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Thesis abstract 

Hepatitis C virus (HCV) infection is a leading cause of cirrhosis and hepatocellular carcinoma.  The 

degree of fibrosis progression and treatment-related outcomes are critically dependent on the age 

of the infected individual.  Progressive ageing is associated with a decline in the efficacy of adaptive 

immune system function.  T-lymphocytes from aged subjects demonstrate multiple phenotypic and 

functional changes, including telomere shortening.  Short telomeres are associated with poor 

proliferative capacity, pro-inflammatory responses and increased mortality in clinical studies. 

This research aimed to study telomere length changes in T-lymphocytes in chronic HCV infection and 

its relationship to clinical endpoints.  Further, the intracellular signalling changes in T-lymphocytes 

with short telomeres were studied in subjects with chronic HCV. 

Short CD4+ T-lymphocyte telomeres were associated with the presence of severe hepatic fibrosis 

independent of other known factors.  Telomere length was associated with blood markers of hepatic 

damage and dysfunction as well as histological markers of inflammation and fibrosis.  Further, on 

prospective follow-up, short CD4+ telomere length at enrolment predicted progression to clinical 

endpoints of hepatic decompensation, development of hepatocellular carcinoma and death.  Short 

CD4+ telomere length predicted a failure to respond to anti-viral treatment for HCV infection. 

Unexpectedly, subjects with non-viraemic HCV had short CD8+ telomere length.  Liver biopsy tissue 

from a cohort of subjects with non-viraemic HCV was studied and demonstrated significant 

inflammation or fibrosis in most.   

To study the IFN- signalling pathway in cells with short telomeres, I utilised the phospho-histone γ-

H2AX, a downstream signal from short telomeres.  CD8+ T-lymphocytes expressing γ-H2AX had the 

form and function of cells with end-stage differentiation. γ-H2AX+ cells had a pro-inflammatory 

cytokine secretion profile with high expression of IFN-γ and low IL-2.  Further γ-H2AX+ cells were 

unable to respond to exogenous IFN- by phosphorylating Stat1.  This failure was attributable to a 

post-receptor defect. 

T-lymphocyte telomere length changes in HCV may underpin the effect of age on clinical and 

treatment-related outcome.  Short telomeres are associated with intracellular signalling defects 

which may explain the failure to respond to anti-viral therapy. 
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Chapter 1 - Introduction 

Hepatitis C (HCV) is a blood-borne viral infection which, by current WHO (World Health Organisation) 

estimates, infects around 170 million people or 3% of the world population.  After acute exposure, 

chronic infection of the individual occurs in around 80% of cases, leading to chronic hepatitis, with 

the attendant risk of cirrhosis, progressive liver failure and the development of hepatocellular 

carcinoma (HCC). 

Hepatitis C virus infection 

Epidemiology 

The 2008 UK Health Protection Agency (HPA) report estimates that there are 142,000 cases of HCV 

infection in the UK [1], albeit with wide 95% confidence intervals (90,000 – 231,000) reflecting the 

lack of certainty and difficulty in measuring the total disease burden [2].  Measuring the prevalence 

of HCV infection is fraught with problems given that infection is often asymptomatic.  HCV is 

transmitted largely through exposure to infected blood and blood-products.  The predominant risk 

factor in most new cases of HCV in developed countries currently, including the UK, is intravenous 

drug usage (IDU) [1].  IDU was identified as the risk factor for acquisition in 92% of new infections 

with HCV [1] (Table 1).   

A variety of epidemiological studies have been performed including the Unlinked Anonymous 

Prevalence Monitoring Programme (UAPMP), which screens patients attending drug or genitourinary 

services.  The UAPMP suggests that around 40% of active IDUs are seropositive for HCV infection.  

Worryingly, the acquisition of HCV infection now occurs earlier in the episode of intravenous drug 

usage.  Analysis of IDUs who started injecting within the last three years found that the 

seroprevalence for HCV was 22%.  Clearly, prospective study of IDUs with serial testing for anti-HCV 

would be the ideal methodology to determine disease incidence.  However, IDUs who are prepared 

to attend serial follow-up are unlikely to be representative of the IDU population as a whole.   
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Risk factor (where reported) Number of reports Percentage 

Injecting drug use 10651 92.5% 

Transfusion 180 1.6% 

Blood product recipient 107 0.9% 

Sexual exposure 164 1.4% 

Renal failure 73 0.6% 

Vertical (mother to baby) or 
household 

36 0.3% 

Occupational 13 0.1% 

Other 296 2.6% 

Total 11520 100% 

Table 1.  Risk factor information for new laboratory reports of HCV infection in England between 
1996 and 2007.  Source: (1). 

Historically, there was a large cohort of cases who had acquired HCV from blood administered as 

part of health care provision before the introduction of universal screening for the virus in 1991, 

following its discovery in 1989 [1].  Many haemophiliacs, given infected factor VIII or IX preparations 

to treat their coagulopathy, became either singly infected with HCV or multiply infected with HCV 

and either hepatitis B virus (HBV) and/or human immunodeficiency virus (HIV) [1].  Similarly, there 

are a number of cohorts of individuals who acquired HCV infection through a single source of either 

infected plasma or infected anti-Rhesus D immunoglobulin preparations.  These cohorts represent a 

failure of health care provision, but represent good opportunities to study the natural history of HCV 

infection retrospectively/prospectively from the known time of infection and thus to determine the 

rate of disease progression accurately [3, 4].   

In other countries the prevalence and risk factors for infection differ (Figure 1 & Table 2).  Egypt has 

one of the highest seroprevalence rates for HCV in the world approaching 10% in some regions [5].  

This relates to the usage of intravenous tartar emetic in a community wide effort to control 

Schistosomiasis sp. infection between the 1950s and the 1980s.  This programme utilised re-usable 
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needles leading to huge numbers of cases of HCV infection.  This was compounded as subjects 

became re-infected with Schistosomiasis, a known cofactor in accelerating HCV-related fibrosis 

progression [5, 6] (see factors influencing disease progression later). 

 

Figure 1. Geographic distribution of Hepatitis C prevalence, 1999.  Very High: Prevalence >5 %; 
High: 2.5-5 %; Intermediate: 1-2.5 %; Low: <1%. Source: (9). 

The WHO estimates the global burden of HCV infection to be around 170 million cases [7] (Table 2).  

Due to global imbalances in health care provision, lack of education about reducing risk and the 

relatively large cost of currently available anti-viral therapeutic regimes this burden is unlikely to be 

controlled or reduced in the foreseeable future.  Recent data from the HPA has suggested that, in 

the UK, education and needle-exchange programmes resulted in a decline in the incidence of new 

infections [1] (Figure 2); at the same time increased immigration from areas of high seroprevalence 

may change the demography of HCV infection, as demonstrated in the United States over the last 2 

decades [8].    
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WHO Region 
Total 

Population 
(Millions) 

Hepatitis C 
prevalence  % 

Infected 
Population 
(Millions) 

Number-of countries 
where data are not 

available 

Africa 602 5.3 31.9 12 

Americas 785 1.7 13.1 7 

Eastern 
Mediterranean 

466 4.6 21.3 7 

Europe 858 1.03 8.9 19 

South-East Asia 1 500 2.15 32.3 3 

Western Pacific 1 600 3.9 62.2 11 

Total 5 811 3.1 169.7 57 

Table 2.  Estimated seroprevalence and total numbers of individuals infected with HCV infection 
by continent.  Reference Source: Weekly Epidemiological Record. N° 49, 10 December 1999, WHO. 

 

 

Figure 2.  Annual estimated incidence of new HCV infections in England between 1960 and 1995.  
Dark blue line represents mean and light blue lines 95% confidence intervals.  Source: The Health 
Protection Agency. Source: (1).  

Acquisition of HCV is associated with IDU in the indigenous population of the UK and is thus a 

disease of males between 18 and 40 (Figure 3).  However, as the disease is often asymptomatic for 

many years, patients may present for testing or with disease complications at a much later age. 
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Figure 3. Age and sex distribution of new laboratory reports of HCV infection in England between 
1996 and 2007.  Source: The Health Protection Agency. Source: (1).  

Diagnosis of HCV infection 

Anti-HCV testing 

The diagnosis of HCV infection rests upon two methods [9].  The first is the demonstration of 

antibody to HCV in serum; a positive result demonstrates either past or present infection and has a 

high positive predictive value for exposure to HCV.  Enzyme immunoassays utilise antigens from 

either the HCV core protein or non-structural proteins, which bind to serum antibody.  Initial positive 

results are confirmed with either a second enzyme immunoassay, or a line assay that utilises 

multiple HCV antigens impregnated onto strips. Confirmatory tests now include testing for both HCV 

antigens as well as anti-HCV.  The Bio-Rad MONOLISA HCV Ag-Ab ultra kit utilises recombinant 

antigens from HCV NS3 and NS4 as well as monoclonal antibodies directed against HCV capsid 

antigens immobilised on a microplate.  

False negative tests can occur soon after acquisition of HCV, before humoral responses develop [10].  

Alter et al demonstrated that detection of anti-HCV was delayed a median 21 weeks after 

transfusion of infected blood products [11].  False negative results can also occur in subjects with an 

impaired humoral immunity including immune compromise [12] and haemodialysis for chronic renal 

impairment [13], itself a risk factor for acquisition of HCV.  In addition, some individuals lose anti-
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HCV over time;  subjects treated for HCV who undergo successful anti-viral therapy may become 

anti-HCV negative [14], while in the study of Irish women that acquired HCV from infected anti-D 

immunoglobulin a proportion that were HCV RNA negative have become anti-HCV negative.  

HCV RNA testing 

Direct demonstration of viral ribonucleic acid (RNA) in serum relies on different polymerase chain 

reaction assays which are commercially available.  Detection of HCV RNA in peripheral blood is the 

definitive marker of current HCV infection.  The simpler assays are qualitative, indicating whether 

viral RNA is present or not.  The more complex but less sensitive quantitative assays are utilised to 

determine the viral load and genotype, which have become an integral part of the clinical 

management of subjects with HCV infection.   

Quantitation of HCV viral load has become increasingly important in antiviral therapy for HCV.  Pre-

treatment viral load is an important predictor of treatment success with higher pre-treatment loads 

associated with poorer response to therapy [15, 16].  Further, the change in viral load by 12 weeks of 

therapy predicts treatment outcome and is an important part of therapeutic decision making in 

subjects undergoing antiviral therapy [15].  Quantifying HCV viral is problematic as the range of viral 

loads encountered covers 10 log copies.  Further, differences between commercially available assays 

prevented comparison of viral loads obtained from different laboratories.  This issue has been 

resolved through introduction of World Health Organisation HCV international standard for Nucleic 

Acid Amplification Technology Assays in 1999 [17] and subsequently updated standard in 2005 [18]. 

All the commercial quantitation assays rely on RT-PCR to amplify viral RNA before hybridisation to 

specific oligonucleotide probes.  Detection of hybridisation varies between assays; the Bayer bDNA 

assay (VERSANT HCV RNA 3.0 assay, Bayer Diagnostics UK) relies on detection of enzyme-conjugated 

hybridised oligonucleotides, whereas the Roche Cobas Amplicor HCV monitor 2.0 assay relies on 

colorimetric determination of hybridised oligonucleotides. 
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HCV genotype has also become integral to the management of subjects during antiviral therapy.  

Most prospective analyses have demonstrated that subjects infected with HCV genotypes 2 or 3 

have a higher chance of clearing viraemia during therapy when compared to subjects with genotype 

1 or 4 [15, 16, 19].  Classification of HCV genotypes is based upon sequencing of the NS5b protein 

[20], but high variability in this region reduces assay sensitivity and therefore makes it impractical for 

routine clinical testing.   

Most commercial assays therefore rely on PCR amplification of the HCV 5’ un-translated region 

(UTR).  This area is highly conserved, yet contains a number of genotype-specific motifs.  The assay 

most commonly used assay for genotype determination (VERSANT HCV genotype assay, Siemens 

Medical Diagnostics) utilises PCR amplification of the 5’ UTR, followed by hybridisation to a large 

number of genotype-specific probes immobilised on a nitrocellulose membrane [21]. 

Natural history of chronic HCV infection 

Acute infection 

Upon exposure to HCV most individuals undergo an asymptomatic acute hepatitis around 6 weeks 

after exposure [22].  Symptoms occur in just 15% and can be difficult to diagnose as anti-HCV 

antibody may be undetectable until a median of 21 weeks after infection [11]; one third of 

individuals do not have detectable antibody at the onset of symptoms [22].   
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Figure 4. Flow-chart schema of the natural history of HCV infection following acute exposure. 

 

During this stage as many as 20% of subjects [23] develop strong and multi-specific T-lymphocyte 

responses [24, 25] and remain non-viraemic.  These individuals retain anti-HCV antibody, the marker 

of exposure and a humoral immune response, but are HCV RNA negative by PCR in serum.  

Immunology of acute HCV infection 

1. Innate immunity 

The ability of HCV to subvert the immune system extends to both innate and adaptive immunity and 

occurs early in the development of infection.  Several groups have now demonstrated the effect of 

HCV infection upon the various components of the innate immune system. 

Della et al demonstrated that peripheral blood dendritic cells from subjects with viraemic HCV have 

reduced IL-12 secretion and increased IL-10 secretion when compared to healthy controls [26].  

Dolganiuc et al demonstrated that the HCV core and NS3 proteins were able to induce IL-10 

secretion by both dendritic cells as well as macrophages [27].  Further, they demonstrated that the 
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same proteins inhibited differentiation of peripheral dendritic cells.  Lai et al have extended these 

findings to demonstrate an increase in plasmacytoid dendritic cells within the HCV-infected liver, 

with increased expression of the regulatory receptor BDCA-2 [28].  Subsequent data by Amjad et al 

has demonstrated that the HCV protein NS5 impairs the differentiation of plasmacytoid dendritic 

cells , their ability to produce IFN-α and the ability to stimulate T-lymphocytes in response to viral 

infection [29]. 

Data regarding the role of NK cells and invariant-NKT cells has been mixed.  Radaeva et al 

demonstrated that NK cells were activated in HCV infection and had anti-fibrotic properties, through 

their killing of activated intrahepatic stellate cells [30].  Lucas et al demonstrated a reduced 

frequency of Vα24 NKT cells in HCV-infected individuals, but these cells demonstrated evidence of in 

vivo activation [31].  Golden-Mason et al prospectively followed 22 subjects through an episode of 

acute HCV infection demonstrating that individuals with NKT cells with a more activated phenotype 

were more likely to resolve HCV viraemia.  Further, that the ability of NKT cells to secrete IL-2 and IL-

13 during acute HCV infection was associated with clearance of HCV viraemia at the acute stage [32].  

2. Adaptive immunity 

Because acute HCV infection is often asymptomatic [22] and occurs in subjects involved in high-risk 

behaviours, study of the pathogenesis has relied on acute HCV in the chimpanzee, the only available 

animal model.  Two studies have conducted gene array studies of acute HCV infection and 

demonstrated that there is up-regulation of type I interferon responses within the liver within one 

week of infection [33, 34].   

The development of detectable immune responses is delayed despite evidence of early anti-viral 

responses within hepatocytes [23, 35, 36].  Cooper et al demonstrated that animals which cleared 

infection at the acute stage developed strong Th1 responses against multiple epitopes [37]. The two 

chimpanzees developed HCV-specific CD8+ responses between 6 and 12 weeks after inoculation 
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with HCV and the clearance of peripheral viraemia was contemporaneous with infiltration of the 

liver by HCV-specific CD8+ cells. However, animals which developed chronic infection developed 

weak responses to small numbers of epitopes [37].   

Similar findings have been demonstrated in humans undergoing acute HCV infection.  Gerlach et al 

studied thirty-eight subjects with acute HCV and demonstrated that those individuals who 

subsequently cleared HCV infection developed greater CD4+ proliferative and cytokine responses to 

HCV proteins within the first 6 months of infection when compared to subjects with developed 

chronic infection [38].  Of the 18 patients who developed chronic infection, six generated strong 

CD4+ responses initially leading to undetectable HCV RNA levels in serum.  However, as this 

response disappeared, HCV viraemia recurred at a median of 6 months after initial infection, leading 

to chronic infection [38]. 

Not only is the immune response different quantitatively in those who successfully clear the virus, 

but the response also differs qualitatively with skewing of the response toward Th1 cytokines.  Tsai 

et al demonstrated that individuals with acute HCV who successfully cleared infection had strong 

Th1 responses with high levels of interferon-γ and IL-2 in response to HCV proteins.  In distinction, 

those individuals with chronic evolution developed very poor or undetectable Th1 responses, but 

had detectable Th2 responses with IL-4 and regulatory responses, reflected by antigen-induced 

secretion of IL-10 [39].  

Data linking chronic infection to impairment of CD8+ lymphocyte function are not as robust.  Urbani 

et al demonstrated that CD4+ responses were important in the acute stage, whereas the scale or 

quality of CD8+ responses did not predict subsequent outcome of infection [40].  Cox et al 

demonstrated that initial CD8+ responses were lost during the acute stage in those with chronic 

evolution of infection.  Further, that despite chronic viraemia, these responses were not replaced by 

responses to other epitopes [23].   
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More recent work has shed light on the role of CD8+ T-lymphocytes in the pathogenesis of chronic 

HCV infection.  Jo et al have studied the ability of CD8+ cells to inhibit HCV replication in vitro by 

transfection of human HLA-A2 into cell lines supporting HCV replication in culture.  CD8+ T-

lymphocytes were able to inhibit HCV replication by 95% at ratios as low as 100 targets per effector.  

This effect did not involve cytolysis; inhibition was observed in transwell experiments and 

neutralization antibodies demonstrated that the effect was mediated mostly through interferon-γ 

[41]. 

The ability of the adaptive immune system to generate long-lasting immunity against HCV after 

clearance at the acute hepatitis stage is critical in determining the feasibility of generating an 

effective HCV vaccine in the future.  Most research in this area is derived from the chimpanzee 

model; this model is the only animal model allowing study of viral-immune system interactions [42, 

43].  However, the natural history of HCV in chimpanzees is different to that in humans with far 

higher rates of viral clearance at the acute stage.   

Data from the chimpanzee model of HCV regarding protection against re-infection are inconsistent.  

Shoukry et al demonstrated that duration of viraemia after second infection with HCV was 

significantly shorter than after initial infection in two chimpanzees.  Viraemia persisted for 14 days 

after second infection after a prior clearance of HCV after a median of 4 months [44].  Further, they 

demonstrated the importance of CD8+ T-lymphocytes by depleting this subset before infecting these 

animals for a third time with HCV resulting in chronic viraemia. 

Grakoui et al extended these findings by depleting CD4+ T-lymphocytes from two chimpanzees with 

previous acute hepatitis C.  Despite the presence of functional anti-HCV CD8+ cells within the liver, 

both animals developed persistent viraemia [45].  Nascimbeni et al demonstrated that virological 

outcome was correlated with the functional activity of T-lymphocytes during re-challenge of HCV-

recovered animals.  The animal which developed strong CD4+ and CD8+ T-cell cytokine and 
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proliferation responses cleared viraemia, whereas the animal that did not develop such responses 

developed chronic viraemia [46].  Further, several studies have demonstrated that neutralizing 

antibody responses against HCV antigens are not developed during re-challenge suggesting that 

antibody-based protection from re-infection is less important than cellular immunity [45, 47]. 

Data from human observational studies has suggested that previous clearance of HCV reduces the 

risk of chronicity from a subsequent re-infection from 21% to 12% [48].  However, other studies have 

found no reduction in viral persistence rate between HCV-naive individuals and subjects with 

previous acute HCV [49]. 

Non-viraemic HCV 

Between 15 and 50% of individuals are reported to clear HCV RNA from serum at the stage of acute 

infection  [22, 50].  Studies in the two largest cohorts infected by blood products suggest that 45% of 

individuals clear viraemia at the acute stage [4, 51], although these patients may not reflect the 

majority of HCV-exposed individuals.  The long-term prognosis of this group is good [22, 52, 53].  

However, an increasing body of work has questioned whether these individuals have indeed cleared 

infection or whether HCV lies latent within the liver [53]. 

Castillo et al described a cohort of HCV-seronegative patients with persistently raised transaminases 

without clear cause.  They demonstrated positive and negative strand viral RNA from liver biopsy 

specimens in 57% of cases, even though the individuals were negative for both anti-HCV and serum 

HCV RNA by routine clinical tests [54].  The same group went on to demonstrate that viral RNA was 

detectable in liver tissue in 83% of anti-HCV positive, non-viraemic individuals [55]. 

The issue of whether such patients represent latent infection [53, 56] or chronic HCV infection with 

viral replication below the current limit of detection of PCR assays [57] remains contentious and 

unresolved. 
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Development of chronic infection 

For the remaining 80% of subjects, the initial immune response fails to control the viral infection and 

the subject develops chronic infection.  These individuals retain both detectable anti-HCV antibody 

and viral RNA in serum (Figure 4) and are at risk of developing long-term complications of HCV 

infection, usually related to progressive hepatic fibrosis. 

Immunology of chronic HCV infection 

Chronic HCV infection has been associated with defects of both innate and adaptive immune 

systems.  There are demonstrable defects in the number or function of CD4+ T-lymphocytes [36], 

CD8+ T-lymphocytes [35], NK cells [58, 59], invariate NKT cells [31, 58, 60, 61] and dendritic cells [28, 

62]. 

In particular, the failure of T-lymphocyte responses in chronic HCV infection and the mechanisms 

underlying this failure have been the subject of intense research.  Possible mechanisms that have 

been postulated include [35]: 

1. Primary T-cell failure or exhaustion 

There is evidence that T-cells undergo exhaustion during the primary immune response.  Cox et al 

demonstrated waning responsiveness to certain CD8+ epitopes [23].  Other groups suggested that 

HCV-mediated dysfunction of dendritic cell antigen presentation and co-stimulation fails to prime 

CD8+ and helper CD4+ responses, preventing maturation of the immune response [28, 62].   

Certainly it is known that HCV-specific lymphocytes fail to undergo in vivo maturation and 

differentiation despite the continued presence of antigen.  Appay et al demonstrated that CD8+ T-

lymphocytes specific for a range of chronic infections had widely divergent cell-surface phenotypes 

described by the presence or absence or CD27 and CD28.  When compared to CD8+ cells specific for 

CMV, EBV and HIV, HCV-specific cells had the highest surface expression of the co-stimulatory 

molecules CD27 and CD28 [63].  It is also known that HCV infection is able to retard the normal 
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maturation of both HCV-specific and non-HCV-specific cells.  Lucas et al demonstrated that CMV-

specific cells which normally have a highly differentiated phenotype in CMV mono-infected subjects 

had higher expression of CD27, CD28 and CD45RA in subjects also infected with HCV [64].  This 

suggests that HCV infection is able to prevent the normal differentiation pathway in the whole CD8+ 

T-lymphocyte pool and not just HCV-specific cells.  Spangenberg et al demonstrated a failure of 

intrahepatic HCV-specific CD8+ lymphocytes to express IFN-γ in response to HCV peptides.  The same 

was not true for flu-specific CD8+ cells in the same patients which had maintained antigen-specific 

IFN-γ secretion [65]. 

Other groups have studied the failure of HCV-specific CD4+ lymphocytes in chronic HCV infection.  It 

is known that these cells are very rare in patients with chronic HCV infection, ranging between 

1:1000 and 1:100,000 despite chronic antigenaemia [66].  Further, despite having a restricted T cell 

receptor repertoire suggesting expansion of a limited number of clones these cells had a CD27+ 

CCR7+ phenotype suggesting a failure to mature [66].  Functionally HCV-specific CD4+ T-lymphocytes 

have a skewed cytokine secretion pattern with a complete failure to secrete IL-2, but maintained 

IFN-γ secretion [67] attendant with a failure to proliferate [68]. 

Yao et al suggest that HCV core protein may inhibit T-lymphocyte priming through interaction with 

the complement receptor gC1qR, inhibiting activation of the Akt intracellular messenger pathway 

[69, 70]. 

Further, whilst there are few HCV specific lymphocytes present in peripheral blood of subjects with 

chronic HCV infection they can be expanded ex vivo.  Chang et al demonstrated that HCV-specific 

cytolytic CD8+ memory T cells were undetectable ex vivo but could be expanded with in vitro 

stimulation [71].  Interestingly, similar cells from subjects with non-viraemic HCV could not be 

expanded, perhaps suggesting the need for cognate antigen to preserve memory responses and the 

lack of long-term protective T-lymphocyte response even after apparent viral clearance. 
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2. Suppression by regulatory T-lymphocytes 

HCV is associated with an accumulation of CD4+CD25+FoxP3+ regulatory T –cells which inhibit HCV-

specific responses [72, 73].  These cells are concentrated within the liver [74] and in vitro depletion 

leads to an increase in proliferative and cytotoxic responses [73]. 

Similarly a regulatory CD8+ T-lymphocyte population that secretes IL-10 has been identified as 

important in the pathogenesis of chronic HCV infection.  Accapezzato et al identified CD8+ 

regulatory cells which were specific for HCV epitopes present within the HCV-infected liver.   These 

cells suppressed other T-cell responses; suppression was reversible through the addition of anti-IL-

10 [75]. 

3. Inhibitory receptors 

There is increasing interest in lymphocytic expression of inhibitory receptors and in particular, PD-1, 

a cell-surface receptor of the CD28 superfamily, that when bound to its ligand PD-L1 or PD-L2 

generates an inhibitory signal that prevents further immune activation [76].  It is believed that this 

system evolved to prevent exuberant immune reactions that might lead to host damage.  

In a mouse model of Lymphocytic Chorio-Meningitis virus (LCMV) infection, Barber et al 

demonstrated that viral infection was associated with increased expression of PD-1 on LCMV-specific 

cells which displayed features of exhaustion.  Further, the administration of antibody inhibiting 

interaction of PD-1 with PD-L1 increased LCMV-specific cell proliferation, cytokine secretion, cell 

killing and reduced viral load [77]. 
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Figure 5.  Increase in LCMV-specific CD8+ lymphocyte function after administration of anti-PD-L1.  
Mice infected with LCMV were injected with irrelevant antibody or anti-PD-L1, which led to an 
increase in the proportion of viral-specific CD8+ lymphocytes.  Cells able to secrete IFN-γ after 
specific stimulation (left panel) and the ability of CD8+ lymphocytes to lyse target cells bearing 
LCMV antigens (right panel).  Source: [77]. 

Since this study there has been a rapid advance in the study of this receptor system in the field of 

HCV infection.  Urbani et al demonstrated that CD8+ lymphocytes maintained high levels of PD-1 

expression beyond the acute phase in those individuals with evolving chronic infection [78].  In 

distinction, those subjects with acute clearance of infection had rapid down-regulation of PD-1, 

commensurate with the decline in viral load.  Both Golden-Mason et al and Penna et al have 

demonstrated that PD-1 is up-regulated on HCV-specific CD8+ T-lymphocytes and that 

administration of blocking antibodies is associated with a restoration of viral-specific secretion of 

IFN-γ and IL-2 [79, 80].  Yao et al demonstrated that interaction of HCV core protein with gC1qR 

leads to up-regulation of PD-1 on viral-specific lymphocytes [81].  

The importance of both the identification of both active regulation and the activity of inhibitory 

receptors is the potential for therapeutic manipulation to reverse the immune defects seen in 

chronic HCV infection.  
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4. Viral quasi-species and escape mutants 

The HCV RNA-dependent RNA polymerase that is responsible for the replication of the viral genome 

lacks proofreading capability. HCV infection generates an estimated 1010 virion particles per day and 

the process of viral replication leads to large numbers of viral mutations.  These mutants can evade 

the adaptive immune response due to sequence changes and therefore viral epitope modification 

[82, 83].  Erickson et al demonstrated that HCV infection in chimpanzees led to the development of 

viral mutations which impair epitope binding to MHC class 1 or recognition by CD8+ lymphocytes 

[82].  Several studies have demonstrated escape mutants in human HCV infection which pre-date the 

development of chronic infection [84, 85]. 

Mechanisms of HCV-induced liver injury 

Direct cytopathic effects and immune-mediated liver injury are both likely to be involved in the 

pathogenesis of HCV-related liver damage.  Whilst immune-mediated liver injury during chronic HCV 

infection is felt to represent the predominant mechanism of damage the evidence base for this 

hypothesis is not strong [86].  The evidence for direct cytopathy comes from individuals who are 

immune deficient because of HIV infection [87, 88] or receiving immunosuppressive drugs after 

organ transplantation [89]  who have increased rates of disease progression when compared to 

immune competent individuals.  The evidence for immune-mediated liver damage comes from 

chimpanzee experiments and human observation where liver damage is contemporaneous with liver 

infiltration by CD8+ cells, not HCV replication. 

1) Direct cytopathic effects 

a. Modulation of hepatocyte apoptosis 

Several studies have linked HCV infection of hepatocytes to up-regulation of apoptosis.  

Bantel et al identified high levels of Cytokeratin-18 cleavage products in the serum of 

subjects with HCV infection, which correlated with the degree of elevation of 

transaminases [90].  CK-18 is the major cytokeratin of hepatocytes [90, 91]; increased 
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serum concentrations may reflect either necrosis or apoptosis.  Joyce et al demonstrated 

that human hepatocytes in a SCID mouse model demonstrated increased levels of 

oxidative stress and increased apoptosis by TUNEL staining [92].  Walters et al 

demonstrated that HCV infection of Huh-7.5 cells in culture was associated with 

increased levels of caspases 3, an enzyme involved in apoptosis.  Further, peak of viral 

replication was contemporaneous with the peak of caspases 3 expression [93].  Zhu et al 

demonstrated similar findings demonstrating that HCV induced apoptosis of an in vitro 

hepatocyte cell line utilising tumour necrosis factor-related apoptosis-inducing ligand 

(TRAIL) as the marker of apoptosis.  Further, they demonstrated that IFN-α protected 

hepatocytes from apoptosis [94]. 

Whilst the in vitro data linking HCV infection to hepatocyte apoptosis is suggestive, 

studies investigating in vivo hepatocyte apoptosis in HCV-infected liver are equivocal.  

Safraz el al demonstrated there is minimal expression of caspase 3 in the hepatocytes in 

chronic HCV infection using immunohistochemistry on HCV-infected liver tissue [95]; 

whereas sinusoidal lining-cells did express caspases 3.  Other studies investigating both 

TRAIL and caspase 3 by immunohistochemistry have demonstrated that TRAIL is 

maximally expressed in livers with low stage fibrosis, whereas caspases 3 is maximally 

expressed in livers with high stage fibrosis [96].  

Further, expression of CD95 (Fas) on the surface of hepatocytes is up-regulated in 

subjects with HCV infection [97].  CD95 is a surface receptor for the external apoptotic 

pathway, which when ligated by Fas-ligand causes activation of intracellular caspase-8 

and ultimately apoptosis [98].  Therefore, whilst up-regulation of CD95 increases the 

susceptibility of a cell to apoptosis triggered externally, it does not equate with 

apoptosis directly.  
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b. Hepatic steatosis and insulin resistance  

The prevalence of the metabolic syndrome in patients with chronic HCV infection is far 

higher than expected allowing for obesity and other known risk factors [99].  An 

increasing body of work has linked HCV infection as a causative agent to insulin 

resistance and dyslipidaemia.  HCV, particularly genotype 3 infection, is known to be 

associated with the development of both hepatic steatosis and insulin resistance.  It is 

known that both conditions are linked to mitochondrial toxicity in the hepatocyte and 

increased generation of reactive oxygen species (ROS) [99]. 

Both structural and non-structural HCV proteins affect the cellular redox environment 

and insulin signalling pathways.  Gong et al demonstrated that the HCV NS5 protein led 

to the release of calcium from the endoplasmic reticulum (ER) of hepatocytes [100].  The 

interaction of HCV and NS5 in particular with the ER is thought to lead to overload of 

chaperone proteins, responsible for ensuring correct protein folding.  This overload 

leads to an unfolded protein response which leads to ER dysfunction and ultimately cell 

death [101]. 

HCV core protein has been demonstrated to induce insulin resistance in three separate 

ways: induction of mitochondrial permeability transition; overload of the ER; and 

inhibition of Peroxisome proliferator-activated receptor-α (PPAR) [99].  Core protein is 

known to bind to the outer membrane of mitochondria leading to the mitochondrial 

permeability transition.  This leads to mitochondrial uptake of calcium and activation of 

the electron transport chain leading to increased generation of ROS [102].  Moriya et al 

developed two separate mice lines that expressed HCV core protein.  These mice 

develop progressive hepatic steatosis, linking the core protein to steatosis in the 

absence of other HCV components [103].  Naas et al extended these findings to 

demonstrate that viral protein production increased with increasing age in a transgenic 



Lymphocyte senescence and Hepatitis C 
 

 26     

mouse model and further, that core, E1 and E2 proteins were all able to induce hepatic 

steatosis [104]. 

PPAR-α is involved in the intracellular handling of lipids and in particular triglyceride.  

HCV core protein has been demonstrated to inhibit both PPAR-α and PPAR-γ, leading to 

hepatocyte accumulation of triglyceride and increased oxidative stress [105]. 

Recent data has revealed a potential mechanism underlying the increased insulin 

resistance seen in HCV infection.  Kasai et al have demonstrated that infection of Huh-

7.5 cells with a HCV sub-genomic replicon led to a reduced expression of cell surface 

glucose transporters GLUT1 and GLUT2 and subsequent reduced cellular glucose uptake 

[106].  This down-regulation could be reversed by treating the cells with IFN-α.  They 

further demonstrated an in vivo reduction of GLUT2 on hepatocytes from HCV-infected 

individuals [106]. 

In addition to direct effects upon hepatocytes by HCV proteins, insulin resistance can 

also arise due to the increases levels of intrahepatic immune effectors and attendant 

cytokine release.  HCV infection leads to Kupffer cell activation within the liver and 

subsequent release of pro-inflammatory cytokines [107] such as TNF-α and IL-6 [99]. 

TNF-α leads to down-regulation of hepatocyte surface membrane glucose transporters 

reducing the hepatic uptake and promoting hyperglycaemia [108], in addition to down-

regulating lipoprotein lipase leading to increased triglyceride levels [109].  

c. Activation of hepatic stellate cells (HSC) 

Hepatic stellate cells are present within both healthy and diseased liver.  Normally they 

are quiescent, but upon activation they are able to produce large quantities of 

extracellular matrix proteins including fibrous tissue. 
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Bataller et al demonstrated that transfection of the HCV-proteins core, NS3 and NS5 into 

quiescent HSCs led to expression of pro-collagen 1 and secretion of the pro-fibrogenic 

cytokine TGF-β [110].  Further, Mazzocca et al demonstrated that exposure of HSCs to 

the HCV protein E2 led to the secretion of matrix metalloproteinase 2 (MMP2) which led 

to the destruction of the normal extracellular matrix and the deposition of dense type 1 

collagen [111].   

Incubation of HSCs with the conditioned media from HCV-infected cell lines leads to the 

up-regulation of the pro-fibrogenic response and the suppression of the fibrinolytic 

response [112].  Schulze-Krebs et al demonstrated that conditioned media from HCV-

replicon infected Huh-7.5 cells led to human and rat HSCs secreting increased quantities 

of pro-collagen alpha1(I) and pro-collagen alpha1(III) and down-regulating fibrolytic 

matrix metalloproteinases [112].  Inhibition of TGF-β led to a 50% reduction in pro-

collagen release. 

2) Immune-mediated liver injury 

As discussed previously there are a number of induced immune defects consequent upon 

HCV infection.  Much of the liver damage is felt to represent prolonged, unsuccessful 

attempts by the immune system to eliminate virally-infected hepatocytes.  However, the 

evidence to support this hypothesis in humans rather than animal or cell-culture models is 

only observational. 

a. Cytotoxic T-lymphocytes 

Intracellular viral peptides are processed in the context of MHC class I and presented on 

the cell surface of hepatocytes and presented to CD8+ T-lymphocytes in chronic HCV 

infection [24].  In acute HCV infection the appearance of HCV-specific CD8+ T-

lymphocytes in peripheral blood is contemporaneous with the decline in viral load [44, 
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113].  Further, the expression of pro-inflammatory Th1-associated genes within the liver 

is correlated with the degree of liver injury [114]. Urbani et al studied eight subjects with 

HCV infection and found that two with severe hepatitis had strong CD8+ responses to a 

epitope within the HCV NS3 region, which those with less severe hepatitis did not [115].  

Further, they demonstrated that there was significant cross-reactivity between these 

NS3-specific cells and an epitope in the influenza neuraminidase protein. 

b. Natural Killer (NK) cells 

NK cells respond to perceived threats in a non-antigen specific fashion.  They are able to 

detect reductions in MHC class I expression on the surface of cells, which can be 

associated with and utilised by viral infections to reduce antigen-presentation to CD8+ T-

lymphocytes [86].   

In a mouse model of viral hepatitis, Liu et al demonstrated that intrahepatic NK cells 

were necessary for correct priming of CD8+ T-lymphocytes and ultimately viral clearance 

through hepatocyte killing [116].  However, other groups have demonstrated that NK 

cells may actually be anti-fibrogenic.  In a carbon tetrachloride mouse model, NK cells 

were responsible for killing activated stellate cells and reducing the level of fibrosis after 

liver injury [30].  

c. Natural Killer T (NKT) cells 

This subset of NK cells which also express the T-cell receptor CD3, recognise glycolipid 

antigens when presented in the context of CD1d [117].  They are enriched within the 

HCV-infected liver and are able upon activation to secrete large quantities of the Th1 

cytokine IFN-γ [118].   Other groups have demonstrated that NKT cells from HCV-

infected liver display an activated phenotype [31], but there has been no study directly 

linking this cell type to liver damage in HCV. 
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Interferon-α signalling in HCV infection 

The interferons were first discovered in studies on anti-viral agents in the 1950’s [119].  They are a 

multi-gene family of inducible cytokines that elicit multiple changes in both cellular metabolism and 

gene transcription [120].  They are divided into two subgroups: type 1 interferons include 13 

different subtypes of IFN-α and IFN-β, produced by dendritic cells in response to viral infection and 

IFN- , the sole type 2 interferon, induced by mitogenic or antigenic stimulation of lymphocytes 

[120].  Interferon-α is the anti-viral cytokine of particular importance in both acute and chronic HCV 

infection and forms the basis of anti-viral treatment for HCV infection [19].   Experiments have 

suggested that CD8+ T-lymphocyte derived IFN-γ has a significant role in the inhibition of HCV 

replication [41].  However, attempts at administering IFN-γ as a therapeutic anti-viral agent have 

been disappointing [121]. 

Type 1 interferons exert their actions by binding to their cell-surface receptor which consists of two 

subunits IFNAR-1 and IFNAR-2 [122, 123].  IFN-α binds to IFNAR-2 which causes it to associate with 

IFNAR-1, leading to phosphorylation of the janus tyrosine kinases Jak1 and Tyk2 associated with the 

intracellular tail of IFNAR-1 (Figure 6) [122]. 
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Figure 6.  Cartoon of the signalling pathway of Interferon-α (IFN-α).  IFN-α associates with IFNAR-
2, leading to dimerisation with IFNAR-1.  This leads to phosphorylation of the intracellular kinases 
Jak1 and Tyk2 and subsequently phosphorylation of Stat1 and Stat2.  This leads to the formation 
of the complexes ISGF3 and AAF, which are able to act on gene promoters and inhibitors.  Source:  
[122]. 

Phosphorylation of Jak1 and Tyk2 leads to the phosphorylation of signal transducer and activator of 

transcription (STAT) 1 and 2.  Once phosphorylated at tyrosine 701 (Y701) Stat1 is able to form 

homodimers termed Interferon-α activated factor (AAF) or larger complexes with phospho-Stat2 and 

interferon regulatory factor 9 (IRF-9) termed interferon-stimulated gene factor 3 (ISGF3).  These two 

second messengers mediate changes in the transcription of a number of genes termed interferon-

stimulated genes (ISG) through binding to gene promoters and inhibitors. 

Through the use of gene or mRNA array technology it is possible to study the pattern of ISG 

expression in different disease stages.  Sarasin et al demonstrated that high level ISG expression 

prior to treatment with IFN-α therapy for HCV was associated with failure to respond to therapy.  

Conversely, individuals with significant increments in ISG in response to IFN-α had successful 
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responses to anti-viral therapy [124].  Lalle et al demonstrated that the ISG response of peripheral 

lymphocytes to IFN-α in vitro prior to anti-viral therapy predict patients ultimate virological response 

[125].  Similarly, Aceti et al demonstrated that failure to phosphorylate Stat1 in peripheral 

lymphocytes in response to IFN-α therapy was associated with a failure to respond to therapy [126]. 

HCV has evolved a number of mechanisms of interfering with the IFN-α / Stat1 pathway, abrogating 

anti-viral signalling.  A number of groups have demonstrated that the HCV core protein suppresses 

signalling through Stat1 [127, 128].  Yao et al demonstrated that core protein prevents Stat1 

phosphorylation in addition to down-regulating suppressor of cytokine signalling 1 (SOCS) expression 

in peripheral T-lymphocytes [129]. Gong et al demonstrated that the HCV NS5A protein reduces 

Stat1 phosphorylation and nuclear translocation in response to IFN-α in vitro [130]. 

Increased age may diminish the effectiveness of the IFN-α signalling pathway.  Rytel et al 

demonstrated that aged mice injected with either Coxsackie or the non-replicating Newcastle 

Disease Virus had significantly less IFN-α secretion than younger animals [131]. 

IFN-α induces a number of proteins important in cellular anti-viral defence.  Two of the most 

important are protein kinase R (PKR) and 2’-5’ oligoadenylate synthetase (OAS).  PKR is activated by 

auto-phosphorylation following detection of double stranded RNA molecules which occur during 

intracellular viral infection.  Once activated PKR phosphorylates a number of cytoplasmic targets 

preventing RNA translation and thereby viral replication [120].  Activation of OAS leads to 

degradation of RNA within the cytoplasm. 

IFN-α therapy for chronic HCV infection 

The current gold standard of therapy for chronic HCV infection comprises IFN-α and ribavirin (RBV) 

[19]; IFN-α is conjugated to a polyethylene-glycol (PEG) tail in order to increase the half life.  Patients 

who have developed or are at risk of developing progressive fibrosis secondary to chronic HCV 

infection are commenced on once weekly subcutaneous PEG-IFN-α and twice daily oral RBV.  
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Patients with genotype 1 and 4 infections are treated for 12 weeks and then testing for viral load is 

performed.  Those who are non-viraemic at this stage have achieved an early virological response 

(EVR); therapy is continued for a total of 48 weeks in those whose viral load has reduced by 2 log10.  

For those who remain viraemic, with less than a 2log10 drop in viral load, the likelihood of achieving 

viral clearance is less than 2%  and therapy is stopped [19].  For individuals with genotype 2 or 3 

infection therapy is continued for a total of 24 weeks (Figure 7).   

For all subjects viral load is then repeated 6 months after cessation of therapy.  Subjects who are 

non-viraemic at this stage have achieved sustained virological response (SVR) and remain non-

viraemic in the long-term in over 95% of cases [19, 132]. 

 

Figure 7.  Schematic of current treatment time-course in different genotypes of chronic HCV 
infection. 

Whilst rates of SVR achieved in the context of clinical trials are reportedly higher, ‘real-world’ rates 

of achievement of SVR are 40% for genotype 1 or 4 and 70% for genotypes 2 or 3 (Tracy Woodall & 

Graeme Alexander,  Cambridge 2009, personal communication). 
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Side effects are one of the main drawbacks of therapy with IFN-α leading to premature withdrawal 

from therapy in 10 – 14% of subjects [133].  Further, symptoms or complications of therapy result in 

dose-reductions in either IFN-α or RBV in around one third of cases [133], leading to reduction in the 

efficacy of treatment translating into reduced rates of SVR [19, 133].  Common side-effects include 

fatigue, pyrexia, malaise and depression.  However, therapy can be associated with the development 

of significant auto-immune phenomena which may not abate after cessation of therapy [133]. 

Fibrosis progression in chronic HCV infection 

As HCV was only discovered in 1989, true prospective studies to investigate the rate at which HCV 

infection leads to the development of hepatic fibrosis currently lack the long-term follow-up 

required.  In their place a number of retrospective-prospective studies with patients already infected 

but at a known time point yield the strongest evidence.  A number of single time point cohorts exist 

around the world who acquired HCV through single sources including recipients of infected anti-

rhesus D immunoglobulin [4] and recipients of infected human plasma [3].  Several groups have 

followed cohorts of non-iatrogenically infected individuals; thus most were infected with HCV 

through IDU, where single time point of infection cannot be established [134]. 

HCV is an indolent disease in the majority of sufferers, with progressive fibrosis in a minority usually 

associated with secondary factors now known to significantly impact upon the prognosis of HCV 

infection. 

Hepatic pathology 

In common with other liver diseases chronic inflammation of the liver can lead to the development 

of hepatic fibrosis (Figure 8).  In HCV infection, the majority of inflammation resides within the portal 

tract, with some spill over into the hepatic lobule (Figure 9). 
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Figure 8. HCV-related hepatic fibrosis.  Three representative photomicrographs of liver biopsy 
specimens taken from subjects with mild fibrosis (Panel A), moderate to severe fibrosis (Panel B) 
and cirrhosis (Panel C) stained for reticulin. 

 

Figure 9.  Photomicrograph of liver biopsy obtained from HCV infected subject.  Section A stained 
with haematoxylin and eosin demonstrating representative liver pathology in HCV infection; 
section B shows next level stained for reticulin demonstrating hepatic fibrosis  There is a 
significant lymphoid infiltrate into the portal tract including a lymphoid follicle.  Lymphoid 
infiltration is mostly limited to the portal tract; there is relatively little lobular inflammation.   

Hepatic fibrosis usually develops in a porto-central distribution.  A number of scoring systems for 

HCV-infected liver biopsies have been developed in order to standardise histopathological reporting 

for both routine clinical practice and research studies.  The most widely used was developed by Ishak 

et al [135], a modification of the previous Knodell scoring system [136]. The Ishak system was 

A B C

A B
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originally devised in 1995 as a basis for scoring liver biopsies from subjects with any form of chronic 

hepatitis, whether virus mediated or autoimmune.  The grading score consists of various 

components describing the infiltration of both portal and lobular areas by lymphocytes as well as 

describing various types of hepatocyte damage, whether necrosis or apoptosis, all scored 0 to 4.   

The staging score consists of an assessment of the degree of fibrosis present, ranging from 0 to 6; a 

score of 0 represents no fibrosis with 6 being definite cirrhosis [135].  Both the stage and grade 

components of the Ishak score are subjective and non-linear variables.  Therefore, correlations 

involving components of the Ishak score require ranked correlations rather than linear regression. 

Other scoring systems include the METAVIR score, popular in continental Europe [137]. 

Natural history studies of HCV progression have concerned the rate at which hepatic fibrosis 

develops.  Sweeting et al reviewed the data from three HCV infected cohorts in order to estimate 

fibrosis progression rates in the UK [138].  After adjustment for confounding variables, they found 

that the probability of developing cirrhosis after 20 years of HCV infection varied between 6% for a 

post-transfusion cohort (Figure 10b), 12% for a cohort derived from secondary care (Figure 10a), to 

23% in a cohort at St Mary’s Hospital in London, a tertiary referral centre (Figure 10c).  Clearly there 

was significant ascertainment bias inherent to these cohorts; patients with HCV-related 

complications and rapid disease progression will be over-represented in a cohort derived from 

tertiary care.  Further, work from Fu et al has demonstrated that referral bias and deriving cohort 

data from subjects with known HCV in the hospital setting leads to an overestimate of the fibrosis 

progression rate in the context of chronic HCV infection [139].  They found that subjects with a 

cluster of other factors including harmful alcohol usage were more likely to have come to clinical 

attention and to be referred to a hospital setting, therefore leading to an over-representation of 

subjects with high fibrosis stages in hospital-derived cohorts. 
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The ability to predict fibrosis progression accurately is important in the clinical management of 

subjects with HCV given that HCV-related complications are very unusual before the development of 

cirrhosis [140].  Further, predicting long-term outcome allows planning of future health care needs 

based on current incidence and seroprevalence of HCV. 

 

Figure 10.  Cumulative probability of developing cirrhosis due to HCV infection from 3 UK cohorts 
of HCV patients.  A) Trent cohort derived from community and secondary care, b) The ‘look back’ 
cohort derived from post-transfusion HCV patients and c) St Mary’s Hospital cohort.  Solid line, 
mean with 95% confidence intervals dotted lines.  Source: [138]. 



Lymphocyte senescence and Hepatitis C 
 

 37     

Factors influencing disease progression 

From these natural history studies it has become apparent that there is significant disparity in the 

rate of fibrosis development in HCV [6].  The identification of host, environmental or virological 

factors that are amenable to modification in order to improve the long-term prognosis or to prevent 

the development of cirrhosis are important in the clinical management of HCV but also in informing 

the mechanisms underlying disease progression.  The most important risk factors demonstrated to 

be associated with significant increased rates of fibrosis progression in the context of HCV are age at 

infection, misuse of alcohol and male gender [6, 141]. 

Non-modifiable risk factors for progression 

1. Age at acquisition and duration of infection 

Even after controlling for duration of infection, the age at which patients acquire HCV infection has 

been shown to hugely influence the subsequent rate of disease progression [6].  Poynard et al 

demonstrated that individuals infected with HCV before the age of 20 had a twenty year probability 

of developing cirrhosis of 2% compared to 63% in those individuals infected after the age of 50 

(Figure 11). 
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Figure 11.  Cumulative probability of developing cirrhosis (METAVIR F4) according to age at 
acquisition of HCV infection.  Source: [142]. 

 

Minola et al demonstrated that the time to 50% cumulative probability of developing cirrhosis was 

33 years for those infected between 21 and 30, but only 16 years in those infected with HCV after 

the age of 40 [143].  Poynard et al [141] demonstrated that fibrosis progression rates also increased 

with increasing age.  However, the underlying pathogenesis of the relationship of subsequent 

fibrosis progression rate and age of patient has not yet been elucidated.  Similar findings were 

demonstrated by Pradat et al who demonstrated increased rates of fibrosis progression with 

increasing age at infection [144].  Kao et al demonstrated that increasing age was correlated with 

increasing viral load in viraemic HCV infection [145].  Sweeting et al performed a meta-analysis of 

three UK based cohorts of patients with HCV infection demonstrating that duration of infection 

independent of age at infection was significantly associated with increasing hepatic fibrosis [138]. 
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2. Gender 

Multiple studies have demonstrated that males have a significantly worse prognosis when infected 

with HCV [142, 146].  Both Poynard et al and Wright et al have determined that the hazard ratio (HR) 

for fibrosis progression attributable to male sex is around 2 independent of age and alcohol intake 

[142, 146]. 

3. Subject ethnicity 

Patients from an Afro-Caribbean background are less likely to develop significant fibrosis in the 

context of HCV infection [147, 148].  However, Afro-Caribbean individuals are less likely to respond 

to anti-viral therapy [149] and once cirrhosis has developed are more likely to develop HCC [150].   

4. Host genetic factors 

Genetic studies to determine the risk attributable to different genetic backgrounds on the course of 

HCV infection have fallen into two groups: hypothesis-driven studies of genes involved in immune 

function and hypothesis-free genome-wide association studies. 

Asti et al determined that whilst age and sex were the predominant determinants of HCV 

progression, the presence of DRB11 or DRB3 was associated with higher degrees of hepatic fibrosis 

[151].  DRB3 was associated with significant fibrosis with an odds ratio of 16, albeit with wide 

confidence intervals.  However, Godkin et al demonstrated that DRB11 was associated with 

increased rates of viral clearance at the acute stage.  Further, on comparing cleared and chronically 

infected DRB11 positive individuals, they identified 4 restricted epitopes which induced a strong IFN-

γ response in those who had cleared HCV, but no response in those with chronic HCV.  They suggest 

this is evidence for the role of CD4+ responses and DRB11 restricted responses in the successful 

clearance of HCV [152]. 

Khakoo et al studied killer-cell immunoglobulin-like receptor (KIR) expression patterns in chronic 

HCV infection and determined that polymorphisms in KIR2DL3 or its ligand HLA-C1 were associated 
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with increased rates of clearance or HCV infection, but only when the source of HCV infection was 

not blood transfusion [153].  Their interpretation was that at low infecting viral titres these alleles 

may allow the immune system to respond to HCV more effectively, but that if HCV was acquired 

from infected blood transfusion then the infecting viral load was so enormous as to render these 

alleles unimportant. 

Huang et al conducted a genome-wide association scan on 916 HCV-infected individuals, and 

identified a single nucleotide polymorphism (SNP) in the DEAD box polypeptide 5 (DDX5) gene (p68), 

an RNA helicase involved in secondary RNA structure [154].  In two further validation cohorts, the 

presence of this mis-sense SNP was associated with more advanced fibrosis with a HR of between 

1.8 and 2.2 [155].  Goh et al had previously demonstrated that DDX5 binds to the HCV polymerase 

NS5B and that over expression reduces HCV RNA replication in vitro [156]. 

Ge at al have also performed a genome-wide association scan to identify genetic determinants of 

successful treatment response to IFN-α.  They have identified a polymorphism in the IFN-λ-3 gene 

that was associated with a two-fold change in the likelihood of successful treatment response.  

Further, they found that this polymorphism was more common in Caucasian than Afro-Caribbean 

subjects and accounted for half of the difference in treatment responsiveness between these two 

ethnic groups [157]. 

5. Viral factors 

The impact of viral factors such as genotype and viral load upon fibrosis progression remains 

controversial.  Most studies in this area suggest that they have no significant contribution [141, 146, 

148, 158], and the few positive studies have been criticised for their methodology [159]. 

Further, the studies demonstrating an effect of genotype on fibrosis progression have conflicting 

results.  Wright et al demonstrated in a cohort of 917 subjects with chronic HCV that non-1 

genotypes were associated with increased rates of fibrosis progression independent of age, sex and 
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alcohol consumption [146].  However, Kobayashi et al demonstrated that Japanese patients with 

genotype 1 infection were 50% more likely to develop progressive fibrosis on follow-up when 

compared to genotype 2 infected subjects [159].  Harris et al demonstrated that genotype 1 

infection was associated with increased fibrosis progression rates in a UK cohort [160]. 

What is still not clear is whether the rates of viral clearance at the acute hepatitis stage are different 

between genotypes.  A previous study by Lehman et al has suggested that individuals infected with 

genotype 3 HCV have higher rates of spontaneous clearance than those infected with non-3 [50].  

However, Harris et al suggest that rates of spontaneous clearance may be higher with genotype 1 

infection [160]. 

 Modifiable risk factors for progression 

1. Alcohol consumption 

Misuse of alcohol has been demonstrated to have a significant effect in accelerating the rate of 

fibrosis progression in the context of HCV infection.  Poynard et al demonstrated that patients who 

consumed greater than 50g of alcohol per day were significantly more likely to develop progressive 

hepatic fibrosis (Figure 12) [141].  Ostapowicz et al demonstrated that HCV cirrhotic subjects had 

greater lifetime alcohol intake and greater intake of alcohol during the period of HCV infection than 

non-cirrhotic subjects [158].  Wiley et al determined the HR for developing cirrhosis attributable to 

excess alcohol consumption was between 2 and 3 [161]. 
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Figure 12. Cumulative probability of developing moderate fibrosis (METAVIR F2) in the context of 
HCV infection and relationship to alcohol intake.  The cohort of 2234 patients was divided based 
on daily alcohol intake of more or less than 50g alcohol per day.  The curves were significantly 
different by Log-Rank test (p<0.05).  Source: [141]. 

Further, other groups have demonstrated that excess alcohol consumption led to a significant 

increase in mortality compared to HCV infected subjects who were abstinent or drank within 

recommended limits [162].  Through prospective follow-up of a cohort of 924 HCV-infected 

individuals over sixteen years, Harris et al identified thirty-four who had died as a direct result of 

liver disease.  In ten cases (29%) excess alcohol was a co-factor in their death [162].  Compared to 

drinkers of 1 – 20 units of alcohol per week, survival was worse for those consuming greater than 

twenty units per week (HR 1.15, 95% CI: 0.8 – 1.6). 

In a meta-analysis Hutchinson et al demonstrated the relative risk of developing cirrhosis in the 

context of HCV infection attributable to excess alcohol usage was 2.33 (95% confidence interval, 

1.67-3.26) [163]. 

>50 grams 
alcohol per day 

<50 grams 
alcohol per day 
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2. Iron metabolism 

The deposition of iron on liver biopsy occurs in around one third of patients with chronic HCV 

infection [164, 165].  This may occur due to chronic inflammation [166] or to increased absorption of 

dietary iron.  Iron absorption is suppressed by hepcidin, released from the liver to act upon small 

bowel enterocytes.  Fujita et al demonstrated that subjects with HCV infection have lower hepcidin 

levels than healthy control subjects [167].  Furutani have investigated this further with a mouse 

model expressing the HCV polyprotein.  These mice develop hepatic iron loading and have low 

hepcidin levels [168]. 

Several studies have linked the presence of iron deposition with increased rates of fibrosis 

progression [166, 169, 170] and reduced rates of response to IFN-α based anti-viral therapy [171].  

However, when studying the effect of HFE mutations, the commonest cause of hepatic iron 

accumulation in a Caucasian population, there is no effect of either hetero- or homozygous 

mutations on fibrosis progression rates in HCV infection [166], suggesting that iron accumulation in 

HCV infected liver is independent of the mechanisms leading to iron loading in genetic 

haemochromatosis.   

Hepatic iron depletion, through repeated venesection, is associated with a reduced rate of fibrosis 

progression [172], lower rates of development of hepatocellular carcinoma [173], and increased 

response to anti-viral therapy [174]. 

3. Inflammatory activity and ALT 

Several studies have linked the severity of inflammation on initial biopsy to subsequent 

development of fibrosis [144, 175-177].  However, other studies have not [141, 146].  Pradat et al 

demonstrated in their cohort that those individuals with increased ALT, a surrogate marker of 

hepatic inflammation and hepatocyte necrosis, had significantly increased rates of subsequent 

fibrosis progression compared to those with lower levels of ALT [144]. 
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Similarly, several studies have investigated whether subjects with persistently normal ALT, an 

indirect marker of hepatic inflammation and hepatocyte necrosis, have improved prognosis. 

Kyrlagkitsis et al demonstrated that those with persistently normal ALT had reduced rates of 

subsequent fibrosis [178].  However, given that around 15% of their study cohort with persistently 

normal ALT had significant inflammation or fibrosis, they recommended not using ALT levels to guide 

decisions regarding clinical management. 

4. Obesity and Insulin resistance 

Studying the relationship between HCV, insulin resistance and hepatic steatosis is complicated as 

both HCV and the development of cirrhosis have been linked independently to the subsequent 

development of insulin resistance and the metabolic syndrome [99, 179].  Further, it is clear that 

infection with genotype 3 HCV is associated with the development of hepatic steatosis [99].   

Determining whether individuals with insulin resistance are at increased risk of fibrosis progression 

due to HCV infection is fraught with confounding variables.  Several studies have demonstrated that 

those with steatosis on biopsy have increased levels of fibrosis [180, 181].  Moucari et al studied 500 

patients with HCV infection prospectively and demonstrated that insulin resistance was associated 

with genotype 1 infection and viral load, but was independent of the degree of steatosis on liver 

biopsy [182].  Further, Tanaka et al demonstrated that insulin resistance improved when receiving 

interferon-α therapy [183].  However, given that some degree of anorexia occurs in most patients 

receiving IFN-α, a study of insulin resistance in those achieving SVR compared to those who do not is 

needed to answer this question. 

Similarly, investigating the relationship of obesity independent of insulin resistance and steatosis on 

the prognosis of chronic HCV is problematic.  Obesity is known to be associated with increased rates 

of HCC in the context of HCV [184] and reduced rates of response to  IFN-α therapy [185].  Further, 
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weight loss in subjects with HCV is associated with improvements in ALT levels and insulin resistance 

[186].   

Recent data from the multi-centre HALT-C trial has demonstrated that baseline features of metabolic 

syndrome such as increased weight or insulin resistance are associated with an increased likelihood 

of fibrosis progression in a subsequent liver biopsy [187].  Specifically they found that each quartile 

increase in insulin resistance as defined by the HOMA-IR2 had a HR for fibrosis progression on 

second liver biopsy of 1.26. 

5. Co-infection with other pathogens 

a. Hepatitis B virus (HBV) infection 

Because of the shared risk factors for the acquisition of both HCV and HBV, particularly IDU, co-

infection is not uncommon.  From a clinical point of view several studies have demonstrated that co-

infection with HBV and HCV leads to a worse clinical outcome when compared to individuals 

infected with either single virus [188, 189].  HBV / HCV co-infection leads to increased rates of 

fibrosis progression [190], increased rates of development of HCC [191], but similar rates of 

treatment response compared to singly-infected patients [192].  Amin et al demonstrated in a large 

community-based study that the standardised mortality ration for liver-related death was 12.2 for 

HBV, 16.8 for HCV and 32.9 for HBV / HCV co-infection [193].   

Although the clinical outcome for co-infection is worse than singly infected patients, significant in 

vivo interaction between the two viruses occurs leading to an inverse relationship in the replicative 

level of the two viruses [188, 189].  Liaw et al demonstrated that acute HCV infection in patients 

previously infected with HBV led to a worse clinical outcome, but suppression of HBV replication 

[191].  Similarly, Sagnelli et al demonstrated that acute HBV infection in subjects with chronic HCV 

infection led to suppression of HCV viral replication [194].  Further, suppression of replication of one 

of the viruses can lead to the re-emergence of the other.  Liu et al demonstrated that successful IFN-
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α therapy for HCV could lead to the re-emergence of HBV viraemia in patients with previously 

undetectable HBV DNA [192]. 

Occult HBV infection has been described recently, where individuals lack serological evidence of HBV 

infection, but have HBV DNA in serum [195].  Current evidence suggests occult HBV infection is not 

associated with increased rates of fibrosis progression [196], but is associated with an increased risk 

of HCC [197, 198]. 

Anti-HBc in the absence of HBsAg, indicative of previous acute HBV infection, may have a negative 

impact upon HCV infection.  In a cross-sectional study Carvalho-Filho et al demonstrated that HCV 

infected individuals with detectable anti-HBc had higher levels of both inflammation and fibrosis 

independent of confounding variables [199]. However, other studies have not demonstrated a link 

between previous acute HBV infection and fibrosis progression in HCV [200]. 

Relatively few studies have investigated the mechanisms underlying the interaction between HBV 

and HCV viruses.  Bellecave et al utilised the Huh-7 cell line stably expressing HBV virus and 

demonstrated that subsequent transduction of the HCV replicon led to successful replication of both 

viruses within the same cell [201].  Further specific inhibition of the replication of either virus had no 

effect upon the replication of the other [201]. 

b. Human immunodeficiency virus (HIV) infection 

Similar to HCV/HBV co-infection, the risk factor of IDU makes HCV/HIV co-infection common 

amongst high-risk groups.  In the current era of Highly Active Anti-Retroviral Therapy (HAART), liver 

disease and in particular HCV-related liver disease has emerged as one of the main causes of 

morbidity and mortality in patients with HIV infection [202]. 

Eyster et al demonstrated in prospective study that HIV infection was associated with a log increase 

in HCV viral load, associated with declining immune function [203]. 
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HIV infection is associated with an increased rate of chronic infection following acute HCV [48] and 

increased rates of fibrosis progression in chronic HCV infection [87, 88].  In a meta-analysis of eight 

separate cohorts, Graham et al demonstrated that HIV/HCV co-infection was associated with a 

hazard ratio of around two for the development of cirrhosis compared to HCV mono-infection [87]. 

HAART may improve the prognosis of HCV-related liver disease in the context of HIV infection.  

Qurishi et al demonstrated that HAART therapy was associated with a odds-ratio of 0.11 (0.02  - 

0.56) for HCV-related mortality when compared to untreated or historical controls treated with less 

effective anti-viral regimes [204].  However, HCV infection is associated with higher rates of HAART-

related liver toxicity compared to HIV mono-infected subjects [205]. 

c. Co-infection with Schistosomiasis Mansoni 

In many parts of the developing world chronic infection with Schistosomiasis is endemic [206].  

S.Mansoni infection not only leads to portal fibrosis and non-cirrhotic portal hypertension [207], but 

the helminth skews the immune response to subsequent viral infections [208, 209].  Schistosomiasis 

is associated with a reduction of Th1 responses and an increase in both Th2 and regulatory 

responses [210, 211].  It has been established that co-infection with HCV and S.Mansoni is associated 

with reduced rates of viral clearance [212], increased rates of fibrosis progression [213] and reduced 

rates of response to anti-viral therapy [214]. 

Ageing and the liver 

The mechanisms of normal human ageing are little understood but recognised increasingly as 

important in a number of disease processes [215].  Clearly patients of the same age can be very 

different in terms of physiological reserve and susceptibility to disease in the absence of co-

morbidity.  However, the processes involved and correlates that are easily identifiable or measurable 

are lacking.  Studies are hampered by the increased prevalence of pathology with age, confounding 

what constitutes healthy change with age and what constitutes pathological change. 
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Studies of healthy human ageing have relied on the study of healthy elderly individuals or by 

studying younger individuals afflicted with one of the Progeria syndromes associated with 

accelerated and premature ageing [216].  However, both are affected by methodological problems.  

The former, by ‘survivor bias’ [217], i.e. those individuals who have survived to old age may show 

retarded features of biological ageing compared to those who have died; the latter, by a lack of 

understanding of the underlying pathophysiology and its relevance to normal human ageing. 

With an ever increasing geriatric population in most developed countries and a disproportionate 

consumption of healthcare resources, increasing effort needs to be channelled into understanding 

the mechanisms of ageing and possible avenues for therapeutic intervention [215]. 

Interest in the role of ageing within the sphere of hepatology has increased with the recognition of 

its importance in predicting outcome in chronic HCV infection [218] and donor age as a critical 

predictor of post-transplant outcome [219].  Furthermore, liver-related death in the elderly is 

increased when compared to younger individuals [220].   

Macroscopic changes of the liver with age  

Post-mortem studies have demonstrated a reduction in liver mass with advancing age in humans 

[221, 222] which has been corroborated by in vivo liver volume measurements with ultrasonography 

[223-225].  This change may relate to reduced hepatic blood flow; Sherlock et al described a fall in 

splanchnic blood flow with increasing age [226]. Other groups have confirmed progressive loss of 

liver volume, associated with a 35% reduction of hepatic blood flow in subjects over 65 years when 

compared to those less than 40 years [227]. 

Wakabayashi et al [228] utilised radio-labelled galactosyl-albumin to demonstrate that while total 

hepatic mass was not diminished, functional hepatocyte mass decreased in relation to age, whilst 

others have demonstrated a decline in hepatic clearance of plasma galactose with age [229].  Meier 

et al utilising computed tomography (CT) and CT-positron emission tomography (PET) found no 
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decrease in liver volume with age; however a significant negative correlation between increasing age 

and attenuation and a significant positive correlation between age and metabolic activity were 

demonstrated [230]. 

Microscopic changes of the liver with age 

Profound microscopic changes occur in the liver with ageing.  Ageing in rats, baboons and humans is 

associated with a 50% increase in the thickness [231-234] and defenestration of the sinusoidal 

epithelium measured by reduced porosity.  Ageing is also associated with deposition of collagen and 

formation of basement membrane within the space of Disse [235].  Radio-labelled phosphate 

spectroscopy indicated hepatocyte hypoxia, leading to the suggestion that with reduced hepatic 

blood-flow and an increased barrier to diffusion, that impairment of liver function with age may be 

consequent to intra-hepatic hypoxia [235].   

The underlying pathogenesis of these changes is unclear.  Portal venous transported gut-derived 

toxins, such as alcohol, endotoxin [236] and oxidants [237] are known to produce significant changes 

to the sinusoidal endothelium.  Ex vivo rat liver, perfused via the portal vein with hydrogen peroxide, 

demonstrated significant sinusoidal endothelial damage, Kupffer cell activation and increased space 

of Disse volume [237].  Chronic exposure to toxins transported in the portal vein may be important 

in age-related changes seen in humans. 

Hepatocyte changes with age  

Hepatocyte structure also changes with age.  The volume of hepatocytes increases with 

development and maturation but declines with senescence [238, 239].  The relative volumes of 

hepatocyte organelles also change during ageing.  The most common change on diagnostic liver 

biopsy specimens is age-related cytoplasmic accumulation of highly oxidised insoluble proteins, 

known as lipofuscin [240, 241].   
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These accumulations of highly cross-linked protein are thought to relate to chronic oxidative stress 

and a failure to degrade damaged and denatured proteins [241].  Increasing evidence suggests that 

lipofuscin interferes with cellular pathways due to its ability to trap metallic cations and facilitate 

further free radical formation [242]. 

Other sub-cellular hepatocyte changes with age are less well described, with most data arising from 

animal studies.  There is a marked decline in smooth endoplasmic reticulum surface area with age 

[239, 243] which correlates with decreased hepatic microsomal protein concentrations and 

enzymatic activity such as Glucose-6-Phosphatase [243].  Recent data have suggested there is an 

age-related decline in autophagy, the cellular pathway leading to degradation of molecules and sub-

cellular organelles.  In a mouse model associated with age-related decline in liver function, 

restoration of autophagy was associated with maintenance of liver-function [244]. 

There are also data suggesting that there is a change in hepatocyte nuclear morphology with 

increasing age.  It is known there is increased variation in nuclear size [245], associated with 

increasing incidence of polyploidy of hepatocytes [246].  After the age of 85, around 27% of human 

hepatocytes demonstrate polyploidy [247]. 

Change in liver function with age  

Drug metabolism declines with ageing, manifest as increased levels of toxicity and increased levels of 

adverse drug reactions within the elderly population [248, 249].  Age related susceptibility has been 

shown for some drugs, of which isoniazid [250], halothane [251] Flucloxacillin and Co-amoxiclav 

[252-254] are the most  notable. 

Age-related decline of drug-metabolizing enzyme activity has been shown in animals but has been 

replicated in very few human studies.  Animal studies have shown decreased hepatocyte microsomal 

content of cytochrome P-450 in older mice [255] and reduced activity of alcohol dehydrogenase in 

aged rats [256].  One human study has demonstrated a progressive decline in microsomal P-450 
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concentration from liver biopsy specimens in subjects after the age of 40.  Similarly, the plasma 

clearance rate for antipyrine declined progressively after 40 years of age [257].  However other 

studies have only demonstrated non-significant trends in declining liver metabolic activity with age, 

possibly due to high inter-individual variability [258]. 

Commensurate with possible declining metabolic activity rat studies have demonstrated that there 

may be a decrease in bile acid secretion or flow rate with progressive ageing [259].  

Change in the liver’s response to injury with age 

One of the most important age-related changes in liver function is the significant decrease in 

regenerative capacity of the liver [260-262].  In rat studies utilising the partial hepatectomy model, 

complete hepatic restoration occurs in older animals, but at a slower rate than in younger animals 

[263].  Liver regeneration in both young and old animals was complete by day 7 after 70% 

hepatectomy, but at day 1 younger animals had significantly increased liver mass and increased 

intrahepatic mitotic activity [264]. 

Clinical outcome in human acute liver injury partly relies on hepatic regenerative potential.  Older 

people have a higher incidence of acute liver failure and a higher mortality with acute hepatitis A 

[265, 266].  In a cohort of patients with acute liver failure secondary to viral hepatitis, age was an 

independent predictor of a poor outcome with those over 50 faring worst [267]. 

Ageing and chronic liver diseases 

Increasing age has now been recognised as a significant predictor of poor outcome in a number of 

chronic liver disorders.  Perhaps the best studied is chronic HCV infection.  Poynard et al 

demonstrated that age at infection was a major risk factor for subsequent fibrosis progression [218].  

Other groups have subsequently confirmed these findings; individuals older than 37 at time of 

infection have accelerated fibrosis compared to younger individuals [6, 144, 268].  
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Studies of other liver diseases have demonstrated similar findings.  Age is an independent risk factor 

for poor outcome in primary biliary cirrhosis (PBC) in addition to the presence of portal hypertension 

and impaired liver function [269]. Similarly, age independent of bilirubin, prothrombin time and 

renal function predicted outcome in patients with alcoholic hepatitis [270]. 

There is some evidence that age may influence disease progression in non-alcoholic fatty liver 

disease (NAFLD).  Studies from France and the USA have shown that increasing age, increasing body 

mass index and type-2 diabetes were associated independently with cirrhosis in patients with NAFLD 

[271, 272].  Being older than 50 years gave an odds ratio of 14 for the presence of at least severe 

fibrosis [271]. 

Work by Wali et al [273] and Berenguer et al [274] indicate an association between advancing 

allograft donor age and more rapid histologic progression after HCV graft infection.  If the liver donor 

was younger than 40 years, the median interval to post-transplant cirrhosis was 10 years compared 

to only 2.2 years when the donor was aged 50 years or more [273]. Berenguer et al studied 522 

patients undergoing liver transplantation between 1991 and 2000, including 283 (54%) infected with 

HCV.  Patient survival was lower in HCV positive recipients and they suggest that the increasing age 

of donor organs was contributing to decreased patient survival in recent years [274]. 

Mechanisms of ageing and senescence in the liver 

There has been considerable interest in elucidating mechanisms that regulate the capacity for cell 

division and regeneration in the context of ageing.  The accumulation of nuclear DNA damage and 

the cellular response to this damage is crucial in determining the response of whole organs and 

organisms to chronic diseases. 

Telomeres 

Substantial attention has focussed on the telomere / telomerase system as a mediator of replicative 

capacity [275].  Telomeres are repeating hexanucleotide sequences which, with their associated 
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protein complexes, function to protect chromosomes against events such as chromosomal end-end 

fusion and non-reciprocal translocations.  Dysfunctional telomeres cannot retain chromosomal 

integrity by progressive attrition or uncapping associated with loss of peri-telomeric protein 

components of the shelterin complex including telomere repeat-binding factor 2 (TRF2) [276]. 

In the absence of compensatory mechanisms, telomere DNA shortens with each division, reflecting 

incomplete synthesis of telomere termini during chromosomal replication [277].  With repeated cell 

division a point of critical telomere shortening is reached and a growth arrest signal is developed, 

preventing further cell division.   

Short telomeres are detected as double-strand DNA breaks [276].  With progressive loss of 

telomeres, there is a commensurate loss of inhibitors of DNA damage response elements such as 

TRF2 [278].  Loss of this inhibition leads to recruitment of the PI3-kinases ATM and ATR, 

phosphorylation of Histone 2A at serine 139 (γ-H2AX) and stabilisation of p53 [277, 279, 280] and 

possibly p16 [281, 282]. This state is characterised in vitro by growth arrest, inability to respond to 

external mitogens and altered cell morphology termed replicative senescence. 

Accelerated telomere shortening has been demonstrated in conditions associated with inflammation 

and accelerated cell turnover [283], leading to the concern that in chronic liver diseases chronic 

hepatocyte turnover may lead to a telomere mediated loss of replicative ability.  Further, known risk 

factors for ill-health such as obesity and smoking have been associated with accelerated loss of 

telomere length [284, 285]. 

Telomerase 

Telomerase is a reverse transcriptase consisting of enzymatic (TERT), RNA template (TERC) and 

several other protein components including heat-shock protein 90 (hsp90) and dyskerin [286].  It can 

maintain telomere length by adding TTAGGG repeats, but its expression is tightly controlled outside 

stem-cell populations [287, 288].  Ectopic expression of telomerase led to lengthening of telomeres, 
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continued cell division and extension of in vitro lifespan [289].  Re-expression in non-stem cell 

populations in life is unusual and telomerase is expressed in around 80% of human carcinomas, 

including hepatocellular carcinoma [290].  

Recent evidence has suggested that telomerase may have a role in several cellular pathways beyond 

its known role in elongation of telomeres and replicative ageing.  Regulation of apoptosis, gene 

expression and chromatin structure during the cell-cycle have been ascribed to telomerase activity 

[291]. 

Genetic evidence for a role of telomere dysfunction in human ageing comes from the discovery that 

germ-line mutations of the telomerase complex cause the Progeroid syndrome Dyskeratosis 

Congenita [292].  In the field of hepatology, there is a growing body of evidence for the role of 

hepatocyte telomere shortening and a relation to clinical outcome.  Reduction in hepatocyte 

telomeres occurs with normal ageing and may give an indication of residual proliferative potential 

[293, 294]. 

Telomeres in chronic liver disease 

Both Kitada et al and Urabe et al showed that those with chronic viral hepatitis had shorter hepatic 

telomeres than healthy controls and that increasing fibrosis was associated with shorter telomere 

lengths [295, 296].  However, utilising liver biopsy homogenates and restriction fragment length 

analysis precluded identifying the cell types that underwent telomere shortening.  Wiemann et al 

demonstrated that hepatic telomere length was shortened in cirrhosis irrespective of the primary 

disease aetiology and suggested that the shortening was limited to hepatocytes [297].  Rudolf et al 

demonstrated the importance of this system in chronic liver diseases.  Telomere dysfunction in mice 

was associated with the onset of cirrhosis in the context of chronic liver injury [298].  Through 

adenoviral reintroduction of telomerase activity it was possible to prevent critical telomere 

shortening, deterioration in liver function and cirrhosis [298]. 
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Telomeres in HCC 

Intact telomeric signalling has also been demonstrated to be important in the development of 

hepatocellular carcinoma (HCC).  The beneficial effects of the intact telomere / telomerase system 

have been demonstrated with a suppression of the development of HCC in a mouse model [299]. 

Telomeres within HCC were demonstrated to be shorter than surrounding non-cancerous liver [300], 

suggesting that HCC had escaped from the cell-cycle arrest signal generated from short telomeres.  

Interestingly, short telomeres or telomere dysfunction appears permissive for the development of 

early stage neoplasia, but inhibitory to later stage and more anaplastic lesions [301].  The role of the 

telomere / telomerase system in the pathogenesis of HCC have led some to suggest that therapeutic 

manipulation may hold the promise for future therapies [287].   

Telomeres: ageing versus cancer 

Through the use of the telomere system of replicative ageing, organisms may be paying the price of 

continued tumour suppression [299, 302].  In mice, driven to senescence and critically short 

telomeres, through germ-line lesions of telomerase [303], a multi-organ phenotype of senescence 

develops with functional impairment of tissues requiring high levels of cell replication such as skin, 

bone marrow, and reproductive organs [303].  Cells from these mice demonstrate multiple features 

of telomere-induced senescence with aneuploidy, chromosomal end-to-end fusions, high p53 

expression and limited number of cell divisions in culture.   

These features of cellular and organ senescence can be reversed through a subsequent lesion of p53, 

thereby preventing telomere dysfunction to signal through to cell-cycle arrest, allowing further in 

vitro cell division and in vivo preservation of organ function [304].  Telomere shortening in the 

telomerase deficient mouse line was associated with increased expression of p53, growth arrest and 

increased apoptosis.  Simultaneous lesions of telomerase and p53 prevented testicular atrophy and 

cells had reduced levels of apoptosis with higher rates of passage through the cell cycle [304]. 
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However, whilst these mice have a partial reversal of their aged phenotype, there is an increased risk 

of in vitro cellular transformation and in vivo development of skin, breast and gastrointestinal 

carcinoma [305].  In contrast to telomerase deficient mice, compound telomerase and p53 deficient 

mice have a high rate of development of epithelial carcinomas which are associated with complex 

non-reciprocal translocations as a consequence of loss of telomeric protection of chromosomal 

ends.  Therefore these data suggest that telomeric attrition in tissues with a high turnover rate leads 

to the development of a DNA damage signal through p53 and subsequent senescence before loss of 

telomeric chromosomal protection can lead to the development of pro-carcinogenic genetic 

translocations [305].   

More recent studies on a similar mouse model by Choudury et al have shed further light on the 

downstream mechanisms of telomere dysfunction [306].  In late generation telomerase-deficient 

mice, a subsequent lesion of the cell-cycle inhibitor p21 prevented the organ dysfunction and 

accelerated ageing phenotype associated with dysfunctional telomeres but did not lead to an 

increase in chromosomal instability or increase in tumour formation demonstrated in the p53 

deficient mouse.   

Davoli et al have utilised p53 deficient cells to demonstrate that persistent DNA damage signal from 

deprotected telomeres led to a bypass of mitosis and second progression through S phase [307].  

This allows tetraploidisation, an early step in cellular transformation. 

These studies suggest that p21 may mediate cellular senescence down-stream of both dysfunctional 

telomeres p53.  Further, that p53 has a wider role in tumour suppression and prevention of cellular 

transformation as well as cellular senescence. 

Viruses and the telomere / telomerase system 

A number of viruses causing human disease have evolved mechanisms for manipulating telomere 

signalling or telomerase to promote replication and transmission [308].  EBV and HPV encode 
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proteins that up-regulate telomerase activity, which may play a role in the human cancers associated 

with these viruses.   

HBV is associated with a high incidence of HCC.  Several groups have reported a role of HBV genome 

integration and up-regulation of telomerase activity.  In particular the HBV X protein disrupts p53 

signalling as well as other cellular signalling pathways including protein kinase C and NF-kappa B 

[309].  Several groups have demonstrated a direct role of HBV X protein in the up-regulation of 

telomerase activity [310, 311].  Others have also demonstrated that other HBV associated proteins 

also up-regulate telomerase activity [312].  This ability to functionally bypass telomere control of 

replication might predispose to HCC formation.  However, some groups have demonstrated 

suppression of telomerase activity [313]. 

Oxidative stress 

Senescence can occur in the absence of telomere shortening due to oxidative stress or DNA damage 

distant to the telomere [281, 314].  Zhang et al [315] compared hepatocyte injury in response to 

hypothermic challenge, leading to increased oxidative stress, in young and old rats and concluded 

that old rats were more susceptible.  There is evidence for both a decline in DNA repair and increase 

in DNA or cell sensitivity to oxidative stress with increasing age.  Intano [316] reported a 50% age 

related decline in DNA base excision repair in old age; Hamilton [317] attributed the increased levels 

of oxidative damaged suffered by DNA in senescent mice and rat livers to increased DNA or cell 

sensitivity to oxidative stress.  How cell sensitivity to oxidative stress is mediated is unclear.  This 

may be mediated by NF-кB [318] which has increased activity with ageing and which may induce 

target genes including Haemoxygenase.  Up-regulation of pro-apoptotic genes, such as Gadd153, 

which increase cellular sensitivity to oxidative stress may also play a role [319]. 
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Oxidative stress and telomeres 

Recent evidence suggests that oxidative stress accelerates telomere shortening [320, 321].  It has 

long been known that low ambient oxygen conditions can extend the lifespan of cells in culture 

[322]; however the underlying mechanism of this effect was uncertain.  Studies have demonstrated 

that when cultured cells are protected from oxidative stress through low ambient oxygen tension, 

addition of anti-oxidants or over-expression of antioxidant enzymes, telomeric decline is slowed 

[323-325]. 

Due to their high guanine content, telomeres are highly susceptible to oxidative-induced DNA 

damage [326]; a human telomeric sequence inserted into a plasmid suffered 7 times more DNA 

damage due to hydrogen peroxide induced oxidative damage than a control sequence [327].  

Reactive oxygen species cause single-strand DNA breaks and telomeres lack the surveillance 

mechanisms for single-strand breaks that are employed in the rest of the genetic material [328].  

Induced single-strand breaks in non-telomeric DNA were repaired within one day, whereas DNA 

repair within the telomere was delayed and ultimately incomplete [328].  The mechanism linking 

accumulation of oxidative DNA damage and accelerated telomere shortening is currently uncertain 

[320].  One possibility is the extrusion of telomerase from the nucleus of cells suffering oxidative 

stress, thus preventing the usual intra-nuclear role of telomere preservation.  Once in the cytoplasm, 

telomerase co-localises with mitochondria [329].  In cells with over-expression of telomerase, 

mitochondrial DNA is protected from oxidative damage and cellular levels of reactive oxygen species 

are lower than control cells [329]. 

Further data has demonstrated the important interaction between telomere-induced senescence 

and oxidative stress.  Passos et al demonstrated that cells driven to either irradiation- or telomere-

induced senescence developed increased mitochondrial ROS production [330].  Further, they 

demonstrated that knockdown of either p53 or p21 prior to induction of senescence prevented the 

increased mitochondrial ROS production.  They demonstrated that activation of p21, or downstream 
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signalling through TGF-β, was able to induce further DNA damage foci and subsequent DDR, leading 

to the conclusion of a positive feedback loop [330].  Senescence leads to the development of 

oxidative stress which reinforces the senescent state of the cell and causes further oxidative stress. 

Whether the combination of telomere shortening and oxidative stress represents the double hit 

required to accelerate progression of liver diseases is uncertain.  Certainly the combination of two 

concurrent liver diseases leads to accelerated disease progression and a worse outcome.  For 

example, both diabetes mellitus (DM) and alcohol misuse accelerate the fibrosis progression of HCV 

infection [6, 218, 331, 332].  It has been described that HCV is associated with shortened 

intrahepatic telomeres [297] and both DM [333] and alcohol [334] are known to cause oxidative 

stress through mitochondrial dysfunction.  In their study of hepatocyte telomeres Sekoguchi et al 

investigated the relationship between hepatocyte telomeres, markers of cell-turnover and oxidative 

stress in chronic HCV infected patients [335].  They found that hepatocyte telomeres were 

shortened progressively with increasing hepatocyte fibrosis stage and with increasing evidence of 

hepatocyte oxidative stress as measured by 8 deoxy-guanosine [335]. 

Bypassing the telomere system 

Whether all cell types are affected equally by telomere signalling and telomerase is not known.  Data 

from the mouse suggested that hepatocytes may bypass the growth inhibitory effects of short or 

dysfunctional telomeres [336].  TRF2 is a component of the shelterin complex, a group of peri-

telomeric proteins that protect telomeres from strand-breaks and regulate access of telomerase to 

the telomere [337].  Denchi et al, using a conditional knockout of TRF2 demonstrated evidence of 

telomere dysfunction with telomere fusions and cellular responses to DNA damage with increased γ-

H2AX.  However, despite telomere dysfunction, there was no increase in p53 expression, no 

decrement in hepatic regeneration following partial hepatectomy, but cell replication did not occur.  

Instead, the liver was reconstituted by an increase in the size and ploidy of the remaining 
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hepatocytes (Figure 13) [336].  Whether similar mechanisms operate within the human liver is 

unknown. 

 

Figure 13.  Photomicrograph of H&E stained mouse liver sections following partial hepatectomy 
(PH) taken from a conditional knock-out of TRF2. When treated with pI-pC, the hepatocytes 
develop telomere dysfunction, thereby preventing cell proliferation. After knockout of TRF2, the 
hepatocytes responded to partial hepatectomy by increasing nuclear area (panel B), and ploidy 
(not shown).  Source: [336]. 

Other markers in senescence 

The presence of senescence can be inferred by other markers.  In particular senescence associated 

β-galactosidase (β-GAL) is associated with replicative senescence.  In a study of liver tissue from 

subjects with chronic HCV infection, the presence of β-GAL positive cells was associated with 

increasing age and increasing levels of fibrosis [338].  Further, analysing the role of senescent cells in 

donor allografts has demonstrated a significant relationship between β-GAL positive cells on the 

reperfusion biopsy and the subsequent rate of fibrosis progression of post-transplant HCV 

recurrence [339]. 

Senescence of other cell types within the liver 

The evidence that hepatocytes may be resistant to the effects of replicative ageing and telomere 

shortening is intriguing [336].  Given the evidence linking chronic liver disease with telomere 

shortening and the rescuing of experimentally induced cirrhosis by telomerase gene delivery [340], 

this throws up the possibility of senescence affecting other cell types within the liver other than 

hepatocytes. 
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A recent study by Krizhanovsky et al has demonstrated the crucial role of stellate cell senescence in 

hepatic fibrosis progression in a mouse model [341].  In a CCl4 model they demonstrated an 

accumulation of stellate cells bearing markers of senescence such as β-GAL; that these cells had a 

reduced capacity to synthesise extracellular matrix components; and that in mice with knockouts of 

senescence associated genes, the failure of stellate cells to develop senescence was associated with 

enhanced hepatic fibrosis production.  This is perhaps unexpected when cirrhosis is associated with 

hepatocyte senescence, that fibrosis progression was associated with a failure of stellate cells to 

senesce. 

Therefore, the precise interplay of differential ageing of different intrahepatic cell types in different 

hepatic diseases may be far more complex than first imagined.  

Form and function of senescent cells 

There is an increasing body of work demonstrating the role of senescence in vivo.  With the onset of 

cellular senescence cells can remain viable within tissues for long periods; resistance to apoptosis is 

a characteristic of senescent cells [338, 342].  These cells have a significant change in their form and 

function.   

Induction of senescence of fibroblasts in vitro leads to a change to larger, flatter cells with increasing 

irregularity of shape [277].  An increasing body of work describes the change in the cellular 

secretosome.  This senescence-associated secretory phenotype (SASP) has been demonstrated in 

other systems to be pro-inflammatory (figure 7).  Kuilman et al demonstrated that senescent cells 

secrete large quantities of IL-6 among other factors such as IL-8 [343].  They demonstrated that IL-6 

acted in a paracrine manner to cause other cells to develop senescence.  Depletion of IL-6 prevented 

this ‘infectious senescence’ [343]. 

This raises the possibility that once hepatocyte senescence develops, the change in the tissue micro-

environment wrought by the SASP could lead to other hepatocytes becoming senescent. 
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Cell cycle arrest 

Whether cells undergo senescence due to telomere shortening or oxidative stress or a combination 

of the two, cell cycle arrest supervenes and prevents further cell division.  Cell cycle arrest has been 

demonstrated in chronic liver diseases.  Marshall et al [344] have shown chronic HCV infection is 

associated with  increased levels of hepatocyte cell-cycle arrest, which correlated with stage of 

hepatic fibrosis. 

Increased fibrosis is related to p21 expression and senescence is associated with expression of p21 

[341, 345].  Cell senescence has been linked to carcinogenesis; senescent fibroblasts promote 

proliferation of epithelial cells in co-culture [346].  It is possible that senescent hepatocytes promote 

oncogenic mutations in neighbouring hepatocytes pre-disposing to HCC. 

Recent data suggest that viral induced cell cycle arrest is advantageous to the virus.  In a p53 

knockout fibroblast line, CMV replication was noted to be significantly less efficient when p53 was 

not present [347], suggesting that some viruses induce a state of cell cycle arrest to aid replication 

and spread.  This effect has also been demonstrated for hepatitis B virus replication.  Huang et al 

demonstrated that four differing methods of inducing cell-cycle arrest in the host cell line all led to 

increased HBV replication [348]. 

Ageing and the immune system 

Normal human ageing is associated with a number of changes within the immune system.  However, 

these changes may be maladaptive; with increasing age humans suffer increased rates of mortality 

when developing varied infections such as pneumonia [349], meningitis [350] and influenza [351].  

Evidence suggests that the decline in immune function with age is particularly marked within the T-

lymphocyte compartment.  Clinical tests of T-lymphocyte function such as the delayed-type 

hypersensitivity reaction elicited by the Mantoux test for immunity to Purified Protein Derivative 
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(PPD) of tuberculosis suggest that elderly individuals lose T-lymphocyte mediated immunity to 

antigens they were previously reactive to [352]. 

Elderly individuals have oligoclonal accumulations of T-lymphocytes, many of which are specific for 

latent and persistent viruses such as EBV and CMV [353, 354] (Figure 14).  Further, in healthy elderly 

subjects there are a number of immune parameters known to be associated with increased levels of 

subsequent morbidity and mortality.  Ferguson et al identified poor non-specific T-cell proliferative 

responses, high numbers of peripheral CD8+ T-lymphocytes and low numbers of CD4+ lymphocytes 

associated with subsequent poor outcome [355].  Olsson et al extended these findings 

demonstrating that CD8+ T-lymphocytes bearing the mature or antigen-experienced phenotype of 

CD28- and CD57+ were increased in those who went on to die during the follow-up period [353].  

CMV infection was also more common in those subjects who died compared to subsequent survivors 

[353]. 

 

Figure 14.  Accumulation of CD4+ T-lymphocytes specific for CMV in elderly individuals.  Peripheral 
CD4+ cells were stimulated with a variety of antigens and identified by staining for intracellular 
interferon-γ.  Source: [356]. 

T-lymphocyte maturation and differentiation 

Prior to antigen-experience naive T-lymphocytes express various surface markers such as CD27, 

CD28, CD45RA and CD127 (the interleukin-7 receptor).  Interleukin-7 signalling via CD127 is required 

for homeostatic maintenance of the naive T-lymphocyte pool.  With antigen experience, cells lose 
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these markers and express CD45RO, CD57 and KLRG1 [357, 358].  It is known that latent infection, 

particularly with CMV, drives the accumulation of cells bearing a more advanced or mature 

phenotype within the peripheral immune compartment [359, 360].  Effros et al demonstrated that 

cultured lymphocytes driven to senescence more than 99% of the cells were CD28- [361] 

Upon studying elderly subjects with and without CMV infection it is apparent that not only does 

CMV lead to increasingly mature phenotype of CMV-specific lymphocytes but also increasingly more 

mature phenotype of cells specific for other antigens such as PPD or EBV [356] (Figure 15).  In this 

experiment cells specific for antigens such as EBV and PPD were more likely to display a highly 

differentiated phenotype of CD27-CD28- if the individual was CMV positive (Figure 15, right panel). 

 

Figure 15. CMV infection leads to change in phenotype of both CMV-specific and non-specific CD4+ 
lymphocytes.  Cells from elderly CMV negative (left panel) and CMV positive individuals (right 
panel) were stimulated with a variety of antigens and identified by intracellular staining for 
interferon-γ.  The proportions (%) of cells displaying a mature CD27-CD28- phenotype (y axis) 
specific for different antigens are plotted. Source:[356]. 

These experiments indicate that there is accumulation of highly differentiated memory T-

lymphocytes in elderly individuals which are approaching terminal differentiation and that these 

changes are in part driven by latent viral infections such as CMV [356, 359, 360, 362]. 
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Commensurate with this change in phenotype is a decline in the function of T-lymphocytes in the 

older subject.  Lymphocytes from elderly people have impaired proliferative ability and sometimes 

poor cytokine production capacity when compared to lymphocytes from younger individuals [363].  

Voehringer et al demonstrated in a study of LCMV infection of mice that infection was associated 

with large numbers of viral-specific cells within older animals with maintained cytokine secretion but 

severely impaired proliferative ability [364].  In a study of elderly human subjects with CMV infection 

Vescovini et al demonstrated that CMV-specific CD4+ and CD8+ lymphocytes had maintained 

cytokine secretory abilities but severely impaired proliferation [365]. 

In a series of elegant mouse experiments Ennis et al utilised an adoptive transfer of lymphocytes 

from young or aged donors into nude (athymic) recipient mice to study the response to primary 

influenza infection [366].  16% of younger lymphocytes developed cytotoxicity as compared to 2% of 

elderly lymphocytes in response to influenza and the peak of response was delayed from day 5 to 

day 7 with older donor lymphocytes.   

By the age of 60 the thymic output of new T-lymphocytes is negligible and therefore the peripheral 

compartment has to be maintained through replication of pre-existing cells rather than renewal by 

new cells [363].  However, many of these peripheral lymphocytes have a restricted ability to 

proliferate due to terminal differentiation and telomere shortening due to large numbers of rounds 

of previous cell division.  Replicative senescence is reached when further replication by a cell is not 

possible and was originally defined by Hayflick et al [367].  The most accurate correlate available is 

telomere length which shortens with progressive cell division and can prevent further cell division 

when critically short telomere attrition is achieved, through signalling through γ-H2AX, p53 and 

subsequent cell-cycle arrest [282, 368]. 
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Figure 16. Telomere length of CD4+ lymphocytes specific for different antigens in young (upper 
panel) and elderly (lower panel).  Telomere length is measured as mean fluorescence intensity.  
Elderly individuals have shorter telomere length in all subsets compared to younger individuals 
and cells specific for latent or persistent viral infections have shorter telomeres than cells specific 
for non-persistent antigens.  Source: [356]. 

Lymphocytic telomere length declines with age (Figure 16), but cells specific for persistent antigens 

undergo particular shortening, presumably due to persistent stimulation and cell turnover.  Because 

immune responses are dependent on the ability of relatively few memory lymphocytes to replicate 

and develop a population of effector cells on each exposure to antigen, responses are dependent 

upon either development of telomerase activity to maintain telomere length or ultimately specific 

responses will develop replicative senescence [369]. 

Telomerase activity in T-lymphocytes 

Lymphocytes are able to up-regulate telomerase in certain circumstances in responses to stimulation 

[370].    With increasing differentiation and maturation the ability of T-lymphocytes to up-regulate 
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telomerase is curtailed and therefore stimulation and proliferation lead to unopposed telomere 

shortening [356, 371].   Valenzuela et al demonstrated that after activation by antigen or mitogen 

telomerase activity peaks at day 5, before declining to baseline 3 weeks after stimulation [372]. 

Telomerase activity is low or absent in resting lymphocytes, but can be induced readily by in vitro 

stimulation [356].  This effect of stimulation has also been demonstrated in vivo during acute EBV 

infection.  Maini et al demonstrated that acute EBV infection led to up-regulation of telomerase 

activity and therefore preservation of telomere length despite proliferation [373].  Soares et al 

confirmed that both peripheral and tonsillar lymphocytes were able to up-regulate telomerase 

during acute EBV [374].  This up-regulation and resulting telomere preservation serves to maintain 

the replicative capacity of cells from the primary response that are destined to enter the memory 

pool. 

Lymphocytes lose the ability to up-regulate telomerase activity with repeated stimulation and 

therefore telomere shortening occurs [375].  On analysis of increasingly mature lymphocyte subsets, 

Plunkett et al demonstrated that as lymphocytes differentiate and lose the surface receptors CD27 

and CD28, they lose the ability to up-regulate telomerase to non-specific stimulation in vitro [376].  

The underlying defect seems to be an inability to phosphorylate intracellular messenger Akt [376].  

Valenzuela et al demonstrated that telomerase activity can be induced after second exposure to 

antigen, but not after third or subsequent exposure [372].  Therefore in most memory responses 

proliferation will directly lead to telomere attrition due to the lack of telomerase activity. 

Several cytokines have been demonstrated to inhibit telomerase activity.  Reed et al demonstrated 

that IFN-α induced a reversible inhibition of telomerase [377], which has relevance for the study of 

the telomere – telomerase system in HCV infection.  Further, TGF-β, a pro-fibrogenic cytokine, 

known to be increased in concentration in the HCV-infected liver [378], has also been demonstrated 

to inhibit telomerase gene transcription [379].  
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What remains unclear in various chronic infections is the relative effect of chronic antigenic 

stimulation, the effect of long-term pro-inflammatory cytokines or direct infection of lymphocytes 

upon the T-cell failure that develops.  Bucks et al utilised the murine influenza A virus which does not 

lead to high viral titres, cytokine responses or lymphocyte infection and demonstrated lymphocytic 

exhaustion related to chronic antigen exposure [380].  They demonstrated that removal of the 

chronic antigen can reverse the exhaustion from antigen-specific cells, and that whilst PD-1 was up-

regulated by antigen-specific cells it was not involved in development or resolution of exhaustion. 

Methods of determining telomere length 

Telomere length can be determined by several different methodologies which each have advantages 

and drawbacks: 

1. Restriction fragment length (RFL) and blotting 

Cells are homogenised and DNA extracted, before digestion with restriction enzymes.  Blots are 

hybridised with a radio-labelled consensus sequence to several telomere repeats [381].  This method 

has the advantage of generating absolute telomere length, but requires large numbers of cells and 

cannot be used easily to study cell subsets.  The technique has been superseded by the PCR based 

technique. 

2. Flow-cytometric FISH 

This technique takes whole fixed cells which can be stained for other markers and utilises a heat step 

to interpose a fluorochrome-labelled telomere consensus sequence between DNA strands.  This 

technique allows study of whole cells and through the use of other fluorochromes, telomere lengths 

in different cell subsets.  However, the telomere length is expressed as mean fluorescence intensity 

and is expressed relative to a control sample [356, 382, 383]. 
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3. Quantitative FISH 

This FISH technique allows telomere length to be calculated from fresh-frozen or paraffin –

embedded tissue.  Again a fluorochrome-labelled telomere consensus sequence is used, and other 

markers can be investigated simultaneously.  However, the technique is labour intensive, the results 

are relative to an internal control and relatively low numbers of cells have been studied to date 

[384]. 

4. Polymerase chain reaction 

Quantitative real-time PCR can be utilised to calculate absolute telomere length, but similar to the 

RFL technique, cell subsets require sorting before analysis [385]. 

Peripheral lymphocyte telomere length as predictor of disease outcome 

Numerous studies in different disease models have investigated the association of peripheral 

lymphocyte telomere length and clinical outcome.  Cawthon et al investigated the prognostic 

importance of peripheral telomere length in healthy individuals.  They measured telomere length by 

restriction fragment length analysis in 143 healthy subjects older than 60 years of age and found 

that telomere length was predictive of mortality on prospective follow-up.  Subjects with telomere 

length shorter than the population mean had a worse survival due to a 3.5 fold increase in rates of 

death due to cardiovascular disease and 8.5 fold increase in the rates of death due to infection [386] 

(Figure 17) 
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Figure 17. Kaplan-Meier survival curves of healthy elderly subjects grouped according to telomere 
length.  The cohort was divided into 2 based on relationship of telomere length to population 
means.  Subjects with telomere length shorter than population mean had a significantly worse 
survival over fifteen years of follow-up.  Source: [386]. 

Further studies have demonstrated similar relationships between telomere length and outcome in 

cerebrovascular disease [387], cardiovascular disease [388, 389], respiratory disease [285, 390], 

inflammatory disease [391-393] and infectious disease [394].  Clearly in all these studies telomere 

length has been established within the peripheral blood lymphocyte compartment.  Rather than 

lymphocyte telomere length having particular prognostic information, it is likely that there is a 

significant correlation between lymphocyte telomere length and telomere length in particular 

organs and tissues.  There are no current studies demonstrating preferential or solitary telomere 

length changes in one particular tissue but not others in the context of chronic disease.  However, 

given the ease of obtaining peripheral blood lymphocytes and the numbers of subjects needed to 

adequately power studies assessing the correlation between telomere length and outcome it may be 

very difficult to assess similar relationships between telomere lengths in different tissues. 

Telomeres and telomerase –The Progeria syndromes 

Much of our knowledge regarding ageing and accelerated ageing has been derived from the studies 

of Progeria syndromes.  These rare syndromes cause the affected individual to age at a faster rate 
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than usual.  Dyskeratosis Congenita (DKC) involves a mutation within the telomerase gene and 

subjects are unable to generate telomerase activity in any tissue.  As a consequence they undergo 

telomere attrition within tissues with a high cellular turnover rate.  Ultimately, most subjects die of 

infection due to accelerated immune senescence and bone marrow failure [395].  Combined with 

the results of the Cawthon studies [386], it is apparent that telomere shortening has an impact upon 

survival due to impaired immunity. 

Werner syndrome is associated with mutations in a DNA helicase leading to defects in both DNA 

repair and telomere length maintenance [396].   Hutchinson-Gilford Progeria syndrome, where few 

children live beyond the age of 13,  is associated with a mutation in the Lamin A gene on 

chromosome 1 , which leads to accelerated telomere loss and the development of premature ageing 

[397]. 

Evidence for telomere shortening in chronic viral disease 

Most evidence for the role of telomere attrition in infectious disease occurs in HIV infection.  Palmer 

et al analysed the peripheral lymphocyte telomere length in pairs of HIV-discordant monozygotic 

twins [394].  Studying 7 pairs of twins they found that peripheral CD8+ T-lymphocyte telomere 

length was significantly shorter in the HIV positive twin, whereas CD4+ T-lymphocyte telomere 

length was significantly longer in the HIV positive twin.   

Fauce et al demonstrated that peripheral CD8+ lymphocytes from HIV infected individuals could be 

treated with a small molecule telomerase activator TAT2 which led to up-regulation of telomerase, 

improved proliferative ability and restoration of cytokine production [398] (Figure 18). 
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Figure 18. Improvement in proliferative ability of peripheral CD8+ T-lymphocytes taken from HIV+ 
individuals when treated with the telomerase activator TAT2.  Cells were maintained in culture 
and stimulated with CD3/CD28 coated microbeads.  Source:  [398]. 

Lichterfeld et al demonstrated that HIV-specific CD8+ T-lymphocytes had shorter telomeres 

compared to EBV-specific cells from the same individual.  Furthermore, blockade of the PD-1/PD-L1 

system led to up-regulation of telomerase activity and stabilisation of telomere length [385].  These 

results raise the possibility that the process of senescence is not irreversible and that therapeutic 

manipulation is possible, of relevance to both HIV and possibly HCV infection. 

HCV infection and immune senescence 

Very little is known of the immunological basis of the marked effect of ageing upon the prognosis of 

HCV infection.  Manfras et al studied 28 subjects with HCV infection and identified increased 

oligoclonality and expression of the end-stage marker CD57 on peripheral lymphocytes as associated 

with increased levels of hepatic fibrosis and reduced rates of response to interferon-α therapy [399].  

CD57 is known to be a marker of end-stage differentiation of CD8+ T-lymphocytes and its presence is 

associated with lack of proliferative ability, low secretion of IL-2 and short telomeres [359, 400]. 

CMV infection is associated with increasing markers of maturation and differentiation on both CMV- 

and non-CMV-specific cells; in contrast, HCV infection is associated with a retardation of the normal 

maturation pathway in lymphocytes.  Appay et al studied CD8+ T-lymphocytes specific for a variety 
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of antigens and found that HCV-specific CD8+ lymphocytes had higher expression of both CD27 and 

CD28 than cells specific for HIV, CMV and EBV [63] (Figure 19). 

 

Figure 19. Expression of CD28 on CD8+ lymphocytes specific for a variety of latent and persistent 
antigens. Source:  [63]. 

Similarly, Lucas et al studied the phenotype and function of CMV specific CD8+ T-lymphocytes from 

both HCV- and HCV+ individuals.  They found that the usual advanced phenotype of CMV-specific 

CD8+ lymphocytes was retarded in the presence of HCV infection, with an increase in markers 

associated with early lymphocyte differentiation CCR7 and CD62L.  Conversely, there was a 

reduction  in the expression of markers associated with cytotoxicity such as perforin and CD95 [64] 

(Figure 20). 
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Figure 20.  Phenotype of CMV-specific CD8+ lymphocytes in the absence (left column) or presence 
(right column) of HCV infection.  CMV-specific cells had a reduction in effector markers such as 
perforin (upper panel) and an increase in early stage lymphocyte markers such as CD62L (lower 
panel).  Source:  [64]. 

Therefore, whilst HCV seems to retard the normal maturation process of lymphocytes, the presence 

of peripheral changes associated with immune senescence and CMV infection seems to lead to a 

worse prognosis in HCV infection.   

Recent work has demonstrated that viraemic HCV infection is associated with shorter telomeres in 

peripheral lymphocytes than in healthy controls, albeit in just 22 patients and 22 healthy controls 

[401]; Kitay-Cohen et al demonstrated peripheral telomere shortening but not the relationship 

between length and patient outcome. 

Summary 

1. HCV infection is an important public health problem, with a high rate of chronic infection.  It 

can lead to cirrhosis and HCC and has a poor response to current anti-viral therapy. 
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2. There are a number of risk factors for progression of chronic HCV infection, some of which 

are modifiable.  One of the most important risk factors identified is age at time of 

acquisition.  There are few data to explain this effect. 

3. One of the most important anti-viral cytokines is IFN-α which achieves its effects through the 

intracellular messenger phospho-Stat1, leading to alterations in gene transcription. 

4. Increasing age is associated with changes in liver structure, blood flow and function.  

Increasing age is associated with reduced response to injury, impaired regeneration and 

increased mortality in acute liver disease. 

5. Age has been identified as a co-factor in several chronic liver diseases including chronic viral 

hepatitis. 

6. Telomeres are DNA structures located at the end of each chromosome, which protect the 

underlying coding DNA from breaks and fusions.  Telomeres shorten with age.  Cell 

proliferation leads to progressive telomere shortening, due to the inability of DNA 

polymerase to transcribe to the tip of the chromosome. 

7. Telomere shortening leads ultimately to a double strand DNA break signal through γ-H2AX 

which leads to cell cycle arrest and a state of replicative senescence. 

8. Telomerase is able to prevent telomere attrition by synthesising new telomere repeats but 

its expression is tightly controlled due to its oncogenic potential. 

9. With increasing age, the function of the immune system declines manifest as increased 

incidence of and increased mortality from infectious disease. 

10. Features of immune ageing, telomere shortening in particular, are associated with increased 

mortality in prospective studies of healthy individuals. 

11. Persistent infections lead to chronic cell turnover and increased evidence of immune ageing 

and lymphocyte telomere shortening in particular.  Most evidence exists for CMV and HIV 

infection in humans; no data exist for chronic HCV infection. 
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12. Changes of immune ageing may be reversible.  Re-introduction of telomerase by adenoviral 

transfection into mice prevented the development of cirrhosis and small molecule activation 

of telomerase activity in human lymphocytes in vitro led to an improvement of proliferative 

potential. 

Hypotheses 

1. Subjects with chronic HCV infection and progressive fibrosis have enhanced features of 

immune senescence including short lymphocyte telomeres. 

2. HCV-infected subjects with features of immune senescence will have a worse clinical and 

treatment outcome than non-senescent HCV infected individuals. 

3. Lymphocytes with features of accelerated ageing will have poor activity against HCV virus 

infection, respond poorly to anti-viral cytokines such as IFN-α and may be pro-fibrogenic. 
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Chapter 2 - Materials and methods 

Experimental methodology 

Lymphocyte preparation 

Peripheral blood mononuclear cells (PBMCs) were obtained by centrifugation of citrated blood over 

Lymphoprep (Nycomed, Roskilde, Denmark) and analysed immediately or cryopreserved at -800C in 

80% foetal calf serum (Biosera, East Sussex, UK), 10% RPMI-1640 (Gibco, Paisley, UK) and 10% 

dimethyl sulphoxide (DMSO) (Sigma-Aldrich, Gillingham, UK).   

Circulating and intrahepatic lymphocytes were obtained simultaneously whenever possible from 

HCV infected patients undergoing diagnostic percutaneous liver biopsy, liver resection or liver 

transplantation.  Liver biopsies were performed with a 1.9mm diameter Menghini needle (Steriseal, 

Redditch, UK).  Liver tissue was disaggregated mechanically in RPMI-1640, passed through a 70µm 

nylon filter before layering over Lymphoprep.  Controls for these experiments comprised HCV 

negative patients undergoing hepatic resection for colorectal metastases or hepatic adenoma; 

circulating and intrahepatic lymphocytes were obtained in the same fashion. 

Cell surface phenotype by flow cytometry 

Flow-cytometric analysis of T-lymphocytes was performed [377] using combinations of the following: 

CD4-biotin (Beckman Coulter, Fullerton, CA), CD4-PE-Cy5, CD8-biotin, CD8 PE-Cy5, CD27-APC, CD57-

biotin (all BD, San Diego, CA), CD45RO-biotin (Ebiosciences, San Diego, CA), CD45RO-FITC (Dako, 

Glostrup, Denmark).  Biotinylated antibodies were followed by streptavidin-Cy3 (Cedarlane 

laboratories, Ontario, Canada); Alexa-488 conjugated anti-KLRG1 (a kind gift, Dr Hanspeter Pircher, 

University of Freiburg).  All cytometry was performed on a FACScalibur analyser (BD) unless 

otherwise stated; data were analysed with FCSpress software (www.fcspress.com). 
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Lymphocyte separation 

CD4+ and CD8+ T-cells were purified from PBMCs by negative selection using CD4+ or CD8+ 

separation kits, through MS columns (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the 

manufacturers’ instructions.  Purity exceeded 90%. 

Telomere length by flow cytometry 

Telomere length of CD4+ or CD8+ T-cells was measured using 3-colour flow-FISH assay as described 

[377, 382].  PBMCs were stained with CD4-Biotin (Immunotech) or CD8-biotin (BD) and CD45RO-FITC 

(Dako) followed by streptavadin-Cy3 (Cedarlane laboratories, Ontario, Canada) after which samples 

were fixed and permeabilised (Fix and Perm cell permeabilisation kit, CALTAG laboratories, 

Burlingame, California, USA).  After washing in hybridization buffer (containing 70% formamide 

(VWR), 1% bovine serum albumin, 150mM NaCl, 20mM Tris-HCl) cells were incubated with 

0.75µg/ml Cy5-conjugated telomere probe ((C3TA2)3, Applied Biosystems, Warrington, UK).  Samples 

were placed at 820C for 10 minutes, followed by rapid cooling on ice and hybridization in the dark at 

room temperature for 60 minutes.  Samples were then washed in post-hybridisation buffer (70% 

formamide, 10mM Tris-HCl, 150mM NaCl, 0.1%BSA, 0.1% Tween 20) and analysed immediately in 

triplicate by flow cytometry.  CD4+ PBMCs from the same healthy individual were analysed in every 

experiment as an internal control.  Results are expressed as mean fluorescence intensity (MFI). 

Flow cytometry for Ki67 

PBMCs were stained with CD8-FITC and CD4-APC (BD) before fixation and permeabilisation in 

CALTAG A and B.  Cells were then stained with Ki67-PE (BD) or isotype control.  Cytometry was 

performed on a FACSCanto II (BD). 

Flow cytometry for γ-H2AX and p53 

PBMCs were stained with combinations of IFN-AR1-FITC, IFN-AR2-FITC (PBL biomedical laboratories), 

CD45RO-biotin (Abcam), CD57-biotin (BD), CD27-APC (BD), CD8-Qdot605 and CD4-Qdot655 
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(Invitrogen, Paisley, UK) before fixation in CALTAG medium A.  Cells were permeabilised in 90% 

methanol (VWR) and stained with combinations of Alexa Fluor 488 conjugated anti-human γ-H2AX 

(ser-139), Alexa Fluor 647 conjugated anti-human γ-H2AX (ser-139), Alexa Fluor 647 conjugated anti-

human Stat1 (BD Biosciences), Alexa Fluor 647 conjugated anti-human p53 or appropriate isotype 

controls (all Cell Signaling, MA, USA).  A positive control for γ-H2AX (PBMCs irradiated with 50Gy) 

was included on every run.  Cytometry was performed on a FACSCanto II (BD). 

To examine phospho-Jak1 and phospho-Tyk2 expression, CD8+ cells were negatively separated from 

whole lymphocytes with the CD8+ lymphocyte isolation kit II (Miltenyi Biotec).  CD8+ purity routinely 

exceeded 90% in each assay.  The isolated CD8+ cells were incubated with 1000 iu/ml IFN-α2b for 20 

minutes.  Cells were then fixed in CALTAG A solution, prior to permeabilisation in ice cold methanol 

and stained with either rabbit anti-phospho-Jak1 or rabbit anti-phospho-Tyk2 (both Santa Cruz 

Biotech) and mouse anti- γ-H2AX (Abcam).  Cells were then washed twice, blocked in goat serum, 

prior to incubation with goat anti-rabbit Alexa Fluor-488 and goat anti-mouse Alexa-Fluor 647, 

before washing twice and analysis on a FACSCanto II cytometer. 

Liver immunohistochemistry 

Paraffin-embedded formalin-fixed liver tissue was cut as 5 m sections to polylysine coated slides.  

Slides were processed for immunohistochemistry as described previously [402].  Antigen retrieval 

was achieved by pressure-cooking for 3 minutes in citrate buffer (pH 6.0).  Mouse monoclonal 

antibodies were used: anti-Mcm-2 (generated as reported previously [403]), anti-CD3, anti-CD4, 

anti-CD8 and anti-perforin (Novocastra, Newcastle, England).  Mcm-2, a marker of cell cycle re-entry, 

is expressed throughout the cell cycle but not in quiescent cells.  CD3 is a T-lymphocyte marker.  CD4 

is expressed on helper T-lymphocytes and CD8 on cytotoxic T-lymphocytes.  Perforin expression 

denotes a T-lymphocyte with cytotoxic potential.  Biotinylated goat-anti-mouse immunoglobulin was 

applied as a secondary antibody.  Tonsil was used as a positive control and appropriate primary 

antibody isotype served as a negative control on each run. 
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A streptavidin-horseradish peroxidase system (DAKO, Denmark) with the substrate 

diaminobenzidine was used to develop staining.  Slides were counterstained with Harris 

haematoxylin, dehydrated in an ethanol series and cleared in xylene.  Cover slips were applied with 

DEPEX mounting medium (BDH, United Kingdom). 

A novel approach was used to quantify the results of immunohistochemistry in an objective fashion.  

This technique was developed by Dr. Will Gelson, Department of Medicine, University of Cambridge.  

A high definition image was taken at 3.5 x magnification using the Olympus Dotslide system 

(Olympus Microscopes, UK) (Figure 21a).  Consecutive sections were used for each antibody and the 

same field was selected on each occasion based on a reproducibly identifiable feature e.g. a portal 

tract or central vein.  Immunohistochemistry was assessed using the public domain ImageJ software 

[404] (U.S. National Institutes of Health, http://rsb.info.nih.gov/ij).  The operator defines the scale 

and areas of interest which in this series comprised the lobule and the portal tract (Figure 21b).  

Images were transformed into ‘black and white’ and a threshold was established to educate the 

programme to identify positive staining of either nuclei or membrane with each antibody 

specifically.   

Positive nuclei are identified readily by size and shape.  To separate overlapping nuclei a ‘watershed’ 

was applied (Figure 21c).   The results are expressed as the number of positive nuclei/mm2 of either 

lobule or portal tract.  

Interpretation of membranous staining can be difficult in sections where cell density is high (in the 

past leading to a number of semi-quantitative and subjective scoring systems).  Thus, for assessment 

of membrane staining the results are expressed as a proportion; in this study the numerator was the 

area of cells detected as positive membranous staining by immunohistochemistry (Figure 21c) and 

the denominator was the total area of interest (lobule or portal tract) (Figure 21d).  The proportion 

of lymphocytes positive for membrane staining for CD3, CD4 or CD8 was assessed according to 

http://rsb.info.nih.gov/ij
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either a lobular or portal distribution.  Perforin staining was discrete and cytoplasmic and the results 

are expressed as number of cells positive per mm2 of either lobule or portal tract. 

Immunohistochemistry for Ki67 or γ-H2AX 

Paraffin-embedded formalin-fixed liver tissue was cut as 5 m sections to polylysine coated slides.  

Antigen retrieval was achieved through incubation in epitope retrieval solution 2 at pH 8.8 (Leica) 

before endogenous peroxidases were quenched with hydrogen peroxide.  Anti-human Ki67 (Dako) 

or anti-human γ-H2AX antibody (Cell Signaling, MA, USA) was applied before a poly-peroxidase anti-

mouse/anti-rabbit reagent (Leica) and then nickel-enhanced diaminobenzidine to develop the 

staining.  Slides were counterstained with Harris haematoxylin, dehydrated in an ethanol series and 

cleared in xylene.  Cover slips were applied with DEPEX mounting medium (BDH, United Kingdom).



Lymphocyte senescence and Hepatitis C 
 

 82     

 

Figure 21.  Immunohistochemical analysis using ImageJ software.  Panel A: a representative image obtained of CD3 immunohistochemistry using the 
Olympus Dotslide system.  A scale bar (Panels A, 500µm) allows absolute areas to be calculated.  Panel B, C and D demonstrate the analysis process for 
membranous staining.  Panel B: an ImageJ-enhanced 8-bit “black and white” image with portal tracts “cut out” to allow separate analysis of both lobular 
and portal regions.  Panel C:  positive immunohistochemistry defined in red using a primary antibody-dependant standardised threshold, the area of 

A B

C D
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which provides the numerator for positive immunohistochemical staining.  Panel D:  a threshold that gives a total area for both portal tract and lobular 
regions; the denominator.  Analysis of nuclear staining is identical to membranous immunohistochemical staining, except that the immunohistochemical 
numerator is the number of positive cells.  After a “watershed” is applied to separate overlapping cells, ImageJ calculates the number of positively 
stained cells using operator determined shape and size characteristics.  
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Telomerase assay 

Telomerase activity was measured using the telomere repeat amplification protocol (TRAP) 

according to the manufacturers’ instructions (Roche Applied Sciences).  CD8+ PBMCs were obtained 

with the CD8+ isolation kit II (Miltenyi Biotec).  Autologous non-CD8+ cells, irradiated with 40Gy, 

served as antigen presenting cells (APCs).  CD8+ PBMCs and APCs were plated in a 1:1 ratio in 96-

well round-bottom plates pre-coated with anti-CD3 (1ug/ml) (BD Biosciences) and incubated at 370C 

in 5% CO2.  After 5-days cells were harvested, snap-frozen in liquid nitrogen and stored at -800C until 

analysis.  Absolute numbers of proliferating T-cells were enumerated using Tru-COUNT tubes with 

Tritest and staining for CD8 and intracellular Ki67.  The volume of cell extract was adjusted to 500 

CD8+Ki67+ cells per TRAP reaction to correct for different rates of proliferation [356].  An internal 

standard was included in each reaction to calculate relative telomerase activity. 

Serum interferon-α by ELISA 

Serum was stored at -20oC.  IFN-α was assayed by ELISA according to the manufacturers’ instructions 

(Chemicon, USA).  Serum was incubated in a flat-bottomed 96-well plate pre-coated with anti-

human IFN-α, washed and incubated with further anti-human IFN-α.  Anti-mouse immunoglobulin 

conjugated to horseradish peroxidase was added prior to final incubation with tetramethyl-

benzidine.  The reaction products were read in a plate reader at 405nm. 

T-cell receptor directed stimulation 

Cells were cultured in RPMI-1640 medium (Gibco) supplemented with 2 mM L-glutamine, 10% foetal 

calf serum (Biosera, UK), 100iu/ml penicillin and 0.1mg/ml streptomycin.  1ug/ml plate-bound anti-

CD3 and 4ug/ml soluble anti-CD28 (BD, San Diego, CA) were used to stimulate the cells.  PBMC were 

stimulated and then left with paired (control) unstimulated samples in a humidified 5% CO2 

atmosphere for 15 hours.  After 2 hours Brefeldin A (BD biosciences, San Diego, CA) was added 

according to the manufacturer’s instructions. 
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Effect of exogenous Interferon-α 

Cells were cultured in supplemented RPMI-1640 medium as above with variable concentrations of 

Interferon-α2b (PBL biomedical laboratories) from 10iu/ml to 3000iu/ml. After incubation with IFN-α 

or medium alone, cells were surface stained, fixed in CALTAG A medium, permeabilised in 90% 

methanol before staining with Alexa-fluor 488-conjugated anti-human p-Stat1 (tyrosine 701) and 

Alexa-fluor 647-conjugated anti-human γ-H2AX (ser-139) or appropriate isotype control (Cell 

Signaling).  Cells were then washed twice before cytometry on a FACSCanto II (BD).  Surface staining 

for IFNAR-1 was achieved with specific antibody conjugated to fluorescein (PBL biomedical 

laboratories). 

Scoring of liver biopsy sections 

Liver biopsies were performed with a 1.9mm diameter Menghini needle.  Biopsy specimens were 

fixed in 4% neutral buffered formaldehyde and embedded in paraffin.  4µm sections were stained 

with Meyer's haematoxylin & eosin, periodic acid–Schiff with diastase pre-treatment, Prussian Blue, 

a trichrome stain (van Gieson or chromotrope alanine blue), and Gomori's reticulin stain.  All 

biopsies were examined by a single specialist liver histopathologist blinded to the lymphocyte 

studies or outcome (Dr Susan Davies, Department of Histopathology, Addenbrooke’s Hospital, 

Cambridge).  Biopsies were scored according to modified Ishak criteria [135] after assessing 

adequacy of specimen.  Histological activity index represented the sum of interface hepatitis (0 - 4), 

confluent necrosis (0 - 6), lobular inflammation (0 - 4), and portal inflammation (0 - 4).  Fibrosis was 

scored 0 (absent) to 6 (cirrhosis) and steatosis was scored 0 - 3.  Features of steatohepatitis were 

recorded. 

Viral serology and PCR work 

All routine serology and PCR work was performed by the Department of Virology, Addenbrooke’s 

Hospital, Cambridge.  Anti-HCV IgG was sought by ADVIA Centaur sandwich immunoassay (Bayer, 
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Tarrytown, NY).  IgG antibody against CMV was sought by chemiluminescent immunoassay (Diasorin, 

Saluggia, Italy).   

The same PCR assay was used both for HCV RNA detection (qualitative) and determining HCV viral 

load (quantitative).  This is a real-time Taqman PCR assay which targets the conserved 5’ non-coding 

region on a Rotor-gene™ 3000 instrument (Corbett Lifescience, Cambridge, UK).  HCV quantitation is 

carried out using a serial dilution of recombinant plasmid standards, incorporating the HCV target 

site, as an external calibration system. These standards are included in each run alongside the 

samples to be tested.  A standard curve is generated by the Rotor-Gene by plotting the threshold 

cycle (Ct) versus the concentration of the standards.  The HCV RNA quantity of each unknown 

sample is determined by locating its Ct on the standard curve.  Probit analysis (Stats Direct, 

www.statsdirect.com) revealed a lower limit of detection of 25 IU/ml (6.3-38.6, 95% confidence 

intervals).   

Experimental development and validation 

Flow-FISH assay 

The Flow-cytometric FISH assay for telomere length was developed by Lansdorp’s group in 

Vancouver and first described in 1998, where they demonstrated that there was a direct correlation 

between telomere length by restriction fragment length electrophoresis and telomere length by 

flow-FISH (Figure 22) [405, 406].  In a separate report in 2002, the same group reported various 

methods of optimising the technique.  Baerlocher et al found the optimal conditions for 

hybridisation of DNA with the fluorochrome-labelled probe, in terms of optimal temperature and 

duration for hybridisation [382]. 

I undertook a number of experiments to validate the technique before embarking on patient studies. 

Multiple aliquots of lymphocytes from the same individual taken on the same occasion were 

analysed for telomere length to investigate the intra-experimental variability of telomere length for 
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a single sample.  Three separate lymphocyte samples had a CD4+ telomere length of 136.2, 137.4 

and 135.9 (standard deviation of 0.73) and CD8+ telomere lengths of 140.1, 141.3 and 139.8 (SD 

0.83), demonstrating minimal variability in telomere length due to experimental variance. 

To investigate the inter-experimental variability samples from the same individual were analysed on 

different experimental runs.  Three separate lymphocyte samples had a CD4+ telomere length of 

117.0, 119.3 and 113.5 (SD 2.9) and CD8+ telomere lengths of 135.2, 144.0 and 140.4 (SD 4.4) on 

separate experimental runs. 

 

Figure 22. Example flow-cytometry plots and gating strategy for analysis of telomere length from 
flow-FISH assay.  Panel A: Live lymphocyte gate by light-scatter characteristics.  Panel B: CD4+ cells 
are identified.  Panel C:  Histogram of CD4+ lymphocyte telomere length is constructed with 
median telomere length calculated by cytometry software. 

A second concern was the effect of freezing and thawing upon lymphocyte telomere length.  As 

samples were analysed in batches of two or four patients, lymphocytes were frozen for up to twelve 

months prior to analysis.  I collected lymphocyte samples from the same individual at three monthly 

intervals over the period of a year.  From the subsequent data (see chapter three), the expected 

reduction of telomere length over the course of one year was 0.7 MFI units, similar to the inter-

experimental variability.  Therefore, one would expect that the telomere length of the samples 

would appear to have the same telomere length by Flow-FISH assay, if there were no telomere 

length changes attributable to the freezing or thawing process.   

A B C
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CD8+ T-lymphocyte telomere length frozen for 0, 3, 6, 9 and 12 months was 131.8, 132.1, 132.5, 

135.1 and 133.0 respectively (Mean 132.9, SD 1.3).  CD4+ T-lymphocyte telomere length frozen for 0, 

3, 6, 9 and 12 months was 128.2, 125.8, 125.2, 126.2, and 128.9 (Mean 126.9, SD 1.6) (Figure 23).  

The technique had low inter-experimental variability and low artefactual telomere length changes 

attributable to the storage of lymphocytes at -800 C. 

 

Figure 23. Effect of prolonged freezing at -800C upon lymphocyte telomere length by Flow-FISH.  
Lymphocytes from the same individual were collected at 3 month intervals over a year and then 
analysed on the same assay. 

Antigen-specific telomere length 

One of the early aims of the project was to analyse the telomere length of CD8+ and CD4+ T-

lymphocytes specific for HCV peptides and proteins respectively.  This was likely to be technically 

difficult due to the low circulating frequency of these cells demonstrated in previous studies [23, 63, 

71, 407]. 

Previous work in the laboratory of collaborators at UCL in London demonstrated the feasibility of 

analysing telomere length of CD8+ and CD4+ cells specific for CMV, EBV, VZV and PPD [356, 383].  

CD8+ cells were incubated overnight with immunodominant peptides, such as the CMV pp65 
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peptide, before identifying pp65-specific CD8+ T-cells the following day through intracellular staining 

for IFN-γ.  Antigen-specific CD4+ cells were identified more readily though incubation of whole 

lymphocytes with viral proteins or lysed cell extracts from infected cell lines before identifying 

antigen-specific cells through intracellular IFN-γ staining. 

Attempts to identify HCV-specific CD8+ or CD4+ T-lymphocytes were mostly unsuccessful.  I 

attempted to develop the technique in HCV-specific CD4+ T-cells; although the circulating frequency 

of these cells may be lower than HCV-specific CD8+ T-cells, the ability to stimulate cells with whole 

proteins and therefore to elicit a polyclonal multi-epitope response seemed most logical.  CMV-

specific and PPD-specific CD4+ responses were elicited readily using CMV-infected cell lysate (East 

Coast Biologics) or Tuberculin (Statens Serum Institute) before intracellular cytokine staining for IFN-

γ.  These cells were the subjected to the Flow-FISH assay to examine telomere length (Figure 24). 

 

Figure 24.  Example cytometry plots and gating strategy for measurement of antigen-specific 
telomere length.  Whole PBMCs were incubated overnight with lysate from a CMV-infected cell 
line and Brefeldin A to prevent cytokine secretion.  The cells were then surface-stained before 
fixation, permeabilisation and staining for intracellular IFN-γ.  Panel A: live lymphocytes were 
selected based on light-scatter characteristics.  Panel B: IFN-γ+ CMV-specific CD4+ lymphocytes 
were gated (R3) as well as IFN-γ- control whole CD4+ cells (R2).  Panel C: Bold histogram 
demonstrates telomere length of CMV-specific CD4+ cells previously derived from the R3 gate, 
with whole CD4+ cells in the pale histogram (R2 gate). 

HCV-specific CD4+ T-cells were sought in 19 subjects with viraemic HCV infection with varying 

degrees of fibrosis.  A cocktail of HCV proteins including NS3, NS5 and core proteins was used 

(Mikrogen, Germany).  Previous studies had examined CD4+ responses successfully using the same 

A B C
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recombinant proteins at a concentration of 1ug/ml, albeit in Elispot assays and thymidine 

incorporation studies [67, 68, 408].  Whole lymphocytes were therefore incubated with the cocktail 

of HCV proteins at this concentration.  No HCV-specific CD4+ IFN-γ responses above 0.05% of the 

total CD4+ population were elicited in any subject.  Repeated experiments at higher concentrations 

of the peptide cocktail, up to 8ug/ml of each peptide, similarly could not demonstrate antigen-

specific responses. 

It is possible that intracellular IFN-γ staining may be insufficiently bright due to fluorochrome 

extinguishing during the heat step, insufficient fixation or insufficient production of IFN-γ.  Therefore 

I proceeded to utilise a cytokine capture assay for IFN-γ.  This combines an antibody directed against 

CD45, present on all peripheral lymphocytes with an antibody against IFN-γ; the antibody would 

bind lymphocytes and then trap any IFN-γ released from the cell, allowing surface staining for IFN-γ 

rather than permeabilisation and intracellular staining.  However, no HCV-specific CD4+ cells could 

be detected by surface IFN-γ staining after incubation with the NS3, NS5 and core protein cocktail.  

One further approach would have been to re-stimulate whole lymphocytes over a period of 5 days 

with HCV proteins to expand the HCV-specific cell pool, but this would involve several rounds of cell 

division and the potential for telomere shortening, introducing experimental artefact. 

HCV-specific CD4+ T-cells could be detected with intracellular cytokine staining in subjects with non-

viraemic HCV.  These were present at low frequency (between 0.05% and 0.15%) and were detected 

in eight of the eleven (73%) subjects analysed (Figure 25).   
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Figure 25. HCV-specific CD4+ T-lymphocyte telomere length.  Whole PBMCs were incubated 
overnight with a cocktail of HCV core, NS3 and NS5 proteins and Brefeldin A to prevent cytokine 
secretion.  As before, live lymphocytes (Panel A) were then divided into IFN-γ+ HCV-specific CD4+ 
lymphocytes (Panel B) (R3) as well as IFN-γ- control whole CD4+ cells (R2).  Panel C: Bold histogram 
demonstrates telomere length of HCV-specific CD4+ cells with whole CD4+ cells in the pale 
histogram (R2 gate). 

 

In these subjects it was possible to compare the relative telomere lengths of CD4+ cells specific for 

HCV, CMV and PPD with control groups of whole CD4+ cells and IFN-γ positive cells after non-specific 

stimulation with anti-CD3 and anti-CD28.  Median telomere length in the whole CD4+ subset was 

145.3 (IQR: 122.6 – 151.1) compared to 127.3 (107.3 – 143.4) for CD3 / CD28 stimulated IFN-γ 

positive CD4+ cells, 132.4 (107.1 – 147.5) for PPD-specific CD4+ cells, 122.4 (107.4 – 135) for CMV-

specific CD4+ cells and 138.2 (122.4 – 150.2) for HCV-specific CD4+ cells (Figure 26A).  CMV-specific 

CD4+ cells had shorter telomeres than HCV-specific CD4+ cells in the same individual (Wilcoxon 

signed rank test, p = 0.031) (Figure 26B).  

A B C
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Figure 26.  Antigen-specific CD4+ telomere length in subjects with non-viraemic HCV infection (n = 
11).  Whole PBMCs were left unstimulated, stimulated with plate bound anti-CD3 and CD28, or 
stimulated with PPD, CMV lysate or cocktail of HCV proteins.  After overnight stimulation cells 
were surface-stained, fixed, permeabilised and then subject to flow-FISH analysis for telomere 
length.  Panel A: telomere length of CD4+ cells specific for different antigens; horizontal bars 
demonstrate median.  Panel B: comparison of CMV- and HCV-specific CD4+ telomere length from 
the same individuals; Wilcoxon signed rank test.  

Attempts were then made to investigate HCV-specific CD8+ telomere length.  Autologous irradiated 

PBMCs pulsed with the cocktail of NS3, NS5 and core proteins were used to circumvent the problem 

of unknown epitope specificity in co-culture with bead-separated CD8+ lymphocytes (Miltenyi 

Biotec, Germany).  This should allow internalisation of protein by APCs within the PBMCs, prior to 

lysosomal processing and presentation in the context of MHC class 1 to CD8+ lymphocytes.  Cells 

were separated before the non-CD8+ cells were irradiated with 40Gy and then incubated with the 

protein cocktail for one hour.  After this cells were washed before being plated in a one to one ratio 

with CD8+ lymphocytes and left overnight.  Cells were then surface stained, fixed, permeabilised and 

then stained for intracellular IFN-γ.  Utilising this method no HCV-specific CD8+ T-cells could be 

demonstrated in subjects with viraemic HCV. 

Much recent work investigating the role of HCV-specific CD8+ cells involves the use of MHC class one 

tetramers or multimers.  These molecules consist of several recombinant MHC class one molecules 

containing the peptide epitope of interest.  These are tagged to a fluorochrome to allow 

visualisation of epitope-specific cells through flow-cytometry [63, 407].  I was able to demonstrate 
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HCV-specific CD8+ cells through the use of MHC class I tetramers in a limited number of HLA-A2 

positive individuals (Figure 27).  

 

Figure 27. Example cytometry plots demonstrating CMV pp65-specific (NLVPMVATV) (Panel A) and 
HCV NS3-specific (KLVALGINAV) (Panel B) CD8+ cells.  Cells were previously gated on the live 
lymphocytes by light scatter characteristics. 

 

This allowed analysis of cell-surface phenotype of CD8+ T-lymphocytes specific for three HCV 

peptides (DLMGYIPAV, HCV core 132 - 140; CINGVCWTV; HCV NS3 1073 – 1081; KLVALGINAV, HCV 

NS3 1406 – 1415) and to analyse the change in cell-surface phenotype over IFN-α therapy.  In 

common with previous investigations [409] HCV-specific CD8+ lymphocytes had a similar phenotype 

in viraemic (n = 13) and non-viraemic HCV infection (n = 8), except for increased expression of CD127 

on HCV-specific CD8+ lymphocytes in non-viraemic HCV (Figure 28).    
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Figure 28.  Phenotype of HCV-specific CD8+ cells identified by HCV-specific MHC class I pentamers 
in non-viraemic (n = 8) and viraemic HCV (n = 11) infection.  Cells were co-stained for CD27, CD28, 
CD57, CD45RO, CD127 and KLRG1.  HCV-specific CD8+ cells had significantly higher expression of 
the IL-7 receptor CD127 in non-viraemic compared to viraemic HCV subjects.  Analysis by Mann-
Whitney U test. 

Expression of CD27, CD28 and CD57 by both pp65- (NLVPMVATV, CMV pp65 495-504) and HCV-

specific CD8+ cells over IFN-α therapy was analysed in relation to antiviral therapy outcome (Figure 

29). 
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Figure 29.  Cell-surface phenotype of whole CD8+ (left column), CMV-specific (centre column) and HCV-specific (right column) CD8+ cells over 24 weeks 
of IFN-α therapy for HCV infection.  Subjects were stratified into those who responded to treatment and were non-viraemic (SVR, n = 10 blue lines and 
symbols) and those who failed to respond to therapy and remained viraemic (n = 13, red lines and symbols).  Cells were analysed for co-expression of 
CD27 (top row), CD28 (middle row) and CD57 (bottom row).  Analysis by 2-way ANOVA revealed the only significant differences between treatment 
responders and non-responders was expression of CD57 by CMV-specific CD8+ cells. 
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The only significant differences between those subjects who responded to IFN-α therapy (n = 10) 

and those who failed to respond (n=13) was lower expression of CD57, a marker of end-stage 

lymphocyte differentiation, on pp65-specific CD8+ lymphocytes (2-way ANOVA, p <0.0001) (Figure 

29).   

It proved impossible to combine tetramer staining with the Flow-FISH telomere assay to 

demonstrate antigen-specific CD8+ telomere length; MHC multimers are fragile and did not survive 

the hybridisation heat step.  This was attempted with both CMV-specific and HCV-specific cells 

identified by pentamers.  Further, identification of cells through biotin-conjugated pentamers with 

streptavidin-Cy3, already known to be heat-stable, could not identify any antigen-specific cells 

through the flow-FISH assay. 
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Chapter 3 - Global T-lymphocyte telomere length is related to clinical 

outcome in chronic hepatitis C virus (HCV) infection. 

Abstract 

Background.  Increasing age is associated generally with impaired immune function and in chronic 

HCV infection specifically, is related to the stage of fibrosis, liver failure, HCC and impaired responses 

to therapy.  The relationship between T-lymphocyte telomere length, an objective measure of 

immune senescence and clinical outcome in patients with chronic HCV infection was investigated. 

Methods.  Circulating T-lymphocyte telomere length was measured by Flow-FISH in 135 HCV-RNA 

positive treatment-naïve patients undergoing liver biopsy, 32 HCV-antibody-positive, HCV-RNA 

negative subjects and 41 age-matched healthy controls.  Telomerase activity was analysed by 

telomere repeat amplification protocol and PCR – ELISA.   IFN-α levels were measured by ELISA. 

Results.  CD8+ and CD4+ T-lymphocyte telomeres were shorter in viraemic patients compared to 

controls after correction for confounding factors, including age (p = 0.006 and p = 0.015 

respectively).   There were inverse correlations between CD8+CD45RO+ or CD4+CD45RO+ telomere 

length and fibrosis stage (p = 0.0003 and p < 0.0001 respectively), portal tract inflammatory grade (p 

= 0.027 and p = 0.035), prothrombin time (p = 0.004 and p = 0.001) and bilirubin (p = 0.003 and p = 

0.001).   

CD8+CD45RO+ telomeres, but not CD4+CD45RO+ telomeres, were particularly short in non-viraemic 

HCV-exposed individuals (p = 0.002).   

124 viraemic individuals were followed prospectively to a composite endpoint of death, hepatic 

decompensation or HCC.  Baseline CD4+CD45RO+ telomere length was predictive of the 

development of clinical endpoints independent of age and fibrosis stage.  Those with shorter 

CD4+CD45RO+ telomere length were less likely to be complication free after 2-years than those with 
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longer telomeres (83.4% versus 100%, p = 0.009) with an age-adjusted hazard ratio of 0.93 (0.90 – 

0.96). 

Conclusion.  T-lymphocyte telomere length was inversely correlated with all biochemical and 

histological markers of HCV infection in a cross-sectional cohort.  CD4+CD45RO+ T-lymphocyte 

telomere length, independent of age, was predictive of all measures of clinical outcome in patients 

with chronic HCV infection. 
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Introduction 

Prospective studies of HCV-infected cohorts demonstrate that the majority of viraemic individuals 

never develop severe hepatic fibrosis [134, 177]; factors associated with progressive fibrosis include 

male sex, obesity, concurrent alcohol misuse [6] and particularly, older age at acquisition [6, 142, 

144]. 

Normal human ageing is associated with changes in the adaptive immune system [363, 410] with 

reduced numbers of naïve cells, increased numbers of antigen-experienced cells and oligoclonal 

expansion of CD8+ T-lymphocytes.  Progressive shortening of lymphocyte telomeres is characteristic 

of immune senescence and may underpin the changes of lymphocyte function [357]. 

Immune senescence is also associated with poor outcome in cardiovascular disease, cerebrovascular 

disease and obstructive airways disease [285, 388, 389].  Smoking and obesity, both linked to 

increased risk of fibrosis in chronic HCV infection, [179, 331, 411] are associated independently with 

accelerated attrition of lymphocytic telomeres [285], linking high-risk activities, immune senescence 

and subsequent ill-health. 

Telomere length shortens with each cell division, leading eventually to a DNA damage signal 

mediated by γ-H2AX, p53 and p16INK4A [368, 412]  that prevents further cell division [413], a point 

defined as replicative senescence.  Telomeres are maintained and less often elongated by 

telomerase, an enzyme comprising reverse transcriptase (TERT) and RNA template (TERC) [414].  

Expression is controlled tightly in normal somatic cells; introduction of exogenous telomerase 

activity to human somatic cells maintains telomere length and can prevent senescence [415].  

Telomerase undergoes post-transcriptional modification within different tissues in order to generate 

functional activity; thus many tissues contain telomerase mRNA or protein, but telomerase activity is 

restricted [416, 417]. 
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Chronic viral infections accelerate immune senescence and declining immune function [374, 383].  

Cytomegalovirus (CMV) infection is implicated particularly in accelerated immune senescence within 

both CMV-specific and non-specific lymphocyte subsets [356].  CMV-specific CD4+ and CD8+ 

lymphocytes possess an ‘advanced’ cell-surface phenotype, short telomeres and low telomerase 

activity [63, 356].  CMV is associated with marked oligoclonal expansion of CD4+ and CD8+ effector 

cells within an elderly population [365]. 

Less is known of the relation between HCV and immune senescence.  Non HCV-specific T-cells have 

an ‘advanced’ phenotype in CMV infection, but this is retarded in HCV infected subjects [64], 

suggesting that HCV infection may impair normal lymphocyte maturation.  Intrahepatic CD8+ 

lymphocytes in HCV infection have increased expression of markers of antigen-experience and 

differentiation [409, 418]. 

Few data explain the marked effect of age at acquisition of HCV on either the natural clinical course 

or the response to antiviral therapy [419, 420].  This study addresses the relation between immune 

senescence (measured as lymphocyte telomere length), age and clinical outcome in chronic HCV 

infection. 

Patients and methods 

Subjects (Table 3) 

Patients recruited at Addenbrooke’s Hospital, Cambridge gave written informed consent with 

approved of the Local Research Ethics Committee.  Patients co-infected with HIV, HBV or with other 

chronic liver disease identified by history, blood tests or liver biopsy were excluded.  Lymphocytes 

from healthy controls were obtained from local volunteers; none gave a history of chronic illness or 

intravenous drug usage.  Study subject groups were defined as: healthy controls; non-viraemic HCV-

exposed; viraemic with mild disease (Ishak fibrosis 0 - 3); or viraemic with severe disease (Ishak 

fibrosis 4 - 6). 
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Healthy 
Controls 

HCV-RNA - HCV-RNA + 
mild 

HCV-RNA + 
severe 

P value† 

N 41 32 73 62  

Age (years, mean ± SD) 47.0 ± 11.1 50.6 ± 10.1 49.4 ± 11.2 53.2 ± 7.2 0.005 

Sex (% male) 51.2% 68.8% 71.2% 77.4% 0.231 

BMI (mean ± SD) 26.8 ± 3.5 25.6 ± 5.2 25.6 ± 4.3 27.2 ± 5.6 0.20 

Source of HCV: 
IDU % 
Blood products % 
Unknown % 

- 
68.8%  
18.8%      
12.4% 

58.9%  
15.1%   
26.0% 

67.7%       
8.1%     

24.2% 
0.331 

% IgG anti-HBc positive 12.2% 36.3% 26.0% 32.3% 0.00021 

% CMV antibody positive 26.8% 53.1% 49.3% 58.1% 0.021 

Biochemical indices      

Bilirubin (µmol/L, mean ± SD) - 8.1 ± 3.6 9.9 ± 5.1 14.3 ± 10.1 0.0003 

ALT (iu/L, mean ± SD) - 32.7 ± 19.6 95.5 ± 88.7 109.1 ± 66.4 <0.0001 

PT (seconds, mean ± SD) - 12.7 ± 1.1 12.5 ± 0.8 13.8 ± 1.7 <0.0001 

Ishak score      

Interface hepatitis (0 - 4) - - 1.1 ± 0.8 1.9 ± 0.6 <0.0001 

Confluent necrosis (0 - 6) - - 0.0 ± 0.2 0.0 ± 0.2 0.9 

Lobular hepatitis (0 - 4) - - 1.8 ± 0.6 2.2 ± 0.6 0.007 

Portal inflammation (0 - 4) - - 1.8 ± 0.7 2.3 ± 0.5 0.0001 

Fibrosis (0 - 6) - - 1.8 ± 0.9 4.8 ± 0.7 <0.0001 

Steatosis (0 - 3) - - 0.5 ± 0.7 0.9 ± 0.9 0.002 

Telomere lengths (MFI)      

CD8+CD45RO+ telomere 
median 

125.2 111.7 123.8 116.1  

CD8+CD45RO+ telomere IQR 
118.6 – 
137.1 

101.5 – 
126.8 

108.8 – 
137.0 

105.0 – 
127.3 

 

CD4+CD45RO+ telomere 
median 

117.2 113.7 115.0 107.7  

CD4+CD45RO+ telomere IQR 
109.7 – 
131.1 

103.0 – 
122.7 

103.7 – 
125.0 

99.58 – 
117.6 
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Table 3.  Demographic characteristics of subjects in the four study groups.  † Kruskal Wallis unless 
otherwise stated. 1Chi-squared.   

Patients with anti-HCV were defined as viraemic if HCV-RNA was detected on all 3 occasions at 6-

month intervals; only those with a recent liver biopsy were included.  Those who were negative for 

HCV-RNA on a minimum of 3 tests at annual intervals were defined as non-viraemic, but did not 

undergo liver biopsy.  Those with inconsistent HCV-RNA results were excluded.  At study entry all 

subjects were treatment naïve and none had evidence of HCC or previous hepatic decompensation. 

A composite end-point was used for outcome analysis: outcome events were death, first episode of 

hepatic decompensation (new rise in bilirubin to twice the upper limit of normal, new onset of 

ascites, encephalopathy, or portal hypertensive haemorrhage) or the development of hepatocellular 

carcinoma.  Outcome was determined from study entry and survivors were censored at time of last 

clinic appointment.  

Statistics 

Lymphocyte telomere length within an individual is expressed as mean fluorescence intensity (MFI).  

Population data were subjected to non-parametric analysis, with lymphocyte surface phenotype, γ-

H2AX staining, telomerase activity and serum IFN-α analysed by Kruskal-Wallis, lymphocyte subset 

telomere length by repeated measures 2-way ANOVA, peripheral and intrahepatic telomere length 

by Wilcoxon signed rank test and portal tract Ki67 expression by Mann Whitney U test.  Ishak scores 

are non-linear variables and therefore associative data were analysed by Spearman’s Rank 

correlation coefficient.  Univariate analysis of survival was performed by the Kaplan-Meier method; 

curves were compared with the log-rank method and hazard ratios constructed from a Cox 

regression analysis (Prism 5.0, Graphpad, San Diego, CA). 

Backward stepwise multinomial regression analysis was performed to identify predictors of severe 

fibrosis using SPSS 15.0 for Windows, with allocation to the severe fibrosis group (Ishak fibrosis stage 
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4-6) as outcome.  Input variables were gender, IgG anti-CMV status, age, BMI, IgG anti-HBc status, 

CD4+CD45RO+ telomere length and CD8+CD45RO+ telomere length. 

Multi-variate analyses were performed by Ms. Sarah Vowler, Centre for Applied Medical Statistics, 

Department of Public Health and Primary Care, University of Cambridge. 

Results 

T-lymphocyte telomere length, viraemia and fibrosis stage (Figure 30a, b & c)   

Increasing age was associated with shortened lymphocytic telomeres in healthy subjects and patient 

study groups.  There was no evidence of difference in the slopes of the age versus telomere 

distribution in the four study groups by multiple linear regression (p = 0.578) (Figure 30B). 

Study subjects were recruited according to HCV status and hepatic fibrosis stage, so there were 

predictable differences between patient groups and controls with respect to CMV and IgG anti-HBc 

status (Table 3) and within patient groups for age.  Therefore, a backward stepwise multinomial 

regression model was constructed to determine which factors were predictive of severe fibrosis.  

Input variables into the model were gender, IgG anti-CMV status, age, BMI, IgG anti-HBc status, 

CD4+CD45RO+ telomere length and CD8+CD45RO+ telomere length. 

Median telomere length was similar in CD4+CD45RO+ lymphocytes from healthy controls and 

viraemic patients with mild disease.   However, median telomere length in CD4+CD45RO+ 

lymphocytes from viraemic patients with severe fibrosis was shortened.  Backward stepwise 

multinomial regression demonstrated that male sex (OR; 95% CI; p value) (2.84 (1.07, 7.53); p = 

0.04), CMV positivity (4.18 (1.63, 10.73); p = 0.003), anti-HBc positivity (4.74 (1.53, 14.72); p = 0.007) 

and decreasing CD4+CD45RO+ telomere length (1.05 (1.02, 1.78); p = 0.003) were independently 

associated with severe HCV-related fibrosis (Table 4). 
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Simple multinomial regression Backward stepwise multinomial 
regression 

Variable  SE df OR (95% CI) p  SE df OR (95% CI) p 

Male gender 0.89 0.44 1 2.43 (1.03, 5.74) 0.043 1.04 0.50 1 2.84 (1.07, 7.53) 0.04 

CMV + 1.33 0.44 1 3.78 (1.61, 8.83) 0.002 1.43 0.48 1 4.18 (1.63, 10.73) 0.003 

Age 0.07 0.02 1 1.08 (1.03, 1.12) 0.001      

BMI 0.02 0.04 1 1.02 (0.94, 1.10) 0.71      

Anti-HBc + 1.65 0.54 1 5.20 (1.80, 15.1) 0.002 1.58 0.58 1 4.74 (1.53, 14.72) 0.007 

CD4+CD45RO+ 
telomere length 

0.05 0.01 1 1.05 (1.02, 1.08) 0.001 0.04 0.01 1 1.05 (1.02, 1.78) 0.003 

CD8+CD45RO+ 
telomere length 

0.03 0.01 1 1.03 (1.01, 1.06) 0.002      

 Table 4. Predictors of severe fibrosis (Ishak fibrosis 4 – 6) by backward stepwise multinomial regression.  Input variables were gender, previous CMV or 
HBV, age, BMI and CD4+CD45RO+ telomere length and CD8+CD45RO+ telomere length.  Variables associated with severe fibrosis (p < 0.1) in simple 
linear regression were included in a multiple regression analysis. 
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CD8+CD45RO+ telomere length showed significant association on simple regression analysis with 

severe fibrosis, but not independent association in backward stepwise regression analysis. 

 

Figure 30.  Telomere length of CD8+ and CD4+ T-cells from healthy controls and HCV-infected 
subjects. 

A & B:   The correlation between age and telomere length in circulating CD4+CD45RO+ 
lymphocytes from 41 healthy controls (Panel A) (p = 0.015; Rs = - 0.379) and 135 viraemic 
individuals (Panel B) (p < 0.001; Rs = -0.414). 
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C:  Telomere length of circulating CD8+CD45RO+ lymphocytes in 41 healthy controls, 32 non-
viraemic HCV-exposed cases, 73 viraemic patients with mild fibrosis and 61 viraemic patients with 
severe  fibrosis.  The horizontal bar represents the median.   

D: Telomere length of circulating CD4+CD45RO+ lymphocytes in 41 healthy controls, 29 non-
viraemic HCV-exposed cases, 73 viraemic patients with mild fibrosis and 62 viraemic patients with 
severe  fibrosis.  

E:  Telomere length of circulating CD8+ lymphocyte subsets defined by KLRG1 and CD57 expression 
in 7 healthy controls, 5 non-viraemic HCV-exposed cases, 6 viraemic patients with mild fibrosis and 
6 viraemic patients with severe fibrosis; results were normalised to CD8+KLRG1-CD57- telomere 
length.  Symbol and whiskers represent median and interquartile range. 

F:  Telomere length of circulating CD4+ lymphocyte subsets defined by CD27 and CD45RO 
expression in 10 healthy controls, 6 non-viraemic HCV-exposed cases, 9 viraemic patients with 
mild fibrosis and 9 viraemic patients with severe fibrosis; results were normalised to 
CD4+CD27+CD45RO- telomere length.  Symbol and bars represent median and interquartile range.
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Telomere length and cells with ‘advanced phenotype’  

There was no evidence of differences between the four groups in the proportion of CD8+ T-cells that 

were CD27+KLRG1-CD57- (Kruskal-Wallis, p = 0.21), KLRG1+CD57- (p = 0.48), or KLRG1+CD57+ (p = 

0.58).  Nor was there evidence of differences in the proportion of CD4+T-cells that were 

CD27+CD45RO- (p = 0.07), CD27+CD45RO+ (p = 0.14) or CD27-CD45RO+ populations (p = 0.44).  

Thus, the telomere length changes demonstrated were not attributable to accumulation of 

lymphocytes with an ‘advanced phenotype’. 

Telomere length and naïve or antigen-experienced lymphocytes (Figure 30d & e) 

Normally lymphocyte telomere length shortens with differentiation and maturation [356, 376].  To 

determine whether this was true in HCV, or whether there was global shortening of all T-cell subsets 

(both naïve and antigen-experienced), CD8+ and CD4+ lymphocyte subset telomere lengths were 

measured.  Subset telomere length was normalised to the length in the most naïve subset to correct 

for inter-individual variation and confounding factors. 

There was no statistical evidence of differences in median telomere length between the study 

groups for CD8+KLRG1+CD57- or CD8+KLRG1+CD57+ subsets (2-way ANOVA, p = 0.12); advanced 

phenotype generally was associated with shortened telomere length (p < 0.0001).  Thus, telomere 

length changes in HCV were unrelated to accelerated shortening in a particular T-cell subset.  Nor 

was there evidence of differences in median telomere length between study groups for 

CD4+CD27+CD45RO+ or CD4+CD27-CD45RO+ subsets (p = 0.55); advanced phenotype generally was 

associated with shortened telomere length (p < 0.0001). 

Circulating lymphocyte telomere length, fibrosis and portal inflammation (Figure 31) 

CD8+CD45RO+ lymphocyte telomere length in 133 viraemic subjects correlated with fibrosis stage 

(Spearman’s Rank correlation, p = 0.0003), portal tract inflammatory grade (p = 0.027) and confluent 

necrosis (p = 0.039), but showed no evidence of correlation with interface hepatitis (p = 0.125), 
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lobular hepatitis (p = 0.504) or steatosis (p = 0.706).  CD4+CD45RO+ lymphocyte telomere length 

also correlated with fibrosis stage (p<0.0001, Figure 31b), portal tract inflammation grade (p = 0.035) 

and confluent necrosis (p = 0.036) (data not shown), but there was no evidence of correlation with 

interface hepatitis (p = 0.343), lobular hepatitis (p = 0.839) or steatosis (p = 0.755).   

 

Figure 31.  Correlation between telomere length of circulating CD8+CD45RO+ lymphocytes (A & C) 
or CD4+CD45RO+ lymphocytes (B & D) from 133 viraemic HCV subjects and fibrosis stage (A & B) 
or portal tract inflammation grade (C & D).  Symbols and bars represent median and interquartile 
range; correlation by Spearman’s Rank. 

Lymphocyte telomere length and clinical parameters (Figure 32) 

The relation between CD4+ or CD8+ lymphocyte telomere length and clinical severity was 

investigated in 133 viraemic patients.  There was a correlation between CD8+CD45RO+ telomere 

length and serum bilirubin (p = 0.003), prothrombin time (p= 0.004), but not with serum ALT (p = 
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0.115).  There was also a correlation between CD4+CD45RO+ telomere length and bilirubin (p = 

0.001), prothrombin time (p = 0.001) but not ALT (p = 0.08).  The significant correlations, detailed 

above, remained even after exclusion of outlying values. 
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Figure 32.  Correlation between telomere length of circulating CD8+CD45RO+ lymphocytes (A) or 
CD4+CD45RO+ lymphocytes (B) from 133 viraemic HCV patients with measures of the severity of 
liver disease: upper row, serum total bilirubin (µM/L); middle row, prothrombin time (seconds); 
and lower row, serum alanine transaminase (ALT) (IU/L). 
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Short CD4+ lymphocyte telomere length and poor clinical outcome (Figure 33 and Table 

5) 

11 viraemic patients were lost to follow-up after enrolment.  Therefore, 124 viraemic subjects 

without previous decompensation or elevated bilirubin were followed prospectively for a median of 

724 days (IQR: 533-906).  The cohort was divided into telomere length that was longer or shorter 

than the cohort median (118.8 for CD8+CD45RO+ and 111.9 for CD4+CD45RO+). 

The proportion free of complication at 2 years was 93.9% and 87.9% for longer and shorter 

CD8+CD45RO+ telomeres respectively (p = 0.039) and 95.4% and 86.2% for longer and shorter 

CD4+CD45RO+ telomeres respectively (p = 0.009).  Utilising a proportional hazards model to 

investigate telomere length as a predictor of outcome independent of age demonstrated that a 

single point increase in CD8+CD45RO+ telomere MFI was associated with a HR of 0.96 (95% CI: 0.93 - 

0.99) and 0.93 (0.91 - 0.96) in the CD4+CD45RO+ subset. 

Restricting analysis to viraemic subjects with severe fibrosis (n = 55, median follow-up 742 days (333 

- 913 days) divided by cohort medians of 116.1 and 108.3 respectively, revealed the proportion free 

of complications at 2 years was 86.3% and 79.8% for longer and shorter CD8+CD45RO+ telomeres 

respectively (p = 0.27) and 96.6% and 69.9% for longer and shorter CD4+CD45RO+ telomeres 

respectively (p = 0.0009).  The age-adjusted HRs for CD8+CD45RO+ and CD4+CD45RO+ telomeres 

and the development of the composite outcome were 0.96 (0.92 - 0.99) (p < 0.001) and 0.94 (0.91 - 

0.96) (p = 0.02) respectively. 

Analysis of each outcome independently in those with severe fibrosis (n = 55) revealed that 

increased CD4+CD45RO+ telomere length was associated with reduced evolution to HCC (p = 0.003, 

age-adjusted HR 0.92 (0.87 - 0.97) and fewer episodes of decompensation (p = 0.003, HR 0.93 (0.89 - 

0.98).  No separate outcome was associated with shorter CD8+CD45RO+ telomere length (HCC (p = 

0.1), decompensation (p = 0.05), death (p = 0.95)) in those with severe fibrosis (data not shown). 
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Figure 33.  Clinical outcome of all viraemic subjects (n = 124) (A & B) or viraemic patients with 
severe fibrosis only (n = 55) (C & D) divided into those with telomeres longer (dashed line) or 
shorter (solid line) than the median.  Kaplan-Meier analysis from study entry to outcome or censor 
date by log rank test:  A & C: CD8+CD45RO+ telomere length and B & D: CD4+CD45RO+ telomere 
length.  CD4+CD45RO+ telomere length from subjects with severe fibrosis (n = 55) analysed with 
each outcome independently: E, Development of HCC; F, Episode of decompensation. 
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Cohort Endpoint 

Unadjusted HR (95% CI) Age-adjusted HR (95% CI) 

CD8+ 
CD45RO+ 
telomere  

p 
CD4+ 

CD45RO+ 
telomere  

p Age (years) p 
CD8+ 

CD45RO+ 
telomere  

p 
CD4+ 

CD45RO+ 
telomere  

p 

Overall 
(n = 124) 

Composite 
0.96  

(0.93 - 0.99) 
<0.001 

0.93  
(0.91 - 0.96) 

0.008      
1.10  

(1.04 - 1.15) 
<0.001 

0.96  
(0.93 - 1.00) 

<0.001 
0.93  

(0.90 - 0.96) 
0.03 

Severe 
fibrosis 
(n = 55) 

Composite 
0.96  

(0.92 - 0.99) 
<0.001 

0.94  
(0.91 - 0.96) 

0.01 
1.11  

(1.04 - 1.19) 
0.002 

0.96  
(0.93 - 0.99) 

<0.001 
0.93  

(0.90 - 0.96) 
0.02 

De-
compensation 

0.95  
(0.91-1.00) 

0.04      
0.93  

(0.89 - 0.98) 
0.003 

1.05  
(0.94 - 1.16) 

0.4 
0.95  

(0.91-1.00) 
0.05      

0.93  
(0.89 - 0.98) 

0.003 

HCC 
0.97  

(0.92-1.01) 
0.2      

0.94  
(0.90 - 0.98) 

0.003 
1.16  

(1.07 - 1.26) 
<0.001 

0.97  
(0.92-1.01) 

0.1      
0.92  

(0.87 - 0.97) 
0.003 

Table 5.  Unadjusted and adjusted Hazard Ratios (and 95% CI) for decompensation, development of HCC and a composite endpoint of death, 
decompensation or development of HCC by CD8+CD45RO+ and CD4+CD45RO+ T-lymphocyte telomere length and age among the whole viraemic cohort 
(n = 124) or restricted to those with severe fibrosis (n = 55). 
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Therefore, shorter CD4+CD45RO+ telomere length was significantly associated with the 

development of clinical endpoints associated with HCV viraemia over a follow-up period of around 2 

years, independent of age or fibrosis stage. 

To investigate the underlying mechanism for the changes in telomere length, peripheral and 

intrahepatic lymphocyte proliferation and the ability of peripheral lymphocytes to develop 

telomerase activity were studied. 

Peripheral and intrahepatic lymphocyte telomere lengths (Figure 34 & Table 6) 

The relative maturation status of peripheral and intrahepatic lymphocytes by cell surface phenotype 

was investigated prior to investigating telomere length in both peripheral and intrahepatic 

compartments.  Cells from liver biopsy, resection specimen or liver transplantation were utilised and 

peripheral lymphocytes taken contemporaneously were the comparator.   

The proportion of CD8+ lymphocytes with an advanced cell surface phenotype as judged by CD57 

and KLRG1 expression are increased in the intrahepatic compartment when compared to peripheral 

lymphocytes (2-way ANOVA, p = 0.0002).  Similarly, CD4+ lymphocytes with an advanced cell surface 

phenotype, as judged by CD27 and CD45RO expression, are increased within the intrahepatic 

compartment in HCV-infected subjects (p = 0.036). 

 

Figure 34.  Cell surface phenotype of peripheral and intrahepatic CD8+ (Panel A) and CD4+ (Panel 
B) lymphocytes from HCV-infected subjects (n = 12).  CD8+ lymphocytes are differentiated on the 
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basis of CD57 and KLRG1 expression; the more mature phenotype to the right.  Similarly, CD4+ 
lymphocytes are differentiated by CD27 and CD45RO expression; the more mature phenotype to 
the right.  

There were no differences between intrahepatic and circulating lymphocyte telomere length in any 

individual, whether control (n = 12) or viraemic HCV infected patient (n = 6) for either CD4+ or CD8+ 

cells. 

 CD8+CD45RO+ CD4+CD45RO+ 

Group  PBMC IHL 
Wilcoxon 

signed rank 
PBMC IHL 

Wilcoxon 
signed rank 

Healthy 
control (n = 12) 

Median 108.0 108.8 p = 0.85 106.8 112.0 p = 0.47 

IQR 
101.8 - 
125.5 

103.9 - 
121.5 

 
102.1 - 
121.0 

107.8 - 
118.0 

 

HCVRNA+  
(n = 6) 

Median 117.0 119.4 p = 0.84 116.2 116.8 p = 0.69 

IQR 
110.6 - 
131.9 

117.5 - 
129.9 

 
97.88 - 
136.2 

107.6 - 
132.4 

 

Table 6.  Telomere length of peripheral (PBMC) and intrahepatic lymphocytes (IHL) from 12 
‘healthy’ controls undergoing liver resection for hepatic adenoma or colorectal metastases and 6 
HCV viraemic individuals undergoing liver transplantation. 

Therefore, whilst there is a concentration of cells with an advanced cell –surface phenotype within 

the intrahepatic compartment, the cells within the antigen experienced CD45RO+ subset do not 

show any preferential shortening within the liver. 

Telomerase (Figure 35) 

To investigate whether the peripheral telomere length changes were attributable to a failure to 

induce telomerase, CD8+ lymphocytes were stimulated with anti-CD3/CD28 to assess their ability to 

generate telomerase activity via the Telomere repeat amplification protocol (TRAP) assay.  Induction 

of telomerase, after correction for cell proliferation by Ki67 expression, was similar in CD8+ 

lymphocytes in all four groups (p = 0.16).  Changes in telomere length are unlikely to be linked to a 

failure of lymphocytes to up-regulate telomerase activity.  However, the sensitivity of the TRAP assay 

for small changes in telomerase activity is low and therefore complete exclusion of a change in 

telomerase is not possible. 
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Serum interferon-α (Figure 35) 

IFN-α has been demonstrated to inhibit telomerase activity in vitro and in vivo [356], but serum IFN-

α levels were similar in all four groups (p = 0.86). 

 

Figure 35.  In vitro induction of telomerase activity in CD8+ PBMCs.  Panel A: Telomerase 
expression in CD8+ PBMCs after 5-days non-specific stimulation in 18 healthy controls, 17 non-
viraemic HCV-exposed cases, 14 viraemic patients with mild fibrosis and 15 viraemic patients with 
severe fibrosis was similar (p = 0.16).  Horizontal bar represents the median.  Panel B: Serum IFN- 
α concentrations in 12 healthy controls, 12 non-viraemic HCV-exposed cases, 14 viraemic patients 
with mild fibrosis and 15 viraemic patients with severe fibrosis were similar (p = 0.863). Horizontal 
bar represents the median; the dotted line represents the lower limit of detection (6.25 pg/ml). 

Peripheral and intrahepatic lymphocyte proliferation (Figure 36) 

To investigate whether the telomere length changes were attributable to higher levels of in vivo 

proliferation I examined Ki67 as a marker of lymphocyte proliferation.  Peripheral lymphocytes from 

healthy controls (n = 23), non-viraemic HCV-exposed (n = 22), viraemic with mild disease (n = 42) and 

viraemic with severe disease (n = 28) were stained for Ki67 without stimulation.  There was no 

significant difference in the level of Ki67 expression in either CD8+ (Figure 36a) or CD4+ (Figure 36b) 

between the four groups. 

Intrahepatic lymphocyte proliferation in viraemic subjects with severe liver disease known to have 

shortened peripheral lymphocyte telomeres was investigated, given that antigenic exposure of 

lymphocytes in HCV infection is likely to occur within the liver. Immunohistochemistry was 

undertaken in subgroups of viraemic patients with mild disease (n = 10) and viraemic patients with 
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severe disease (n = 11) (Figure 36c).  There was significantly greater portal tract area positive for 

Ki67 in subjects with mild disease (median (IQR); 0.93% (0.72% – 1.4%)) compared to severe disease 

(0.67% (0.53% - 0.85%) (p = 0.02) (Figure 36d). 

 

Figure 36.  Intrahepatic lymphocyte proliferation is impaired in groups with short lymphocytic 
telomere length.  Ex vivo CD8+ (A) and CD4+ (B) lymphocyte expression of Ki-67 by flow-cytometry 
in healthy controls (n = 23), non-viraemic HCV-exposed cases (n = 22), viraemic patients with mild 
fibrosis (n = 42) and viraemic patients with severe fibrosis (n = 28).  Panel C: photomicrograph of 
portal tract demonstrating lymphocytic expression of Ki-67 by immunohistochemistry; scale bar 
100µm.  Panel D: proportion of portal tract area expressing Ki-67 in viraemic patients with mild 
fibrosis (n = 11) and severe fibrosis (n = 10).  Analysis by Mann-Whitney U test.   

Further, there was significant correlation between portal tract area positive for Ki67 and peripheral 

CD4+CD45RO+ telomere length (p = 0.03, r2 = 0.24) (Figure 37a).  There was no evidence of a 

correlation between Ki67 expression and peripheral CD8+CD45RO+ telomere length (p = 0.16). 
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Figure 37.  Relationship between portal tract area positive for Ki67 staining by 
immunohistochemistry and peripheral CD8+CD45RO+ telomere length (panel A) or CD4+CD45RO+ 
telomere length (panel B) in subjects with viraemic HCV infection (n = 21). 

Those subjects with longer telomeres have enhanced intrahepatic lymphocyte proliferation in vivo.  

Further, there was no evidence that the telomere length changes demonstrated earlier were 

attributable to either excess intrahepatic or peripheral proliferation, failure to induce telomerase or 

peripheral inhibition of telomerase by IFN-α. 

Discussion 

T-lymphocyte telomeres shortened with age in all study groups, as anticipated [357].  T-cells from 

patients exposed to HCV had telomeres that were shorter than healthy controls with an overall 

difference in telomere length between the two groups equivalent to 10-years additional ageing.  The 

changes in T-cell telomere length in viraemic patients were more marked in those with severe 

fibrosis, equivalent to 15-years additional ageing.   The findings were independent of factors known 

to influence immune senescence, including age, sex and CMV status.  The changes were similar in 

both CD4+ and CD8+ T-lymphocytes but the important association was between CD4+ telomere 

length and severe fibrosis.  Unexpectedly, the changes in telomere length affected all T-cell subsets 

and were just as marked in antigen experienced as they were in naïve T-cells; thus the findings 

cannot be explained readily by accumulation of T-cells with a particular phenotype, as seen in other 
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settings [356, 410].   Alternative explanations for these findings, including a failure to induce 

telomerase or an effect of IFN-α on telomerase induction, seem improbable based on subsequent 

findings in this study.   

An important relation between immune senescence and clinical outcome was supported by the 

findings that T-lymphocyte telomere length in viraemic patients correlated closely with increased 

fibrosis stage, increased grade of portal tract inflammation, prolonged prothrombin time and 

increased bilirubin, all factors that predict morbidity and mortality in patients with chronic HCV 

infection [6].  The duration of follow-up remains short, yet patients with shorter telomeres already 

have outcomes inferior to those with longer telomeres with more frequent progression to the 

composite endpoint of death, first episode of hepatic decompensation or hepatocellular carcinoma.  

‘Survivor bias’ [217], whereby those with shorter telomeres in any population die at an earlier age of 

varied causes, so that survivors have longer telomeres, could account for some of these findings.  

Prospective study will answer this issue; however, more marked liver disease in cross sectional 

analysis and evolving liver failure in short term follow-up in those with the shortest telomeres 

suggests that even if this was the case then liver injury due to HCV is the likely cause of any 

differences. 

This cross-sectional study could not address whether HCV infection causes accelerated telomere 

shortening, whether individuals with shorter T-cell telomeres are pre-disposed to cirrhosis or 

whether lifestyles associated with HCV infection affect telomere length.  Longitudinal follow-up is 

underway and may address some of these issues. 

One explanation for shortened T-cell telomeres in patients with chronic HCV infection is accelerated 

lymphocyte turnover, but the findings are inconsistent with that view.  The observed T-cell telomere 

shortening was global; there were similar changes in antigen-naïve and antigen-experienced T-cells; 

there was no evidence of a relationship to an advanced phenotype and there was no excess 
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peripheral or intrahepatic proliferation in groups demonstrated to have short lymphocyte telomeres.  

Indeed, those individuals with shorter telomeres had evidence of reduced intrahepatic lymphocyte 

proliferation.  It is probable that changes in telomere length were determined long before the study, 

since exposure to HCV predated the study by many years in most cases and such changes may be 

manifest shortly after exposure.  Since replicative senescence cannot explain all of the findings it 

appears that senescence might arise by an alternative, or additional, pathway.  Telomere shortening 

is accelerated following oxidative stress [321, 421].  HCV infection is known to be associated with 

increased oxidative stress within the liver [99].  

The finding that lymphocytic telomere length is similar in peripheral and intrahepatic compartments 

is perhaps unexpected.  Previous studies have demonstrated that the intrahepatic lymphocyte 

compartment is enriched in cells that bear a more advanced cell-surface phenotype [418, 422].  

Heydtmann et al demonstrated that there was almost a complete absence of naive T-cells within the 

intrahepatic compartment [418].  However, I measured the telomere length of CD45RO+ CD8+ and 

CD4+ lymphocytes.  This allowed correction for the different proportions of lymphocyte subsets in 

the two compartments.   Therefore, despite enrichment of mature cells within the liver there was no 

preferential shortening of telomere length in antigen-experienced lymphocytes attendant with liver 

infiltration. 

Unexpectedly, non viraemic HCV-exposed cases, a group described variously as resolved, cleared or 

occult infection [25, 56, 423], had very short CD8+CD45RO+ telomeres, equivalent to around 20-

years additional ageing.   These ‘patients’ are considered to have had a successful immune response 

to HCV at exposure with an excellent long term outcome.  However, a small proportion become 

viraemic with extended follow up and a significant proportion have intrahepatic inflammation 

consistent with latent viral replication (Hoare et al [424] & chapter five), while other studies suggest 

that some have low level viral replication [55, 425].  The changes demonstrated in this series suggest 

that either this group had a sudden decline in CD8+ telomere length at exposure to HCV (which 
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seems unlikely given that most episodes of acute HCV are asymptomatic and unlikely to involve 

massive lymphocyte turnover and cytokine release) or that there is chronic low grade lymphocyte 

turnover related to successful immune control of HCV, particularly in CD8+ T-cells, or that 

lymphocytes may become senescent consequent to long term antigenic exposure.  Shortened T-

lymphocyte telomeres, rather than specific subset decline, to the degree seen in the non-viraemic 

HCV exposed cases in this series has been associated with a considerable increase in morbidity and 

mortality from infections, vascular disease and cancer in studies outside the field of hepatology [285, 

388, 389, 426].  There are no published studies of the long-term natural history of non-viraemic HCV 

infection and it is unclear if this group suffer an increased risk of premature mortality. 



Lymphocyte senescence and Hepatitis C 
 

 123     

Chapter 4 - Short T-lymphocyte telomere length compromises 

sustained virological response with pegylated interferon-α and 

ribavirin in chronic hepatitis C virus infection. 

Abstract 

Background: Ageing is associated with impaired immunity and features of immune senescence, 

including shortened lymphocyte telomeres. In patients with chronic HCV increasing age is associated 

with higher fibrosis stage and a failure to respond to antiviral therapy. There are strong correlations 

between measures of clinical outcome and lymphocyte telomere length in chronic HCV infection, 

suggesting accelerated immune senescence in chronic HCV infection.  In this study I assessed 

whether immune senescence was also related to the response to antiviral therapy in chronic HCV.  

Methods: Telomere length was measured before, during and on completion of antiviral therapy for 

HCV infection in peripheral CD8+ and CD4+ T-cells from 85 patients (75% male, 45% genotype 1, 

mean Ishak fibrosis stage 3.6) by Flow-FISH. Patients were followed for 6 months after completion of 

treatment. Results were analysed by multiple logistic regression (LR); age, sex, Ishak fibrosis stage, 

viral genotype, viral load, BMI, CD8+CD45RO+ and CD4+CD45RO+ telomere length were input 

variables.  

Results: Baseline median (IQR) CD8+CD45RO+ (128.1 (113.4 - 142.3) and CD4+CD45RO+ (119.0 

(107.8 - 126.8) telomere lengths were longer in the 38 patients (44.7%) who achieved SVR than 

those who did not (112.5 (104.5 - 118.2)(p = 0.0006) and 105.5 (99.4 - 114.2)(p = 0.0003) 

respectively. CD8+CD45RO+ and CD4+CD45RO+ telomere lengths were unaffected by therapy. 

By univariate LR viral load (p = 0.02), CD4+CD45RO+ telomere length (p = 0.1) and severe fibrosis (p = 

0.08) were associated with SVR; in this model age (p = 0.4), male sex (p = 0.47), genotype (p = 0.17), 

BMI (p = 0.93) and CD8+CD45RO+ telomere length (p = 0.76) were not associated with SVR.  
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Utilising ‘backwards stepwise regression’ to remove non-significant variables viral load (p = 0.02) and 

CD4+CD45RO+ telomere length (p = 0.001) were associated independently with SVR. Each single 

point increase in CD4+CD45RO+ telomere length was associated with an OR of achieving SVR of 1.08 

(95% CI: 1.03 – 1.13). 

Conclusion: Short CD4+CD45RO+ T-lymphocyte telomere length predicted a failure to respond to 

antiviral therapy for HCV infection, independent of other known factors.  
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Introduction 

Pegylated interferon-α (peg-IFN-α) in combination with ribavirin (RBV) is the most effective available 

therapy for viraemic HCV infection; both the duration of therapy and the response rate are related 

to HCV genotype.  Permanent loss of HCV-RNA from serum following therapy is reported in around 

40% of those with genotype 1 infection and 75% in genotypes 2 & 3, but responses are lower in 

those with more advanced disease [6, 19]. 

Increased age at exposure is a critical determinant of outcome following infection with HCV in terms 

of progressive fibrosis, the risk of hepatocellular carcinoma and the probability of responding to 

combination antiviral therapy [6, 142, 144, 419, 420, 427].  Healthy human ageing is associated with 

a progressive impairment of immune performance and shortened telomere length.  The extent of 

such changes are clearly important since they predict clinical outcomes, including mortality, in large 

scale prospective studies in man [353, 355, 357]. 

Telomeres shorten naturally with increasing age.  Studies in diverse clinical scenarios indicate that 

telomere length predicts outcome including mortality [388-390].  In patients with chronic HCV 

infection T-lymphocyte telomere length is related to clinical outcome; it is correlated with hepatic 

fibrosis stage and those with severe fibrosis and shorter CD4+CD45RO+ telomeres are more likely to 

develop hepatic decompensation, hepatocellular carcinoma and death (See chapter three).  Based 

on telomere length T-cells from patients with chronic HCV infection are around 10 years older than 

their chronological age. 

Successful therapy with peg-IFN-α in combination with RBV is associated with loss of HCV-RNA for at 

six months after cessation of treatment; this appears permanent in many cases [428, 429].  The 

mode of action however, is unknown.  One hypothesis is that therapy enhances immune responses 

generally, which might underlie the onset of autoimmune disorders during combination antiviral 

therapy.   
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I have investigated first whether T-lymphocyte telomere length was related to treatment response 

after pegylated IFN-α in combination with RBV and second, whether treatment, successful or 

otherwise, was associated with a change in telomere length. 

Materials and methods 

Subjects 

Patients recruited at Addenbrooke’s Hospital, Cambridge gave written informed consent with 

approval of the Local Research Ethics Committee.  Patients co-infected with human 

immunodeficiency virus or hepatitis B virus were excluded.  Those patients with liver disease of 

mixed aetiology (based on history, blood tests or liver biopsy) were also excluded.  All the patients 

underwent liver biopsy within 24 months of starting treatment; all were HCV-antibody positive and 

were also HCV-RNA positive in serum on at least three occasions.  None had undergone previous 

antiviral therapy.  None had hepatocellular carcinoma.   

Telomere length was measured immediately before treatment in all cases and after 4, 12 and 24 

weeks therapy in a randomly selected subgroup of the whole cohort.  Patients were treated with 

peg-IFN-α2a and RBV (Roche, Welwyn Garden City, UK).  To begin with, all patients received 180mcg 

of peg-IFN-α2a sub-cutaneously once weekly, with subsequent dose-alterations dictated by clinical 

and laboratory parameters.  RBV was given at 800mg for those with genotype 2 or 3 infection and 

weight-based between 1000mg - 1200mg for those with genotype 1 or 4 infection.  Patients with 

genotype 1 or 4 infection were treated for 12 weeks and then for a further 36 weeks if they were 

HCV-RNA negative or had undergone a 2 log10 drop in viral load compared to baseline (early 

virological response (EVR)).  Those with genotype 2 or 3 infection were treated for 24 weeks.  All 

subjects underwent HCV RNA testing six months after cessation of therapy to determine if they had 

achieved a sustained virological response (SVR), as defined conventionally.  No patient received 
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growth factors to support haematological parameters.  Patients who were unable to tolerate 

therapy with peg-IFN-α and RBV on symptomatic grounds were excluded from further analysis. 

Statistics 

Lymphocyte telomere length within an individual is expressed as mean fluorescence intensity (MFI).  

Population data were subjected to non-parametric analysis conducted in Prism 5.0 for Windows 

(Graphpad, San Diego, CA).  Associative data were analysed by Spearman’s Rank correlation 

coefficient and telomere length over IFN-α therapy by repeated measures 2-way ANOVA. 

Multi-variate analyses were performed by Ms. Sarah Vowler, Centre for Applied Medical Statistics, 

Department of Public Health and Primary Care, University of Cambridge.  Multiple regression 

analysis was performed using SPSS 15.0 for Windows, with SVR as outcome.  Input variables were 

age, sex, CMV antibody status, HCV genotype, Ishak fibrosis score, body mass index (BMI) and either 

CD8+CD45RO+ or CD4CD45RO+ telomere length.  As Ishak fibrosis score is a non-linear variable, 

scores were grouped into categorical mild (Ishak 0 – 3) and severe (Ishak 4 – 6) groups.  Only 

variables with a p value of <0.10 on univariate analysis were subjected to multiple regression 

analysis.  P values of <0.05 were considered significant. 

Results 

Peripheral blood lymphocytes were obtained from 91 patients immediately prior to commencing 

antiviral therapy.  6 patients subsequently failed to complete the course of IFN / RBV therapy 

because of intolerable symptoms and were excluded from further analysis.  The remaining 85 

patients underwent a full course of anti-viral therapy and were followed-up to 6 months after 

cessation of therapy.  The demographic characteristics are detailed in Table 7. 
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Whole cohort 

Did not achieve 
SVR 

Achieved SVR P value 

N 85 47 38  

Age (years, mean ± SD) 52.3 ± 8.8 55.0 ± 8.9 49.7 ± 7.6 0.01 

Sex (% male) 75.3% 72.3% 78.9% 0.481 

BMI 26.6 ± 5.3 27.5 ± 5.7 25.5 ± 4.5 0.12 

Bilirubin (µmol/L, mean ± SD) 12.3 ± 6.6 12.2 ± 6.1 11.5 ± 6.8 0.34 

ALT (iu/L, mean ± SD) 113.2 ± 81.9 112.7 ± 83.2 117.1 ± 85.7 0.96 

PT (seconds, mean ± SD) 13.2 ± 1.4 13.2 ± 1.1 13.2 ± 1.7 0.41 

Genotype 1 

2 

3 

4 

45.9% 

11.8% 

41.2% 

1.1% 

53.2% 

10.6% 

36.2% 

0% 

36.8% 

13.2% 

47.4% 

2.6% 

0.361 

Viral Load (iu/ml) (mean ± SD) 
1.35 x 106 ± 
6.99 x 106 

2.31 x 106 ± 
9.34 x 106 

1.67 x 105 ± 
2.54 x 105 

0.003 

% CMV antibody positive 51.0% 51.1% 50.0% 0.771 

Ishak score     

Interface hepatitis (0 - 4) 1.8 ± 0.6 1.7 ± 0.5 1.8 ± 0.7 0.61 

Confluent necrosis (0 - 6) 0.1 ± 0.2 0.1 ± 0.3 0.0 ± 0.2 0.31 

Lobular hepatitis (0 - 4) 2.2 ± 0.6 1.0 ± 0.5 2.3 ± 0.6 0.08 

Portal inflammation (0 - 4) 2.2 ± 0.6 2.2 ± 0.6 2.2 ± 0.6 0.86 

Fibrosis (0 - 6) 3.6 ± 1.5 3.9 ± 1.4 3.4 ± 1.5 0.09 

Steatosis (0 - 3) 0.8 ± 0.8 1.0 ± 0.8 0.6 ± 0.8 0.02 

Table 7.  Demographic characteristics of study participants.  Achieved SVR vs did not achieve SVR, 
Mann-Whitney U test unless otherwise stated. 1Chi-squared test. 

Baseline T-lymphocyte telomere length and clinical parameters (Figure 38)  

There was a significant inverse correlation between age and T-cell telomere length for both 

CD8+CD45RO+ and CD4+CD45RO+ subsets at commencement of therapy as anticipated (Figure 38 A, 

B) and described previously (see chapter three).  There was also a significant inverse correlation 
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between CD4+CD45RO+ telomere length and fibrosis stage, but not CD8+CD45RO+ telomere length 

and fibrosis (Figure 38 C, D).  However, there was no relation between CD8+CD45RO+ or 

CD4+CD45RO+ telomere length and viral load Rs = -0.03, p = 0.77 and Rs = -0.005, p = 0.96 

respectively).  Nor was there a relation between CD8+CD45RO+ or CD4+CD45RO+ telomere length 

and genotype (Figure 38 G, H). 
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Figure 38.  Baseline T-lymphocyte telomere length, expressed as mean fluorescence intensity, in 
(A, C & E) CD8+CD45RO+ and (B, D & F) CD4+CD45RO+ subsets and relationship to age (A & B), 
Ishak fibrosis score (C & D), viral load (iu/ml) (E & F) and genotype (G & H, genotype 4 (n = 1) not 
shown) in viraemic HCV infection (n = 85). Analysis by Spearman’s Rank correlation and Kruskal-
Wallis test. 

Baseline T-lymphocyte telomere length was unrelated to early virological response 

(EVR) (Figure 39) 

45 individuals with genotype 1 or 4 HCV infection were followed to 12 weeks of treatment, at which 

point 29 were HCV-RNA negative (64.4%), 6 individuals (13.3%) had undergone a 2 log10 drop in viral 

load and 10 (22.2%) remained HCV-RNA positive.  There was no evidence of a difference in 

CD8+CD45RO+ lymphocyte telomere length in the three groups (median (IQR)): 118.8 (109.7 - 

140.2), 115.9 (105.7 - 128.8) and 110.2 (97.8 - 117.0) respectively (Kruskal-Wallis, p = 0.12); nor was 

there evidence of a difference in CD4+CD45RO+ lymphocyte telomere length in the three groups: 

115.0 (99.3 - 120.6); 102.8 (97.17 - 115.7); 103.8 (99.9 - 106.1) respectively (p = 0.07).  All individuals 

who underwent a greater than 2 log10 drop in viral load but remained viraemic, subsequently failed 

to achieve SVR. 

 

Figure 39.  Baseline T-lymphocyte telomere length in (A) CD8+CD45RO+ and (B) CD4+CD45RO+ 
subsets in relation to EVR in subjects with genotype 1 or 4 HCV infection (n = 45).  Subjects were 
divided by HCV-RNA status after 12 weeks peg-IFN-α/RBV therapy.  Analysis by Kruskal Wallis test. 
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Baseline T-lymphocyte telomere length was related to SVR (Figure 40 and Table 8) 

85 individuals provided samples 6 months after the end of treatment.  38 subjects (44.7%) achieved 

SVR; the remaining 47 (55.3%) were HCV-RNA positive.  CD8+CD45RO+ telomere length at baseline 

was significantly longer in those individuals achieving SVR compared to those who did not: 128.1 

(113.4 - 142.3) and 112.5 (104.5  - 118.2) respectively (Mann Whitney, p = 0.0006).   

Similarly, CD4+CD45RO+ lymphocyte telomere length was longer in those individuals achieving SVR 

compared to those who remained viraemic: 119.0 (107.8 - 126.8) and 105.5 (99.4 - 114.2) 

respectively (p = 0.0003).   

 

Figure 40.  Baseline T-lymphocyte telomere length in (A & C) CD8+CD45RO+ and (B & D) 
CD4+CD45RO+ subsets in relation to SVR (n = 85) following peg-IFN-α/RBV.  ROC curves showing 

CD8+CD45RO+

RNA -ve RNA +ve
50

100

150

200

SVR

T
e
lo

m
e
re

 M
F

I

CD4+CD45RO+

RNA -ve RNA +ve
50

100

150

200

SVR

T
e
lo

m
e
re

 M
F

I
A B

0 20 40 60 80 100
0

20

40

60

80

100

AUROC = 0.72, p = 0.0005

1 - Specificity (%)

S
e
n

s
it

iv
it

y
 (

%
)

0 20 40 60 80 100
0

20

40

60

80

100

AUROC = 0.73, p = 0.0003

1 - Specificity (%)

S
e
n

s
it

iv
it

y
 (

%
)

C D



Lymphocyte senescence and Hepatitis C 
 

 133     

the sensitivity and specificity of different telomere lengths for prediction of SVR by (C) 
CD8+CD45RO+ telomere length or (D) CD4+CD45RO+ telomere length. 

To investigate whether baseline T-lymphocyte telomere length predicted SVR independent of other 

factors known to be associated with treatment success, a multi-variate model was constructed.  

Input variables included age, sex, HCV viral load, HCV genotype, Ishak fibrosis score, body mass index 

(BMI) and either CD8+CD45RO+ or CD4CD45RO+ telomere length.  The outcome measure was SVR. 

By logistic regression viral load (p = 0.02) and CD8+CD45RO+ telomere length (p = 0.01) were 

associated with SVR on univariate analysis; in this model age (p = 0.19), male sex (p = 0.51), presence 

of severe fibrosis (p = 0.11), genotype (p = 0.18) and BMI (p = 0.94) were not associated with SVR.  

Utilising backwards stepwise regression to remove non-significant variables age (p = 0.048), viral 

load (p = 0.02) and CD8+CD45RO+ telomere length (p = 0.007) were independently associated with 

achievement of SVR. 

 The telomere length of CD4+CD45RO+ lymphocytes (p = 0.006) and viral load (p = 0.02) were 

associated with SVR on univariate analysis; in this model age (p = 0.37), male sex (p = 0.48), presence 

of severe fibrosis (p = 0.07) genotype (p = 0.19) and BMI (p = 0.89) were not associated with SVR.  

Utilising backwards stepwise regression to remove non-significant variables viral load (p = 0.02) and 

CD4+CD45RO+ telomere length (p = 0.001) were independently associated with achievement of SVR. 

For each one point increase in telomere MFI the odds ratio of achieving SVR was 1.05 (95% CI, 1.01 - 

1.08) and 1.08 (1.03 - 1.13) in the CD8+CD45RO+ and CD4+CD45RO+ lymphocyte subsets 

respectively. 

To investigate the sensitivity and specificity of different telomere lengths to discriminate between 

successful and unsuccessful anti-viral therapy, receiver-operator characteristic (ROC) curves were 

constructed (Figure 40 C, D).  The area under the ROC curve for CD8+CD45RO+ telomere length was 

0.72 (p = 0.0005) and 0.73 (p = 0.0003) for CD4+CD45RO+ telomere length.  In comparison, viral 
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load, the only other variable consistently associated with SVR through multiple regression analysis 

had an area under the ROC curve of 0.70 (p = 0.001). 
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A. Predictors of SVR by logistic regression and backward LR stepwise regression including CD8+CD45RO+ telomere length 

Logistic regression Backward LR stepwise regression 

Variable Comparison Wald DF OR (95% CI) p Comparison Wald DF OR (95% CI) p 

Age - 1.76 1 0.95 (0.88, 1.03) 0.19 - 3.92 1 0.94 (0.88, 0.99) 0.048 

Sex Male vs. female 0.44 1 1.61 (0.39, 6.67) 0.51      

Fibrosis Severe vs. Mild 2.55 1 0.23 (0.04, 1.40) 0.11      

Genotype 2/3 vs. 1/4 1.80 1 0.47 (0.16, 1.42) 0.18      

Viral load - 5.13 1 1.00 (1.00, 1.00) 0.02 - 5.35 1 1.00 (1.00, 1.00) 0.02 

BMI - 0.005 1 1.00 (0.89, 1.13) 0.94      

CD8+45RO+telomere 
MFI 

- 6.29 1 1.04 (1.01, 1.08) 0.01 - 7.20 1 1.05 (1.01, 1.08) 0.007 

 

B. Predictors of SVR by logistic regression and backward LR stepwise regression including CD4+CD45RO+ telomere length 

Logistic regression Backward LR stepwise regression 

Variable Comparison Wald DF OR (95% CI) p Comparison Wald DF OR (95% CI) p 

Age - 0.79 1 0.96 (0.89, 1.05) 0.37      

Sex Male vs. female 0.50 1 1.70 (0.39, 7.45) 0.48      

Fibrosis Severe vs. Mild 3.38 1 0.17 (0.03, 1.13) 0.07      

Genotype 2/3 vs. 1/4 1.75 1 0.47 (0.15, 1.45) 0.19      

Viral load - 5.86 1 1.00 (1.00, 1.00) 0.02 - 5.45 1 1.00 (1.00, 1.00) 0.02 

BMI - 0.02 1 0.99 (0.88, 1.12) 0.89      

CD4+45RO+telomere 
MFI 

- 7.51 1 1.07 (1.02, 1.12) 0.006 - 11.23 1 1.08 (1.03, 1.13) 0.001 

Table 8.  Predictors of SVR by multiple logistic regression analysis.  Input variables were age, gender, fibrosis group (mild (0 – 3), severe (4 – 6)), viral 
genotype (2 & 3 vs 1 & 4), viral load, BMI and CD8+CD45RO+ lymphocyte telomere length (Panel A) or  CD4+CD45RO+ lymphocyte telomere length 
(Panel B).  Non-significant variables were removed by backward stepwise regression.   
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A single multiple linear regression model was constructed utilising both CD8+CD45RO+ and 

CD4+CD45RO+ telomere length in addition to age, sex, fibrosis stage, viral genotype, viral load and 

BMI.  By univariate LR viral load (p = 0.02), CD4+CD45RO+ telomere length (p = 0.1) and severe 

fibrosis (p = 0.08) were associated with SVR; in this model age (p = 0.4), male sex (p = 0.47), 

genotype (p = 0.17), BMI (p = 0.93) and CD8+CD45RO+ telomere length (p = 0.76) were not 

associated with SVR.  

The only variables significantly and independently associated with SVR were viral load (p = 0.02) and 

CD4+CD45RO+ telomere length (p = 0.001) (Table 9).  In this model CD8+CD45RO+ telomere length 

was not independently associated with SVR (p = 0.76) and therefore may derive predictive weight in 

the previous model from its significant association with CD4+CD45RO+ telomere length. 

Backward LR stepwise regression 

Variable Comparison Wald DF OR (95% CI) p 

Viral load - 5.58 1 1.00 (1.00, 1.00) 0.02 

CD4+45RO+ 
telomere MFI 

- 11.28 1 1.08 (1.03, 1.13) 0.001 

Table 9.  Predictors of SVR by multiple logistic regression analysis.  Input variables were as for 
Table 8, but included both CD8+CD45RO+ and CD4+CD45RO+ telomere length.  Only multiple 
logistic regression results are shown. 

 

T-lymphocyte telomere length does not change during IFN-α therapy (Figure 41) 

CD8+CD45RO+ and CD4+CD45RO+ telomere lengths were measured at baseline and after 4, 12 and 

24 weeks treatment in a subgroup of 16 subjects who failed ultimately to respond to antiviral 

therapy (remained viraemic) and 18 subjects who achieved SVR to ascertain whether telomere 

length changed during antiviral therapy.  Results were analysed by 2-way ANOVA with duration of 

treatment and treatment outcome as variables.  There was no relation between duration of 

treatment and telomere length in either CD8+CD45RO+ (p=0.26) or CD4+CD45RO+ lymphocyte 

subsets (p=0.49). 



Lymphocyte senescence and Hepatitis C 
 

 137     

 

Figure 41. T-lymphocyte telomere length in (A) CD8+CD45RO+ and (B) CD4+CD45RO+ subsets in 
relation to subsequent RNA status at SVR and time after starting peg-IFN-α/RBV.  Telomere length 
was analysed on 4 occasions (baseline, week 4, week 12 and week 24) only in those cases that 
remained on therapy.  16 individuals failed treatment and were viraemic 6 months after therapy 
(dashed grey symbols and bars) while 18 subjects achieved SVR (black symbols and bars).  Symbols 
and whiskers represent the median and interquartile ranges.  
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Discussion 

Prospective study revealed that CD4+CD45RO+ lymphocyte telomere length predicted response to 

antiviral therapy in chronic HCV infection; through multi-variate analysis, this was found to be 

independent of other known predictors of SVR.  Previous studies have repeatedly demonstrated the 

importance of age, sex, HCV genotype, BMI and hepatic fibrosis as predictors of response to. 

antiviral therapy [19, 419, 430] 

In chapter three lymphocyte telomere length was associated with a number of clinical, biochemical, 

and histological features of chronic HCV infection.  These data extend these findings and 

demonstrate that CD4 T-lymphocyte telomere length is not only associated with clinical outcome of 

chronic HCV infection, but also treatment outcome. 

Other groups have demonstrated the importance of age as a prognostic factor in both clinical [142, 

144] and treatment-related [419, 420, 427] outcome in HCV infection.  Hayashi identified 39 years of 

age as a critical point whereby older patients had a significantly lower likelihood of responding to 

IFN-α based therapy for HCV [427].  Elefsiniotis et al investigated the interaction of age with other 

known predictors of successful treatment outcome [420].  For younger patients viral genotype was 

the best predictive pre-treatment factor, whereas for subjects older than 55 years, fibrosis stage was 

more important.  They found that with increasing age the factors most useful in identifying 

treatment outcome changed.  However, there have been few studies linking the biology of ageing or 

accelerated ageing with this effect. 

Oligoclonality of the peripheral lymphocyte compartment has been associated with premature 

ageing of the immune system and poor outcome [410].  Manfras et al utilised Vβ-spectratyping to 

demonstrate that increased oligoclonality of the peripheral lymphocyte compartment was 

associated with poor response to IFN-α therapy in chronic HCV [399].  They also demonstrated that 
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those individuals with large populations of CD8+ lymphocytes bearing the terminally differentiated 

phenotype of CD28-CD57+ had significantly lower response rates to antiviral therapy [399].  

Further studies have demonstrated the importance of lymphocyte exhaustion or senescence in 

predicting responses to antiviral therapy in chronic HCV.  Golden-Mason et al have recently 

demonstrated that chronic HCV infection is associated with increased programmed-death 1 (PD-1) 

expression on total peripheral CD8+ and CD4+ T-cells [431].  Further, increased levels of PD-1 

expression on HCV-specific CD8+ cells was associated with a failure to achieve SVR in African-

Americans [431].  Penna et al have extended these findings to demonstrated that the low 

proliferative ability and poor cytotoxic potential of HCV-specific CD8+ cells can be reversed through 

the blockade of the PD-1 / PD-L1 system [80]. 

Many groups have demonstrated that HCV-specific CD8+ cells have an ‘early’ phenotype when 

compared to cells specific for other chronic viral infections [63, 64, 409].  Further, it has been 

demonstrated that despite this phenotype, the cells display the functional behaviour of exhaustion 

or senescence depending on the interpretation [35, 64, 80, 422].  Little attention has focused on the 

effect of chronic HCV infection upon the total lymphocyte compartment.  Lucas et al demonstrated 

that HCV infection had an apparent retarding effect upon the differentiation phenotype of CMV-

specific CD8+ cells in HCV [64].  

Despite the significance of the association to successful treatment outcome it is unlikely that CD4+ T-

lymphocyte telomere length by itself imparts prognostic information for a given individual.  

Lymphocytic telomere length varies with a number of variables including age, sex, CMV status [285, 

357, 386], chronic inflammation or infection [432].  The degree of overlap between those who 

achieve and do not achieve SVR was large, suggesting that single point values by themselves will not 

develop into a clinically significant tool.  The integration of lymphocyte telomere length into existing 

panels of fibrosis markers or into algorithms incorporating known prognostic variables would 



Lymphocyte senescence and Hepatitis C 
 

 140     

certainly be more feasible, but would require careful work to establish telomere lengths in local 

populations. 

These results demonstrate that there is no change of global telomere length in subjects treated with 

antiviral therapy during the first 6 months of therapy.  Obviously there may be extensive 

proliferation within the HCV-specific T-cell population, which would remain undetected.  Previous 

work has demonstrated that IFN-α is a potent inhibitor of telomerase [356, 373], the enzyme which 

protects telomeres and can lead to their elongation in certain circumstances.  On the flip side, IFN- α 

promotes the survival of T-cells and prevents activation induced cell death [433]. 

Without intervention, telomere length usually changes very slowly [285].  Therefore, it is perhaps 

not surprising that global telomere length changes could not be demonstrated.  I do not believe that 

extending the surveillance period would have helped.  Previous groups have demonstrated that IFN-

α therapy leads to an up-regulation of T-cell reactivity and proliferation within the first 8 weeks of 

therapy [434].  Barnes et al demonstrated that increased HCV-specific T-cell proliferative responses 

were only sustained whilst the patient was on IFN-α therapy and were not sustained after cessation 

[408]. 

It was important to establish whether lymphocyte telomere lengths changed commensurate with a 

change in HCV RNA status.  Earlier data (see chapter three) demonstrated that individuals who were 

HCV RNA negative spontaneously had very short CD8+ T cell telomeres.  Patients rendered HCV RNA 

negative with antiviral therapy did not exhibit shortening of CD8+ T cell telomeres, suggesting that 

the previously demonstrated telomere length changes in the non-viraemic cohort may not have 

occurred at the time of viral clearance. 
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Chapter 5 - Histological changes in HCV antibody positive, HCV RNA 

negative subjects suggest persistent virus infection. 

Abstract 

Background:  It is unclear whether HCV has been eradicated or persists at low level in HCV-antibody 

positive HCV-RNA negative individuals; the natural history and liver histology are not well 

characterised. 

Methods:  172 HCV-antibody positive, serum HCV-RNA negative patients underwent diagnostic liver 

biopsy between 1992 and 2000 and were followed a median 7-years (range 5-12).  Patients with any 

possible cause of liver injury other than HCV were excluded.  A single histopathologist scored 

sections using Ishak criteria. Characterisation of the inflammatory infiltrate in selected cases used a 

novel semi-quantitative technique and compared with HCV-RNA positive patients and healthy 

controls. 

Results:  102 patients were excluded because of a risk factor for liver injury other than HCV.  70 

patients met study criteria; 4 (5.7%) became HCV-RNA positive during follow-up.  66 cases remained 

HCV-RNA negative; 5 (7.5%) had a normal liver biopsy; 54 (82%) had fibrosis (stage 2 or 3 in 16 

(24%)). Non-viraemic cases revealed expanded portal tracts (p < 0.05), with fewer CD4+ (p < 0.05) 

and more CD8+ cells (p < 0.05) than healthy controls, but were indistinguishable from HCV-RNA 

positive cases for these parameters.  Lobular CD4 staining, absent in healthy controls, was noted in 

both HCV-RNA negative and positive cases and was more marked in the latter (p < 0.05) with a 

sinusoidal lining cell distribution. 

Conclusions:  Non-viraemic HCV-antibody positive patients have a liver biopsy that is usually 

abnormal.  Fibrosis was present in most with similar inflammatory infiltrate to viraemic cases. The 
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presence of a CD8+ rich inflammatory infiltrate suggests an ongoing immune response in the liver, 

supporting the view that HCV may persist in the liver in the majority of HCV-RNA negative cases. 

Introduction 

Hepatitis C virus (HCV) infection has a prevalence of 0.5% to 2% in Western countries, with sustained 

viraemia in 50 - 90% of exposed individuals [132].  Between 5 and 20% of those with viraemia 

develop cirrhosis eventually [134, 139] and are then at risk of chronic hepatic failure and 

hepatocellular carcinoma (HCC).  The gold-standard for investigation of HCV-related disease remains 

liver biopsy.  Sequential liver biopsies demonstrate progressive liver fibrosis in more than 50% of 

subjects with chronic viraemia [134, 177, 435]. 

A number of studies describe the association of strong peripheral T-cell responses with resolution of 

viraemia immediately after acute HCV infection [25, 113, 423], which contrasts with the weak, 

narrow T-cell response in viraemic HCV carriers [24, 436].  There have been fewer studies of the 

intrahepatic lymphocyte compartment in individuals long after spontaneous resolution of viraemia.  

There has been resurgent interest in this particular group following the demonstration of 

intrahepatic negative strand HCV-RNA, suggesting continued viral replication [55], leading to the 

suggestion that such patients have occult or alternatively, low level HCV replication [56], but the 

effect of immune responses on viral turnover is uncertain. 

The natural history of HCV infected patients without viraemia is believed to be excellent but is less 

well characterised and histological abnormalities have been described in only a limited number of 

studies [52].  A proportion of non-viraemic HCV subjects continue to be identified in screening 

programmes, but at present their optimal management remains undefined.  Until 2000 the practice 

in this centre was to offer full clinical assessment including liver biopsy, due to uncertainty of the 

natural history of non-viraemic subjects. 
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In this series the liver biopsy features in a cohort of HCV antibody positive, HCV-RNA negative 

patients followed in a single centre for at least 5 years are described.  Other causes of liver injury 

had been excluded carefully and the recognition that hepatic inflammation was a common feature in 

such patients led to further study to characterise the infiltrate in a subset of cases.  Using 

immunohistochemistry I compared the inflammatory infiltrate in a subset of HCV antibody positive, 

viraemic and non-viraemic subjects and healthy controls. 

Patients and methods 

A retrospective analysis of patients known to remain HCV antibody positive but persistently HCV-

RNA negative (non-viraemic) that had undergone percutaneous liver biopsy in our centre between 

July 1992 and December 2000.  During this period all patients who were anti-HCV antibody positive 

were offered liver biopsy irrespective of RNA status. 

Case inclusion was defined strictly to ensure that exposure to HCV was the only recognised cause of 

liver injury.  All were HCV RNA negative at presentation, and none had undergone therapy with 

interferon.  Patients that consumed more than the recommended amount of alcohol per week 

(>21U per week in men and >14U per week in females) were excluded.  Patients infected with 

Human Immunodeficiency virus (HIV) or Hepatitis B virus (HBV) and those with other recognised 

causes of chronic liver disease identified on blood tests or liver biopsy were also excluded.  Thus, all 

had a body mass index < 30 without risk factors for insulin resistance; were negative for anti-

mitochondrial, anti-nuclear and anti–smooth muscle antibodies with normal serum 

immunoglobulins; had no evidence of iron overload; had normal serum α1-antitrypsin, copper and 

caeruloplasmin levels.  Patients were analysed according to age, sex and risk factors for acquisition. 

All study patients were followed for a minimum of 5 years (median 7 years, range up to 12) with 

annual clinical assessment supported by laboratory tests including liver function tests, HCV antibody 

and HCV-RNA. 
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The study was carried out with the approval of the Local Research Ethics Committee.  

PCR for HCV-RNA  

Prior to 2003, a nested blocked based reverse transcriptase-PCR assay was used to detect HCV-RNA. 

After 2003, HCV-RNA was sought using a real-time taqman PCR assay, targeting the conserved 5’ 

non-coding region of the HCV genome and carried out on a Rotor-gene™ 3000 instrument (Corbett 

Lifescience, Sydney, Australia).  Through previous internal audit at the Department of Virology the 

detection limit of the nested reverse transcriptase PCR assay was not significantly different to the 

later real-time assay (data not shown).  Patients were only included in this study if a minimum of 5 

(up to 12) separate tests at 12 month intervals had failed to detect HCV-RNA. 

Routine liver histology 

To further characterise the inflammation that was demonstrated at routine histology, the 

inflammatory infiltrate was investigated by immunohistochemistry in a subgroup of cases.  A group 

of 12 non-viraemic patients selected randomly from the original cohort with portal or lobular 

inflammation between Ishak 1 and 3, was compared with a group of 13 viraemic patients and 18 

controls.  Liver tissue from viraemic HCV subjects (n = 13) was matched carefully for age, fibrosis 

stage and inflammation grade with the non-viraemic patients; these patients also met the strict 

entry criteria for the study group, except for the presence of HCV-RNA in serum and served as a 

comparison group.  The age and biopsy features of the 2 groups were the same except for increased 

interface activity in the viraemic cohort (Table 11). 

Eighteen liver biopsy specimens assessed as within normal histological limits by a specialist liver 

histopathologist (Dr Susan Davies, Department of Histopathology, Addenbrooke’s Hospital, 

Cambridge) served as controls.  In particular there was no increase in the portal cell infiltrate.  The 

clinical indication for liver biopsy in that group was investigation of asymptomatic abnormal liver 

enzymes.  All were negative for HCV antibody; negative for hepatitis B virus surface antigen; had a 
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body mass index < 30 without risk factors for insulin resistance; were negative for anti-

mitochondrial, anti-nuclear and anti–smooth muscle antibodies with normal serum 

immunoglobulins; had no evidence of iron overload; had normal serum α1-antitrypsin, copper and 

caeruloplasmin levels.   

Statistics 

Immunohistochemistry results were analysed using Prism 5.0 for Windows (Graphpad, San Diego, 

CA).  Multiple groups were analysed with the Kruskal-Wallis test followed by Dunn's Multiple 

Comparison Test.  Biopsy Ishak scores were analysed with Mann-Whitney U test.  A p value < 0.05 

was regarded as significant. 

Results 

Patients 

172 subjects positive for HCV antibody but without HCV-RNA in serum (by PCR) underwent liver 

biopsy in our centre between 1992 and 2000.  102 subjects were excluded from the study because of 

evidence of a further risk factor for liver injury other than HCV exposure.  Current or previous 

excessive alcohol intake, risk factors for insulin resistance and concomitant liver disease, including 

steatohepatitis, accounted for the majority of those excluded.  The remaining 70 subjects were 

followed for a median of 7 years (range: 5 - 12).  All subjects retained anti-HCV antibody.  However, 

during prolonged follow-up, 9 of the 70 cases became HCV-RNA positive.  In 5 the result was positive 

on only one occasion and was determined subsequently to be a false positive reaction.  However, 4 

(5.7%) patients were confirmed repeatedly to be HCV-RNA positive and were excluded from further 

analysis.  Detection of HCV-RNA in these 4 cases was not associated with intercurrent illness, 

immune suppression, or further exposure to HCV as far as could be determined and may reflect 

either de novo infection or reactivation of previously quiescent HCV infection. 
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Thus, HCV exposure remained the only identified risk factor for liver injury in the remaining 66 

subjects, in accordance with the strict study criteria.  Demographic details are described in Table 10.  

Seven (10.6%) acquired HCV through contaminated blood products, 46 (69.7%) through injecting 

drug use (IDU) and in the remaining 13 (19.7%) the source of HCV infection was undetermined.  10 

subjects (15.2%) had ALT levels that were elevated at some time during the study period, but all 

other laboratory parameters including alkaline phosphatase, gamma GT, bilirubin and platelet 

counts were within the normal range consistently in all patients. 

Non-viraemic, HCV antibody positive 
(n = 66) 

Mean ± SD Range 

Age (years) 37.6 ± 8.6 21.2 - 65.7 

Male: Female (%) 41:25 (62%:38%)  

Follow-up (years) 7 5 - 12 

Number of HCV-RNA assays per subject 7 5 - 12 

ALT median (normal range) IU/L 31 (< 40) 
IQR: 22.25 – 38.75 

range 8 - 213 

Lobular activity (0 - 4) 0.82 ± 0.65 0 - 2 

Portal activity (0 - 4) 0.66 ± 0.60 0 - 2 

Fibrosis (0 - 6) 1.1 ± 0.73 0 - 3 

Interface activity (0 - 4) 0.11 ± 0.30 0 - 1 

Confluent necrosis (0 - 6) 0.05 ± 0.20 0 - 1 

Steatosis (0 - 3) 0.27 ± 0.57 0 - 3 

Table 10.  The demographic characteristics of 66 non-viraemic, HCV antibody positive subjects. 
IQR: interquartile range. 

 

Hepatic fibrosis and inflammation (Figure 42 and Figure 43) 

Only 5 of 66 (7.5%) patients had a normal liver biopsy; 54 of 66 (81.8%) patients had fibrosis. 

Stage 0 fibrosis was present in 12 of 66 patients studied (18.2%); these included 4 (33.3%) with grade 

1 portal tract inflammation and 5 (41.6%) with grade 1 lobular inflammation. 

Stage 1 fibrosis was present in 38 patients (57.6%); 63.2% and 7.9% had grade 1 or 2 portal tract 

inflammation respectively; 60.5% and 13.2% had grade 1 or 2 had lobular inflammation respectively; 

13.2% had grade 1 interface hepatitis. 
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Stage 2 or 3 fibrosis was present in 16 patients (24.24%); 93.7% had portal tract inflammation scored 

as grade 1 and 2 in 75% and 18.7% respectively; 81.3% had lobular inflammation scored as grade 1 

and 2 in 56.3% and 25% respectively; 18.8% had grade 1 interface hepatitis. 

 

Figure 42.  Fibrosis stage and inflammation grade in HCV antibody positive, HCV-RNA negative 
subjects (n = 66).  Panel A:  pie chart representation of fibrosis stage by modified Ishak criteria (0 - 
6). Panel B: Portal tract and panel C: lobular inflammation according to stage of fibrosis. 
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Figure 43.  Immunohistochemistry of the portal inflammatory infiltrate from a subject with anti-HCV antibody but negative for HCV-RNA.  Formalin-
fixed, paraffin-embedded tissue was stained for CD4 (A), CD8 (B), Mcm-2 (C) and perforin (D and inset).  Scale bars included in C (200µm) and inset 
(50µm).  Portal tracts are rich in CD3 positive cells (not shown), which are more often CD4 positive than CD8 positive.  These cells express Mcm-2 and 
perforin rarely. 
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Bile duct damage and steatohepatitis 

Neither bile duct damage nor steatohepatitis were observed.  Confluent necrosis was present in 3 

biopsies (4%), never exceeding grade 1 (0 - 6).  There was no histological evidence of covert alcohol 

consumption, consistent with the strict definition of the study group. 

The inflammatory infiltrate 

The inflammatory infiltrate was investigated further by immunohistochemistry in 12 non-viraemic 

subjects and compared with 2 control groups (see above): liver tissue from 13 viraemic HCV subjects 

matched with the non-viraemic HCV antibody positive group and 18 healthy controls.  The 

demographic and liver biopsy characteristics of the groups are detailed in Table 11. 

 RNA + RNA - 
Healthy 
controls 

Statistic p value 

 (n = 13) (n = 12) (n = 18)   

Age (years ± SD) 35.59 ± 11.75 38.83 ± 7.99 48.46 ± 15.70 Kruskal-Wallis 0.06 

Lobular activity  
(0 - 4) 

2.08 ± 0.29 1.75 ± 0.62 - 
Mann-Whitney 

U test 
0.11 

Portal activity  
(0 - 4) 

2.00 ± 0.60 1.83 ± 0.58 - " 0.49 

Fibrosis  
(0 - 6) 

1.75 ± 0.75 1.92 ± 1.24 - " 0.69 

Interface hepatitis  
(0 - 4) 

1.50 ± 0.5 0.83 ± 0.72 - " 0.03 

Steatosis  
(0 - 3) 

1.17 ± 0.94 0.58 ± 0.79 - " 0.11 

Table 11.  Demographic characteristics of subjects studied by immunohistochemistry: HCV 
antibody and HCV-RNA positive (n = 13); HCV antibody and HCV-RNA negative (n = 12) & healthy 
controls (n = 18).  Ages were compared with Kruskal-Wallis, while Ishak scores were compared 
using the Mann-Whitney U test. 

 

Portal tracts of non-viraemic HCV subjects have a CD8+ rich infiltrate 

The area of the portal tract was expanded in both groups with HCV infection when compared to 

healthy controls (p < 0.05; data not shown).  There was no difference in the portal tract area 

between the two groups of HCV exposed patients (whether positive or negative for HCV-RNA in 

serum) who had been matched (intentionally) for inflammation grade. 
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There were no significant differences between subjects and either control group regarding the area 

of the portal tract that expressed CD3 (Figure 44a). 

The area of the portal tract that expressed CD4 was lower in viraemic subjects with HCV when 

compared to healthy control subjects (p < 0.05, Figure 44b), but similar in both HCV exposed groups. 

The portal tract area that expressed CD8 was increased significantly in both viraemic and non-

viraemic HCV subjects when compared to healthy controls (p < 0.05 and p < 0.0001 respectively, 

Figure 44c) but similar in both HCV exposed groups.  However, the number of perforin positive 

cells/mm2 portal tract was similar in the three groups (p = 0.075, Figure 44d). 

 

Figure 44.  Characteristics of the portal tract infiltrate in subjects with non-viraemic HCV (n = 12), 
viraemic HCV (n = 13) and healthy controls (HC) (n = 18) stained for: A: CD3; B: CD4; C: CD8; D: 
perforin.  Results were analysed with Kruskal-Wallis test with Dunn’s multiple comparison test.  
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Reduced lobular CD3 and perforin expression in non-viraemic HCV subjects compared to 

healthy controls 

The proportion of the lobular area positive for CD3 in both viraemic and non-viraemic subjects was 

reduced compared to healthy control subjects (p = 0.0132, Figure 45a), but similar in both HCV 

exposed groups. 

There was an increase in the lobular area that expressed CD4 in viraemic subjects (median %, IQR) 

(2.13, 1.49 - 4.49) compared to both non-viraemic subjects (0.68%, 0.22 - 1.16, p < 0.05) and healthy 

controls (0.32%, 0.10 - 1.13, p < 0.05, Figure 45b).  However, review of the staining pattern for CD4 

in liver tissue revealed that most of the signal localised to sinusoidal lining cells, with the effect most 

marked in those with viraemia (Figure 46a); CD4 expression had a similar pattern but was less 

marked in non-viraemic cases (Figure 46b) and was rare in healthy controls.  CD4 lymphocytes were 

detected rarely in both study groups and when identified were sinusoidal. 

There were no differences between the 3 study groups in terms of the lobular area that expressed 

CD8 (p = 0.477, Figure 45c).  However, perforin expression was reduced in both viraemic and non-

viraemic HCV subjects compared to healthy controls, but similar in both HCV exposed groups (p = 

0.0314, Figure 45d). 
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Figure 45.  Characteristics of the lobular infiltrate in subjects with non-viraemic HCV (n = 12), 
viraemic HCV (n = 13) and healthy controls (HC) (n = 18).  Biopsies were stained for: A: CD3; B: CD4; 
C: CD8; D: perforin.  Results were analysed with Kruskal-Wallis test with Dunn’s multiple 
comparison test.  

 

Figure 46.  CD4 expression in liver.  (A): a subject with viraemia and (B): a non-viraemic subject.  
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lymphocytic expression in the portal tracts in both the viraemic and non-viraemic patients.  Scale 
bars (100µm). 

Portal tract lymphocytes in HCV infection are Mcm-2 negative independent of viraemia 

Portal tract cells in both viraemic and non-viraemic HCV subjects had minimal expression of mcm-2 

(Figure 43c); expression in both groups was reduced significantly compared to healthy controls (p = 

0.0004, Figure 47a). 

Increased lobular expression of Mcm-2 in viraemic and non-viraemic HCV subjects  

Non-viraemic subjects had significantly greater expression of Mcm-2 within lobular areas as 

compared to healthy control subjects (p = 0.0005, Figure 47b).  This was almost exclusively confined 

to hepatocytes and infiltrating inflammatory cells were always negative.  There were no differences 

between the hepatocyte expression of Mcm-2 between viraemic and non-viraemic HCV positive 

subjects, as described previously [344]. 

 

Figure 47.  Proliferative activity of the inflammatory infiltrate by MCM-2 expression.  (A): Mcm-2 
expression within portal tracts and (B): Mcm-2 expression within hepatic lobules in non-viraemic 
subjects (n = 12), viraemic HCV (n = 13) and healthy controls (n = 18).  Results were analysed with 
Kruskal-Wallis test with Dunn’s multiple comparison test. 
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well established.  However, the clinical status of the minority without viraemia after exposure to 

HCV is less clear.  It is uncertain whether this group has resolved infection, with or without long term 

immunity and protection from further exposure to HCV or alternatively, low level viral replication, 

where HCV-RNA can only be detected within the liver [54, 55].   Neither the natural history nor the 

liver histology in this cohort has been described previously in detail. 

 For this study a cohort of HCV-exposed subjects without viraemia at presentation was followed for a 

median of 7 years, many of whom were identified at a time when there was uncertainty regarding 

the significance of a failure to detect HCV-RNA at first assessment.  With the aid of liver biopsy in all 

of these patients and critically, careful subsequent exclusion of all cases with a possible alternative 

cause of chronic liver disease, the data presented here challenge the view that non-viraemic HCV 

exposed subjects have resolved infection.  First, viraemia was detected eventually in 5.7% of this 

group, a proportion which may increase with time; second, just 7.5% cases had normal histology; 

third, 92% of cases had inflammation within the liver, while 82% had fibrosis, which in about a 

quarter would have been sufficient to prompt consideration of antiviral therapy if the patients had 

been viraemic; finally, when cases without viraemia were compared with viraemic patients matched 

for grade of inflammation and stage of fibrosis, the phenotype of the inflammatory infiltrate was 

similar and distinct from that in healthy controls. 

These data are consistent with the hypothesis that non-viraemic patients exposed to HCV have 

chronic low level, probably hepatic, viral replication that is associated with a lower risk of 

progressive liver injury compared with viraemic patients [53].  Other possibilities to explain the 

histological abnormalities exist and could include as yet unknown viral infections or NAFLD without 

histological features of steatohepatitis.   

Serum from 80 HCV-RNA negative patients was subjected to ultracentrifugation before repeating the 

assay for HCV-RNA; HCV-RNA was still not detected (Rolfe K and Curran MD, personal 
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communication).  The findings are thus consistent with several studies which described the 

detection of HCV-RNA in liver tissue in non-viraemic HCV-exposed individuals [54, 55, 425, 437].  This 

view would also be consistent with a failure to date to demonstrate sterilising immunity against HCV 

in man or primates [438] and it is possible that HCV is a lifelong infection in many more cases than 

has been supposed hitherto.  Perhaps the most important question to address in this cohort is why 

such cases have lower levels of viral replication.  The long-term histology in those treated 

successfully with pegylated interferon-α and ribavirin will be of interest in this context, since loss of 

the inflammatory infiltrate would be consistent with eradication of HCV, while ongoing 

inflammation, as in this series, would be indicative of low level HCV replication.   

Inflammation in the liver is a sensitive indication of hepatic disorder, but indirect evidence of 

infection.  The best evidence of infection in non-viraemic HCV exposed subjects would be the 

demonstration of HCV genomic material and replicative intermediates in the liver of such cases.  

Both positive and negative strand HCV-RNA have been identified in liver tissue of non-viraemic HCV 

subjects with normal ALT values [55]; that study also demonstrated that HCV-RNA was present in 

serum after ultracentrifugation [425].  This suggests non-viraemic HCV subjects are defined by 

insensitive tests.  In a series of patients from the same authors with HCV-RNA present in liver but 

without viraemia, 15% had fibrosis, including 4% with cirrhosis [52].  This contrasts with 82% with 

some degree of fibrosis in my series, a difference which may be explained by the longer duration of 

follow-up in this series compared to that of the Spanish group [55]. 

Immunohistochemical analysis was revealing.  There were consistent differences between HCV 

exposed cases (irrespective of viraemic status) and healthy controls; in contrast no differences were 

detected between viraemic and non-viraemic HCV exposed subjects matched for inflammation for 

any other parameter.  Thus the portal tracts were expanded with non-proliferating (Mcm-2 negative) 

T-cells, enriched with CD8+ T-cells and depleted of CD4+ T-cells in HCV exposed cases relative to 

healthy controls. However, the proportion of cells expressing perforin, a marker of cytotoxic 
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potential, was low and similar in all three groups [73].  The lobular infiltrate was CD3+ T-cell depleted 

and perforin negative in both HCV exposed groups relative to healthy controls. 

Mcm-2 expression, a marker of cell cycle entry, was increased in hepatocytes in both HCV study 

groups.  A previous study indicated that hepatocytes in HCV exposed patients had evidence of cell 

cycle entry without cell cycle progression - a state of cell cycle arrest - which correlated with fibrosis 

stage [344].  Many viruses replicate more efficiently in cell cycle arrested host cells [439] and Mcm-2 

positive hepatocytes may be either HCV infected or regenerating in response to ongoing liver injury.  

In either case, the finding is indicative of an on-going liver insult in both viraemic and non-viraemic 

HCV exposed groups. 

Stringent selection of non-viraemic HCV exposed subjects with HCV as the only risk factor for liver 

injury revealed abnormal liver histology in almost all cases.  How should such cases be managed?  

For now it might be wise at least to continue to follow such cases to determine whether HCV-RNA 

will be detected eventually and to determine the natural history in this cohort.  In the future, testing 

for HCV in serum or tissue may improve and the proportion of HCV-RNA negative subjects may fall.  

Intervention with antiviral therapy cannot be justified currently based on our knowledge of the 

natural history; however, it will be intriguing to determine the late histology in HCV-RNA positive 

cases treated successfully to see whether these revert to normal histology or something more akin 

to the findings in the non-viraemic group in this series.  However, a possible role for HCV in non-

viraemic subjects with a second risk factor for liver injury does need to be addressed and it is 

possible that the threshold for investigating such cases more thoroughly, will be reduced. 

Whether this group is analogous to subjects with occult HBV infection [440] who can experience 

reactivation of viral replication in the face of profound immunosuppression [441] is not known.  

Previous studies comparing rates of HBV and HCV reactivation suggest that it is much less common 

with HCV and indeed may not occur;  in a study of 305 patients receiving corticosteroid containing 
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chemotherapy for haematological malignancy, there were 9 reactivations of HBV infection but no 

reactivation of HCV viraemia despite a four-fold higher prevalence of non-viraemic HCV than HBV 

[442].  A more analogous situation may be the outcome of antiviral therapy, where a small 

proportion of individuals eventually become HCV-RNA positive despite sustained virological 

response (SVR).  In one study of individuals who achieved SVR after previously failing an initial 

course of anti-viral therapy, the viral recurrence rate after SVR was 11.3% [443].  Further, viral RNA 

can also be detected in peripheral blood lymphocytes and macrophages from those individuals who 

have successfully achieved SVR [428]. 

An unexpected, but consistent, observation was that CD4 expression in the lobule was prominent in 

sinusoidal lining cells in HCV exposed individuals.  The pattern was most consistent with endothelial 

expression and expression was most marked in viraemic patients.  The majority of CD4 staining was 

sinusoidal, which caused difficulty with the semi-automated count of lymphocytes that were 

therefore assessed by more conventional means.  The significance of sinusoidal lining cell CD4 

expression will be pursued in a separate study.  CD4 staining has been demonstrated in both 

glomerular and brain endothelial tissue in HIV-1 infection [444, 445].  In the latter study, brain 

endothelial cells expressed both CD4 and chemokine receptors, suggesting a permissive role in HIV 

infection [446]. 

To extend this current study, other approaches could have been adopted.  Through utilisation of 

modern viral genome sequencing techniques on those patients who experienced viral reactivation, 

demonstration that the reappearing viral genotype and subtype was similar to their previous 

serotype, confirming reactivation rather than re-infection would be feasible.  However, this was a 

retrospective study and many of these viral relapses occurred over 10 years ago; serum from these 

episodes was not stored.  Further criticism could be levelled that PCR identification of positive and 

negative strand viral RNA from the liver tissue was not attempted.  However, isolation of sufficient 

RNA from formalin-fixed, paraffin-embedded tissue required between eight and ten sections 
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(personal communication, W. Gelson) cutting.  Most of the biopsy specimens had insufficient tissue 

to make a non-random patient selection possible. 

In summary, a cohort of individuals with no risk factor for liver injury other than previous HCV 

exposure was identified.  These subjects with non-viraemic HCV have a CD8+ rich hepatic 

inflammatory infiltrate and the great majority had evidence of hepatic fibrosis. 
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Chapter 6 - Downstream telomere signalling and response to 

interferon-α in CD8+ T-lymphocytes. 

Abstract 

Background: Age is a critical prognostic factor in the natural history and treatment outcome in 

hepatitis C virus (HCV) infection.  Global lymphocyte telomere length declines with age.  I have 

previously demonstrated that progressive HCV is associated with shortened CD8+ telomere length.  

Down-stream signalling from short telomeres occurs via the double strand break (DSB) DNA damage 

response (DDR) pathway.  I investigated the form and function of CD8+ lymphocytes with DDR in 

HCV infection. 

Methods: Peripheral CD8+ Lymphocytes with DSB were identified by expression of γ-H2AX (ser-139) 

and telomere length was determined by flow-FISH assay from healthy controls (n=27); HCV-exposed, 

RNA- (n=27), HCV RNA+/mild fibrosis (n=59); HCV RNA+/severe fibrosis (n=48).  The in vitro response 

of lymphocytes with DSB to IFN-α was determined by phosho-stat1 (Y701) expression. 

Results: CD8+ γ-H2AX expression was significantly higher in subjects with severe liver disease 

((median; IQR) 2.8%, 1.5% - 4.6%) than healthy controls (1.8%, 0.98% - 2.4%) or subjects with mild 

liver disease (1.4%, 0.8% - 2.4%) (p = 0.0023).  There was a significant inverse correlation between γ-

H2AX expression and telomere length (p = 0.006; Rs = -0.23).  γ-H2AX expression was significantly 

increased on CD27- cells compared to CD27+ (3.1% vs 0.8%; p < 0.0001). 

Compared to the whole CD8+ population (0.4%, 0.08% - 1.2%), γ-H2AX+ lymphocytes (3.9%, 2.48% - 

13.5%) had significantly higher expression of IFN-γ when unstimulated (p = 0.0008).  Further, when 

stimulated with anti-CD3/CD28 γ-H2AX+ lymphocytes had higher expression of IFN-γ (20.0%, 7.8% - 

26.9%) vs (9.6%, 4.9% - 18.1%) (p = 0.02) and perforin (17.0%, 5.8% - 28.3%) vs (6.4%, 3.9% - 9.2%) (p 

= 0.05), but lower levels of IL-2 (1.8%, 0% - 3.1%) vs (3.1%, 2% - 5.3%) (p = 0.02). 
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In response to in vitro IFN-α γ-H2AX+ lymphocytes have a significant reduction in the 

phosphorylation of Stat1 compared to whole CD8+ population (13.4%, 2.1% - 20.3%) vs (65.8%, 

17.3% - 81.5%) (p < 0.0001). This is associated with a significant increase in EC50 (781 iu/ml vs 308 

iu/ml). 

γ-H2AX+ lymphocytes have significantly higher IFNAR-2 (17.3% (12.0% - 47.3%) vs 9.5% (4.0% - 

13.8%) (p = 0.0009)) and IFNAR-1 expression (2.3% (1.6% - 5.5%) vs 0.3% (0.18% - 0.43%) (p = 

0.0002)) compared to the whole CD8+ population.  Further, exposure of γ-H2AX+ lymphocytes to 

IFN-α compared to medium alone leads to IFNAR-1 down-regulation over 24 hours (p = 0.04). 

Conclusion: CD8+ lymphocytes with γ-H2AX expression accumulate in progressive HCV infection, 

have the form and function of cells with end-stage differentiation, and have an impaired ability to 

phosphorylate Stat1 in response to IFN-α. 

 

  



Lymphocyte senescence and Hepatitis C 
 

 162     

Introduction 

A number of factors are associated with an increased risk of progressive liver injury in the context of 

HCV including male sex and alcohol misuse [6].  However, one of the strongest risk factors for both 

clinical progression and failure to respond to anti-viral therapy is increasing age [142-144].   

Increasing age is associated with reduction in telomere length within both lymphoid and non-

lymphoid cells [447, 448].  Short telomeres are detected by the MRN protein complex including 

MRE11, NBS1 and RAD50 [276, 449] which leads to the recruitment of ATM (Ataxia telangiectasia-

mutated) and ATR (Ataxia telangiectasia and Rad3 related) [282, 449] serine/threonine kinases 

which leads to the phosphorylation of a number of nuclear targets, including Histone 2 at serine 139 

to form γ-H2AX [368, 412].  γ-H2AX is able to recruit further ATM complexes to the site of its 

formation in a positive feedback loop, as well as initiating the stabilisation of p53 and its down-

steam target p21, ultimately leading to cell-cycle arrest [412, 450]. 

The cellular response to IFN-α is important for both the endogenous response to HCV infection and 

anti-viral therapy.  IFN-α binds to the cell-surface receptor IFNAR-2, causing it to dimerise with 

IFNAR-1, leading to activation and intracellular signalling to modulate gene transcription. 

To deliver a second messenger signal through the Jak/Stat pathway [122].  Phosphorylation of Jak1 

and Tyk2 associated with the intracellular tail of IFNAR-1 leads to the phosphorylation of stat1 at 

tyrosine 701.  It is known that the nature of the transcriptome generated in response to IFN-α, 

termed interferon-stimulated genes (ISG), is related to treatment outcome in patients with HCV 

treated with IFN-α based therapy [124-126].   

HCV modulates the cellular response to endogenous IFN-α signalling through pStat1.  HCV core 

protein prevents phosphorylation of stat1 in response to IFN-α [127] and NS5A protein prevents the 

translocation of pStat1 to the nucleus [130].  Further, short telomere length has been demonstrated 

to be associated with defects in the activation of Stat5 in mouse macrophages [451]. 
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Data presented in chapters three and four demonstrate that progressive HCV infection is associated 

with shortened CD8+ and CD4+ T-lymphocyte telomeres and that short CD4+ T-lymphocytic 

telomeres are associated with poor clinical and treatment-related outcomes.  The hypothesis to be 

tested is that lymphocytes with short telomeres would demonstrate increased evidence of 

downstream telomere signalling through γ-H2AX and that lymphocytes with short telomeres or 

increased γ-H2AX expression would have impaired responses to IFN-α. 

Materials and methods 

Subjects  (Table 12) 

Patients recruited at Addenbrooke’s Hospital, Cambridge gave written informed consent with 

approved of the Local Research Ethics Committee.  Patients co-infected with HIV, HBV or with other 

chronic liver disease identified by history, blood tests or liver biopsy were excluded.  Lymphocytes 

from healthy controls were obtained from local volunteers; none gave a history of chronic illness or 

intravenous drug usage.    



Lymphocyte senescence and Hepatitis C 
 

 164     

 
Healthy 
Controls 

HCV-RNA 
negative 

HCV-RNA 
positive mild 

HCV-RNA 
positive 
severe 

P value† 

N 27 27 59 48  

Age (years, mean ± SD) 42.0 ± 12.0 49.4 ± 7.5 48.8 ± 10.0 54.2 ± 6.2 0.0006 

Sex (% male) 48.1% 66.6% 71.2% 79.2% 0.0461 

BMI (mean ± SD) 27.6 ± 4.2 24.6 ± 3.7  25.6 ± 4.6 26.7 ± 5.5 0.102 

% IgG anti-HBc positive 13.6% 52.0% 25.0% 38.3% 0.0171 

% CMV antibody positive 33.3% 59.3% 50.8% 58.3% 0.161 

Biochemical indices      

Bilirubin (µmol/L, mean ± SD) - 7.4 ± 2.9 10.1 ± 5.3 13.3 ± 7.4 0.0001 

ALT (iu/L, mean ± SD) - 27.6 ± 13.0 99.6 ± 79.4 110.3 ± 66.4 <0.0001 

PT (seconds, mean ± SD) - 12.6 ± 1.2 12.5 ± 0.7 13.7 ± 1.7 <0.0001 

Table 12.  Demographic characteristics of subjects in the four study groups.  †Kruskal Wallis unless 
otherwise stated. 1Chi-squared. 

Statistics 

γ-H2AX expression in different study groups and cell surface phenotype of γ-H2AX+ cells were 

analysed by Kruskal-Wallis test.  Cytokine secretion patterns and liver immunohistochemistry were 

analysed by Mann Whitney U test.  Paired data from whole CD8+ and γ-H2AX+CD8+ lymphocytes 

including Stat1, phospho-Jak1, phospho-Tyk2, IFNAR1 and IFNAR2 expression were analysed by 

Wilcoxon signed rank test.  IFNAR-1 down-regulation after IFN-α, absolute pStat1 responses and p53 

expression were analysed by 2-way ANOVA.  Dose-response curves and EC50 were calculated by 

Prism 5.0 for Windows (Graphpad Software, San Diego, USA). 

The correlation between γ-H2AX expression and telomere length was analysed by Spearman’s rank 

correlation.  P values of < 0.05 were considered significant.   
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Results 

Progressive HCV infection is associated with increased numbers of γ-H2AX+ CD8+ T-

lymphocytes 

Telomeres with critical shortening generate γ-H2AX [368, 412], a double strand DNA break signal 

with phosphorylation of histone-2 at serine 139.  To investigate the relationship between telomere 

length and γ-H2AX expression in HCV, the proportion of γ-H2AX+ CD8+ and CD4+ T-lymphocytes 

from subjects with known telomere lengths was investigated. 

Shortened CD8+CD45RO+ telomeres were associated with increased numbers of γ-H2AX+ CD8+ T-

cells (p = 0.006; Rs = -0.23) but there was no evidence of a correlation between CD4+CD45RO+ 

telomere length and γ-H2AX+ CD4+ T-cell number (p = 0.53; Rs = -0.07) (Figure 48).  Further, the 

proportion of γ-H2AX+ CD8+ T-lymphocytes from viraemic subjects with severe liver disease (2.8%; 

1.5% - 4.6%) was higher than healthy controls (1.8%; 0.98% - 2.4%), non-viraemic HCV-exposed 

subjects (median 2.0%; IQR: 1.1% - 3.5%) and subjects with viraemia and mild liver disease (1.4%; 

0.8% - 2.4%) (Kruskal Wallis p = 0.0023).  There were no significant differences between study groups 

in terms of γ-H2AX levels in CD4+ peripheral lymphocytes (p = 0.57). 
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Figure 48. γ-H2AX (ser-139) expression in peripheral CD8+ (B & D) and CD4+ (C & E) lymphocytes 
and association with telomere length and study group allocation.  Panel A. γ-H2AX was studied on 
cells within the live lymphocyte gate by scatter characteristics (left) and positive staining for either 
CD8 (centre) or CD4.  Isotype control staining pattern in filled histogram; positive control staining 
pattern from irradiated cells in dashed histogram and experimental sample in bold histogram 
(right).  Panel B & C.  Association between telomere length in CD8+CD45RO+ and CD4+CD45RO+ 
subsets respectively and γ-H2AX levels.  Correlation by Spearman’s Rank.  Panel D & E. CD8+ (27 
controls, 27 non-viraemic HCV-exposed cases, 59 viraemic patients with mild fibrosis and 48 
viraemic patients with severe fibrosis) and CD4+ (19 control, 27 non-viraemic HCV-exposed cases, 
35 viraemic patients with mild fibrosis and 29 viraemic patients with severe fibrosis) γ-H2AX levels 
by study group allocation.   
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Therefore, shortened CD8+ T-lymphocyte telomeres were associated with increased signalling 

through the γ-H2AX system, but no evidence of increased signalling in CD4+ cells was demonstrated. 

Attempts to demonstrate that short telomeres were associated with increased γ-H2AX expression in 

each cell with flow-cytometry were unsuccessful as the heat step essential for measuring telomere 

length led to destruction of the fluorochrome tag on the anti- γ-H2AX antibody.  In a subsequent 

experiment lymphocytes were flow sorted into CD8+ γ-H2AX+ and CD4+ γ-H2AX- subsets and then 

subjected to the standard flow-FISH assay for telomere length.  However, too few cells were 

available for meaningful analysis. 

γ-H2AX expression is increased in cells with a more advanced cell-surface phenotype 

To investigate the maturation status of cells expressing γ-H2AX, peripheral CD8+ or CD4+ 

lymphocytes were co-stained for γ-H2AX and appropriate markers of antigen-experience and 

maturation in 60 subjects with chronic HCV (Figure 49). 

CD8+ lymphocytes were sub-divided on the basis of CD27 and CD57 expression.  CD8+ lymphocytes 

expressing the mature CD27-CD57- (median, IQR) (3.1%, 1.4% - 5.6%) and CD27-CD57+ (3.2%, 1.7% - 

6.2%) phenotypes had significantly higher expression of γ-H2AX than the less-mature CD27+CD57- 

subset (0.8%, 0.4% - 1.6%) (Kruskal-Wallis, p < 0.0001). 

CD4+ lymphocytes divided by CD27 and CD45RO expression demonstrated a similar pattern of 

expression.  The naive CD27+CD45RO- subset (0.4%, 0.2% - 0.7%) had lower expression of γ-H2AX 

than the central memory CD27+CD45RO+ (0.8%, 0.4% - 1.8%) and the effector memory CD27-

CD45RO+ subsets (2.8%, 1.5% - 3.6%) (p < 0.0001). 
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Figure 49.  γ-H2AX expression patterns of different subsets of CD8+ (A) and CD4+ (B) peripheral 
lymphocytes from subjects (n = 60) with HCV infection.  CD8+ lymphocytes were divided based on 
the expression of the surface markers CD27 and CD57, whereas CD4+ lymphocytes were divided 
based on CD27 and CD45RO expression.  Statistical analysis by Kruskal-Wallis.  

Intrahepatic γ-H2AX expression by immunohistochemistry 

To investigate whether γ-H2AX+ cells accumulated within the portal tracts of subjects with 

progressive HCV infection, the proportion of portal tract area expressing γ-H2AX was analysed by 

immunohistochemistry in 10 HCV RNA positive patients with mild disease and HCV RNA positive 

patients  with severe fibrosis subgroups. 

There was no significant difference between the proportion of portal tract area positive for γ-H2AX 

staining between viraemic subjects with mild ((median, IQR) 0.17%, 0.12% - 0.34%) or severe fibrosis 

(0.19%, 0.14% - 0.30%) (p = 0.88) (Figure 50). 

This is perhaps slightly surprising given the flow-cytometry results from peripheral lymphocytes 

demonstrated significant differences.  This may reflect the significant liver infiltration of NK and NKT 

cells or may represent a failure to detect telomere-dependent γ-H2AX in the context of proliferation-

related γ-H2AX [452].    
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Figure 50. Intrahepatic expression of γ-H2AX on portal tract lymphocytes by 
immunohistochemistry.  Liver biopsy sections from viraemic subjects with mild fibrosis (n = 10) or 
severe fibrosis (n = 10) were stained for γ-H2AX and counterstained with haematoxylin.  
Representative immunohistochemistry in Panel A; scale bar 100µm.  Panel B. Grouped results of 
portal tract area positive for γ-H2AX. 

Ex vivo unstimulated γ-H2AX positive T-lymphocytes secrete IFN-γ 

To investigate the functional properties of γ-H2AX positive T-lymphocytes the expression patterns of 

IFN-γ and IL-2 in unstimulated whole CD8+ or CD4+ lymphocytes or CD8+γ-H2AX + and CD4+γ-H2AX 

+ subsets were analysed in 10 subjects with chronic HCV infection. 

IFN-γ expression was significantly higher in unstimulated γ-H2AX+ CD8+ lymphocytes (3.9%, 2.48% - 

13.5%) when compared to whole CD8+ lymphocytes (0.4%, 0.08% - 1.2%) (p = 0.0008).  Similarly, γ-

H2AX+ CD4+ cells secreted significantly more IFN-γ (4.3%, 0.85% - 7.63%) than whole CD4+ 

lymphocytes  (0.25%, 0% - 1.1%) (p = 0.0096) (Figure 51. 

There were no significant differences in IL-2 secretion between γ-H2AX+ and whole lymphocyte 

subsets in either CD8+ or CD4+ populations. 
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Figure 51.  Cytokine expression of unstimulated peripheral CD8+ (Panel A & C) and CD4+ (B & D) T 
cells from 10 subjects with chronic HCV infection.  Whole lymphocytes or γ-H2AX+ subsets were 
analysed for expression of IFN-γ (A & B) or IL-2 (C & D). Analysis by Mann-Whitney U test. 

 

Stimulated γ-H2AX positive T-lymphocytes are pro-inflammatory 

T cells were stimulated with anti-CD3 / anti-CD28 to investigate the functional properties of 

lymphocytes expressing γ-H2AX, measured by intracellular cytokine staining. 

In comparison to the responses of the whole CD8+ population, γ-H2AX+ CD8+ lymphocytes from 

subjects with chronic HCV (n = 10) had higher expression of IFN-γ (median, IQR) (20.0%, 7.8% - 

26.9%) vs (9.6%, 4.9% - 18.1%) (p = 0.02) and perforin (17.0%, 5.8% - 28.3%) vs (6.4%, 3.9% - 9.2%) (p 

= 0.05), but lower levels of IL-2 (1.8%, 0% - 3.1%) vs (3.1%, 2% - 5.3%) (p = 0.02) (Figure 52). 

Similarly, γ-H2AX+CD4+ lymphocytes demonstrate similar functional properties with higher 

expression of IFN-γ (5.9%, 2.3% - 17.6%) vs (3.0%, 2.5% - 8.4%) (p = 0.01) and perforin (12.4%, 3.9% - 

CD8 - IFN-

Whole CD8 -H2AX +
0%

5%

10%

15%

20%

p = 0.0008

%
 I

F
N

- 
 +

CD4 - IFN-

Whole CD4 -H2AX +
0%

5%

10%

15%

20%

p = 0.0096

%
 I

F
N

- 
 +

CD8 - IL2

Whole CD8 -H2AX +
0%

2%

4%

6%

8%

10%

%
 I

L
-2

 +

CD4 - IL2

Whole CD4 -H2AX +
0%

2%

4%

6%

8%

10%

%
 I

L
-2

 +

A B

C D



Lymphocyte senescence and Hepatitis C 
 

 171     

16.3%) vs (3.0%, 0.4% - 9.0%) (p = 0.002), but lower levels of IL-2 (0.6%, 0.35% - 1.4%) vs (3.9%, 2.6% 

- 5.2%) (p = 0.009). 

 

Figure 52. Cytokine expression of peripheral CD8+ (Panel A, C & E) and CD4+ (B, D & F) T-
lymphocytes, in response to non-specific stimulation, in 10 subjects with chronic HCV.  Cells were 
stimulated with anti-CD3 / anti-CD28 and then whole lymphocytes or γ-H2AX+ cells were analysed 
for expression of IFN-γ (A &B), IL-2 (C&D) and perforin (E&F). Analysis by Mann-Whitney U test. 
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CD8+ lymphocytes respond to exogenous IFN-α by phosphorylating Stat1 

The intracellular signalling pathway after IFN-α binds to its surface receptor involves the 

phosphorylation of Stat1.  To investigate the ability of lymphocytes to respond to IFN-α, a multi-

colour flow-cytometric assay to analyse the phosphorylation of Stat1 was developed.  Cells were 

cultured in supplemented RPMI-1640 and incubated with 1000iu/ml IFN-α2b and then harvested at 

sequential time points.  Phosphorylation of Stat1 at tyrosine 701 was readily demonstrable within 30 

minutes of incubation and rapidly declined thereafter (Figure 53). 

 

Figure 53.  Phosphorylation of Stat1 at tyrosine 701 in response to exogenous IFN-α.  Peripheral 
lymphocytes from 2 individuals (MH, SR) were cultured in the presence of 1000 iu/ml IFN-α2b and 
phosphorylation of Stat1 assayed at various times after start of culture.  Panel A.  Representative 
histogram of pStat1 staining after 30minutes of incubation with IFN-α, filled histogram is specific 
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antibody, isotype control with bold line. Time-course of pStat1 expression after incubation with 
interferon (blue line) or control medium (red line) in 2 individuals expressed as either pStat1 
positivity (Panel B) or pStat1 mean fluorescence intensity (Panel C). 

For all subsequent experiments cells were incubated with IFN-α for 30 minutes. 

CD8+ γ-H2AX+ lymphocytes fail to phosphorylate Stat1 after exposure to IFN-α 

To investigate the ability of γ-H2AX+ CD8+ lymphocytes to respond to IFN-α, the dose response of 

CD8+ lymphocytes from healthy controls (n =6) and HCV-infected subjects (n =6) was analysed. 

Peripheral lymphocytes were incubated with variable concentrations of IFN-α2b for 30 minutes in 

order to establish the dose-response curves (Figure 54). 
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Figure 54. CD8+γ-H2AX+ lymphocytes fail to phosphorylate Stat1 after incubation with IFN-α.  
Peripheral lymphocytes were incubated with variable concentrations of IFN-α2b before staining 
for CD8, γ-H2AX and pStat1.  Example dot-plots of CD8+ gated lymphocytes incubated with 
10iu/ml (Panel A) or 1000iu/ml IFN-α2b (Panel B).  Dose response curves of pStat1 responses by 
proportion of pStat1 positive cells (Panels C & E) or pStat1 MFI (Panels D & F) after incubation with 
IFN-α in healthy controls (n = 6) (Panels C & D) or HCV-infected subjects (n = 6) (Panels E & F). 
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similar EC50 to the whole CD8+ compartment at 85iu/ml and 42iu/ml for positivity and MFI 

respectively.  However, γ-H2AX+ lymphocytes have a sub-maximal response when compared to the 

whole CD8+ compartment. 

CD8+ lymphocytes from HCV-infected subjects (n = 6) had increased EC50 when compared to healthy 

controls with 308 iu/ml and 243 iu/ml for pStat1 positivity and MFI respectively, with γ-H2AX+CD8+ 

lymphocytes 781 iu/ml and 355 iu/ml respectively. 

Whereas lymphocytes from HCV-infected individuals have an increased EC50 for pStat1 response to 

IFN-α, the absolute maximal response for global CD8+ and CD4+ cells is not different to healthy 

controls (Figure 55).  Utilising 2-way ANOVA, γ-H2AX+ cells had a significantly reduced response 

when compared to the whole CD8+ compartment (P < 0.0001).  However, HCV-infected subjects 

were not significantly different to healthy controls (p = 0.29).   

 

Figure 55. Maximal pStat1 response to IFN-α in healthy controls (n = 6) and HCV-infected subjects 
(n = 6) in different CD8+ lymphocyte subsets defined by γ-H2AX. 

Therefore, whilst HCV leads to resistance to IFN-α signalling, it does not impair absolute response at 
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Impaired Stat1 phosphorylation in γ-H2AX+ cells is not due to impaired Stat1 expression 

To ensure that the impairment of Stat1 phosphorylation was not due to a failure to express Stat1 in 

γ-H2AX positive CD8+ cells, the Stat1 expression of whole CD8+ and γ-H2AX+CD8+ T-cells was 

compared.  There was no significant difference in the proportion of Stat1 positive whole CD8+ cells 

(72.0% (34.4% - 85.6%)) and Stat1 positive γ-H2AX+CD8+ cells (63.5% (23.1% - 68.8%)) (Wilcoxon 

signed rank, p = 0.06).  Nor was there a difference in the Stat1 MFI of whole CD8+ cells (4609 (2729 – 

8607)) when compared to γ-H2AX+CD8+ cells (3420 (1853 – 5954)) (p = 0.06) (Figure 56). 

 

Figure 56. Stat1 expression of CD8+ and CD8+ γ-H2AX+ cells from subjects with viraemic HCV 
infection (n = 5).  Panel A: gating strategy to demonstrate γ-H2AX+ and Stat1 expression. Left: 
Lymphocytes are gated by light-scatter characteristics.  Middle: CD8+ cells are then gated. Right: 
Co-expression of Stat1 and γ-H2AX is examined.  Panel B: Proportion of whole CD8+ and γ-
H2AX+CD8+ cells positive for Stat1.  Panel C: Stat1 MFI of whole CD8+ and γ-H2AX+CD8+ cells.  
Statistics by Wilcoxon signed rank analysis. 
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IFN-α receptor components 1 and 2 (IFNAR-1 & IFNAR-2) are up-regulated on γ-H2AX+ 

CD8+ lymphocytes. 

The failure of the pStat1 response demonstrated in γ-H2AX positive cells may be related to a change 

in the expression of the surface receptor for IFN-α, which includes the components IFNAR-1 and 

IFNAR-2.  Surface expression of these molecules on whole peripheral CD8+ lymphocytes and γ-

H2AX+CD8+ lymphocytes was sought in 18 subjects with chronic HCV infection. 

γ-H2AX+CD8+ lymphocytes had higher expression of IFNAR2 than whole CD8+ lymphocytes by both 

proportion positive (17.3% (12.0% - 47.3%) vs 9.5% (4.0% - 13.8%) (p = 0.0009)) and MFI (1420 (660 - 

2826) vs 524 (317 – 777) (p = 0.0011)) (Figure 57).  

 

Figure 57.  Expression of IFNAR-2 on whole CD8+ and γ-H2AX+CD8+ lymphocytes from HCV-
infected individuals.  Example cytometric data of CD8 gated PBMCs (Panel A) stained for IFNAR2 
and γ-H2AX (Panel B).  Proportion of IFNAR2+ (Panel C) and IFNAR2 MFI (Panel D) were 
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determined in ex-vivo peripheral lymphocytes from HCV-infected individuals (n = 18).  Statistics by 
Wilcoxon matched pairs test. 

γ-H2AX+CD8+ lymphocytes have higher expression of IFNAR1 than whole CD8+ lymphocytes by both 

proportion of IFNAR1 positive cells (2.3% (1.6% - 5.5%) vs 0.3% (0.18% - 0.43%) (p = 0.0002)) and 

IFNAR1 MFI (186.5 (147- 272) vs 123.5 (112.8 – 138.5) (p = 0.0003)) (Figure 58). 

 

Figure 58. Expression of IFNAR-1 on whole CD8+ and γ-H2AX+CD8+ lymphocytes from HCV-
infected individuals.  Proportion of IFNAR1+ cells (Panels A & C) and IFNAR1 MFI (Panels B & D) 
were determined in ex-vivo peripheral lymphocytes from HCV-infected individuals (n = 18) (Panels 
A&B).  Analysis by Wilcoxon matched pairs test.  Receptor down-regulation following incubation 
with 300 iu/ml IFN-α2b (blue line) or control medium (red line) in γ-H2AX+CD8+ lymphocytes from 
6 HCV-infected individuals (Panels C & D).  Analysis by 2-way ANOVA. 
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Treatment with IFN-α led to a significant reduction in both IFNAR-1 positive cells (p = 0.04) and 

IFNAR-1 MFI (p = 0.03), when compared to cells incubated in medium alone.  γ-H2AX+ cells are 

unable to phosphorylate Stat1 in response to IFN-α, but this is neither a consequence of altered 

receptor expression nor a failure to bind to the receptor on the cell surface. 

γ-H2AX + CD8+ lymphocytes are able to phosphorylate Jak1 and Tyk2 in response to 

exogenous IFN-α 

To further isolate the defect in the IFN-α signalling pathway, the ability of whole CD8+ and γ-

H2AX+CD8+ lymphocytes to phosphorylate Jak1 and Tyk2 in response to exogenous IFN-α was 

investigated in subjects with viraemic HCV infection (n = 9). 

Incubation with 1000 iu/ml IFN-α2b for 20 minutes led to higher numbers of phospho-Tyk2 positive 

cells (4.7% (3.4% - 15.6%) vs 0.4% (0.2% - 1.4%), p = 0.004) and higher phospho-Tyk2 MFI (232 (139 – 

278) vs 68 (44 – 113), p = 0.004) in the γ-H2AX+ CD8+ subset than in the whole CD8+ compartment 

respectively (Figure 59). 

Similarly, exogenous interferon led to higher numbers of phospho-Jak1 positive cells (2.0% (1.8% - 

6.3%) vs 0.3% (0.2% - 0.6%), p = 0.004) and higher phospho-Jak1 MFI (173 (90 – 288) vs 53 (40 – 61), 

p = 0.004) in the γ-H2AX+ CD8+ subset than in the whole CD8+ compartment respectively (Figure 

59). 
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Figure 59. Interferon-induced phosphorylation of Tyk2 (Panels A, C & E) and Jak1 (Panels B, D &F) 
in whole CD8+ and γ-H2AX+CD8+ lymphocytes from subjects with viraemic HCV infection (n = 9).  
Panels A&B demonstrate cytometry plots of phospho-Tyk2 (A) and phospho-Jak1 (B) expression in 
whole CD8+ lymphocytes (filled histogram) and γ-H2AX+CD8+ lymphocytes (bold histogram).  
Panels C&D demonstrate proportion of whole CD8+ and γ-H2AX+CD8+ lymphocytes expressing 
phospho-Tyk2 (C) and phospho-Jak1 (D) after incubation with 1000 iu/ml IFN-α2b.  Panels E&F 
demonstrate phospho-Tyk2 and phospho-Jak1 MFI in whole CD8+ and γ-H2AX+CD8+ lymphocytes.  
Stats by Wilcoxon signed rank analysis. 
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Increased γ-H2AX expression is associated with increased p53 in peripheral CD8+ 

lymphocytes 

To investigate the ability of γ-H2AX to induce downstream signalling pathway components such as 

p53, the co-expression of γ-H2AX and p53 in peripheral CD8+ lymphocytes was analysed in four 

groups: healthy controls (n = 25) non-viraemic HCV-exposed (n = 25), viraemic with mild fibrosis (n = 

44) and viraemic with severe fibrosis (n = 34). 

P53 expression on whole peripheral CD8+ lymphocytes was similar between the 4 patient groups 

(Kruskal Wallis, p = 0.72).  The expression of p53 on CD8+ γ-H2AX+ cells was much higher than on 

the whole CD8+ population (2-way ANOVA, p < 0.0001), but again the differences in p53 expression 

between patient groups was not significantly different (p = 0.37) (Figure 60). 

Increased γ-H2AX expression was associated with increased p53 expression at the level of a single 

cell, but there was no evidence of altered p53 expression between the different study groups.  The 

level of p53 staining was also perhaps surprising with only around 2% of γ-H2AX+ cells positive for 

p53.  To extend these findings I would aim to repeat the experiment but study phospho-p53 

expression on γ-H2AX+ cells.  Phosphorylation by ATM or ATR leads to stabilisation of P53, by 

preventing its binding to its negative regulator MDM2 [453]. 
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Figure 60. Co-expression of γ-H2AX and p53 on peripheral CD8+ lymphocytes.  Panel A: 
representative dot-plot of γ-H2AX and p53 expression gated on live CD8+ lymphocytes by CD8+ 
and scatter characteristics.  Panel B: representative histogram of p53 expression on whole CD8+ 
population (grey filled histogram) and CD8+ γ-H2AX+ lymphocytes (unfilled histogram.  Panel C: 
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grouped box and whisker plots demonstrating p53 expression on whole CD8+ and CD8+ γ-H2AX+ 
lymphocytes across the four study groups. 

P53 and p21 are not up-regulated in intrahepatic portal lymphocytes in HCV-infected 

patients with severe fibrosis 

The portal expression of p53 and p21 was examined to determine whether the increases in γ-H2AX 

expression in peripheral CD8+ lymphocytes from subjects with advanced fibrosis result in increased 

downstream signalling.  Immunohistochemistry (Figure 61) was undertaken in subgroups of viraemic 

patients with mild (n = 10) or severe disease (n = 11).   

There were no significant differences in portal tract area positive for p53 in subjects with mild 

disease (median (IQR); 0.21% (0.07% – 0.44%)) compared to severe disease (0.37% (0.26% - 0.52%) 

(p = 0.15).  Similarly, there were no significant differences in portal tract area positive for p21 in 

subjects with mild disease (0.58% (0.45% – 0.72%)) compared to severe disease (0.51% (0.38% - 

0.72%) (p = 0.42).   
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Figure 61.  p53 and p21 expression by portal tract lymphocytes in HCV infection.  Representative 
immunohistochemistry for p53 (Panel A) and p21 (Panel B) in viraemic subjects with mild disease 
(n = 10) and with severe disease (n = 11).  Scale bar on each panel is 100 µm.  Arrow in panel A 
demonstrates portal tract lymphocyte positive for p53; note strong hepatocyte nuclear p21 
staining in HCV as described previously [344].  Panels C & D demonstrate grouped results of portal 
tract area positive for p53 (panel C) and p21 (panel D). 

Discussion 

The downstream effects of lymphocytic telomere shortening were sought.   γ-H2AX expression in 
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Nor was there evidence of a failure to phosphorylate Jak1 and Tyk2, associated with the intracellular 

apparatus of the IFN-α receptor.  Thus there was a mechanistic link between telomere shortening, 

downstream signalling and failure to respond to IFN-α.  

Other groups have investigated the effect of DNA damage in the context of HCV previously.  Grossi 

et al utilised the Comet assay, demonstrating DNA damage from peripheral blood lymphocytes in 

HBV, HCV and alcohol-related cirrhosis [454].  They found that cirrhosis in all three conditions was 

associated with increased levels of lymphocytic DNA damage and that the level of DNA damage 

correlated with the Child’s Pugh score, linking DNA damage with clinical deterioration.  Why 

circulating lymphocytes should be affected in this way in patients with cirrhosis is unclear, but may 

be a general effect of inflammation. 

The significant correlation between γ-H2AX and telomere length was demonstrated in CD8+ 

lymphocytes.  There was no evidence of a similar correlation in CD4+ lymphocytes.  This discrepancy 

is unexplained.  γ-H2AX expression was highest in cells with the most mature cell-surface phenotype.  

In chapter three I demonstrated that the same CD4+ subset also had the shortest telomere length as 

compared to more naive subsets.  The possibility remains that correlation may exist at the single cell 

level but that at the less sensitive population level insufficient numbers prevented demonstration of 

a significant correlation.  This lack of correlation between telomere length and γ-H2AX expression in 

CD4+ T-lymphocytes may explain why there was no difference between mild and severe fibrosis in 

the portal tract area positive for γ-H2AX.  From chapter 5 (Figure 44) it was demonstrated that 

around 20% of portal tract area was positive for CD4 compared with around 10% positive for CD8.  

Possible explanations for the failure of γ-H2AX positive cells to phosphorylate Stat1 in response to 

exogenous IFN-α include a lesion of either Jak1 or Tyk2 [455], expression of the truncated isoform of 

IFNAR-2 [456] or suppression of signalling through the suppressor of cytokine signalling (SOCS) 

family of proteins [123].   
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Pugnale et al demonstrated that hepatitis delta achieves suppression of IFN-α signalling through 

inhibition of phosphorylation of Tyk2, thereby preventing stat1 phosphorylation and activation.  The 

results here suggest that this is not the case, and that there may be a failure of the kinase function of 

the activated intracellular tail of the IFN-α receptor. 

Similarly, Pfeffer et al demonstrated that pre-translational processing involving mRNA splicing can 

result in a truncated isoform of IFNAR-2 being expressed which can suppress signalling through the 

IFNAR complex to intracellular second messengers [456].  Utilising a murine cell line infected with 

VZV they demonstrated that signalling through the isoform with the truncated cytoplasmic tail failed 

to suppress viral replication, in distinction to signalling through the full length IFNAR-2 isoform.  

Human cells normally express the truncated isoform at low levels compared to the full length 

biologically active form [457].  Specific antibodies do not exist to the various isoforms of the IFNAR 

components and therefore I have not been able to study the relative distribution in γ-H2AX+ 

lymphocytes. 

Vlotides et al have previously demonstrated that SOCS 1 and 3 over-expression in a human 

hepatoma cell line could lead to a reduction of IFN-α induced Stat1 phosphorylation [458].  

Therefore it is possible that γ-H2AX positive lymphocytes over-express one or more members of the 

SOCS family. 

Chronic HCV infection is known to modulate the response to IFN-α through pStat1.  Gong et al 

demonstrated that HCV NS5A was able to prevent phosphorylation and nuclear translocation of 

pStat1 [130].  Lin et al have demonstrated that HCV-transfection of Huh7 cells leads to enhanced 

degradation of pStat1 [459].  Further, they have shown that the N-terminal portion of HCV core is 

able to bind to the C-terminal portion of Stat1 blocking both homo- and hetero-dimerisation, thus 

preventing its intracellular actions [127].  Yao et al extended these findings to peripheral 

lymphocytes from subjects with HCV [129].  They demonstrated that HCV core protein was 
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associated with a reduction of pStat1 in peripheral T-lymphocytes but an increase of pStat1 in B-

lymphocytes.   These findings may explain in part the increased EC50 for IFN-α in HCV-infected 

individuals I have demonstrated here, but not the very significant pathway defects seen in cells 

manifesting γ-H2AX expression. 

It has been assumed that γ-H2AX expression reflects the cellular response to shortened telomeres.  

However, γ-H2AX is generated at the site of any break in double-stranded DNA.  Previous studies 

have demonstrated that γ-H2AX expression is related to critical telomere shortening but that is not 

the only explanation [368, 412, 460].  In cells exposed to conditions leading to increased levels of 

DNA damage, through oncogene or oxidative stress, the direct correlation between γ-H2AX 

expression and telomere length can be lost.  Passos et al demonstrated that senescence of whatever 

source led to an increase in ROS production which led to increased DSB foci within the cell [330].  

Other groups have demonstrated that viruses such as EBV can induce γ-H2AX in infected cells [461].  

Further, in a mouse model, infection with the herpes virus γ-HV68 not only led to γ-H2AX induction, 

but that the presence of γ-H2AX led to increased viral replication [461].  Therefore, viruses may 

induce cell-cycle arrest in order to subvert cellular machinery to generate a more favourable 

environment for replication.  A direct effect of HCV on γ-H2AX expression is feasible, but was not 

investigated here. 

Other work has provided evidence linking IFN-α signalling pathway to cell-cycle arrest.  Townsend et 

al demonstrated that in Stat1-deficient cells there was a failure of ATM-dependent phosphorylation 

of p53 and other DNA damage response proteins.  However, in the same cell line the 

phosphorylation of H2AX in response to DNA damage was unimpaired [462]. 

Moiseeva et al demonstrated that chronic exposure of cells to IFN-β, but not IFN-α, led to an 

irreversible p53-dependent cell-cycle arrest [463].  It was demonstrated that fibroblasts exposed to 
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IFN-β for 6 days developed γ-H2AX expression, accumulation of mitochondrial reactive oxidative 

oxygen species and failure of proliferation.   

Demonstrating a change in intracellular signalling pathways in senescent cells is important in the 

context of the recent descriptions of the change in cellular secretome in senescent cells, the SASP 

[343].  Kuilman et al demonstrated that cells with oncogene-induced senescence secrete large 

quantities of cytokines including IL-6.  Further they demonstrated that IL-6, as well as IL-8, could act 

in both autocrine and paracrine manner to reinforce the senescent state of both the secreting and 

surrounding cells [343].  IL-6 signals through a number of Stat proteins including Stat1 [464].  

Whether our finding of impairment in Stat1 phosphorylation extends to IL-6 signalling will be 

interesting to discover. 

Providing a cellular pathway linking advanced fibrosis, telomere shortening, ageing and failure to 

respond to IFN-α therapy is crucial.  However, further work is required to precisely identify the 

molecular lesion in this signalling pathway.  There may be an alteration in the relative concentration 

of IFNAR-1 and IFNAR-2 on γ-H2AX+ cells or increased expression of truncated isoforms as has been 

demonstrated in HIV-infected children [457, 465]. 

Dupont el al using a Jurkat T-cell line demonstrated that IFN-β signalling through the IFNAR-1 / Stat1 

pathway induced a refractory period to further signalling through the same pathway lasting around 

4 days [466].  Further, Moiseeva el al demonstrated in a mouse model, that chronic exposure to IFN-

β induced cell senescence associated with increased expression of γ-H2AX and stabilisation of p53 

[467].  Perhaps the failure to demonstrate a stronger correlation between γ-H2AX and telomere 

length in patients with chronic HCV infection relates to chronic exposure of lymphocytes to IFN-α 

and subsequent expression of γ-H2AX.  However, γ-H2AX+ cells have increased expression of IFNAR-

1, which responds to IFN-α, which would suggest that these cells have not been stimulated through 

this pathway in vivo. 
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In summary, CD8+ lymphocytes with evidence of double strand DNA breaks accumulate in 

progressive HCV infection which have the form and function of end-stage differentiated cells and fail 

to respond to IFN-α due to a post-receptor defect.  
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Chapter 7 - Overall discussion 

Age has been demonstrated to be a critically important prognostic factor in both the natural history 

of HCV and treatment-related outcome in HCV infection.   There have been very few previous 

studies investigating the immunological basis for this effect.  In this thesis I have sought to 

investigate the link between immune ageing and HCV infection. 

Subjects with HCV and severe fibrosis have significantly shorter lymphocytic telomeres when 

compared to those with mild disease or healthy controls.  Multivariate analysis demonstrated that 

short CD4+CD45RO+ telomere length was associated with severe fibrosis independent of other 

factors known to have an impact upon the prognosis of chronic HCV infection such as sex and BMI.  

Importantly, age in this model was not independently associated with severe fibrosis.  Therefore, the 

previous finding of an important relationship between age and fibrosis progression [142, 143, 145], 

may be explained by telomere length changes. 

Further, telomere length changes were associated not only with fibrosis stage but also portal 

inflammation and blood markers of impaired liver function.  In prospective study short peripheral T-

lymphocyte telomeres are associated with poor clinical outcome, independent of hepatic fibrosis or 

age. 

There were no differences between study groups in terms of telomerase activity, peripheral or 

intrahepatic lymphocyte proliferation to explain the changes in telomere length.  Telomerase activity 

was only studied in CD8+ T-lymphocytes, as these assays were performed before the results of 

subsequent multi-variate analyses were known.  These demonstrated that whilst the telomere 

length changes were greater in CD8+ lymphocytes, these were not significantly associated with 

fibrosis and clinical outcome, independent of the length of telomeres in CD4+CD45RO+ cells. 
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One unexpected finding was the demonstration of short peripheral CD8+ lymphocyte telomeres in 

the HCV-exposed, non-viraemic cohort.  There is on-going controversy about whether this group has 

truly developed sterilising immunity and is now non-infected or whether these individuals have 

occult infection with compartmentalised viral replication not detectable by current PCR techniques 

in serum.  Despite short telomeres, no individual in this group developed any of the clinical 

endpoints seen in the group with severe fibrosis over a similar time-course.  The possibility remains 

that this result is spurious; certainly increased γ-H2AX expression in CD8+ lymphocytes indicative of 

down-stream telomeric signalling was not detected in this group.  However, CD8+ telomere length 

was analysed in 32 such individuals and the effect was greater than that seen in the severe fibrosis 

group.   

As a consequence of these findings further experiments were undertaken to establish the nature of 

the hepatic lesion in subjects with HCV antibody without viraemia.  More than 95% of these 

individuals had abnormal liver histology, although the changes were usually mild.  Significantly, 

whilst the non-viraemic group had significantly shorter CD8+ telomeres than subjects with viraemic 

HCV and mild fibrosis, the groups had similar levels of intrahepatic lymphocyte proliferation, 

suggesting that chronic intrahepatic lymphocyte turnover was not the cause of the telomere length 

changes demonstrated. 

One question regarding the telomere analysis is whether this was a feature of chronic liver disease 

per se or was specific to HCV infection.  A group with chronic liver disease other than HCV was 

considered.  However, many of the other liver diseases are restricted to particular demographics; for 

example patients with autoimmune liver disease or primary biliary cirrhosis are mostly middle aged 

females, subjects with haemochromatosis are usually forty to fifty-five year old males and those with 

non-alcohol related fatty liver disease carry many risk factors for telomere shortening.  The second 

drawback of this approach is that in many other hepatic diseases liver biopsy is not performed unless 

there is significant concern about cirrhosis.  This is not the case in HCV infection where most cases 
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are offered liver biopsy to stage and grade disease accurately.  Therefore, subjects with a liver biopsy 

in the context of other liver diseases could represent a skewed cohort. 

A second potential criticism of the telomere changes demonstrated in HCV infection is the lack of 

data with regard to telomere length changes over time.  It is unclear whether those individuals who 

develop significant fibrosis had shorter telomeres than the population median before HCV infection 

and were therefore programmed from time of acute infection to develop significant fibrosis (Figure 

62A).  Other possibilities include a substantial fall in telomere length at the time of acute infection 

(Figure 62B).  However, this appears unlikely as the cytokine release attendant with significant 

turnover of the entire peripheral lymphocyte compartment would lead to patient symptoms, 

whereas acute HCV is almost always asymptomatic in immunocompetent individuals.   

 

Figure 62.  Possible mechanisms for telomere length changes over time in HCV infection.  Black 
dots and black regression lines represent telomere length changes with progressive ageing in a 
healthy population; red lines represent possible telomere length changes explaining short 
telomeres seen in subjects with severe HCV-related fibrosis.  Panel A: HCV subjects had short 
telomeres that predate HCV infection and rate of telomere length change over time is unchanged.  
Panel B: Acute HCV infection is associated with sudden decline in telomere length in the global T-
lymphocyte population, followed by decline at a normal rate.  Panel C: Patients developing 
significant fibrosis have an accelerated rate of telomere length loss compared to a healthy 
population. 

The third possibility is that subjects developing significant HCV-related fibrosis have accelerated 

telomere loss over time when compared to a healthy control population (Figure 62C).  There were 

no demonstrated differences in Ki67 staining in either peripheral or intrahepatic lymphocytes 
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between subjects with mild and severe liver disease.  Certainly increased oxidative stress in the 

context of viraemic HCV [335] could accelerate telomeric decline in the context of similar levels of 

cellular proliferation between the groups.  The gradient of the telomere vs age relationship was 

steeper in the severe cohort supporting the third model.  However, as telomere length has 

significant variance across a population no statistical differences were demonstrated.  With larger 

study numbers I suspect that this model would be demonstrated to be the correct one.   

Duration of HCV infection was not addressed in this thesis.  As between 60% and 70% of the subjects 

acquired HCV through intravenous drug usage and acute HCV infection is mostly asymptomatic the 

time point of acquisition was in most cases uncertain. A further 10% - 25% had no known risk factor 

for acquisition.  As described in the introduction, recent data from UAPMP has found that only 22% 

of IDVUs acquire HCV during their first three years of intravenous drug usage.  Therefore, taking the 

time-point of acquisition [142] as the start of injecting behaviour would have been incorrect.  Whilst 

analysing a single time point of infection cohort such as the Dublin Anti-D cohort would allow 

inferences about duration of infection and immune ageing, a ‘real-world’ cohort as recruited herein 

would not.  

Demonstrating telomere length changes prospectively through the flow-FISH assay proved 

unfeasible over the time course of a PhD thesis.  The telomere changes would have been too small 

to detect and fibrosis progression not re-established through a second liver biopsy.  This question 

will be further addressed in future work investigating telomere length from previously acquired liver 

biopsies taken five years apart in subjects who either did or did not have progressive hepatic fibrosis.  

I would hypothesise that subjects with progressive liver disease will have greater telomere length 

loss compared to subjects who did not have progressive liver disease.  

It was demonstrated prospectively that lymphocyte telomere length and CD4+ telomere length in 

particular predicted treatment response,  independent of other known predictive factors such as 
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viral load and viral genotype.  Whilst these virus-derived variables are in routine clinical use to guide 

anti-viral therapy, no such factors yet exist to describe the immunological abilities or reserve of the 

infected host.  Age is known to be important and that was confirmed here; no subject older than 

fifty-five years of age successfully cleared HCV on anti-viral therapy. 

The data are consistent with the only other similar immunological investigation in this area.  Manfras 

et al demonstrated that increased CD57 expression and oligoclonality of CD8+ lymphocytes, changes 

of immune ageing and senescence, predicted a failure to respond to anti-viral therapy [399].  These 

data and the work of Manfras et al should stimulate debate about whether we should be considering 

IFN-α therapy earlier in the course of HCV infection; a change that is already taking place in our 

centre.  Treating patients at a younger age with lower levels of fibrosis is known to lead to better 

outcomes with higher rates of virological response. 

Despite multiple attempts, it proved impossible to develop a reliable assay to demonstrate HCV-

specific telomere length in subjects with viraemic HCV infection.  The frequency of the cells in most 

subjects was too low to permit accurate inferences about telomere length.  One avenue for future 

exploration is measuring telomere length in CD8+ lymphocytes that express the NK cell marker 

CD161.  Recent work, published after my experimental work had ceased, suggested that CD8+ 

expression of this marker was specific for a subset of HCV-specific CD8+ lymphocytes [468].  

However, choosing adequate controls for comparison could be difficult.  These cells may be 

functionally silent; comparing with cells responding to other antigens through cytokine expression 

may be an erroneous comparison. 

All the telomere length changes demonstrated were applicable to all T cells i.e. the global peripheral 

T-lymphocyte compartment.  This raises significant questions about how such telomere length 

changes occur in the absence of HCV-antigen driven chronic cell turnover.  Previous work from UCL 

has demonstrated that CMV can lead to telomere length changes and cell-surface phenotype 
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changes in both CMV-specific and non-CMV-specific CD4+ lymphocytes [356].  The unproven 

hypothesis is that chronic infection is associated with chronic inflammation leading to low-grade 

cytokine release.  It has been suggested that this inflammatory cytokine release leads to either non-

specific cell turnover or long-term inhibition of telomerase activity preventing its normal action of 

maintaining telomere length in memory cell populations.  Certainly, the large Scandinavian 

population studies have demonstrated that past CMV infection in the healthy elderly is associated 

with an increased risk of dying during prospective follow-up [353, 355], leading to the suggestion 

that a CMV vaccination program might be justified to protect the whole immune system from the 

chronic effects of CMV infection [357, 410]. 

Similar concerns arise when discussing the findings of increased CD8+ lymphocyte γ-H2AX 

expression in those with significant HCV-related liver disease.  As the expression occurs in the global 

T-lymphocyte compartment, what is the relevance for adaptive anti-HCV immunity? 

Given that we have demonstrated a significant link between progressive HCV infection and 

shortened telomere length and other groups have demonstrated similar relationships to hepatocyte 

telomere length [447, 469], study of the changes in other cell types would be of interest.  Certainly it 

is known that HCV infection is associated with B-cell non-Hodgkin’s lymphoma [470], rather than T-

cell neoplasms suggesting that B-cell telomeres could be significantly affected in the context of 

chronic HCV infection. 

Criticisms could be made that the relationship between telomere length and γ-H2AX expression was 

not demonstrated at the level of the single cell basis.  However, γ-H2AX expression could not be 

detected following the heat step integral to the DNA probe annealing in the telomere length assay.  

Further, because the cells could only be identified after fixation and permeabilisation in methanol 

this prevented cell sorting or separation to further investigate the nature of these cells.  Further, 
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because the cells were fixed, Western blotting or PCR analysis to investigate intracellular second 

messenger pathways or telomere length by PCR was impossible. 

The failure to demonstrate correlation between γ-H2AX expression and telomere length in the CD4+ 

population is puzzling given that subjects with severe fibrosis had the shortest CD4+ telomeres 

(chapter three).  Further, telomeres were shorter in cells that expressed CD45RO or lacked CD27, 

precisely the same phenotype as CD4+ γ-H2AX+ cells.  The expression of γ-H2AX in extra-telomeric 

DNA related to non-telomeric DDR signalling or replication-associated foci is the likely explanation 

[368, 412, 460]. 

It was demonstrated that cells expressing γ-H2AX had the form and function of cells with end-stage 

differentiation, with a high IFN-γ and low IL-2 expression pattern.  Further, γ-H2AX+ CD8+ 

lymphocytes fail to respond to exogenous IFN-α by phosphorylating Stat1.  On further analysis the 

underlying defect was found to be post-receptor; further assays demonstrated that the defect on 

these cells lay in the ability of the intracellular tail of the IFN-α receptor to phosphorylate Stat1. 

It is unlikely that the lesion demonstrated in the IFN-α signalling pathway is isolated to one single 

pathway in these cells.  If one were to investigate several signalling pathways, it is likely that 

signalling block occurs in other pathways.  However, I chose to investigate the IFN-α signalling 

pathway due to its relevance to both the natural history and treatment outcome of chronic HCV 

infection.  Similarly it is not likely that the failure to respond to IFN-α suddenly develops in this 

lymphocyte subset.  Rather, that responsiveness to IFN-α may drop with progressive cellular 

differentiation and clonal age and that cells which express γ-H2AX+ are just one example along a 

spectrum of progressive pathway failure. 

To further investigate the effect of cellular senescence upon IFN-α signalling would require the use 

of cell lines and employing more sensitive assays such as western blotting.  As the γ-H2AX positive 
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lymphocytes proved difficult to separate from the global lymphocyte compartment, these methods 

were not employed in this project. 

Much previous work has demonstrated the effect of different HCV proteins on the IFN-α signalling 

pathway; both HCV core and NS5A have been demonstrated to prevent Stat1 phosphorylation, 

dimerisation and nuclear translocation [127, 130].  Of great interest is the recent work of 

Tarakanova et al demonstrated the effect of a gamma-herpes virus upon production of γ-H2AX in 

macrophages [461].  They were able to demonstrate that viral encoded proteins could lead to 

phosphorylation of histone 2.  Further, they were able to demonstrate that formation of γ-H2AX 

greatly enhanced viral replication.  Whether HCV is able to modulate the cell cycle status or double 

strand DNA break pathway of hepatocytes is unknown.  However, previous work from our laboratory 

has demonstrated increased levels of hepatocyte cell-cycle arrest in subjects with significant HCV-

related hepatic fibrosis [344].   

The issue of whether HCV can infect lymphocytes at all is controversial [471, 472].  There is perhaps 

more evidence for HCV infection of B-cells than T-cells.  However, a mechanistic link between HCV-

encoded proteins and the development of γ-H2AX expression in CD8+ lymphocytes has not been 

explored. 

Future work in this area would target further characterisation of this pathway in order to establish 

the precise pathway location of blockage.  I would also aim to study other pathways in these cells to 

establish the specificity of the pathway lesions.  I would also aim to perform further cell phenotyping 

to try to establish a specific cell surface marker than correlated with γ-H2AX expression permitting 

Western Blotting or PCR investigation of intracellular secondary messengers; if these cells could be 

isolated without fixation then microarray technology would permit rapid analysis of gene expression 

in comparison to the global CD8+ population. 
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The recent data from the genome-wide association study by Ge et al demonstrating a polymorphism 

in the IFN-λ gene associated with anti-viral treatment success may change the context of our results 

[157].  It has for many years been assumed that the most important endogenous and exogenous 

anti-viral cytokine was IFN-α.  However, in future treatment of HCV infection may involve IFN-λ; 

clearly the response of γ-H2AX cells to IFN-λ will become an important experiment to perform. 

Of further interest from the data I have generated in this thesis is the post-transplantation course of 

subjects with HCV infection.  Once subjects have developed cirrhosis, and as I have demonstrated 

significant immune changes within the global T-lymphocyte compartment, they may undergo 

transplantation.  Is it reasonable that we expect such subjects to have a similar life expectancy to the 

general population when we have only addressed the nature of their liver condition?  After 

transplantation these individuals may well have an immune system with significant impairment, 

related to their pre-transplant condition.  In fact, subjects transplanted for HCV infection have one of 

the worst post-transplantation outcomes in terms of both patient and graft survival [473] when 

compared to subjects transplanted for other conditions, including HBV.  Current work hopes to 

investigate the effect of transplantation upon lymphocyte telomere length.  It will be interesting to 

see whether lymphocyte telomeres are able to elongate after transplantation.  Further, if they do 

not, does lymphocytic telomere length predict post-transplant sepsis, graft survival and death? 

Many of the problems inherent in this project have related to the study of immune ageing and 

senescence.  Because of the complex interplay between pathogen and host over many years, even 

decades, this field do not lend itself for prospective interventional studies.  Similarly, small animal 

models such as mouse and rat have such a short generation time that they do not use replicative 

ageing mechanisms such as telomere shortening to protect chromosomes and the organism.  

Similarly such organisms do not support HCV replication, therefore small animal experiments were 

not feasible.  Similarly, whilst recent advances in the in vitro study of HCV with the replicon system 
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have allowed great advances in knowledge of HCV entry, translation and replication, they simply 

would not allow study of the long-term interplay between pathogen and host.   

The only large animal model of HCV infection is the chimpanzee, which does use replicative ageing.  

Whilst this model would be suitable for the study of immune ageing from the time-point of 

acquisition the numbers of animals needed to demonstrate small changes over the chronic phase of 

infection make this approach uneconomic.   

Therefore, whilst human studies are slow and generally descriptive rather than interventional, they 

currently represent the only approach to studying immune ageing in the context of HCV infection. 
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