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Abstract
The Teukolsky master equation describes the dynamics of massless fields with
spin on a Kerr black hole. Under separation of variables, spin-reversal for this
equation is accomplished through the so-called Teukolsky–Starobinsky iden-
tities. These identities are associated to the so-called Teukolsky–Starobinsky
constants, which are spin-dependent. We collect some properties of the
Teukolsky–Starobinsky constants and dispel some myths present in the liter-
ature. We show that, contrary to popular belief, these constants can be neg-
ative for spin larger than 2. Such fields thus exhibit a novel form of energy
amplification which occurs for non-superradiant frequencies.

Keywords: black holes, linearized gravity, classical general relativity, Teukolsky
master equations
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1. Introduction

Since as early as the 1950s [RW57], the study of perturbations of stationary black holes has
been a central theme of research in classical general relativity. In 4 spacetime dimensions and in
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vacuum, the paradigmatic and, conjecturally, only examples of stationary black hole solutions
are the rotating black holes in the Kerr family [Ker63], parameterized by mass M > 0 and
specific angular momentum |a| � M.

While studying stability of Kerr, Teukolsky [Teu73] introduced what became to be known
as the Teukolsky master equations. In Boyer–Lindquist coordinates (t, r, θ,φ) ∈ R× (r+ ≡
M +

√
M2 − a2,∞) × S

2 and with Kinnersley’s choice of spin frame, these are given by[
�ga,M +

2(±s)
ρ2

(r − M)∂r +
2(±s)
ρ2

(
a(r − M)

Δ
+ i

cos θ

sin2 θ

)
∂φ

+
2(±s)
ρ2

(
M(r2 − a2)

Δ
− r − ia cos θ

)
∂t +

1
ρ2

(
±s − s2 cot2 θ

)]
α[±s] = 0. (1.1)

where Δ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ and �ga,M the covariant scalar wave operator
on the Kerr background.Here,±s denotes a spin parameter, makingα[±s] a spin-weighted func-
tion; this notion, and hence (1.1), is well-defined for any s ∈ 1

2Z�0, see [PR84]. The Teukolsky
master equations (1.1) play a crucial role in characterizing perturbations of Kerr black holes.
For s = 0, they reduce to the scalar wave equation on Kerr. For s = 1 and 2, they describe
the dynamics of gauge-invariant electromagnetic and curvature quantities under the linearized
Maxwell and Einstein equations, respectively, in the Newman–Penrose formalism [NP62].
Some half-integer spin cases can also be interpreted physically: s = 1/2 corresponds to the
Dirac equation for (massless) neutrinos; the case s = 3/2 is known as the Rarita–Schwinger
equation. The case s > 2 of the Teukolsky master equations (1.1), although less often consid-
ered, is of mathematical interest in its own right and might play a role in higher-spin theories
[Vas96].

In this paper, we focus on separable solutions of (1.1) (see [Car68, Teu73]): for ω ∈ R,
m − s ∈ Z and l ∈ Z�max{|m|,s}, these take the form

α[±s](t, r, θ,φ) = e−iωt eimφS[±s], aω
ml (θ)α[±s], aω

ml (r),

where S[±s], aω
ml and α[±s], aω

ml satisfy ODEs, respectively referred to as the angular ODE, given
below as (2.1), and the radial ODE, given below as (3.1).

As discovered by Starobinsky [SC74] and Teukolsky [TP74] for s = 1, 2 and later general-
ized to all s ∈ 1

2Z�0 [KMW89], the angular and radial Teukolsky ODEs of spin ±s exhibit a
curious property: on applying a certain first order differential operator s times to a solution to
the ODE with spin +s, one obtains a solution to the ODE with spin −s, and vice-versa. Though
seldom remarked in the classical literature, each of the radial Teukolsky–Starobinsky opera-
tors of spin ±s acts differently on the ingoing and outgoing components of the radial solutions,
and a similar statement is true in the angular setting, see propositions 2.5 and 3.1 below. Nev-
ertheless, by applying these operators in succession to a solution of the angular or radial ODE,
one can check that, at least for |s| � 3, the exact same solution is recovered up to a constant:
respectively, the angular Teukolsky–Starobinsky constant, denoted by Bs = Bs(aω, m, l), and
the radial Teukolsky–Starobinsky constant, denoted by

Cs = Cs(a, M,ω, m, l).

It is on the radial Teukolsky–Starobinsky constant, Cs, that we focus on for the rest of this
introduction.
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In the classical literature, see e.g. [Cha90, KMW89, KMW92], Cs is frequently denoted as
the square of the modulus of a complex number. Taking this claim literally, we would conclude

s ∈ 1
2
Z�0 =⇒ Cs(a, M,ω, m, l) � 0 ∀ (ω, m, l) real. (×)

To justify (×), some authors point to the fact that α[−s] and Δsα[+s] satisfy complex conju-
gate equations. Unfortunately, this argument is incorrect: (×) does not follow from the fact that
these radial ODEs are complex conjugates of each other. In fact, we show that (×) is manifestly
false for general spin s:

Fact 1 (TS constant sign I). The radial Teukolsky–Starobinsky constant can be negative:
for any |a| ∈ (0, M],

s ∈
{

5
2

, 3

}
=⇒ ∃ (ω, m, l) real such that Cs(a, M,ω, m, l) < 0.

The proof of fact 1 is short and elementary: we require only the high frequency expansions
for spin-weighted spheroidal angular eigenvalues, on whichCs depends (see lemma 3.3), which
were obtained4 in recent work of the first author and collaborators [CO05, COW19]. We note
here the importance of the assumption a 
= 0: it is well-known that Cs(a = 0, M,ω, m, l) � 1,
at least if |s| � 3.

The implications of fact 1 are quite surprising. To explain these, recall that the Teukol-
sky–Starobinsky identities serve to define an energy identity for α[±s], which will thus depend
on the constants Cs; this observation goes back to [TP74] but the reader may find a rigorous
statement below in lemma 4.1. In the case s = 0, corresponding to the scalar wave equation,
where Cs=0 ≡ 1 plays no role in the energy, it is well-known that energy amplification occurs
if and only if the frequency parameters (ω, m, l) are superradiant, i.e. such that

ω(ω − mω+) < 0 , ω+ ≡ a
2Mr+

. (1.2)

Condition (1.2) is intimately tied to the Kerr geometry, as ω+ is uniquely specified by the
Kerr parameters and the amplification effect generated can be linked to the presence of an
ergoregion in Kerr. For higher s, the superradiant condition is

s ∈ Z�0 and (1.2) holds, (1.3)

as the half-integer spin particles do not interact with the ergoregion. If one could show Cs � 0
unconditionally, then superradiance (1.3) would be the only source of energy amplification,
with half-integer spins experiencing none. Such claims are often made in the classical literature.
However, in view of fact 1, we see that this is another fiction: in general, energy amplification
may occur for half-integer spins and, in general, it may occur for integer spins and (ω, m, l) not
in (1.3):

Fact 2 (Non-superradiant amplification). If s = 5/2 and |a| ∈ (0, M], there are real
(ω, m, l) for which there is energy amplification. If s = 3 and |a| ∈ (0, M], there are real (ω, m, l)
such that the superradiant condition does not hold, i.e. ω(ω − mω+) > 0, but for which there
is energy amplification.

4 Earlier work on these limits [BRW77] suffered from flaws which were corrected in the references given.
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Some numerical evidence of this novel non-superradiant amplification effect is given below in
section 4.

Remark 1.1. It is important to note that the novel amplification effect uncovered in fact 2 in
no way invalidates the mode stability theorems for (1.1) obtained in [And+17, Shl15, TdC20,
Whi89]. To explain why this is, we briefly review the strategy of these works.

For spin −s, mode stability is shown in these works by application of the transformations
introduced in [TdC20, Whi89]. These transformations map solutions of (1.1) to solutions of
a scalar wave equation on a new, ergoregionless, spacetime. The energy identity for this new
scalar wave equation with real potential, as one expects for scalar fields, does not depend on
any Teukolsky–Starobinsky-type constant.

Now consider spin +s. If the frequency triple (ω, m, l) is such that the Teukol-
sky–Starobinsky Cs(a, M,ω, l) constant vanishes, then one may easily deduce that there is
no mode solution associated to (ω, m, l), i.e. no separable solution to (1.1) which is outgo-
ing at the spacetime’s future null infinity and ingoing at the black hole’s future event horizon,
see [TdC20, lemma 2.19]. Otherwise, if (ω, m, l) is such that Cs(a, M,ω, l) 
= 0, the Teukol-
sky–Starobinsky identities are applied to show that mode stability for spin −s implies mode
stability for spin +s.

Remarkably, even though the classical argument commonly used to justify this is incorrect,
non-negativity of Cs does hold for the physical spins s � 2:

Fact 3 (TS constant sign II). If s � 2, the radial Teukolsky–Starobinsky constant is never
negative: for any |a| ∈ [0, M],

s ∈
{

1
2

, 1,
3
2

, 2

}
⇒ Cs(a, M,ω, m, l) � 0 ∀ (ω, m, l) real.

Hence, for s ∈ {1/2, 3/2}, there is no energy amplification, and for s ∈ {1, 2}, energy
amplification occurs if and only if (1.2) holds.

Fact 3 follows not from any property of the radial ODE alone, but from a comparison between
the two Teukolsky–Starobinsky constants Cs and Bs, as the latter can be easily shown to have
definite sign. To the best of our knowledge, it was Teukolsky and Press [TP74] who first noted
this in the s = 1 case.

Remark 1.2. Fact 3 implies that, as claimed in the literature, Cs can sometimes—whenever
s � 2, to be precise—be denoted as the square of a complex number. Most literature avail-
able, such as the classical reference [Cha83], focuses precisely on such cases. However, fact 1
highlights the importance of stressing the caveat in bold.

In light of the results present here for the sign of Cs, it is natural to try to understand whether
Cs(a, M,ω, m, l) = 0 for some real (ω, m, l). Such frequencies are known as real algebraically
special [Cha84, Wal73] Since Cs(a, M,ω = 0, m, l) � 1, at least for s � 3, it follows from fact
1 that

Fact 4 (AS frequencies I). There are real algebraically special frequencies for s > 2: for
any |a| ∈ (0, M],

s ∈
{

5
2

, 3

}
⇒ ∃ (ω, m, l) real such that Cs(a, M,ω, m, l) = 0.
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In the case s � 2, fact 3 gives one hope of ruling out algebraically special frequencies. We
show that these hopes are well-founded, thus answering a question raised in [Wal73]:

Fact 5 (AS frequencies II). There do not exist real algebraically special frequencies for
s � 2: for any |a| ∈ [0, M],

s ∈
{

1
2

, 1,
3
2

, 2

}
⇒ Cs(a, M,ω, m, l) > 0 ∀ (ω, m, l) real.

To the best of our knowledge, prior to this work, this result had only been noted in the s = 2
case, in work of the second author and collaborators, in [SRTdC20, TdC20].

We contrast fact 5 with the following result

Fact 6 (TS lower bound). For any a ∈ (0, M], as |ω| →∞, we have

s ∈
{

1
2

, 1,
3
2

}
⇒ ∃ (m, l) such that Cs(a, M,ω, m, l) = O(|ω|−N) ∀ N > 0 ,

hence inf Cs = 0;

s = 2 ⇒ ∀ (m, l) Cs(a, M,ω, m, l) = O(ω2) , hence inf C2 > 0.

Indeed, for fixed a 
= 0, we show that the limit when |ω| →∞ is algebraically special for
some (l, m) if s � 3/2. In the case s = 2, no such limit can be algebraically special: the com-
parison with the angular Teukolsky–Starobinsky constant gives C2(a, M,ω, m, l) � 144M2ω2

and it is the latter term which ensures that C2 has a positive lower bound.
To conclude this introduction, we remark that we fully expect that our facts 1, 2 and 4

can be generalized to higher s ∈ 1
2Z�0. Furthermore, we expect facts 3, 5 and 6 to also hold

for the Kerr–(anti-)de Sitter black hole spacetimes, for which there is a generalization of the
Teukolsky–Starobinsky identities and constants [Tor88] (see also the more recent [DS13]).

2. The angular Teukolsky–Starobinsky constants

In this section, we introduce the angular ODE corresponding to the Teukolsky equation (1.1).
We then define the angular Teukolsky–Starobinsky constants and characterize their sign.

2.1. The angular ODE

Consider the angular ODE

− 1
sin θ

d
dθ

(
sin θ

d
dθ

)
Ξ[±s], (ν)

mΛ (θ)

+

(
(m ± s cos θ)2

sin2 θ
+ ν2 sin2 θ + 2ν(±s) cos θ

)
Ξ[±s], (ν)

mΛ (θ)

= Λ · Ξ[±s], (ν)
mΛ (θ), (2.1)

where θ ∈ (0, π), s ∈ 1
2Z�0, m − s ∈ Z, ν ∈ R and Λ ∈ R. An asymptotic analysis leads us to

conclude that for a solution to (2.1) there is a unique set of real numbers a[±s]
i , i = 1, . . . , 4,

such that

Ξ[±s], (ν)
mΛ = a[±s]

1 Ξ[±s]
norm,1 + a[±s]

2 Ξ[±s]
norm,2 = a[±s]

3 Ξ[±s]
norm,3 + a[±s]

4 Ξ[±s]
norm,4, (2.2)
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where Ξ[±s]
norm,i, for i = 1, . . . , 4, encode the two linearly independent behaviors that solutions

may take at the regular singular points θ = 0, π [Olv73, chapter 5]:

• If |m| 
= s, take Ξ[±s]
norm,1(1 − cos θ)−

m±s
2 and Ξ[±s]

norm,2(1 − cos θ)
m±s

2 to be smooth as θ → 0
and normalized at the θ = 0 end;

• If |m| 
= s, take Ξ[±s]
norm,3(1 + cos θ)−

m∓s
2 and Ξ[±s]

norm,4(1 − cos θ)
m∓s

2 to be smooth as θ → π
and normalized at the θ = π end;

• If |m| = s, take Ξ[+s]
norm,4, Ξ[+s]

norm,1, Ξ[−s]
norm,3 and Ξ[−s]

norm,2 exactly as above; the definition of the
remaining functions requires a logarithmic correction which we need not specify here.

We say that Ξ[±s], (ν)
mΛ is a smooth (±s)-spin-weighted function if a[±s]

4 = a[±s]
2 = 0 when

m > s, if a[±s]
3 = a[±s]

1 = 0 when m < −s and if a[+s]
3 = a[+s]

2 = 0 = a[−s]
4 = a[−s]

1 when
|m| � s. These conditions ensure that eimφΞ[±s], (ν)

mΛ (θ) are smooth sections of the Hopf bun-
dle over S2 which transform in a particular way (according to the value of ±s) under rotation
of the orthonormal frame in the tangent space of S2, see for instance [2019, section 2.2.1] and
[Bey+14, CL78]. The space of such solutions is somewhat small, as the following proposition
indicates:

Proposition 2.1 (Smooth spin-weighted spheroidal harmonics). Fix s ∈ 1
2Z�0,

let m − s ∈ Z, and assume ν ∈ R. Consider the angular ODE (2.1) with the boundary con-
dition that eimφS[±s], (ν)

m,λ is a non-trivial, normalized, smooth (±s)-spin-weighted function.
There are countably many such solutions to this eigenvalue problem. Using l as an index, we
write such solutions, also called (±s)-spin-weighted spheroidal harmonics with spheroidal
parameter ν, as eimφS[±s], (ν)

ml and denote the corresponding eigenvalues, which are real and
independent of the sign chosen for s, by Λ(ν)

sml. The parameter l is chosen so that l − s ∈ Z,
l � max{|m|, s} and Λ(0)

sml = l(l + 1) − s2 � s. The following alternative notation will also be
used:

Ł(ν)
ml :=Λ(ν)

sml − 2mν + s. (2.3)

Proof. We refer the reader to the careful treatment of the Sturm–Liouville theory for (2.1)
for general s ∈ 1

2Z in [HW74, Ste75], and [MS54] for the s = 0 case. �

Remark 2.2. In what follows, we often lighten the notation, replacing the spin-weighted
spheroidal eigenvalues Λ(ν)

sml by Λ and similarly for Ł. However, non-bold characters Λ and
Ł ≡ Λ− 2mν + s are not the same: they denote real parameters which are not constrained to
be the eigenvalues identified in proposition 2.3 for some (m, l).

Given that (2.1) is analytic in the coefficient ν, the spin-weighted spheroidal eigenvalue
Ł(ν)

sml admits an expansion in powers of ν as |ν| →∞. Such expansions for s 
= 0 go back
to [BRW77], but they were completed and corrected by the work of the first author and
collaborators:

Proposition 2.3 ([CO05, COW19]). Fix s ∈ 1
2Z�0, a number m such that m − s ∈ Z, a

number l such that l − max{|m|, s} ∈ Z�0, and ν ∈ R. Let Ł(ν)
sml be as in proposition 2.1. Then,

as ν →∞, for any N > 0, we can find real constants Ak = Ak(s, l, m, ν), k � N, such that

Ł(ν)
sml =

N∑
k=−1

Ak

νk
+ O

(
ν−N−1

)
. (2.4)

6
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The first two coefficients are

A−1 = 2(qsml − m) , A0 = −1
2

[
(qsml)

2 − m2 + 1 − 2s
]

,

where, denoting by odd(·) a function on Z which is one if the argument is odd and zero
otherwise, we may express qsml as

qsml =

{
l + 1 − odd(l + m), if l � |m + s|+ s

2l + 1 − (|m + s|+ s), if l < |m + s|+ s
. (2.5)

The following coefficients may be computed as follows. Let

Q+
sml,n ≡ (2n + qsml + s − |m − s|+ 1)(2n + qsml − s + |m + s|+ 1),

Q−
sml,n ≡ (2n + qsml + s + |m − s| − 1)(2n + qsml − s − |m + s| − 1).

Then, for k � 1, we have

Ak =
1
4

Q+
sml,0a1,k +

1
4

Q−
sml,0a−1,k, (2.6)

where a1,k and a−1,k are computed from the following recursive relations for n 
= 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

an,|n| = − 1
16n

{
Q−

sml,nan−1,|n|−1, n � 1
Q+

sml,nan+1,|n|−1, n � −1

}
,

an,|n|+1 =
1
2

(qsml + n)an,|n| −
1

16n

{
Q−

sml,nan−1,|n|, n � 1
Q+

sml,nan+1,|n|, n � −1

}
,

an, j+1 =
1
2

(qsml + n)an, j −
Q+

sml,n

16n
an+1, j −

Q−
sml,n

16n
an−1, j +

∑
i�1

Ai

4n
an,i− j , j � |n|+ 1,

(2.7)

initialized by the choice a0,0 = 1 and a0,j = 0 if j 
= 0. In particular, for k � 7, Ak are explicitly
determined in [COW19, equations (3.15)–(3.21)].

Remark 2.4. Due to the symmetries of the angular ODE (2.1), the high frequency limit
ν →−∞ follows from proposition 2.3 by replacing m →−m.

2.2. The angular Teukolsky–Starobinsky identities and constants

In this section, we will require the notation

L̂±
n ≡ d

dθ
±
( m

sin θ
− ν sin θ

)
+ n cot θ, (2.8)

where θ ∈ (0, π), n, m ∈ 1
2Z, ν ∈ R.

Proposition 2.5 (Angular TS identities). Fix s ∈ 1
2Z�0, m such that m − s ∈ Z\{0},

Λ ∈ R and ν ∈ R. Then, if Ξ[±s], (ν)
mΛ solve (2.1) and admit the decomposition (2.2),

7
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(
2s−1∏
k=0

L̂+
s−k

)
Ξ[+s], (ν)

mΛ = a[+s]
1 B

(1)
s Ξ[−s]

norm,1 + a[+s]
2 B

(7)
s Ξ[−s]

norm,2

= a[+s]
3 B(4)

s Ξ[−s]
norm,3 + a[+s]

4 B(6)
s Ξ[−s]

norm,4,(
2s−1∏
k=0

L̂−
s−k

)
Ξ[−s], (ν)

mΛ = a[−s]
1 B(3)

s Ξ[+s]
norm,1 + a[−s]

2 B(5)
s Ξ[+s]

norm,2

= a[−s]
3 B(2)

s Ξ[+s]
norm,3 + a[−s]

4 B(8)
s Ξ[+s]

norm,4,

(2.9)

where the products on the left-hand side are replaced by the identity if s = 0 and, if s 
= 0,
have index k increasing from right to left. Here, B(i)

s = B(i)
s (ν, m,Λ) for i = 1, . . . , 8. Indeed,

if s = 0, B(i)
s = 1 for i = 1, . . . , 8. For s 
= 0, we easily obtain

(−1)2sB(2)
s = B(6)

s = B(1)
s = (−1)2sB(5)

s = 2s
2s−1∏
j=0

(
m + s − 3

2
j

)
;

the other B(i)
s can be computed explicitly in terms of the first s coefficients of the asymptotic

expansions of Ξ[+s]
norm,1, Ξ[+s]

norm,3, Ξ[−s]
norm,2 and Ξ[−s]

norm,4, which in turn can be explicitly computed in
terms of (ν, m,Λ).

Proof. The result follows from differentiating the asymptotic formulas for Ξ[±s]
norm,i,

i = 1, . . . , 4. In doing so, it can be useful to note that

2s−1∏
k=0

L̂±
s−k = (sin θ)2s

(
L̂±

s

sin θ

)2s

.

For further details, we refer the reader to an analogous proof, in the setting of the radial
Teukolsky–Starobinsky identities, in [TdC20, proposition 2.14]. �

We are ready to define the angular Teukolsky–Starobinsky constants:

Definition 2.1 (Angular TS constants). Fix s ∈ 1
2Z�0, m such that m − s ∈ Z, Λ ∈ R,

and ν ∈ R. Consider the operator⎛⎝2s−1∏
j=0

L̂∓
s− j

⎞⎠(2s−1∏
k=0

L̂±
s−k

)
= (sin θ)2s

(
L̂∓

s

sin θ

)2s

(sin θ)2s

(
L̂±

s

sin θ

)2s

,

with indices j, k increasing from right to left on the product, and the latter being replaced by
the identity if s = 0. If solutions of the angular ODE (2.1) with spin ±s are eigenfunctions
of the above operator corresponding to the same eigenvalue, the eigenvalue is denoted by
Bs = Bs(aω, m,Λ) and it is called the angular Teukolsky–Starobinsky constant.

Remark 2.6. Note that, in definition 2.1, we do not constrain Λ to be a spin-weighted
spheroidal eigenvalue, as defined in proposition 2.1. In what follows, if we do take Λ = Λ(ν)

sml

and Ł = Ł(ν)
sml for some l, then we write Bs = Bs(ν, m, l).

8
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2.3. Examples of angular Teukolsky–Starobinsky constants

By direct computation, we can check that an angular Teukolsky–Starobinsky constant exists
at least for low values of Teukolsky spin:

Lemma 2.7. For any s ∈ {0, 1
2 , 1, 3

2 , 2, 5
2 , 3}, there exists an angular Teukolsky–Starobinsky

constant. Moreover, it is given by:

B0(ν, m,Λ) = 1,

−B 1
2
(ν, m,Λ) = Ł,

B1(ν, m,Λ) = Ł2 + 4mν − 4ν2,

−B 3
2
(ν, m,Λ) = Ł2 (Ł + 1) − 16νŁ(ν − m) + 16ν2,

B2(ν, m,Λ) = Ł2(Ł + 2)2 + 40νŁ2(m − ν) + 48νŁ(m + ν) + 144ν2(m − ν)2,

−B 5
2
(ν, m,Λ) = Ł2(Ł + 3)2 (Ł + 4) + 16mνŁ(3 + Ł)(8 + 5Ł)m

− 16ν2 (Ł(−12 + Ł(2 + 5Ł))) + 1024(1 + Ł)ν2m2

+ 1024ν3(1 − 2Ł)m + 1024ν4(−2 + Ł),

B3(ν, m,Λ) = Ł2(Ł + 4)2(Ł + 6)2 + 4mνŁ(4 + Ł)(360 + 7Ł(36 + 5Ł))

+ 4ν2 (−Ł(4 + Ł)(−120 + 7Ł(4 + 5Ł))

+ 4(900 + Ł(1140 + 259Ł))m2
)

+ 32ν3 m
(
300 − 260Ł − 259Ł2 + 450m2

)
+ 16ν4 (100 + Ł(−620 + 259Ł))

− 43200ν4m(m − ν) − 14400ν6. (2.10)

In all the above examples, if ν = 0 and Ł = Ł(ν)
sml corresponds to a spin-weighted spheroidal

eigenvalue with spheroidal parameter ν = 0 for some l, then (−1)2sBs(ν = 0, m, l) � 1.

Proof. The proof of existence is similar to the case of the radial constants, in lemma 3.3
to come, so we do not present it here, though see the attached Mathematica notebook for the
computations (https://stacks.iop.org/CQG/38/165016/mmedia). For the final statement, it is
easy to see that, if ν = 0, only the first term of each expression in (2.10) remains. The least
value is attained by −B1/2(ν = 0, m, l = s = 1/2) = 1. �

Remark 2.8. We expect that the angular Teukolsky–Starobinsky constant can be defined for
all s ∈ 1

2Z�0. However, no proof has been given in the literature.

2.4. Properties of the angular Teukolsky–Starobinsky constants

If they exist, Bs are non-negative (integer s) or non-positive (half-integer s):

Lemma 2.9 (Sign of angular TS constants). If an angular Teukolsky–Starobinsky
constant exists for a certain (ν, m,Λ) satisfying the constraints in definition 2.1, then
(−1)2sBs(ν, m,Λ) � 0.

9
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Proof. To show that one has (−1)2sBs � 0, recall the integration by parts identity of [Cha83,
section 68, lemma 4] (earlier in [TP74]): for f and h sufficiently regular functions of θ,∫ π

0
h
(
L±

n f
)

sin θdθ = −
∫ π

0
f
(
L∓
−n+1h

)
sin θdθ. (2.11)

Without loss of generality, let Ξ[±s] be real solutions to (2.1) normalized to have unit L2

norm. Then, by (2.11), assuming existence of the constant,

Bs =

∫ π

0
Ξ[±s]

2s−1∏
j=0

L∓
s− j

2s−1∏
k=0

L±
s−kΞ

[±s] sin θdθ

= (−1)2s

∫ π

0

(
2s−1∏
k=0

L±
s−kΞ

[±s]

)2

sin θdθ, (2.12)

where the integral on the right-hand side is non-negative. �

Remark 2.10. We note that the non-negativity of (−1)2sBs provides nontrivial constraints
on the values that Λ can take in terms of m and ν; see also lemma 3.3 for concrete examples.

We may go further when we let Λ = Λ(ν)
sml be a spin-weighted spheroidal eigenvalue for

some l:

Lemma 2.11 (Zeros of angular TS constants). Fix s ∈ 1
2Z�0, a number m such that

m − s ∈ Z, a number l such that l − max{|m|, s} ∈ Z�0, and ν ∈ R. If an angular Teukol-
sky–Starobinsky constant exists for such (ν, m, l), then (−1)2sBs(ν, m, l) > 0.

Proof. If the angular Teukolsky–Starobinsky constant exists, then in proposition 2.5, we
must have

B(3)
s =

Bs

B
(1)
s

, B(4)
s =

Bs

B
(2)
s

, B(7)
s =

Bs

B
(5)
s

, B(8)
s =

Bs

B
(6)
s
.

We deal first with the case |m| > s, where we follow the strategy of the proof of [TdC20,
lemma 2.19], an analogous result for the radial ODE. Suppose m < −s and Bs = 0; for a
spin-weighted spheroidal harmonics, we have a[±s]

3 = a[±s]
1 = 0, but by (2.9), a[−s]

2 , a[+s]
4 = 0

too, which would force S[±s], (ν)
ml ≡ 0. Now suppose m > s and Bs = 0; for a spin-weighted

spheroidal harmonics, we have a[±s]
4 = a[±s]

2 = 0, but by (2.9), this implies a[+s]
1 , a[−s]

3 = 0 too,
which leads to another contradiction.

Finally, suppose −s � m � s, so that a spin-weighted spheroidal harmonic has a[+s]
3 =

a[+s]
2 = 0 = a[−s]

4 = a[−s]
1 . On the other hand, from the formula (2.12), we find that Bs = 0

if and only if (2.9) vanish, in which case one must also have a[+s]
1 = a[+s]

4 = 0, given that
B(1)

s ,B(6)
s 
= 0, and that a[−s]

2 = a[−s]
3 = 0, given thatB(3)

s ,B(2)
s 
= 0. We conclude S[±s], (ν)

ml ≡ 0,
which is a contradiction.

Hence, Bs(ν, m, l) 
= 0. By lemma 2.9, the conclusion follows. �
In spite of the angular Teukolsky–Starobinsky constants’ positivity, they approach arbitrar-

ily small values, at least in the cases considered in lemma 2.7.

Lemma 2.12. Fix s ∈ { 1
2 , 1, 3

2 , 2, 5
3 , 3}. Then, there are some pairs (l, m), where m − s ∈ Z

and l − max{|m|, s} ∈ Z�0, for which we have, as ν →∞,

(−1)2s
Bs(ν, m, l) = O(ν−N) , ∀ N > 0. (2.13)

10
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Proof. For s = 1/2, the leading order term vanishes if and only if

q 1
2 ,ml − m = 0 ⇔ l = m, m � 1

2
.

For s = 1, B1 = (A2
−1 − 4)ν2 + O(ν), where the leading order term vanishes if and only if

any one of the following holds

q1,ml − m = ±1 ⇔
{

l = m, as long as m � 1
l = m + 1, as long as m � 0

.

For s = 3/2, the leading order term of −B3/2 = (A2
−1 − 16)A−1ν

3 + O(ν2) vanishes if and
only if any one of the following holds

q 3
2 ,ml − m = 0,±2 ⇔

⎧⎨⎩
l = m, as long as m � 3/2
l = m + 1, as long as m � 1/2
l = m + 2, as long as m � −1/2

.

For s = 2, B2 = (A2
−1 − 4)(A2

−1 − 36)ν4 + O(ν3), and the leading order term vanishes if
and only if any one of the following holds

q2,ml − m = ±1,±3 ⇔

⎧⎪⎪⎨⎪⎪⎩
l = m, as long as m � 2
l = m + 1, as long as m � 1
l = m + 2, as long as m � 0
l = m + 3, as long as m � −1

.

For s = 5/2, the leading order term of B 5
2

vanishes if and only if any one of the following
holds

q 5
2 ,ml − m = 0,±2,±4 ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l = m, as long as m � 5/2
l = m + 1, as long as m � 3/2
l = m + 2, as long as m � 1/2
l = m + 3, as long as m � −1/2
l = m + 4, as long as m � −3/2

.

For s = 3, the leading order term of B3 vanishes if and only if any one of the following
holds

q3,ml − m = ±1,±3,±5 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l = m, as long as m � 3
l = m + 1, as long as m � 2
l = m + 2, as long as m � 1
l = m + 3 as long as m � 0
l = m + 4, as long as m � −1
l = m + 5, as long as m � −2

.

To obtain (2.13) for some N > 0, we need to compute the coefficients Ak of the asymptotic
expansion (2.4) up to k = N − 1 + 2s. The formulas in [COW19, equation (3.15)–(3.21)] for
Ak up to k = 7, for instance, yield that (2.13) holds for N � 7 + 1 − 2s for all (s, l, m) identified
in the preceding paragraph.

11
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Figure 1. Logarithmic plot of B1(ν, m, l = 1) as a function of ν for m = 1 (blue) and
m = 0 (red), obtained by numerically computing Λ(ν)

sml via [BHP]. The linear relation in
the logarithmic plot suggests exponential decay of B1 as ν →∞ for these modes.

In the cases

s =
1
2

, l = m � 1/2 ; s = 1 , l = 1 , m = 0 ; s =
3
2

, l =
3
2

, m =
1
2

;

s = 2 , l = 2 , m = −1 ; s =
5
2

, l =
5
2

, m = −3
2

; s = 3 , l = 3 , m = −2;

(2.14)

the formulas [COW19, equations (3.15)–(3.21)] in fact imply that A−1 = ±2 and that Ak = 0
for k = 0, . . . , 7. By the recursive formulas (2.6) and (2.7), we must have that Ak = 0 for all
k � 1. Hence, for such (s, m, l), (2.13) holds for all N > 0, as stated. �

Remark 2.13. Computer-based symbolic computations suggest that, in fact, all of the triples
(s, m, l) identified in the first paragraph of the proof of lemma 2.12 verify the conclusion of the
lemma, rather than just the smaller set in (2.14). This is confirmed by numerical analysis, see
figure 1. However, to establish such a result would require a much more detailed analysis of
the recursive relations (2.6) and (2.7) than we pursue here.

In the case s = 1, numerical computations suggest that the superpolynomial decay with ν
identified in lemma 2.12 for some (l, m) is actually exponential, see figure 1.

3. The radial Teukolsky–Starobinsky constants

In this section, we introduce the radial ODE corresponding to the Teukolsky equation (2.1) and
define the radial Teukolsky–Starobinsky constants. The last subsection contains the proof of
facts 1–6.

3.1. The radial ODE

We consider the radial ODEs[
Δ∓s d

dr

(
Δ±s+1 d

dr

)
+

[ω(r2 + a2) − am]2 − 2i(±s)(r − M)[ω(r2 + a2) − am]
Δ

]
× α[±s], aω

mΛ (r)

+ (±4isωr − Λ∓ s + 2 amω)α[±s], aω
mΛ (r) = 0 , (3.1)

12
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where M > 0, |a| � M, r ∈ (r+,∞), s ∈ 1
2Z�0, m such that m − s ∈ Z, Λ ∈ R, and ω ∈ R.

An asymptotic analysis of (3.1) shows that a solution to (3.1) admits a unique set of complex
numbers a[±s]

H+ , a[±s]
H− , a[±s]

I+ and a[±s]
I− such that

α[±s], aω
mΛ = a[±s]

H+ · α[±s]
H+ + a[±s]

H− · α[±s]
H− = a[±s]

I+ · α[±s]
I+ + a[±s]

I− · α[±s]
I− , (3.2)

where α[±s]
I+ and α[±s]

I− are solutions of (3.1) with outgoing and ingoing, respectively, boundary

conditions as r →∞ which are normalized at r = ∞, and where α[±s]
H+ and α[±s]

H− are solutions
of (3.1) with ingoing and outgoing, respectively, boundary conditions as r → r+ which are
normalized at r = r+. Concretely,

• α[±s]
I+ e−iωrr−2iMω+1±2s and α[±s]

I− eiωrr2iMω+1 are smooth functions of 1/r as r →∞ which
are normalized at r = ∞;

• If |a| < M, α[±s]
H+ (r − r+)

i
2Mr+

r+−r− (ω−mω+)±s
and α[±s]

H− (r − r+)
−i

2Mr+
r+−r− (ω−mω+)

are smooth as
r → r+ and normalized at r = r+;

• If |a| = M, α[±s]
H+ (r − M)2iMω±2se−i 2M2

r−M (ω−mω+) and α[±s]
H− (r − M)−2iMωei 2M2

r−M (ω−mω+) are
smooth in 1/(r − M) as r → M and normalized at r = M.

3.2. The radial Teukolsky–Starobinsky identities and constants

In this section, we will require the notation

D̂±
n ≡ d

dr
± i

(
ω(r2 + a2)

Δ
− am

Δ

)
+

2n(r − M)
Δ

, (3.3)

where M > 0, |a| � M, r ∈ (r+,∞), n, m ∈ 1
2Z and ω ∈ R.

We quote from [TdC20, proposition 2.14] the following:

Proposition 3.1 (Radial TS identities). Fix M > 0, |a| � M and s ∈ 1
2Z�0, m such that

m − s ∈ Z, Λ ∈ R. Then, if α[±s] solve (3.1) and admit the decomposition (3.2),

Δs
(
D̂+

0

)2s (
Δsα[+s]

)
= a[+s]

I+ C
(1)
s α[−s]

I+ + a[+s]
I− C

(7)
s α[−s]

I−

= a[+s]
H+ C(4)

s α[−s]
H+ + a[+s]

H− C(6)
s α[−s]

H− ,(
D̂−

0

)2s
α[−s] = a[−s]

I+ C(3)
s α[+s]

I+ + a[+s]
I− C(5)

s α[+s]
I−

= a[−s]
H+C(2)

s α[+s]
H+ + α[+s]

H− C(8)
s α[+s]

H− , (3.4)

where the products on the left-hand side are replaced by the identity if s = 0 and, if s 
= 0, have
indices increasing from left to right. Here, C(i)

s = C(i)
s (a, M,ω, m,Λ) for i = 1, . . . , 8. Indeed,

if s = 0, C(i)
s = 1 for i = 1, . . . , 8. For s 
= 0, we easily obtain

C(2)
s =

2s−1∏
j=0

[
−4iMr+(ω − mω+) + (s − j)(r+ − r−)

]

×

⎧⎪⎨⎪⎩
1 if |a| = M

(r+ − r−)−2|s| if |a| < M
,

C
(1)
s = (2iω)2s , C

(5)
s = (−2iω)2s ,

13
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C(6)
s =

2s−1∏
j=0

[
4iMr+(ω − mω+) + (s − j)(r+ − r−)

]
;

the remainingC(i)
s can be computed explicitly in terms of the first s coefficients in the asymptotic

expansions of α[±s]
I∓ and α[∓s]

H∓ , which in turn can be explicitly computed in terms of (a, M) and
(ω, m,Λ).

We are now ready to define the radial Teukolsky–Starobinsky constants:

Definition 3.1 (Radial TS constants). Fix s ∈ 1
2Z�0, m such that m − s ∈ Z, Λ ∈ R,

M > 0, |a| � M and ω ∈ R. Consider the operator

Δs
(
D̂∓

0

)2s
[
Δs
(
D̂±

0

)2s
]
≡

2s−1∏
j=0

(
Δ1/2D̂∓

j/2

) 2s−1∏
k=0

(
Δ1/2D̂±

k/2

)
,

with indices j, k increasing from right to left on the product, and the latter being replaced by the
identity if s = 0. If Δ

s
2 (1±1)α[±s], aω

mΛ , where α[±s], aω
mΛ solve the radial ODE (3.1) of spin ±s, are

eigenfunctions of the above operator corresponding to the same eigenvalue, the eigenvalue is
denoted by Cs = Cs(a, M,ω, m,Λ) and it is called the radial Teukolsky–Starobinsky constant.

Remark 3.2. Note that, in definition 3.1 and lemma 3.3 below, we once again do not con-
strain Λ to be an eigenvalue of the angular ODE (2.1) with spheroidal parameter ν = aω. In
what follows, if we do takeΛ = Λ(aω)

sml and Ł = Ł(aω)
sml for some l, then we write Cs(a, M,ω, m, l).

3.3. Examples of radial Teukolsky–Starobinsky constants

By direct computation, we can check that a radial Teukolsky–Starobinsky constant exists at
least for low values of Teukolsky spin:

Lemma 3.3. For any s ∈ {0, 1
2 , 1, 3

2 , 2, 5
2 , 3}, there exists a radial Teukolsky–Starobinsky

constant. Furthermore, it can be computed explicitly, for instance:

C0(a, M,ω, m,Λ) = 1,

C 1
2
(a, M,ω, m,Λ) = −B 1

2
(aω, m,Λ),

C1(a, M,ω, m,Λ) = B1(aω, m,Λ),

C 3
2
(a, M,ω, m,Λ) = −B 3

2
(aω, m,Λ),

C2(a, M,ω, m,Λ) = B2(aω, m,Λ) + 144M2ω2,

C 5
2
(a, M,ω, m,Λ) = −B 5

2
(aω, m,Λ) + 1152(Ł + 2)M2ω2

C3(a, M,ω, m,Λ) = B3(aω, m,Λ) + 576
[
(3Ł + 10)2 + 100aω(m − aω)

]
M2ω2,

(3.5)

where Bs may be read off from (2.10). In the above, if aω = 0, and Ł = Ł(aω)
sml corresponds

to a spin-weighted spheroidal eigenvalue with spheroidal parameter ν = aω for some l, then
Cs(a, M,ω, m, l) � 1.

Proof. There are several ways of showing existence of the radial Teukolsky–Starobinsky
constants. One option is to use definition 3.1, i.e. to apply the operators in the products above
to radial functions one by one and using the radial ODE (3.1) to trade second order derivatives
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of those functions by first and zeroth order terms (see for instance [Cha83, sections 70 and
81] for s = 1, 2). With the aid of a standard laptop, this naive approach allows one to verify
existence of the constant beyond the upper bound s = 3 of the statement; indeed, the reader
can check this with the Mathematica notebook attached.

Alternatively, in light of the radial Teukolsky–Starobinsky identities of proposition 3.1, if
the radial Teukolsky–Starobinsky constant exists, we must have

C(3)
s =

Cs

C
(1)
s

, C(4)
s =

Cs

C
(2)
s

, C(7)
s =

Cs

C
(5)
s

, C(8)
s =

Cs

C
(6)
s
.

Hence, one may compute Cs from one of C(3)
s ,C(4)

s ,C(7)
s ,C(8)

s . As the latter are computable
from the recursive formulas which yield the first s coefficients of certain asymptotic series for
solutions of (3.1), this method is less computationally demanding than the previous one and
has been suggested earlier in [Fiz09] (see also the companion paper [Fiz10]).

To conclude, we note that, for ω = 0, a glance at the formulas gives Cs(a, M,ω = 0, m, l) =
(−1)2sBs(aω = 0, m, l) � 1, from lemma 2.7. �

We remark that the formulas for Cs given here in lemma 3.3 match those obtained before
in [Cha90] and [KMW89], although in the latter papers they appear under the somewhat
misleading notation |Cs|2.

3.4. Properties of the radial Teukolsky–Starobinsky constants

3.4.1. Why the complex-conjugation argument for non-negativity is false. This section exam-
ines the argument in [KMW89, KMW92], subsequently picked up by other authors, purport-
edly showing non-negativity of the Teukolsky–Starobinky constant for general s ∈ 1

2Z�0.
These authors claim that non-negativity of Cs may be viewed as a consequence of
Δ

s
2 (1±1)α[±s], aω

mΛ satisfying complex conjugate equations and the radial Teukolsky–Starobinsky
identities being generated by complex conjugate operators somehow imply non-negativity of
the Teukolsky–Starobinky constant.

No justification is given for why the authors believe this implication should be true. One
potential argument would be to try draw an analogy with the angular setting, where the relation
between L±

n and L∓
−n+1 in the ODE (2.1) and in the identities (2.11) leads to the conclusion of

lemma 2.9. However, (2.11) establishes an adjointness relation between the angular operators
L±

n and −L∓
−n+1 in the space of (real-valued) smooth spin-weighted functions. In contrast, the

relation between D±
n and D∓

n is one of complex-conjugation.
It is a fact of life that, in a space of complex-valued functions, as solutions to the radial

ODE (3.1) are bound to lie in, the complex conjugate and the adjoint of an operator are not
necessarily the same5. Indeed, for some weight w(r) : (r+,∞) → [0,∞), and for f and h suffi-
ciently regular complex-valued functions of r that the boundary terms in the following vanish,
we have ∫ ∞

r+

hD±
0 f w dr = −

∫ ∞

r+

f

(
D±

0 +
d
dr

log w

)
hw dr,

so the adjoint of D±
0 will be −D±

0 − d
dr log w. This makes the notation used in classical refer-

ences such as [Cha83] (see also the more recent [Teu15]), where D−
0 is written as (D+

0 )† thus
suggesting an adjointness relation, rather unfortunate.

5 This is true already for matrices: the adjoint of a complex-valued matrix is obtained by complex-conjugation followed
by transposition. Performing only one of these operations on the matrix will not, in general, produce its adjoint.
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The upshot is that there is, in fact, no hope of establishing an analogue of lemma 2.9 by a
similar method to the one used there. Indeed, let us try to run the argument backward to see
where it goes wrong. Copying the proof of lemma 2.9, we would like to show that there is some
weight w(r) : (r+,∞) → [0,∞) such that for any α[±s] is chosen with unit L2

w norm,

0 � Cs(a, M,ω,Λ) =
∫ ∞

r+

α[±s]

2s−1∏
j=0

(
Δ1/2D∓

j/2

) 2s−1∏
k=0

(
Δ1/2D±

k/2

)
α[±s]w dr,

⇐=

∫ ∞

r+

α[±s]

2s−1∏
j=0

(
Δ1/2D∓

j/2

) 2s−1∏
k=0

(
Δ1/2D±

k/2

)
α[±s]w dr

=

∫ ∞

r+

∣∣∣∣∣
2s−1∏
k=0

(
Δ1/2D±

k/2

)
α[±s]

∣∣∣∣∣
2

w dr.

The latter equality would hold only if we could prove∫ ∞

r+

hΔ1/2D±
n/2 f w dr =

∫ ∞

r+

f Δ1/2D∓
s− n+1

2
hw dr, (3.6)

for suitably regular f and h; but there is no choice of w � 0 which would make (3.6) hold.
It follows that, if Cs is indeed non-negative for some s, a different proof strategy should be
sought.

3.4.2. Saving and improving non-negativity for s � 2. As we have noted that the angular
Teukolsky–Starobinsky constants have a definite sign (lemma 2.9), it is natural to try to com-
pare the explicit expressions for such constants with those of the radial ones, i.e. lemmas 2.7
and 3.3 in the case where the spheroidal parameter in the angular ODE is ν = aω. As is clear
from our (3.5) (see also [KMW92]),

Lemma 3.4. Fix s ∈
{

0, 1
2 , 1, 3

2 , 2, 5
2 , 3
}

, m such that m − s ∈ Z, Λ ∈ R, M > 0, |a| � M
and ω ∈ R. Then, there is a real Fs = Fs(aω, m,Λ) such that

Cs(a, M,ω, m,Λ) = (−1)2|s|Bs(aω, m,Λ) + Fs(aω, m,Λ)M2ω2.

Indeed, one has Fs ≡ 0 for s � 3
2 and

F2 = 144 , F 5
2
= 1152(Ł + 2) , F3 = 576

[
(3Ł + 10)2 + 100aω(m − aω)

]
.

Lemma 3.4 indeed yields, in the restricted case s � 2, non-negativity of the Teukol-
sky–Starobinsky constant, as correctly noted in Teukolsky’s original paper on the identities
[TP74]. Indeed, by lemma 2.11, it even yields positivity:

Lemma 3.5 (Positivity of radial TS constant for s � 2). Fix s ∈
{

0, 1
2 , 1, 3

2 , 2
}

, m
such that m − s ∈ Z, Λ ∈ R, M > 0, |a| � M and ω ∈ R. Then, Fs(aω, m,Λ) � 0 hence
Cs(a, M,ω, m,Λ) � 0.

Furthermore, if Λ = Λ(aω)
sml is a spin-weighted spheroidal eigenvalue for some

l ∈ Z�max{|m|,s}, then Cs(a, M,ω, m, l) > 0. In particular, there are no real algebraically
special frequencies (ω, m, l) for any Kerr parameters (a, M).
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Remark 3.6. For s > 2, Fs depends nontrivially on Λ. Without more constraints on Λ
in terms of the black hole parameters (a, M) and frequencies ω and m, one cannot hope to
investigate the validity of lemma 3.5 for s > 2.

In fact, for s � 2, we can use lemma 3.4 and the last statement in lemma 3.3 to obtain a
more precise statement when Λ = Λ is a spin-weighted spheroidal eigenvalue:

Lemma 3.7 (Lower bound for radial TS constant for s = 2). Fix s = 2, m ∈ Z,
l ∈ Z�max{|m|,2}, M > 0, |a| � M and ω ∈ R. The radial Teukolsky–Starobinsky constant C2

admits a positive lower bound, i.e. there is a b > 0 such that

inf
(a,M,ω,m,l)

C2(a, M,ω, m, l) � b > 0.

Numerically, using [BHP] , we find b ≈ 150 is enough.

Proof. First note that, once a and (s, m, l) are fixed, Ł[s], (aω)
ml is continuous in ω (see, for

instance, [MS54] or [HW74]), hence C2(a, M,ω, m, l) is also continuous in ω.
At ω = 0, C2(a, M, 0, m, l) = (−1)4B2(0, m, l) = (24)2 = 576 > 0. Hence, by continuity in

ω, there is a δ > 0 such thatC2(a, M,ω, m, l) � 1 for |Mω| � δ. On the other hand, if |Mω| > δ,
by the non-negativity of B2 (lemma 2.9) C2 � F2M2ω2 > 144δ2. This concludes the proof. �

However, lemma 3.7 does not extend to s < 2. Though always positive, it follows from
lemma 2.12 that the radial Teukolsky–Starobinksy constants for those spins asymptotically
approach 0 as ω →∞ if a 
= 0 is fixed and suitable (l, m) are chosen:

Lemma 3.8. Fix M > 0, 0 < |a| � M and s ∈ { 1
2 , 1, 3

2}. Then, there are some pairs (l, m),
where m − s ∈ Z and l − max{|m|, s} ∈ Z�0, for which we have, as ω →∞,

Cs(a, M,ω, m, l) = O(|Mω|−N) , ∀ N > 0. (3.7)

3.4.3. A myth debunked: negative values for s � 5
2 . Not only is the pervasive argument out-

lined in section 3.4.1 or in [Cha90, KMW89, KMW92] purportedly asserting non-negativity
of Cs for all s incorrect, but its conclusion is also false. Lemma 2.12 is our starting point to
debunk this myth; we now consider the contribution of Fs(aω, m, l):

Lemma 3.9 (Negativity for s � 5
2 ). Fix M > 0, 0 < |a| � M and s ∈ { 5

2 , 3}. Then, there
are some pairs (l, m), where m − s ∈ Z and l − max{|m|, s} ∈ Z�0, for which there is an A > 0
such that, as ω →∞,

Cs(a, M,ω, m, l) = −A|Mω|2|s|−2 + O(|Mω|2|s|−3).

Proof. We use proposition 2.3 once more, appealing to the proof of lemma 2.12. Indeed, if
s = 5/2, F 5

2
= 2304(q 5

2 ,ml − m) + O(1), and we note that
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Figure 2. Plot of C3(aω, m = 0, l = 3) as a function of ν = aω for a = 0.8M, and
obtained through numerical computation of the Λ[s],(ν)

ml .

q 5
2 ,ml − m = −2 ⇒ C 5

2
= −4608

a
M
|Mω|3 + O(|Mω|2),

q 5
2 ,ml − m = −4 ⇒ C 5

2
= −9216

a
M
|Mω|3 + O(|Mω|2).

For s = 3, F3 = 576
[
36(q3,ml − m)2 − 100

]
(aω)2 + O(|Mω|), and we note that

q3,ml − m = ±1 ⇒ B3 = −36864
a2

M2
|Mω|4 + O(|Mω|3);

see also figure 2. As shown in the proof of lemma 2.12, the above conditions may be realized
for pairs (l, m) satisfying the constraints of the present lemma. �

While for s = 5
2 , 3 Cs may take negative values for some (ω, m, l), they can also take positive

values, for instance if ω = 0 (see lemma 3.3). Appealing once more to continuity in ω (see
proof of lemma 3.7), we thus conclude

Lemma 3.10. Fix M > 0, 0 < |a| � M and s ∈ { 5
2 , 3}. There exist real algebraically

special frequencies, i.e. real (ω, m, l), such that Cs(a, M,ω, m, l) = 0.

4. On non-superradiant amplification for s>2 fields

In this section, we consider the implications of the properties of the radial Teukol-
sky–Starobinsky constants on the energy associated to the Teukolsky radial ODE (3.1).

4.1. Energy for the Teukolsky equation

We begin by discussing a notion of energy compatible with (1.1) for any s ∈ 1
2Z�0 with the

stationary Kerr Killing field fails to produce a conservation law unless s = 0. However, as
(r2 + a2)

1
2 Δ± s

2 α[±s], aω
mΛ satisfy complex conjugate ODEs, see (3.1), the Wronskian(
Δ

d
dr

(Δsα[+s], aω
mΛ )Δ−sα[−s], aω

mΛ −Δ
d
dr

(
α[−s], aω

mΛ

)
α[+s], aω

mΛ

)
18
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is independent of r, and hence is conserved. From the Teukolsky–Starobinsky identities, given
a solution α[+s], aω

mΛ to (3.1) with spin +s, we may generate a α[−s], aω
mΛ which solves (3.1) with

spin −s, and vice-versa, to plug into this conservation law. Multiplying through by ω makes
each of the terms of the conservation law into an energy, see already remark 4.2 and [SRTdC20,
section 5.3]. Thus, we obtain:

Lemma 4.1 (TS energy identity). Fix M > 0, |a| � M, s ∈ 1
2Z�0, ω ∈ R\{0, mω+} and

Λ ∈ R. Suppose there exists a radial Teukolsky–Starobinsky constant Cs(a, M,ω, m,Λ) as
given in definition 3.1.

Let α[±s], aω
mΛ be a solution to (3.1), and let its decomposition (3.2) be characterized by

a[±s]
H− = 0 ,

ã[±s]
H+ ≡ a[±s]

H+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2Mr+)1/2

{
1 , |a| = M

(r+ − r−)±s , |a| < M

}
if s integer{

(2Mr+)−1/2 , |a| = M

(r+ − r−)±s−1/2 , |a| < M

}
if s half-integer

.

Then, it satisfies the energy identity

1 = R[±s](a, M,ω, m,Λ) + T[±s](a, M,ω, m,Λ),

where R[±s](a, M,ω, m,Λ) and T[±s](a, M,ω, m,Λ) are called the reflection and transmission
coefficients, respectively, and are given as follows. If s is an integer,

T[−s] ≡ ω − mω+

ω

C(10)
s

(2ω)2s

∣∣∣ã[−s]
H+

∣∣∣2∣∣∣a[−s]
I−

∣∣∣2 , R[−s] ≡ Cs

(2ω)4s

∣∣∣a[−s]
I+

∣∣∣2∣∣∣a[−s]
I−

∣∣∣2 ;

if further Cs 
= 0 , T
[+s] ≡ ω − mω+

ω

(2ω)2s

C
(9)
s

∣∣∣ã[+s]
H+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 , R
[+s] ≡ (2ω)4s

Cs

∣∣∣a[+s]
I+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 .
If s is half-integer,

T[−s] ≡ C(10)
s

(2ω)2s

∣∣∣ã[−s]
H+

∣∣∣2∣∣∣a[−s]
I−

∣∣∣2 , R[−s] ≡ Cs

(2ω)4s

∣∣∣a[−s]
I+

∣∣∣2∣∣∣a[−s]
I−

∣∣∣2 ;

if further Cs 
= 0 , T[+s] ≡ (2ω)2s

C
(9)
s

∣∣∣ã[+s]
H+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 , R[+s] ≡ (2ω)4s

Cs

∣∣∣a[+s]
I+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 .
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Figure 3. Plot showing the behavior of T[−3](a, M,ω, m, l) and R[−3](a, M,ω, m, l) for
a = 8M/10, m = 1 and l = 3, as functions of Mω. Plot (a) captures superradiant ampli-
fication, with the solid red line corresponding to T[−3], and the dashed blue line denoting
R[−3] − 1. Plot (b) captures non-superradiant amplification, with the solid blue line
corresponding to R[−3], and the dashed red line denoting T[−3] − 1.

Here, we take C(9)
s = C(10)

s = 1 when s = 0, C(9)
s = 1 and C(10)

s =
[
4Mr+(ω − mω+)

]2
+

(r+ − r−)2/4 if s = ±1/2, and otherwise, using the shorthand notation

Cs, j :=
[
4Mr+(ω − mω+)

]2
+ (s − j)2(r+ − r−)2,

C(9)
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|s|∏
j=1

Cs, j if s ∈ Z

|s|−1/2∏
j=1

Cs, j if s ∈
(

1
2
Z

)
\Z

, C(10)
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|s|−1∏
j=0

Cs, j if s ∈ Z

|s|−1/2∏
j=0

Cs, j if s ∈
(

1
2
Z

)
\Z

.

Proof. The proof is sketched in the paragraph above, but we encourage the reader to see
[And+17, section 2.2] and [SRTdC20] for details. �

Remark 4.2. The notion of energy put forth in lemma 4.1 is consistent with previous liter-
ature: it matches that introduced in [TP74] for s = 1, 2, [Unr73] for s = 1/2 and [TS90] for
s = 3/2.

IfT[±s] < 0 andR[±s] > 0, there is amplication in the energy reflected to future null infinity.
As

T[±s](a, M,ω, m,Λ) < 0 ⇔ ω(ω − mω+) < 0 , s ∈ Z�0,

we refer to this as superradiant amplification. On the other hand, if T[±s] > 0 and R[±s] < 0,
there is amplication in the energy transmitted into the future event horizon. As

R
[±s](a, M,ω, m,Λ) < 0 ⇔ Cs(a, M,ω, m,Λ) < 0,

we refer to this as non-superradiant amplification. By lemmas 3.5 and 3.9, if we constrain Λ to
be a spin-weighted spheroidal eigenvalue, Λ = Λ(aω)

sml for some l, we see that non-superradiant
amplification occurs for some (ω, m, l) when s > 2, see figure 3.

4.2. Energy for the system of linearized Maxwell or Einstein equations

In the previous section, we considered a scattering problem under the evolution equation (1.1)
alone. Consequently, the notion of energy in lemma 4.1 involves a single spin sign. If, for
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s = 1, 2, one considers a scattering problem under the entire system of linearized Maxwell or
Einstein equations, respectively, then the natural notion of energy involves both spin signs. We
extend this reasoning to other spins:

Lemma 4.3 (TS energy identity under TS correspondence). Fix M > 0, |a| � M,
s ∈ 1

2Z�0, ω ∈ R\{0, mω+} and Λ ∈ R. Suppose there exists a radial Teukolsky–Starobinsky
constant Cs(a, M,ω, m,Λ) as given in definition 3.1. Further assume that the frequencies are
such that Cs(a, M,ω, m,Λ) 
= 0.

Let α[±s], aω
mΛ be solutions to (3.1) which are related to each other by the radial Teukol-

sky–Starobinsky identities of proposition 3.1. Assume their decompositions (3.2) to be char-
acterized by

a[−s]
H− = 0 ,

ã[+s]
H+ ≡ a[+s]

H+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2Mr+)1/2

{
1 , |a| = M

(r+ − r−)s , |a| < M

}
if s integer{

(2Mr+)−1/2 , |a| = M

(r+ − r−)+s−1/2 , |a| < M

}
if s half-integer

.

Then, one has the energy identity

1 = Rs(a, M,ω, m,Λ) + Ts(a, M,ω, m,Λ),

where the reflection and transmission coefficients, Rs(a, M,ω, m,Λ) and Ts(a, M,ω, m,Λ)
respectively, are given as follows:

Rs ≡

∣∣∣a[−s]
I+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 ; s integer, Ts ≡
ω − mω+

ω

(2ω)2s

C
(9)
s

∣∣∣ã[+s]
H+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 ; s half-integer,

Ts ≡
(2ω)2s

C
(9)
s

∣∣∣ã[+s]
H+

∣∣∣2∣∣∣a[+s]
I−

∣∣∣2 ;

where we take C(9)
s to be the same as in lemma 4.1.

Remark 4.4. The notion of energy considered in lemma 4.3 matches that of the recent
[Mas20, section 1.3.4] on scattering under the linearized Einstein vacuum equations around
a = 0 in Kerr. Indeed, when considering this system, the two gauge-invariant curvature quan-
tities satisfy the Teukolsky master equation (1.1) with spin ±2 together with a physical
space version of the radial Teukolsky–Starobinsky identities of proposition 3.1, see [Mas20,
equations (1.5) and (1.6)]. A similar situation arises when one considers the linearized Maxwell
equations, as one may readily deduce from [Pas19, equations (3.11)–(3.16)].

We note that it is only under the notion of energy in lemma 4.3 that amplification does not
occur for non-superradiant frequencies for fields of any spin.
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