

Should patients with low risk renal cell carcinoma be followed differently after nephron-sparing surgery versus radical nephrectomy?

Journal:	BJU International
Manuscript ID	BJU-2020-2008.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	10-Mar-2021
Complete List of Authors:	Abu-Ghanem, Yasmin; Chaim Sheba Medical Center Powles, Thomas ; Barts Cancer Institute Capitanio, Umberto; IRCCS Ospedale San Raffaele Beisland, Christian; Haukeland University Hospital, Department of Urology Järvinen, Petrus; HYKS sairaanhoitopiiri Stewart, Grant; University of Cambridge, Department of Surgery Gudmundsson, Eirikur; Landspitali haskolasjukrahus, Urology Lam, Thomas; Aberdeen Royal Infirmary, Department of Urology Marconi, Lorenzo; Hospital and University Centre of Coimbra Fernandez-Pello, Sergio; Hospital de Cabueñes, Urology Nisen, Harry; Helsinki University Central Hospital, Abdominal Center, Urology Meijer, Richard; The Netherlands Cancer Institute - Antoni van Leewenhoek Hospital, Urology Volpe, Alessandro; Hospital Maggiore della Carità Ljungberg, Börje; Umeå University, Department of Surgical and Preoperative Sciences, Urology & Andrology Klatte, Tobias; Medical University of Vienna, Department of Urology Bensalah, Karim; Dept. of Urology Dabestani, saeed; Lund University Department of Clinical Sciences Malmo Bex, Axel; Netherlands Cancer Institute, Urology
Keywords:	Radical nephrectomy, partial nephrectomy, renal cell carcinoma, follow up, RECUR, survival, guidelines
Abstract:	Objective: To investigate whether pT1-renal cell carcinoma (RCC) should be followed differently after partial (PN) or radical nephrectomy (RN) based on a retrospective analysis of a multi-centre database (RECUR). Subjects: Retrospective study of 3380 patients treated for nonmetastatic RCC between January-2006 and December-2011 across 15 centres from 10 countries, as part of the RECUR-database project. For patients with pT1 clear-cell RCC (ccRCC), patterns of recurrence were compared between RN and PN according to recurrence site. Univariate and multivariate models were used to evaluate the association between surgical approaches and recurrence-free survival (RFS) and cancer- specific mortality (CSM).

Z	
3	
4	Results: From the database 1995 patients were identified as low-risk
F	patients (pT1,pN0,pNx), of whom 1055 (52.9%) underwent PN. On
J	multivariate analysis, features associated with worse RFS included
6	tumour size (HR1.32, 95%CI 1.14-1.39,p<0.001), nuclear grade (HR
7	2.31, 95% CI 1.73-3.08, p<0.001), tumour necrosis (HR 1.5, 95%CI
8	1.03-2.3, p=0.037), vascular invasion (HR: 2.4.95%CI 1.3-4.4,
0	n=0.005) and positive surgical margins (HR 4.4, 95%CI 2.3-8.5
9	p=0.003) and positive surgical margins (mr even d that the surgical of
10	p<0.001). Rapian-Meler analysis of CSM revealed that the strivial of
11	patients with recurrence after PN was significantly better than those
11	recurring after RN (p=0.02). While the above-mentioned risk factors
12	were associated with prognosis, the type of surgery alone was not an
13	independent prognostic variable for RFS nor CSM. Limitations include the
14	retrospective nature of the study.
15	Conclusion: Our results showed that follow-up protocols should not rely
15	solely on stage and type of primary surgery. An optimized regimen
16	should also include validated risk factors rater than the type of surreny
17	along to called the best imaging modeling and the specific unpressent
18	alone, to select ine best intaging modality and to avoid unnecessary
10	imaging. A follow-up of more than three years should be considered in
19	patients with pT1 tumours after RN. A novel follow-up strategy is
20	proposed.
21	
21	
22	
23	
24	
25	SCHOLAPONE [™]
25	SCHOLARONE
26	Manuscripts
27	
28	
20	
29	
30	
31	
30	
22	
33	
34	
35	
26	
30	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
50	
51	
52	
53	
5.5	
J4	
55	
56	
57	
57	
58	
59	
60	

Should patients with low risk renal cell carcinoma be followed differently after nephron-sparing surgery versus radical nephrectomy?

Abu-Ghanem Y¹, Powles T², Capitanio U³, Beisland C⁴, Järvinen P⁵, Stewart GD⁶, Gudmundsson E⁷, Lam TBL⁸, Marconi L⁹, Fernandéz-Pello S¹⁰, Nisen H⁵, Meijer RP¹¹, Volpe A¹², Ljungberg B¹³, Klatte T ^{6,14}, Karim Bensalah¹⁵, Dabestani S^{16*}, Bex A^{1,17*}

*These authors contributed equally to the work

(1) Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, UCL Division of Surgical and Interventional Science, London, UK.

(2) Barts Cancer Institute, Queen Mary University of London, London, UK.

(3) Division of Experimental Oncology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy

(4) Department of Urology, Haukeland University Hospital, Bergen, Norway and Department of Clinical Medicine, University of Bergen, Bergen, Norway.

(5) Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

(6) Department of Surgery, University of Cambridge, Cambridge, UK.

(7) Department of Urology, Landspitali University Hospital, Reykjavik, Iceland.

(8) Academic Urology Unit, University of Aberdeen, Aberdeen, UK.

(9) Department of Urology, Coimbra University Hospital, Coimbra, Portugal.

(10) Department of Urology, Cabueñes University Hospital, Gijón, Spain.

(11) Department of Oncological Urology, University Medical Centre Utrecht, Utrecht, The Netherlands.

(12) Department of Urology, University of Eastern Piedmont, Maggiore della Carità Hospital, Novara, Italy.

(13) Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.

(14) Department of Urology, Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK.

(15) Department of Urology, University Hospital of Rennes, Rennes, France.

(16) Dept. of Translational Medicine, Division of Urological Cancers, Central Hospital Kristianstad, Lund University, Lund, Sweden.

(17) Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands;

Corresponding author: Axel Bex, MD, PhD

Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, UCL Division of Surgical and Interventional Science, Pond Street London NW3 2QG, UK. <u>a.bex@ucl.ac.uk</u>

Editor-in-Chief: BJU International

Prof. Freddie Hamdy

Dear Prof. Hamdy,

Thank you for consideration of our manuscript entitled " Should patients with low-risk renal cell carcinoma be followed differently after nephron-sparing surgery versus radical nephrectomy?" for publication in 'BJU International'.

We are grateful for the BJU International reviewers for pointing out several elements that needed clarification and correction; the changes and additions that we made using the reviewer's comments as guidelines are added in the text.

Referee: 1

Comments to the authors

The authors present an interesting and well written analysis of treatment and disease factors that influence RCC patient outcomes after radical and partial nephrectomy. The major strength of this analysis is its large multi-institution database, which affords generalizability and significant power to detect modest effect sizes. A major proposal by these authors is that post-nephrectomy surveillance should be altered from current national guidelines based on these findings. However, I struggle with interpreting the evidence in a way that provides substantial evidence for their proposed algorithm as outlined in Figure 5. Furthermore, a lot of their analysis focuses on outcomes stratified by PN or RN nephrectomy yet the authors themselves note that these associations are likely driven significantly by patient selection factors that cannot be easily adjusted. Thus trivializing in large part Fig 1-3. Finally, for a manuscript that seeks to define FU strategies after nephrectomy there is nothing mentioned about follow up strategies in these patients.

We thank the reviewer for his comments. Although we agree that differences in outcomes between PN and RN are likely to be driven by patient selection factors (i.e. indication bias, which is inherent in retrospective studies), our study findings support our main conclusion which is that planning follow-up schedules based on tumour stage and type of surgery alone as recommended by current AUA guidelines is sub-optimal, because there is significant variation in outcomes within each stage and surgical type. We have also attempted to adjust for known confounders and performed appropriate analyses, which mitigates the risk of indication bias somewhat although it is not eliminated. This has been acknowledged as a limitation. Secondly, in terms of specifying the different follow-up strategies within all centres involved in the RECUR study, identifying differences between different follow-up strategies was not the aim of the study, and indeed the study was not designed to investigate this issue. Regardless of specific strategies, essential information regarding the timing and nature of clinical and imaging follow-up were available for all included patients, and allowed comprehensive data analysis.

Major Point:

As the major point of this article as outlined by its title is to assess the follow up imaging protocols it may be helpful for the authors to describe the follow up procedures conducted in this patient dataset and their influence on outcomes. Given the range of institutions represented in this dataset I'm sure one

could find examples of different FU strategies and compare their outcomes which would be a much more direct approach to addressing their thesis.

A part of the author's rationale for this manuscript is an assertation that there are different FU routines supported by AUA and NCCN guidelines based on nephrectomy type. As far as I can tell in ver1.2021 NCCN kidney cancer guidelines there doesn't seem to be a distinction in FU guidelines after partial vs radical nephrectomy. Furthermore, AUA guidelines for "Follow-up for clinically localized Renal Neoplasms" (published in 2013) appear to be very similar regardless of whether patients receive partial vs radical nephrectomy, honestly one could do the same follow up schedule in a patient who received RN vs PN and follow AUA guidelines.

First, regarding the NCCN guidelines, the previous guidelines (2018) included a different follow up protocol for PN and RN. A recommendation that has recently been changed to include all nephrectomies, as the reviewer mentioned, therefore the referral to these guidelines was modified accordingly. Nevertheless, the NCCN, like the AUA stratifies a follow up regimen that is based solely on tumor stage which, as we tried to show, is inaccurate and insufficient. Moreover, we believe that the updated NCCN guidelines further emphasize the importance of the comparison between PN and RN outcomes in this manuscript. Patients who undergo these procedures are different, the pathology is different and hence the oncological outcomes. Therefore, we believe that pulling patients together based on stage alone is again, incorrect. In regard to the AUA, it is true that the differences seem minor, however, as mentioned in the text, the proposed frequency and length of abdominal imaging is different whereas the chest imaging seems uniform, regardless to the patterns of recurrence. We acknowledge the limitation of a retrospective study and hope that our ability to demonstrate the variability associated with stage alone may lead to a better "tailored" follow up approach. The text has been changed and revised accordingly.

The authors make interesting points regarding the patterns of recurrence in RN vs PN. However, it would be helpful if some simple statistical tests were used to test whether these differences with statistically significant. For example, authors state that more contralateral kidney recurrences occur in patients who received PN vs RN. This could be easily tested using a Fisher Exact or Chi-squared test.

Thank you for your comment. We agree that such analysis may enhance the manuscript and hence we have added a table (Table 3).

I find the proposed FU algorithm concerning (Fig. 5). There doesn't seem to be much analyses specifically directed towards non-clear cell RCC histologies yet there are recommendations presented here. Of particular concern is that for non-clear cell histologies pT1N0/X treated with RN, no abdominal imaging is recommended after 6 months FU. There are plenty of aggressive RCC histologies that frequently metastasize in the abdomen. Also why is there a grey box around 4 to >5yr for non-clear cell pT1,N0,Nx.

We thank the reviewer for this comment and agree. Since the analysis of "low risk" patients was performed based on LS for ccRCC patients only, the proposed FU algorithm will focus on this subset

allow up

of patients of	onlv.	and we	have	removed	anv	reference	to	non-ccRCC	patients.
0. 00.0000000	··· , , ,				~ ,		~~		

Minor Point: in all the figures 1-3 the at-risk table labels the groups as RN and PN, while the image key labels the groups RN and NSS. Consider keeping the labels the same. Thank you for the comments. Figures were changed accordingly.

There are several grammatical mistakes that should be corrected. Thank you for the comments. The manuscript has been reviewed and corrected.

Referee: 2

Comments to the authors

Interesting work with a lot of patients. Who are the 15 institutions that contributed to the data? They should either be reflected in the author list or in the acknowledgement.

Thank you for your comment. It was our intention to reflect all institutes in author list. Following your comment, we in fact realized that one of them was missing. We have added the author and his affiliation following his approval of the manuscript.

The authors conclude that : A follow-up of more than three years should be considered in patients with pT1 tumours after RN.

They also state that the type of surgery alone was not an independent prognostic variable for RFS nor CSM. So I don't see this conclusion supported by the findings.

According to the results a longer FU should be recommended independent of type of surgery.

Thank you for comment. We agree that the discrepancy between PN vs RN in terms of late recurrence may have been due other confounding factors, since type of surgery was not an independent prognostic variable, although they were in univariate analysis. However, we believe that lack of independence does not negate the findings that RN has a higher risk of late recurrence, especially since this conclusion was based on controlling for stage. The reason for this loss of independence may be due to small sample bias.

UISS should be discussed.

Thank you for your comment. However, in the current study, we chose to focus on LS since it is one of the most widely used risk stratification tools in Europe and was the risk score selected for data collection in the RECUR registry. We avoided using other models in order to simplify our conclusion regarding the need for additional variables (other than tumor stage) when deciding on follow-up protocol. In addition, we believe that none of the models, whether Leibovich, UISS or SSIGN, has been shown to be superior to the other in head-to-head comparison and a systematic review of these models yielded similar accuracy (area under the curve, AUC) for the models.

Fig 4: I don't see any data or discussion for this figure. What should it tell us? Is there a correlation or not. Needs further explanation or should be omitted as histology is not mentioned to be influential. But I would wish for some data/comment/explanation about this (also in the tables) We do make reference to Figure 4 on Pages 9 and 10.

Fig: 5: Recommendation for 6 moths scanning does not seem to be supported by data and needs to be omitted or justified otherwise.

This recommendation is based on the EAU guidelines (as marked in the figure) (see EAU Guidelines, RCC Table 8.1: Proposed surveillance schedule following treatment for RCC, taking into account patient risk profile and treatment efficacy (based on expert opinion [LE: 4]). We agree that the level of evidence is low, but this applies to all guidelines and we did not want to omit recommendations by the EAU RCC guideline panel and which are in the public domain.

Fig 1S: typo: contries

Thank you, typo was corrected.

Referee: 3

Comments to the authors

This is a retrospective multi centre assessing factor impacting recurrence after renal cancer surgery and aims to asses best method of follow up.

Elle

The main issue is variability in pathology/radiology and follow up assessment across the centres and this is further hampered by small number of events which is expected given the nature of cases. Subsequent extensive analysis of such small events along with inherit differences in factors influencing decision regarding PN vs RN all have an impact on the observed results.

Ultimately no new information is provided.

Essentially aggressive biology is likely to predict poor income and perhaps also likely dictate surgical treatment RN vs PN. the decision re Pn vs RN is impacted by expertise of the centre and complexity of the tumour (RENAL score for eg) which is not accounted for by the authors.

We agree with the reviewer's comments regarding the inherent biases in this retrospective cohort. We also acknowledge the limitation of a retrospective study and the lack of defined complexity.

Nevertheless, we disagree that no new information is provided. The objective of the current study was to examine the present follow-up protocols in an attempt to offer a "preferred" follow up regimen. As mentioned in the study, the current AUA and NCCN guidelines base the risk of recurrence, and hence the follow-up protocol, on stage alone. As the reviewer mentioned, there are multiple factors that may affect the complexity of the surgery and prognosis. In our study we showed that simply referring to 'T1' is not enough to define the tumor as "low risk" and by that potentially may risk missed recurrences. We agree that the key factor is tumor biology. However, in the current tools that we have this is poorly reflected and therefore we urge clinicians to take all factors, including necrosis/ grade into consideration and to not base the follow up protocol on stage or type of surgery alone.

Referee: 4

Comments to the authors

Authors presents a large multiinstitutional series with >5 year median follow-up in patients who underwent renal surgery.

Importantly n is large (~3,000), median follow up is long, and pattern of recurrence is documented. Manuscript is concise and well-written.

Important contribution that has a value-added over current literature, especially since it highlights the reality that not only the guidelines themselves but also definitions within the guidelines such as AUA, NCCN, and EAU differ.

We thank the referee for these comments and feedback.

Referee: 5

Comments to the authors

This is an interesting study attempting to address the proper follow up strategies for patients with low risk RCC who underwent radical vs partial nephrectomy. While it is reasonable to use commonly used abbreviations, there are a lot of not-so-commonly used abbreviations which should be replaced with full terms to make the manuscript more readable.

Thank you for this comment. The manuscript was revised and edited and some of the abbreviations were omitted.

Comments:

1. This study include a large number of patients but given the retrospective nature of this database, the analysis is subject to bias. Given this large number of patients, it may be helpful to include a matched propensity score analysis comparing the endpoints in patients who had RN vs PN and this may help validate the current observations, rendering the conclusions more robust.

We thank the reviewed for these valid points. Propensity-score matching is a means of accounting and adjusting for known baseline confounders. We have performed multivariable regression analysis including important baseline confounders, which similarly accounts and adjusts for confounders. The main advantage of multivariable regression in our cohort is that it does not lead to a significant reduction in sample size, thereby potentially reducing event rates and exaggerating small sample size bias.

2. The curves of Figures 1-3 are not properly labeled. What is NSS (red curve)? Thank you for this comment. We refer to Nephron sparing surgery. A comment was added to the figure legends.

3. The algorithm in figure looks sound. There seems to be something missing in the column under LS >2 (5 y).

Thank you for your comment. Since a CT is recommended every 2 years, a comment was added ("every 2 years") to the subsequent line.

Additional comments from reviewers about ethics:

Referee: 1

Ethics: This paper appears to be from a database that was already published. It would benefit from a specific statement regarding IRB approval.

Thank you for this point. All participating centers had indeed appropriate IRB approval as was previously mentioned in the earlier RECUR publications. The manuscript has been revised accordingly.

Lich

Referee: 2 Ethics: No ethics concerns

Referee: 3 Ethics: no issues

Referee: 4 Ethics: no issues

Referee: 5

Ethics: The author may want to explain the RECUR process in terms of how the ethical and privacy issues were addressed.

We have added the following line to the manuscript: all participating centres had appropriate institutional review board approval. Also, all data were anonymized and no patient-identifiable features were included in the database.

BJU International

2		
3 4	1	Should patients with low risk renal cell carcinoma be followed differently
5 6	2	after nephron-sparing surgery versus radical nephrectomy?
7 8	3	Abu-Ghanem Y ¹ , Powles T ² , Capitanio U ³ , Beisland C ⁴ , Järvinen P ⁵ , Stewart GD ⁶ ,
9 10	4	Gudmundsson E ⁷ , Lam TBL ⁸ , Marconi L ⁹ , Fernandéz-Pello S ¹⁰ , Nisen H ⁵ , Meijer RP ¹¹ , Volpe
11	5	A ¹² , Ljungberg B ¹³ , Klatte T ^{6,14} , Karim Bensalah ¹⁵ , Dabestani S ^{16*} , Bex A ^{1,17*}
12 13	6	
14 15	7	*These authors contributed equally to the work
16 17	Q	(1) Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, LICL Division of
18	9	Surgical and Interventional Science, London, UK
19 20	10	(2) Barts Cancer Institute. Queen Mary University of London, London, UK.
21	11	(3) Division of Experimental Oncology, Urological Research Institute (URI), IRCCS Ospedale San
22 23	12	Raffaele, Milan, Italy
24	13	(4) Department of Urology, Haukeland University Hospital, Bergen, Norway and Department of Clinical
25 26	14	Medicine, University of Bergen, Bergen, Norway.
27	15	(5) Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
28 29	16	(6) Department of Surgery, University of Cambridge, Cambridge, UK.
30	17	(7) Department of Urology, Landspitali University Hospital, Reykjavik, Iceland.
31 32	18	(8) Academic Urology Unit, University of Aberdeen, Aberdeen, UK.
33	19	(9) Department of Urology, Coimbra University Hospital, Coimbra, Portugal.
34 35	20	(10) Department of Urology, Cabueñes University Hospital, Gijón, Spain.
36	21	(11) Department of Oncological Urology, University Medical Centre Utrecht, Utrecht, The Netherlands.
37 38	22	(12) Department of Urology, University of Eastern Piedmont, Maggiore della Carità Hospital, Novara, Italy.
39	23	(13) Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
40 41	24	(14) Department of Urology, Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust,
41	25	Bournemouth, UK.
43	26	(15) Department of Urology, University Hospital of Rennes, Rennes, France.
44 45	27	(16) Dept. of Translational Medicine, Division of Urological Cancers, Central Hospital Kristianstad, Lund
46	28	University, Lund, Sweden.
47 48	29	(17) Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands;
49 50	30	
51	31	Corresponding author: Axel Bex, MD, PhD
52 53	32	Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, UCL Division
54 55 56 57	33	of Surgical and Interventional Science, Pond Street London NW3 2QG, UK. a.bex@ucl.ac.uk
58 59 60		

Abstract:

2	Objective: To investigate whether pT1-renal cell carcinoma (RCC) should be followed
3	differently after partial (PN) or radical nephrectomy (RN) based on a retrospective analysis of a
4	multi-centre database (RECUR).
5	Subjects: Retrospective study of 3380 patients treated for nonmetastatic RCC between
6	January-2006 and December-2011 across 15 centres from 10 countries, as part of the RECUR-
7	database project. For patients with pT1 clear-cell RCC (ccRCC), patterns of recurrence were
8	compared between RN and PN according to recurrence site. Univariate and multivariate models
9	were used to evaluate the association between surgical approaches and recurrence-free
10	survival (RFS) and cancer-specific mortality (CSM).
11	Results: From the database 1995 patients were identified as low-risk patients (pT1,pN0,pNx),
12	of whom 1055 (52.9%) underwent PN. On multivariate analysis, features associated with worse
13	RFS included tumour size (HR1.32, 95%Cl 1.14-1.39,p<0.001), nuclear grade (HR 2.31, 95%
14	CI 1.73-3.08, p<0.001), tumour necrosis (HR 1.5, 95%CI 1.03-2.3, p=0.037), vascular invasion
15	(HR: 2.4 95%CI 1.3-4.4, p=0.005) and positive surgical margins (HR 4.4, 95%CI 2.3-8.5,
16	p<0.001). Kaplan-Meier analysis of CSM revealed that the survival of patients with recurrence
17	after PN was significantly better than those recurring after RN (p=0.02). While the above-
18	mentioned risk factors were associated with prognosis, the type of surgery alone was not an
19	independent prognostic variable for RFS nor CSM. Limitations include the retrospective nature
20	of the study.
21	Conclusion: Our results showed that follow-up protocols should not rely solely on stage and
22	type of primary surgery. An optimized regimen should also include validated risk factors rather
23	than the type of surgery alone, to select the best imaging modality and to avoid unnecessary

1		
2 3	1	imaging. A follow-up of more than three years should be considered in patients with pT1
4 5	_	
6 7	2	tumours after RN. A novel follow-up strategy is proposed.
, 8 9	3	Keywords: Radical nephrectomy; partial nephrectomy; renal cell carcinoma; follow up; RECUR;
10 11	4	survival; guidelines
12 13	F	
14	J	
15 16	6	
17 18	_	
19 20	/	
21 22	8	
22		
24 25	9	
26 27	10	
28		
30	11	
31 32	17	
33 34	12	
35	13	
37		
38 39	14	
40 41	15	
42 43		
44	16	
45 46	17	
47 48		
49 50	18	
51	10	
52	13	
54 55	20	
56 57		
58 50		
59 60		

Introduction:

Renal cell carcinoma (RCC) is the most common primary malignancy of the kidney, representing 2-3% of all adult cancers^{1,2}. To date, surgical resection is the standard of treatment for localised tumour by either radical (RN) or partial nephrectomy (PN), depending mainly on tumour size, stage and anatomical location^{3,4}. Regardless of the surgical approach, local and distant recurrence after nephrectomy for kidney cancer is not uncommon. Following surgical resection, the recurrence rates may reach up to 20%-40% following nephrectomy, up to 45 years after surgery⁵⁻⁷. Thus, surveillance and long-term follow-up for recurrent disease is recommended in those who have undergone curative resection. Nevertheless, despite the increasing availability of treatment modalities offering improved survival in recurrent cases, there is still a discrepancy between existing surveillance protocols regarding the duration or the nature of follow-up in patients undergoing partial or radical resection. While the American Urological Association (AUA) renal cancer guidelines and the National Comprehensive Cancer Network (NCCN) guidelines^{8,9} consider all pT1 tumours as low-risk for adverse oncological outcomes, the European Urology Association RCC guidelines (EAU)² relies on risk stratification. Moreover, the AUA guidelines offer more abdominal imaging during follow-up for PN compared to RN for this tumour stage, whereas the frequency of abdominal imaging in the EAU guidelines is not depending on the type of primary treatment. Nevertheless, the type of surgery is influenced by more than the tumour stage only. While PN is the recommended treatment of choice for patients with T1 renal tumours, RN is advocated in some patients, mainly when PN is unsuitable, primarily due to tumour-related or patient-related reasons (unfavourable tumour location, significant co-comorbidities, or surgeon preference). Consequently, stage alone does not necessarily reflect the risk for recurrence. Given these discrepancies, we sought to characterize the risk factors and the patterns of recurrence following nephrectomy for pT1 renal cancer, which is defined as low risk by the AUA and NCCN

BJU International

guidelines, and to evaluate the patterns of recurrence after both partial and radical
nephrectomies, in order to investigate the impact of surgical approach on surveillance
strategies, relying on a large multi-institutional consortium focusing on follow-up after surgery
(i.e. the euRopEan association of urology renal cell carcinoma guidelines panel Collaborative
multicenter consortium for the studies of follow-up and recurrence patterns in Radically treated
renal cell carcinoma patients [RECUR]).

1 Patients and methods:

This retrospective analysis included data from 3380 patients who underwent a RN or PN for RCC between January-2006 to December-2011. All data were retrieved from the RECUR database, collected from 15 centres (all with appropriate institutional approval) in 10 European countries as described previously¹⁰. All participating centres had appropriate institutional review board approval. Also, all data were anonymized and no patient-identifiable features were included in the database. Clinicopathologic variables recorded included: year of surgery, age, gender, tumour stage, grade, size, RCC tumour subtype, Leibovich risk-score and individual number of risk points. Patients with ccRCC were stratified into low, intermediate, and high risk of recurrence groups according to Leibovich score (LS). Operative variables included the type of operation and surgical approach. Pathological variables included: surgical margin status, vascular invasion, tumour necrosis and presence of sarcomatoid differentiation. Patients with malignant tumours other than RCC and patients with metastatic disease upon diagnosis were excluded from this analysis. The primary outcomes assessed were disease recurrence (local ipsilateral recurrence, contralateral recurrence, or distant metastasis) and cancer-specific mortality (CSM). Local recurrence was defined as new tumour formation in the lumbar-fossa, remaining renal vein or inferior vena cava after radical nephrectomy and in the residual kidney after partial nephrectomy. Recurrence variables included the time of recurrence, type of recurrence (isolated local recurrence, solitary distant metastatic, oligometastatic (three or fewer lesions at a single site), or disseminated disease (dissemination to two or more sites)), presence of symptoms and imaging modality to detect recurrence. CSM was calculated from the date of diagnosis until either death due to RCC or date of the last follow-up. Recurrence-free survival (RFS) was calculated from the time of surgery until recurrence of tumour, death or date of the last follow-up. Time-to-recurrence (TTR) was calculated from the subtraction of Date of recurrence Event (DoE)-Date of Surgery (DoS) in months.

Page 15 of 39

1 2

BJU International

3 4	1	Patients with: metastatic disease upon diagnosis, hereditary disease increasing the risk of
5 6	2	developing RCC (such as Von Hippel-Lindau, Birt-Hogg-Dubé syndrome and Hereditary
7 8	3	Papillary Renal Cell Carcinoma), death during or shortly after hospitalisation. Patients with
9 10	4	essential data missing (Date of Surgery, LS, UICC, event (recurrence), last follow-up/survival
11 12 13	5	data) were excluded from the analysis (Figure 1S).
14 15	6	To investigate whether pT1 RCC should be followed differently after PN or RN, recurrence
16 17	7	patterns were analysed for patients with pT1a-pT1b disease according to AUA and NCCN
18 19	8	guidelines. Survival was estimated as the time from nephrectomy to event using the Kaplan-
20 21	9	Meier method and compared between cohorts with the log-rank test. Separate analyses for
22 23 24	10	CSM were also performed for patients with recurrence, measured from the onset of recurrence
24 25 26	11	to either death or date of last follow-up, for the entire cohort and sub-groups.
20 27 28	12	Variables that were statistically significant by univariate analysis were included in a multivariate
29 30 21	13	analysis using the Cox-proportional hazards model.
31 32 33	14	Separate sub-group analyses were performed on patients with low-risk disease, stratifying
34 35	15	patients into type of surgery (PN and RN) to evaluate risk factors associated with disease
36 37	16	recurrence and CSM, and a separate analysis of patterns of recurrence. To evaluate if
38 39	17	stratification by Leibovich low-risk group (Leibovich score 0-2) is superior to pT1, patients were
40 41	18	further analysed based on risk groups. To avoid potential bias in the Leibovich-risk based
42 43	19	analysis, we included only patients with clear cell RCC, and a calculated Leibovich score. All
44 45	20	analyses were performed using Statistical Package for Social Sciences (SPSS, Version 25.0,
46 47	21	Chicago, IL, USA). A p-value<0.05 was considered statistically significant.
48 49 50 51	22	
52 53 54	23	
55 56 57 58 59	24	
60		

1 Results:

1. Main analysis involving the entire cohort

A total of 3085 patients out of a total of 3380 in the database (i.e. 91.3%) were eligible for inclusion, of which 1969 (63.8%) patients underwent RN and 1116 (36.2%) underwent PN. Patient characteristics are displayed in Table 1, stratified according to surgical treatments. For the entire cohort, disease recurrence was detected in 544 (17.6%) patients, during a median post-operative follow-up of 59.8 months (IQR 36.7-79.1). Overall, most patients (69.4%) recurred during the first 3 years of follow-up, 18.6% recurred after 3-5 years, and the remaining 12% recurred after more than 5 years after surgery. Figure 1a shows the Kaplan-Meier curve for RFS stratified according to the type of surgery for the entire cohort. For RFS, PN had significantly better outcomes than RN (HR 6.18, 95%Cl4.1-9.3), (Table 1S). Figure 1b shows the Kaplan-Meier curve for CSM stratified according to the type of surgery for the entire cohort. PN had significantly better outcomes than RN (HR 6.2, 95%CI(4.1-9.3), (Table S1). On multivariable analysis, the type of surgery was not associated with RFS nor CSM (Table S2). Kaplan-Meier analysis of CSM for patients with recurrence measured from the time of recurrence revealed that the survival time of patients following PN was significantly longer than patients who had undergone RN (p=0.01, Figure 1c).

2. Sub-group analyses

i. pT1, N0, Nx disease as defined by AUA guidelines

A total of 1995 patients with pT1N0M0 disease were identified, of which 1055 (52.9%)
underwent PN and 940 (47.1%) underwent RN. Patient characteristics for this subgroup are
displayed in Table 2. Most of the findings mirrored those of the main cohort's, except that
sarcomatoid differentiation was no longer significantly different between both groups (p=0.052)
although numerically, RN had a higher proportion of patients with sarcomatoid differentiation.

Page 17 of 39

BJU International

1	There were significantly more patients undergoing RN than PN for pT1b disease, adverse
2	pathological characteristics including higher nuclear grade (p<0.001) and tumour necrosis
3	(p<0.001), which remained significant despite controlling for tumour stage. On univariate-
4	analysis, features associated with shorter RFS included: type of surgery (PN vs. RN), (p=0.04),
5	size, grade, necrosis, vascular invasion and PSM (all p<0.001), (Table S3). The variables that
6	remained significant on multivariate analysis included tumour size (HR:1.3, 95%CI(1.14-1.39),
7	p<0.001), nuclear grade (HR:2.3, 95%Cl(1.7-3.08),p<0.001), tumour necrosis (HR:1.5,
8	95%CI(1.03-2.3),p=0.037), vascular invasion (HR:2.4 95%CI(1.3-4.4), p=0.005) and PSM, (HR:
9	4.4, 95%Cl(2.3-8.5),p<0.001), but not type of surgery (Table 4). Figure 2a shows the Kaplan-
10	Meier curves for RFS stratified according to the type of surgery for patients with low-risk
11	disease. Regarding the detection of recurrences, overall, 68.5% of the recurrences were
12	asymptomatic and hence were detected incidentally during regular follow-up, whereas 29.1%
13	were symptomatic upon diagnosis.
14	For CSM, the overall 5-year CSM for low-risk patients was 97%. On univariate analysis, CSM
15	was associated with the type of surgery (0.003), tumour size, grade, and vascular invasion (all
16	p<0.001) On multivariate analysis, CSM remained associated with tumour size (HR-1.36)
17	p^{-1} (C) (1, 1, 1, 68), p=0.004), tumour grada (HB:2, 7, 05% (C) (1, 72, 4, 2), p<0.001), and vaccular
17	95%CI(1.1-1.06), p=0.004), turnour grade (HR.2.7 95%CI(1.75-4.2),p<0.001), and vascular
18	invasion (HR:4.1, 95%CI(1.7-9.7),p=0.002), but not type of surgery. Figure 2b shows the
19	Kaplan-Meier curves for CSM stratified according to the type of surgery. Kaplan-Meier analysis
20	of CSM showed that patients with recurrence who had undergone PN had significantly better
21	cancer-specific survival than patients with recurrence who had undergone RN (p=0.02, Figure
22	3a).
23	ii. Recurrence patterns based on the type of surgery for patients with low-risk disease
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Further subgroup analysis was performed on patients with pT1,N0,Nx to determine recurrence patterns for each type of surgery.

a. RN

Among the 940 patients with low-risk disease treated with RN, 87 (9.3%) recurred at a median of 38.4 (IQR:15.6-60.1) months following surgery. Upon diagnosis, 26.1% of these patients had a solitary lesion, whereas 40.9% were diagnosed with disseminated disease. Observed RFS rates were 89% at 5 years. The two most common sites of recurrence were lung in 36 patients (42.4%), and bone in 20 (23.5%). The mean time to thoracic recurrence and specifically lung recurrence was 41.9+28 and 40.5+28.6 months, respectively. Lung metastasis was diagnosed after more than 3 years in 52.8% of patients (Figure 4a). Solitary lung metastasis was observed in 14 patients, 8 of those (57.1%) recurred after more than 3 years. The median TTR was 40.5 months (IQR:22-61). On univariate analysis, RFS was associated with tumour size, grade, tumour necrosis, vascular invasion (all p<0.001), (Table S4). On the multivariable Cox model, RFS remained associated with tumour size (HR:1.45, 95% CI(1.22-1.72),p<0.001), grade (HR:2.26, 95%Cl(1.56-3.3),p<0.001), necrosis (HR:1.78, 95%Cl(1.06-2.98),p=0.029) and vascular invasion (HR:3.89, 95%CI(1.97-7.6),p<0.001), (Table S5). Surgical margin status was not included in the analysis due to the small number of patients in this subgroup (3 of 940).

b. PN

Among the 1055 patients with low-risk disease treated with PN, 71 (6.7%) recurred at a median of 31.8 (IQR: 14.3-53.4) months following surgery. Upon diagnosis of recurrence, 42.9% of the patients had a solitary lesion, whereas 14.3% were diagnosed with disseminated disease. In contrast to RN, the most common site of recurrence was local recurrence in 22 patients (34.4%) followed by contralateral kidney in 21 (32.8%) of patients. The mean time for the detection of local recurrence and contralateral kidney metastasis was 38.4+27.4 and 49.3+27.4 months, respectively. Eleven of the 22 (50%) recurred after more than 3 years, (Figure 4b). Single-site local recurrence was observed in 18 of 22 patients, 9 (50%) recurred after more than 3 years, 4 after more than 5 years following surgery. Lung recurrence was observed in 13 patients

BJU International

(20.6%), 2 of the 13 had simultaneous local recurrence and 11 of those (85%) recurred in the first 3 years of follow-up. Isolated lung recurrence was observed in 6 patients, all of which recurred in the first 3 years. Observed RFS rates at 5 years were 93%. On univariate analysis, RFS was associated with tumour grade (p<0.001) and PSM (p<0.001). On the multivariable Cox model, RFS remained associated with tumour grade (HR:2.82, 95%CI(1.86-4.28),p<0.001) and PSM (HR:4, 95% CI(2.12-7.6),p<0.001). On multivariate analysis, RFS was associated with nuclear grade (HR: 2.3, 95% CI(1.49-3.7),p=0.001), and PSM (HR: 3.85, 95%CI(2.04-7.24, p<0.001), (Table S5). Comparison of the patterns of recurrence between the two groups is presented in Table 3. Sub-group analysis by Leibovich score 0-2 We performed additional analysis on risk grouping by Leibovich score (LS). A total of 2691 patients has clear cell RCC, and a calculated Leibovich score. Of those, 1555 patients (50.4%) had low-risk (i.e.LS 0-2) whilst 1136 (43.9%) had intermediate to high risk (LS of >3). Of the 1555 patients with low-risk, 641 (41.2%) and 914 (58.8%) patients underwent RN and PN, respectively. Patient characteristics and pathological tumour features were comparable between the two subgroups. The overall TTR and RFS were similar between the 2 groups. Regarding CSM, type of surgery was not associated with survival. Yet, CSM- analysis from the time of recurrence was significantly shorter in patients undergoing RN compared to PN (p=0.02, Figure 3b). Of the 553 patients in the RN group, 43 (7.8%) experienced disease recurrence at a median of 44.3 months (IQR:26.9-63.3). The most common site of recurrence was lung, in 18 patients (38.3%) at a mean time of 54.5+28.6 months. Of the 18 patients, 13 were diagnoses with lung metastasis after more than 3 years. Among the 914 patients undergoing PN, 61 (6.7%) recurred at a median of 34.95 (IQR:13.6-55.9) months following surgery. The most common site of recurrence was local recurrence in 33.9% of patients. Nine of the 19 (47.3%) local recurrence events were detected after more than 3 years after surgery.

Discussion:

In the current analysis, we examined whether the approach to surveillance after PN should be different compared to RN in the pT1 population as recommended by the AUA guidelines. According to the AUA, pT1 RCCs are considered low-risk and while imaging of the chest is recommended at low frequency, additional abdominal imaging is advised for patients after PN. Interestingly, the definition of low-risk disease varies among guidelines. While the surveillance protocol proposed by the EAU takes into account patients' risk profile assessed with one of the validated risk models ^{2,11}, the NCCN and AUA guidelines recommend that patients should be stratified by TNM staging alone. Furthermore, the AUA also offers different patterns of surveillance according to the treatment received (RN, PN or ablation therapy)⁹. Looking exclusively at stage, at first glance, it appears sensible to combine the two surgical approaches. However, in the current analysis, we found that controlling for stage alone does not eliminate the innate differences between these two approaches, as patients undergoing RN still had higher nuclear grade and a higher rate of vascular invasion and necrotic tumors, all of which are not accounted for when patients are stratified solely by TNM staging and grouped collectively as pT1 (Table 2). These differences could probably explain the worse CSM observed in the analysis for RN patients after recurrence (Figure 3) as well as the worse RFS and TTR. This is remarkable because CSM from treatment to cancer-specific death does not show any difference, which may be explained by the overall low frequency of events in this group. Still, although the type of surgery affected both RFS and CSM on univariate analysis, it lost its prognostic significance on multivariate analysis. Consequently, our data have conclusively shown that that the risk of recurrence and survival does not depend on stage and type of surgery alone, and that there are other independent prognostic variables which are more important. These findings are supported by our second

analysis for patients with low LS. In this subgroup, the RN and PN patients were comparable,

Page 21 of 39

BJU International

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
2/	
20	
30	
30	
37	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	meaning that if we choose to follow this definition of "low-risk" we could more reliably address
2	the two approaches as one, given that the significant risk factors for survival are included in the
3	core of the classification. The fact that the type of surgery was not an independent prognostic
4	variable, but instead appeared to depend on established risk factors supports this assertion.
5	We found significant variations in the basic criteria between RN and PN that are known to affect
6	prognosis in validated risk scores, such as the Leibovich risk model ¹² . For example, in our
7	analysis we showed that tumour size, grade, necrosis and vascular invasion were all significant
8	risk factors for recurrence among T1 patients undergoing RN. In contrast, grade and PSM were
9	risk factors in those who had PN. Hence, we could conclude that if we do prefer to choose
10	staging as the primary criteria to distinguish between follow-up protocols, we should include the
11	type of primary treatment, as well as the main prognostic factors for a more individualised and
12	accurate follow-up.
13	In other words, we showed that by using the approach that depends solely on stage and type of
14	surgery, we have too many biases that prevent us from tailoring the "best fit" protocol. For
15	example, we cannot follow a patient with T1b, grade 3, with pathological necrosis that
16	underwent PN due to CRF the same way we follow a T1a grade 1 tumor, just because they both
17	underwent PN for T1/N0. Therefore, using a risk stratification tool allows us to follow the
18	patients in a more accurate way. (Figure 5).
19	Nevertheless, in cases where we do not have validated risk classifications (pRCC for example)
20	and hence have to rely on staging information alone, the type of surgery does indeed play a role
21	since it reflects the complexity of the tumor and, as shown in our study, impacts on prognosis.
22	In the current study, we also found that the pattern of recurrence was different, as well as
23	survival following recurrence. While lung, as expected, was the most common site of
24	progression following RN, patients who underwent PN had significantly more local recurrences

as well as 'recurrence' to the contralateral kidney. Therefore, although the risk classification may be more accurate, and may not require separate follow-up based on the type of surgery alone to improve RFS, it may require such regimen to improve survival. We do, however, acknowledge the option that the differences in outcome could be attributed to other factors, for example, intraparenchymal or hilar location as well as tumour complexity, all of which often necessitates RN, and may attribute to poorer prognosis ^{13,14}.

Interestingly, while the higher frequency of local and contralateral recurrences following PN are addressed by more abdominal CT scans in the AUA guidelines, the higher frequency of thoracic metastases and development beyond three years after RN are not. This argues for follow-up recommendations that will include the relevant risk factors in combination with the primary treatment received, as well as the expected site of recurrence. For example, the risk of thoracic metastasis in the same Leibovich risk category, is more common after RN, suggesting that follow-up for these patients should be different. Moreover, RN and PN do not only differ in the rate of thoracic recurrence but in time of recurrence. In the current study, lung metastasis was diagnosed after more than three years after RN in 47% of patients (Figure 2), and isolated lung metastasis was observed in 16 patients, 7 of those (44%) recurred after more than three years. For PN, the rate of lung metastasis was significantly lower, and the majority recurred within the first three years. While more frequent follow-up imaging has not been shown to improve survival in RCC ^{10,15}, these data suggest that patients with pT1 disease after RN should be followed longer than currently recommended, certainly beyond three years (Figure 5).

Limitations of this study include its retrospective design and the possible absence of data on potential factors that could have affected the choice between RN and PN in a low-risk population. Moreover, follow-up protocols at the hospitals involved in this study were not uniform. Also, the subgroup analysis of patterns of recurrences within the low-risk group of patients was restricted to a subset of the entire cohort (65%), in which the outcome only

BJU International

2		
3 4	1	affected 8% of this subset. Consequently, the findings are subject to small sample bias.
5 6	2	Nevertheless, we believe there is enough evidence from the data to issue recommendations to
7 8	3	tailor follow-up following surgery (Figure 5).
9 10 11	4	
12 13 14	5	I. Conclusions:
15 16	6	Our data showed that the prediction factors provide independent prognostication regarding the
17 18 10	7	estimation of RFS. Thus, current follow-up protocols should not rely solely on stage and
19 20 21	8	treatment received as proposed by the AUA guidelines. An optimized regimen should include
22 22 23	9	independent variables predicting recurrence based on the given treatment. Further, the type of
24 25	10	follow-up after treatment should be based on the common sites of recurrence, in order to select
26 27	11	the best imaging modality and to avoid unnecessary imaging. Finally, follow-up of the chest
28 29	12	beyond three years should be considered in all patients who have undergone RN for pT1
30 31	13	tumours.
32 33 34	14	
35 36 37	15	
38 39 40	16	
41 42	17	
43 44	18	
45 46 47		
47 48 49	19	
50 51	20	
52 53	21	
55 56 57 58 59 60	22	

1			
2			
3 4	1	Refer	rences:
5 6	2	1.	Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO
7 8	3		Classification of Tumours of the Urinary System and Male Genital Organs—Part A:
9 10	4		Renal, Penile, and Testicular Tumours. Eur. Urol. 70, 93–105 (2016).
11 12 13	F	2	Liungherg, B. et al. Penal Cell carcinoma EALL quidelines on renal cell carcinoma: 2010
14	J	۷.	
15 16 17	6		<i>Eur. Urol.</i> 67 , 913–924 (2019).
17 18 19	7	3.	Chen, D. Y. T. & Uzzo, R. G. Optimal management of localized renal cell carcinoma:
20 21	8		surgery, ablation, or active surveillance. J. Natl. Compr. Canc. Netw. 7, 635–42; quiz 643
22 23	9		(2009).
24 25	10	4.	Klatte, T. et al. A Literature Review of Renal Surgical Anatomy and Surgical Strategies for
26 27 28	11		Partial Nephrectomy. <i>European Urology</i> vol. 68 980–992 (2015).
29 30	12	5.	Brookman-May, S. et al. Features associated with recurrence beyond 5 years after
32 32	13		nephrectomy and nephron-sparing surgery for renal cell carcinoma: Development and
34 35	14		internal validation of a risk model (PRELANE score) to predict late recurrence based on a
36 37	15		large multicenter database. <i>Eur. Urol.</i> 64, 472–477 (2013).
38 39 40	16	6.	Breda, A., Konijeti, R. & Lam, J. S. Patterns of recurrence and surveillance strategies for
40 41 42	17		renal cell carcinoma following surgical resection. Expert Rev. Anticancer Ther. 7, 847–
43 44	18		862 (2007).
45 46	19	7.	Ljungberg, B., Alamdari, F. I., Rasmuson, T. & Roos, G. Follow-up guidelines for
47 48 49	20		nonmetastatic renal cell carcinoma based on the occurrence of metastases after radical
50 51	21		nephrectomy. <i>BJU Int.</i> 84, 405–411 (1999).
52 53 54	22	8.	Clinical, N., Guidelines, P. & Guidelines, N. Kidney Cancer. (2021).
55 56 57 58 59	23	9.	Donat, S. M. <i>et al.</i> Follow-up for clinically localized renal neoplasms: AUA guideline. J.

1			
2 3 4	1		<i>Urol.</i> 190 , 407–416 (2013).
5 6 7	2	10.	Dabestani, S. et al. Long-term Outcomes of Follow-up for Initially Localised Clear Cell
7 8 9	3		Renal Cell Carcinoma: RECUR Database Analysis. Eur. Urol. Focus 5, 857–866 (2019).
10 11	4	11.	Jiang, Y. L., Peng, C. X., Wang, H. Z. & Qian, L. J. Comparison of the long-term follow-up
12 13 14	5		and perioperative outcomes of partial nephrectomy and radical nephrectomy for 4 cm to 7
15 16	6		cm renal cell carcinoma: A systematic review and meta-analysis. BMC Urol. 19, 1–10
17 18	7		(2019).
19 20 21	8	12.	Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with
22 23	9		clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer
24 25	10		97, 1663–71 (2003).
26 27 28	11	13.	Correa, A. F. et al. Small Renal Masses in Close Proximity to the Collecting System and
20 29 30	12		Renal Sinus Are Enriched for Malignancy and High Fuhrman Grade and Should Be
31 32	13		Considered for Early Intervention. Clin. Genitourin. Cancer 16, e729–e733 (2018).
33 34 35	14	14.	Kim, S. H. et al. Retrospective Multicenter Long-Term Follow-up Analysis of Prognostic
36 37	15		Risk Factors for Recurrence-Free, Metastasis-Free, Cancer-Specific, and Overall
38 39	16		Survival After Curative Nephrectomy in Non-metastatic Renal Cell Carcinoma. Front.
40 41	17		<i>Oncol.</i> 9 , 859 (2019).
42 43 44	18	15.	Dabestani, S. et al. Increased use of cross-sectional imaging for follow-up does not
45 46	19		improve post-recurrence survival of surgically treated initially localized R.C.C.: results
47 48	20		from a European multicenter database (R.E.C.U.R.). Scand. J. Urol. 53, 14–20 (2019).
49 50 51 52 53 54 55 56 57 58 59 60	21		

Table 1:	Baseline characteristics of the entire cohort of RCC patients included in main analysis
(n=3085)	

		RN (n=1969)	PN (n=1116)	p value
Age		64 <u>+</u> 12	61.1 <u>+</u> 11.9	0.43
Gender	Male	1259 (63.9)	354 (31.7)	0.015
	Female	710 (36.1)	762 (68.3)	
Side	Left	953 (50.1)	472 (44.1)	0.09
	Right	933 (49.1)	552 (55.5)	
	Both	15 (0.8)	47 (4.4)	
Size (cm)		6.87 <u>+</u> 3.5	3.2 <u>+</u> 1.6	<0.001
Stage	T1a	385 (19,6)	842 (75.4)	<0.001
	T1b	555 (28.2)	213 (19.1)	
	T2a	250 (12.7)	18 (1.6)	
	T2b	122 (6.2)	4 (0.4)	
	T3a	517 (26.3)	36 (3.2)	
	T3b	107 (5,4)	1 (0.1)	
	T3c	13 (0.7)	1 (0.1)	
	T4	20 (1)	1 (0.1)	
Grade	1	104 (5.8)	145 (16)	<0.001
	2	965 (54.2)	628 (69.2)	
	3	557 (31.3)	126 (13.9)	4
	4	154 (8.7)	8 (0.9)	
Sarcomatoid differentiation		69 (3.7)	4 (0.4)	<0.001
Tumor necrosis		796 (42,4)	216 (20.1)	< 0.001
Vascular invasion		391 (21.5)	38 (3.9)	<0.001
PSM		32 (1.7)	80 (7.4)	<0.001
Risk Score	Low risk	698 (35.4)	966 (86.6)	<0.001
	Int risk	682 (34.6)	113 (10.1)	
	High risk	589 (29.9)	37 (3.3)	

Table 2: Baseline characteristics of patients with low-risk disease (i.e. pT1N0Nx RCC) included in sul	D -
group analysis (n=1995)	

	1		1	1
		RN (n=1055)	PN (n=940)	P value
Age		63.7 <u>+</u> 12	61.1 <u>+</u> 11.9	0.41
Gender	Male	590 (62.8)	723 (68.5)	0.07
	Female	350 (37.2)	332 (31.5)	
Side	Left	445 (48.4)	444 (43.8)	0.08
	Right	469 (51)	525 (51.8)	
	Both	6 (0.7)	45 (4.4)	
Size (cm)		4.5 <u>+</u> .15	3.05 <u>+</u> 1.3	p<0.001
Stage	T1a	385 (41)	842 (79.8)	p<0.001
	T1b	555 (59)	213 (20.2)	
Grade	1	74 (8.7)	142 (16.5)	p<0.001
	2	581 (68.1)	606 (70.4)	-
	3	180 (21.1)	109 (12.7)	-
	4	18 (2.1)	5 (0.5)	
Sarcomatoid		9 (1)	3 (0.3)	0.052
differentiation				
Tumor necrosis		246 (27.7)	193 (19)	n<0.001
		,		P OIOCI
Vascular invasion		46 (5.3)	31 (3.4)	0.04
PSM		3 (0.3)	76 (7.4)	p<0.001

1
2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
17 10
10
19
20
21
22
23
24
25
26
27
28
20
30
21
51
32
33
34
35
36
37
38
39
40
41
42
ז∠ ⊿2
7-7- 7-7
44 45
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

Table 3: Patterns of recurrence among low-risk disease (i.e. pT1N0Nx RCC) included in sub-group analysis (n=1995)

	RN (n=1055)	PN (n=940)	P value
Lung	36 (42.4%)	13 (20.3%)	0.005
Bone	20 (23.5%)	5 (7.8%)	0.01
Local recurrence	10 (11.8%)	22 (34.4%)	0.001
Contralateral kidney	8 (9.4%)	21 (32.8%)	<0.001
Liver	6 (7.1%)	0 (0%)	0.03

Table 4: Multivariate analysis of factors associated with tumor recurrence and Cancer-specific survival(CSS) in patients with pT1, N0, Nx RCC patients (n=1995)

Variable	Disease recurrence			CSS		
		0				
	HR	95% CI	P value	HR	95% CI	P value
Type of surgery (PN vs.RN)	1.27	0.80-2.01	0.303	1.02	0.47-2.2	0.963
Size (cm)	1.30	1.13-1.48	<0.001	1.36	1.10-1.6	0.004
Grade (high grade vs. low garde)	2.29	1.70-3.07	<0.001	2.72	1.73-4.2	<0.001
Tumor necrosis (yes vs. no)	1.54	1.02-2.31	0.037			
Vascular invasion (yes vs. no)	2.38	1.29-4.38	0.005	4.08	1.70-9.7	0.002
PSM (yes vs. no)	4.41	2.28-8.50	<0.001			

BJU International

Figure 1: Outcomes for entire cohort of RCC patients (n=3085) stratified according to type of surgery: (a) Recurrence-free survival; (b) Cancerspecific survival; and (c) Landmark analysis of CSM for patients with recurrence from the time of recurrence; RN- radical nephrectomy; NSS- nephron sparing surgery

Figure 2: Outcomes for patients with pT1, N0, Nx RCC patients (n=1995) stratified according to type of surgery: (a) Recurrence-free survival; and (b) Cancer-specific mortality; RN- radical nephrectomy; NSSnephron sparing surgery

Figure 3: Landmark analysis of CSM from the time of recurrence stratified according to type of surgery for sub-group analysis of: (1) Patients with pT1, N0, Nx; and (2) Leibovich score 0-2 (n=1995 for both groups); RN- radical nephrectomy; NSS- nephron sparing surgery

Fig 4: Distribution of patients with (a) Lung metastasis following RN; and (b) Local recurrence following NSS, over time; RN- radical nephrectomy;

 BJU International

Figure 5: suggested follow-up algorithm in patients with RCC following nephrectomy

^aEAU guidelines; ^ AUA/NCCN guidelines; [‡] Current study; ^t CXR is an alternative to chest CT in circumstances where the latter is not feasible;

Follow up

RCC- ranal cell carcimoma; EAU- European association of urology; AUA- American urology association; NCCN- National Comprehensive Cancer Network; CT- computed tomography; US- ultrasound; abd- abdomen; LS- Leibovich score

For per Review

Table S1: Univariate analysis of factors associated with tumour recurrence and Cancer-specific mortality(CSM) in main cohort of RCC patients (n=3085)

Variable	Disease recurrence			CSM		
	HR	95% CI	P value	HR	95% CI	P value
Type of surgery (PN vs.RN)	3.3	2.6-4.2	<0.001	6.2	4.1-9.3	<0.001
Size (cm)	1.17	1.15-1.2	< 0.001	1.19	1.16-1.2	<0.001
Tumor stage (<t2 td="" vs.="" ≥t2)<=""><td>1.65</td><td>1.6-1.7</td><td><0.001</td><td>1.81</td><td>1.7-1.9</td><td><0.001</td></t2>	1.65	1.6-1.7	<0.001	1.81	1.7-1.9	<0.001
Grade (high grade vs. low grade)	2.97	2.7-3.3	<0.001	3.46	2.97-4.03	<0.001
Tumor necrosis (yes vs. no)	3.5	2.9-4.2	<0.001	4.1	3.2-5.2	<0.001
Vascular invasion (yes vs. no)	4.45	3.7-5.4	<0.001	5.3	4.1-6.7	< 0.001
PSM (yes vs. no)	3.17	2.3-4.3	<0.001	3.07	2.0-4.6	<0.001

*CMS- cancer specific mortality; PN-partial nephrectomy; RN-radical nephrectomy; PSM-positive surgical margins

Table 2S: Multivariate analysis of factors associated with tumour recurrence and Cancer-specific mortality (CSM) in main cohort of RCC patients (n=3085)

Variable	Disease recurrence			CSM		
	HR	95% CI	P value	HR	95% CI	P value
Type of surgery (PN vs.RN)	0.94	0.67-1.29	0.692	1.18	0.71-1.96	0.521
Size (cm)	1.065	1.03-1.09	<0.001	1.06	1.02-1.1	0.003
Tumor stage (<t2 td="" vs.="" ≥t2)<=""><td>1.31</td><td>1.22-1.41</td><td><0.001</td><td>1.37</td><td>1.24-1.51</td><td><0.001</td></t2>	1.31	1.22-1.41	<0.001	1.37	1.24-1.51	<0.001
Grade (high grade vs. low grade)	1.67	1.46-1.92	<0.001	1.97	1.63-2.36	<0.001
Tumor necrosis (yes vs. no)	1.77	1.43-2.19	<0.001	1.6	1.2-2.1	0.002
Vascular invasion (yes vs. no)	1.43	1.14-1.79	0.002	1.44	1.1-1.9	0.016
PSM (yes vs. no)	3.01	2.13-4.26	<0.001	2.3	1.4-3.6	<0.001
VIS- cancer specific mortality gical margins	; PN-partial	nephrectomy; F	N-radical	nephrecto	omy; PSM-pc	ositive

Table S3: Univariate analysis of factors associated with tumour recurrence and Cancer-specific mortality(CSM) in sub-group of pT1, N0, Nx RCC patients (n=1995)

Variable	Disease recurrence			CSM		
	HR	95% CI	P value	HR	95% CI	P value
Type of surgery (PN vs.RN)	0.74	0.53-0.98	0.04	0.4	0.22-0.73	0.003
Size (cm)	1.26	1.14-1.39	<0.001	1.41	1.2-1.67	<0.001
Grade (high grade vs. low grade)	2.52	1.96-3.24	<0.001	2.87	1.87-4.4	<0.001
Tumor necrosis (yes vs. no)	2.09	1.48-2.94	<0.001	1.8	0.96-3.4	0.066
Vascular invasion (yes vs. no)	3.42	1.96-5.96	<0.001	4.8	2.0-11.4	<0.001
PSM (yes vs. no)	3.54	2.1-5.95	<0.001	1.67	0.5-5.3	0.383

*CMS- cancer specific mortality; PN-partial nephrectomy; RN-radical nephrectomy; PSM-positive surgical margins

Table S4: Univariate analysis of factors associated with tumour recurrence in sub-group of pT1, N0, NxRCC patients (n=1995) stratified according to type of surgery

Variable		RN (n=940)	PN (n=1055)			
	HR	95% CI	P value	HR	95% CI	P value
Size (cm)	1.38	1.2-1.6	<0.001	1.12	0.95-1.34	0.18
Grade (high grade vs. low grade)	2.41	1.72-3.37	<0.001	2.7	1.81-4.01	<0.001
Tumor necrosis (yes vs. no)	2.35	1.5-3.7	<0.001	1.69	0.98-2.89	0.058
Vascular invasion (yes vs. no)	4.17	2.19-7.9	<0.001	1.96	0.6-6.3	0.26
PSM (yes vs. no)	0,		·	3.83	2.08-7.03	<0.001

ee perie

*PN-partial nephrectomy; RN-radical nephrectomy; PSM-positive surgical margins

Table S5: Multivariate analysis of factors associated with tumour recurrence in sub-group of pT1, N0, NxRCC patients (n=1995) stratified according to type of surgery

Variable	RN (n=940)			PN (n=1055)		
	HR	95% CI	P value	HR	95% CI	P value
Size (cm)	1.457	1.22-1.72	<0.001			
Grade (high grade vs. low grade)	2.264	1.26-3.28	<0.001	2.82	1.86-4.28	<0.001
Tumor necrosis (yes vs. no)	1.780	1.06-2.98	0.029			
Vascular invasion (yes vs. no)	3.889	1.97-7.6	<0.001			
PSM (yes vs. no)				4.0	2.12-7.58	<0.001

C PCL.

*PN-partial nephrectomy; RN-radical nephrectomy; PSM-positive surgical margins

Figure 1S: Flowchart demonstrating inclusion and exclusion criteria for the present study.

