
Testing the quasicentroid molecular dynamics method on gas-phase ammonia

Christopher Haggard,1 Vijay Ganesh Sadhasivam,1 George Trenins,2 and

Stuart C. Althorpe1

1)Yusuf Hamied Department of Chemistry, University of Cambridge,

Lensfield Road, Cambridge, CB2 1EW, UK.

2)Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich,
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Quasicentroid molecular dynamics (QCMD) is a path-integral method for ap-

proximating nuclear quantum effects in dynamics simulations, which has given

promising results for gas- and condensed-phase water. Here, by simulating the

infrared spectrum of gas-phase ammonia, we test the feasibility of extend-

ing QCMD beyond water. Overall, QCMD works as well for ammonia as for

water, reducing or eliminating blue shifts from the classical spectrum with-

out introducing the artificial red-shifts or broadening associated with other

imaginary-time path-integral methods. However, QCMD gives only a mod-

est improvement over the classical spectrum for the position of the symmetric

bend mode, which is highly anharmonic (since it correlates with the inversion

pathway). We expect QCMD to have similar problems with large-amplitude

degrees of freedom in other molecules, but otherwise to work as well as for

water.
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I. INTRODUCTION

A variety of imaginary-time path-integral1,2 methods, including (thermostatted)

ring-polymer molecular dynamics ([T]RPMD)3–7 and centroid molecular dynamics

(CMD)8–12, have been developed for approximating nuclear quantum effects in simu-

lations of dynamical properties. These methods resemble classical MD in the extended

phase-space of the imaginary-time Feynman paths or ‘ring-polymers’. They were in-

troduced heuristically, but can also be thought of as approximations to ‘Matsubara

dynamics’13–17, which is the classical, quantum-Boltzmann-conserving, dynamics that

emerges when jagged imaginary-time paths are smoothed to remove real-time quan-

tum coherence; [T]RPMD is a short-time approximation to Matsubara dynamics;

CMD is a mean-field approximation, equivalent to averaging out the quantum fluc-

tuations about the ring-polymer centroids16,18,19.

The recently developed quasicentroid molecular dynamics (QCMD)20 method has

been applied so far only to water, and is similar to CMD, except that the fluctuations

are mean-field averaged around a curvilinear ‘quasicentroid’ rather than a cartesian

centroid. The resulting QCMD infrared spectra (of gas-phase water and of the q-

TIP4P/F21 model of liquid water and ice) show none of the artificial red-shifting and

broadening that affects the CMD stretch band in water (below 400 K in the gas-phase

and 300 K in the liquid), with the positions of the bands lining up almost perfectly

with the exact quantum spectrum (with a small temperature-independent blue shift),

and the intensities of the fundamental bands approximating well the intensities of the

quantum bands (in gas-phase water)20,22. These results are very promising, although

QCMD is currently roughly 100 times more expensive than TRPMD, which gives

band positions for water which are as good as QCMD but artificially broadens the

lineshapes.

The reason QCMD works so well for water is that each point on the quasicen-

troid potential of mean force corresponds to an ensemble of ring polymers with the

same average bond length. At low temperatures, this condition prevents polymers

that stretch around rotational (or librational) curves from spuriously lowering the
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free energy near inner turning points by forming artificial instantons, as happens in

CMD14,23,24. As a result, QCMD gives more compact ring-polymer distributions than

CMD, and hence a better approximation to Matsubara dynamics.

Here, we investigate whether these advantages can be generalised to molecules

other than water by extending QCMD to treat gas-phase ammonia. A (non-

dissociating) water molecule is especially simple to treat because it has no internal

degrees of freedom capable of highly anharmonic large-amplitude motion. We know

from recent studies of overtones, combination bands and Fermi resonances, that cou-

pling between the centroid and the fluctuation modes can have a major effect when

anharmonicity is important25,26. Such coupling is neglected by QCMD (and also by

CMD, TRPMD and classical MD). We therefore pay particular attention in what

follows to how well QCMD performs for the symmetric stretch band in ammonia,

which correlates with the inversion pathway.

II. METHODOLOGY

It is straightforward to extend the QCMD treatment of water in ref. 20 to ammonia.

We define curvilinear centroids

Ri =
1

N

N∑
k=1

r
(k)
i Θi =

1

N

N∑
k=1

θ
(k)
i (1)

where i = 1, 2, 3 denotes the bond angle or bond length, and k = 1, . . . , N denotes

the imaginary-time replica or ‘bead’. For each replica, the bond lengths and angles

are functions of the cartesian bead coordinates of the four atoms, which we will refer

to collectively as q ≡ {q(k)
l }, with k = 1, . . . , N and l = 1, . . . , 12. These coordinates

roughly correspond to the stretch and bend vibrational normal mode coordinates. In

addition to these 6 internal coordinates (DOFs), 6 external coordinates are needed

to uniquely define the quasicentroid configuration. These are obtained from Eckart

constraints27–29 similar to those in ref. 20, which orient the ring-polymer with respect

to the quasicentroid unit. We will denote the full set of quasicentroid coordinates

({Ri,Θi} plus the Eckart constraints) by ξ.
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The QCMD potential of mean force F(ξ) is defined to be the free energy obtained

by averaging the ring-polymer fluctuations around ξ, namely

e−βF(ξ) = Zqc(ξ) =

∫
dp′
∫
dq′ e−βNWN (q′,p′) δ(ξ′ − ξ) (2)

where WN(q,p) is the ring-polymer Hamiltonian, and p′ are the cartesian momenta

conjugate to the cartesian bead coordinates q′. The mean forces and torques on the

quasicentroid are thus

fRi
(ξ) = −∂F(ξ)

∂Ri

≈ − 1

N

〈
N∑
k=1

∂UN(q)

∂r
(k)
i

〉
ξ

(3)

fΘi
(ξ) = −∂F(ξ)

∂Θi

≈ − 1

N

〈
N∑
k=1

∂UN(q)

∂θ
(k)
i

〉
ξ

(4)

where UN(q) is the ring-polymer potential energy minus the spring term, and

〈. . . 〉ξ =
1

Zqc(ξ)

∫
dp′
∫
dq′ e−βNWN (q′,p′) . . . δ(ξ′ − ξ) (5)

The approximations in Eqs. (3) and (4) follow from assuming that the ring-polymer

distribution is sufficiently compact that the polymer-spring contribution to the force

is negligible. As discussed in ref. 20, this assumption of compactness also allows one

to propagate the quasicentroid dynamics in cartesian coordinates (so that one does

not need to work with curvilinear momenta and mass matrices), and (most crucially)

to use the dynamics of the quasicentroid as a proxy for the dynamics of the centroid.

Each of these approximations contributes an error to the static quantum Boltzmann

distribution (sampled by the quasicentroid dynamics), and it is thus necessary to

check that the QCMD static properties agree well with those of standard PIMD.

III. NUMERICAL DETAILS

To propagate the QCMD dynamics of (gas-phase) ammonia, we converted the

curvilinear forces of Eqs. (3) and (4) to cartesians (using the relations given in the

Supplementary Material), and propagated the dynamics using the adiabatic QCMD
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(AQCMD) algorithm of Trenins et al.20 at 300 K (using N = 32 replicas) and

150 K (N = 64), using the ammonia potential energy and dipole-moment surfaces

of Yurchenko et al.30 At each temperature, a total of 32 initial geometries were equi-

librated for 15 ps using TRPMD with a global path-integral Langevin thermostat

(PILE-G)31 (λ = 0.5, τ0 = 100 fs), after which they followed QCMD dynamics for 2

ps (to re-equilibrate to the QCMD distribution), then QCMD for a further 5 ps (pro-

duction runs). The AQCMD algorithm used a timestep of 0.1/γ fs with γ = 32 (300

K) and 64 (150 K), with a local path-integral Langevin thermostat (PILE-L) attached

to the ring-polymers and a global Langevin thermostat32 to the quasicentroids, as in

ref. 20.

During QCMD simulations, we observed (rare) numerical instabilities occurring

in the vicinity of inversion events.33 A small fraction of the QCMD trajectories (∼

1.6%) were hence discarded when the ammonia attempted to invert, since the Eckart

constraint cannot handle large amplitude motion (LAM)34,3536.

The spectra were obtained from the dipole derivative time-autocorrelation function

Cµ̇·µ̇(t). Since volume is not defined for the gas-phase simulations, the power spectrum

Ĩµ̇ (ω) = β

∫ ∞
−∞

dt e−iωtCµ̇·µ̇(t)f(t) (6)

was calculated in lieu of the IR spectrum37, where f(t) is a Hann window of width

τ = 750 fs.

IV. RESULTS

The resulting QCMD spectra are shown in Figs. 1 (300 K) and 2 (150 K), where

they are compared with the results of CMD and TRPMD (computed using standard

PIMD methods), classical MD, and quantum dynamics (obtained by Boltzmann-

weighting the line list found in ref. 30 and convolving with f(t)). The combination-

band regions are also shown multiplied by the perturbative correction factor of ref. 38,

which was found in refs. 26 and 25 to account for most of the increase in intensity
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Figure 1. Infrared absorption spectra for gas-phase ammonia at 300 K, computed by

extending QCMD as described in the text (black line), compared with the damped quantum

spectrum adapted from ref. 30 (grey shading). Also shown are the results of standard CMD,

TRPMD and classical MD simulations. The dashed lines were obtained by multiplying the

ν1/ν3 + ν2 and ν1/ν3 + ν4 combination bands (except for the TRPMD bands, which have

very wide tails) by the post-processing correction factor of ref. 25 and 26. The absorption

intensities in the two panels are scaled in the ratio 1:13.

of the non-fundamental bands that results from the neglected coupling between the

Matsubara dynamics of the centroid and the fluctuation modes.

With the exception of the symmetric bend (ν2), QCMD performs almost as well

for ammonia as for gas-phase water. The QCMD asymmetric bend (ν4) and stretch

bands (ν1/ν3) line up with the TRPMD bands, but are not artificially broadened.

Both QCMD and TRPMD give a similar (temperature-independent) blue shift for

the stretch band for ammonia (35 cm−1) to gas-phase water (60 cm−1), because

they are both affected by the neglect of centroid-fluctuation coupling and real-time
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Figure 2. Same as Fig. 1 for 150 K. The absorption intensities in the two panels are scaled

in the ratio 1:19.

coherence. The QCMD combination bands are also close in position to the quantum

bands and the intensities are in good agreement when multiplied by the perturbative

correction factor (dashed lines in Figs. 1 and 2). This suggests that the ring-polymer

distributions around the quasi-centroids are compact, such that QCMD gives a good

approximation to Matsubara dynamics, and also samples a good approximation to the

exact quantum Boltzmann statistics. This is borne out by the QCMD average bond

lengths and bond angles, which are within better than 0.2% of the values computed

using standard PIMD.

For the symmetric bend, QCMD gives a ∼50 cm−1 temperature-dependent blue

shift with respect to the quantum band, making this the only QCMD band that does

not line up with TRPMD at 150 K (see Fig. 3). Discarding the inverting QCMD

trajectories (see above)39 may have biased the sampling of this band and thus skewed

its shape, but such an error is likely to be minor, since discarding the inverting
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Figure 3. Expanded plot of the symmetric-bend bands of Figs. 1 and 2.

trajectories in TRPMD does not affect its spectrum. There may also be an error in

this band from the inability of QCMD and TRPMD to describe coherent tunnelling

and thus to reproduce the 35 cm−1 bend-tunnelling splitting40, although such an

error would be unlikely to shift the overall position of the band, and presumably has

a similar effect on both QCMD and TRPMD. Nevertheless, the (planar) inversion

barrier does give a clue as to what causes the QCMD blue shift. In CMD (and

TRPMD), the ring-polymer lowers its potential energy at the barrier by forming a

(non-artificial) instanton41 along the inversion coordinate ρ30,

ρ = arccos
2√
3

sin

(
θ1 + θ2 + θ3

6

)
(7)

as illustrated in Fig. 442. However, in QCMD, the curvilinear centroid constraint

at the barrier (Θ1 + Θ2 + Θ3 = 2π) forces each of the N ammonia replicas to be
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Figure 4. Schematic plot of the potential energy (green) and the potentials of mean force for

QCMD (black) and CMD (blue) along the inversion coordinate ρ. The QCMD curvilinear

centroid constraint artificially prevents the formation of the tunnelling instanton at the

barrier.

planar, which prevents the instanton from forming.43 Although the barrier itself is

not important, we can expect that a similar constriction in the range of geometries

sampled also increases the QCMD potential of mean force on the barrier-side of the

potential wells.

In other words, the QCMD curvilinear centroid constraints, which annihilate the

artificial instantons, also annihilate the genuine instanton at the barrier top, thus

giving an artificial blue shift in the symmetric bend. The CMD cartesian centroid

constraints permit both the artificial and the genuine instantons to form, which seems

to have resulted in an almost perfect cancellation of errors in the frequency of the

symmetric bend at 150 K (but not at other temperatures). Of the methods tested,
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the best estimate of the symmetric bend frequency is given by TRPMD, which does

not interfere with the instanton, and thus exerts the correct force on the centroid

(although not on the fluctuation modes). Note that a variety of other semiclassical

methods, including path-integral Liouville dynamics44 and semi-classical initial value

representation (SC-IVR) methods45,46, also give a good estimate of this frequency.

It is tempting to try to fix this problem by designing a centroid coordinate that

annihilates artificial instantons but preserves real ones. However, besides being messy

and semi-empirical, such a proposed solution neglects the real problem here, which is

that the anharmonic Matsubara dynamics of the symmetric bend involves so much

centroid-fluctuation coupling that is probably necessary to remove at least some of

the fluctuation modes from the mean-field, and to explicitly couple their dynamics

to that of the quasicentroid. Such an approach would re-introduce the Matsubara

phase, and is thus unlikely to be practical.

However, we should keep in mind that the ‘bad’ symmetric-bend frequency is no

worse than that predicted by classical MD, and that overall the agreement between

QCMD and the quantum spectrum (Figs. 1 and 2) is a big improvement on that

provided by TRPMD and CMD.

V. CONCLUSIONS

These tests on gas-phase ammonia suggest that the advantages of QCMD can be

generalised to many systems other than water, with the important caveat that degrees

of freedom that are both (Boltzmann-statistically) quantum and highly anharmonic

(such as the ammonia inversion mode) are unlikely to be treated better by QCMD

than by other path-integral methods.

We expect these findings to transfer straightforwardly to the condensed phase,

since intermolecular degrees of freedom (such as librations and centre-of-mass vibra-

tions) tend to be Boltzmann-statistically classical. QCMD has in fact already been

applied to the q-TIP4P/F model of liquid water and ice20. Similar calculations would

be straightforward for liquid ammonia (since the only modification needed to Sec. II
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would be the addition of the torque estimator τ , as discussed in ref. 20). More

generally, applications of QCMD to mixtures of water and organic molecules, e.g.

clathrates or water-organic solvent interfaces should be possible. However, QCMD is

unlikely to be able to treat proton-transfer processes (in solution or in the gas-phase),

since proton-transfer coordinates are typically (Boltzmann-statistically) quantum and

highly anharmonic47.

The ‘elephant in the room’ is that QCMD is typically 10-100 times more expensive

than competing path-integral dynamics methods (such as TRPMD and CMD), on

account of the adiabatic algorithm used to generate the quasicentroid potential of

mean force. More efficient algorithms will need to be developed if QCMD is to

become widely applicable.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details of the cartesian to curvilinear

coordinate transformations.
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