prevalent in 

triple-negative MF patients, raising the possibility that this subgroup of patients may 

actually represent patients with MDS87.  

 

All the mutations discussed thus far are not necessarily present in the same tumor 

subclone. Analyses of hematopoietic colonies, that can be grown from the peripheral 

blood of MPN patients, to effectively allow interrogation of these tumours at a single-cell 

level and reconstruction of tumour ‘histories’, has revealed that patients often harbour 

multiple tumour subclones that coexist and remain stable over long periods of time121. In 

addition, mutations in epigenetic regulators have been shown to occur both early and 

late in tumorigenesis121. While we are beginning to understand the implications of 

mutation order for TET2 and JAK2 mutations in MPNs61, the significance of mutation 

order for other genes is still unclear.  

 

1.6 Familial MPNs  

 

It has been estimated, that up to 5% of MPN patients have a family history of MPNs, as 

defined by the presence of at least two cases within a family pedigree147. Interestingly, 

affected family members also display the same spectrum of somatically acquired 

mutations in JAK2, MPL or CALR148,149. Why these family members have an increased risk 

of developing these neoplasms is unclear.  In one such pedigree, mutations in RBBP6 

were found and appeared to account for the germline predisposition to acquiring 
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MPNs150. It is worth noting that these families are not to be confused with those affected 

by hereditary erythrocytosis or thrombocytosis. In the latter cases, myeloproliferation is 

non-clonal or non-neoplastic, and is caused by a spectrum of inherited germline 

mutations in genes known to affect erythropoietin or thrombopoietin signalling82,151.  

 

1.7 Clinical impact of our current understanding of the pathogenesis of MPNs 

 

Considerable advances have been made in understanding the molecular and cellular 

consequences of the various genetic lesions that are found in MPNs. We are beginning to 

understand how multiple genetic abnormalities may interact. In addition to 

understanding the phenotypic consequences of genomic abnormalities in MPNs, our 

knowledge of the molecular aberrations in MPNs has witnessed clinical utility in three 

areas: diagnosis, prognosis and targeted therapy.  

 

1.7.1 Genotype-phenotype correlations for mutations in JAK2, MPL and CALR 

 

Prior to the discoveries of mutations in MPL or CALR, numerous studies assessed the 

clinical phenotypes of MPN patients to assess for any disease related features of 

JAK2V617F. From these studies, it became clear that JAK2V617F-mutated ET patients 

displayed many of the hallmarks of PV: patients had higher hemoglobins and white 

counts and reduced platelets compared with JAK2V617F-unmutated ET patients, as well as 

panmyelosis on bone marrow examination152,153. In addition, they displayed a propensity 

to transform to PV, particularly in females. This latter finding may, in part, be attributed 

to reduced iron deficiency, and subsequent reduced constraints on erythropoiesis, in 

post menopausal females. Prospective analysis of a large ET cohort, taking into account 

factors known to affect thrombotic risk, such as gender, age, treatment and previous 

thrombosis, has shown an increased risk of venous thrombosis attributable to JAK2V617F 

152. Therefore, the current model is that JAK2-mutated PV or ET may be better viewed as 

one disease continuum154. Factors discussed previously, such as levels of JAK2 

homozygosity or allele burden, differential signalling, other mutations as well as host 

factors (e.g. levels of iron stores, erythropoietin, gender, genetic modifiers) may 

modulate the MPN phenotype that results. Indeed, long term survival and rates of 

thrombosis in JAK2V617F PV and ET patients are very similar155, in keeping with the closely 

related biological features of these clinical entities.  
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In terms of the clinical features of MPL-mutated MPNs, studies have shown that these 

patients are, on average, older, have higher platelet counts and lower hemoglobin levels 

at diagnosis, than JAK2V617F-mutated counterparts91,156,157. In ET, MPL mutations are also 

associated with higher platelet counts and reduced bone marrow cellularity with 

reduced erythropoiesis, when compared to JAK2-mutated ET91. However, no differences 

in clinical outcome have, thus far, been demonstrated for this small subgroup of MPN 

patients in either ET or MF156,158. Interestingly, homozygosity for MPL mutations is also 

observed, although, at a far lower frequency than that observed for JAK2V617F, and such 

patients have been shown to display increased marrow fibrosis with a higher rate of 

transformation to MF159. 

 

Clinically, CALR-mutated ET is associated with a higher platelet count, lower hemoglobin 

and lower leucocyte count at presentation, compared with JAK2-mutated 

counterparts154,160.  Patients present at a younger age, which may be due to the earlier 

investigation prompted by a more severe thrombocytosis on blood count testing. Whilst 

JAK2V617F patients with ET show a female predominance, CALR-mutated ET affects males 

and females equally154,160. Interestingly, some studies have shown that CALR-mutated ET 

have a reduced incidence of thrombosis compared with JAK2V617F-mutated patients, 

which remains significant after taking into account their younger age161, however, 

another study has shown no such favorable impact162. It is likely that what is observed 

reflects the known increased risk of thrombosis imparted by JAK2V617F which comprises 

the majority of CALR-unmutated patients. Importantly, no differences in survival have 

thus far been demonstrated for the different mutation subgroups in ET155.   

 

In MF, compared with JAK2V617F-mutated patients, CALR-mutated patients again present 

at a younger age, with higher platelet counts and lower leucocyte counts, but with 

reduced anemia and transfusion dependency163,164. These patients also have a better 

prognosis in terms of overall survival and leukemia free survival compared with 

JAK2V617F-mutated patients. Furthermore, triple-negative patients (those patients lacking 

mutations in JAK2, MPL or CALR) have the worst prognosis and a more severe anemia. 

These findings are likely to be of significant importance in the future risk stratification of 

patients with MF155,154,160.  

 

1.7.2 Improvements in patient diagnosis 

 

Following the discovery of mutations in JAK2 and MPL, the WHO diagnostic criteria were 
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revised to encorporate molecular testing as a first line tool of investigation for patients 

with suspected MPNs165. The new diagnostic criteria for PV, for example, has been hugely 

simplified as a consequence of these revisions. The new WHO revision will also 

encorporate CALR testing for patients with suspected ET and MF. JAK2, MPL and CALR 

mutation screening are already firmly embedded in clinical diagnostic algorithms and a 

typical workflow is depicted in Figure 7.  

 

Figure 7. Diagnostic clinical algorithm including molecular testing for MPNs 

 

1.7.3 Prognostic impact of mutational status 

 

For patients with ET or PV, studies looking comprehensively at molecular determinants 

of prognosis are still lacking, and risk stratification systems in these MPN subtypes are 

currently still based on clinical criteria. However, CALR mutations are known to be 

predictive of reduced thrombosis in ET, compared to those with mutated JAK2154,160,163, 

and this may be relevant for future risk stratification, or antithrombotic prophylaxis, of 

patients.  

 

Within MF, mutations in a number of genes, such as ASXL1, SRSF2, IDH1/2 and EZH2 
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have also been shown to be carry prognostic value in MF, where they are associated with 

poorer survival and increased leukemic transformation87. The number of such ‘high risk’ 

mutations has also been shown to inversely correlate with median survival (ranging 

from a 12 year median survival for MF patients with no such mutations, and 2 year 

median survival for those with 2 or more mutations)166. MF patients with ‘high risk’ 

mutations are now being assessed as part of clinical studies to establish whether such 

patients may benefit from early intervention with alternative therapies. Early data 

indicates that treatment with JAK2 inhibitors such as Ruxolitinib may alter the natural 

history of such high risk patients167.  

 

During AML transformation of a preceding MPN, cytogenetic abnormalities are often 

complex. In addition, biallelic loss of TP53 is a common feature, which occurs either 

through acquisition of independent mutations on both TP53 alleles, or via monoallelic 

mutation  followed by 17p LOH86,121. Indeed, expression of JAK2V617F combined with Tp53 

loss in a murine model results in a fully penetrant AML phenotype168. Interestingly, in 

patients with AML transformation that lack mutations in TP53, alternative routes that 

effectively lead to inhibition of p53 activity have been demonstrated to be coopted by 

tumour cells, such as amplification of chromosome 1q which contains MDM4, a potent 

p53 inhibitor86.  

 

Large scale molecular characterisation of prospective MPN cohorts is required to 

establish these clinical associations further, and the hope is that such information can 

then be used to guide treatment and inform patients in the future. 

 

1.7.4 Targeted therapy 

 

Based on our knowledge of the genetic and molecular aberrations in MPNs, a number of 

therapeutic targets have emerged and are being tested in clinical trials. By far the most 

successful of all these agents have been JAK inhibitors, that emerged rapidly following 

the discovery of JAK2V617F mutations in MPNs. Ruxolitinib, the first FDA approved JAK 

inhibitor is proving to be a very useful adjunct to the treatment armamentarium for 

patients with MF, and is particularly useful at alleviating MF-related symptoms and 

splenomegaly. Interestingly, JAK2V617F status does not predict response to JAK inhibitors, 

as JAK2-unmutated patients with MF can be successfully treated with such agents. This 

suggests that JAK inhibitors do not specifically target mutant tumor subclones. In 

keeping with this notion, reductions in mutant allele fractions of JAK2V617F following JAK 
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inhibitor have not been convincingly demonstrated.  

 

1.8 Conclusions and future directions 

 

Despite MPNs representing early pre-leukemic neoplasms, evidence of intra-tumor 

clonal heterogeneity and complexity are emerging. The vast majority of patients with 

MPNs have a mutation in JAK2, MPL or CALR, but patients also often harbour other 

somatically acquired mutations as well homozygosity for JAK2V617F. We are beginning to 

understand how additional mutations, particularly those affecting TET2, interact with 

JAK2V617F to influence MPN phenotype, and work investigating the role of many other 

mutations in MPNs is ongoing. The identification of mutations in CALR have filled a large 

gap in our understanding of the genetic basis of JAK2V617F-unmutated MPNs, but has 

raised the very important question of how a mutant endoplasmic reticulum chaperone 

protein can lead to dysregulated cell signalling and excessive megakaryopoiesis.  

 

The management of patients has evolved concurrently with advances in our 

understanding of pathogenesis. JAK2, MPL and CALR testing are being utilized effectively 

for clinical diagnosis. However, 10-15% of patients with ET or MF do not harbour such 

mutations, and our understanding of pathogenic basis of these subgroups is far from 

complete. Clonality studies, whole genome sequencing and functional analysis of 

hematopoietic cells have the potential to lend further insights in these patients. Given 

that mutations commonly seen in myelodysplasia, such as mutations in epigenetic 

regulators and spliceosome genes, have been documented in triple-negative MF patients, 

and that these patients have been shown to carry a poor clinical prognosis, careful 

consideration is required as to what myeloid classification and therapy is most 

appropriate for such patients. We now have many molecular markers of prognosis for 

MF patients, and future work may also involve using this information to test alternative 

therapeutic strategies in these patients.  

 

JAK inhibitors are proving to be a very useful treatment option for MF-related symptoms, 

however, dose-limiting anemia, thrombocytopenia and an inability to delay disease 

progression are potential areas of improvement for newer agents. Mutant CALR holds 

future promise as a tumor specific therapeutic target given its neomorphic C-terminus 

and selective expression in megakaryocytes. In addition, it is hoped that continued 

advances in our understanding of the structural consequences of JAK2V617F may allow for 

it to be specifically targeted in the future.    
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