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Abstract  59 

Injury to the brain and spinal cord has devastating consequences because adult central 60 

nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system 61 

(PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration 62 

over long distances. CNS axons have some regenerative capacity during development, but 63 

this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic 64 

inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules 65 

have been well characterised, but less is known about the neuron-intrinsic mechanisms which 66 

prevent axon re-growth. Key signalling pathways and genetic / epigenetic factors have been 67 

identified which can enhance regenerative capacity, but the precise cellular mechanisms 68 

mediating their actions have not been characterised. Recent studies suggest that an important 69 

prerequisite for regeneration is an efficient supply of growth-promoting machinery to the 70 

axon, however this appears to be lacking from non-regenerative axons in the adult CNS. In 71 

the first part of this review, we summarise the evidence linking axon transport to axon 72 

regeneration. We discuss the developmental decline in axon regeneration capacity in the 73 

CNS, and comment on how this is paralleled by a similar decline in the selective axonal 74 

transport of regeneration-associated receptors such as integrins and growth factor receptors. 75 

In the second part, we discuss the mechanisms regulating selective polarised transport within 76 

neurons, how these relate to the intrinsic control of axon regeneration, and whether they can 77 

be targeted to enhance regenerative capacity. 78 

 79 

 80 

 81 

 82 

  83 
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Introduction 84 

Long-range regeneration fails in the adult brain and spinal cord 85 

Unlike axons of the peripheral nervous system (PNS) which readily regenerate after injury, 86 

mammalian central nervous system (CNS) axons lose their regenerative capabilities with 87 

maturity (Bradke and Marin, 2014; Nicholls and Saunders, 1996). Injury to the adult brain 88 

and spinal cord can therefore have life-altering consequences. This problem was considered 89 

unassailable until a series of seminal studies in the 1980s challenged the long-standing dogma 90 

that CNS axons lack the capacity for repair. Aguayo and colleagues showed that injured adult 91 

rat axons arising in the CNS can regenerate through a peripheral nerve graft where the 92 

environment is more permissive to growth (Benfey and Aguayo, 1982; David and Aguayo, 93 

1981; Richardson et al., 1980). These experiments were instrumental in demonstrating that 94 

certain CNS neurons retain a limited amount of their intrinsic ability for regeneration, and 95 

that failure of regeneration after injury could be attributed to the environment of the injured 96 

brain or spinal cord. Since these studies, numerous inhibitory molecules have been identified 97 

which oppose regeneration after a spinal cord injury, including the glial-derived chondroitin 98 

sulphate proteoglycans (CSPGs) and myelin-associated inhibitors such as Nogo, myelin-99 

associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) (Schwab 100 

and Strittmatter, 2014; Silver et al., 2014; Yang et al., 2014; Yiu and He, 2006; Yu et al., 101 

2018). These discoveries focused research on overcoming the inhibitory environment after 102 

injury, and led to the identification of interventions such as chondroitinase (Bradbury and 103 

Carter, 2011) and anti-Nogo antibody treatment (Ineichen et al., 2017). The chondroitinase 104 

approach, aimed at neutralising CSPGs is currently under intense investigation as a promoter 105 

of CNS repair, whilst anti-Nogo is undergoing clinical trials aimed at enhancing recovery 106 

after spinal cord injury. Both of these strategies lead to functional recovery through enhanced 107 

plasticity and sprouting from spared axons, with modest effects on axon regeneration. 108 
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Regenerated axons extend over limited distances, forming new synapses with spared circuits 109 

which connect beyond the lesion (Fawcett, 2015; Schwab and Strittmatter, 2014).  Recent 110 

work has confirmed that neutralizing the astrocytic scar does not enable robust regeneration, 111 

whilst providing evidence that glial derived molecules can actually support regenerative 112 

growth of ascending sensory fibres stimulated by growth factor treatment and a growth-113 

priming injury (Anderson et al., 2016). Without these growth-promoting stimuli, injured 114 

axons can become ensnared by NG2 positive cells which cause dystrophic axons to form 115 

synapses, further hindering attempts at regrowth (Filous et al., 2014). 116 

Enabling long-range axon regrowth after injury to the spinal cord remains a challenging 117 

objective, particularly with respect to corticospinal tract (CST) axons. These axons descend 118 

from the cortex and are responsible for motor functions. CST axons have an outstandingly 119 

weak intrinsic capacity for regeneration, even in a permissive environment (Richardson et al., 120 

1984). For this reason, there are concerted efforts to understand the mechanisms regulating 121 

intrinsic growth capacity, in order to identify new strategies which might be used together 122 

with extrinsic interventions to optimise regeneration. 123 

 124 

Targeting neuron intrinsic mechanisms to promote regeneration and repair 125 

Studies aimed at intrinsically increasing regenerative capacity have so far identified key 126 

signalling pathways, transcription factors and epigenetic mechanisms that can be targeted to 127 

increase regeneration (Dergham et al., 2002b; He and Jin, 2016; Hu and Selzer, 2017; 128 

Leibinger et al., 2017; Lindner et al., 2013; Liu et al., 2011; Moore et al., 2009; Moore and 129 

Goldberg, 2011; Muramatsu et al., 2009; Puttagunta et al., 2014; Qiu et al., 2002; Tedeschi 130 

and Bradke, 2017). Whilst these have not yet led to clinical treatments, they have generated 131 

new approaches that are potentially clinically translatable. A good example is the study of the 132 

tumour suppressor PTEN. PTEN was identified ten years ago as an intrinsic inhibitor of axon 133 
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regeneration, functioning to oppose the actions of PI3 kinase (PI3K). Deleting PTEN leads to 134 

robust retinal ganglion cell regeneration after optic nerve crush (Park et al., 2008), and can 135 

enable CST axons to regenerate for short distances past a lesion site (Liu et al., 2010). Due to 136 

its nature as a tumour suppressor, deletion of PTEN is not considered a clinically translatable 137 

strategy. However, the PI3K pathway can be successfully targeted with a more translatable 138 

approach that works by potentiating signalling downstream of the growth factor IGF1. 139 

Combined viral delivery of IGF1 and the matrix molecule osteopontin was found to enhance 140 

signalling through the PI3K pathway leading to robust axon regeneration after an optic nerve 141 

crush (Duan et al., 2015). This discovery lead to subsequent experiments combining IGF1 142 

with osteopontin as a treatment after a model of spinal cord injury (T10 hemi-section). This 143 

strategy promoted profuse CST axonal sprouting and short-range regeneration leading to 144 

recovery of hind limb function, demonstrating that intrinsic growth capacity can be targeted 145 

in a translatable fashion to promote regeneration and recovery (Liu et al., 2017). However, 146 

the combination did not enable long-range CST regrowth, highlighting the need for further 147 

studies to understand the intrinsic regulation of axon regrowth ability. One particularly 148 

evident obstruction is the change in gene expression that occurs with maturity, combined 149 

with the lack of a cell body response after an axonal injury. Injury to axons in the PNS leads 150 

to an upregulation of regeneration-associated genes (Hoffman, 2010; Neumann and Woolf, 151 

1999), but this is not seen in the CNS (Plunet et al., 2002). Efforts have therefore been made 152 

to enhance growth capacity via intervening with gene expression through transcription factor 153 

manipulation. This has been done either by removing inhibitory transcription factors such as 154 

KLF4 or overexpressing growth-promoting transcription factors such as KLF7 (Blackmore et 155 

al., 2012; Moore et al., 2009; Wang et al., 2015). These approaches have yielded encouraging 156 

results; however, they have not been able to promote the type of regeneration seen in the PNS 157 

(Wang et al., 2017b). It is becoming apparent that this may be due to complex epigenetic 158 
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factors such as closed chromatin affecting transcription factor binding site availability 159 

(Trakhtenberg and Goldberg, 2012; Venkatesh et al., 2016). In regenerative neurons, there 160 

are mechanisms to enhance chromatin availability in response to an axonal injury, and these 161 

can be targeted to facilitate CNS regeneration (Weng et al., 2017; Weng et al., 2018). 162 

 163 

Integrins drive long-range regeneration, but are absent from adult CNS axons 164 

The studies described above have been instrumental in demonstrating that there are 165 

developmental changes in gene expression and intracellular signalling in CNS neurons that 166 

contribute to their feeble regenerative ability, and that these can be targeted to facilitate 167 

regeneration. However, there remains a gap in our knowledge regarding the mechanisms 168 

downstream of these events that lead to effects on axon growth. The mechanisms regulating 169 

developmental axon growth are well-known and include cytoskeletal reorganisation, axon 170 

transport, membrane addition, and insertion of guidance molecules onto the growth cone 171 

surface (Allen and Chilton, 2009; Bradke et al., 2012; Hilton and Bradke, 2017; Quiroga et 172 

al., 2018), but the extent to which these are involved in mediating the effects of the 173 

interventions described above is not known. Cytoskeletal reorganisation is clearly an 174 

important consideration as demonstrated by the stimulation of CNS regeneration by targeting 175 

both the microtubule and actin cytoskeleton (Dergham et al., 2002a; Ruschel et al., 2015), 176 

and the neutralisation of growth inhibition by targeting growth cone non-muscle myosin (Hur 177 

et al., 2011).  178 

Another critical factor mediating regenerative ability is an efficient axonal supply of the 179 

machinery required for growth. It is becoming clear that there are developmental changes in 180 

CNS neurons which limit the axonal availability of growth-promoting molecules such as the 181 

integrin family of adhesion/guidance molecules and their transporters, Rab11 positive 182 

endosomes (Andrews et al., 2016; Franssen et al., 2015). Integrins and Rab11 endosomes can 183 
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be manipulated into mature CNS axons in vitro, which enables axon regeneration after a laser 184 

injury (Eva et al., 2017; Koseki et al., 2017), but it remains to be seen whether these 185 

manipulations can used to promote long-range regeneration in vivo.  186 

Intrinsic stimulation of integrin-driven long-range axon growth is possible through the spinal 187 

cord, as has been demonstrated by recent studies in sensory (PNS) axons regenerating 188 

towards the brain (Cheah et al., 2016). Viral transduction of a growth promoting integrin 189 

(alpha9) together with its activator kindlin-1 into dorsal root ganglion (DRG) neurons 190 

enabled them to regenerate their central axons (after a dorsal root crush) into the spinal cord 191 

and over long distances through the spinal cord (from the level of forepaw to medulla). The 192 

study demonstrated that long-range axon growth is possible through a normally inhibitory 193 

environment, as a result of intrinsic manipulations. The strategy works because PNS axons 194 

efficiently transport integrins into their distal axons. It could potentially be used to enable 195 

injured CNS axons to regenerate over lengthy distances, except for the issue with axonal 196 

localisation: integrins are not transported into adult CNS axons, being instead confined to cell 197 

bodies and dendrites (Andrews et al., 2016). An important question is whether this absence of 198 

integrin receptors reflects a general axonal deficit of growth-promoting molecules. Growth 199 

factor receptors are a good example of this type of molecule, and there is evidence that these 200 

are not present in abundant levels after CNS axons have matured. Both TrkB and the IGF 201 

receptor are reportedly excluded from CST axons in the spinal cord (Hollis et al., 2009a; 202 

Hollis et al., 2009c), and TrkB is similarly not detectable in rubrospinal axons whilst being 203 

present in their cell bodies (Kwon et al., 2004). BDNF (the TrkB ligand) can also rescue 204 

injured rubrospinal neurons from atrophy and prevent cell death, but only when applied at the 205 

level of the soma, and not the axon (Kwon et al., 2002).   206 

If growth factor receptors are not abundant in CNS axons, it may explain why previous 207 

experiments aimed at facilitating CNS regeneration through growth factor stimulation have 208 
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not yielded strategies to promote long-range axon growth (Kordower and Tuszynski, 2008). 209 

Integrins and growth factor receptors are transported efficiently into CNS axons during 210 

developmental growth, being essential for the correct development of the nervous system 211 

(Myers et al., 2011), so it is clear that there are developmental changes that occur that limit 212 

their presence in adult axons.  213 

Here we argue that distributing growth-enabling machinery to the axon is necessary to switch 214 

on a pro-regenerative neuronal program for successful regeneration. We discuss the idea that 215 

a developmental decline in axonal transport of growth-associated molecules contributes to the 216 

intrinsic decline in regenerative ability observed in the CNS; that changes in axonal transport 217 

and trafficking result in redistribution of growth molecules and receptors from axons to the 218 

somatodendritic domain. We also consider the evidence that interventions that promote 219 

regeneration (e.g. conditioning injury or permissive nerve grafts) also enhance axonal 220 

transport. We discuss the axon transport of specific regeneration-associated molecules, and 221 

the mechanisms that regulate a polarised distribution within neurons. Focusing on these 222 

topics provides insight into mechanisms that can be targeted to facilitate the axon transport of 223 

growth-promoting machinery and enable axon regeneration. 224 

  225 

Developmental decline in axon regeneration capacity in the CNS  226 

In vivo studies  227 

Evidence from numerous animal models including C. elegans, rats, hamsters and opossums, 228 

suggest that there is a decline in CNS regeneration capacity that begins after birth and 229 

continues to dwindle (Kalil and Reh, 1979; Keifer and Kalil, 1991; Nicholls and Saunders, 230 

1996; Wu et al., 2007). The studies discussed in the introduction demonstrate that this decline 231 

is due to both the extrinsic environment, and cell intrinsic programmes. Even in cases where 232 

regeneration does occur in the adult such as after peripheral nerve injury, the regenerative 233 
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ability of the peripheral neurons is reduced and delayed in older organisms (Verdu et al., 234 

2000). For example, developmental changes such as impaired clearance of cell debris and the 235 

accumulation of obstacles in the endoneurial tubes of aged animals can affect not only the 236 

speed but also the extent of motor neurons’ axonal regeneration after peripheral nerve injury 237 

(Kang and Lichtman, 2013). Importantly, the CNS decline in regenerative capacity appears to 238 

continue further into adulthood, as demonstrated by a study into the effects of PTEN deletion 239 

during ageing. PTEN deletion promotes axon regeneration in corticospinal tract (CST) 240 

neurons after injury in young adult mice (Liu et al., 2010).  Geoffroy and colleagues 241 

examined the effects of ageing on the ability of PTEN deletion to induce regeneration of CST 242 

axons. Ageing did not reduce the effects of PTEN deletion on the intrinsic ability of axons to 243 

regenerate proximally to a spinal cord injury, but greatly reduced axon regeneration distal to 244 

the injury, suggesting that long range regeneration becomes increasingly problematic with 245 

maturity (Geoffroy et al., 2016).  246 

 247 

In vitro studies 248 

As it is difficult to separate the effects of the extrinsic environment from intrinsic factors in 249 

vivo, studies have also investigated regenerative ability using CNS neurons cultured in vitro 250 

(Bradke et al., 2012). A recent investigation by Koseki et al. (2017) used in vitro laser 251 

axotomy to investigate the intrinsic changes regulating axon regeneration of embryonic 252 

cortical neurons cultured to maturity. The study used E18 rat brain cortical neurons which 253 

were cultured up to 24 days in vitro using astrocyte feeder layers to separate neurons from 254 

glia. Development of neurons to a mature state was confirmed by assessing electrical activity 255 

and analysing gene expression, and regenerative capacity was measured by recording the 256 

axonal response to a laser injury. The study confirmed that the regenerative ability of cultured 257 

cortical neurons negatively correlates their maturational state, with less than 10% of neurons 258 
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cultured for 24 days regenerating compared to 70% of neurons cultured for 4 days. This 259 

effect was shown to be due to an intrinsic change by culturing young neurons on 24 day old 260 

cultures. The young neurons retained their regenerative capacity despite the aged 261 

environment, regenerating as well as neurons plated on poly-d lysine (Koseki et al., 2017). 262 

Retinal ganglion cells show a similar age-dependent decline in axon growth capacity, 263 

whether grown on neonatal or adult optic nerve sections , whilst DRG neurons from the PNS 264 

retain their intrinsic ability to regrow on either of these substrates (Goldberg et al., 2002; 265 

Shewan et al., 1995). Koseki et al continued by analysing gene expression by RNA 266 

sequencing and found that that there are vast changes in gene expression as cortical neurons 267 

mature in culture, with an increase in the expression of genes involved in electrical activity 268 

and synapse formation and function, and a decrease in genes associated with growth and 269 

development. They also investigated the axonal delivery of growth-promoting machinery, 270 

finding that there is a developmental decline in the axonal transport of recycling endosomes, 271 

and that restoring this transport leads to an increase in regeneration. These findings support 272 

the notion that genetic factors are partly responsible for the change in regenerative capacity, 273 

and that there are developmental changes in selective axonal transport that limit axon 274 

regrowth.  275 

 276 

Developmental decline in axon transport 277 

Early studies 278 

It has long been assumed that efficient axon transport is necessary for effective regeneration, 279 

with many studies addressing this hypothesis. The foremost studies were aimed at 280 

understanding whether axon transport rates varied in regenerative vs. non-regenerative axons, 281 

and whether there is an increase in axon transport after a peripheral injury when neurons 282 

mount a regenerative response. These studies used techniques such as radiolabelling to 283 
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measure the transport of peptides into axons in vivo comparing early development with later 284 

stages, and finding that molecules such as the growth-associated GAP43 are rapidly 285 

transported into the optic nerve of neonatal rabbits, but that transport rates declined rapidly 286 

with development (Skene and Willard, 1981). Cytoskeletal transport declined similarly 287 

(Hoffman et al., 1983), as revealed by examining neurofilament transport. A number of 288 

studies also addressed whether the enhanced growth observed after a conditioning lesion is 289 

associated with an increase in axon transport rates by measuring the synthesis and axonal 290 

transport of cytoskeletal components, again using radio-labelling, and finding that enhanced 291 

regeneration is associated with elevated axon transport of both microtubules and 292 

neurofilaments (McQuarrie and Grafstein, 1982; McQuarrie and Jacob, 1991; Oblinger and 293 

Lasek, 1988). Similar observations were also reported in later studies examining enhanced 294 

regeneration of optic nerve axons into a peripheral nerve bridge (McKerracher et al., 1990). 295 

Collectively, these early experiments suggested a deceleration in axonal transport during 296 

maturation, and an increase in transport during enhanced regeneration (Fournier and 297 

McKerracher, 1995; Hoffman, 2010; McQuarrie et al., 1989).  298 

 299 

Live cell imaging to characterise axon transport 300 

The majority of early studies focused on cytoskeletal material as an example of machinery 301 

that is required for axon growth. Similar techniques were recently used to examine axon 302 

transport more completely, by coupling radiolabelling with mass spectroscopy and analysing 303 

the transport of various subcellular components in the central branch of DRG axons after a 304 

conditioning injury to the peripheral branch (which results in enhanced regeneration). The 305 

study found enhanced transport of both actin and microtubule cytoskeletal elements, as well 306 

as cytosolic proteins including glycolytic enzymes and regenerative molecules such as the 307 

14-3-3 proteins and the RhoA inhibitor RhoGDI, and membranous vesicles including 308 
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lysosomes, and synaptophysin and APP-containing vesicles. Increased levels of molecular 309 

motors and of polyglutamylated tubulin were also observed (Mar et al., 2014). This study 310 

demonstrates global changes in axon transport after a conditioning lesion. It also highlights 311 

that techniques such as live cell imaging of fluorescently labelled proteins make it possible to 312 

examine axon transport in a highly selective fashion, focusing on individual cellular 313 

components.  314 

These techniques were recently used to analyse age-dependant transport as well as 315 

regeneration-dependent changes focusing on two specific cargoes, the axon survival factor 316 

NMNAT2, and mitochondria. Although this study focused on a much later developmental 317 

period (between 1.5 and 24 months), some specific changes in mammalian CNS and PNS 318 

axonal transport with development were identified (Milde et al., 2015). Interestingly, aged 319 

neurons in an ageing environment (in 24-month-old mice) were capable of supporting higher 320 

levels of axonal transport as stimulated by a peripheral nerve crush – an increase in the 321 

number of anterogradely moving particles containing NMNAT2 and mitochondria was 322 

observed at rates similar to young mice, whilst retrograde transport was unaffected. This 323 

observation suggests that enhanced anterograde transport contributes to axon regeneration 324 

after peripheral nerve injury. The movement of mitochondria has long been associated with 325 

axon growth (Morris and Hollenbeck, 1993). A number of recent studies have demonstrated 326 

the importance of axonal mitochondria for the regeneration process, and this will be 327 

discussed in detail later.  328 

 329 

Developmental decline in axon transport of growth machinery 330 

The studies described above suggest that mature CNS axons lack the correct tools for axonal 331 

extension, and that PNS axons mount a regenerative response by enabling enhanced transport 332 

leading to an increase in axonal growth machinery. However, they do not elucidate precisely 333 
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what the necessary machinery is, or to what extent it is missing from non-regenerative adult 334 

CNS axons. Axon growth is driven by the growth cone and can be compared to the process of 335 

cell migration, in that there are requirements for the interaction of the cell with its 336 

environment through adhesion and guidance molecules which subsequently reorganise the 337 

cytoskeleton and surface membrane in the direction of growth (Dequidt et al., 2007; Itofusa 338 

and Kamiguchi, 2011; Robles and Gomez, 2006; Tojima et al., 2007). One class of molecules 339 

that is important for this process is the integrin family of cell surface receptors for the 340 

extracellular matrix. These are important for developmental CNS axon growth and PNS axon 341 

regeneration but are excluded from CNS axons after development, both endogenously and 342 

after viral transduction (Nieuwenhuis et al., 2018)(discussed in detail below). Because 343 

integrins can promote PNS regeneration but are excluded from mature CNS axons, there have 344 

been substantial efforts to understand the mechanisms regulating their transport, with a view 345 

to manipulating this to enable regeneration. These studies initially examined axonal integrin 346 

transport in regenerative PNS axons in vitro, focusing on the integrin alpha9 and its binding 347 

partner beta1. Two small GTPases were found to be responsible for regulating integrin 348 

transport into axons, the recycling endosome markers Rab11 and ARF6 (Eva et al., 2012b; 349 

Eva et al., 2010; Nieuwenhuis and Eva, 2018). Rab11 governs integrin transport into axons in 350 

recycling endosomes, and additionally controls integrin recycling onto the growth cone 351 

surface through an interaction with its effector, Rab coupling protein (Rab11-FIP1). ARF6 is 352 

also involved in integrin trafficking within the growth cone, but crucially plays an additional 353 

role in the axon itself, regulating the direction of integrin transport. ARF6 activation state 354 

governs the direction of axon transport such that active ARF6 favours retrograde transport 355 

whilst inactive ARF6 enhances anterograde transport. This has important implications, 356 

because there are stark differences in directional transport in PNS vs CNS neurons. In PNS 357 

neurons there is a balance between anterograde and retrograde transport which results in an 358 
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integrin presence throughout the axon, often in immobile structures (Eva et al., 2012b). In 359 

CNS neurons (rat brain cortical neurons) there is a developmental increase in retrograde 360 

integrin transport which results in removal of integrins from mature axons in the CNS (Fig. 361 

1), so that live cell imaging reveals there are very few immobile integrin structures in axons 362 

(Franssen et al., 2015). Predominant retrograde movement has previously been associated 363 

with a state of axon growth arrest, whilst a balance of anterograde and retrograde endosomal 364 

movement is associated with axonal elongation (Hollenbeck, 1993; Hollenbeck and Bray, 365 

1987). 366 

With regard to regenerative ability, it may prove to be crucial that not only are integrins 367 

sequestered from adult CNS axons and retained in the cell body and dendrites, but so are their 368 

carriers – Rab11 endosomes. Rab11 is important for developmental axon growth but its 369 

axonal presence is diminished with maturity, being difficult to detect in mature CNS axons, 370 

instead localising principally in the somatodendritic domain (Koseki et al., 2017; Sheehan et 371 

al., 1996). In adult neurons Rab11 is involved in the regulation of post-synaptic plasticity, 372 

with roles in receptor recycling (AMPA and TrkB receptors), dendritic spine development, 373 

and synapse structure (Correia et al., 2008; Esteves da Silva et al., 2015; Lazo et al., 2013; 374 

Sui et al., 2015). Conversely, there is less evidence for a presynaptic role for Rab11 in 375 

mammalian CNS neurons, although it has been observed at low levels in the synaptic vesicle 376 

fraction of synaptosomes. These are enriched with a different set of Rab proteins that are 377 

important for the correct cycling of synaptic vesicles (Rabs 3 and 27) (Binotti et al., 2016; 378 

Pavlos et al., 2010).  379 

It is likely then that the developmental decline in axonal Rab11 reflects a change in the 380 

requirements for recycling within the axon. There is evidence that as axons lose the necessity 381 

for growth and instead become geared for neurotransmission, there is a change in the type of 382 

endosomal recycling machinery present, with a decline in receptor and membrane protein 383 
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recycling and a shift towards synaptic vesicle recycling (Bonanomi et al., 2008). Recent 384 

evidence suggests that membrane proteins and synaptic vesicle proteins are also degraded 385 

through separate pathways in axon terminals, in support of the hypothesis that the machinery 386 

for synaptic vesicle turnover is distinct from that which is required for membrane protein 387 

turnover (Jin et al., 2018b). Moreover, the development of synapses has recently been 388 

associated with regenerative decline (Tedeschi et al., 2016). In summary, Rab11 is known to 389 

transport many molecules that are important for axon growth (in addition to integrins) so it 390 

may not be surprising that Rab11 is not needed in large amounts in the fully developed axon. 391 

Integrins, Rab11 and other regenerative Rab11 cargo are discussed the next section. 392 

 393 

Growth machinery at low levels in mature CNS axons (Rab11 and cargo) 394 

Integrins 395 

Integrins are a diverse family of cell surface receptors for the extracellular matrix (Hynes, 396 

2002). They transduce signals from the extracellular environment that lead to the 397 

reorganisation of the cytoskeleton and activation of numerous influential signalling pathways. 398 

As they have no enzymatic activity, integrins rely on a vast array of interacting molecules to 399 

mediate their actions. They are also regulated by signalling from the intracellular 400 

environment (termed inside-out signalling), which modifies the activation state of the 401 

receptors. Integrins have active and inactive conformations, and ultimately depend on 402 

activation by molecules such as the kindlins and talin, which lead to changes in their 403 

extracellular structure (Cheah and Andrews, 2018; Kim et al., 2011). Integrins function as 404 

heterodimers composed of an alpha and a beta subunit, the combination of which governs 405 

their specificity for their individual ligands, so that different heterodimers can bind with 406 

differing affinities to molecules such as laminin, collagen, fibronectin, tenascin and 407 

vitronectin (Barczyk et al., 2010; Hynes, 2002). They also exhibit some interaction with other 408 
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secreted signalling molecules including certain growth factors (LaFoya et al., 2018). There 409 

are therefore a number of ways that the extracellular environment can modify cellular 410 

behaviour mediated by integrin activation, so it is unsurprising that integrins are involved in a 411 

vast array of biological processes in most cell types both during development and in 412 

adulthood. Neurons are no exception to this; integrins have been implicated in many aspects 413 

of neuronal function, including axonal growth and guidance during development (Myers et 414 

al., 2011) as well as playing an influential role in the regulation of synaptic function during 415 

adulthood (Park and Goda, 2016). Integrins are also involved in the PNS regenerative 416 

response after injury with the axon transport of alpha5 integrin being enhanced on fibronectin 417 

after a conditioning lesion, whilst the integrin alpha7 mediates enhanced regeneration on 418 

laminin after a peripheral nerve crush (Eva et al., 2012a; Gardiner, 2011; Gardiner et al., 419 

2005; Gardiner et al., 2007; Nieuwenhuis et al., 2018). Integrins have long been proposed as 420 

a means of promoting axon regrowth (Condic, 2001), and have recently been used to promote 421 

sensory regeneration through the spinal cord after an injury to the central branch of DRG 422 

axons. Viral introduction of alpha9 integrin (AAV injection into DRG cell bodies) allows 423 

regenerating PNS axons to re-enter the spinal cord and synapse with their targets as well as 424 

continuing to regenerate almost as far as the brain (reaching the medulla but stopping short of 425 

the cuneate nucleus) (Cheah et al., 2016). Because integrins are inactivated by inhibitory 426 

molecules (Hu and Strittmatter, 2008; Tan et al., 2011), this sensory axonal repair strategy 427 

relies on co-expression of the integrin activator kindlin-1. The observed integrin-dependent 428 

regeneration is also only possible because PNS axons support integrin transport (Andrews et 429 

al., 2016). The integrin alpha9 was selected for these experiments because it has two key 430 

features – it binds to tenascin-C and promotes axon extension when bound to this ligand 431 

(Andrews et al., 2009). Tenascin-C is an extracellular matrix glycoprotein that is normally 432 

inhibitory to axon growth in the adult CNS and is strongly upregulated after CNS injury in 433 
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the brain, spinal cord and optic nerve (Andrews et al., 2009; Gervasi et al., 2008; Reinhard et 434 

al., 2017; Tang et al., 2003; Zhang et al., 1997). Alpha9 integrin therefore mediates its 435 

regenerative actions by localising to the axon surface to stimulate axon growth over a 436 

molecule which normally inhibits axon growth. Integrin alpha9 is not normally expressed in 437 

the adult nervous system, so exogenous viral introduction is necessary to observe its effects. 438 

Other endogenous integrins are important for PNS regeneration, but these do not allow PNS 439 

axons to regenerate into the environment of the spinal cord, despite being efficiently 440 

transported into their axons (Gardiner, 2011). Integrins are therefore potent mediators of the 441 

PNS regenerative response and could potentially be used to enable CNS regeneration after 442 

injury. Alpha9 integrin particularly could be able to promote the regeneration of descending 443 

corticofugal axons when virally introduced with kindlin-1, however the developmental 444 

change in the subcellular distribution of integrins in neurons in the CNS means that they are 445 

no longer present in axons, but instead selectively targeted to the somatodendritic domain 446 

(Andrews et al., 2016; Bi et al., 2001; Franssen et al., 2015). This has been observed for 447 

pyramidal neurons in the cortex, hippocampal neurons in the CA1 and CA3 regions, 448 

cerebellar Purkinje neurons, and granule neurons in the dentate gyrus (Bi et al., 2001; Chan et 449 

al., 2003; Einheber et al., 1996; Rodriguez et al., 2000). Virally transduced exogenous 450 

integrins are also restricted from entry to the axons of mature cortical neurons in vivo, whilst 451 

they are transported into the axons of young CNS neurons. However, there does appear to be 452 

a role for integrins in retinal ganglion cell (RGC) neurons in the optic nerve, but it is not clear 453 

if they are present in the axons of all the various subtypes of neurons within the retina 454 

(Andrews et al., 2016; Vecino et al., 2015). In vitro studies have revealed a similar picture, 455 

with alpha and beta integrins detectable in the axons and growth cones of adult DRG 456 

neurons, but not in the axons of mature cortical neurons. Integrins are detectable in the axons 457 

of E18 cortical neurons cultured for 4-7 days, but after this period they become difficult to 458 
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detect so that by 10-14 days in vitro endogenous integrins are almost completely absent from 459 

axons (Bi et al., 2001; Franssen et al., 2015; Koseki et al., 2017). This developmental decline 460 

in CNS integrin axon transport contributes to the decline in regenerative ability, because 461 

restoring integrin transport leads to a restoration of regeneration after a laser injury to the 462 

axons of cortical neurons maturing in vitro (Eva et al., 2017). Importantly, restoring integrin 463 

transport also leads to an increase in axonal Rab11, suggesting that enabling integrin 464 

transport may also facilitate the transport of additional machinery which is transported along 465 

with integrins in Rab11 endosomes.  466 

 467 

Rab11 and recycling endosomes 468 

Rab11 and ARF6 are small GTPases that regulate recycling endosome trafficking and 469 

function as the central regulators of axonal integrin transport, with emerging roles in the 470 

intrinsic regulation of axon regeneration. Axonal Rab11 declines with development, whilst 471 

axonal ARF6 activity is raised (Eva et al., 2012b; Eva et al., 2010; Eva et al., 2017; Franssen 472 

et al., 2015; Sheehan et al., 1996).  473 

Small GTPases are molecular switches that cycle between an active GTP bound state and an 474 

inactive GDP bound state. Their activation state governs the molecules that they interact 475 

with, so that some proteins will interact whilst GTP-bound, and others only whilst they are 476 

bound to GDP. They possess intrinsic GTPase activity, so that bound GTP will be catalysed 477 

to GDP. The rate at which this occurs is regulated by molecules known as GAPs (GTPase 478 

activating proteins) whereas activation (to a GTP-bound state) is regulated by GEFs (Guanine 479 

nucleotide exchange factors). Intrinsic GTPase activity varies between small GTPases, with 480 

ARF6 in particular having very little intrinsic GTPase activity (Campa and Randazzo, 2008; 481 

Gillingham and Munro, 2007). ARF6 is therefore entirely reliant on its GAPs and GEFs for 482 

regulation of its activation state, and a large number of these molecules have been identified, 483 

Page 19 of 64

John Wiley & Sons, Inc.

Developmental Neurobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 20

some of which are implicated in the regulation of axon growth and regeneration (Eva et al., 484 

2012b; Eva et al., 2017; Hernandez-Deviez et al., 2004).  485 

Rab11 is a regulator of recycling endosomes. These are endosomes that return membrane 486 

proteins to the cell surface after they have been internalised. Rab11 was originally identified 487 

as regulating a long loop of receptor recycling via an organelle close to the nucleus (the peri-488 

nuclear recycling centre) (Ullrich et al., 1996). Through this trafficking pathway, membrane 489 

proteins can be internalised from one part of the surface membrane and recycled to another. 490 

Subsequently it emerged that Rab11 is additionally involved in a more localised, rapid 491 

recycling which occurs when there is high-capacity membrane turnover, such as occurs at the 492 

leading edge of migrating cells (Howes et al., 2010). It is also involved in the process of 493 

membrane protein exocytosis (Welz et al., 2014). 494 

ARF6 is also a regulator of recycling endosome traffic but is additionally involved in a range 495 

of mechanisms that are central to cellular function. These include the regulation of the actin 496 

cytoskeleton through key regulators such as Rac and Cdc42, and the control of 497 

phosphoinositide signalling. ARF6 activates PIP5 kinase, an enzyme which is responsible for 498 

generating phosphatidylinositol 4,5-bisphosphate (PIP2) (Gillingham and Munro, 2007). This 499 

molecule is converted by PI3 kinase to make phosphatidylinositol 3,4,5-triphosphate (PIP3), 500 

which can in turn be metabolised by PTEN back to PIP2 (Vanhaesebroeck et al., 2012). This 501 

is a key step in an extremely influential signalling pathway which can have wide-ranging 502 

consequences in cell functions such as transcription, translation, epigenetics, cytoskeletal 503 

regulation, trafficking and transport, neurotransmission, apoptosis, cell growth, proliferation, 504 

and survival. The majority of ARF6 GEFs and GAPs are either directly regulated by PIP2 or 505 

PIP3 or regulated by phosphorylation from key kinases in the PI3 kinase pathway (Hawkins 506 

et al., 2006; Randazzo et al., 2001). ARF6 is therefore both a trafficking and signalling 507 

molecule closely involved with pathways that are central to controlling cell function. 508 
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Both ARF6 and Rab11 were first implicated as regulators of integrin function in non-509 

neuronal cells, being important for recycling of integrins during cell migration and invasion 510 

of cancer cells. Recycling of integrins is central to their function in mediating cell migration, 511 

being required for the correct turn-over of focal adhesion complexes (Caswell and Norman, 512 

2008; Caswell et al., 2008; Caswell and Norman, 2006; Dai et al., 2004; Dunphy et al., 2006; 513 

Jones et al., 2006; Pellinen and Ivaska, 2006; Powelka et al., 2004; Roberts et al., 2001; Vitali 514 

et al., 2017). Subsequent studies found that Rab11 is required for targeting integrins to axons 515 

in DRG neurons in culture, as well as being important for recycling integrins locally within 516 

the growth cone (Eva et al., 2012b; Eva et al., 2010). Recycling is necessary within the 517 

growth cone to control directional changes (Tojima et al., 2007; Tojima et al., 2010). More 518 

recently, there have been a number of studies that confirmed the importance of Rab11 for 519 

correct growth cone function, with its targeted removal from developing growth cones 520 

leading to growth cone collapse, whilst increased growth cone targeting leads to an increase 521 

in axon growth (van Bergeijk et al., 2015). Optogenetic disruption of growth cone Rab11 also 522 

leads to a reduction in growth cone area, similar to the decreased growth cone area observed 523 

when Rab11 is silenced (Eva et al., 2010; Nguyen et al., 2016). In vivo studies have 524 

confirmed that Rab11 is required at the growth cone for the correct guidance of axons 525 

crossing the midline of the spinal cord during development of the nervous system (Alther et 526 

al., 2016).  527 

ARF6 similarly regulates integrins in both the axon and at the growth cone, but crucially it 528 

also regulates the direction of integrin transport within axons, with active ARF6 triggering 529 

retrograde transport whilst inactive ARF6 allows anterograde transport (Eva et al., 2012b; 530 

Franssen et al., 2015). Inactivating ARF6 enables both integrin and Rab11 transport leading 531 

to enhanced axon growth and regeneration after laser axotomy (Eva et al., 2012b; Eva et al., 532 

2017; Hernandez-Deviez et al., 2004).  This may be due to an increased integrin presence, but 533 
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may equally be due to an increase in Rab11 itself, as this has also been shown to increase 534 

regeneration when its axonal localisation is increased by overexpression (Koseki et al., 2017). 535 

There may also be a role for other Rab proteins in this process, as recycling endosomes are 536 

also regulated by Rabs 8, 10 and 35 which are all involved in the regulation of neurite 537 

outgrowth in PC12 cells and axon growth in cortical and hippocampal neurons in vitro 538 

(Chevallier et al., 2009; Furusawa et al., 2017; Homma and Fukuda, 2016; Huber et al., 1995; 539 

Kobayashi and Fukuda, 2012; Villarroel-Campos et al., 2016; Wang et al., 2011). It may also 540 

be that Rab11 enables regenerative axon growth by providing other growth-related molecules 541 

to the site of injury, because a number of growth factor receptors and the regenerative 542 

reggie/flotillin proteins are also associated with trafficking via Rab11 (Bodrikov et al., 2017; 543 

Hulsbusch et al., 2015; Koch et al., 2013). These are discussed below.  544 

 545 

IGF-1 and TrkB receptors 546 

With well-defined roles in regulating axon growth, it is understandable that research has 547 

focused on promoting axon regeneration through growth factor / growth factor receptor 548 

manipulation. Two prominent growth factor receptors that have been investigated in this 549 

respect are tropomyosin-related kinase B (TrkB) and insulin-growth factor receptor 1 (IGFR-550 

1), which are activated by the growth factors BDNF and IGF respectively (Duan et al., 2015; 551 

Hollis et al., 2009c; Liu et al., 2017; Lu and Tuszynski, 2008). IGFR-1 has a vital function in 552 

neuronal survival and glial progenitor protection against glutamate toxicity after injury. In 553 

order to perform these functions, IGFR-1 undergoes dynamic recycling and internalisation 554 

upon ligand stimulation which is essential for sustained downstream signalling. Furthermore, 555 

the IGF-1 receptor colocalises with Rab11-positive endosomes and with the transferrin 556 

receptor identifying the IGF-1 receptor as one of the receptors packaged in recycling 557 

endosomes (Romanelli et al., 2007). As Rab11-positive endosomes are excluded from the 558 
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mature axons of CNS neurons, the low availability of IGFR-1 in the axon after injury might 559 

be a further reason for poor CNS axonal properties. The IGF-1 receptor has been implicated 560 

in the specification and initial axon growth in hippocampal neurons acting through the PI3K 561 

pathway, in the absence of TrkA or TrkB activation (Dupraz et al., 2009; Nieto Guil et al., 562 

2017; Sosa et al., 2006). This activation is preceded by targeted accumulation of IGFR-1 in 563 

the developing axon. IGF-1 has also been shown to markedly enhance axon outgrowth in 564 

young cultures of pure corticospinal motor neurons through the PI3K and the ERK/MAPK 565 

pathways, an effect which is separate from its effects on neuronal survival (Ozdinler and 566 

Macklis, 2006). IGF-1 receptor signalling was also shown to be necessary for proper axonal 567 

outgrowth of retinal ganglion cells in vitro (Dupraz et al., 2013) and of corticospinal motor 568 

neurons in vivo (Ozdinler and Macklis, 2006). Surprisingly, application of IGF-1 to injured 569 

corticospinal tract neurons resulted in their improved survival but not regeneration. The 570 

authors speculated that the effects of the IGFR-1 activation on survival and growth are 571 

developmentally distinct and the reduced availability of the receptor in axons compared to the 572 

soma can explain the inability of overexpressed IGF-1 to promote regeneration (Hollis et al., 573 

2009c). In a different study, the activation of the IGF-1 receptor by the application of IGF-1 574 

and sensitisation with osteopontin resulted in robust sprouting and partial recovery of 575 

function in two different models of corticospinal tracts injury (Liu et al., 2017). This effect 576 

was attributed to osteopontin’s ability to interact with integrins or other surface molecules to 577 

cause IGFR-1 clustering, and most likely occurs at the site of the cell body plasma 578 

membrane. Taking into account the versatile functions of the IGFR-1 receptor in neuronal 579 

survival, growth and regeneration, its proper transport and trafficking is essential for optimal 580 

function in development and regeneration. The investigation of osteopontin as a growth 581 

stimulator arose from studies in retinal ganglion neurons. These have as small subpopulation 582 

of cells that regenerate better than their counterparts. These are known as αRGCs and were 583 
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found to express higher levels of osteopontin. Experiments in the optic nerve determined that 584 

osteopontin facilitates robust regeneration in combination with either IGF, or BDNF, the 585 

TrkB receptor ligand (Duan et al., 2015).  586 

TrkB is similar to the IGF receptor in that it too is involved in developmental axon growth 587 

(Gates et al., 2000), has been targeted to promote CNS regeneration (Hollis et al., 2009b; 588 

Kwon et al., 2004; Plunet et al., 2002), and is transported in Rab11 endosomes. The recycling 589 

of TrkB receptor through Rab11-positive recycling endosomes regulates its neuronal 590 

localisation, and in mature neurons is involved in post-synaptic receptor recycling in 591 

dendrites (Huang et al., 2013; Lazo et al., 2013; Sui et al., 2015). This is in contrast to its 592 

developmental enrichment at the growth cone of CNS neurons, from where it stimulates axon 593 

growth. Importantly, BDNF signalling at the growth cone stimulates anterograde transport of 594 

its receptor, TrkB (Cheng et al., 2011). This autocrine feedforward mechanism demonstrates 595 

that signalling from the distal axon can stimulate growth-promoting mechanisms, and is 596 

similar to the transport of TrkA in PNS neurons, which also transport TrkA in Rab11 597 

endosomes (Ascano et al., 2009). Despite its role in axon growth promotion during 598 

development, TrkB is unable to stimulate regeneration of injured CST axons in adults, and 599 

this appears to be as a result of its somatodendritic localisation. Adult corticospinal neurons 600 

show abundant TrkB receptor distribution in their soma and dendrites, but not in their axons 601 

which correlated with their inability to regenerate after a subcortical lesion (Lu et al., 2001). 602 

Similarly, rubrospinal axons do not appear to support TrkB transport, although application of 603 

BDNF to their cell bodies can promote their survival after injury and encourage regeneration 604 

into a peripheral nerve graft (Kwon et al., 2002; Kwon et al., 2004; Plunet et al., 2002). In 605 

contrast, motor neurons which expressed TrkB throughout their axons were able to re-grow 606 

past the injury site suggesting that the presence of the receptor in the axon plays a key role 607 

after injury in order for the axon to initiate a growth program (Lu et al., 2001). TrkB agonists 608 
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can also promote structural and functional repair of cut peripheral nerves (English et al., 609 

2013). Given that integrins, the IGF receptor and TrkB all traffic via Rab11 and all adopt a 610 

somatodendritic localisation, it seems inconsistent that overexpressed TrkB localises to CST 611 

axons, and can improve regeneration when stimulated by BDNF after a subcortical lesion 612 

(Hollis et al., 2009b). However, it is important to note that regeneration was only found 613 

subcortically, and that the TrkB receptor was not transported to more distal sites, such as the 614 

spinal cord. The presence of TrkB in the axon is not completely unexpected, because there is 615 

evidence that TrkB has a presynaptic role in regulating neurotransmission (Xu et al., 2000). 616 

This may be as a result of trafficking under the control of different endosomal regulators, as 617 

has been reported in hippocampal axons (Arimura et al., 2009), however an axonal presence 618 

of TrkB does not appear to be at adequate levels to support robust regeneration. This seems to 619 

be the case for many growth factor receptors, as stimulation with NGF, BDNF, NT-3, NT-4, 620 

GDNF, has limited effects on CST regeneration (Kordower and Tuszynski, 2008; Thoenen 621 

and Sendtner, 2002) 622 

 623 

Reggie/flotillin proteins 624 

Reggie and flotillin are the same proteins with different names; reggie 1 and 2 are flotillin 2 625 

and 1, respectively. The two proteins localise to lipid-rich microdomains in the surface 626 

membrane, (often referred to as lipid rafts) as well as to other endosomal membranes. They 627 

have two names because they were identified simultaneously in two separate labs. The 628 

Stuermer lab identified two proteins from larval goldfish using an antibody against Thy-1 to 629 

isolate microdomain enriched molecules, and subsequently named them the reggie proteins 630 

because they are upregulated by retinal ganglion cells during axon regeneration in the fish 631 

visual system (Schulte et al., 1997). At the same time, the Lodish lab identified flotillin-1 632 

from a screen to identify novel components of caveolae (small invaginations of the plasma 633 
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membrane involved in clathrin independent endocytosis and signal transduction), using the 634 

term flotillin because they found the protein resided in a detergent resistant buoyant (floating) 635 

membrane fraction in the brain. Importantly, the Lodish lab noted the absence of caveolae in 636 

the brain, highlighting a potential role for the protein outside of caveolae (Bickel et al., 1997).  637 

There is now a large literature regarding the cell biological role of the reggie/flotillin 638 

molecules, mostly regarding their roles in caveolae and clathrin-independent endocytosis 639 

(using the flotillin name), and there are detailed reviews around this (Babuke and Tikkanen, 640 

2007; Bodin et al., 2014; Hansen and Nichols, 2009). Here we mention the neuronal 641 

functions of reggie/flotillin in axon regeneration, their association with Rab11 endosomes, 642 

and their function in synapse regulation.  643 

A role for reggie/flotillin in the regulation of axon growth and regeneration was first 644 

suggested by experiments to silence their expression in the zebrafish retina. Depletion led to a 645 

substantial decrease in the number of regenerating axons. Experiments in hippocampal 646 

neurons found the presence of the reggie/flotillin along axons and at the growth cones of 647 

neurons developing in vitro, and silencing with siRNA led to a similar reduction in axon 648 

length (Munderloh et al., 2009).  This resulted in experiments aimed at increasing RGC 649 

regeneration after an experimental optic nerve crush in rats. Reggie 1 was transduced into 650 

RGCs by intravitreal AAV injection two weeks before an optic nerve crush, and regeneration 651 

was assessed four weeks later.  Overexpression of reggie-1 increased the number of axons 652 

crossing the lesion site by 3-5 times, and regenerating axons were found up to 5mm beyond 653 

the injury site, confirming a role for the reggie/flotillin molecules in facilitating axon 654 

regeneration (Koch et al., 2013). As neurons lack caveolae, it is unlikely that these effects are 655 

mediated by membrane internalisation/endocytic functions but may have more to do with 656 

trafficking or targeting of molecules onto the cell surface. T-cells also lack caveolae, and in 657 

these cells, reggie/flotillin mediates the targeting of the T-cell receptor from an intracellular 658 
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compartment to a region on the cell surface known as the T-cell cap (Langhorst et al., 2006). 659 

The identity of the intracellular compartment is debated, with some studies finding 660 

reggie/flotilin on early endosomes, being involved in endocytosis (Glebov et al., 2006), 661 

however in neurons, reggie/flotillin are also found enriched in recycling endosomes (as 662 

marked by Rab11).  Amongst the molecules implicated in mediating trafficking together with 663 

reggie/flotillin, are the GTPase TC10 and the secretory exocyst component exo70. Crucially, 664 

this complex (TC10 and exo70) mediates growth cone membrane addition and axon growth 665 

downstream of the IGF-1 receptor and PI3 kinase (Dupraz et al., 2009). TC10 is found on 666 

Rab11 positive endosomes and stimulates neurite outgrowth by stimulating exocytic fusion of 667 

Rab11 endosomes with the plasma membrane (Fujita et al., 2013). Rab11 was subsequently 668 

shown to interact with reggie/flotillin at the recycling endosome, functioning to return 669 

cadherins and the transferrin receptor to the plasma membrane (Solis et al., 2013). 670 

Reggie/flotillin also regulate EGF receptor trafficking (Solis et al., 2012), and together with 671 

Rab11 control integrins and focal adhesion recycling (Hulsbusch et al., 2015).  672 

In mature neurons, reggie/flotillin were recently shown to function with Rab11 in the 673 

regulation of synapse development and post-synaptic trafficking, being involved in the 674 

trafficking of cadherins, glutamate receptors and PSD95 into dendritic spines (Bodrikov et 675 

al., 2017).  Other studies have implicated reggie/flotillin in the regulation of synapses, being 676 

involved in strengthening glutamatergic synapses in vitro (Swanwick et al., 2010), whilst 677 

protein levels are altered in vivo when somatosensory cortical synapses are modulated by 678 

sensory deprivation (Butko et al., 2013). These studies imply a dendritic localisation for 679 

reggie/flotillin in mature CNS, however their localisation to mature axons has not been fully 680 

investigated. It is clear that the reggie/flotillin molecules regulate developmental axon growth 681 

and function together with regenerative molecules such as integrins and Rab11 but localise to 682 

dendrites after development. It will be important to determine if they are absent/diminished in 683 
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mature CNS axons. It is likely that interventions that promote in vitro regeneration via 684 

enhanced integrin/Rab11 axon transport may also be functioning by facilitating the transport 685 

of other regenerative molecules such as reggie/flotillin, which are also present on recycling 686 

endosomes.  687 

 688 

Other organelles/complexes and axon regeneration 689 

Mitochondria 690 

Mitochondrial axonal transport and morphology are altered with cortical neuron maturation. 691 

During development mitochondria are highly mobile and move bidirectionally along the axon 692 

to meet the high energy demands of the developing cells while also acquiring shortened 693 

morphology to aid this dynamic movement. This situation changes with development, so that 694 

in mature neurons, mitochondria elongate and become less dynamic to serve the updated 695 

functions of the cell (Chang and Reynolds, 2006). Using live imaging of mitochondrial 696 

transport, a subsequent study revealed one reason why mitochondria are less mobile in 697 

mature neurons is that they are being anchored to the axon by syntaphilin (Kang et al., 2008). 698 

These observations have recently been confirmed in vitro and in vivo. Immature neurons in 699 

vitro (3-7DIV) exhibit very mobile mitochondria whereas in more mature neurons (10+ DIV) 700 

the mitochondria tend to be less mobile with up to 95% of all axonal mitochondria being 701 

stationary by 28DIV (Lewis et al., 2016). Interestingly, the number of mobile vs. stationary 702 

lysosomes did not seem to change, so this mitochondrial reduced mobility with maturation 703 

seems to be specific which could be explained by the localisation of mitochondria to pre-704 

synaptic terminals with the development of synapses. The authors also examined the 705 

transport of mitochondria using two-photon imaging and showed that more than 90% of 706 

mitochondria in the distal axons of layer 2/3 cortical neurons are actually stationary. This 707 

lack of mobility corresponds with a decline in regenerative capacity and can be targeted to 708 
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facilitate regeneration, either by interfering with the docking of mitochondria by syntaphilin 709 

or by overexpressing the mitochondrial motor adaptor Miro-1. These interventions lead to 710 

increased axonal mitochondrial dynamics, and enhanced regeneration of mature cortical 711 

neurons in vitro. Axons from syntaphilin knockout mice also exhibit enhanced mitochondrial 712 

motility and a rescue of energy deficits after in vitro axotomy, and enhanced regeneration 713 

after a sciatic nerve crush injury. This study suggests that unmet energy demands after axonal 714 

injury is one reason why mature axons are poor regenerators (Zhou et al., 2016). Enhancing 715 

mitochondrial motility can also stimulate regeneration of injured CNS axons as demonstrated 716 

by a recent study focusing on the mitochondria-associated molecule Armcx1. This molecule 717 

is upregulated when regeneration is stimulated in the optic nerve by interventions such as 718 

PTEN deletion. Overexpression of Armcx1 stimulates mitochondrial motility, in vitro CNS 719 

axon growth, and axon regeneration after an optic nerve crush. It also enhances optic nerve 720 

regeneration when overexpressed in mice with genetic PTEN deletion (Cartoni et al., 2016).  721 

 722 

Proteasome 723 

The ubiquitin-proteasome plays an important role in regulating the concentration of 724 

individual proteins within the cell, by clearing excessive or unwanted proteins. It is also 725 

responsible for clearing damaged or mis-folded proteins (Korhonen and Lindholm, 2004). 726 

Proteasome function ensures that the correct amount of protein is present in specific 727 

subcellular regions at any given time. Proteasome transport into axons is dependent upon 728 

association with membranous vesicles, which are transported by kinesin and dynein motors 729 

(Otero et al., 2014). In the PNS, there appears to be predominant anterograde transport of the 730 

proteasome because ligation of the sciatic nerve leads to the accumulation of proteasomal 731 

subunits on the proximal side of the ligation (indicating the blockade of proteasomes moving 732 

away from the cell body). Proteasomal subunits also accumulate on the distal side of the 733 
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lesion, indicating retrograde transport also occurs, however this is not as profound as is seen 734 

on the proximal side (Otero et al., 2014). Importantly, this anterograde transport appears to be 735 

enhanced after a growth-stimulating pre-conditioning injury (Verma et al., 2005), suggesting 736 

that PNS axons increase the anterograde transport of proteasomal components as part of their 737 

response to an injury. Proteasomal activity appears to be an important part of the PNS 738 

regeneration process, because inhibition of the proteasome by lactacystin leads to a reduction 739 

in the percentage of axons that can reform a growth cone after in vitro axotomy (Verma et al., 740 

2005). CNS neurons also transport proteasomal subunits into their axons, both early on in 741 

development (Hsu et al., 2015), and also at a more mature developmental stage (Otero et al., 742 

2014), although it is not clear whether the proportion of anterograde or retrograde transport 743 

changes with development. The study by Hsu et al suggests that there is predominant 744 

retrograde transport, at least at an early developmental stage (embryonic day 18 cortical 745 

neurons cultured for 3 days), whilst the study by Otero et al suggest that later in development 746 

(10 days in vitro) the majority of CNS proteasomal transport (80%) is random and diffuse, 747 

with only small amounts of clearly anterograde or retrograde transport. This difference may 748 

be to do with maturation, but could also be down to experimental conditions, Hsu et al 749 

imaging proteasomal transport by use of a fluorescent dye (MV151), and Otero et al imaging 750 

YFP tagged proteasomal subunits. Whatever the case, these studies did not find that the 751 

predominant anterograde proteasomal transport observed in the PNS is also present in the 752 

CNS. Instead, there may be an increase in retrograde proteasomal transport which increases 753 

with axon length (Hsu et al., 2015). Given that a dynamic balance between local protein 754 

synthesis and protein degradation is important for PNS axon regeneration after injury (Gumy 755 

et al., 2010), it may be that efficient axonal proteasome transport is required for a properly 756 

functioning growth cone which can drive regenerative axon growth.  757 

 758 
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Autophagosomes 759 

In its simplest form, autophagy is a highly regulated process through which cellular 760 

components can be degraded and recycled for reuse within the cell. For example, unwanted 761 

or damaged proteins can be recycled as amino acids to feed protein translation. Autophagy 762 

can occur in a steady fashion, or in response to stress or starvation. The normal autophagy 763 

process involves the formation of the double membrane bound autophagosome, which 764 

envelopes isolated cellular constituents. These eventually fuse with lysosomes to form 765 

autolysosomes, which degrade proteins via their acidic environment (Bento et al., 2016; 766 

Glick et al., 2010; Kaur and Debnath, 2015). However, there is also significant crosstalk 767 

between autophagosomes and endosomes (Davis et al., 2017; Kim et al., 2012; Szatmari et 768 

al., 2014), particularly at the level of the late endosome (Hyttinen et al., 2013; Lamb et al., 769 

2013), resulting in a multi-vesicular endo/autophag-osome termed the amphisome (Patel et 770 

al., 2013; Sanchez-Wandelmer and Reggiori, 2013). Amphisomes can fuse with the surface 771 

membrane causing the release of sequestered proteins to the extracelluar environment as well 772 

as adding membrane to the cell surface (Claude-Taupin et al., 2017). Addtionally, lysosomes 773 

can also function as exocytic vesicles (Arantes and Andrews, 2006; Naegeli et al., 2017; 774 

Padamsey et al., 2017) in addition to being organelles of degradation, even supplying 775 

integrins for directed migration (Rainero and Norman, 2013). Traffic through the 776 

autophagosome-lysosome pathway is therefore extremely complicated and not necessarily a 777 

means of degradation.  778 

Neuronal autophagy is well studied (Jin et al., 2018a), largely because its misregulation is 779 

implicated in degenerative diseases such as Alzheimer’s, Parkinson’s and Huntingdon’s 780 

disease as well as amyotrophic lateral sclerosis (ALS) / motor neuron disease (Dikic and 781 

Elazar, 2018). There are a number of excellent recent reviews which comprehensively 782 

discuss the function and regulation of autophagy within neurons (Kulkarni et al., 2018; 783 
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Kulkarni and Maday, 2018; Nikoletopoulou and Tavernarakis, 2018; Stavoe and Holzbaur, 784 

2018). Here we discuss the involvement of autophagy in the process of axon growth and 785 

regeneration, the presence of autophagy specifically within the axon, how autophagic 786 

mechanisms may vary between neuronal types of differing regenerative ability, and the 787 

regulation/interaction of Rab11 and recycling endosomes with the autophagosome.  We also 788 

comment on a role for non-acidic lysosomes at the growth cone.   789 

Currently the majority of evidence suggests that autophagy is required for axon growth and 790 

regeneration. Whilst one study reports that inhibition of autophagy by silencing of ATG7 791 

leads to increased axon extension (Ban et al., 2013), the majority of studies suggest that 792 

autophagy is required for axon growth. The autophagy genes ULK1 and 2 are required for 793 

normal axon extension in the developing mouse brain (Wang et al., 2017a), and inhibition of 794 

autophagy opposes axon growth and survival of DRG neurons in culture, suggesting a 795 

positive role for autophagy during regenerative axon growth (Clarke and Mearow, 2016). 796 

Autophagy also seems to be beneficial for CNS axon regeneration, with a recent study 797 

demonstrating that stimulation of autophagy can promote axon growth over inhibitory 798 

molecules in vitro, whilst activation of autophagy in vivo (by delivery of of Tat-beclin) leads 799 

to enhanced regeneration of monoaminergic neurons after a spinal cord injury (He et al., 800 

2016). This study used EM to demonstrate that beclin-induced autophagosomes were present 801 

specifically within axons. If autophagy is required within the axon in order to regenerate a 802 

growth cone, it is possible that there may be differences in the transport of autophagy 803 

machinery between regenerative and non-regenerative axons. It is important to note that 804 

monoaminergic neurons have a better regenerative ability than corticospinal tract axons, and 805 

the induction of autophagy by Tat-beclin does not stimulate CST regeneration (He et al., 806 

2016). This may indicate that the necessary growth-promoting autophagy machinery is not 807 

present in these axons.  808 
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Autophagy, and the transport of autophagosomes, has been examined in both CNS and PNS 809 

axons and whilst there is clear evidence for the existence of autophagy in both neuronal 810 

types, there may also be differences. Axonal autophagosome biogenesis was first studied in 811 

adult mouse DRG neurons (Maday et al., 2012), by imaging GFP-LC3 (an autophagosome 812 

marker). Autophagosomes were observed developing in the distal part of axons, however in 813 

this location they remained negative for lysosomal markers. Instead autophagosomes became 814 

positive for lysosomal markers as they were retrogradely transported towards the cell body. 815 

This suggests that mature autophagy (degradation) does not occur in the distal axon but is 816 

targeted to the cell body (Maday et al., 2012). Despite this, there is apparent contact of 817 

autophagosomes with lysosomes within the distal part of the axon, indicating that there may 818 

be some fusion events that may not be degradative. It is not clear if the contents of distal axon 819 

autophagosomes can escape autophagy by being passed to lysosomes. However, there is 820 

evidence that lysosomes may be required at the growth cone to enable the trafficking of cargo 821 

out of the autophagosome because decreasing the amount of lysosomes at the growth cone 822 

leads to enlargement of autophagosomes (Farias et al., 2017). There is also evidence that 823 

growth cone lysosomes may not be degradative as they are not acidified in the same way as 824 

the rest of the cell (Farias et al., 2017; Overly and Hollenbeck, 1996). Lysosomes supply 825 

integrins to enable invasive and migratory behaviour in non-neuronal cells (Dozynkiewicz et 826 

al., 2012; Rainero and Norman, 2013) and can undergo exocytosis to contribute to axon 827 

growth (Arantes and Andrews, 2006). It is therefore possible that there is a form of recycling 828 

that occurs at the growth cone via autophagosome/endosome interaction. We speculate that 829 

this may be required to enable regeneration when an axon needs to alter its machinery to 830 

switch from a state of neurotransmission to a state of axon growth. The process of autophagy 831 

could engulf unwanted machinery, which in turn could either be degraded or recycled 832 

through lysosomes or other endosomes.  833 
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The above study by Maday et al demonstrated that axonal autophagosomes are 834 

predominantly transported retrogradely towards the cell body in DRG neurons.  Subsequent 835 

work confirmed that a similar phenomenon occurs in CNS neurons, through the study of 836 

E15.5 mouse neurons in vitro (Maday and Holzbaur, 2014; 2016).  These investigations 837 

found that axonal autophagy was not induced in response to nutrient deprivation (as occurs in 838 

other cell types), but rather that autophagosome generation appears to be a homeostatic 839 

process. They also showed that autophagosome biogenesis is four times slower in the distal 840 

axons of hippocampal neurons compared to DRG neurons. The studies also demonstrated that 841 

the axonal ER is a source of membrane for the axonal autophagosome and not the plasma 842 

membrane, but the authors did not examine a potential role for Rab11. Rab11 positive 843 

recycling endosomes are a source for autophagosomal membrane during starvation induced 844 

autophagy in non-neuronal cells (Lamb et al., 2016; Longatti et al., 2012; Longatti and 845 

Tooze, 2012). Given that Rab11 endosomes are transported away from CNS axons as they 846 

mature (Koseki et al., 2017) it is possible that this may limit the type of autophagy that exists 847 

within the axon. The question remains as to whether starvation or stress induced autophagy is 848 

a mechanism that needs to be activated in order to stimulate the process of regeneration 849 

within the axon. It is also not known if there are developmental changes in the rate or type of 850 

autophagy that occurs within axons (which may contribute to regeneratve ability) or whether 851 

the type of autophagy varies between neurons of different regenerative abilities. Perhaps 852 

recycling autophagy (as opposed to degradative) is more suited to axon regeneration? There 853 

is strong evidence for the involvement of Rab11 in both the generation of the autophagosome 854 

(as mentioned above) and also in mediating traffic away from autophagosomes towards 855 

multivesicular bodies and exocytosis (Chen et al., 2017; Fader et al., 2008; Fader et al., 856 

2009). Given the difference in Rab11 transport between non-regenerative and regenerative 857 

axons, it may be that there are differences in the way autophagy functions in the axons of 858 
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various neuronal types, that might contribute to their differential regenerative ability. Much 859 

work is needed to determine whether this is the case. 860 

 861 

Mechanisms regulating polarised transport  862 

As described above, the capacity for axon regeneration varies between neuronal types and 863 

with development.  Adult PNS axons are considered good regenerators, whilst most CNS 864 

axons lose their ability to regenerate with maturity. The ability to transport regenerative 865 

molecules into axons also varies. For example, PNS axons continue to support integrin 866 

transport into adulthood whilst transport declines with maturity in CNS axons (Fig. 1). This 867 

also appears to be the case for other growth promoting receptors, which are either absent or 868 

expressed at low levels in most mature CNS axons. To understand the mechanism behind 869 

these differences, it is necessary to examine the regulation of polarised transport in neurons, 870 

particularly focusing on membrane proteins. The axon growth promoting receptors and 871 

guidance molecules that mediate regeneration such as TrkB, the IGF1 receptor and integrins 872 

are all cell surface membrane proteins. This class of molecule is subject to tightly controlled 873 

trafficking processes in all cells. As an extreme example of polarised cells, neurons have 874 

intricate mechanisms for maintaining the correct distribution of membrane proteins to 875 

specific neuronal compartments. This ensures that post synaptic receptors and associated 876 

machinery are targeted to dendrites, whilst the machinery for synaptic vesicle cycling and 877 

neurotransmission are directed to presynaptic sites within axons.  In this section, we describe 878 

the mechanisms that are known to regulate polarised distribution in neurons, focusing on 879 

their relevance to regulating regenerative capacity. We have described above how a 880 

conditioning injury that promotes regeneration can also facilitate axon transport. This 881 

response relies partly on the retrograde injury signal, which transmits signals from the axon 882 

to the cell body via retrograde axonal transport. We will not be focusing on this retrograde 883 
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response (which has been reviewed in detail: (Abe and Cavalli, 2008; Rishal and Fainzilber, 884 

2014; Tasdemir-Yilmaz and Segal, 2016), but rather the mechanisms involved in facilitating 885 

or preventing anterograde delivery, and how these might relate to axon regeneration. 886 

 887 

Neuronal membrane transport 888 

All membrane proteins are synthesised in the ER membrane, and spend their lives restricted 889 

to a membranous environment. After leaving the ER, membrane proteins pass through the 890 

Golgi membrane before being transported to the cell surface in endosomes. At the cell 891 

surface, membrane proteins can be internalised (again into endosomes) and are subject to a 892 

variety of regulatory mechanisms which can decide their fate – recycling to the plasma 893 

membrane, redirecting to a different part of the cell, clustering into signalling platforms, 894 

degrading, or even priming for extracellular cues (Yap and Winckler, 2012). Membrane 895 

protein trafficking is therefore subject to precise and complex regulation by numerous 896 

processes including cytoskeletal elements, motor proteins, adaptor molecules, protein 897 

scaffolds, signalling molecules (including kinesins and phosphatases), and small GTPases 898 

such as the Rab and ARF families. Investigations into neuronal polarised membrane transport 899 

has focused on all of these mechanisms, and each of them plays a role in regulating transport 900 

into either dendrites or axons.  901 

 902 

Microtubules and associated motors 903 

The principle regulator of polarised transport in neurons is arguably the cytoskeleton, which 904 

defines axons and dendrites by virtue of the orientation of microtubules. Axonal microtubules 905 

are unipolar, with the plus end facing into the axon, whilst dendrites have microtubules 906 

aligned both into and away from the dendrite (Baas et al., 1988; Tas et al., 2017; Yau et al., 907 

2016).  As the majority of membrane protein transport occurs in endosomes transported on 908 
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microtubules by kinesin or dynein/dynactin motor proteins, the unipolar nature of axonal 909 

microtubules ensures that only kinesin motor proteins can drive anterograde axonal transport, 910 

and that molecules transported principally by dynein are enriched in dendrites. Proteins 911 

intended for axonal transport will also enter dendrites, but overall their distribution is biased 912 

towards axons (Nakata and Hirokawa, 2003). Microtubule orientation alone is not sufficient 913 

to determine whether a protein can enter the axon, and so further control is exerted by the 914 

wide variety of the kinesin family. Neurons express as many as 20 types of kinesin that will 915 

transport cargo towards the plus end (Silverman et al., 2010), but only some of these 916 

specifically target to axons, whilst others target to both dendrites and axons. Interestingly, no 917 

kinesins have been found to be targeted only to dendrites (Huang and Banker, 2012). This 918 

suggests that dynein-dependant transport is an important determinant in dendritic targeting, 919 

and this has been shown to be the case, because linking axon specific cargo to dynein motors 920 

results in their dendritic delivery (Kapitein et al., 2010). The specificity of individual kinesins 921 

for axons may contribute to the developmental decline in regenerative ability, in that the 922 

expression of certain kinesins changes with development. Kinesin KIF4A is involved in the 923 

axonal delivery of integrins during development, but it is downregulated postnatally at a time 924 

when integrins are excluded from axons (Heintz et al., 2014). However, whilst re-expressing 925 

KIF4A in mature cortical neurons in vitro leads to its presence in axons, it does not facilitate 926 

integrin axonal transport. Integrins can be manipulated into axons at this time (through other 927 

trafficking interventions), suggesting that other kinesins are also capable of transporting 928 

integrins into axons.  929 

The targeting of specific kinesins to the axon is thought to be partly as a result of specific 930 

modifications to the microtubules, including acetylation, glutamylation and detyrosination 931 

which regulate axonal kinesin transport (Hammond et al., 2010; Kaul et al., 2014; Konishi 932 

and Setou, 2009). Importantly, interventions targeting these modifications such as low dose 933 
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taxol can permit axonally excluded growth promoters such as integrins to enter the axon 934 

(Franssen et al., 2015), however this can also cause axonal proteins to accumulate in 935 

dendrites (Hammond et al., 2010). Interestingly, low dose taxol treatment only permits 936 

integrins transport into the proximal part of the axon, suggesting microtubule modifications 937 

are particularly critical in this area. The early part of the axon is an area of intense study 938 

regarding polarised transport. This region of the axon includes two important regions 939 

implicated in the regulation of polarised transport, the axon initial segment (AIS) and before 940 

it, the pre-axonal exclusion zone (PAEZ). 941 

 942 

The axon initial segment and the regulation of axonal traffic and transport 943 

The AIS is in the very proximal part of the axon. It is primarily responsible for the 944 

propagation of the action potential, being enriched in the ion channels necessary for this 945 

function. It is also enriched in cytoskeletal elements such as AnkyrinG, actin, and beta IV 946 

spectrin, and microtubule associated proteins such as EB1 and EB3 (Leterrier et al., 2011; 947 

Zhang and Rasband, 2016). Importantly, the AIS develops at a time when CNS axons lose 948 

their regenerative ability, and is strongly associated with polarised membrane transport and 949 

axon dendrite identity (Rasband, 2010). Ankyrin G is considered to be the orchestrator of the 950 

AIS because its depletion causes demolition of the entire structure. Depleting Ankyrin G 951 

leads to a loss of axonal identity, with the proximal axon exhibiting dendritic molecules such 952 

as post-synaptic receptors and taking on dendritic features such as spines (Sobotzik et al., 953 

2009). A number of mechanisms have been proposed to explain how the AIS might regulate 954 

polarised transport, in addition to the post-translational modifications of microtubules 955 

(Hammond et al., 2010; Konishi and Setou, 2009; Tapia et al., 2013). The actin cytoskeleton 956 

is proposed to regulate transport from within the AIS by acting as a dense barrier to diffusion 957 

(Song et al., 2009) or by diverting myosin motors back to the cell body (Lewis et al., 2009). 958 
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This idea is currently debated because other studies have not found a dense actin mesh within 959 

the AIS (Farias et al., 2015), but rather the usual actin and spectrin rings that are present 960 

throughout the axon (Leterrier et al., 2015; Xu et al., 2013) as well as actin patches (Jones et 961 

al., 2014). Interfering with actin through latrunculin treatment leads to a small increase in 962 

integrin transport into the proximal part of mature CNS axons (Franssen et al., 2015), but 963 

does not facilitate long range axonal transport.  964 

Another AIS-related mechanism functions to regulate dynein dependant retrieval of dendritic 965 

cargo from within the AIS. The dynein regulator Ndel1 is attached to the AIS through 966 

binding to Ankyrin G and functions through its binding partner Lis1 to activate dynein 967 

leading to increased retrograde transport of molecules not intended for axons, such as the 968 

transferrin receptor. Silencing Ndel1 leads to anterograde transport of the transferrin receptor 969 

(Kuijpers et al., 2016). Importantly, Ndel1 is localised to the initial part of axons from an 970 

early developmental stage, at a time when integrins are still present throughout the axon, 971 

suggesting it is not the central regulator of integrin dendritic localisation. Retrograde 972 

transport of early endosomes marked by Rab5 is also regulated from this part of the axon 973 

through the Rab5 interactor FHF (Guo et al., 2016). Crucially, there is also retrograde 974 

transport of dendritic vesicles away from the base of the axon even before the AIS develops, 975 

from a region termed the pre-axonal exclusion zone (PAEZ) (Farias et al., 2015). This area 976 

has been implicated in the dendritic targeting of glutamate receptor AMPA-GluR1, the Golgi 977 

protein GM130, and the ER protein CLIMP-63, and the endoplasmic reticulum, indicating 978 

that the region is critical to maintaining a wide range of cell machinery away from axons 979 

(Britt et al., 2016; Gumy and Hoogenraad, 2018). This early developmental axonal exclusion 980 

is in keeping with a previous study which demonstrated that dendritic proteins become 981 

polarised even before the axon is specified (Petersen et al., 2014). Interestingly, the PAEZ 982 

overlaps with a region within the AIS which labels strongly for TRIM46. This is a 983 
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microtubule organising molecule which is present before the AIS is fully developed, which is 984 

responsible for arranging microtubules in their polarised fashion. Depletion of TRIM 46 leads 985 

to mixed microtubule orientation and decreased transport of axonal cargo (van Beuningen et 986 

al., 2015). Another level of selectivity is achieved within this region by the microtubule 987 

associated protein, MAP2. Whilst classically considered to be a dendritic marker, MAP2 988 

strongly labels the earliest section of the axon, and its localisation there depends on TRIM46.  989 

Depletion of MAP2 leads to altered cargo transport, with some dendritic molecules being 990 

transported into axons, and some axonal molecules appearing in the somatodendritc domain. 991 

MAP2 functions in this location to regulate kinesin activity, specifically inhibiting KIF5 992 

motor activity, so that cargo that is transported by KIF5 requires an additional motor such as 993 

KIF1 (which is not affected by MAP2) in order to enter the axon (Gumy et al., 2017).  994 

Crucially, MAP2 is present in the early part of the axon in non-regenerative and regenerative 995 

neurons being observed in both mature CNS neurons that do not support integrin transport, as 996 

well as PNS neurons that do. MAP2 therefore permits anterograde transport of the kinesins 997 

that carry integrin endosomes, but in CNS axons there are additional signalling and 998 

trafficking mechanisms that are upregulated with development that result in an increased 999 

affinity of integrin containing endosomes for the dynein/dynactin complex, and subsequent 1000 

retrograde removal from axons. Recent studies have found that the principle regulators of this 1001 

process are ARF6 and its activator EFA6, which is enriched in the initial part of the axon as 1002 

cortical neurons mature (Eva et al., 2017).  1003 

 1004 

Axon initial segment, ARF6 and the JIP family of proteins 1005 

The ARF6 GEF EFA6 is upregulated in the brain along with development, playing a role in 1006 

the development and maintenance of dendrites and spines (Choi et al., 2006; Raemaekers et 1007 

al., 2012). It was recently discovered to have an additional axonal role, colocalising with 1008 
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neurofascin in the early part of the AIS, and functioning to activate ARF6 throughout the 1009 

axon stimulate retrograde integrin transport (Eva et al., 2017). This may occur through the 1010 

priming of another ARF6 GEF, ARNO, which is distributed along the whole length of the 1011 

axon. EFA6 is known to function together with ARNO to sustain ARNO and ARF6 activity 1012 

(Padovani et al., 2014). This appears to happen in axons, because silencing EFA6 leads to a 1013 

striking decrease in axonal ARF6 activation. Importantly, silencing EFA6 leads to an 1014 

increase in the anterograde axonal transport of integrin and Rab11 endosomes and an increase 1015 

in regeneration after a laser injury. Interfering with ARNO also leads to an increase in axonal 1016 

integrin transport in cortical neurons, as does overexpression of the ARF GAP ACAP1 1017 

(Franssen et al., 2015). These molecules were first shown to regulate directional axon 1018 

transport in PNS axons (which allow bi-directional integrin transport) (Eva et al., 2012b). 1019 

Elevating ARF6 activity in adult DRG neurons in vitro leads to an increase in retrograde 1020 

integrin transport and a decrease in regeneration after a laser injury. DRG neurons enable 1021 

integrin transport through the expression of the GAP ACAP1, which is not present in the 1022 

CNS. ACAP1 localises throughout DRG axons, and is strongly enriched in the growth cone 1023 

(Eva et al., 2017). In addition to its ARF6 GAP activity ACAP1 also targets integrins to the 1024 

surface membrane (Li et al., 2005). How does ARF6 regulate the direction of integrin 1025 

transport in axons? The ability of ARF6 to control directional transport was first 1026 

demonstrated in dividing non-neuronal cells, and relies on the interaction of ARF6 with the 1027 

scaffold molecules JIP3 and 4. Active ARF6 increases the affinity of these JIPs for the 1028 

dynein/dynactin complex whilst inactive ARF6 increases their affinity for kinesin motors 1029 

(Montagnac et al., 2009). The JIP family of molecules therefore appear to exert a level of 1030 

selectivity on axonal cargo and have the ability to exert this at many levels. As scaffolds, the 1031 

JIPs function to link motor proteins to their cargo. The interaction between specific kinesins 1032 

and the various JIPs defines one level of selectivity, while another is governed by the cargo 1033 
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that can or cannot interact with the JIPs. A good example of this is the difference between 1034 

integrins and the amyloid precursor protein (APP). Integrins are transported away from 1035 

mature CNS axons, whilst APP is bidirectionally transported. This may be as a result of their 1036 

different interactions with the JIPs. There are four JIP family members. JIP 1 and 2 are 1037 

similar but diverge from JIP 3 and 4 which are often classed together. APP interacts directly 1038 

with JIP 1 and 2, and does not interact with JIP 3 and 4. ARF6 activation does not affect JIP1 1039 

or 2 interactions with kinsesin or dynein, but only JIP3 and 4 (Koushika, 2008). Consistent 1040 

with this, altering ARF6 activation does not alter APP axonal transport (Eva et al., 2017). 1041 

APP directional transport is regulated through a different signalling mechanism. When JIP1 1042 

is directly phosphorylated at a JNK phosphorylation site, S421, anterograde transport is 1043 

stimulated, whilst dephosphorylation favours retrograde transport (Fu and Holzbaur, 2013). 1044 

Importantly, the interactions between JIP/motor/cargo can occur in complexes with other 1045 

proteins, meaning that their functions can impact on the directional transport of numerous 1046 

proteins. The interaction between ARF6, JIP3 and 4 and motor proteins occurs in a complex 1047 

that also involves Rab11 (Montagnac et al., 2009), meaning that ARF6 activation can also 1048 

control the direction of transport of Rab11 and associated endosomes (Eva et al., 2017). This 1049 

begins to explain how trafficking to specific endosomes might contribute to the targeting of 1050 

membrane proteins to a specific part of the cell, with different endocytic regulatory or 1051 

adaptor molecules adding another level of complexity.   1052 

 1053 

Endocytic transport, adaptors and sorting motifs 1054 

A number of endosome associated molecules have been implicated in polarised transport in 1055 

neurons, including the EHD1/4 proteins and NEEP21/P19 (Nsg1 and 2), which regulate the 1056 

trafficking of the adhesion molecule L1/NgCAM through early endosomes towards the axon 1057 

(Lasiecka et al., 2010; Yap et al., 2008) via a transcytotic mechanism. Transcytosis 1058 
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(internalisation from the somatodendritic surface to the axonal surface) occurs in DRG 1059 

neurons for integrins and the TrkA receptor via Rab11 endosomes (Ascano et al., 2009; Eva 1060 

et al., 2010). Transport of the TrkA receptor is additionally regulated in a complex feed 1061 

forward fashion which enables transcytosis to supply new receptors to the axon in response to 1062 

retrograde signalling from within the axon. Anterograde transport is increased when 1063 

retrograde signalling endosomes recycle to the somatic cell surface and transactivate resident 1064 

receptors, causing them to be internalised. These are then transported to the ER, where they 1065 

can be dephosphorylated by the phosphatase PTP1B before being anterogradely transported 1066 

into the axon (Yamashita et al., 2017).  1067 

The adapter molecules that regulate endocytosis are also important for regulating polarised 1068 

distribution within neurons. These include the clathrin adaptors AP1-AP5 which exist as 1069 

heterotetrameric complexes and the monomeric GGA adaptors (Golgi-localising, Gamma-1070 

adaptin ear homology, ARF-binding proteins) (Robinson, 2004). The clathrin adaptors 1071 

interact with specific motifs that have been implicated in polarised transport in neurons and 1072 

non-neuronal cells, including the AP1 adaptor which controls the dendritic distribution of the 1073 

transferrin receptor through an interaction between the YXXØ motif in the cytoplasmic tail of 1074 

transferrin and the µ1A subunit of AP1 (Farias et al., 2012). However, the presence of this 1075 

motif does not guarantee targeting a protein away from the axon. Integrin subunits α 3, 4, 5, 1076 

7, and 9 contain a YXXΦ motif, but preventing AP1 from a potential interaction with the 1077 

motif by expression of a dominant negative mutant does not result in targeting of integrins 1078 

into the axon, as was found for the transferrin receptor (Franssen et al., 2015).  1079 

 1080 

Summary: A virtuous cycle of axon growth and regeneration 1081 

Since the Aguayo experiments of the 1980s kick-started an era of research into CNS axon 1082 

regeneration, there has been a broad-ranging, sustained effort to understand the mechanisms 1083 
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preventing regeneration. Understanding of intrinsic factors has increased dramatically, and it 1084 

is apparent that there are three key elements which prevent regeneration: epigenetics, 1085 

signalling pathways, and axon transport. Developmental gene changes maintain adult CNS 1086 

neurons in a low state of growth (Venkatesh et al., 2016), compounded by underactive 1087 

growth promoting signalling pathways (Liu et al., 2010), and a low abundance of growth 1088 

machinery within the axon (Andrews et al., 2016; Eva et al., 2017; Hollis et al., 2009a; b). 1089 

These areas represent targets for simulating regeneration and raise the tantalising prospect of 1090 

an intervention that could function by affecting all three processes. One can envisage a 1091 

strategy that targets epigenetic changes could lead to the expression of genes which enhance 1092 

signalling through growth promoting pathways, as well as increased axonal transport of 1093 

regenerative machinery such as integrins or growth factor receptors. Once in the axons, 1094 

growth-promoting receptors could be activated by their ligands, leading to retrograde 1095 

signalling via endosomes, amplification of growth promoting signals, and somatic effects on 1096 

transcription, translation and axonal transport. In theory, this cycle of events could be 1097 

targeted at any point to stimulate a “virtuous cycle of axon growth” (Fig. 2). A good example 1098 

is intervening at the level of axon transport of integrins and growth factor receptors. 1099 

Increasing the levels of these molecules on the surface of the axon could lead to increased 1100 

signalling through known regenerative pathways, such as the PI3 kinase pathway. This would 1101 

elevate growth promoting signals locally, but these are additionally capable of signalling to 1102 

the cell body via retrograde signalling endosomes, which can lead to effects on transcription 1103 

and translation (Tasdemir-Yilmaz and Segal, 2016). Signalling through PI3 kinase can lead to 1104 

epigenetic changes which can activate a growth program (Spangle et al., 2017), and can also 1105 

lead to increased axonal transport of PI3 kinase coupled receptors, such as TrkB (Cheng et 1106 

al., 2011). Initiating the axonal transport of growth-enabling molecules can therefore have 1107 

wide-ranging effects throughout the cell. So far, in vitro experiments have demonstrated that 1108 
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CNS regeneration can be stimulated through the axonal mobilisation of growth machinery 1109 

(Eva et al., 2017; Koseki et al., 2017). Much work is needed to see if this approach can be 1110 

used to stimulate regeneration in vivo after a brain or spinal cord injury.  1111 

 1112 

Figure Legends 1113 

Figure 1. Integrin transport in regenerative vs non-regenerative axons.  1114 

Integrins and Rab11 are bidirectionally transported in regenerative adult PNS axons but are 1115 

removed from non-regenerative CNS axons by predominant retrograde transport after 1116 

development.   1117 

 1118 

Figure 2. A virtuous cycle of axon growth and regeneration. 1119 

Adult CNS axons are weak regenerators because of gene suppression by epigenetic factors 1120 

and a lack of growth promoting machinery in the axon. The figure illustrates a cycle of events 1121 

which can enable regeneration. Intervening at any point can feed forward to stimulate the 1122 

subcellular changes that can drive axon growth.  For example, increasing the transport of 1123 

growth promoting receptors in recycling endosomes facilitates growth cone development and 1124 

axon growth.  Activated growth cone receptors signal retrogradely to the cell body.  1125 

Signalling downstream of growth factors (eg through PI3K) can lead to changes in gene 1126 

expression and altered protein translation. Retrograde signals from growth factor receptors 1127 

can also stimulate anterograde transport in an autocrine fashion. 1128 

 1129 
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Figure 1. Integrin transport in regenerative vs non-regenerative axons.  
Integrins and Rab11 are bidirectionally transported in regenerative adult PNS axons but are removed from 

non-regenerative CNS axons by predominant retrograde transport after development.    
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Figure 2. A virtuous cycle of axon growth and regeneration.  
Adult CNS axons are weak regenerators because of gene suppression by epigenetic factors and a lack of 

growth promoting machinery in the axon. The figure illustrates a cycle of events which can enable 
regeneration. Intervening at any point can feed forward to stimulate the subcellular changes that can drive 
axon growth.  For example, increasing the transport of growth promoting receptors in recycling endosomes 
facilitates growth cone development and axon growth.  Activated growth cone receptors signal retrogradely 
to the cell body.  Signalling downstream of growth factors (eg through PI3K) can lead to changes in gene 

expression and altered protein translation. Retrograde signals from growth factor receptors can also 

stimulate anterograde transport in an autocrine fashion.  
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