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Abstract—The problem of estimating a high-dimensional
sparse vector θ ∈ Rn from an observation in i.i.d. Gaussian noise
is considered. An empirical Bayes shrinkage estimator, derived
using a Bernoulli-Gaussian prior, is analyzed and compared
with the well-known soft-thresholding estimator using squared-
error loss as a measure of performance. We obtain concentration
inequalities for the Stein’s unbiased risk estimate and the loss
function of both estimators.

Depending on the underlying θ, either the proposed empirical
Bayes (eBayes) estimator or soft-thresholding may have smaller
loss. We consider a hybrid estimator that attempts to pick the
better of the soft-thresholding estimator and the eBayes estimator
by comparing their risk estimates. It is shown that: i) the loss of
the hybrid estimator concentrates on the minimum of the losses
of the two competing estimators, and ii) the risk of the hybrid
estimator is within order 1/

√
n of the minimum of the two risks.

Simulation results are provided to support the theoretical results.

I. INTRODUCTION

Consider the problem of estimating a sparse vector θ ∈ Rn
from a noisy observation y of the form

y = θ + w. (1)

The noise vector w ∈ Rn is distributed as N (0, I) (by
rescaling y by 1/σ, the case where w ∼ N (0, σ2I) reduces to
the above form with θ/σ to be estimated). In this paper, as a
measure of the performance of an estimator θ̂, we consider the
squared-error loss function given by L(θ, θ̂(y)) := ‖θ̂(y) −
θ‖2, where ‖·‖ denotes the Euclidean norm. The risk of the
estimator for a given θ is the expected value of the loss
function:

R(θ, θ̂) := E
[
‖θ̂(y)− θ‖2

]
.

We emphasize that θ is deterministic, so the expectation above
is computed over y ∼ N (θ, I).

We assume that θ has k non-zero entries out of n, where
k may not be known to the estimator. Though our results are
general, they are most interesting for the case where k =
Θ(n). Thus as n gets large, the sparsity level η := k/n is
bounded above and below by arbitrary constants in (0, 1].

The sparse estimation problem has been widely studied
[1]–[7] due to its fundamental role in non-parametric function
estimation. If the function has a sparse representation in an
orthogonal basis (e.g., a Fourier or wavelet basis), then (1)
models the problem of estimating the function from a noisy
measurement of n basis coefficients. Another motivation for
constructing good sparse estimators comes from Approximate
Message Passing (AMP) algorithms for compressed sensing,
which is discussed in Sec. V-A.

The soft thresholding estimator is a popular choice of
estimator when θ is assumed to be sparse [1]–[3], [7], [8],
and is given as follows for threshold λ. For i ∈ {1, 2, · · · , n},

θ̂ST,i(yi;λ) =

 yi − λ if yi > λ
0, if − λ ≤ yi ≤ λ

yi + λ if yi < −λ.

Along with its simplicity, the soft-thresholding estimator
has other attractive properties. For example, when n is large
and the sparsity level η = k/n→ 0, the worst-case risk over
the set of η-sparse vectors is 2η log η−1(1 + o(1)). However,
no sharp theoretical bounds exist for the risk of the soft-
thresholding estimators for moderate or large values of η.

A. Motivation and Contributions

The well-known (positive-part) James-Stein estimator [9]
for estimating an arbitrary θ ∈ Rn from an observation y =
θ + w, w ∼ N (0, I), is given by

θ̂JS =

(
1− n− 2

‖y‖2

)
+

y, (2)

where X+ denotes max(0, X). The James-Stein estimator has
uniformly lower risk than the maximum-likelihood estimator
θ̂(y) = y (see, e.g., [10, Chap. 5]). An empirical Bayes
viewpoint of this estimator is provided in [11]: assuming
a Gaussian prior on θ so that θ ∼ N (0, ξ2I), the Bayes
estimator is

θ̂Bayes =

(
1− 1

1 + ξ2

)
y. (3)

Based on the Gaussian prior, we have y ∼ N (0, (1 + ξ2)I).
So, (n− 2)/‖y‖2 is an unbiased estimate of 1/(1 + ξ2), i.e.,
E
[
(n− 2)/‖y‖2

]
= 1/(1 + ξ2). Plugging in this estimate of

1/(1+ξ2) in (3) (and ensuring that it is always ≤ 1) gives θ̂JS
in (2). One can also start with a Gaussian prior with non-zero
mean, i.e., θ ∼ N (µ1, ξ2I), and use

∑
i yi/n as a plug-in

estimate for µ. The resulting empirical Bayes estimator is the
positive-part Lindley’s estimator [11].

This empirical Bayes derivation of the James-Stein estima-
tor serves as a motivation for our work. In our setting, since
we know that θ is sparse, we consider an empirical Bayes
estimator based on a prior that is a mixture of a point mass at
0 and a continuous distribution with density ψ(θ;µ, ξ), where
µ is a location parameter (mean) and ξ is a scale parameter.
The prior is given by

f(θ; ε, µ, ξ) = (1− ε)δ(θ) + ε ψ(θ;µ, ξ), θ ∈ R. (4)



The parameter ε ∈ [0, 1], which controls the sparsity, is treated
as a fixed parameter that can be optimized. In particular, ε
need not be the true sparsity level η (which may be unknown).
Taking ψ to be the Gaussian density, in Sec. II we derive an
empirical Bayes (eBayes) estimator using plug-in estimates for
µ and ξ2. In Sec. III, we derive a risk function estimate for the
eBayes estimator using Stein’s unbiased risk estimate (SURE).
We then consider a hybrid estimator which chooses between
the eBayes estimator and the soft-thresholding estimator by
comparing their risk estimates.

Sec. IV contains the main theoretical results of the paper.
Theorem 1 shows that for large n, the SURE concentrates on
a deterministic value which is within O(1/

√
n) of the true

risk. Theorem 2 shows that the loss of the eBayes estimator
concentrates on a deterministic value that is also within
O(1/

√
n) of the risk. Using these results (and analogous

ones for soft-thresholding), Theorem 5 shows that for the
hybrid estimator, the loss concentrates on the minimum of
the losses of the two rival estimators, and its risk is within
O(1/

√
n) of the minimum of the two risks. In Section V,

we provide simulation results, including an application of the
hybrid estimator in the approximate message passing (AMP)
algorithm for compressed sensing.

B. Related Work

In the context of wavelets, several works have considered
estimators based on a signal prior that is a mixture of a point
mass at 0 and a Gaussian distribution (see, e.g., [12]). In most
of these works, the hyperparameters of the prior are chosen
based on some prior information about the signal. Empirical
Bayes estimators based on a prior that is a mixture of a point
mass at 0 and a distribution with a heavy-tailed density have
been proposed in [3], [4]. The weights of the mixture are first
determined using marginal log-likelihood; the estimator then
uses a thresholding rule based on the posterior median. It has
been shown that the risk of this estimator over the class of
η-sparse vectors is within a constant factor of the minimax
risk when the sparsity level η is small enough.

In this paper, we use a fixed mixture weight for the em-
pirical Bayes estimator and empirically estimate the location
and scale parameters of the continuous part of the prior. This
approach allows us to obtain concentration inequalities for the
risk estimates, which then lead to a risk bound for the hybrid
estimator.

Notation: The set {1, 2, · · · , n} is denoted by [n]. Bold
lowercase (uppercase) letters are used to denote vectors (matri-
ces), and plain lowercase letters for their entries. For example,
the entries of y are yi, i = 1, · · · , n. The indicator function of
an event E is denoted by 1{E}. For positive-valued functions
f(n) and g(n), the notation f(n) = O(g(n)) means that
∃k > 0 such that ∀n > n0, f(n) ≤ kg(n).

II. EMPIRICAL BAYES ESTIMATOR

Assuming that {θi}, i ∈ [n], were generated i.i.d. ∼ f in
(4), the conditional mean of θ given y is the optimal estimator
(for squared-error loss). The empirical Bayes estimator for a

fixed ε ∈ [0, 1] is this conditional mean, with the values of
µ, ξ estimated from the data y. Hence, ∀i ∈ [n],

θ̂EB,i(y; ε) =

∫
R xf(x; ε, µ̂, ξ̂)φ(yi − x)dx∫
R f(x; ε, µ̂, ξ̂)φ(yi − x)dx

. (5)

In (5), φ(x) := 1√
2π
e−x

2/2 is the standard normal density, and
µ̂, ξ̂ are the estimates of µ, ξ from y. A consistent estimator
for µ (converging in probability to µ) is

µ̂(y) = ȳ/ε, (6)

where the empirical mean ȳ :=
∑
i yi/n. The scale parameter

can be estimated using the second moment y2 := ‖y‖2/n and
the first moment ȳ. In this paper, we consider the Gaussian
density for ψ so that

ψ(θ;µ, ξ) =
1√
2πξ2

exp(−(θ − µ)2/2ξ2).

The mean µ is estimated as in (6), and ξ2, being the variance,
is estimated as

ξ̂2(y) =
1

ε

(
y2 − (ȳ)2

ε
− 1

)
+

.

The resulting empirical Bayes estimator is, for i ∈ [n],

θ̂EB,i(y; ε) =
µ̂+

(
1− 1

1+ξ̂2

)
(yi − µ̂)

1 + (1−ε)
ε

√
1 + ξ̂2 exp

(
(yi−µ̂)2

2(1+ξ̂2)
− y2i

2

) . (7)

For ε = 1, θ̂EB reduces to the well-known James-Stein
estimator [9], [13] that shrinks each element of y towards
the empirical mean ȳ.

Note that θ̂EB is a shrinkage estimator — it shrinks
each yi towards a common element µ̂, with the amount of
shrinkage depending on yi. There are two terms that determine
the shrinkage, the first being the term

[
1− 1

1+ξ̂2

]
which

is common for all the yi. The second term influencing the
shrinkage is the exponential in the denominator which depends
on yi ; the smaller yi is, the smaller θi is expected to be and
hence, the larger the amount of shrinkage.

III. RISK ESTIMATORS AND THE HYBRID ESTIMATOR

Depending on the underlying θ, either θ̂ST or θ̂EB may
have smaller loss. To construct a hybrid estimator that reliably
chooses the better estimator, we use Stein’s unbiased risk
estimate (SURE) [14] to estimate the losses of each estimator.

Fact 1: [14] If an estimator θ̂(y) is almost everywhere
differentiable, then the SURE of θ̂, given by

R̂(θ, θ̂(y)) := −n+ ‖y − θ̂‖2 + 2

n∑
i=1

∂θ̂i
∂yi

,

is an unbiased estimate of the risk R(θ, θ̂), i.e.,
E[R̂(θ, θ̂(y))] = R(θ, θ̂).

Both the risk estimate and the loss function of an estimator
θ̂ are random variables depending on y. Henceforth, we do



not explicitly indicate the dependency of the two on y. The
normalized SURE for θ̂ST with threshold λ is given by

R̂(θ, θ̂ST ;λ)

n
= −1 +

‖y − θ̂ST ‖2

n
+

2

n

n∑
i=1

1{y2i>λ2}. (8)

To keep the exposition simple, for our concentration re-
sults we assume that the location parameter µ̂ in θ̂EB is
zero. Extending the results to the case with a general µ̂ is
straightforward, though a bit cumbersome. Using SURE, the
normalized risk estimate for θ̂EB with µ̂ = 0 is

R̂(θ, θ̂EB ; ε)

n
=

(
‖y‖2

n
− 1

)

+
a2y
n

n∑
i=1

y2i
(
1 + 2cye

− ayy
2
i

2

)
b2i (y)

− 2ay
n

n∑
i=1

y2i − 1

bi(y)

+
4

d2yεn
2

n∑
i=1

y2i
bi(y)

1{‖y‖2>n} +
2(1− ε)ay
d
3/2
y ε2n2

n∑
i=1

y4i e
− ayy

2
i

2

b2i (y)

− 2(1− ε)ay√
dyε2n2

n∑
i=1

y2i e
− ayy

2
i

2

b2i (y)
(9)

where

ay : =
ξ̂2

1 + ξ̂2
=

[
1− ε

(‖y‖2/n− 1)+ + ε

]
,

dy : = 1 + ξ̂2 = 1 +
1

ε

(
‖y‖2

n
− 1

)
+

,

cy : =
1− ε
ε

√
1 + ξ̂2 =

1− ε
ε

√
dy,

bi(y) : = 1 + cye
− ayy

2
i

2 .

For large n, it is shown in [15, Lemma 4.1] that the last three
terms in (9) each concentrate around deterministic constants
of order 1/n. These terms can therefore be neglected in a
practical application of the risk estimate.

We use the risk estimates in (8) and (9) to define a hybrid
estimator that aims to select the estimator with smaller loss
for the θ in context. The hybrid estimator is defined as

θ̂H = γyθ̂EB + (1− γy)θ̂ST , (10)

where

γy =

{
1 if R̂(θ, θ̂EB) ≤ R̂(θ, θ̂ST ),
0 otherwise.

(11)

In the next section, we present concentration results for
the risk estimates and loss functions of θ̂ST and θ̂EB , and use
these to show that the loss of the hybrid estimator concentrates
on the minimum of the losses of the two estimators. Due to
space constraints, we omit the proofs, which can be found in
Sections 4 and 6 of [15].

IV. MAIN RESULTS

The constants in our concentration results for the eBayes
estimator depend on θ via 1

n

∑n
i=1 θ

4
i . In order to make these

constants universal, we assume that the fourth moment of θ
is bounded.
Assumption A: There exists a finite constant Λ > 0 such that
1
n

∑n
i=1 θ

4
i ≤ Λ.

When Assumption A is satisfied, the constants in the
concentration results depend only on Λ (and not on the
underlying θ or n). For brevity, we henceforth do not explicitly
indicate the dependence on λ and ε in the notation for the risk
estimates on the LHS of (8) and (9), respectively.

Theorem 1: Consider a sequence of θ with increasing
dimension n and satisfying Assumption A. Then the risk
estimate R̂(θ, θ̂EB) satisfies the following for any t > 0:

P
(

1

n

∣∣∣R̂(θ, θ̂EB)−R1(θ, θ̂EB)
∣∣∣ ≥ t) ≤ Ke−nkmin(t,t2)

where 0 < K ≤ 24 and k > 0 are absolute constants, and
R1(θ, θ̂EB) is a deterministic quantity such that∣∣∣∣∣R1(θ, θ̂EB)

n
− R(θ, θ̂EB)

n

∣∣∣∣∣ = O
(

1√
n

)
.

The next result shows that, like the risk estimate, the nor-
malized loss of the eBayes estimator also concentrates on a
deterministic value close to the true risk.

Theorem 2: Consider a sequence of θ with increasing
dimension n and satisfying Assumption A. Then the loss
function L(θ, θ̂EB) = ‖θ − θ̂EB‖2 satisfies the following
for any t > 0:

P
(

1

n

∣∣∣L(θ, θ̂EB)−R2(θ, θ̂EB)
∣∣∣ ≥ t) ≤ Ke−nkmin(t,t2)

where K ≤ 10 and k are absolute positive constants, and
R2(θ, θ̂EB) is a deterministic quantity such that∣∣∣∣∣R2(θ, θ̂EB)

n
− R(θ, θ̂EB)

n

∣∣∣∣∣ = O
(

1√
n

)
.

The normalized SURE and the normalized loss for θ̂ST
with threshold λ satisfy the following:

Theorem 3: [8] The SURE R̂(θ, θ̂ST ;λ) for the soft-
thresholding estimator with parameter λ satisfies, for any
t > 0,

P
(

1

n

∣∣∣R̂(θ, θ̂ST )−R(θ, θ̂ST )
∣∣∣ ≥ t) ≤ 2e

− 2t2

9(1+λ2)2 .

Theorem 4: The loss function L(θ, θ̂ST ) = ‖θ − θ̂ST ‖2
of the soft-thresholding estimator satisfies the following for
any t > 0:

P
(

1

n

∣∣∣L(θ, θ̂ST )−R(θ, θ̂ST )
∣∣∣ ≥ t) ≤ 2e−nkmin(t,t2)

where k is an absolute positive constant.



For a given θ, let

Lmin(θ,y) := min
{
L(θ, θ̂EB), L(θ, θ̂ST )

}
,

κn :=
1

n

∣∣∣R1(θ, θ̂EB)−R2(θ, θ̂EB)
∣∣∣,

where R1(θ, θ̂EB) and R2(θ, θ̂EB) are the deterministic
concentrating values in Theorems 1 and 2, respectively. Note
that κn is an O(1/

√
n) quantity since both R1(θ, θ̂EB)/n and

R2(θ, θ̂EB)/n are within O(1/
√
n) from R(θ, θ̂EB)/n. The

following theorem characterizes the loss L(θ, θ̂H(y)) and the
risk R(θ, θ̂H) of the hybrid estimator.

Theorem 5: Consider a sequence of θ with increasing
dimension n and satisfying Assumption A. Then, for any
t > 0, we have

P

(
L(θ, θ̂H)

n
≥ Lmin(θ,y)

n
+ t+ κn

)
≤ Ke−nkmin(t,t2),

for some absolute positive constants K and k. The risk of the
hybrid estimator can be bounded as

R(θ, θ̂H)

n
≤ 1

n
min

{
R(θ, θ̂EB), R(θ, θ̂ST )

}
+O

(
1√
n

)
.

V. SIMULATION RESULTS

When the true sparsity level η is unknown, one can
optimize SURE to find the best fit for both θ̂ST and θ̂EB .
The concentration results (Theorems 1 and 3) imply that the
SURE for either estimator does not deviate much from the
actual risk for large n. SureShrink, proposed in [8], chooses
the thresholding parameter λ∗ as follows, from a set S that is
a discretized version of the interval (0,

√
2 log n].

λ∗ = arg min
λ∈S

R̂(θ, θ̂ST ;λ)/n (12)

where R̂(θ, θ̂ST ;λ) is defined in (8).
We propose to find the best value of ε in (7) by first

discretizing the set (0, 1] (denoting it by D), and choosing
the sparsity parameter as

ε∗ = arg min
ε∈D

R̂(θ, θ̂EB ; ε)/n. (13)

Here R̂(θ, θ̂EB ; ε)/n is as in (9), with suitable modifications
to account for non-zero µ̂. The hybrid estimator then chooses
the estimator with lower value of SURE (R̂(θ, θ̂ST ;λ∗) vs.
R̂(θ, θ̂EB ; ε∗)).

Fig. 1 shows the average normalized loss R̃(θ, θ̂)/n (av-
eraged over 100 realizations of w) of the three estimators at
different sparsity levels for two choices of the distribution
of the non-zero entries of θ. We assume that the actual
sparsity factor η is unknown and use SURE to find the best
sparsity parameters for θ̂ST and θ̂EB . The optimization is
performed over the discrete sets D = {0.02i, i ∈ [50]} and
S = {0.1i, i ∈ [d10

√
2 log ne]}. In all the plots, n = 1000.

Additional simulation plots, including for n as low as 50, are
provided in [15, Section 5]. The plots suggest that for a wide
range of θ, θ̂EB is at least as good as θ̂ST for all values of
the sparsity factor η, and better in most cases.
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Fig. 1. Average normalized loss R̃(θ, θ̂)/n with n = 1000 for the following
cases: a) The non-zero entries are drawn from the Laplace distribution with
mean 0 and variance 2. b) The non-zero entries are drawn from the uniform
distribution on the interval [−2, 2].

A. Application to Compressed Sensing

In compressed sensing, the goal is to estimate a sparse
vector θ ∈ Rn from a noisy linear measurement y ∈ Rm of
the form

y = Aθ + w.

Assume that A is an m × n random matrix with i.i.d. sub-
Gaussian entries with variance 1/m, and the noise vector
w ∼ N (0, σ2I). The undersampling ratio is denoted by
δ := m/n < 1.

For this model, Approximate Message Passing (AMP)
[16]–[18] is a class of iterative algorithms to estimate θ from
y. Starting with the initial conditions θ0 = 0, z0 = y, AMP
iteratively produces estimates {θt+1}t≥0 as follows [17]:

θt+1 = ft
(
AT zt + θt

)
(14)

zt+1 = y −Aθt+1 +
1

δ
zt
〈
f ′t
(
AT zt + θt

)〉
.

Here for each t, ft : R → R is a “denoising” function, f ′t
denotes its derivative, and both functions act component-wise
on vectors. For u ∈ Rn, 〈u〉 denotes the average of its entries.

The AMP update (14) is underpinned by the following key
property of the effective observation vector (AT zt + θt): for
large n, after each iteration t, (AT zt + θt) is approximately
distributed as θ + τtZ, where Z ∈ Rn is a standard Gaussian
vector that is independent of θ. The effective noise variance τ2t
is determined (in the large system limit) by a scalar recursion



called state evolution [17]. For our purposes, it suffices to note
that a good estimate of τ2t is given by τ̂2t := ‖zt2‖/m.

The function ft estimates the sparse vector θ from an
observation in Gaussian noise of variance approximately τ̂2t .
Therefore, in each iteration, the AMP provides a platform to
compare the performance of soft-thresholding and the eBayes
estimator (and hence the hybrid estimator) as choices for ft.
We note that while soft-thresholding operates on a vector
component-wise, the eBayes estimator doesn’t. However, for
sufficiently large values of m and n, both µ̂ and ξ̂2 in (6)-
(7) are close to deterministic values in which case the eBayes
estimator also approximately acts component-wise on a vector.

The simulation plots in Fig. 2 show the performances of
the three estimators when used in the AMP algorithm. We
fix n = 10000 and consider two set-ups, which differ in the
undersampling ratio δ = m/n, sparsity factor η = ‖θ‖0/n,
noise variance σ2, and the non-zero values of θ. The measure-
ment matrix A is chosen with its entries i.i.d. ∼ N (0, 1/m),
and the sparsity factor η is assumed to be unknown. So, at
each step of the algorithm, a suitable threshold λ∗i (for soft-
thresholding) and a suitable sparsity parameter ε∗i (for the
eBayes estimator) are chosen as described in (12) and (13)
with the only difference being that the optimization is now
based on ‖zt‖2/n, and not on SURE. A precise description
of the algorithm can be found in [15, Section 5.1].

The plots in Fig. 2 show the progression of the mean
squared error (MSE) ‖θt − θ‖2/n with the AMP iteration
number t for the three estimators when applied in the AMP
algorithm for compressed sensing. It can be inferred that
the eBayes estimator provides a strong alternative to soft-
thresholding in the AMP.

VI. CONCLUDING REMARKS

For the problem of estimating a sparse vector (with possi-
bly unknown sparsity level), we proposed an empirical Bayes
estimator based on a Bernoulli-Gaussian prior. By obtaining
a concentration inequality for its risk estimate (SURE), we
showed that the risk of the hybrid estimator is close to the
minimum of the risks of the competing estimators.

More generally, the approach of Theorem 5 could be used
to bound the risk of a hybrid estimator that picks one among
several estimators, provided one has concentration bounds for
the risk estimates of each of the competing estimators. This
suggests that an interesting direction for research is to obtain
concentration bounds for the risk estimates of other useful
estimators whose parameters depend on the data, e.g., an
empirical Bayes estimator based on a Bernoulli-Laplace prior.
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