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Abstract—Gatherminer is an interactive visual tool for
analysing time series data with two key strengths. First, it
facilitates bottom-up analysis, i.e., the detection of trends and
patterns whose shapes are not known beforehand. Second, it
integrates data mining algorithms to explain such patterns in
terms of the time series’ metadata attributes — an extremely
difficult task if the space of attribute-value combinations is large.
To accomplish these aims, Gatherminer automatically rearranges
the data to visually expose patterns and clusters, whereupon users
can select those groups they deem °‘interesting.’ To explain the
selected patterns, the visualisation is tightly coupled with auto-
mated classification techniques, such as decision tree learning.
We present a brief evaluation with telecommunications experts
comparing our tool against their current commercial solution,
and conclude that Gatherminer significantly improves both the
completeness of analyses as well as analysts’ confidence therein.

I. INTRODUCTION

Exploratory statistical analysis, as conducted through visual
analytics tools, can be regarded as an instance of end-user
programming. Like spreadsheets, visual analytics tools focus
on presenting data, rather than the control flow of programs
operating on the data.

In this paper, we present Gatherminer, a visual analytics tool
specifically designed for the analysis of time series data. Time
series analysis immediately presents a visual design challenge,
because a natural mapping of the time dimension to one of the
axes on the visual plane greatly reduces the remaining options
for visualising relations between data and model. Just as the
grid formalism introduced a strong design constraint that led to
the spreadsheet paradigm, the constraint of time series analysis
provides an opportunity for new creative exploration of the
design space for statistical modelling.

The BT problem: This work is grounded in a specific
application domain — analysing patterns of faults in the BT
network. At BT Research and Technology, analysts study
time series of faults in the various devices on BT’s telecom-
munications network. An international network infrastructure
comprises of the order of 106 devices, including hubs, routers,
cables, etc. in the core network, in exchanges, and in cus-
tomers’ homes. Each device is characterised by hundreds of
metadata attributes, such as their geographic location, the
customer type served, etc. Every day, faults on the network are
logged, e.g., through devices raising alarms, by field engineers
performing maintenance, and by customer reports. Thus, a

time series of daily fault counts is created for each fype of
device (i.e., all devices which share metadata properties).

Analysts identify patterns of faults in subsets of this large
database of time series, and look for potential causes of these
patterns. Once interesting behaviour, such as “devices with
unusually high fault rates”, or “devices with an inflexion
in the time series” is found, a corresponding explanation is
sought, such as “do any device types consistently seem to
have inflexions?”, or “what attribute values are predictive of
devices with unusually high fault rates?” These explanations
are then used to drive business decisions, such as investment
allocation and special investigations.

The analysts face two important challenges. The first is that
the shape of interesting patterns is not known beforehand, so
the system cannot be querying-oriented; i.e. “interesting” time
series cannot simply be retrieved. Even if an interesting pattern
is known, it may not always be straightforward to express
using standard tools such as relational databases. The second
challenge is that of finding a concise explanation for these
patterns in terms of the metadata attributes. Having hundreds
of attributes, each with several values, leads to a combinatorial
explosion of attribute-value combinations which cannot each
be manually inspected. A further complication is that the
analysts are experts in the domain of the network data but
have limited statistical expertise.

In studying this process at BT, we observed that the task
of detecting and explaining interesting patterns is typically
performed using opportunistic approaches with notable draw-
backs: (1) they rely heavily on the domain expertise of the
analyst to guide exploration of the large space of attribute-
value combinations; (2) they can result in interesting features
being overlooked; (3) they can result in spuriously correlated
attribute explanations being ‘discovered’; (4) they rely on
extensive manual attribute inspection. Consequently, current
methods result in incomplete, inaccurate, and slow analyses,
and leave analysts feeling unconfident about their analysis.

Gatherminer directly addresses these drawbacks using a
compact visualisation scheme, automated rearrangement, and
explanations driven by machine learning. We compared our
tool against Tableau [1], our expert analysts’ current tool, and
found that analyses using our tool are more complete, more
often correct, faster, and improve analyst confidence.
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II. RELATED WORK

The analysts’ objectives can be expressed through Amar et
al.’s analytical framework [2] as follows:

o Identifying interesting features: detecting groups of sim-
ilar time series (Cluster) by identifying trends, peaks,
inflexions and their overall shapes (Extrema, Range,
Distribution, Anomalies).

o Explaining features in terms of attributes: detecting po-
tential causal links between time series attributes and their
behaviour (Correlation).

A. Visualisations for bottom-up time series analysis

Since the nature of interesting time series is unknown a
priori (e.g., it is not possible to say whether we wish to retrieve
series with peaks, troughs, inflexion points, or some other
behaviour), we must enable the analyst to conduct bottom-
up analyses, where hypotheses about interesting behaviour are
first generated by inspecting the data [3]. For this process
to be robust, hypotheses must be generated from the most
thorough, complete, and consistent inspection of the dataset
possible. The problem of accurately and compactly represent-
ing multiple time series has been tackled in many ways [4]; a
synthesis of multi-resolution techniques is given by Hao et al
[5]. Pixel-matrix displays are used to represent time series in
several scientific disciplines, such as gene expression data [6]
and machine hearing [7].

To facilitate better discovery of collective trends from
such overviews, the technique of reshuffling data series was
proposed by Bertin with his ‘reorderable matrix’ [8]. Bertin
proposed a visual procedure where pieces of paper repre-
senting rows of a matrix were cut and manually reordered
on a flat surface. We now have the computational resources
and advanced clustering techniques to adapt this method for
large datasets. A survey of time series clustering techniques
is given by Liao [9]. Elmqvist et al. incorporated a significant
reordering step in their “Zoomable Adjacency Matrix Ex-
plorer” [10]. Mansmann et al. explored the use of correlation-
based arrangements of time series for movement analysis in
behavioural ecology [11]. The “Bertifier” is a general-purpose
tool for applying reordering operations to tabular data [12].
Previous work has also been done on exposing motifs in time
series [13], [14]. These systems do not, however, build on
the rearranged visualisation to present a visual language for
conducting automated analyses of the metadata attributes.

B. Explaining behaviour in time series datasets

Bernard et al’s system [15] visually guides the discovery
of metadata properties of time series clusters, which is closely
related to our goals. However, while their work was primarily
focused on automated notions of “interestingness,” due to the
open-ended nature of BT analyses, we must necessarily take
a mixed-initiative approach, with interestingness defined by
ad-hoc user selections. A number of interfaces have been
proposed for performing information retrieval tasks on time
series databases, such as sketch editors and visual catalogues

[16]-[18], but these systems are query-driven (i.e., assume the
nature of the interesting pattern is known beforehand).

The Line Graph Explorer [19] compactly represents line
graphs as rows of colour-mapped values, that is, a colour-
mapped matrix. This provides a full overview of the time
series data in a compact space. Line Graph Explorer provides a
focus+context view using a lens-like tool, and has an elaborate
metadata panel which draws on the table lens [20]. The meta-
data panel facilitates visual correlation of observed patterns
with metadata attributes, but relies on manual inspection and
so does not scale to large attribute spaces.

Keim et al. identify “advanced visual analytics interfaces”
[21], which showcase an advanced synergy between visual-
isation and analytics. Hao et al. describe “intelligent visual
analytics queries” [22], the process of selecting a focus area,
analysing the selection, and presenting results of the analysis
as appropriate. This is precisely the technique we employ.

A number of investigations have been made into improving
visual interaction with various statistical procedures. These
procedures include exploratory approximate computation [23],
distance function learning [24], [25], and advanced feature
space manipulations [26]-[28]. Fails and Olsen [29], Wu and
Madden [30], and Behrisch et al. [31] present systems for
interactive machine learning. These systems address a wide
range of classification problems for different types of data;
however, visual mining for explanations amongst a large set
of attributes has not been addressed.

III. GATHERMINER DESIGN AND ARCHITECTURE

In this section we describe the architecture and design
decisions behind Gatherminer. Our prototype is implemented
using web technologies and can load local CSV files.

Data is represented as a colour-mapped matrix (Fig. 1(a)),
which is rearranged to expose patterns and clusters (we refer to
this as “gathering” [32]). To navigate this visualisation, which
can become very large for massive databases of time series, we
provide an overview-+detail mechanism, where the overview
is facilitated by a thumbnail scrollbar (Fig. 1(b)), and detail
is given through a scanning display (Fig. 1(c)). For analysis,
we use selection on the core visualisation as annotation to
deploy explanation procedures such as summary bar graphs
and decision tree learning (Fig. 1(d)). We now elaborate upon
the individual components.

A. Core colour-mapped matrix visualisation

Our primary visualisation is a colour-mapped matrix where
each row is an individual time series and each column is an
individual time point. Thus, a cell is a single data point within
a single time series, coloured according to its value. This
representation has useful properties [5], most importantly com-
pactness: each datum can be shrunk to a single pixel in size
before the visualisation ceases to be lossless. Prior to colour-
mapping, values must be normalised; by default Gatherminer
provides cumulative distribution function normalisation, range
normalisation and Z-score normalisation, but a user-supplied
JavaScript normalisation function may also be used.
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Fig. 1. The Gatherminer software showing (a) its primary colour-mapped matrix visualisation, (b) the thumbnail overview scrollbar, (c) scanning for detail,

(d) attribute charts generated during analysis.

Importantly, even though pixel matrices are perceptually in-
ferior to line charts for comparative quantitative analysis, since
they rely on colour rather than height to convey magnitude, it
is the identification of patterns which we consider to be more
important than characterisation. That is, it is more important
for analysts to be able to spot that interesting behaviour
exists, rather than to immediately understand the nature of
that behaviour (spike, trough, etc.). The colour-mapped matrix
greatly facilitates identification. The exact behaviour can easily
be further characterised by inspecting aggregate line graphs
generated by selecting the time series.

To illustrate an example workflow, we have taken an actual
BT dataset and disguised commercially sensitive material so
as to resemble data about faults in cars. The colour-mapped
matrix of this dataset when initially loaded can be seen at the
top of Fig. 2. We will return to this figure in §III-B.

Overview+detail: The warping lens in Line Graph Ex-
plorer provides focus+context [33], allowing individual time
series to be inspected in detail whilst still being aware of the
series’ location in the overall dataset. The lens dynamically
distorts the underlying visualisation, which we require to be
static for purposes of selection, so it is not applicable to our
use. Instead, we allow the user to scrub over the visualisation,
and display a detailed line graph and attributes table for the
series being hovered over (Fig. 1(c)). This is complemented
with an overview which never exceeds the height of the screen.
The overview acts as a scrollbar [34]; thus, the scrollbar, main

visualisation, and scanning together create an overview-+detail
view. This has an additional advantage over the lens approach:
the time series dataset can be large, containing thousands of
time series, but a shrunken representation is always visible and

available for use as a navigational aid.

B. Gathering: automated layout

The visualisation format alone facilitates some analysis,
but for more efficient pattern detection a layout algorithm
must now be applied. A number of clustering, sorting, or
optimisation methods may be appropriate here; by default,
Gatherminer reorders the time series such that those which
are most similar are placed close together, hence ‘“gather.”
Specifically, the final layout minimises the sum of pairwise
distances between neighbouring time series.

In the following, we use 7" to denote a univariate time series.
The subscript 7} denotes the i** element of T'. In a collection
of many time series, the superscript notation 7*) denotes the
k" series. Thus, Ti(k) denotes the it element of the k" series.

Initially, the distance between any two time series is defined
using a sliding weighted metric:

distance(T®, T®) = ZZ
i

where w specifies how the nejghbourhood of each element is
weighted, e.g., w(i,j) = e~ (F=3D,

(a) (b) o
7 = 1| wiij) (1)




For n series we find an ordering {7, 7)., T(™} that
minimises S°1"' distance(T™, T(+1). The visual principle
behind this ordering is that by minimising the sum of pairwise
distances between neighbouring series, we bring together
series which have similar visual colour profiles. When ‘stacked
up’, rows of similar colours create larger areas which are easily
spotted. Finding such an ordering is not straightforward, as the
problem is equivalent to that of finding a minimal Hamiltonian
path (similar to the travelling salesman problem of finding a
minimal Hamiltonian cycle), known to be NP-complete. To
see why our problem is equivalent, imagine that each time
series is a vertex in a fully-connected graph, and each edge
has weight equal to the distance between its two vertices.
A complete minimal ordering is equivalent to a minimal-
weight path which touches each vertex exactly once, i.e., a
minimal Hamiltonian path. Computing the distance matrix is
an unavoidable O(n?). Thereafter, to compute the ordering,
Gatherminer implements a greedy nearest-neighbour search
(O(n?)), and genetic optimisation algorithm (also O(n?), but
is slower because of larger constant factors) for cases where
the greedy search produces poor orderings [35].
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Fig. 2. Two patterns exposed by gathering a BT dataset of 1,335 series. (a)
Series with a trough in the middle. (b) Clusters of high-valued time series.

LR

Fig. 3. Examples of the gathering process, with the dataset loaded as-is on
the left, and after gathering on the right, demonstrating the detection and
separation of different types of patterns from noise. From top to bottom:
peaks and troughs, linear trends, features of different widths, functions of
different periodicities, complex cross-series cascades. Gatherminer supports
many colour mappings.

The “Gather” button triggers reordering. The resulting visu-
alisation exposes groups of series bearing interesting analytical
features such as peaks and trends (Fig. 3). The colour-mapped
matrix representation of our faults dataset after gathering can
be seen in Fig. 2. One limitation of this process is that
each time series can only have two neighbours in the colour-
mapped matrix, and so clusters are sometimes “flattened”
counterintuitively, with similar rows being placed further apart
than expected. However, this does not usually impair “pattern
spotting” as it is an approximate visual process.

The distance metric can and should be changed for the task
at hand, as various domains typically have very different no-
tions of data similarity. For instance, Dynamic Time Warping
[36] is a common metric for comparing time series which
vary in speed or time. Currently, any user-supplied JavaScript
distance function can be used. In future work, it would be
useful to investigate interactive visual methods of specifying
distance metrics [24]-[26].

Each time series in the collection is associated with at-
tributes describing various properties of the series (i.e., “meta-



data” as used by Kincaid and Lam [19] and Bernard et al [15]).
For instance, the BT fault data has “Device Type”, “Location”,
etc. as attributes. We denote these attributes A;, meaning the
set of values they are allowed to have. Thus, each time series is
characterised by an n-tuple of attribute values (a1, aq, ..., ay,)
where Vj. a; € A;.

We can now frame the two primary activities of BT analysts
which are facilitated by our system as follows:

o “Identifying interesting features™ corresponds to discov-
ering the sets of time series Interesting such that for
k € Interesting, T®) contains interesting behaviour, for
example, “devices with unusually high fault rate.”

o “Explaining features in terms of attributes” corresponds
to discovering attribute-value tuples (ai,as,...) which
discriminate well between T¥) € Interesting and T (k) ¢
Interesting. An example question is “what attribute values
are predictive of devices with unusually high fault rates?”

C. Selection to annotate interesting clusters

The Gathering process exposes interesting patterns as visual
artefacts such as coloured blobs and streaks. Users select such
regions of interest in order to mark them as ‘interesting.” This
constitutes manual annotation of a subset of data points, simi-
lar to the interactive applications presented by Fails and Olsen
[29], and Wu and Madden [30]. In Fails and Olsen’s Crayons
application, the user drew on an image to interactively build a
classifier to segregate the image (e.g., a classifier that detects a
human hand against a background). Similarly, in Gatherminer,
the user directly annotates the visualisation to build a classifier.
While Crayons facilitated image classification on image data,
Gatherminer extends that style of interaction to time series
data visualised as a colour-mapped matrix; it provides an
“intelligent visual analytics query” [22].

The gathering step is essential for this annotation to be
effective. In the underlying dataset the time series may appear
in any ordering, for instance the order of generation of the
data entries, or sorted by attribute-values. Once gathered,
however, the resultant ordering {7, 7). T(™} is such
that neighbouring time series have similar behaviours. Thus,
“interesting” time series appear in contiguous regions, al-
lowing the user to use their selection to specify an interval
[a,b], or k intervals [a;,b;] for i = 1 to k, such that
Ut {T(e), Tlait) | Tt} constitute the interesting set,
and the remaining time series constitute a not-interesting set.

Once the selection is made, clicking the “Explain” button
deploys multiple strategies (e.g., decision tree learning) to
discover which attributes of the time series best discriminate
the interesting (selected) regions from the not-interesting ones.
Thus, the user asks the software to “explain” regions of interest
by querying for explanatory attributes.

Gatherminer currently supports two explanation methods,
illustrating the variety of interesting possibilities for selection
as annotation. The first explanation method is a set of bar
charts which compares the distribution of the attribute values
in the selection against the distribution of the attribute values
in the overall dataset. These charts do not require statistical

expertise for interpretation. “Explanations” are read off by
comparing the heights of the bars. A large discrepancy be-
tween an attribute’s values in the selection and its values in
the overall dataset indicates that the presence or absence of
that value is highly correlated with the time series marked
“interesting.” An example can be seen in Fig. 4.

The second explanation method demonstrates that selection-
as-annotation supports any supervised learning algorithm. In
general, the problem of supervised learning can be formalised
as the process of discovering a hypothesis h : X™ — Y, given
a sequence of training examples (Z;, y;). The intention is that
the learnt hypothesis achieves a level of generality that renders
it useful for modelling and prediction purposes. Here, each &;
is known as the feature vector and each y; is known as the
label or class.

We implemented the ID3 decision tree algorithm [37] as
it produces human-interpretable models in the form of rules.
For each time series, our feature vector is the attribute vector
of the series: (ai,aq,...,a,), and our label is a binary value
indicating whether the time series was part of the selection,
that is, was marked as “interesting”:

Interesting, T*) € Selection

label(T™)) =
abel( ) Not Interesting, T*) ¢ Selection

Subsequently our training dataset D consists of (n + 1)-
tuples of the form (a1, ..., a,, label(T*))). The ID3 algorithm
can now be called on D, specifying (Vj.A;) as the attributes
and label as the target attribute (class). We map the resulting
data structure directly onto a tree visualisation. Explanations
are read as a conjunction of nodes from root to leaf. The tree is
interactive, featuring collapsible nodes, panning and zooming.

A key advantage of deploying the ID3 algorithm in this
manner is that this method of mining explanations scales to
arbitrarily large attribute-value spaces. The tree visualisation
can be used to display precise combinations of explanatory
attributes, using exactly the tree-depth (i.e., number of relevant
attribute values) required. For instance, if a single attribute
value contains complete discriminatory information about the
user selection, the tree stops expanding at that attribute value.
An example tree can be seen in Figure 5. The figure shows
only one path (blue nodes are collapsed), but when completely
uncollapsed (i.e., showing all paths), the full tree has only 100
nodes. For just the 8 attributes in our example dataset, there are
over 10° attribute-value combinations. The tree, constructed
on an information-theoretic basis, represents only the most
relevant ones; thus, it scales to the BT fault dataset with
hundreds of attributes.

IV. COMPARATIVE STUDY

We conducted a user study to answer the following research
questions. With respect to a current industry-standard analysis
tool, does Gatherminer:

« result in more interesting features (patterns) found?
o result in more correct explanations being found?
o improve users’ confidence in their analyses?
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a) Recruitment: Six participants were recruited from
statistical analysis groups within BT Research (Adastral Park,
UK). Participants were experienced professional analysts who
regularly study the BT network data using Tableau. We chose
Tableau [1] as the visual analytics tool against which to
make comparisons, as this was most representative of our
expert participants’ typical workflows. A generic tool like
Tableau is the only viable option in industry, since no tool
tailored to this problem is available. Each participant had
extensive prior experience of using Tableau, and no prior
exposure to Gatherminer. The experiment was conducted in
the participants’ own office environments.

b) Tasks: Each participant completed 5 matched pairs
of tasks (10 tasks in total). The first task of each pair was
completed using Tableau, and the second using Gatherminer,
allowing for within-subject comparisons. Task order was ran-
domised between participants to account for order effects. For
each task, participants were given a time series dataset of
500 time series, each of length 200. Each time series had
six attributes: A, B, C, D, E, F. Each attribute had six values,
A = {Al, A2, A3, A4, A5, A6}, B = {Bl,...,B6}, and so
on. For our experimental tasks, each not interesting time series
consisted of random integers from the uniform distribution
between 1 and 100. Each interesting time series contained a
segment where the distribution is heavily weighted towards 1
or 100, that is, an upward or a downward spike (e.g., Fig. 6).
Each interesting feature was synthesised to occur when a series
had a unique corresponding attribute value (e.g., in one task,
all series with A = A2 contain an upward spike). The dataset
for task pair #1 was synthesised to have 2 interesting features.

Not interesting series

'Uniformly random 4

everywhere
LR |

Interesting series

Uniformly random T
except at §pike

Vi A

Fig. 6. Example of individual “not interesting” and “interesting” time series.

spike

Task pairs #2 and #3 had 3 interesting features each, and task
pairs #4 and #5 had 4 interesting features each.

Note that while the design of our tool was informed by
and aimed towards real-world data (as in our examples), for
the purposes of the experimental task we deliberately chose
to synthesise domain-independent data. This is because the
reliance of analysts on their domain expertise is so strong that
it acts as a confound and prevents meaningful comparisons of
the intrinsic benefits of various visualisation systems. This is
further discussed in the next section.

Participants were requested to “find and explain as many
interesting features” of the time series as they could. Addition-
ally, participants were requested to rate their confidence about
their performance after each task, using a 10-point scale in the
format of the validated Computer Self-Efficacy inventory [38].
Specifically, they rated themselves on a scale of 1-10 with
respect to the following two questions: (1) “How confident
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are you that you found all the interesting features?”, and (2)
“How confident are you that you found plausible explanations
for the interesting features you found?” Participants were not
made aware beforehand of the nature or number of interesting
features in any task. Participants’ remarks were also recorded;
these are discussed in the next section.

A. Experimental results

In general, our data was paired, not normally distributed,
and had equal sample sizes for all conditions, so comparisons
were drawn using the Wilcoxon signed rank test (WSRT).

1) Task completeness: Participants found significantly more
interesting features with Gatherminer than with Tableau
(WSRT: V = 171,p = 1.7 - 10™%); the effect size is
a median discovery of an additional 50% of features with
Gatherminer. Similarly, with Gatherminer they found signif-
icantly more correct explanations for those features (WSRT:
V = 276,p = 2.2 - 107°); a median of an additional 66.7%
correct explanations were discovered with Gatherminer. This
is illustrated in Fig. 7.

2) Discovery times: With Gatherminer, participants took
significantly less time to discover features (WSRT: V =
1176,p = 1.7- 1079); the effect size is a median improvement
of 110.5s using Gatherminer. They also took significantly
less time to discover correct explanations (WSRT: V =
654,p = 4.8 - 10~ 7); a median improvement of 181.5s. This
improvement is not altogether surprising, since Tableau is a
much more general-purpose tool.

3) Confidence: Post-task, participants were significantly
more confident that they had indeed discovered all major
interesting features using Gatherminer than using Tableau
(WSRT: V = 465,p = 1.7 - 107%); the effect size is a
median increase of 6.5. Similarly, they were more confident
that they had discovered plausible explanations for all of
the discovered features while using Gatherminer (WSRT:
V = 465,p = 1.6 - 107%); a strong median increase of 8.
This is illustrated in Fig. 8.
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Fig. 8. Boxplots of self-reported confidence scores for feature discovery (F)
and explanation discovery (E), comparing Gatherminer (GM) vs Tableau.

V. DISCUSSION
A. Analysis strategies

Gatherminer is a heavily specialised tool which emphasises
certain types of analysis over others. Tableau, on the other
hand, is a much more general-purpose analysis tool, facilitat-
ing many strategies for solving these tasks. It may appear an
unfair comparison, but this is mitigated due to the fact that
our participants were expert users experienced in performing
precisely this type of statistical analysis using Tableau, which
suggested a natural starting point for evaluation. In this section
we report some observations regarding the strategies our expert
participants employed to analyse data in Tableau, and discuss
how Gatherminer’s design improves upon these.

1) Successful strategies in Tableau: Successful strategies
relied on finding levels of aggregation that generate visual-
isations with a manageable level of complexity, whilst si-
multaneously revealing interesting features. However, these
strategies still fell back onto manually iterating over each
attribute in turn, and this resulted in participants feeling less
confident about their analysis (more detail in §V-B). One
such strategy was to observe aggregate line charts of each
individual attribute-value pairing (e.g., one line chart summing
all series where A = A2). Here, any attribute-value that
caused spikes or dips was clearly reflected. Since our tasks
consisted only of 6 attributes, each with 6 values, and each
feature only involved one attribute at a time, it was possible
to apply these strategies effectively. However, in practice,
with many more attributes and values, these strategies quickly
become intractable. In contrast, since Gatherminer shows the
completely disaggregated time series, it is possible for the user
to view interesting features across all values of all attributes
simultaneously. The analysis of interesting features drives the
discovery of correlated attributes, not vice versa.

2) Unsuccessful strategies in Tableau: Unsuccessful strate-
gies generally stemmed either from viewing data in completely
disaggregated form (e.g., one line chart for each of the 500
series), which lead to unmanageable complexity in the visual-
isation, or aggregating the data too much (e.g., one line chart



that summed over all 500 series), which resulted in features
going completely undetected. In Gatherminer, the data is also
completely disaggregated, but the compactness of the colour-
mapped matrix display, combined with automated reordering,
makes the complexity of the visualisation manageable.

Another frequent issue was the discovery of false correla-
tions. A common strategy was to take a few examples of time
series with interesting features and inspect their attributes. If
these series had more than one attribute value in common,
the analysts were likely to conclude that the conjunction of
those values together produced the effect, whereas in reality
it may have just been one of the attributes, and the spurious
correlation of the other attribute was simply a consequence
of the small sample size. In Gatherminer, since series with
interesting features are grouped together, it is trivial for the
analyst to select large sets of series with shared behaviour to
inspect the overall properties of their attributes.

B. Confidence

It is important for analytical tools to enable analysts to have
confidence in their analyses. In this regard, one major strength
of colour-mapped matrices is that they can provide a lossless,
exhaustive overview of the data; this satisfies analysts’ desire
to “leave no stone unturned.” In particular, even the analysts
who developed successful strategies in Tableau recognised
that the manual nature of their strategy was not scalable,
remarking: “You’ve got too many dimensions to visualise
simultaneously”; “Maybe I should just focus on one attribute
for a start”; “I'm going to scroll through this list, and
when I see one...”; “I feel like I'm missing a lot if I do it
manually”. Remarks regarding the confidence of their analysis
in Gatherminer include: “I can explore all of it. I don’t have
to drill down.”; “Am I confident 1 have discovered all the
features? Yes, of course, I have seen it.”

C. Value of the gathering process

Gatherminer strongly encourages partially-automated anal-
ysis. On almost every occasion, while using Gatherminer,
participants first deployed the “Gather” function before doing
anything else. While using Tableau, participants often men-
tioned dissatisfaction with the limitations of the (nonetheless
sophisticated) built-in sorting functionality: “If I can some way
get a cluster”; “What I want is interesting features grouped
together”; “I want to see groups of lines that are behaving
[similarly] because then I can see which of these variables is
impacting the series.” Remarks from our participants regarding
Gatherminer’s reordering function include: “It’s nice to have
this hybrid approach where you get [the reordering] automat-
ically and then the analyst can also scan it manually to see
what is going on’; “At first the [colour-mapped matrix] view
itself is helpful because you understand that there is something
going on. The clustering then makes it very evident.”

D. Role of domain expertise

Our tasks deliberately used meaningless codes for attributes
and values in order to separate the utility of our tool from

the domain expertise of the participant. Had we used network
fault data, then the relative experience of the participant in
that domain could potentially have impacted their ability to
effectively analyse the data, independently of the analytical
tool. Domain expertise provides a variety of prior expectations
regarding what types of features might be present (e.g., linear
trends, peaks, troughs, periodic functions), and what attributes
might be of explanatory value — providing an efficient order
of consideration for brute force attribute value checking. Note
that these prior expectations may not necessarily be beneficial,
as they may lead to the discovery of spurious correlations, or
overlooking attributes not expected to be related.

Our hypothesis about the latent confounding power of
domain expertise was further substantiated by comments made
by our expert participants whilst analysing the data in Tableau.
One participant said: “If this was data I knew about, then
I'd have some idea of where to start. Here, I'm lost.” Other
remarks include: “Part of that [difficulty experienced with
experimental tasks] is that I have no sense of the features”;
“Doing data analysis when you have no idea of the data is
quite unusual’; “Given that I have no idea of the attributes, 1
have to ignore them.”

These comments illustrate how domain expertise actually
plays a significant role in the analyst’s heuristic approach to
discovering explanations of interesting features. Thus, con-
trolled usability experiments designed with real-world data
in order to preserve external validity may have the opposite
effect; the participants’ use of domain expertise may confound
any meaningful comparison between visualisation systems.

VI. CONCLUSION

We have presented a visual language approach to an indus-
trially important class of analytical tasks involving the study
of time series, where the shape of interesting patterns is not
known beforehand, and the space of explanatory attributes is
large. The Gatherminer tool employs a novel combination of
colour-mapped and reorderable matrices, adding a visual lan-
guage layer for exploratory construction of statistical models
based on patterns observed in the reordered matrix. We have
evaluated our design in a user study which demonstrates that
for the aforementioned class of tasks, Gatherminer results in
significantly faster and more complete analyses of time series
datasets, and significantly improves analysts’ confidence.
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